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ABSTRACT

The equations of thermal stresses and displacements in anisotropic
hollow cylinders subjected to various arbitrary temperature boundary condi-
tions have been derived. The hollow cylinder is assumed to be made of
transversely isotropic material. Several numerical examples are treated
and the effects of the degree of anisotropy on the magnitudes of the critical
stress and maximum permissible gas temperature for various sizes of grade
ATJ and grade ZTA graphite hollow cylinders are examined. The errors
which could result from the assumption of isotropic material are calculated.
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1. INTRODUCTION

In recent years, the unique properties of graphite at elevated
temperatures have made it very attractive for high temperature applications
in the fields of rockets and missiles. Some of the unique properties of graph-
ite include strength and Young's modulus which increase with increasing
temperature, high strength-weight ratio, high thermal shock resistance, and
good machinability. On the other hand, graphite is brittle and anisotropic.
The degree of anisotropy of graphite is large enough that often it cannot be
neglected in the calculations of thermal stresses in the graphite components.

The calculations of thermal stresses generated in rocket nozzles during
motor firing is one of the important engineering problems in the missile and
rocket industries, The sophisticated and rigorous solutions to this problem
are extremely difficult.

The problem can be simplified considerably when the shapes of the
nozzles are approximated by hollow cylinders. Almost all work which deals
with this problem has been restricted to isotropic materials. Assuming the
thermal and physical properties are independent of temperature, Ja.eg'ez:'(l
obtained the expressions for tangential and radial stresses in an isotropic
hollow cylinder which is initially at zero temperature and is subjected to
radial heat flow according to Newton's Law of Cooling at both surfaces. By
suitable choice of the constants in his expressions, the cases of constant
temperature, constant flux,convection, or no heat flow at the surfaces can be
obtained. Bradshaw (2) plotted the steady-state or maximum tensile stress
at the outside surface of an isotropic hollow cylinder against the ratios of
inner radius to outer radius for various values of Biot's modulus. Thermal
stresses in an isotropic hollow cylinder whicih has temperature de)pendent
properties have been investigated by Hilton, 3) Chang and Chu, ) Trostel[5 )
and Stanigitc and McKinley.( These investigations considered only the steady-
state condition.

Literature on thermal stresses in anisotropic holiow cylinders is quite
scarce, Thompson(s) investigated the thermal stress in anisotropic hollow
cylinders, but his work is very incomplete. Batchelor et al(%) obtained the
expressions for stress components in pyrolytic graphite hollow cylinders
under a uniform temperature.

In this investigation the mathematical expressions for stress components
and displacements in anisotropic hollow cylinders subjected to various
arbitrary temperature boundary conditions are derived. Several numerical
examples are treated and the effects of the degree of anisotropy on the stress
distributions are examined. Finally, the magnitudes of the critical stress
and maximum permissible gas temperature for various sizes of hollow cyl-
inders and temperature boundary conditions are determined,

Manuscript released by the author June 1963 for publication as an ASD
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it is not the purpose of this work to conduct the actual de sign of the hard-
ware of the rocket nozzles and selection of the proper materials., The re-
sults of this investigation, however, can be helpful to engineers who wish to
take the anisotropy of the material into account in the design of graphite
rocket nozzles.

The present thermal stress analysis is based on linear, uncoupled, quasi-
static thermoelasticity. Therefore, the analysis is composed of two distinct
problems: heat conduction neglecting the mechanical coupling effect; and
elasticity disregarding the inertia effect. The solution of the temperature
problem is given in Section 2 and the solution of the elasticity problem is
derived in Section 3.



2., TEMPERATURE DISTRIBUTIONS

2.1 Geometry of a Hollow Cylinder

An infinite hollow cylinder having an inside radius of a and an outside
radius of b is considered. It is more convenient in the analysis to use the
relative radius instead of the actual radius in the cylinder. The relative
radius r is defined as the ratio of the actual radius to the inside radius of
the cylinder. By this definition the relative inside radius and the relative
outside radius of the hollow cylinder become, respectively, 1 and b/a = R.
Any relative radius in the hollow cylinder, therefore,is bounded by 1 < T <R.

2.2 Boundary Conditions

The actual heat transfer mechanism from the burning propellents to the
rocket nozzle is quite complicated and, indeed, little known. However, it
will be helpful to assume some idealized thermal boundary conditions and in-
vestigate the temperature and stress distributions under these conditions.

In this study it is assumed that three different temperature boundary condi-
tions are imposed on a hollow cylinder initially at zero temperature
throughout.

Case I: Temperatures at inside and outside surfaces are
suddenly increased to finite values:

T=T, atr = 1
T TR at r R}t>0'

Case II: Constant heat flux is applied to the inside surface and
the temperature at the outside surface is suddenly in-
creased to a finite value:

I

dT:--F—‘—E atr =1
dr Ky }t>0.
T='I‘R atr = R

Case III: Heat is convected through the inside surface according to
Newton's Law of Cooling and the temperature at the
outside surface is suddenly increased to a finite value:

dT
Tdr

1
}t>0.
T:TR atr = R

k

= ah('I'-—Tg) at r

It should be noted that Case I is a special case of Case III. If Biot's
modulus P=ah/k,becomes verylarge, Case IIl reduces to Case I. Case 1



is actually physically impossible and therefore will never occur in practice,
Case I is considered in this study because it is the most severe condition
theoretically possible under which a rocket nozzle could be fired, and there-
fore it serves as a limiting case of the firing conditions., In Case II the heat
flux per unit area at the inside surface of the cylinder is kept constant at the
value F', In Case III, the heat flux across the inside surface of the cylinder
is variable and proportional to the temperature drop between the gas temper-
ature Ty and the inside wall temperature T, where the proportionality factor
is the heat transfer coefficient h.

The heat transferred during motor firing may be primarily by the process
of thermal radiation. The analytical solution of the heat conduction problem
with thermal radiation boundary conditions, being nonlinear, is quite difficult,
If the bore temperature of the cylinder is small compared to the gas temper-
ature, the thermal radiation case can be approximated by Case II without
serious error in the temperature solution. Furthermore, if the bore tem-
perature of the cylinder and the gas temperature do not change appreciably
during firing, the thermal radiation boundary condition approaches the convec-
tion boundary condition of Case III.

2.3 BSolution of the Temperature Problems

The general partial differential equation of heat conduction in cylindrical
coordinates is(10

Kk k R
_ri(rﬂ)+_6 __.82T +k, T _ pcﬂ, (1)
r or or T 042 8z ot

where k_, k,, and k_are the coefficients of thermal conductivity in radial,
tangentigl,a d axial “directions; p is mass density, and c is specific heat.
If it is assumed that heat flows only radially, then equation (1) reduces to

1 & , 8T, 1 OT
?'s?‘rsr)*fgﬁr (2)

where K_ is the thermal diffusivity of the material in the radial direction.

The exact solutions of equation (2) which sati sfy the above temperature
boundary conditions can be found in several articles. The generalized solu-
tion given by Jaeger(}) is especially useful. By suitable choice of the con-
stants in the generalized solution, the solutions for these particular cases
can be readily obtained and are given in Table 1. The transient solutions
are in the form of infinite series of functions of Bessel functions. The argu-
ments of these functions are obtained by solving transcendental equations in-
volving Bessel functions for their roots. Each root is associated with éne
term of the infinite series. The coefficients of the functions in the infinite
series are determined from the initial boundary conditions and the orthogonal
relationship between the functions. The first ten terms of the infinite series
of functions of Bessel functions have been determined and used in the



Table 1. Temperature Sclutions

T
Case I, R R 2
T .!n-;-+ (—T—) nr o0 -a“ T

- 1 _ n
T inR nZp Falay)lilzay) e ’ )

nIoRagl Jo(Re,) - ("Bfp) Tola,)]

Joz(Rﬂn) - ng(o,n)

where Fl(an) =

U1(1‘°-n) = Jo(rﬂn)Yo(an) - Yo(rﬂ-n)Jo(‘ln)

a_are the real roots of Uj(Ra) = 0

_ 2
T= Krt/a .

Case II.
kT -alT
Tkr_ R T R = n
2 Inr— jar) ——n2=1 Fz(an)Uz(run)e R (4)
T
I(Ra ) Jo(Ra ) =~ R a_T(a )]
where Fyla ) = 2
a2[JA(Ra ) ~ I¥(a )]
Uplza ) = o [Jo(ra )¥y(a ) = Yolra )afa )]
a_are the real roots of Uy(Ra) = O.
Case III. T
R R/ 2
T Bln? + T /(1 + Binr) @ -alT
= £ - ZFsla )Usra)e = , (5)
g 1+ pfnR
{ "R/ )15 ]
-7Jg{Ra_)}1— Jo{Ra_)+ T Ji(a )+ Jola )}
where F3(an) = n a g B a a

a 2 a 2
[“(TSE) ]J‘:‘,(Ran) - [_BE Jya ) +Jg(un):l

1
U3(ran) =B Uz(ran) + Ul(ran)
a are the real roots of Uz(Ra) = 0

B = ah/ky




numerical temperature and stress calculations. The numerical computations
in this work were done on an RPC-4000 digital computer.

2.4 Numerical Calculations of the Temperature Distributions

Temperature distributions in a hollow cylinder with a wall ratio of 2.0
are calculated for various values of Fourier's modulus 7= K t/a? and are
shown in Figures 1 and 2. In all cases the temperature at the outside surface
is taken to be zero, which is the initial temperature throughout the cylinder.
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Cases I and III are combined in Figure 1 to show the effect of Biot's modulus
on the temperature distribution. In Case I the bore temperature becomes the
same as the gas temperature. In Case IIf a Biot's modulus of 10 is assumed.
Case II is given in Figure 2, In all cases the maximum temperature occurs at
the bore when the steady-state condition is reached in the cylinder. The
variation of the maximum temperature for various wall ratios and Biot's
moduli is shown in Figure 3.
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3. STRESS DISTRIBUTIONS

3.1 Assumptions

The calculation of thermal stresses in the exact configuration of the
nozzle is a complex problem. However, the problem can be simplified
greatly, if the shape of the nozzle is approximated by a hollow cylinder,
Further simplifying assumptions will be used in the analysis of thermal
stresses in the anisotropic hollow cylinder:

(1) Physical and thermal material constants are independent of
temperature,

(2} The stress-strain relation of the material obeys Hooke's Law.

(3) The material is assumed to be transversely isotropic, If the
properties of the material in the plane perpendicular to the z axis are isotrop-
ic and are different from those in the direction of the z axis, the material is
called transversely isotropic.

(4) The principal axes of anisotropy coincide with the principal axes
of the cylinder,

(5) The condition of plane strain is assumed,

Several points should be noted. First, the physical and thermal proper-
ties of the materials are dependent on temperature to various degrees and in
various ways. In order to include the variation of the material constants in
the thermal stress calculations, the values of the material constants as a
function of temperature must be known. In fact these experimental data are
not yet completely available for graphite materials, Therefore, as the first
phase of the thermal stress calculations of an anisotropic hollow cylinder,
the analysis based on the assumption of temperature independent material
constants will be made. Second, it can be assumed with sufficient accuracy
that most molded graphites are transversely isotropic and that the grain of
molded graphites is perpendicular to the direction of the molding pressure.
Third, the condition of plane strain is a good approximation for a hollow
cylinder which is sufficiently long with respect to its cross-sectional
dimensions. Under the condition of plane strain, the stress and strain com-
ponents become independent of the axial distance z along the length of the
cylinder.

3.2 Stress-Strain Relationship

According to the generalized Hooke's law, the stress-strain relation at
any point in an elastic solid is given by(}1)



El = sllu-l + Slzu'z + 5130_3 + 5140'4 + 5150‘5 + 5160-6 ™
€z = 8230y + S0 + 83303 + 85404 + Sp505 + S0y
83 = 8310-1 + 5320'2 + 5330'3 + 5340'4 + S350—5 + 5360"6

(6)
E4 = 84301 + B0z + 54303 + Sge0y + 54505 + 840y

Eg = 8510"1 + Bg5p0 3 + 85304 + S5404 + Sx50 + 5560"6

86 = 3610-1 + SGZUZ + 3630-3 + 5640"4 + 5650-5 + 5669'6 J

whereas £, is the engineering strain component, ¢, is the stress component,
and Sij is the elastic compliance constant.

Six components of stress are related to six components of strain by
means of 36 elastic compliance constants in these equations. Because of the
symmetric property, s.. = s.., of these elastic compliance constants and the
symmetry of transvers]é]ly is%tropic material, the elastic compliance con-
stants are reduced to five, namely, sy, 5;2, S;3; Si3, and sg4. The stress
distribution in a hollow cylinder under radial heat flow or internal and extern-
al pressures is axially symmetric. On account of this symmetry, the shear
stresses ¢4, 05, and 04 vanish and hence sy does not occur in the analysis.

If the temperature of the elastic solid is raised, the total strains at any point
are the sum of the strains due to linear thermal expansion of the solid and the
strains given by Hooke's law. Therefore, the stress-strain relations for
molded graphites at elevated temperatures become

€3 = 81)F) + 8120, + 51303 + 0T

€2 = 81,0 + 8130, + 8303 + 4T (7)

E3 = 5330y + 8130, + 53303 + a3T.

Since the problem deals with the stresses in a hollow cylinder, it will be
more convenient to write the stress-strain relations in the cylindrical co-
ordinates {r, 8, and z). By the assumptions (3) and (4), the r-8 plane in the
cylinder represents the basal plane (1-2 plane) of graphites and the z axis of
the cylinder is parallel with the ¢ or 3 axis of graphites. Replacing the
notations in equation (7) by 1 =r, 2 = 8, and 3 = 2z, and using the simpli-
fications: 11 =+r and 33 = z, the stress-strain relations in the cylindrical
coordinates become

€ =s 0 +8 0, +8 0 +a T (8a)
T rr ré 6 ZY Z T

E,=8 0 +80,+s5 o +a T 8b
g rf r r f ZY Z r (8b)

E =8 0 +8 0,+s50 +aT. (8c)
z Zr T zr G z z Z



The elastic compliance constants in equations (8) can be written in terms of
the Young's moduli and Poisson's ratios as

g =1 o _‘_p'rB
r_f; rd ~ E_
(9)
_ 1 By
5" E Sz2r T T E
z z

where E_ and E_ are the Young's moduli in radial and axial directions,

K is the ratio of the contraction in the & direction to the extension in the r
dlrrection, and B is the ratio of the contraction in the r direction to the ex-
tension in the =z afrection.

3.3 Tangential and Radial Stresses

Solving equations (8) for Tgs T and o_» one gets

1 S
76 = BZ - Al [-AEI_ + Be g+ szzr (A—B)sZ + £(A-B)T] (10a)
_____1 Szr
U= BI-AZ [Bsr - AEG + s, (A—B)sz + £E(A-B)T] (10b)
o =.l..[s -8 (0 + o )-aT] {10c)
z Sz Z zZr ' r g z
where
- g2 2
= s - .
Z T 2
__r = zr 1 ZT
Bee———— = - % ? (11)
Z Ir Zz
S a -85 a
£ = — z Zrz o a +a
- s, T Tr zMzr * )

For the isotropic case the constants above become

A= - HLEE) - £=all+p). (12)

10



The equations of equilibrium in the cylindrical coordinates are(1?)

o 1 aIrB a(rrz T+ %
5rr T et e T T * R'=0
aUrB &rﬂ i

e + 8'=0 (13)

1 1 v
oty vt ez tyirz tZ'=0,

where R!, 0', and Z' are the body-force components inthe r, 8§ , and =z
directions. Because of the absence of the body forces and the conditions of
plane strain and axial sy'nmetry, the first equation of equilibrium becomes

d‘rr " %8
P + = =0 {(14)

and the second and third equations of equilibrium are identically satisfied.

If u is the relative radial displacement (actual radial displacement
divided by inner radius) at the relative radius r, then the radial and tangen-
tial strain components under axial symmetry and the condition of plane
strain(1?) can be written in terms of u as

_du
€= qr (15a)
_u
€g= 2 (15b)
The differential equation for the radial displacement u, obtained from
equations {10), (14), and (15} is
2 -
dfu  ldu_uw _ §B-4A) dT (16)
dr? rdr r? B dr
The solution of equation (16), obtained by integrating twice, is
r
u = g——%— A) 5' Trdr+ Clr + "g£ N (17,
T 1 r

11



where C, and C; are constants of integration which are to be determined
from the stress conditions at the inside and outside surfaces. If the cylin-
der is subjected to both internal and external pressures, the boundary con-
ditions will be

o

r -Pl atr =1

o

F - PR at r = R. (18)
The constants of integration C; and C, can be determined from

equations (15), (17), (10b), and the boundary conditions given by equation (18).

Combining equations (10), (15), and (17}, and these constants, the following

expressions for the tangential and radial stresses are derived:

r R
£ [1 j‘ r¥+1 S ] R}(P, - Pr) ., P, - R?Py
= = - Trd Trdr - T + 1 1 19
T9TB |x? Jp TTUTRED)E Y, T (RE-D)2 | Re-1 (19)
R T
_E|_ -1 1 5 _ R¥P, - Pg) P, - R®Pjy .
o= B ——ﬁ—z-(R Or . Trdr - 3 | Trdr -——————-l—-——(Rz e + R (20)

It should be noted that, similar to the isotropic case, the tangential and
radial stresses are independent of the end condition of the cylinder. Equa-
tions (19) and (20) can be reduced to the isotropic case when £/B is replaced
by aE/l -u. It should be noted also that the total stresses can be obtained
by superimposing the stresses generated by the temperature and the stresses
produced by the pressures and that the stresses due to the pressures are in-
dependent of material properties,

3.4 Axial Stresses and Radial Displacements

The expression for the axial stress, obtained by substituting equations
(19) and (20) into equation (10c), is

it

Equation (21) gives the axial stress for the case of generalized plane strain.
The total normal force across the cross section of the cylinder is

R
£s C a B-£Es
Zr 2 z zZr Pl-RZPR)
=) ) RE-1 ')1 Trdr - (-———~—-—-———B ) T +sz—2.szr(-..____R2 T

(21)

R
F = Z'rrqu' o rdr,
z z

. (22)
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The axial stress distribution given by equation (21) is accurate for an in-
finite cylinder. Equation (21) also is a good approximation for a finite cyl-
inder, according to Saint-Venant's principle, at regions of the cylinder
which are at a distance from the ends larger than the outside diameter of

the cylinder.

Two cases of plane strain are of particular interest: namely, (a) the
axial elongation is prevented by end constraints, that is €= 0, and (b) the
ends of the cylinder are free in the sense that the total normal force across

the cross-sectional area of the cylinder is zero, thatis, Fz = 0.

{a) Zero Axial Strain, £E_= 0

Setting ¢ in equation (21) equal to zero, the axial stress for this case
is obtained:

O.ZB - gszr 2 jR ) a, 2 S'R
o= SZB (Rz—l . Trdr - T —(-;;) -1 . Trdr

Zszr P, - R"‘PR) (23)
8, R2-1 /¢
The radial displacement for this case, by setting € = 0 in the expres-

sions for C; and C, and then substituting C; and C, into ezquation (17),
becomes

r , R
o kmea) (T £s (B-A) [gsz(A+B)+ZszrazB] r? y -
Br 1 B(R? - 1)1-3Z
2s ar R
Zr_z P, - R?P RE(P, -
‘m;i Trdr + (A+B) [(———-‘Rz-z“)‘r] *(5r7sgy) [-—4——(@_1?’}(2‘4)

(b) Zero Normal Force, Fz =0

In order to obtain this condition, the external forces must be applied to
the ends of the cylinder in such a way that the surn of the normal forces on
the cross section of the cylinder is Zero, or

R
F = uzjl o _2%rdr = 0

z 1

13



By equation (21) and the condition F, = = 0, the magnitude of the axial strain
is found to be

R
20. 5 2
} z P, - R pn)
.= REog J, Trdr+2s, (-1———-—Rz —= ). (25)

Substituting £ _ given by equation (25) into equation (21}, the desired expres-
sion for the afial stress becomes

v = “BS gs (__T___l_ 5. Trdr - ) . (26)

The axial stress in this case is not affected by the presence of the pressure,.

Under the absence of the pressures the sum of the tangential and radial
stresses is always equal to the axial stress for the isotropic case; however,
this relationship does not hold any longer for the anisotropic case, The sum
of L and o 8 for the anisotropic case is related to T, for Case (b} by

E (p.ZI' Z al")

“rt % (GB-E )Gz:puE+aE Tz (27)

Zr T r

The value of the factor in equation (27) is less than 1.0 for grade ATJ and
grade ZTA graphites and equal to 1.0 for the isotropic case. Therefore,
for Case (b) the axial stress is always larger than the sum of the tangential
and radial stresses for a graphite cylinder which has the assumed grain
orientation. Consequently, the critical stress in such a cylinder will be the
axial stress at either the bore or the outside surface.

Combining equations (17), (25), and the expressions for C; and C;, the
radial displacement for Case (b} is found to be

_ £(B-A) i &sz(B-A)+[§sz(A+B)+zszruZB]rz j»R
" Br 1 Trdr+ 2 Trdr
B(R* - I)» s, 1
(P, - R%*Pg )x ; RZ(P - Pg)
+ (s, + s5.) (Rz o) + (s - s5.) ——-—L-—-—(R_,_ v . (28)

The final expressions for the stresses and radial displacements can he
obtained when the temperature T in equations (19), (20), (23), (24), (26), and

14



(28) is replaced by the temperature solutions given in the previous section.
The tangential, radial, and axial stresses for three cases of temperature
boundary conditions are given in Tables 2, 3, and 4. U and F are functions
of Bessel functions and are already given in Table 1. U! and F' denote the
derivatives of the functions with respect to r. The quantities £ and B are
the material constants given in equation (11). The general solutions for the
stresses for the ani sotropic material can be obtained by replacing aE/1 -
in Jaeger's solution{!} with £/B. The final forms of the radial displacements

15



Table 2. Stress Solutions for Case 1

Tangentlal Stress

—al 7

. _1 @ Fila e 7 Uf(ra_)
[} "l""l R3(r? + 1) 1'% R{r?+1) n 2{R% 5 r?)
—_— = ———— ~-1- = z
ot ﬁ—nn [r‘(R’-- ) MR ~-1-inr| + o “f-, R0 U{(Run) +m—— + unUI(ru“) + W
1 R}P, - PRl , P -Rlpn]
Tou| (RE- et Y TRECq (29a)
Radial Stress
-at 7
T‘n n
T -1 Fy{a Je
r T, RrREr-1) :| @ "o [Ul(ru ) R{r?- 1 2(RE-52
= mR - # - By 2 %)
T3 ﬂﬁﬁ I:riinz—'—_ 1y n nr n-1" o T ;i(—ﬁz?)f} Uj{Ra_) + '1;1(?——1_)?1
1 [ R3{P; - Pr) P, - R?Py ] 29b
U“,l[ (RZ_ “rz - RZ -1 { ’
Axial Stress
Case {a): €, = 0
-ui‘l-r
Esz Ty T_'l z o Fila )e
. RMnR _,  _ 1 n 2R, - 4
(———g—g‘“’uzB — zr) Toa = —gﬁ—l ——r—R .t nr z) + nEI u: [Rz—l U].(Run]+ ol l(ru“)+_—_ﬁ(Rz—l)
-a?r
T Ty n
a B Ri(xE)-1 -1 « Fla le
_ z T, T n 2R uyum 4
(uz - zr) { RZ -1 ¥ Zin +nE=1 uf_l R"—IUI( an]+"—(-m
N Zszr ( E’sz ) (Pl - Ran)
Sgoa \3B-E5, R 1
Z
Case (b: F_ = 0 {2%c)
—ak 7
Tg n
£S5 4 T -1 z w Filo e
z z 1 RinR 1 n ZR ' 2 + 4
( o B - ESH) vo,y In (Rz -1 far a) * nz::l u:, [R’- -1 Ui(Re,) +a; Unlre ) TR -1}
{294d)
Characteristic Stress
_ kT _ EE, (agBor * a )Ty
Uonl - - £ - “?. E (de)
z zr T
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Table 3. Stress Solutione for Case II
Tangential Stress
" -alr
g . R2(x? + 1} Fyla)e R(r? +1) 2
— = 3{Inr+1 - B+ = o UR +—U a +uUra
o i RUENE, P(RE-1) NN o) 7 Ulre,) £ ot Uytra )
1 R"(Pl - Pr), Py - R?Py
4+ — + —L-
tro,z[ {R? - )12 RZ-1 (30a)
Radial Stress
-(121:11”
T @ Fila Je
R¥(r? - 1) da 1., R{r? - 1)
LI ,21'! m! R] —nE:l - _ T Ul{ra ) - ——3'(—1:'{?'"—” UﬂRu )
n
_ 1 [R¥P, - Pa) Py- R’-Pn]
%,z| (R% . 1)rZ R -1
{30b)
Axial Stress
T T Case (a):gz =0
-H;T
£S 2 Fila )e
z z 1 R4inR oo 2% n 2R
= Inr - ! z
(EZB—-ES_H) o (z + Inr T) + I T [R’- — Ul(Ra )+ unUz(runil
-alr
_( %, P 1 MR keTy 2R 3 Falege
@B - ESzr * "RI1 ' Fa R*-1 n=1 uz UZ(RQ )
(P, RZPR
3 cro_ a B - ES RE-1
{30c)
Case (b: F =0
yA
—a?
£s o 2 2la je 1
z I A R4InR ] R 2
( 5= gszr) Crarls (,_ + Inr - R 1)+ 21 ) [—R—Z-—_-T Uz'(Run) + unUz(ro. )] {30d)
Characteristic Stress
E (a +a )
vy, §( r P2 z Mor ( {30e)
Z
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3.5 Maximum Tensile and Compressive Stresses

The stress distributions in a hollow cylinder with a wall ratio of 2.0 were
calculated in the absence of internal and external pressures. The maximum
tensile and compressive stresses for various values of Biot's modulus and wall
ratio were also determined. Based on these maximum stresses, the
maximum gas temperatures which can be applied to the inside of the hollow
cylinders have been calculated. The room-temperature physical properties
used in the calculation are listed in Table 5.

Table 5, Properties of Graphite Materials Used in
Numerical Calculations

Grade ATJT Grade ZTA
E_, 1b/in? 1.40 x 106 2.40 x 106
E_, 1b/in? 1.15 x 106 0.90 x 106
Bars Brg 0.20 (assumed) 0. 20 (assumed)
a_, 10'6/°t 2.34 0. 80
a, 10'6/°c 3.46 7.20
Fz(tension), 1b/in? 2,953 1, 505
FZ(cornpre-ssion),11:!/in2 8,530 12,400
FG (tension), 1b/in? 3,163 4, 375
0_'9(-'.:ompl:'essi.cvn),ll:i/i.n2 8,330 7,100
B, 10'6 ib/in? 0.679 0.372
£, 10‘6 1b/in? 3,032 2.24

In all cases, the temperature at the outside of the cylinder was assumed
to be kept at zero. The increase of the temperature at the outside surface
during the test firing has been found to be quite small, {13} Bradshaw(?) has
pointed out that the assumption of zero temperature at the outside surface is
a reasonable one for practical purposes,

The stress distributions in the hollow cylinders as a function of Fourier's
modulus (dimensionless time) are plotted in Figures 4 to 10. These figures
illustrate how the stresses build up during the transient period. Since Case I
is a special case of Case I1, these two cases are combined in most of the
figures,
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The tangential stress distributions are shown in Figures 4 and 5, and
the radial stress distributions are presented in Figures 6 and 7. The radial
stresses are always compressive and are small in magnitude compared to
the tangential stresses. The transient compressive tangential stress distri-
bution for Case II is much less than those for Cases I and III at small
times. In particular the compressive stress at the bore is initially infinite
for Case I and is zero for Case II.

In Figures 8 to 10, the axial stress distributions are shown. The axial
stresses for Case (a), zero axial elongation, and Case {b), zero normal force,
are included. The axial stress for the case of zero axial elongation was cal-
culated only for grade ATJ graphite, because the axial stress for this case
depends on the physical properties of the material in such a way that the
physical constants cannot be factored out in the stress equations. Therefore,
the axial stress for this case must be calculated for each particular material.

The axial tensile stress is reduced considerably when the external
forces are applied to the ends of the cylinder to prevent axial elongation. It
has been observed that radial cracking is often the type of fracture exhibited
by some of thegraphite nozzles which have been test fired, This type of
fracture, perhaps, can be avoided if the ends of the nozzles are constrained

properly.

The maximum tensile and compressive stresses for various values of
Biot's modulus and wall ratio are investigated for Case (b}, F_ = 0. The
maximum tensile and compressive stresses always occur at the surfaces of
the cylinder where the radial stress vanishes. Therefore, at the surfaces the
axial stress is proportional to the tangential stress. It follows from equation
(27) that at the surfaces

E(k a +a))

o, = 2L % T (32)

8 " p a E_+a E z
r r 2z Z

zr

- . . : *
If we define the maximum relative tangential stress Ty ata surface by

¥

sF__8 33
8 0,3 (33)
*
and the maximum relative axial stresso_ata surface by
- * E:r(p'zraz M ur) 72 34
z K _a E +a Kk 0.3 (34)
Zr r r zZ z ’
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then it follows from equations (32) to {34) that

0'9 = O H (35)

these formulas may be applied to Case II and also to Case I by letting

B =9 znd setting T = T,. Hence the following remarks and Figures 11 and
13 may be applied °®to both the maximum relative axial and maximum
relative tangential stresses.

0.6
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N-4299
Figure 11. Maximum Relative Tensile Stress at Outside
Surface for Various Wall Ratios

The maximum tensile stresses within the cylinder always occur at the
outside surface of the cylinder in the steady-state. These stresses are
plotted for various values of Biot's modulys and wall ratio in Figure 11. On
the other hand, the maximum compressive stresses do not always occur at
the steady-state. The time at which the maximum compressive stress
occurs is dependent on the wall ratio of the cylinder and Biot's modulus.
Nevertheless, the maximum compressive stress always occurs at the bore of
the cylinder. In Figures 12 and 13, the steady-state relative compressive
stress, which is defined similarly to equation (34), and the maximum rela-
tive compressive stress are plotted, respectively, for various values of
Biot's modulus and wall ratio. Comparing Figures 12 and 13, it can be seen
that the steady-state compressive stress is also the maximum compressive
stress for most cases. However, the magnitude of the maximum compres-
sive stress is considerably greater than the steady-state compressive stress
when Biot's modulus is large and the cylinder is thick. This can be seen
clearly by comparing the curves for P = 100 in Figures 12 and 13. This
illustrates the fact that the transient component cannot be neglected in the
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calculation of the maximum compressive stress in the case of a large Biot's
modulus and a thick cylinder. In Figure 13, the curve for an infinite Biot's
modulus (Case I) is not shown, because the maximum compressive stress
theoretically becomes infinitely large at zero time and therefore is physi-
cally meaningless,

The normal stresseso, , o » and ¢ are also the Principal stresses
because there is no shearing stress on the Planes on whicho,, ¢ , and s act,
The shearing stresses, which are developed on the planes maki.nﬁ angleszof
45 degrees with the fr, z0, and zr planes, are % (v, -0 ), 3{v_-0), and
3 (U'Z—U' ). The magnitudes of the shearing stresses’ are large ‘on both sur-
face’s and very small in the central region between the surfaces. The maxi-
mum shearing stresses for both cases (a) and (b) occur at the bore and are
equal to LTZ/Z.

3.6 Maximum Gas Temperature and Criterion for Thermal Shock Resistance

The maximum gas temperature and the thermal shock resistance
criterion for an anisotropic hollow cylinder subjected to Case I and Case III
temperature boundary conditions and the end condition given by Case (b) will
be examined in this section. Based on the maximum stress theory of failure,
the maximum gas temperature which can be applied to the inside of the cylin-
der can be calculated from the maximum relative stresses and the fracture
stresses of the materials in uniaxial tension and compression,

Maximum relative tensile fangential and axial stresses both occur at the
outside surface of the cylinder at the steady-state condition. According to
the maximum stress theory of failure, the cylinder will fracture if the tensile
thermal stress at the outside surface becomes larger than the tensile fracture
stress of the material. Therefore, if ¢, is the tensile fracture stress of the
material in the tangential direction, the’condition determining thermal
failure is

#* —
0'9 = 0-9/0-0’3. (36)

The maximum relative tangential stress, according to equation (31a), is
given by

* _ f3 1 InR

9 T TTPmR [Z“RZ-J (37)

and is shown in Figure 11. The maximum permissible gas temperature, T ,
obtained by solving equations (31e) and (36), is g

— 2 -
T - B _(T_G_ _ E, T 6 (38)
g 0'9* ErEz(quzr tey) :;
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Similarly, if ¢ is the tensile fracture stress in the axial direction,
then the condition determining thermal failure under axial tension is

* Er(uzraz i ur) Ty

o = {39)
z L oE +a E o053
Zr ¥ T z z )

* * ¥
Since o = 04, 0 is given by equation (37) and is shown in Figure 11. The
maximum permissible gas temperature, according to equations {3le) and

{39), is

— 2 —
Er(p. a +°’r) o E e E o

T = ZI z B =z _ z zr z 2 (40)
g }LzrurEr n quz E o F Ez(pzrarEr ¥ quz) e
A Z

Since the properties of graphites in tension and compre ssion are different,
the material constants to be used in equations (38) and(40) for tensile failure
should be determined by tension tests.

For the materials considered in this report, T calculated by equation
{40) is smaller than that calculated by equation (38),g because the following
relationship applies to these materials:

T 3
6 z
E {ap _+a} (pzrurEr+uZEz)

r z Zr r

For this reason equation {40) should be used for the calculation of the maxi-
mum gas temperature which will produce tensile thermal failure.

Thermal failure may also occur by compressive stress at the inside sur-
face. Equations (36), (38), (39), and (40) may also be applied to thermal
failure under compression provided that o ¥ = ¢* isinterpreted as the max-
imum relative compressive stress shown in Figuzre 13, and the material
properties to be used should be determined by uniaxial compressive tests,
Since Young's moduli in compression for grade ATJ and grade ZTA graphites
are not available, Young's moduli in tension of these materials will be used
in the numerical calculations. For grade ATJ graphite, Ty calculated by
equation (40) is smaller than that calculated by equation(38), because the
inequality relationship given above still holds for grade ATJ graphite under
this condition. Conversely, for grade ZTA graphite, T_ calculated by equa-
tion (38) is smaller than that calculated by equation (40)%’r because under this
condition the following relationship applies to grade ZTA graphite.

7] Ty

Er{aZI.LZI' + ur) (HZI'G.I'EI' + uZEZ)

T
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Therefore, for the calculation of the maximum gas temperature which will
produce compressive thermal failure equation (40) should be used for grade
ATJ graphite and equation (38) should be used for grade ZTA graphite. The
T calculated by the compressive fracture stress and material constants in
compression must be compared with T calculated by the tensile fracture
stress and material constants in tension. The smaller T is considered as
the critical gas temperature for a hollow cylinder, g

Maximum gas temperatures for grade ATJ and grade ZTA graphites
are plotted, respectively, in Figures 14 and 15 for Cases ] and III boundary
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conditions. A grade ZTA graphite cylinder exhibits lower thermal shock
resistance than a grade ATJ graphite cylinder. This is partlydue tothe high
degree of anisotropy and low tensile strength in the against-grain direction
of grade ZTA graphite. From these figures it can be noted that the axial
tensile stress at the outside is generally the critical stress in thin to moder-
ately thick hollow cylinders, The maximum compressive stress can become
the critical stress for extremely thick hollow cylinders and large values of
Biot's modulus.

Equation (40) also gives the criterion for the evaluation of thermal
shock resistance of the material. A material which gives a high value of
T is considered to have a high thermal shock resistance, Equations (38)
afd (40} reduce to the following equation in the isotropic case,

_l-p
Tg_ aE

(41)

qael gl

Buessem(}) found for a solid cylinder that the reciprocal of ¢ * can be
approximated by 2,0 + 4,3/P for a limited range of B. He suggested that the
maximum gas temperature which can be applied to the outside surface of a
solid cylinder of radius, a, is determined by

4.3 R"

—ah (42)

T =2,0R"' +
E

where R! = _(_I_,JEEIE_, , first thermal stress resistance factor,
and R't = (—l-a:Eﬂli , second thermal resistance factor,

It follows that when the heat transfer coefficient h is large T _is inde-
pendent of the thermal conductivity k, and conversely, when h is &mall T s
apgroximately proportional to k. From equation (37) one observes that
o4 =0 isindependent of B= ah/ky when B is large (for example, Case I}
and is approximately proportional to f when § is small. Therefore, the re-
sults given above form a generalization of known results for isotropic
materials to anisotropic materials,

The effect of anisotropy on T _can be best illustrated by numerical
examples. For this purpose the Falues of T ¥ were calculated by equations
(38), (40}, and (41) and are given in Table 6% The material constants given
in Table 5 are used in the calculations. Two values of T ¥ are calculated
by equation (41): omne calculated with the material constafits in the with-grain
direction, and the other calculated with the material constants in the against-
grain direction.

The per cent deviation in Table 6 represents the error which results
from the assumption of isotropy. A negative sign indicates that the isotropic

28



Q
I°g- T€ST €8+ 8567 $191 6L11 viz | §
apeaIn ,m
o]
0°z- SILT 291+ £€02 0SLT S981 riv | &
spean | 3
=]
1°g- 981 1°0¢g+ £28T 961 LzL vizY)
UU.N-HO o
5
0°z- ¥6g BrLz+ 2LL 909 60L Liv (o
speany | B
(%) va (%) va A
B sa1jxedoag b sonjaadoxg {D,) Do)
08) °T 5y (15) b (0%) B DM (1%) *ba (0%) 'Bx  (g¢) by  rerzozepy
o1y z 3 oIy g z 8 g
‘AT 9 o ° L ‘AR Y Vwmb L o ° L *@b L
ase)) oidoxjosy 35D o1dogjosuy
3

*b L Jo sanyeA ‘9 21qe T,

29



calculation based on the properties in the against-grain direction under-
estimates the thermal shock resistance of the material. A positive sign
indicate s that the isotropic calculation based on the properties in the with-
grain direction overestimates the thermal shock re sistance of the material.
A thermal stress analysis based on isotropic theory and the properties in the
against-grain direction may give sufficiently accurate results for engineering
purposes. The thermal shock resistance estimated in this way is only

5.1 per cent less than the anisotropic calculation for grade ZTA graphite.
The thermal shock resistance computed with the properties in the with-grain
direction is nearly 9.0 times larger than that computed by the anisotropic
formula for grade ZTA graphite.

It should be noted that the conclusions derived from this inve stigation are
valid only for a hollow cylinder under the condition of plane strain. Perhaps
the strength and grain orientation of the materials such as grades ATJ and
ZTA graphites can be best utilized under the condition of plane stress, for
under this condition the axial stress becomes very small.
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4. SUDDEN COOLING OF HEATED HOLLOW CYLINDERS

It has been established that for most cases the axial stress at the outside
surface is the maximum tensile stress during the firing. Therefore, if
fracture occurs during the firing, it would initiate at the outside surface and
propagate radially inward,

Frequently the nozzle is quenched by spraying water into the bore immed-
iately after the completion of the test firing in order to permit early visual
inspection. It is possible that fracture could result from the rapid cooling.

In this section, the stress distributions in hollow cylinders during rapid
cooling are investigated. The test firing time of nozzles is approximately
50 seconds and by the end of the te st firing the steady-state temperature
distribution is nearly reached within the nozzle. Therefore, it is sufficiently
accurate to assume that the bore temperature of a hollow cylinder, which
initially has a known temperature distribution, is suddenly brought down to
zero and maintained at that temperature. The initial temperature distribu-
tion within the cylinder is assumed to be identical to the steady-state temper-
ature distribution of Case I. The boundary conditions for the cooling process
can be written as:

R

In =

Ir
T =T, T whent = 0
(43)

fl

T 0atr=1andehent>0.

The temperature and stress distributions during the cooling Process, in
the absence of the external and internal pressures, can be obtained in a
similar manner to that in the Previous section. These are

Temperature
o —aZ
T :nél Fl(an)e a Ul(ran} (44a)
Tangential Stress
_.Q_r‘:rr
19_. . Frlayle R(r? + 1)
To g n=1 q_; rZ(R2 - 1) Ui(RGn)
Uj(ra ) 2z 2
n 2 Z(R? + r?)
+ = + ol Ul(ran) + (RE-1)r2 ] (44b)
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Radial Stress
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Axial Stress
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-aiT
s - © Fyla e
z z n 2R 4
= - U}(Ra_) + a2 U +——-]
(uZB - gszr) To,1 n=l a [Rz -1 (Rap) +a, Uplray) m(R? - 1)
a7
a B oo Fl(ﬂ. e
+<u—'§z“:w) z zl) [ ZZR Ui(Ran)Jr_""—“—?z :l
Z s/ n=1 o2 RZ-1 m(R? - 1)
(44d)
For Case (b): FZ =0
. —afl'r
5 o Fila )e
Z Z - - « 1 n ZR 1 2 4
(azB - Eszr) Toa nz":-'l = [RZ — Ul(Ran) +a? U, (run)+—————“(Rz_1]
n
(44e)

Comparing equations (29) and (44), one will note that equation (44) is
identical to the negative of the transient components of equation (29). In
Figures 16, 17, 18, and 19, the temperature and stress distributions during
the cooling period are shown. In these figures, the initial distribution is
indicated by the dotted line. During the rapid cooling the relative tangential
and axial stresses at both surfaces of the cylinder become tensile stresses
equal in magnitude, Under such a state of severe biaxial tension, itis
possible that fracture might initiate at the bore during the cooling period if
the bore surface is already damaged by ablation during the test firing.
Therefore, in some cases the fracture of the rocket nozzle could be caused
by rapid cooling after the test firing, even if fracture did not occur during
the heating process,
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5., SUMMARY AND CONCLUSIONS

Thermal stresses generated in anisotropic hollow cylinders have been
investigated by the quasi-static thermal elasticity theory. Numerical ex-
amples were treated for grades ATJ and ZTA graphites.

The hollow cylinders were assumed to be transversely isotropic. The
physical and thermal properties in the with-grain direction are different
from those in the against-grain direction. The properties of the materials
were assumed to be independent of temperature. The axis of symmetry of
the hollow cylinder coincides with the against-grain direction of the material.

Three thermal boundary conditions were assumed in this analysis. The
following thermal conditions were imposed on the bore of the hollow cylinder
which was initially at zero or room temperature: (1) the bore temperature is
suddenly increased to a finite value; (2) a constant heat flux is suddenly
applied at the bore; and (3) heat flow occurs at the bore by convection, In all
these cases the temperature of the outside surface is maintained at zerc or
initial temperature,

Based on these temperature distributions, the transient and steady-state
thermal stresses in the hollow cylinder were calculated for a cylinder with
a wall ratio of 2.0, Maximum tensile and compressive siresses generated
were calculated for various values of Biot's modulus (p = ah/k_) and wall
ratio. The steady-state axial tensile stress at the outside surface is also
the maximum tensile stress. Maximum compressive stress always occurs
at the bore. If Biot's modulus is small, the maximum compressive stress
occurs at the steady-state condition. If Biot's modulus is large, the maxi-
mum compressive stress occurs during the transient period. Therefore, in
this case, the transient solution cannot be neglected in stress analysis.
Since the tensile strength in the axial direction of the graphite cylinder is
relatively low, thermal failure generally occurs under the axial tensile stress
at the outside surface. If the values of Biot's modulus and wall ratio are
extremely large, thermal failure due to the compressive stress at the bore
may occur.

The maximum temperature which can be applied to the bore of the
cylinder was calculated from the values of the maximum thermal tensile
and compressive stresses and from the fracture stresses measured in ten-
sile and compression tests. It was found that grade ATJ graphite cylinders
have a higher thermal shock resistance than grade ZTA graphite cylinders.

Effects of anisotropy on thermal shock resistance of graphites have
been examined. Thermal shock resistance calculated by the isotropic for-
mula and the properties in the with-grain direction is found to be too high.
Calculations based on the isotropic formula and the properties in the against-
grain direction underestimate slightly thermal shock resistance of graphite;
however, it is sufficiently accurate for many practical engineering problems.
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A problem of the sudden cooling of a hollow cylinder with a known
initial temperature distribution has been investigated in connection with the
problem of the sudden cooling of the rocket nozzles after test firing for
visual inspection. It is found that a high tensile stress is built up at the bore
during cooling. The meagnitude of the tensile stress is equal to the tensile
stress at the outside surface but is not greater than the initial tensile stress
which existed at the outside surface. It is possible that fracture might
initiate at the bore due to rapid cooling if the bore surface were already
damaged by ablation during the test firing.

The material presented in this report constitutes the first phase of the
analysis of thermal stresses in an anisotropic hollow cylinder. In this
analysis, the material properties have been assumed to be independent of
temperature. In the second phase of the analysis, the material Properties
will be treated as temperature dependent variables. A Preliminary study has
been made on thermal stresses in an ATJ graphite hollow cylinder by the
isotropic theory developed by Stanisit and McKinley.(T) In the isotropic case
and under steady-state conditions, the calculated thermal stresses in the
cylinder increased significantly when the variations of the material properties
with temperature were considered. The effect of the increase in stress is
partially compensated by the increase of the strength of graphite with
temperature. These calculations must be generalized by including elastic
anisotropy and transient solutions,
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