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ABSTRACT

The purpose of this report is to discuss computer implementations
of tests for normality. Some of the underlying statistical considerations
and random process theory are briefly reviewed to provide a background
for subsequentmaterial. Methods for digitally computing basic statistical
parameters, such as the mean, variance, skewness, kurtosis, etc., are
given, along with procedures for computing the sample probability density
function. Problems arising from the digital and discrete nature of the
data are discussed, as well as sample sizes required for the tests. The
central part of the report consists of adetailed discussion ofthe computer
implementation of the chi-square goodness-of-fit testas applied totesting
for normality, followed by computer program flow charts, suitable for
use in coding the procedure for a digital computer. Sufficient detail has
been provided so that a programmer unfamiliar with the material should
be able to write a program which will make maximum use of the time
which is frequently lost during periods of input and output of data from
the computer., The report concludes with an appendix whichlists standard
approximations for some of the mathematical functions required in the:
calculations.
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PROBABILITY CALCULATIONS ON A DIGITAL COMPUTER

1. INTRODUCTION

The purpose of this document is to

. Review certain statistical parameters needed for the
2
X goodness-of-fit test to test the probability density

function of vibration and acoustic data for normality,

. Provide detailed methods for calculating these parameters
2
and the X test statistic to give techniques suitable for

implementation on a digital computer.

While some of this material is available in standard statistical
treatises, the emphasis in those works is usually on small samples.
Furthermore, the instructions for making the necessary computations
usually are suitable only for hand or desk calculations. When large
quantities of data are to be processed, or the procedures must be auto-

mated, the method of implementing the tests must be adapted accordingly.

Properly interpreted, the material contained herein may be employed
as a guide for the design of 2 computer program for probability calculations,

and as a reference in the use of the program after its completion.



Z. REVIEW OF CERTAIN STATISTICAL CONCEPTS

The material given in this section is intended only as a review of the
definition of some basic statistical parameters, and is included so that the
reader may make use of material in subsequent sections without having to
refer to other documents. For a deeper understanding of the subject,

Reference 1 is recommended.

2.1 RANDOM PROCESSES

The precise definition of a random process requires an elaborate
mathematical scaffolding due to the generality of the variables which may be
examined., Fortunately, in common engineering practice, the pathological
functions considered by mathematicians do not exist. Hence, several
simplifying assumptions can be made without impairing the validity of the

results. These are

i. that the functions being considered are continuous, and
2. that the random process underlying the function is
ergodic and stationary.
The remainder of this subsection will be spent in an intuitive dis-

cussion of the meaning of assumption 2.

Suppose that a large number of identical random noise generators were
turned on at some remote time in the past, and left to run. Associated with
the output of all of the generators is a function p(x, t) with the following

characteristics. For a certain fixed time, say t_, the probability that the

0 ]
output of the ith signal generator, xi(to), lies between values a and b is
given by the integral of the probability density function taken between the
limits a and b.

b
P[a < xi(to) < b] =f pix, to) dx (1)

a



Note that the integration is performed with respect to the range of the random

variable, Statistical moments are defined as follows,

Q0

ulty) = f x{tg) Bl t)) dx (2)
Q0

g = [ [atey) - te)]? ptxs 1) ax 3)

where p(to) is the expected value (mean) and az(to) is the second moment

about the mean (variance) of the random process at time tO . If the random
. . 2 )

process is stationary, the parameters p.(to) and o (to) are independent of

time. That is,

ity = p(t)) = p , (4)

and

crz(to) = crz(tl) = trz (5)

where t'0 and t1 are arbitrary. As stationarity is assumed, the mean and

variance hereafter will be written without the qualifying tO .
The assumption of ergodicity permits ensemble averages to be replaced
with time averages. In the ncise generator example, if the generators are
exactly alike, even though they are each producing different random variables,
the output of one of the generators is sufficient to define the statistics for all

of them. The expression for the mean, Eq. (2), may be replaced with

T

= lim T x(t) dt (6)

T=>c0 -T

which is a time average based on a single record of the process.



2.2 SAMPLING

In the previous section, the functions distussed were defined on the in-
terval t = -co tot =, and were not constrained except for continuity, etc.
Two major constraints are placed on data functions by the method of testing

during the course of a test:

1. only a finite time span of data is recorded, and

2. bandwidth of the data system is finite.

The second constraint will now be discussed in terms of 'bit rate' for
digital data systems.

If the system in question can record or transmit n binary bits per
second per function, the bits could have been distributed to give varying

sample rates and accuracies as follows.

bhit rate _
bits/word ~ g

=]

S = sample rate = (7)
where, as usual, the sample rate is the number of samples per unit time
taken of a function, and the data "word' is the digitized sample expressed as
a binary number made up of q binary digits. Usually the number of bits
per word, q, has been fixed by equipment design considerations during an
early stage of development of the data system and unalterable thereafter.
The bit rate and sample rate may be varied in the same manner in most of
the common systems, but there is a definite upper limit for any individual
systern. The variation, of course, is quite large. If the digital data is to
be recorded, this places yet another limitation, usually lower than that

imposed by the rate of the analog to digital converters.



2.3 SAMPLED STATISTICAL PARAMETERS

In Section 2.1, expressions for the mean and variance of a probability
density function were given. These and other parameters are frequently
estimated for a sequenée of sample data, in which case it is customary to use
the adjective ""sample' with the resulting calculations, and to modify the
notation accordingly. For example, if the sequence {xi} y i=1,2,...,N,
is a series of readings recorded during a test, then the sample mean, m, is

computed by

m = x, (8)

i=1

Zi-

. . 2 . .
and the unbiased sample variance, s , is obtained from

£ = Z(x. - m)° (9)

The true values are p and crz defined by Eqs. {4) and (5).

Sample probability density functions may also be obtained from such a
data sequence. Such sample functions are not unique for a given sample of
data as are m and s2 , but depend upon the values of certain coefficients
used in their derivation. The details of these computations will be postponed

until Section 3.

2.4 CHI-SQUARE GOODNESS-OF-FIT TEST

A test which is often used to check the equivalence of a probability
density for sampled data to some theoretical density function is called the
chi-square goodness-of-fit test, The general procedure involves the use of
the chi-square statistic as a measure of the discrepancy between an observed
probahility density function and the theoretical density function. A hypothesis

of equivalence is then tested by studying the sampling distribution of chi-squared.



As before, consider a sample of N independent observations from the
random variable x with the probability density function p{x). Let the

observations be grouped into k equally wide intervals, called class intervals,

which together form a frequency histogram. The number of observations

falling within the ith class interval is called the observed frequency in the

ith class, and will be denoted by Ni . The number of observations which
would be expected to fall within the ith class interval if the true probability

density function for x were po(x) is called the expected frequency in the

ith class interval, and will be denoted by Fi . Now the discrepancy between
the observed frequency and expected frequency within each class interval
is given by (Ni - Fi)' To measure the total discrepancy in each interval

must be used since

k k
ZNiz [, F =N (10)

i=1 i=1

which means that the sum of the discrepancies must equal zero. Using the
sum of the squared discrepancies, the sample chi-~square is obtained as

follows.
2

(N. - F)}
XZ= Z _iF_l— (11)
i=1 i

Under suitable assumptions, this sample chi-square may be compared with
the regular chi-square distribution, denoted by XZ . [An actual numerical

value will be written as XZ ]
n;a

i 2
The distribution for x , which is discussed in many references,
depends upon the number of independent squared variables in xz {the number

of degrees-of-freedom n). The value of n is equal to k minus the number of



different independent linear restrictions imposed on the observations. There
1s one such restriction due to the fact that the frequency in the last class
interval is determined once the frequencies in the first k - 1 class intervals
are known. There is at least one additional restriction due to fitting the
expected theoretical density function to the frequency histogram for the
observed data. For the frequently occurring case where the expected
theoretical density function is the normal density function, two restrictions
are imposed because a mean and variance must be computed to fit a normal
density function. Hence, in the instance where the chi-square goodness-of-
fit test is used as a test for normality, the number of degrees-of-freedom for
X 2 isn=k - 3.

Having established the proper degrees-of-freedom n for xz -
hypothesis test may be performed as follows. Let it be hypothesized that
the variable x has a probability density function p(x) = po(x). After
grouping the sampled observations into k class intervals and computing
the expected frequency for each interval assuming p({x) = po(x) , compute
X'2 as indicated in Eq. (11}, Any deviation of p(x) from pO(x) will cause

XZ to increase., The region of acceptance is
X" < X (12)

If the computed value of Xz is greater than xia , the hypothesis
p(x) = po(xz) is rejected at the a level of significance. If X'2 is less than
or equal xn;a , the hypothesis is accepted.

For the case where the chi-square goodness-of-fit test is used as a
normality test, with a level of significance a = 0, 05, Table 1 provides an

explicit guideline for selecting the number of class intervals.



TABLE 1

Minimum Optimum Number (k} of Class Intervals
for Sample Size N when a = 0,05

N k

200 16

400 20
600 24

800 27

1, 000 30

1, 500 35

2, 000 39
4, 000 57
7, 000 65
10, 000 74
20, 000 94
40, 000 129
70, 000 162
100, 000 187
200, 000 247
400, 000 326
700, 000 407
1, 000, 000 470
1,140, 000 500

The above is based on the relation

k=1.87(N - 1)2/5

obtained from Reference 3.



This table cannot be used for all data. While satisfactory for digital
processes developed from numerical random number generators, it may not
be appropriate, except for providing an upper limit, for output data from an
analog to digital convertor {ADC). Typical ADC's have a total number of
discrete digital levels. This number is usually a power of two, common
values being 64, 128, 256, 512, 1024, and 2048. Clearly, it is senseless to
set up one hundred class intervals when there are only 64 digitizer levels, as
at least 36 of the class intervals will be empty.

It would be preferable to have the same number of digitizer levels for
all class intervals. This may be difficult to do in practice, as the digitizer
itself may be biased, and the conversion of engineering data to digital counts
may be nonlinear, resulting in a poor distribution of the possible data values
to the equally spaced class intervals.

When processing digitized data {i.e., analog data processed through
a coarse ADC), there must be a definite upper limit for k dependent on the
number of digitizer levels itself. A safer procedure when processing large
volumes of data is to set maximum k equal to one-fifth to one-tenth of the
number of digitizer levels, so that each case need not be checked to see if
the class intervals are biased.

The power of the test is decreased, however, when fewer than the
optimum number of class intervals iz used, and the chi-square test is more

likely to accept the normality hypothesis when it is in fact false.



2.5 SKEWNESS AND KURTOSIS (MOMENTS) TEST OF NORMALITY

An alternative procedure to the chi-square goodness-of-fit test is to
compute the normalized sample third and fourth momeﬁts about the mean
(skewness and kurtosis, reépectively). and examine the resulting numbers.
As the normal distribution is completely determined by its first and second
moments, the higher order moments turn out to be functions of the first two.

Z

3
{x. - 1}
=1

In particular,

e
a, = 3 (skewness) (13)
o N
N
4
Z (%, - p)
* i=1 N
o, = (kurtosis) (14)
4 4
o N

and E [ a:]= o, E[a:] = 3. Reference 4 lists values for the 1% and 5%
significance levels of the sampling distributions for the sample estimates
defined above. If both sample values are within the 5% deviation intervals,

the sequence being examined may be accepted as normal at the 5% level of
significance. This sample size given in the tables is for independent observa-
tions. Hence, an effective sample size of N*= ZBT should be used when
entering the tables as opposed to the total number of digitized points. It is
not possible to say under what conditions which test, XZ or moments, is the
better test for normality. It would seem advisable to perform both and

investigate the data further should they not agree.
P
A full explanation of the N = 2BT expression is given in Reference | ;

briefly, B is the noise bandwidth, T is the time span of the data, and N

is the number of independent data points.

10



3. PROBABILITY DENSITY CALCULATIONS AND
NORMALITY TEST ON A DIGITAL COMPUTER

The procedure for digitally generating the sample probability density
function of a function x(t) and testing it for normality can be arranged in a

series of six steps:

i. computation of the sample mean and standard deviation
ii. sorting the data to produce the sample probability density
function
iii. taking care of certain end point problems

(to be discussed more fully below)

iv, computation of the normal distribution based on a sample
mean and standard deviation
) 2 . 2
v. computing X, the sample estimate for Y
. 2 e s Y .
vi. testing the computed X to see if it satisfies predetermined
conditions

Suppose that as before the digitized realization of the random process

is the sequence {xi-} s i=1,...,N. As in Section 2.3, the sample mean is

and the sample standard deviation is

-
E x.z - Nmz
- i

i=1

N -1

the latter expression being a more convenient computational form.
The sample mean and standard deviation for a given sequence are
unique. The sample probability density function on the other hand is not.

It is determined by a and b (the interval of the range of x to be examined)

11



and the parameter k (the same k defined in Section 2,4). When a, b, or
k are changed, the density function will also change. The reason for this is
implicit in the manner in which the density function is computed. The inter-
val [a,b] is divided into k equally spaced subintervals, and the number of
occurrences of x in each of them is tabulated. For a given subinterval, the
number of occurrences of x within it, divided by N, is the sample estimate
of the probability of occurrence of x in the s.ubinterval.

To formalize this process, the histogram of x is obtained in the
following manner. Let {Nj} be the set of integers obtained by sorting x
on the range[a,b] . Letc=(b-a)/k, and dj = a+jc. Then {Nj] is given by:

. N
-+ .

0 : [Number of x such that x < a]

i [Number of x such that dj 1< x < dj]

k [Number of x such that dk-l <x < b]
(k+1) [Number of x such that x> b]

Figure | illustrates these quantities.

12
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Figure 1. Illustration of Histogram Construction

One method of doing this sorting on a digital computer is to examine each

xi, i=1i,2,...,N, in turn. Then

i. if xis_a,, addonetoNO.
x, - a
ii. If a < X, < b, compute L =[

]; then select £ as the

largest integer less than or equal to L and add one to N! .
(This technique is usually easy to program on binary
machines having floating point operations.)

iii. If X, > b, add one to Nk+1 .

Three forms of the sequence are used. The first is the histogram,
which is simply the sequence {Nj.} without changes. The second is the func-
tion {Pj} s J=0,...,(ktl), where

P, Probahbilit [d.
j 4 i-1

<x5dj]

N./N
i

13



The third sequence, {pj} y J=1,...,k, is the sample density function

N.k
=

Pi= N(b-a)

which can be interpreted as the derivative of the distribution function at the
midpoeint of the given interval.

A normal distribution is completely determined by the mean and
variance. Hence, if X, is normally distributed, then Nj should be approxi-

mately equal to Fj , Where

(dj-rn)/ 8

2
F, = [ ——:{——-e-z /zdz ;o i=1,...0,k
J (dj_l-m)/s \V 2w

This integral can be evaluated numerically using standard techniques, such as
Reference 3. If {Nj} and {FJ} are ''nearly alike,' then {xi.} will be taken to
be normally distributed. The chi-square test may be used to test the

hypothesis that {Nj} and {Fj} are ''mearly alike!!

14



4, THE CHI-SQUARE TEST ON A DIGITAL COMPUTER

2
In order to carry out the ¥ test for goodness-of-fit described below,
elements of {F ]must be multiplied by the relative bandwidth B , where
Br = N /N (see Section 2.5}, and those values of {B F, }such that B F_] <5
pooled with adjacent larger values. While this is easy to do visually,
computer mechanizations are somewhat more difficult. One technigque
which has proved to be satisfactory in most cases is to find P such that
FP > Fn for all j. Then, define the sequences Qj and Rj by
BrN' +Q—Q.
If B F, > 5, then o
. B_F, + R—R,
T J J

Ift B F, < 5, then
T

S

— -
BrNj + Qj+l Qj+1 for j < P

+ —
Ber Rj+1 R

or

ro—»Qj , R

N
—
—

BN +Q, . —Q. for j > P
Ty - i-

BF. +R, —R,
rj j-1 i-

The sequences generated by this procedure are similar to {Nj } and [FJ} ,
except that the numbers have been reduced by the bandwidth factor and the

itgils" of distributions have been shifted towards the center,

15



Next, define the sequence {HJ} by

1 if QJ.#O

0 if Q=0 , j=1,....k

XZ and n, the number of degrees-of-freedom, are now defined by

2
XK (Q -r)
: R, j
)=t j
and k
n = ZH -3
=1 7

The usual procedure in applying the xz test is to preselect a parameter
a , the level of significance of the test (frequently chosen values for a are
2
.10, .05, and .01 with o= 0.05 being the most common), Xn is obtained

through one of séveral procedures. It is defined by the relationship

2 2
o -Prob[X > Xn;a]

2
Ir X > szx'cr , then the hypothesis that x, is normally distributed is

2 2
rejected at the « significance level. On the other hand, if X < Xp.q °

{xi-} is accepted as being normally distributed. In this case, it is

common practice to say that the acceptance of the hypothesis is at the

{1 - @) confidence level, The quantity xi;a is dependent on both ¢ and n.

It may be computed implicitly using various computer subroutines presently in
existence, or for fixed @ it may be stored as a table of numbers, as in

Table 2. Common tables for x_i_a usually do not go beyond n = 30. If more

16



than 33 pockets are to be employed, resulting inn > 30, an approximation of

2 e
the Xn;a distribution may be used.

»
1l

where [

and X

&{x)

(
A
3

14
[}
[n
(]
o
o

A somewhat more complicated problem arises when « is not given,
but is to be computed as a function of X2 and n. This can be done by having
a large table of @ versus xz and n stored as a part of the computer program,
and then using a double interpolation routine to calculate «. If this procedure
is too wasteful of computer space, a computer subroutine may be used to find
a for a given X2 and n. Such routines frequently contain a subset of instruc-
tions for computing the cumulative normal distribution, so that the computer

storage used to contain the required instructions need not be too extensive,

17



TABLE 2

)(i;a for «=0.05 and n=1,...,30
2 2

" Xn;0.05 " *n;0. 05
1 3.841 16 26.296
2 5.991 17 27.587
3 7.815 18 28. 869
4 9.48% 19 30.143
5 11.071 20 31.410
[ 12,592 21 32.671
7 14,067 22 33,924
8 15. 507 23 35,173
9 16.919 24 36.415
10 18.307 25 37.653
11 19.675 26 38.885
12 21.026 27 40.113
13 22,362 28 41.337
14 23.685 29 42,557
15 24.996 30 43,773

18



5. COMPUTER PROGRAM FLOW CHARTS

The computer program flow charts, Figures 2, 3, 4, and 5, show
one standard scheme for program set-up. They include as a convenience
the steps required fo process some additional parameters not mentioned
in the above discussion, such as the minimum and maximum values of x.

The arithmetical expressions on the charts, e.g., x, + xz_—-pxz .
refer both to data values and storage locations. The above example would
read: "the current value of x, is squared and added to the contents of the
storage location of the running total of xz , and the results stored into that
location. "

The extension of the procedure to multifunction parallel processing
is fairly obvious, so it is omitted from the charts in order to clarify them.,
The over-all flow of data is shown in Figure 2. The form of program
arrangement in Figure 2 allows the user to recover some of the time
frequently lost because of the slowness of input devices. Double buffering
routines can be employed with the processing operating independently of
the routines performing the input operations, thus allowing the input routine
coding to be a sort of universal building block, usable with other applications
or even separate parts of the same basic data processing program.

As a final comment on the flow charts, the boxes with printout or
data input functions will probably require the largest part of the programming
effort, as these items can mushroom into large tasks if speed of processing

and clarity of output are requirements.
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Figure 2 Over-all Flow Chart
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Initialize:

0 —x
0
0
0 - x
0

for
i=0, ..., (ktl)
{(b-a}/k — ¢
0 N

Read in a
piece of data

X, —x
1 max
X —™x .
1 min

No

Last piece Yes

Read in a
piece of data

F 3

\_of data

Find smallest
integer £ such that

L. < ¢
K
No
Is xi <a Yes
No
Is xig_b Yes

Figure 3. Basic Processing
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s
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Figure 4 Final Processing
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APPENDIX

NUMERICAL SUBROUTINES

It is possible that some of the computer subroutines discussed in the
main part of the write-up may not be available for a particular machine. The
purpose of this Appendix is to provide some well-known numerical approxi-

mations for reference in case the routines must be coded.

The first of these is the cormmon expression for Hx) as given in

Reference 2. Let

= 2
2 -t
f{x) = f e dt
Ve 7o

1
“l-og— a7
i
a.x
Y 2
i=0
where
a.O =1
al = 0,278393
a.z = 0.230389
a3 = 0.000972
a4 = 0,078108
Define @ by
Lyl 2 x > 0
2 2 > =
¥ x) =
i 1 X
- - - <
2 W) B
Then b

2o



The second set of relationships is two formulas which may be used in

xz computations. They yield &« as a function of )(2 and n, and are exact.

2 2
o = Prob [X > xn;ce]

(ni)/z e

= 28(X) - 1 - 2¢(X) T3 5 (D) forn odd
r=1
(n-—Z)/Z er

= 1= VZ'rr &(X)|1 + 1 5 A%, (21 for n even
=
where as usual
1 -XZIZ

= e

For n > 30, the approximation given in Section 4 may be substituted

for the above to save computer time.
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