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ABSTRACT

The mathematical models most commonly used to represent the
numan operator in a closed-loop tracking system are linear differ-~
ential equations whose parameters depend on the characteristics of
both the input signal and the controlled process. This report
presents an analytical and experimental study of a new class of
human operator models which are based on discrete rather than con-
tinuous operations. While intermittent processes in human tracking
have been hypothesized in the past, this research is the first
systematic study of the implications of intermittency by means of
the theory of sampled-data contrcl systems. The resulting models
are shown to be consistent with the large body of experimental
evidence concerning tracking. For the inputs considered in this
gtudy, the outputs from the sampled-~data models have certain
characteristics which approximate experimental data more closely
over a wider range of frequencies than those obtained from the

quasi-linear continuous models.

Both analytical and experimental techniques are employed in
the study. Systematic procedures for construction of the proposed
sampled-data model are presented, beginning with the measurement
of powsr spectra and cross-spectra of the system. The freguency
characteristics of the sampled-data meodels with stationary random
inputs are analyzed by means of z-transform techniques. Closed-
form expressions are derived for computation of the power spectral
density of the model cutput and error signals and the resultant
values are compared both with data in the literature and with the
experimental phase of the work. In addition to using conventional
zero-order and first-order "hold circuits® for reconstruction of
sampled data, a "modlfied first-order hold clrcuit! is developed
and analyzed.
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A preliminary analysis of transient response and stability
of sampled data systems with variable sampling rates is presented,

as an introduction to the study of adaptive sampled-data models.

An experimental program was designed to measure the power
spectral density of the tracking error under a variety of conditions.
Measurements were made using both analog and digital computer tech-
niques. The results of the experimental program were used to compare
with predicted values obtained by analysis. A second phase of the
experimental program showed that the use of intermittent displays
yields results which are alsc consistent with the models proposed.
The experimental work involved fairly extensive use 6f analog
computer equipment and some novel techniques for simulation of

sampled-data systerms were explored,

The implications of the new sampled-data models for the design
of man-machine systems are discussed and a number of suggestions

for extensions of this work are presented.
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Chapter 1
INTRODUCTION AND BACKGROUND

1.1 General Statement of the Problem

This report is concerned with the mathematical representation

of the input-output behavicr of the human operator in a control
system. A block diagram of such a system, in which the operator's

function is called "compensatory tracking, is shown in Figure 1l.l.

DISPLAY ERROR

- / MAN'S SYSTEM
INPUT 8 + 1 HUMAN [OUTPUT ICONTROLLED QUTPUT
rin Taln) [OPERATOR P 0y | ELEMENT et

FEEDBACK SIGNAL

Figure l.l Block Diagram of Tracking Loop

The display acts as a subtraction device and the operator attempts
to reduce the error signal to zero. The mathematical models most
commonly used to represent the human operator in a system such as
Figure 1.l may be termed continuous and "quasi-linear¥; i.e., they
consist of linear differential eguations whose coefficients depend
on the bandwidth of the input signal and on the dynamics of the
particular controlled process. For a particular class of inputs
and a particular system the model for a trained operator would be
a linear differential equation with constant coefficients. The
present status of such representations is analyzed in detail in
Chapter 2.

The major cbjective of this report is to present an analytical
and experimental study of a new class of mathematical models of the
human operator which are based on discrete rather than continucus
operations. While intermittent processes in human tracking have
been hypothesized in the past, this research is the first systematic
study of what has become known in the literature as the "hypothesis

Manuscript released by the author February 1, 1962 for publication
as an ASD Technical Documentary Report.
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of intermittency. The major tools and methods utilized in the study

are those of sampled-datsa control system theory.

The purpose of this introductory chapter is to give a brief
statement of the background for the investigation, outline its major
objectives, describe the limitations of the research program, and

present in detail the organization of the body of the report.

1.2 Background
The development of mathematical models for human operators began

late in World War II when human trackers were widely used in target
tracking for anti-aircraft guns and similar devices. The first engi-
neering approaches to the problem were reported by Tustin (l9h7)% in
England and Ragazzini (1948)" in the U. S. Both investigators
attempted to fit a linear input-output relationship to the tracker,
since a human Mransfer function! would have made possible the appli-
cation of linear control system synthesis technlques to man-machine
systems. However, the construction of an adequate model for the human
operator, even for a particular task (such as tracking in one dimen-
sion) is extremely difficult. This difficulty arises not only from
the inherent variability of human performance (and the conseguent

need to study many subjects under careful experimental conditions) but
also from the fact that man's performance appears to be both non-linear
and non-stationary. Furthermore, the variation from task to task
indicates the high degree of adaptibility of the human operator. When
tracking simple sine waves, the human operator 1s capable of learning
their nature and predicting their future course sufficiently well to
be able to track with his eyes closed. This behavior has been called
precognitive tracking® by McRuer and Krendel (1957). Consequently,

it became apparent that experimental inputs must be either random or

3t
Names of authors followed by dates in parentheses refer to the

Biblicgraphy. If more than one work by one author in a single
year is referenced, they are indicated by (1948a), etc.




at least appear random to the operator, and thus that superposition
of responses to simple inputs is not applicable. However, a linear
representation, for a particular input signal and a particular task,
still was possible, with certain other restrictions to be discussed

later.

Non-linear representations have also been explored. However,
the lack of adequate analytical tools for dealing with complex
non-linear systems has meant that such systems have been studied by
analog computer simulation and their parameters selected by Mbrute
force? techniques, such as adjustment of knobs until the response
of a particular operator is matched as closely as possible. The
major efforts in this direction were undertaken by Goodyear Aircraft
Co. (1952). The use of phase-plane technigues was explored by
Flatzer (1955). Both of these approaches will be outlined in more
detail in Chapter 2.

1l.2.1 The quasi-linear continuous model. For random-appearing
inputs {such as sums of sinewaves of non-harmonic frequencies) where
the highest frequency does not exceed about 0.5 cps, the best linear
fit to the trained operator's characteristics is given by a fre-

quency domain relationship of the form
ke P (1 + jur)
(1.1) Gpl30) = TF I + ulp

where ® is the natural frequency in rad/sec

TN’ T , TI are time constants which depend both on input

bandwidth and controlled element dynamics

L

K is the model gain, primarily a function of input band-
width, and

D is the time delay associated with the data transmission

and data processing (M™reaction time") by the operator



The method of obtaining this relationship is described in
Chapter 2. However, it can be noted here that the measurement of
this "describing function" is based on a method suggested by
Booton (1952, 1953) and that it yields the minimum-mean-squared-
error approximation to the operator's output for a gaussian input
process. Thus, the relation (1.1) does not attempt to explain all
of the operator's output, but only that portion which can be ex-
plained by a linear, continuous operation on the input. Thus, the
quasilinear model includes, in addition to the linear relation of
eq. (1.1) a noise generator, as shown schematically in Figure l.2.

The work of a number of investigators, as summarized by McRuer and

HUMAN OFERATOR _. CONTROLLED
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|
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R & Eta T ] Sulw a TN Cliw)
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Figure 1.2 Quasgi-linear Model of the Human Operator

Krendel (1957) has shown that the noise term accounts for less
than 5% of output power when the input signal bandwidth is re-
stricted to frequencies lower than about 0.5 cps. The variation
of the model with input bandwidth and controlled element dynamics

has been extensively studied.

l.2.2 Difficulties with the quasi-linear’ continuous model.

The quasi-linear model gives impressive evidence of the nearly

linear behavior of the human operator when tracking signals of
low frequency. However, the model suffers from a number of draw-
backs in addition to the frequency limitations. Among these are
the following:




(a)

(b)

(c)

Being linear and continuous, the model cannot
generate frequencies beyond the bandwidth of the
input signals (which are known to exist in human

operator outputs).

The model cannot account for a substantial body of
experimental evidence which suggests intermittent

behavior of the tracker.

The model does not account for the predictive

ability of the human operator.

The models proposed in this report attempt to remedy, at least in
part, all the above difficulties.

1.2.3 Evidence for intermittency. The evidence for inter-

mittent behavior of human operators comes both from tracking

experience and from a number of psychological experiments. The

gvidence 1s summarized and documented carefully in Appendix l. The

evidence 1s based upon the following:

(a) Examination of tracking records reveals pronounced

periodicities in the vicinity of 2 to 3 cps, re-

gardless of input waveform.

(b) *Tracking of series of discrete stimuli (such as

steps) often reveals unexpectedly long delays in
the response to a second stimulus if it follows
closer than about 1/3 second behind the first.

Prediction of target motion by human operators
suggests that they are capable of extrapolating
on the basis of recent samples of target velocity.

A number of other implications of the sampling theory is sub-

stantiated by the evidence and a detailed discussion is given in

Appendix 1. They include such phenomena as perception of a number



of discrete events, the effect of perceptual delays on bhehavior, the

study of eye movements in tracking, and other related areas.

The difficulties of the continuous model and the evidence for
intermittency have led a number of investigators to suggest a mathe-
matical model based on discrete operations. Only two attempts are
known to this writer. North (1952) constructed a Mdifference model®
by taking the linear continucus model and replacing all derivatives
by finite differences. This method did not take into account the
behavior of the system between the fsampling instants® and cannot
be considered adequate. Ward (1958} used an analog cémputer to
simulate a sampled-date model. However, he made no attempt to
analyze the frequency characteristics of this model and he did not
include a data-reconstruction device which would make extrapclation
possible. His work was primarily a "brute-force" response-matching

study in the time domain.

1.2.4 Characteristics of sampled-data models. The ability of

a sampled-data model to meet some of the problems which face the
continuous model can be seen intuitively by considering the follow-

ing characteristics of sampled systemss

(a) The presence of the sampler limits the frequencies
which can be reconstructed at ite output to those
not exceeding one-half the sampling freguency, by
Shannon's sampling theorem (e.g., Goldman, 1952).

(b) The action of the sampler generates harmonics
which extend over the entire frequency spectrum,

even when the input is band-limited.

(¢) The Yhold¥ circuit which generally follows the
sampler is a time-domain extrapolator, which re-
constructs the signal based on information at the
sampling instants. Consequently, it provides the

model with some measure of Mpradiction®.




(d) In the limit as the input frequencies decrease
toward zero, the sampler-and-hold have less and
less effect and the sampled system output should

approach the continucus system output.

The above will be explored mathematically in Chapter 3, but they
are introduced here only to provide a rational background to what
follows. It should alsc be noted that the introduction of the
sampler into a linear constant-coefficient system renders the system
time-variable. Consequently, random processes In such a system are
in general non-stationary even when the inputs are stationary. It
is probably due to the difficulty of analysis of such systems that
they have not been used to greater measure for human operator models

in the past.

1.3 Objectives of the Study

The major ocbjective of this study has been the construction

and evaluation of a class of mathematical models of the human
operator based on the Vhypothesis of intermitiency® in human
tracking. This general objective can be restated in terms of a

series of more specific objectives as follows:

(a) To examine the literature on human tracking and related
fields carefully and on this basis to construct an a

priori linear sampled-data model for study.

(b) To analyze the properties of the a priori model using
the methods of sampled-data theory in order to ascertain
frequency domain behavior and relation to continucus

models used in the past.

(c) To perform an experimental study for the purpose of
determining whether the characteristics revealed by
analysis are substantiated in tracking experiments

with several human operators.



LR TERANRCE I RIS

AR e ek e S

sl e R L

(d) On the basis of both ths previous analytical work and the
experimental results, to propose extensions of the models

to the case where the sampling frequency is variable.

(e) To investigate the analytical tools reguired to study the
stability and transient behavior of variable rate sampled-
data systems and determine their relevance both to human

operator models and to control systems.

The specific study objectives outlined above have been organized
essentially along the lines of the investigation itself. Thus,

the study has proceeded from background through hypothesis to
analytical investigation, hence to experiments and back to analysis.

1.4 Orientation of the Study
While the topic of this dissertation is interdisciplinary in

the sense that it is relevant to control engineering, experimental
psychology and human physiclogy, the orientation of the study has
been that of control engineering. Thus, the concern of this work
has been the development of input-output descriptions in mathe-
matical terms which could be used for the analysis and synthesis of
man-machine control systems. For this reason, frequency domain
descriptions have been emphasized wherever possible. Portions of
the study clearly have relevance for psychology and physiology, but
the dominant point of view is that of systems engineering.

1.5 Limitations of the Study
A number of restrictions apply to the broad objectives stated

above. The major ones will be stated here and some suggestions on
removal of the restrictions will be given in the appropriate chaptersa
below. The restrictions fall into three categories: those affecting
the experimental situation, those affecting the mathematical model,
and a general restriction on the interpretation of the entire study.




1.5.1 Restrictions on the situation. The study has been con-

fined to compensatory tracking in a single dimension. The restrict-
ion to compensatory tracking means that the operator sees only the
system error (say the displacement of a dot from the center of an
oscilloscope screen). A second type of tracking in which both a
#target? and a M"pursuer® appear is kmown as Mpursuit tracking" has
besn omitted entirely in order to restrict the channels of infor-
mation to the operator to one. For the same general reason, the
study has been confined to tracking in one dimension. Furthermore,
the study has been restricted to the case where the dynamics of the
controlled element are negligible and consequently expressible as
simply a gain KE’ which provides for the appropriate transformation
of units from the mechanical displacement of the operator's output
to the electrical signal required as an input to the display device.
The latter restriction has been added primarily to simplify the
study, especially since the effect of controlled element dynamics
on human tracking behavior has been studied by others (see for
example McRuer and Krendel (1957) for a sumary).

The above restrictions apply equally to the analytical work and
to the experimental work. A more seriocus restriction applies to the
experimental work only, and that is the limited number of subjects
uged. A total of ten subjects were used in various phases of the
study. The data from eight of them is sufficiently extensive to be
included in this report. (learly, this is a small sample of the
population. The justification and the reasons for choosing parti-
cular subjects will be discussed in more detail in Chapter 5.
However, two comments may be relevant here: First, most previous
studies have made use of many less subjects. Thus Elkind's exten-
sive study was based almost entirely on one subject, as was much of
Russell's work. Sheridan (1960) used & subjects for some experi-
ments and only one or two for others. Ward (1958) used 3 subjects.
The major justification given 1s usually that of Elkind, who indi-

cated that the range of variation among well trained subjects for
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sufficiently easy inputs is very small. Unfortunately, the second
condition does not apply to the present study since the freguency
range used in the inputs is such that all trackers have difficulty
with it. The second comment is more practical: adequate statistical
data cannot be obtained with volunteer subjects in a situation where
the experimentsal study is only & portion of an over-all investigation
of feasibility of a concept. This comment is not intended to dis-~
parage the experiments reported in Chapters 5 and 6 below, but merely
tc emphasize that the emphasls of the study is on the feasibility of
a concept for the synthesis of human operator models, not on the

establishment of population paramsters.

1.5.2 Restrictions on the model. The majority of the work is

based on the properties of linear sampled data systems, where the
ssmpling pulse width is negligible. The major reason for this choice
is the availability of analytical tools (the z-transform) for the
convenient study of frequency-domain properties. In the concluding
portions of the dissertation the restriction to linearity is relaxed
by introducing systems with variable sampling freguencies, but still
containing a linear "plant''s The restriction to a linear model was
based in part also on the desire to relate the present study to
previous work in the field, in addition to the desire te¢ use anslyti-
cal methods wherever possible without relying solely on computer

studies.

le5.3 The synthesis problem. It should be noted here that

while the purpose of the dissertation was to investigate a new
mathematical model of the human operator and to compare it to other
models, it was not its purpose to prove that the human operator is

a sampled-data system; or that his brain operates as a digital com-
puter with computation cycles of 2 to 3/second. It is characteristic
of the synthesis problem that it cannot produce a unique result.

That is, specifications (or measurements) at the input and outputs

of a physical system cannot uniguely determine the physical compo-




gsition of the system. All that can be said from an investigation
such as this one is that the outputs of this model show a closer
correspondehce with experimental data for a certain c¢lass of inputs
than do the outputs of other models., No attempt can be made to
claim that this is the M"correct" model. Furthermore, no attempt

has been made, except in a speculative sense*, to correlate portions
of the model with portions of the organism. Much more detailed
experimental work would be required to establish such connections.
This research does, however, present a new mathematical model and

it shows the feasibility of using it to represent input-outiput

characteristics of human operators in compensatory tracking tasks.

1.6 Organization of the Dissertation

The dissertation is organized into eight main chapters and
includes eight Appendices. The present chapter has indicated the
major objectives of the study, the restrictions which have been
placed upon these objectives, and brief statement of general back-
ground information. The chapter will conclude with some comments

on the importance and applicability of this research.

Chapter 2 considers the present status of human operator models.
Linear, guasi-linear, and non-linsar representations are reviewed
along with the methods used for their determination and some com-
ments on their generality and limitations. The background for
intermittent models is presented and the two previous models

(suggested by North and Ward) are reviewed.

Chapter 3 presents the theoretical considerations required for
the analysis and experimental study of sampled-data systems. The
major characteristics of sampled-data systems are reviewed briefly

including the time and frequency descriptions of various #hold®

See Section 8.3
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circuits including & new ™modified’ hold circuit. The use of "hold™
circuits for construction of the sampled-data models of the human

operator is introduced.

In Chapter I the analysis of new models is begun. First, the
background information and characteristics of sampled-data systems
are used to postulate several models, based on zero-order, first-
order, and "nodified first—order™ hold circuits. Analytic exprea-
sions for the power spectral density of the output and error signal
in typical tracking loops with ™white noise" inputs are derived for
the three models, The behavior of the models in the frequency domain
is compared with that of the guasi-linear models. Stability con-

gsiderations are examined for the three models.

Chapter 5 presents the experimental program which was designed
to relate measured properties of tracking power spectra to those
computed for typical values in the previous chapter. The analog
similation of sampled-data systems is discussed and the techniques
developed for this study are indicated. The analog measurement of
spectral density is discussed briefly (with the major details
relegated to an Appendix) and the experiments and experimental

conditions are described.

The results of the experimental program are described in
Chapter 6. The results are presented in three groups: the general
characteristics of the meagured power spectra, the effect of sampled
displays on the spectra, and finally the use of experimental data tc
synthesize the sampled-data models. Some of the implications of the

mddels for the design of man-machine gystems are considered.

Chapter 7 returns to analysis again and considers the general-
ization of the models to the variable sampling-rate case, Scome
preliminary results on analytical tools for such studies are pre-

sented, including the use of variable-coefficient difference




equations for evaluation of transient response and an application
of the Second Method of Lyapunov for the study of stability of an
adaptive variable-rate sampled data system. The study of stability
by the use of a variation of the root-locus (the B"T-locus™) is also

discussed.

The conclusions of the work and some recommendations for future
work are given in Chapter 8. In that chapter the removal of some

of the restrictions of the present study is discussed.

The Appendices prasent detailed treatments of a number of topics.
Appendix 1 is a summary of the psychological literature concerning
the evidence for intermittency and includes an extensive bibliography.
Appendix 2 presents a summary of the theory of sampled-data systems
with random inputs, in order foc place the definitions used in the
study on a more firm foundation. The analog measurement of power
gpectra and the necessary analytical background are presented in
Appendix 3. The analog simulation of sampled-data systems, includ-
ing some novel techniques developed during this study, is discussed
in Appendix 4. The program and parameters used for the digital
computation of power spectral density are in Appendix 5, which also
includes plots of digitally obtained spectra. Appendix 6 includes
the "raw ezperimental data presented in the form of graphs and
numerical tables, while Appendix 7 includes the detailed schematics
of the analog computer mechanization used in the experimental phase
of the work. Appendix 8 includes the fitted Mtransfer functions"

used in synthesis of the continuous models.

1.7 On the Applications of the Investigation

The results of this study may find some applicability in three
areas. First of these is clearly the design of man-machine systems
in which the man has control responsibilities. As the complexity
and performance requirements of such systems increase, the limit-
ations of the human component become increasingly important also.

Adequate design of such systems in the future may require some

13
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knowledge of the input-cutput characteristics of the human operator
under conditions which approach his limits of performance. Further-
more, the opsrator is required to process many channels of infor-
mation simultanecusly in many present day systems. The present
study has implications in the design of sampled display devices for
time-sharing two or more information channels.

The study may alsc have some implications for the design of
future control systems. The field of adaptive control, for exampls,
was developed largely as an attempt to emulate the adaptability of
organic systems. Thus, the type of adaptive sampled-data system
proposed in Chapter 7 as a human operator model offers some inter-
esting possibilities for space vehicle control systems where energy

must be minimized.

But the major reason for rassearch such as the present is not
the practical one of providing tools or information for design pur-
poses. Rather, it is hoped that this work will be a contribution
to the purely scientific goval of furthering the understanding of
human behavior on an objective and quantitative basis. Further,
the study is an example of a methodology for the development cf
mathematical models which may find increasing usefulness in the

future.

14




Chapter 2

THE STATUS OF HUMAN OPERATOR MODELS

2.1 Introduction: The Nature of Manusl Tracking

The construction of mathematical models of the human operator
is based on the assumption that the process relating the visual
stimulus and the muscular output is, at least in part, determinate
wvhen the operator is an element in a c¢losed-loop tracking situation.
As mentioned in Chapter 1, the type of manual tracking situation
considered here is known as "compensatory tracking” and the operator's
function is to reduce to zero the error between a stationary "target"
{such &8 the center position on a dial or screen) and a movable
follower. (When both the "target" and "follower" move the operator's
function is termed "pursult tracking') Consequently, the history of
human operastor models in manual tracking includes a series of
attempts to subject the "human component" in the loop to experiments
similar to those used for the determination of transfer character-
istics of inorganic processes. In the present chapter some of the
most successful attempts to obtain transfer cheracteristics and
equivalent circuits will be reviewed, leading to the formulation of
the model to be lnvestigated in later chapters. It should be noted
that the emphasis in the present treatment is on transfer character-
istics (i.e., input-output behavior) and thus very little attention

will be paid to the work of a number of investigators who have
focussed thelr attention on the determination of "“performance scores”
or error criteria in human tracking. For the analysis of control
systems the availability of input-output relationships is of primary
interest. The material in this chapter is based heavily on the
excellent summaries in the literature such as those of McRuer and
Krendel (1957 and 1959), Licklider (1960) and Adams (1961) as well
as a previous survey paper by this writer (Bekey, 1960).

The behavior of the operator in manual tracking situations can
be described in a number of ways. It is characterized by a number

15



PETT

A 28

SR

V2 e i i e

of physiologlcel and psychological characteristies, such as perceptual

ability, threshold phenomena, visual acuity, muscular movement accu-

racy and strength in different pcsitions, kinesthetic feedback, and

others. Discussions of some of these topics are given in such refer-
ences as Broadbent (1958}, Bates (1947) and Hick and Bates (1950).

Of greater concern for the development of transfer relationships are

the observed characteristics which refer tc the man as a servo ele-

ment.

(a)

(v)

()

(a)

In particular, elght such characteristics can be cited here:

Reaction time: The bhehavicr of the operator is charac-

terized by the presence of a pure time delay or transport
lag, which can be clearly observed in the response to
step function inputs.

Low-pass behavior: Visual examination (and Fourier analysis)

of tracking records reveals that the tracker tends to attenu-

ate high frequencies, the amcunt of attenuation increasing

as the freguency increases-

Fgualization ability: The operator has the ability to

introduce various kinds of compensation intc his transfer

characteristics if required to do so by =tability consider-
ations or performance requirements. There are instances
wvhen trackers have generated up tc Znd order lead or lag

terms.

Adaptability: The tracker's ability to adapt appears in
two forms: First, his performance changes with time as

he learns, and secondly, he is capable of sensing changes
in environmental parameters and controlled system para-
meters and adjusting his characteristics accerdingly.
There is evidence to indicate that the operator not only
adapts but to some extent optimizes. McRuer and Krendel
(1959) indicate that ln regions where the cperator's
behavior is close tc linear the phase margin observed in
the tracking loop after proficiency is attained was in
the region of 60 to 110 degrees.

16




(e)

(f)

(8)

(h)
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Prediction: The ability of the human operator to predict
the course of a target based on past performance is well
known. Some of the work of Gotisdanker {1952, etc.) is
reviewed in Appendix 1. This ability to extrapolate is
important in tracking since it means that tracking
behavior is different with "predictable inputs" (such as
sine waves or constant frequency square waves) than it is
with random or random-appearing inputs. Tracking with a
predictable input has been called "pre-cognitive" tracking.

Nonlinearity: For a trained operator there is very little

change in transfer characteristics when the input signal
amplitude is changed, thus indicating that, within the
range of conditions tested, a series nonlinearity is not
an important effect (see Elkind, 1956, and Krendel and
Barnes, 1954). A parallel nonlinearity does appear in
the Coodyear studies (1952, 1957) referred to in section
2.2 below.

Randomness: It has been mentioned above that the appli-
cation of engineering techniques to human tracking studies
wasg Justified since tracking behavior appeared to be, at
least in part, systematic and determinate, that is, obeying
deterministic cause-and-effect relations. In addition to
the deterministic portion of the tracker's output, there
appears to be a component which has little correlation with
the input. Whether this component ie simply "noise" gener-
ated within the operator, or whether it represents a time-
varying or non-linear component of response by the operator
has not been determined.

Intermittency: There is & considerable body of evidence

which indicates that the human operator behaves as a dis-
crete or sampling system in certain tracking operations.
Since this evidence is central to the theme of this work,
it is reviewed in detail in Appendix 1 and summarized below
in comnection with intermittent models in Section 2.6.
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The various human operator models appearing in the literature
are attempts tco include the major characteristics listed above into
a mathematical description, either in the frequency or time domains.

2.2 Survey of Human Operator Models

The earliest models constructed from the point of view of

control engineering were those of Tustin (1947) and Ragazzini(19i8).

These models were postulated as linear and continuous with an
additional disturbance of unknown origlin. Tustin called the
additional term which did not result from linear operations on the
input the "remnant" (i.e., those components of the response at
frequencies other than the input frequencies in this case). The
name “"remnant” is still used in the gquasi-linear models to be
discussed below. In block diagram form the human operator model
mey be indicated as shown in Figure 2.1 below.

REMNANT

rit) + ety | LINEAR
PORTION

CONTROLLED e(t)

ELEMENT -9'*'

QUTPUT

REFERENCE
INPUT

I
I
| I
[ _MUMAN OPERATOR |

W ey W — —

Figure 2.1 Operator Model with Qutput Noise Injection

The Tustin model was based on Fourier analysis of outputs when the
input was a sum of 3 sinusoids. The resultlng model was of the

fom
Kl =Ds
(2.1) GH(S.) = K(E— + Kz)e

where 8 1s the complex frequency variable, D is the time delay
(taken as 0.3 sec by Tustin), and K, K, and K, represent para-
meters which depend on the cholce of controlled element dynamics.

18
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(Tustin's work was concerned with the motion of electrically
controlled gun turrets in tanks.)

J. R. Ragazzini reported in 1948 in an unpublished paper
delivered at the American Psychological Association that the trans-
fer relationship may be of the form:

K
(2.2) Gy(s) = K[Ks + K, + 5-3- e~D8

In equations {2.1) and (2.2) the symbolism employed has been
that of lLaplace transforms as commonly applied to linear systems;
i.e., the equations imply that the principle of superpesition applies.
However, we have seen above that the human operator's response to
simple, predictable inputs is different from his response to complex
inputs, and thus that superposition dces not apply in the ordinary
sense. Consequently, the input-output relaticnships of the type

(2.1) or (2.2) will be termed guasi-linear transfer relationships.

By quasl-linear in the present discussion we mean that the system

has the following properties:

(1) 'The system is describable by a linear differential
equation with coefficients which are dependent on the
system configuration and the input signal bandwidth,
but remain constant for a particular system, and

(2) The linear relationship determines only a portion of
the system's output (the linear part). In addition,
a random or uncorrelated component may exist. The
validity of the quasi-linear model is dependent on the
proportion of the system output which it specifies.

2.2.1 Quasi-linear Models. The definition of quasi-linearity given
above was assumed by Tustin in his studies, even if not stated ex-

plicitly. It is interesting to review the methods used to arrive at

various linear transfer relationships within this context.

Step-function response is traditionally used for the deter-
mination of transfer relationships in linear systems. Phillips (1G4T)
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reporte on a method used to determine aiding constants by mini-
mizing mean-squared-error with a target motion containing step
discontinuities. Mayne (1951) reccrded responses to step inputs

and found analytic fits to the resulting outputs. Hyndman and

Beach (1958) used step responses to obtain open-loop transfer
relationships, which do not necessarily apply well in & closed loop
tracking situation. An obvious problem is that the parameters of
the model will depend on the situation (step on or off, for example).

Response to simple sinusoids has been used as well, but, as
previously noted, the response is expected to be different quali-
tatively from that obtained when tracking more complex signals.

A number of lnteresting studies have been performed with sine-wave
inputs, including those of Ellson, Gray et al (1943), Walston and
Warren (1954) and Noble, Fitts and Warren (1955). Two major con-
clusions have been drawn from these studies: (1) if the frequencies
are sufficiently low, a linear model adequately represents the major
portion of the operator’s output; and (2) as the freguency increases,
the human tracker gradually adopts a different approach which does
not appear to follow ordinary linesr, continucus rules and is
probably best explained by assuming the presence of a sampling
operation.

Most of the significant work has been performed recently with
complex signals consisting either of sums of sine waves or random
noise of appropriate spectral characteristics. Tustin used a sum
of 3 sine waves. Russell (1951) used & sum of 4 sine waves and also
measured the output components at the same frequencies as those
present in the input. Elkind (1957) performed an extremely thorough
study of compensatory and pursult tracking using input signals which
consisted of a large number of sinusolds (as many as 144) of random
phase. The method used by Elkind for the synthesis of the quasi-
linear model will be described in the next section. Krendel (1951-5k4)

in a series of studies used random noise to0 determine linear
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relationships. The besat quasi-linear results availgble to date are
those of Elkind and Krendel.

2.3 Synthesls of Quasi-linear Models

The models described by Elkind are obtained by using a tech-
nique suggested by Booton (1953, 1954) for the analysis of nonlinear
systems with Gausslan random inputs. The theory of the resulting
"random input describing function" has been discussed in detail by
McRuer and Krendel (1957) as well as by Booton and will not be
repeated here. Baslcally the method consists of assuming that the
system under test consists of a linear portion and a noise source
vhich is uncorrelated with the input, as indicated in the block
diagram of Fig. 2.1. To obtain the linear portion GH(Jw) one can
measure the cross-power spectral densitiea between input and error
and input and operator output respectively. These spectral densities
will be defined by the following relations

1
(2.3) Sre(Jw) = T+ GH(Jaﬂ GE(jm) Srr(m)
and
Gy J0)
(2.k) I C A e Ty 6y B S

where Sre(jm) and Src(jm) represent the input-error cross-spectral
density and the input-output cross-spegtral density. The noise
spectrum Shn(w) does not appear in these relations since it is un-
correlated with the input, by hypothesis. Consequently, the
"describing function" or quasi-linear transfer relationship can be
obtained as the ratic of the two experimentally obtained quantities

above, i.e.
5_.(Jjw)
re
re

However, relation (2.5) represents a set of experimental polints
which define the amplitude and phase of the complex number GH(Jm)



When these quantities are plotted as a function of frequency, they
can be fitted closely with a linear analytic relationship of the
form:

(2:6) Gg(30)

1+ Jo TNﬂ (1 + jmT.'I)

where the time constants TL, TN’ and TI a8 well as the gain K and

time delay D are functions of the particular situation. It is
interesting to note that Jackson (1958) has shown that if ome at-
tempts to fit such experimental data with a general transfer relation-
ship of the form

@1 o) - xomt DT gt D e

m
LN ] ‘
g (Tzls + l)(Tzzs +1) (szs + 1)

(m + plyn

1t is found that (2.7) reduces to (2.6) with negligible contributions
from higher order terms. This indicates that the differences between
the experimental behavior and linear model cannot be resolved merely
by increaging the order of the linear model.

The "remnant" term is now represented by the noise injected
at the operator's output in Fig. 2.1. If we define a “"closed-loop
quasi-linear describing function" H{jw) as

Gy 30)
1+ G (Jo) Gp{Jo)

(2.8) H( jw)

and a closed-loop remnant spectrum as Sén:

2
! 1
(2.9) Spul®) = |13 G(30) Go(3a) Syn(®@

then the operator’s output power spectrum can be described by the

relation:
2
(2.10) s (o) = |E(w)| s_(e) + 8] (o)

Bquation (2.10) shows clearly that the operator’s output spectrum
is composed of two portions; one resulting from a linear operation
on the input spectrum S.r and additional "noise" term. The degree
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of validity of the quasi-linear model can now be related to the

the proportion of total operator output power at each fregquency
which is predicted by the model. This can be done by defining the
linear correlation between m and r (sometimes called the “"coherence
function") as

|83} |

(2.11) 2 .
s f{srr(m) 8 (@)

Flkind {1957) reported linear correlations of 0.9 or better for his
studies when the input spectrum was flat with a sharp cutoff at or
below abcut 0.75 cps. Based on these conslideratlons, it can be
concluded thet the continucus quasi-linear model is an adequate
description of the transfer characteristics of the human tracker,
provided that the input frequencies are sufficiently low. Conse-
quently, any new models should not be expected to deviate sub-
stantially from Elkind's models for low frequency inputs.

The technique described above for the comstruction of the
quasi-linear model requires the measurement of power spectral density
using a cross-spectral analyzer or equivalent and curve-fitting of
the experimental results to obtain an analytic expression. Recently
Ornstein (1961) has applied a modification of the method of steepest
descent as developed by Margolis and Leondes (1959) to determine the
model parameters autometically. This procedure requires that a form
for the transfer characteristic be assumed known and a "parameter
tracking servo'" is used to adjust the parameter values to equal those
of the system under measurement, using an appropriate error criterion.
The technique appears to be promising but requires additional

exploration.

2.k  Nonlinear Models of the Human QOperator

The guasi-linear continuous models discussed above are able
to represent a number of human operator characteristics, including
resction time, equalization ability, and low-pass behavior. The

process of adaptation is not described, nor are predictive effects.
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Ronlipear behavior is included only in the sense that it is a possible
explanation of a portion of the "rempant" term.

A series of studies at Goodyear Aircraft Corp., reported in
Goodyear reports (1952, 1957) and papers by Diamantides (1957, 1958)
and others, have been aimed at the development of operator models
which would account for & number of additional effects. Specifically,
the Goodyear studles have investigated the effect of "dither" and
the analog computer representation of scme nonlinearities in tracking
behavior.

Jet aircraft pllots are known to superimpose "dither" on their
tracking motions, apparently in order to test the response of the
vehicle to the rapidly changing environment. In the Goodyear studies
the dlther "mechanism,"” since it served no useful purpose in the
laboratory simulator studies, was gradually extinguished by the
subjects. The resultant mecdels made nc attempt to include it in

the form of a parameter-adjustment loop, but merely as a ncise input.

It has been noted above that the effect of a series non-
linearity in human tracking was not severe, since the transfer
characteristics were not strongly amplitude-dependent. The repre-
sentation of the operator develcoped by Goodyear had a perfect relay
(signum function) in parallel with the remainder of the model, thus,
in effect, giving the output a bias in accordance with the sign of
the error signal. This feature gave the model a measure of antici-
pation and thus represented an attempt to ineclude the predictive
ability of the tracker in the model. The Goodyear model is shown
in schematic form in Fig. 2.2.

It should be noted that the major disedvantage of such a model
is that it must be simulated on a computer. While the Geodyear
studies show good time-dcmain agreement with human tracking dats,
they are of limited usefulness since the lack of snalytic ex-
pressions in closed form makes generallzation of the results
extremely difficult.
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2.5 Time-varying Operator Model

The quasi-linear model takes into account the adaptive ability
of the operator, but only after the adaptation process is complete.
Thus, if a trained cperator is subjected to a sudden change in the
dynamics of the controlled element, he will gradually change the
parameters of his transfer characteristics until he has achieved
"optimum" equalization (to an unknown criterion) for the new situation.
Following the adaptation, the quasi-linear model will again be appli-
cable, with a new set of parameter values. During the adaptation

process, however, the model does not apply.

The work of Sheridan (1960) is a careful experimental study of
the variation of the frequency characteristics of the operator with
time during “adaptation" to a change in the system. The method is
alsc applied to observation of changes taking place in the operator's
behavior with extreme fatigue. The results are obtained as time-
varieble frequency loci which represent the changes in gain and phase
of the transfer relationship for each of 5 sinusoids which comprise
the input waveform. The study is a valuable contribution to the
knowledge of human tracking behavior, but since it does not corres-
pond in form to any of the tracking models we have discussed previ-
ously, it will not be explored further in this comnnection.

2.6 Sampled-data Operator Models

All the models considered above have been continuous and thus
have not been able to account for the possibility that the operator’s
behavior may be intermittent. Two previous studies have been ad-
dressed to this problem, beth with serious limitations. In the
present section the evidence for intermittency will be summarized
and the studies of North and Ward reviewed.

2.6.1 Evidence for Intermittency. The details of the litera-
ture on this subject are given in Appendix 1, and thus in these

paragraphs the major characteristics will be summarized without
reference to sources. The reader is referred to Appendix 1 for an

extensive bibliography.




The argument for intermittency is based on the following major
experimental sources:

(1) ©Examination of tracking records reveals that the error gurves
have a pronounced periodicity in the vicinity of 2 cps even
when this frequency is not very pronounced in the input. In
one study it was found that over 80% of the wavelengths
ranged between 0.2 and 0.6 seconds. Furthermore, tracking

records inevitably reveal frequencies not present in the input.

(2) When a human operator trecks a series of steps which are
spaced less than about % sec apart, the effective "reaction
time"™ in response to the second stimulus is often much greater
than expected had the stimulus occurred in isolation.

(3) Pursuit tracking of pure sine waves of frequencies higher than
about 2 cps often results in very close amplitude matching but
frequency errors in the operatoer's output which are hard to

detect and correct.

{(4) The introduction of artificial time delays into the visual
perception process of the order of 0.25 sec makes 1t nearly
impossible to perform even very simple motor tasks.

Experiments such as the above (and many others)} can be explained by
assuming that the operator acts on samples of information taken
from the perceptual input at discrete intervals. In addition, the
predictive behavior of a human tracker (such as when a target
disappears behind a cloud) can be explained by assuming that the
operator extrapolates on the basis of past samples of the target's
position and velocity. The "intermittency hypothesis" is also
consistent with phenomena such as the perception of a number of
discrete events, the visual perception of velocity, and others
discussed in Appendix 1.

2.6.2 The Difference Equation Approach of North. The first
mathematical approach to the intermitiency hypothesis was made by
J. D. North (1952, 1954). North examined the behavior of a typical
quasi-linear differential equation model, of the type proposed by

27
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Tustin. Then he replaced the derivatives in the equation by finite
differences and examined the resulting linear difference equation.
His final equations included not only the deterministic components

of the tracker's response but also stochastic componentg which in the

discrete case represent samples from "white noise." The approach

of North is quite sophisticated and attempted to include many effects.

However, his difference equation approach suffers from the fact that
he is effectively concentrating on the system behavior at the
"sampling instants" and the human operator's output is clearly con-
tinucus. That is, any discrete processes which may occur would be
internal and a data-reconstructicn element must appear in the model
in order that the output be continmuous. Consequently, while North's
model has potentially similar features 4o those proposed in this
report, in actuality they are not carried to same conclusion. For
example, North evaluated the power spectral density of his model
output, both in the continucus and the discrete case. However,
since the time domain relation was valid for integral values of
sampling intervals only, he was only able to say that the resulting
spectral densities approach each other as the sampling interval
approaches zero.

An "information transfer" model of the human operator has
also been formulated by Fogel (1956, 1957). Once again, this model
was not designed to provide time-domain behavior.

2.6.3 The Analog Computer Study of Ward. In a thesis sub-
mitted in Australia, Ward (1958) has discussed a study of a sampled-

data model using an anslog computer. Ward's model, as closely as
this writer can interpret it, is given in Fig. 2.3, The results of
Ward's study are given strictly in the form of computer cutput
traces, compared with human ocutput recordings for similarity of
appearance. The matching was obtained by "brute force" or knob-

ad justment techniqués° The input functions consisted of the sum of
3 sine waves, the highest frequency being 0.2 cps and the lowest
0.0l cps. The apparent amplitude of the "noise" in both man and
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Figure 2.3 Sampled-Data Operator Model Due to Ward.

model is of the seme order of megnitude. The study is severely limited

limited for several reasons:

(1) The lack of analytical work. (Apparently Ward considered the
system to be nonlinear merely due to the presence of the sampler);

and (2) The poor choice of sampling and data reconstruction circuits
made in the analog simulation. As can be noted in Fig. 2.4, the model
includes a sampler and zero-order hold, followed by a delayed sampler
(to account for reaction time), and‘then an integrator which recon-

structs the very narrow pulses from S, into a continuous signal.

2
However, the integrator is & non-resetting hold circuit, and conse-
quently the reconstructed error signal ep has no resemblance to the

continuous input.

However, Ward's study, while limited, is useful in that it pro-
vides additional evidence to show that at least a portion of the
"remnant” noise term required in continuous models may be accounted
for by harmmonics due to sampling. These effects of sampled-data
systems will be reviewed in Chapter 3.
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2.7

Summary and Evaluation

On the basls of the above discussion of various human operators,

the following conclusions can be made:

(1)

(2)

(3)

(4)

The transfer characteristics of the human operator can be
adequately described by a quasi-linear differential equation
plus a remnant term, provided that the input conslsts of a
random-appearing signal of sufficiently low frequency.

The quasi-linear continuous model fails to take into account
several known characteristics of humsn tracking performance,
including intermittency, adaptability, and abllity to predict.

Linear or gquasi-linear models are preferable to nonlinear

models since 1t is possible to use well known analytic tech-
niques with linear systems. Furthermore, the open-loop para-
meters of the quasi-linear model can be deduced from closed-

loop measurements for the compensatory tracking situation.

Intermittent or sampling models have much supporting evidence
but the work done on them to date is inadequate. There is a
need for a study of sampled-data representations in an ana-
lytic form which makes generalization possible and which
includes the operator's ability to extrapolate in the time
domaln as well as his frequency characteristics.




Chapter 3

THEORETICAL CONSIDERATIONS
FOR THE SYNTHESIS OF A SAMPLED-DATA MODEL

3.1 Requirements and desirable features

In the previoua Chapter the characteristics and some of the
limitations of previcus models of human operators have been
reviewed. In this chapter we propose to present the major reguire-
ments for the new models, present the background from sampled-data

theory, &and develop the new model in a form suitable for analysis.

Based on the evidence and background from the previous
Chapters, we can state the following requirements for the new
models:

(1) The models must represent tracking behavior for random or
random-appearing inputs

(2) For sufficiently low frequencies the models must agree with
the quasi-linear continuous model since these models are
excellent at low freguencies

(3) Any sampling frequencies present in these models must be of
the same order of magnitude as those observed in various
experiments on this subject.

In addition to this basic requirement, it 1s desirsble that the

mcdel incorporate the two major features lacking in previous

representations, i.e., extrapolation ability and adaptation.

An additional desirsble feature is that the models make use of

the rate of change of error directly, in addition to the error

signal itself, This ability to sense target velocity directly

(and obtain position information by integration from it) would be

a reasonable hypothesgis based on recent studies of human visual

perception (cf. Brown (1961)).
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The epproach taken to the synthesis problem here will be the
following. In the first place, the validity of the guasi-linear
continuous model will be assumed for low frequencies, since this
model is precisely the linear system which minimizes the mean
squared error of spproximatilion to the actual tracker, The object-
ive then will be to modify the continucus model in such & way that
its low frequency behavior is not altered (at least in the limit as
the frequency approaches zero), by the intrcduction of sampling
and detae reconstruction operations. In order to accomplish this
objective, the next section will review the properties of sesmpled-
data systems and these will be incorporated in a series of &

pricri models to be analyzed in future chapters,

The models proposed in this chapter will include the features
of intermittency, extrapolation, and velocity sensing. However,
they will not include continuous adaptation., The extension to the

adaptive case will be discussed in Chapter 7.

3.2 Characteristics of Sampled-data Systems

The study of linear sampled-data systems is well established
and several books on the subject are available(e.g. Tou, 1959,
Regazzini and Franklin, 1958). 1In this section we shall merely
outline some of the major properties of such systems in order to

uge them for the construction of human operator models.

Sampling refers to the operation of converting & continuous
signel £(t) into a discrete signal £%(t) which carries information
only at certain times, If the sampling operation is periodic and
occurs every T seconds, the sampled signal carries information for
a duration of h peconds during each sample period and equals zero
&t other times. Thus, sempling can be considered as a process of
modulation of & continuous signal with a "sampling signal", a pulse
train p(t). We can indicate the sampler output as
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(3.1) ~(t) = £(t) p(t)

vhere the sampling pulse train is given by

+ o

(3.2) p(t) = Z u{t-nT) - uﬁ,-(ntmh)]

N==—0
and u(t) is the unit step function. The sampling operator or
"sampler” is usually denoted as a switch, as indicated in Figure
3.1. If h<&T the pulse train can be represented by the train of

Dirsc delta functions of unity area:

(3.3) p(t) = 3 8(t-ar)

and the resulting process is called "impulse modulation"¥ Tt

should be noted that the sampler can be considered as a time-

varying gain; thus, sampling is a linear operation. Since the
sampler is a pericdic amplifier, the resulting eguations which
describe the system operation will have periodic coefficlents,

3.2.1 Frequency domain characteristics. When the impulse

epproximation is used, the sampler output becomes

o

(3.%) (t) = 2 f£(aT)8s{t-nT)

n=0
vhich represents a sequence of numbers finT)} modulating the train

of impulses. The Leplace transform of (3.4) ie
o~ T

(3.5) P(s) = 2 f(rT)e ™"
n=0

which clearly shows the number sequence, each number delayed

appropriately to its position in the sequence by the operator

#  In engineering works on sampled-data systems the "delta

function" is used formally and without rigor, thus creating
some confusion., While the formal usage will be employed here
also for simplicity, the development can be rigorized by
reference to such works as Lighthill{1960).
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e-nTs. The moduldting pulse train can alsc be represented by a

Fourier series (in the case of the impulse train this can be done
by methods shown in Lighthill's book (1960)). As & result, the
sampled signal is represented as

1 4o Jnu%t
(3.6) (t) = 5 ). f(t) e

the Laplace transform of which is given by

b
(3.7) P(s) = 5 ¥ K s-jua,)

where «_ is the sampling frequency. Equation (3.7) indicates that
sampling generates an infinite number of harmonics of the input
frequency function M Jw). The additional spectra are related to
the amplitude of the original spectrum by the factor 1/T and
separated by lntegrel multiples of the sampling frequency. If the
sampling pulse is of finite width it c¢en be shown that the addit-
ional spectra are attenuated in amplitude increasingly as the

frequency increases. (See Figure 3.2)

3.2.2 The sampling theorem., The fundamental theorem of sampling
states that if a signal f(t) has & frequency spectrum extending

from zero to fo cps, it is completely determined by the values of
the signal {i.e. the samples) taken at & series of instants
separated by T = 1/2 f_ sec, where T 1s the sampling period.
(Goldman, 1953)

This theorem implies that if the sampling frequency is less
than one-half the maximum signal frequency, then information is
irretrievably lost in the sampling process, Any attempt to recon-
gtruct a continuous signagl from the samples will result in a dis-
torted version of the originsl signal.
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3.2.3 Data reconstruciion., Varlous types of extrapolstion devices

are used to reconstruct a continucus signal from the sempled values
f(nT). These devices are commonly called "hold" circuits.

The simplest or "zero-order" hold extrapolates between
sampling instants by simply holding constant the last sample. In

the time domain,
(3.8) e(t) = e(nT) , nT =< t< (n+l)T

The next simplest hold circuit extrepolates with a constant slope
between samples by using a slope estimate hased on the last two
samples, i.e.

(3.9)  e(t) = e(nT) + e(“T)';[(“‘l)T] (t-nT) , nlct < (mel)T

The action of these two circuits is illustrated in Figure 3.3.

The use of more past samples mskes it possible to extrapolate
with & higher-order polynomial. The frequency characteristics of

the hold circuits will be discussed in the next section.

3.2.4 The z-transform. The study of linear sampled-date systems

is grestly facilitated by the use of transform methods. The z-
transform is particularly useful jn systems where the impulse
gpproximation is valid. The z-transform of an impulse segquernce
f(nT) is defined as

o=

(3.,10) F(z) = ) f(aT)z "

n=0
Comparison with (3.5) indicates the relation between the complex

variable z and the complex variable s: i.e., by definition,

(3.11) z & o8
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In common usage the same letter is used for representing the
Laplace transform of a time function and the corresponding z-
transform. However, it should he noted that "taking the z-trans-
form" implies & return to the time domain, finding the correspond-
ing number sequence, and eveluating (3.10). In accordance with
convention we shall indicate by G(z) the z-transform correspond-
ing to a Laplace transform G{s). It can also be noted from (3.5)
that

(3.12) F(z) = P(s)| _;
s=T ~4nz

The periodicity of the z-transform is clearly seen by letting
§ = jw in (3.11)}. The transformation z = e™® is a mapping of the
8~plane into a new z-plane, where the entire left-half s plane
maps Into the interior of the unit circle in the z-plane. Every
strip of length Wy = 2n/T of the Jw axis repeats a complete

traversing of the unit cirecle in the z-plane,

3.2.5 Sampled-data systems. Consider the system of Figure 3.b,

where G{8) represents a continuous, linear "plant". The contin-
uous output y(t) can be obtained from the convolution summation

as.

(3.13) y(t) ;:fj g{t-kT) x(kT), 0 <t<nT
k=0

i / ) | o " Yt

Figure 3.4 Open Loop Sampled Data System
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where g(t) is the weighting function of the system., In terms of

Laplace transforms,
(3.14) Y(s) = x*(s) G(s)

where X*(s) is obtained from (3.5). At the sampling instants we
can compute the transform of the sampled output from

(3.15) Y*(s8) = X*(s) o*(s)

where

(3.16) o*(s) = L g(nT)e"T®
n=0

or from the correspcnding z-transform expression

(3.17) ¥(z) = &(z) X(z)

The expression G(z) in {2.17) is termed the "pulse transfer
function" corresponding to the continuous transfer function G(s).
It should be noted that G(z) relates the frequency domain variables
X(z) and Y(z) only &t the sampling instants, and provides no
information on behavior between these instants. Thus, inversion
of ¥{z) provides information only about y*(t), not y(t),{unless

the sampling rate ls sufficiently high compared to the highest
frequency in y(t)).

The corresponding closed-loop expressions may be obtained by
referring to Figure 3.5(a) and its equivalent in 3.5(b). 'The
expreasions for the error and output transform for the error-

sampled case are:

(3.18) B (s) = "1%(??;)—-

(3.18) c(e) = B*(s) G(s)

R
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3.2.6 Summary of charscteristics of sampled-data systems, The

major features of sampled systems noted above may be summarized

as follows:

3.3

(1)

(2)

(3)

(%)

(5)

Unless the sampling rate isg sufficiently high compared
to the highest system frequencies, information is lost
in the sampling process,

The sampler can be censidered a time-varying amplifier,
thus, even if all the other elements in a sampled-data
system are linear and invariant, the complete system is
nonstatlonary,

The fregquency-domain properties of sampled-data systems
are pericdic and repeat in integral multiples of the
sampling frequency.

Ssmpling of a bandwidth-limited function generates
harmonice which cover the entire freguency spectrum.

In view of the fact that physicelly relizable filters
do not have perfect cut-off characteristics, the recon-
struction of sampled date always results in the addition
of "ripple" between sampling instants.

Data Reconstruction Circuits

The time-domain behavior of zero-order and first-order hold

circuits was illustrated sbove in Figure 3.3. In this section the

frequency characteristics of these circuits will be reviewed and

a new "modified" hold circuit will be introduced. The use of this

"hold" eircuit in human operstor models will be considered in

Chapter L.

3.3.1 The zerg-order hold circuit cen be described by the trans-
fer function

{3.20)

-T's
H (s) = ~2
o 5

Lo
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The frequency characteristics with sinusoidal inputs can be obtain-

ed by letting 8 = jw to obtain

From this relation it can be seen that the zerc-order-hold ex-

(3.21) Ho{gm) =T

hibits & {8in x/x) amplitude characteristic (with zercs at fre-
quencies 2ng/T) and a phase shift proportionsl tc frequency. Such
& linear phase charazieristic is exhiitited “y a pure time delay of

T/2 seconds, i.e., one-half the sampling period.

3.3.2 The first-order-data hold. As indicated in Figure 3.3 and

equation (3.9), the first-order heold extrapolates between
sampling instants with a constant slope derived from the last
two samples. The corresponding Laplace transform 1s

-Ts ¢

)

(3:2) my(s) - (50 (5

The frequency characteristics of this held circuit are obtained
ty replacing s by jw in (3.22) and simplifying the resulting

expression to the following:

(3.23) B, (Jo) = TV 1418 (_S_j___nﬁé_Z‘) L—(uﬁ')+tan-l(uﬂ')

The phase and amplitude response of the zero and first-order hclds
are plotted in Figure 3.6. From an examination of these curves,
two observations can be made immedlately:

(1) The first-order hold exhibits significant "peaking" in
the amplitude cheracteristic, near cne~half the sampling
frequency. (Note trat an ideal data hold would weight
gll freguencies equally).

(2) The zerc-order hold exhibits more phase shift than the
first-order hold at low frequencies (below o= 2.4) snd

less phase shift at higher frequencies.



by

These observations are clearly of importance to the design of
sampled-date control systems since they affect the amount of ripple
introduced by the hold circuit and the stability of the system. For
the synthesis of human operator models they give us clues to be
sought in experiments. Thue, it will be of interest to examine
humsn tracking records to seek for peaks near one-half the assumed
sampling frequency; and phase-shift introduced by the hold circuit
will have to be considered in relation to the total observed

"reaction time".

3.3.3 Partial velocity (PV) hold. The exceseive peaking observed

in the first-crder-hold can be reduced by using a data~-hold with
cnly partial velocity extrapolation. Consider the hold circuit
transfer function in the form

-Ts 2 Te

(3'21") Hk(S) = k(%"—TS) ( l..es ) + (l-k) ( l“es = )

When k = O, (3.24) reduces to a zero-crder hold; if k = 1 it
tecomes a first-order hold, and with O<k <1l it is denoted as a
"partial-velocity~correction” hold. We shall abbreviate it as "PV
hold" irn this report. The frequency response of PV holds for

k = 0.5 is also indicated in Figure 3.6.

3.3.4 BEvaluation of hold circuits, If it is azsumed that a reason-

able sampling period for human operator models would be in the range
of 0.25 - 0.50 sec (bazsed on the experiments reviewed in Appendix
1), then some conclusions regarding data holde are possible,

Typical "reaction times" for human operators in closed locp track-
ing situations with nc controlled element dynamics, according to
McRuer and Krendel {1957), are in the range of 0.12 to 0.16 sec-
onds. Consequently, 1f zerc-order hold circuits are used in the
model, the phase shift may be excessive. For first order holds, it
may be too small for low freguencies and too high for high freguen-
cies, the "effective time delay" being such as to require the add-

ition of & predictor {or time advance element) to the model.
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On the basis of known detm on tracking, the position extra-
pelator does not appear to be a reasonable assumption., However, the
velocity extrapolator (or first-order hold) which does appear reason-
able uses a measurement of velocity based on past samples which
causes it to exhibit considerable phase lag., In the following
section a hold circuit based on measurement of current (rather than
past} velocity is analyzed, This circuit apparently does not exist
in the literature.

3.4 A Modified Partial Velocity Hold

As outlined in Paragraph 3.3.2 sbove, the transfer function
of a first order hold is given by equation (3.22) which is repeated
here:

Ts 2

(e (e

(3’22) Hl(ﬂ) =

This expression being obtained from the impulse response of a
elrcuit which has the desired time domain performance {cf, Ragazzini
and Franklin, 1958). Expression (3.22) can be visualized more
clearly if it is disgrammed as shown in Figure 3.7,

»* * ’ T
R(s) o Ris}| |—¢Te R (s) A—g ' B 1+Ts Cls)
T L] S
A ] c

Figure 3.7 Block Diagram of First Order Hold




where block A represents discrete differentiastion, block B repre-
sents & zero-order hold and block C represents the reconstruction
of the continuous signal r(t} from two operations: a ramp given by
the term l/s and a constant smplitude term given by the term T. If
the continuous signal r{t) is available a more accurate siope esti-
mate is possible by using continuous differentiation., It is inter-
esting to note that this type of first-order-hold (to be called the
"modified F.0.H. circuit") exhibits much less phase shift than the
conventional circuit whose frequency behavior was given in Figure

3.6,

The modified F.0.H. circuit is diagrammed in Figure 3.8(a)

and ite time-domain extrapolation properties shown in Figure 3.8(b).

3.4.1 Frequency charascteristics, To evaluate the frequency charac-

teristics of the Modified F.0.H. we again assume the input to be

sinuscidal (this is equivalent to considering only the fundamental
frequency at the output of the sampler with a sinusoidal input and
neglecting all harmonics). The frequency function for the conven-

tional F.0.H. was given in (3.23) as

e : 2
3.23 B (jw} =T ¥i+w T ~ii+tan

The frequency function of the modified F.O.H. circuit of Figure

3.8(a) is given by inspection by the relation
(3.25)  Hylde) = TVisa'r®

T™wce facts stand out from a comparison of these expressions:
(1) The modified F.0.H. has «T/2 radians less phase shift;

(2) The reduction in phase lage is obtained at the expense

1

gin /2 ol -
/" Z -+ tan ~ufl

«l/2

of mcre ripple, i.e,, less high frequency attenuation.
In fact, (3.25) exhibits an amplitude oscillation which
tends toward sin «l/2 as T increases, while the

amplitude of (3.23) tends to zerc as uwl-» o0

L7
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In a practical situstion two factors would tend to mitigate
both the amplitude disadvantage and the phase advantage of the modi-
fied circuit. First; pure differentiation is not practical due to
noise considerations, and consequently high frequency filtering will
be required. The practical "differentiator" would have a transfer

function

s

(3.26) Gy(8) = Trsfa;

where ©3 is selected sufficiently large to yield the desired accur-
acy of differentiation at low frequencies and smell enough to limit
the resulting high frequency ncoise. Secondlv, & partial velocity
cerrection would often be used {instead of a full velocity correc-

tion) thus resulting in less peaking near ol = x.

If the approximate differentiation of (3.26) is used, the

frequency function of the modified F.C0.H. becomes

: L 22
(3.27) 4, (Jo) = T_~S

Vit T

sin afl/2
wl/2

d

I/- %E + tan_lwmhtan-lun

where T, = l/uﬁ“ Equation (3.27) was actually used tc implement the

modified F.0.H. in the simulation study described in Chapter 5.

3.4.2 Modified PV hold circuits. Equations {3.25) and (3.27)

define the frequenzy characteristic of ‘a modified first-order hold
clreuit, but they are readily adapted tc the partial velocity cor-
recticn case. The "rcnventiocnal" and "modified" PV holds are

shown in block diagram form in Figure 3.9. If k = 0 hoth diagrams
reduce to the zero-crder hcld and if k = .. they reduze to the F.O0.

H. and modified F.0.H. zircuits respectively.

The frequenty ~haracteristics of the medified hcld circuits
are graphed in Flgures .10, 1l1. and 12, Figure 3.10 shows the
comparison between the conventional end nmcdified first-order hold

ecircults and illustrate clearly the decrease in phase sghift and

L9
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{a)
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(b)
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14+ Ty s S
R(s) N cs

Figure 3.9 Partial Velocity Correction Hold Circuits
(a) Conventional; (b) Modified

decrease in high frequencylattenuation which accompany the introduc-
tion of continuous differentiation., Figure 3.11 shows the amplitude
characteristics of the modified PV hold with several values of k
and Figure 3.12 shows the phase characteristic of the modified PV

hold for various values of k.

The simulation of the modified hold circuits by means of an

analog computer is described in Appendix 4,

3.5 Low Frequency Behavior of Hold Circuiis

One of the requirements for the sampling and data-reconstruc-
tion portions of the human operator models to be proposed is that
the model differe negligibly from the continuous model as the input
frequency approaches zerg., It is clear that the sampler contributes
less and less error as the ratic a@/aﬁ, sampling frequency to input
frequency, increases., This is clear from the sampling theorem. The

behavior of the hold circuit is still in doubt.
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The amplitude ve. frequency plots of the hold circuits given
in this chapter indicate that

|Hi(.ju>)[—"l' as w—0

end since the sampler attenuates the input signal by 1/T the
sample-hold combination approaches unity gain (and O phase shift)
ag w->0. This can also be seen by applying L'Hospital's rule to
the frequency functions concerned. For the zero order hold we have,
from (3.21):

gin ofl'/2
al/2

(3.28) IHO(O)l T lim

w—0

L}

T lim cos al/2 = T
w—O

For the first order hold, from (3.23):

(3.29) IHl(O)I = 7 1im VisaPT? ( Sizﬂ,“’g? ) =

w—Q

and similarly for the modified hold,

3.6 Hold Circuits in Human Operstor Models

We have seen in the above paragraphs that the data hold or
data reconstruction circuit possesses many of the properties re-
quired of the intermittent element of the proposed human operaitor
models. In particular, the sample-and-hold elements considered
have the following properties,

(1) Their transfer characteristics approach unity as w-»0.

{2) They introduce ripple between sampling instants which

includes frequencies beyond the range of & band-limited
input.

(3) They extrapolate between samples on the basis of the

input and/or input rate availsable.

It thus sppears to be reasonable to propose that human oper-

stor models be constructed by inserting error-sampling and data-

5k




holds into the continuous models previously utilized, The generic
model. is of the form indicated in Figure 313, where the hold cir-
cuit could be of any of the forms discussed in this chapter.

The diagram of Figure 3.13 indicates some of the restrict-
ions on the proposed model: it is designed for tracking with
stationary random or random-appearing inputs (thus excluding the
single sine-wave inputs) and it 1s designed for compensatory
tracking with the assumption that all other inputs to the operator
are negligible by comparison, It is particularly important to
note that the "human operatour model” block in Figure 3.13 has
continucous inputs and outputs, and consequently the existence of
sampling cannot be verified by the type of mathematical investiga-
tion being conducted, It is possible, however, to examine the
implications of sampling and examine the system behavior in view of
these implications. In order to do this, in the next chepter, we
shall analyze this model with several types of hold circuits and
obtain expressions for spectral density functions of the error e(t)
and output c(t) which will form the basis for the experimental
study reported in Chapters 5 and 6,

DISPLAY .. _ HUMAN OPERATOR MODEL 1
_/ | ]
T i ()
r(t) ] elt) HOLD K Ymit) ¢
—‘F®“’—"—°, , O circuir T =% [+
(sTATIONARY |77 ) N !
RANDOM - - | )
APPEARING oo J
INPUT)

Figure 3.13 Proposed Sampled-Data Model of the Human Operator



Chapter L
ANALYSIS OF OPERATOR MODELS WITH RANDOM INFUTS

4.1 Introduction

In the previous chapters the background for a sampled-data
model of the human operator has been presented. A specific
configuration was proposed in Chapter 3, based on the addition of
sample-and~hold circuits to "best fit" linear contimious models.
In this chapter we propose to examine the power spectra of track-
ing loops which ineclude human operator models. In particular,
closed-form expressions for computation of the power spectiral
density of the error and ocutput signels in a system of the form
of Figure L.l will be considered.

INPUT ERR ' i
, OR MANS
WHITE SIGNAL | o
NOISE" SHAPING { HUMAN %E’;“ T c"r;u T
FILTER OPERATOR g
Solw)=N,, MODEL Seelw)

Figure 4.1 Compensatory Tracking System
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The following assumptions will be made in the system of
Figure 4,l:

(1) The system input will be shaped "white'" noise, i.e. it
will consist of & stationary random process with con-
stant power spectral density No’ zero mean, and &
Gaussian amplitude distribution;

(2) The controlled system will be aspproximated by a pure
galn Kﬁ;

(3) The operator will be represented by either a contimuous
model or its equivalent sampled system.

In the concluding portion of the chapter some numerical solu-
tions to the probhlem will be obtained.

The study of continuous linear systems with random inputs ias
well established. The relations used as a starting point in this
chapter are taken primarily from Davenport and Root (1958), Bendat
(1958) and Laning and Batting (1956). The study of linear sampled-
data systems with random inputs has been treated in several tech-
nical papers. However, since no one paper presents an integrated
treatment in a form suitable for this analysis, the development of
the required expressions is given in Appendix 2.

k.2 Analysis of System with Continuous Model

If the input to a linear;, constant coefficient filter is a
*
stationary process x(t) characterized by a power spectral density
Sxx(jw) then the power spectrsl density of the output y(t) is

*Since the processes discussed here are Gaussian stationary random
procesgses and s Gaussian process is completely characterized by its
first two moments, these processes are stationary in the strict

sense {ef. Davenport snd Root, 1958). o
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determined from the relation

(5.1) 8., (@ = |r(30)[? 5, ()

where F(jw) is the frequency response function of the filter and
syy(jw) is the output power spectral density. In the case consi-

dered here, the noise source is assumed "white" and consequently

(4.2) S (w} = N
Therefore the input to the tracking system will have a spectral
density

(4.3) 5,(@) = [F(0)| % x,

We are interested in obtaining an expression for the error
spectral density and the ocutput spectral denaity when the contine
uous operator model is of the form

=Jw D,

O

(4. L) G, (jo) =

where KﬁE is & gain which includes the model gsin Kﬁ and the

controlled element gain Kﬁ, Dc is the model time-delay in the
continuous case and 1 is the model lag. (The background of

eq. (4.4) was given in Chapter 2). The output function C(jw)
is given bty

6, (3)
(ll"’5) c(ejw) = 1 + G ij R (JCU)
[




since the system has unity feedback, and the error signal transform
is given by

(1.6) B(30) = 7535y R (00)

Consequently, by application of eguation (4.1), the error spectrum
is given by

2
1
(8-7) See(w>=m| 5 (@)
and the cutput spectrum 1s given by:
G, (Jo) Ie
(4.8) 5@ =TT G| S (®

By using the model defined in (L.4) we zan write

(4.9) 1l 2 o 1+ Jrw 1l = jww
. 1+ Gc(jmi 1+ jrw+ % Do 1 = Jrw + X + 3D
e e

and consequently the error spectrum is given by

(1 + 1%32)

S (w)
(1 +X2) + 120® + 2K (cos aD ~ o sin uD)

rr

(1.30) 8 (w) =

where the subscripts on 1, K and D have been dropped for conven-
ience, and

: 2

o g

0.)2+(.I)B2

(%.11) 5,..(w) =
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since

1

.1 Fljw) = =
(L.12) (Jw) 37:&3375;
Finally, then, the error power spectral density will be given by:

22 2
(1 + %) @ N

k. ) = .
(k.13) ee(w) (w2 N mBe)[(l+K2) + 12f + 2K{cos uD-tw sin a.‘D)]

Similarly, the compute the output power spectral density we
first obtein the squared megnitude of the cloged-loop system

function:

2

G, (Jo) _( Ko~ 30D _)( g I )
- JaD §uD

1+ G, (Jw

(4. 1h)

e 1+ tjw + Ke 1= jtw +Ke

Substituting (4.14) into (4.8) we get:

K2 mhe NO

(h.15) s (0) = ;
ce (m? + m321§l¥K2)+ 2° + K{cos aDwT® sin D)

Expressions (4.13) and (4.15) represent power spectra which
can be easily measured in experimental situations and compared with
their theoretical values. Before performing any mumerical compu-
tations; however,; the corresponding expressions for the sampled
case will be developed.

4.3 Analysis of the Zero-QOrder-Hold Model

The simplest of the proposed sampling models is of the form
shown in Figure 4.2, where the hold circuit has the frequency
functicon
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Figure 4.2. Sampled Form of Operator Model
" = 3T
1l -e J
4.16 = =-%
(4.16) Hofjm) To

The derivation of an expression for the output power spec-
tral density follows a progedure analogous to that for the contin-
uous system, with complications introduced by sampled signals which
have repeated spectra along the entire frequency axis. The power
spectral density of the continucus error signal e{t) cannot be
obtained by a single relation analogous to (4.1) since there is no
transfer relationship which explicitly relates E{Jjw) to R{Jjw) in
an error sampled system. The theory of the method to be used is
given in Appendilx Z.

4.3.1 Output power spectrum of zgro-order-hold model. To

compute the output spectrum we rearrange the circuit of Figure 4.2
into the form of Figure 4.3. The asterisks in the figures are used
to denote sampled quantities. To obtalin the output spectral density
Scc(Jm) we perform the following operations:

(a) Given the input spectrum Srr(jm) cgmpute the
corresponding sampled spectrum 8 _ {jo). This
can be performed using ordinary 2z transform
tables when Srr(,jm) is a real, rational function

of mz. Thus, we can write



(4.17) 8. (8)

it
=

% [Srr(s)] aT

Z =8

1]
bol

. Srr(s + ,1nms)
N==00

vwhere the additional factor of % arises due to

time-averaging over a sampling period and Srr(s)
is the billateral Laplece transform representation
of the power spectral denslty. The Justification

for expression (4.17) is given in Appendix 2.

.ﬂ_l_c%/ R*(w) E*(jw) ¢ tw
Ho (J @) Geliw)
+ 9L
\?‘—xc*(jw)

()

R (W) R* (Jw) l ' gw c w)
& o/c T G

b}

Figure 4.3. Equivalent Representation of Error-Sampled System

*
(b) Using the sampled input spectrum Srr‘(jm) , and the
pulse transfer function of the system, compute the
*
sempled error spectrum S_, (jw) from

1 1
(4.18) See!?) =\ TF a7 T ¢ (z™) )

I+ (HOGC]. HOGG(I w) sttt
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(4.19) Gso(Jw)

(c)

(4.20)

63

where

=Djw
l . e.Jam).' Ke )

= Ho(acn) Gc(JtD) = ( jo \1 + J1mo

and G (%) = z[c.so(a)] . The use of the
z-transform in (4.18) is valid since both

*
e*(t) and r (t) are defined only at the sampling
instants.

*
Using the sampled error spectrum Se o (Jw) compute
the power agpectral. density of the continuous
output Scc(,jw) from:

o, ol” 5"
8. (@) = [a (3)] 5., ()

The real frequency equivalent of See(z) is obtained simply by the

Jafr

substitution z = e .

To perform the sexries of operations cutlined above it
is recalled from (4.11) that, using the bilateral s~transform,

(4.21) Srr(s) =

1 N = No mBa
1 - (B/O.\B)a ° &%, m‘32

Consequently, from (4.17)

(4.22) Bn_(z) = % z[srr(s)] -

- N oy (sinh LuBT] z

T(zzm 2z cosh wpT + 1)
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which exhibits the perlodicity characteristic of sampled spectra.
The pulse transfer function Gso(z) is given by

-Ts -Ds b
, (l = c .. ) K@_)J
s l+1s

1

(4.23) Ceol2)

-

-Ds
K(1 ~- z"l) Zm l\s—(]%_ﬁ;)-J

where Z represents the "modified Z~transform" (cf. Tou, (1959)
Tp. 184=198). The use of tables of modified transforms mekes it
possible to obtaln the transform of a system with time delay dir-
ectly. From tables in Tou (p. 588, nc. 3.01) we obtain

iz{l “ e"a(T"D)) + (e"a(T“D) _ena‘I‘)]
naT)

(1.2%) o (2) = (s =

AfH

z(z - e

If we deflne new parameters Al and Ae as

(4.25) Ay =1 e~2(T-D) A= g-a{TD)  -al
then (4.2L4) can be written as

K(A z + A_)
(4.26) ¢ (2) = —E— 2"

&4




Consequently, since the closed locop transfer function from sampled
input to continuous output 1s given by

C_u‘“) G, (Jw)

(4.27)
R (Jo) 1+ G o(dw)

we have from (4.18) and (4.20)

¢ (o) 1B,
(1.28) 8, (@) = |—22 s_*)
|
From (4.26) we obtain
(4.29) 1 _ z(z - e-am)
1+Gg,(2) K(Alz + AE) + z(z—e'aT)

which can be wrltten asz

-aT
1 z(z - & )
(1‘-030) — =
L+ Glz) z  + A3i + Ay,
vhere
e - o8l ., 4
(4.31) Ay kA - ™ 5 A S,

Substituting (4.30) and (4.18) we obtain the spectrum of the

sampled error:

~ 28T -l
eal _ )

(z+z
(1+A fAh)+(A +A Ah)(z+z )+Ah(z +2Z

lL+e

(2)

(4.32) 8, (2) = e 8.,

Letting z = 30T (4.32) becomes:
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(1+e"2“T- 20~ cos aﬂ.‘)(no @, sinh a.\B'r)

(h.33) 8o, (w) =

Now, since from (4.19) the contimuous transfer function is

(4.34) Goo{de) = ( ~er )(1+.‘):ra) )
we have
(4.35) ‘G (Ja))' 21{28— : :Os (;1@

Substituting the expressions from (4.17), (4.33) and (4.35) into
(4.28) we obtain the output spectral density as:

(8.36) 8, (@) =

(me2 einh @ T)(1 + e 28T _ 2e"%To0s of)(1 - cos af)

o7 [(l+A§+Ai)+2(A3+A3Ahkos ol +28, 08 2] (cosh. wE-cos )

m2(1+1 2{(1+A )+2(A +A3Ah)cos :.-.1r+2£lh cos am‘](cosh wpT~cos wT)

4,3.2 Brror power spectrum of zero-order hold model. From
Appendix 2, the expression for the power spectral denaity of the

contimious error e(t) is given by
GﬂﬁLL
1+ G

2 6, (3)
(537) 8 (0) =8, (@) - §5_(a) B [—25—| & (o)
1+ G,,( Jo)
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vhere, as before, 5. (juﬂ is the power spectral density (PSD) of
the continuous input, (juﬂ is the sampled PSD and G (Jw) has
been defined above in (h 19). The third term in (. 37) will be
recognized from (L.28) as the PSD of the output signal c(t).
Consequently, the only unknown in (4.37) is the term

6, (30)

(4.38) (@) = &5 e P
+ Geol J

which arises from the cross-correlation function between r(t)
and c(t).

The open loop transfer function Gso(jm) is given in
equation (4.34), and the corresponding pulse trensfer function is

K(Alz + Ae)

(h“39) G (Z) =——'~'—-——.——'—
50 2(z - e aT)

vhere the coefficients A, and A2 have been defined in (4.25).

Therefore, one obtains from {4.30) and {4.31) that

(4. 40) L YOI

* 2
1L+ Gso(Jm) 2= + ABZ + Ah a7

z=e

Ag before, the Ai represent functions of K, T, D, and v. The
complete closed loop frequency function is then given by

Gso(Jw) _ K(1-e Jam)(e'JaDSOJ(eJam)(gjam T)
23aT

a

(h11) = = (o)

Lsas (30)  (Jo)(1rden)(e

oy
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Multiplying by the complex conjugate of the denominator we obtain

(h.h2) S (Jo) =
R

(1m0 ) (o700 (U _m0T ) (oI o™y ) (1 g10) (7°0)

cos off + A12 cos )

2.2
{1+ )(.!itl0 11

4 2 2
where Alo =Ll + A3 + Ah-

He-

Al

a
Ala”aah

2(A3 + A3 Ah)

After multiplying out and collecting terms the numerator can be
written ag

e K[(cm cos aD+sin ab)+](cos ubD~ux sin aD]FO(A,m)

(%.13) =% (Jo) = -
R

r.n(1+-r 2)(A +A,, cos l+A, , cos 2ul')

12

vhere F_ (A,®) is given by

(k. 44) F, (A,0) = A5 + A 2JM+A6e +A.7e +A o~2JuT

The coefficients in (4.44) are defined by:

A 21 . (l+e'aT)A3+e°aTA

5 N
a =g
(4. 45) A -aT ~aT
A7 Ee(lee " )+e A3
-aT

Hp

A8e
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Expression (4. 44), separated into real and imaginary parts, becomes

(4. 46) FO(A,m) =[A + (A6 + A,.() cos ¢ + (Ah_ + AB) cos eum]

P

¥ jkA6 - A..{) sin of + (Ah - 8) sin 20.11‘]

11

Fop () + § Fop (A,0)

with the aid of (L.46) and (4.43), the real part of the desired
closed=-loop frequency functlion becomes

(4. 4T) Re ;—* (Jw) =

- K{FOR(A,(D) [rm cos wD+sin cuD] - FOI(A,m) [cos wh-wr sin LLIJ

22
w{l+tw") (Alo + A, coB u:l].‘+ﬁxl2 cos 2ufl)

11
and the power spectral density of the continuous error for the
zero order hold model can be obtained using (4.37) as

¢, (30)

(4.48) S (@) =8 _(w)+5 () -8 Re —5&_
ee T ce T 1 . C-:o(ju))

Clesrly, expressions such as (4.47) ere too complex
for much mamual calculation. They can, however, be programmed
for digital computation rather essily, and some results are pres=
ented later in thle chapter.

4.4 Analysis of the First-Order Hold Model

The zero-order-hold has been presented in the preceding
sectlon largely for completeness and because it illustrates the
basic ideas of the method. From the considerations of Chapters 2
and 3 it is clear that velocity extrapolation is a more reasonable
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assumption. In this section the expresslons for the output and
error PSD for the first order hold model will be developed in an

analogous manner to the preceding sections.

The model considered is that shown previously in Figure 4.2,
but now the hold circuit is described by the transfer function

2
(4.49) B (s) = (5 Ie ) (- §-TB )

The hold circuit is in series with the continuocus model of Section
4.2, where only the time delay D, may require adjustment to take
into account the phase shift introduced by the hold circuit.

4.4.1 Output PSD of first order hold model. As previously,

we begin with the open-loop transfer function
-D.8

e 1
(4.50) G (8) =(l T TS)(I — T) (I;e+ ‘rs)

The corresponding z-transform is given by

2 '-DlB
(4.51) o (z) =B -ty p{2tle)e

sa(l + 18)

which can be obtained from a table of "modified" transforms with
m=1 - gi . The result, after same manipulation, reduces to

K(le2 + Q2 + Q3)
Tzz(z - e"aT)

(L.52) G,(2z) =

where
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Q = (2T - D, - ) + (1 - T)e'a(T'Dl)
(4.53) G =T- (L+e®)(2r - D - 1) - 2(x - 1)e5(T-D)
Qg = - e T 4 (or - D, - e 2T 4+ (7.7)e"2(T-D)

The pulse transfer function relating E(z) to R(z) then becomes

2 -aT
(14--5]*) Blz 1 Zz (z - € )

Rz 1+ Gsl(z) z3 + Plzz + Pzz + P

3

where the coefficients are defined in terms of the Qi of

(4.53) as:

P, = (Kq - 7e"8T) /1
(4.55) Py = KQ/T

Py = KQB/T

The sampled error spectrum then becomes

L 1
(4.56) see(z) = [l + Gsl(z)][_l + Gsl(z'l)] Srr(z) =

= (1 + e-ZaT) - e'aT(z + z'l)

Z 2 2 1 Y 3 -
(l+Pl + P, + P3)+(Pl+PlP2+P2P3)(z+z )+(P2+P1P3)(z +2 )+P3(z-+z %

Finally, since
2

(4.57) 5..(0) = Gy (do) 8. "(Jo)

we substitute (4.56) and (4.50) in (4.57) to obtain



T2

(1.58) S, () =

{hKe(:L + T 2)(l+e ~2eT | e ®Te0s uﬂ)(lucosuﬂ‘)a}S *(w)

) T%ue(lwema )[(1+P I*?+P2)+2 (P+I-§L1=' +P P3)m3 T+ (P +?3 Jeos 2uﬂ'+2P3cos 3151‘]

*
where, as before, for the filtered noise input, Sr - {(w) is given by

* Naasinhu\‘BT
(4.59) 8.r. (@) = T (cosh abT - cos aff')

L.h.2 Error spectrum for first-order hold model. In an

analogous manner to the derivaetion of the PSD expression for the
zero=order-hold system in Section L4.3.2, we begin with the open-
loop trensfer function G Bl(,jau) gain in (%.50) and the pulse
transfer function E(z)/R(z) from (4.54). The closed~loop relation
C(jm)/ﬂ*(jw) then becomes

(n60) SLd2)
R (Ju)

= 3aD
‘hmﬁxmmwm*%%Jlmm%@®€%

14'(}:1(303) T(Jm)2(1+jm)(833w+Pleg.j 2 j(lﬂ.'

+P)

where the coefficients Pi have been defined in (4.55). The resl
part of (4.60) is obtained by multiplying by the complex conjugate
of the denominator and collecting terms to obtain, after some

algebre:




(1.61) re HI2L .

R ( jw)

_ ‘K@‘]RCP:UJ{ (Lt Tuf Jeos wD+w{T-1)sin uDHw(I- 1 )eos wD- {1+ 1Tw?) 3 inwD] Fig(¥ w)}

(l+'r 2)(P +P cos afl' + P12 cos 20 + P13 cos 3al)

where the various coefficients are defined as follows:

FlR(P,w) = P1++(P5+PT) cos uﬂ'+(P6+P8) cos EwZE+(P3+P9)cos 3ul

(4.62)
FlI(P,u)) =(P5 - P,.‘,) sin aﬂ.‘+(P6-P8) sin 2uJI+(P3-P9)sin 3uT
and
P, €1 . (2+ e'aT) P, + (1 + ae'aT) P, - e 8T Py
P5 £ P, - (2 + e'a‘T) P, + (1 + 2e'a'T) P,
A =T
Pe © P2 - (2+e )P
p P'T 2. (2+ e-a'T) + (1 + ae_a'T) P, - e-aT P2
(4.63) A -a7 -aT
P8 E(l+2e )¢ Py
P9 2 _g-8T
a 2 2
Plo-1+Pl+P§+p3
Pll% 2(Pl + P:LP2 + P P3)
a of
Py, 2(1=2 + PlP3)
]
Py3" 2P

Therefore, the power spectral density of the error signal in the
first~order hold model is determined by substituting (4.61) into
the relation



o, (d0)

1+ Gsz(jm)

(eE) 5 y(e) = 8, (@) + 5,y (0) - £ 5

ecel rr

4.5 Analysis of the "Modified" Hold Model

The modified first order hold (MFOH) representation was
introduced in Chapter 3 and compared with conventional zerc-order
and first-order~hold cilrcuits. In the present section we shall
derive expressions for computing the output and error PSD of the
MFOH circult. In a later sectlon of this chapter these spectral
densities will be compared with those of other models for specific

values of paremeters.

Consider the circuit of Figure h.4(a) which shows the MFCH
circuit. In order to compute the output spectrum we redraw the
circuit into the form shown in Figure L4.4(b) and (c) where ‘J.'F(,jco)
denotes the frequency function of the approximate differentiator.
The error spectrum can be obtained from Figure h.4(b) by noting
that

(4.65) S, (@ =8, (@ +8, ,(®-25, (0 1m0
e 1ot A\ = tont + Tl == 1.0 (D) R
e'e r'r c'e T r'r 1+G1¥F (Jw)
where 2
S 0pe (@) = [T (00)| 8 ()
(4.66) -
Sgrer(®) = |Y.F(aco)| 8o (@)
and
(4.67) E'(j0) = E(Jw) Yo(jo)

and consequently the desired continuous error PSD is given by:

Th

R
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Figure 4.4 Equivalent Forms of MFOH Model
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6y (30)

_ 2
(4.68) 8, (0) =8, (@) +8_, (@) - T Spp(®) Re 146, YF*(;]u))

4.5.1 Output PSD of MFOH operator model. We begin by
deriving an expression for the output power spectral demsity S, (w).
As before, the input PSD is given by
2

N
(4.69) 5_(0) - 22

w” + af
vhich represents "white nolse" filtered by a first-order lag. The
"differentiated" spectrum Sr'r'(m) is then given by

(Noba“’g) o b= L)
(o)2 + mg)(wa + 'be), ) Ta

2
(1.70) 8., () = [t (30} 8_(0) =

The equivalent sampled spectrum is obtained by first expanding
(4.70) in partial fractions in order to obtain functions which
appear in transform tebles. In terms of the complex frequency s
the result is:

2.2 2
-N b an w 2
% . _ o] B . b o
(11-071) Srlrl(s) - ba R u% [ a)g . SE‘ b2 . 82]

and corresponding sempled spectrum is

(k.72) 8 *(a,)_?_l b sinh BT . uaBsiihmBT
. rip! T o |cosh PT' = cos ' cosgh mBT - co8 il

N mg be
where cl U - R
b2 mg




Equetion (4.72) can be used to compute the output PSD from the
relation
2

Gyyy(30)
M 85 (30)

1+ Gy Y; (30)

(4.73) 8c (@) =

The trensfer functions Gm(jw) and '.‘{F(.jw) are identified in the
block diagrams of Figure L.4, 1.e.

) Ke“Dmsgl + Tg)(L - & °)
L, = '

(L Th) Gm('jm 52 (L 4 qs)

(4. 75) Yp(s) = sbi b

(For purposes of computing the loop tranefer function GlMYF(B) we
shall assume YF(S) # 5, since GlM(s) is sufficiently low pass to
make the errors of approximationa negligible). Consequently we

have
Kae 2P(1 - ¢"T8)(1 + T8)

(4.76) GJ.MXF(B) = s{s + a.ji
from which the modified Z tranaform can be chtained and written in
the form

( ) K(Blz + Be)

LTT Gy Yl(z) =

F z(z e'aT)

vhere the coefficients are given by

1-(1- Ta)e"a‘(T'D)

jre)
]

(4. 78)
-a.(T-D)_e-a'l‘

to
Y

(1L - Ta)e

T



The desired closed=loop transfer function for substitution into
(4.37) can then be written in the form

GlM(s) i KeD® (l+'1‘s)(l-e’T8) z(z-e'aT)

(4.79) = 5 5
l+GlMYF(s) 8 {1+1s) 2< + B3z + Bh_ z=e5T
vhere the coefficients are defined by
- . ™8T, -
(4.80) By=KB -e ; B =KB,

Substituting in (4.73) we obtain the output spectrum:

[3{2(1+T2w2) {l-cos af') (lw'aTnze'aTcos o !S:,r s ()

(1.81) 8 (o) = _
ce ml"(1+12m2)[(l+B§+Bi)+2(B3+B3BLL)cos aﬂ.‘-&-QB1+ cos uﬂ!]

4.5.2 Error PSD of MFOE operator model. To obtain the
error spectrum we consider the real part of (4.79) for = = juw,
i.e. of the function

Gy Joo)

(4.792) % =
1+ Gy YF(Ja))

Ke”dm(l+ij) (1"8-ij) (eJT(D)LeJTﬁ) . enaT)
(30)Y2(L + Jrw)(e2T & B9 T B,)

¢ %, (s0)
3

Mualtiplying the numerator and denominator of (4.81l) by the complex
conjugate of the denominstor we cbtain

T8

T R T A e

T e




(4.82) XlM(,jm) =

-aT_JTw ~Jeul . = JulT
K(l‘f‘JT(D) (l_e“,jTUJ) (eJDUJ)(eijm-e e n.-JTG)) (e +B3e +B]|.)

- (2 + 'rzr.ua)[(l + Bg + Bﬁ) + 2(33 + BBBh) cos uff + 2B, cos amr]

the real part of which can be written as

(183) B Xp(do) =

_-K{Fm[(lﬂ‘l‘coa)cos uD+w(T-7)5in wD] “Fyr [m(T-'r Jeos uD- (Il.+'1:‘.1"'.c.o2 )sin U.D]]

2 28 2 2
o (14w )[(1+133 + Bh) + 2(33 + BBBl!-) cos o + eBh cos zwﬂ
vhere the coefficlents are defined as follows:

FMR(B,w) 8 135 + (136 + BB) cos uff + (Bh + 139) cos 2ufl

FMI(B,w) 8 (Bg - Bg) ein ol + (Bh - 39) sin 20T

(1.8L)
B, & (1-B,) - e‘aT(33 -B) ; By= -[l+e'a’T(l—33)]

B 2 (By - B)) - e 8T e8T

Bh- ; 2B9

Thus, the error spectral density for the modified first order hold
is given by substituting (4.83) into:

Gy (J0) }

(1.85) seeM(m) = Srr(w) + Sch(‘“) - % S.p(®) Re L + Gn;iaw)

9



4.6 Numerical Evaluation and Comperison of Spectra
In order to evaluale the three sets of expressions for the
power spectral density of the proposed operator models it will be

necessary to select & numerical values for the various parameters,
i.e. to select a particular situation in which a guasi-linesr model
is sppropriate. 1In addition to the parameters which characterize
the continuous model (i.e. K, D, and 1) it is also necessary to
select a value of sampling period T. With these values fixed, it
is possible to evaluate and plot the power spectral demsity of the
output and error of the various models. In order to select appro=-
priate values we shall use an experiment from the work of J. Elkind
(1957), which was described in Chapter 2.

4.6.1 Elkind's experiment Fl. The forcing function used by
Flkind consisted of a sum of up to lhk sinewaves separated by egqual

frequency increments but of random phase relation to each other.
In his experiment Fl the frequency separation was 0.02 ¢ps (there-
fore a range of 0.02 to 2.88 cps) and the resulting signsl was
filtered by a lag filter with a bresk freguency of 0.2k cps. The
resulting spectrum can he consldered an approximation to the con-
tinuous spectrum used in the derivation above. The resulting data
were fitted with the quasi-linear transfer function:

-0.139jw

_3:35¢e
(4.86) GH(JLD) = —iﬁm

Since the experimental data from which this transfer
relationship was derived are available in Elkind's dissertation,
it seems loglcel to use them for a preliminary investigation of
the sampled model. In particular;, we shall be interested in
comparing the measured velues of power spectral density Scc(uﬂ
and See(m) with those computed from the continuous model (using
the data ofeg. 4.86) and those computed using the sampled-date

models.
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Two limitations of this comparison should be noted
immediately.

(1) The quasi-linear continuous model does not account
for all of the operator's ocutput, and an uncorrs
elated nolse with spectrum Snn(m) must be added
for a complete representation. However, our inten-
tion is to see whether a portion of the "remnsnt"
is accounted for with the new models.

(2) Elkind's data for experiment Fl are based on the
average of L runs conducted by a single well-
trained subject in a particular experimental sisu-
ation. Nelther the subject nor the pesrticular
tracking equipment may be "typical" or "average".

In spite of these limitations, it is extremely useful
to use data available in the literature as a preliminary feasi-
“bility test.

4L.6.2 Selection of the sampling interval T for the
sampled model, From the contimious model of (4.86) we have three

of the parameters of the models, namely:

K=3.35
a = l/'rc = 1,13 rad/sec.
D = 0.139 sec.

c

Furthermore, the shaping filter break frequency used in Elkind's
experiment was 0.24 c¢ps, and thus:

@, = 0.24 (2x) = 1.5 rad/sec.
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These four parameters are sufficient for computing the error and
output PSD of the continuous model. For the sampled-data models
it 1s necessary to determine a value of sampling period T. Wwhen T
is fixed, the delay Ds will have to be adjusted to teke into
account the phase shift introduced by the hold circuit.

In order to set the value of T = l/fS for the model let
us examine the experimentally measured values of Scc(m) and See(aﬂ
from Elkind's report for this particular experiment. The two curves
are given in Figure 4.5 (both curves are normalized by having the
ordinates divided by the total input power (since Pin=§%-40%rrﬁnkkbl
Both of the curves of Figure 4.5 exhibit significant peaks in the
vieinity of £ = 1.5 eps. If we now recall that the first-order
hold circuits discussed in Section 3.3 also exhiblit characteristlc

pesks near fs/z, we can meke the following assumption:

It will be assumed that peaks (if they exist)
in power spectra of tracking data, correspond
to one-half the sampling frequency of the
equivalent sampled-data model.

Cleerly, this assumption will require rew-examination
when additional experimental data are avallable., Such a re-exsm-
ination will be made in Chapters 5 and 6, in connection with a
discussion of the experimental plan of this study. However, on
the basis of the spectral density plots given in Elkind's work, it
appears that all experiments with a forcing function where signifi-
cent energy appears above approximstely 1 cps do in fact exhibit
peaks in a range of 1 to 2 ¢ps. On the basis of Appendix 1, the
psychological evidence for intermittency points to a sampling
frequency between 2 and 4 cps; consequently it can be assumed that
the location of the peak 1s a reasonable guide to the model sampling
frequency. At this stage of the study, this is merely an assumption
which appears to be reasonable. For the experiment at hand, we shall
assume T = 1/(2x1.5 cps) = 0.33 seconds.
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4.6.3 Selection of time delay D_ in the sampled model. Once
the sampling period T is given, we can turn to the characteristics
of the hold circuits given in Chapter 3 to determine values of Ds'
Since the hold circuits introduce phase-shift and consequently an
"effective time delay", we shall set the model delay such that the
lotal open loop delay equals the contimious delay D,, i.e,

(4.87) Ds = Dc - DH
where ‘
D, = continuous model delay (from fitted data)
DH = effective or average delay due to hold
circuit 1in frequency range of interest
D = sampled model deley

=

The significance of the values of D_ obtained in this way (which
mey be negative or positive) will be discussed in Chapter 6. Here,
our objective is simply to obtain s set of data for comparing
theoretical spectra.

For the zero-order hold model it can bhe recalled that
the time delay DHO is given by

= -

1 T
(4.86) Pmo "3 < 2
i.e., the zero-order hold introduces a time delay of one-half of the
sampling period. Consequently, we cen set

(4.89) D, =D, -

i3

8l




o
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Tor the first-order hold the situation is more complex,

since this model does not introduce a linear variation of phase
shift with frequency. However, for the range of frequencies we are
considering, and from an examination of the phase~shift character-

istics of the hold circuits (Figure 3.10) we can assume that

(4.590) Dy 20.5T for Q/{ ol < L

Dyy = 0.8T for O0<uwl< 8
end consequently, since we expect ' to be of the order of 1/3 sec
and a maximum frequency of interest to be about 12 rad/sec, we can
use;
(4.91) D, D, - 05T
Similarly, the modified hold cireuilt introduces an

effective deluy of approximately zero for the range of frequenciles

of interest. Consequently, we shall take

(4.92) Dy ¥ D,

The values of the parsmeters chosen for all the models

for this case eare summarized in Table 4.l below.

Table 4.1
Parameter Values for Demonstraticn Case
Model | Gein  Time Time Sempling
X Constant Delay Period
(sec) (gec) T (sec)
Continuous 3.35 886 1Y -
Zero-order hold ' 3.35 .B86 0.0 0.33
First-order hold 3.35 .886 0.0 0.33

Modified first-order 3.35 .886 0.14 0.33



With the sampling period set at 0.33 sec, the effective delay is
approximateky'% T or 0.16 sec, rather than 0.14 as in Elkind's
continuous model. However, for the purpose of studying the general
shapes of the spectral density curves, this is considered adequate,
especielly since it simplifies the computation.

The output power spectral density curves for the four
models are plotted in Figure 4.6 and the error PSD curves in
Figure 4.7. Both figures include experimental points from Elkind,
not to indicate the "fit" of the varlous models; but to give a
general impreszlon of the relation among the various models and the
scatter of a typlcal set of experimental points. (The points are
taken from Elkind‘s dissertation where they appear as approximately
3"x4" plots which are quite difficult to read. Furthermore, there
appears to be some ambiguity in his selection of normalizing fac-
tors for the curves).

4.7 Evaluation of the Sampled Models
On the basis of an examimtion of the curves in Figures h.6
and 4.7 the following observations can be made:

(1) The ZOH model produces an error spectrum which deviates
extremely from both continuous model and experimental

date in the middle freguency region.

(2) The MFOH model, while behaving in a reasonable way at
high frequencles. exhibits excessive galn at very low

frequancies.

(3) The first-order hold model, while appearing quite
reasonable In its error spectrum; exhibits somewhat
excessive peaking in its output spectrum. In spite
of this defect; however, 1t appears to give the most
promise of ylelding satisfactory results.
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(4) It is clear that more experimental data are needed to
evaluate any proposed sampled models. However, since
the zero«order hold does not possess the velocity-
extrapolation properties which are desired, in addition
to having the behavior illustrated in Figure 4.7, it
will be abandoned here. The modified hold circuit like.
wise will be considered only in a cursory fashion in the
remainder of the report. However, since it does offer
some interesting possibilities for future work, it will
not be abandoned entirely.

In order to examine the significance of the peak in the first-order
hold sampled data model, a number of runs were made for small
variations in the time delay, DSl°

in Figures 4.8 and %.9. All three of these curves reveal the
1
2
noted that the most "reasonable” of these curves have negative

values of delay, i.e., the model incorporates some prediction.

The net phase shift of the model, however, is leading only for very
low frequencies (where prediction by the human operator is also
known to occur) and lagging at higher frequencies.

The resulting spectra are shown

characteristic peaks near — the sampling frequency. It can he

In summary, the sampled-date model with a first-order hold
exhibits a poewer spectrum which strongly peaks near one-half the
sempling frequency, and generally resembles tracking spectra
found elsewhere in the literature, However, to evaluate this
model. more carefully additional experimentel date were needed.
These are the subject of the next chapter.



Chapter 5

EXPERIMENTAL PROGRAM

In this chapter the purpose and geheral aspects of the experi-
mental portion of the research program are described. The construc-
tion of equipment and the selection of experiments and sublects are
discussed. The results are presented and discussed in detail in
Chapter 6.

5.1 Purpose of the Experimental Study

In the last chapler several models of the human operator based
on sample-and-hold cperations were analyzed. The models were pro-
posed on an & priori basis, that is, they represented a theoretical
hypothesis based on general features of human tracking and on the
properties of sampled-data systems, rather than being attempts to
"match” experimental data. In order to compare the behavior of the
medels with experiments a number of assumptions were required in
connection with one set of data from the literature. These assump-
tions were related to the validity of Elkind's data, to the univer-
sality of certain spectral characteristics and to the method of in-
corporating them into a model. We are therefore left with the fol-

lowing set of gquestions:

(1) Are the characteristics of the measured error spectra
in Elkind's experiment typical features of human track-
ing or are they an artifact of his particular exper-
iment?

(2) Will such characteristics appear with different
operators and with inputs of varying difficulty in
a setting different from Elkind's?

92
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(3) Can the assumption that spectral peaks are related to
model sampling frequencies be justified on the basis of
more data? If so, can a systematic procedure for con-
structions of the sampled-data model for a particular
task be developed?

(4} Are there other implications of the sampling hypothesis

which can be tested experimentally?

The experimental program was designhed to answer the above
gquestions. Its primery purpose was tc get more date and to use
this data for developing and justifying a synthesis procedure. The
secondary purpose was to perform some gualitative, preliminary ex-

periments concerned with the implications of sampling.

To answer Questions (1) and (2), error spectra of ten opera-
tors performing compensatory tracking were recorded using analog
computer technigues. The foreing functions were random-appearing,
consisting of 10 sinusoids ranging in frequency from 0.16 to 1.6

cps.

To answer Question (3) data for two representative subjects
from the previous sample, the tracking data were recorded on mag-
netic tape and analyzed using e digital computer in order to cobtein
continuous quasi-linear models and eguivalent sampled-data models.
The power spectra resulting from these models were then compared

with the experimentally recorded data.

Finally, Question (4) was investigated by exposing several
operators to sampled input signals. This procedure made it pos-
sible to determine whether the location of the "sampling peak”" in
the operator's error spectral density can be related to an inter-

mittency 1n the presented data.
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In addition to the measurement of power spectral density in
the tracking experiments, some time domaln recordings of typical
tracking responses were made and compared with recordings of the out-
put and error signals of the human operator models discussed pre-

viously.

5.2 Anslog Measurement of Power Spectral Density

In Chapter 4 we have obtained expressions and computed output
and error spectra of various human operator models inputs which con-
sisted of continuous RC-filtered noise. That 1s, the forcing func-
tions were considered to be sample functions of strictly stationary
random processes with a flat continuous spectra ("white" gaussian
ncise). For the experimental work the input signal consisted of a
sum of sine waves. Consequently, in this secticn the concepts needed
for an interpretation of the spectral density of periecdic functions
are presented briefly and the method of measurement is indicated.

A more detailed treatment of this toplc 1s given in Appendix 3.

5.2.1 Power Spectras of Periodic Functions. Consider the

funetion f(t) given by a finite number of sinusoids:

N
(5.1) £(t) = Z C, cos (wt - ©,)

n=1

If N > o0 eq. (5.1) can be considered the Fourier series representa-
tion of f(t) in an interval (-T,T), (provided that f(t) satisfies
the Dirichlet conditions; see, for example, Pipes (1960) ). In
Appendix 3 the power spectral density of such a Fourler series
representation is indicated. However, we are more concerned with
f(t) as a finite sum of sinusoids defined only over an interval

(-T, T), i.e. we define & new function fT(t) such that:




tp(t) = £(t) ¢l = T

(5.2)

!
(e}

fT(t) [t] = T

We can then define the power spectral density of fT(t) as being

| Py (o D) ;2
(5.3) See,, (w) = T
where
+ o T
(5.4)  Tplw,) = FT{f(t)] - f 2(t)e at =j £(t)e" %44
- 0 -T

iz called the truncated Fourier Transform of f(t). Since physical
measurements are necessarily finite in duration, the convergence
of (5.3) to Sff(aﬂ as T—=>co is not of importance here (see, for
example, Laning and Battin {1956) or Bennett (1956) end Appendix

3).

Now it is shown in Appendix 3 that substitution of (5.1) into
expressions (5.4) and (5.3) leads to the relation

N ¢ sint (uh - )T
(5-5) SffT(w) = E"E'" Z n(m “ m'[iz TL ]
n=1 n

for the rectangular "time window" of Equation 5.2.

For a perticular frequency ®, contained in the input series,

Equation (5.5) beccmes

T 2
(5-6) See. (%) = 7 G
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This latter result is obtained by applying L'Hospital's rule to the
right hand side of (5.5).

It should be noted that the expression of {4.1-36) indicates
that even with a single sine wmve, say Ci’ there is power present
at all frequencies, having the characteristic spectrum shown in
Figure 5.1,

Alternatively, we can define the power spectrum by measuring
the average power in & band of frequencies of width (& w) centered
on w,. Now, since from (5.1) the average power for all frequencies

1
in £(t) is clearly given by:

S |

Figure 5.1 Power Spectrum for Finite Duration Sine

Wave of Frequency w,




(5.7
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then the power spectral density can be defined as

Ave, power in freq.

r

bandwidth &wn AL

(5:8) Spalr,) = 5%
n

Since the elementary frequency bandwidth is

period for a Fourier series, we have

T
31

determined by the

_ n n-1 il
(5.9) Ay = e - =2 (50 - 557) = 5
Then, substituting in (5.8):
2 2
(5.10) 5 (m)=APn=C’3/2= T on
£ 0’ T A, x/T 2x

Equation (5.10) is identicel with (5.
of these eguetions, as expected, the

infinity as T —>»co.

In both
density tends to

5) given previously.

spectral

Therefore, we shall define the power spectral density as

being proportional to the averege power In the corresponding

term in the sine (or Fourier) series,

proportionality depends on the run length.

(5.11)

2
SffT(uh) = Kecn

where the coefficlient of
Thus, by definition:

g_)'z
2’ n

It should be noted, however, that the problem at hand is not a

theoretical one, but the practical one of measurement of & com-



plex signal for & period TR=2T gseconds and the determination, from
this measurement, of an estimate of Spp (w). Due to the "lobing"
of the frequency characteristics (as shgwn in Figure 5.1), any
attempt to extract ci with finite-width, realizable filters will
be subject to error, as discussed in Appendix 3. We have chosen

a run length {2T) equal to approximately 32 cycles of the lowest
frequency present in the input. 1In this case the separation be-
tween zeros of the frequency characteristic is x/T=0.006 cps, or
1/32 of £,
corresponding run length 2T for 32 cycles is TR= 180 sec. There-

Since for our experiment we had fl= 0.18 cps, the

fore a filter which would measure the power in the primary lobe
must be at least .006 cps wide on each side of the center fre-

quency. QOur filters are about .0l cps wide, ms sketched below

in Figure 5.2.
r" APPROX FILTER BANDWIDTH _1
| —
' |
| |
|
| |
| |
I ‘ Amp of 2nd peak
| IZ/ 2008 (k c2)
m
0.162 o8 | 0.174 0186 0.192 0.198
t20.i80
cps

Figure 5.2 Filter Bandwidth for Extraction of
Fundamental Frequency
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5.2.2 Measurement of the Power Spectral Density. The method

selected for measurement of the spectrum SffT(uﬂ, as defined above,
is based on medulation and low pass-filtering. The method will be
indicated briefly and neuristically here; more detalls are glven

in Appendix 3.

We consider the function £{t) given in Equation (5.1) in 1lts

equivalent form:
N

(5.12) £f(t) = Ei: (ai sin ayt + b, cos uﬁt)
i=1

where the W, are not necessarily multiples of some basic fre-

quency. Multiplication by sin wbt and cos w,t respectively pro-

J
duces:
N
f{t) sin wjt = sin wJ.t Z (ai sin w,t + b, cos mit)
i=1
(5.13)
N
£(t) cos aﬁt = cos uﬁt 2: (ai sin a;t + b, cos “ﬁt)
i=1

Now, if there is a frequency component w, present in f(t), then

J

the product results in the following:

£{t) sin wht 8, sinzaht + sin aht E: (N-1) terms

(5.14) i

a,coe 2 w,t

= .:_1 , _J_B_C) + sin w.tZ(N-l)terms

J
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and similarly

b b, cos 2w,t
(5.15) £(t) cos aht = ﬁi + -iL—T?———Jl- + cos'aht E: (N-1)terms
We now note that (5.14) and (5.15) consist of a d.c. term and an
oscillatory component and we use low pass filters to extract the
d.c. term. If the filters were perfect, we would extract the d.c.
components aj/z and bJ/z exactly. Since filters of zero-width and
rectangular cutoff are not physically realizable, we cbtain instesd
& ripple component, the magnitude of which depends on the separa-
tion of the components ;. in the original signal i.e., on the run
length. Averaging the resulting value decreases the effect of the
ripple. If we dencte the filter outputs as

a

9 = 7t ()
(5.16) b
2, ==L+ g (t)

Then we can square these terms to obtain, after adding:
2 2 _ 1,2 2
(5.17) 4 *+ 9 = (ay + 03) + [(a.jea+ biey) +

(2 G@J’ ,

Filtering the result tends to reduce the effect of the oscillatory
terms due to the errors € ; as noted in Appendix 3, the effective-
ness depends on the filter bandwidth and averaging time as well as
on the separation of frequencles ug. Thus we obtain an estimate

of the spectral density as
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Kk T
(5.18) Sorn(0) & 1 f (62 + gh)at = ke
T

In block diagram form this method of spectral enalysis is
given in Figure 5.3. 8ince the driving function used in the ex-
periments consisted of 10 sine waves, 10 identical circuits to
Figure 5.3 were required. The design of similer analyzers is
discussed by Seltzer and McRuer (1959).

Appendix 3 also gives details on the construction of the low-
pass filters indicated in Figure 5.3. Basically, second-order
filters with a damping ratio of 0.7 and a resonant frequency of
0.01 cps were selected. The filters were mechanized by using RC
networks and operational emplifiers. The squaring operatiocns were
performed using analog multipliers and the averaging by means of

integrators.

5.3 Conditions of the Experiment

The general conditions of the experiment were the following:

(a) The tracking wes compensatory and one-dimensional
with negligible controlled element dynamics.

(b) The input foreing function was s "random-appearing"
sum of 10 non-harmonic sine waves which approximated
a gaussian process.

(c¢) The generation of the forcing function as well as the
real-time measurement of power spectra were performed
using an electronic analog computer.

(d) The objective of emch run was to record the power
spectral density of the loop error as well as the
time history of forcing function, operator error

and output, and sampled model error and output.
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(e) The range of input function frequency was such that the
task was "difficult® for all operators, with the effect
that the tracking error was of the same order of magni-

tude as the input.

5¢3.1 Equipment. The tracking apparatus is illustrated in the
photograph of Figure 5.4 and in the block diagram of Figure 5.5 A Du-
Mont Type 304 oscilloscope was used for the display, with the dot be-
ing adjusted to approximately 1/8" diameter. Horizontal motion away
from the center represented the system error; zero error corresponded

to a position between two black vertical lines painted on the

Figure 5.4 Experimental Arrangement
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BRUSH
RECORDER
CRO
FILTERED HG)
SUM OF SINE LI oVl
(FROM COMPUTER —O
A
NALOG
*—0 | SPECTRAL
# ANALYZER
FM
-] TAPE RECORDER

Figurs 5.5 Block Diagram of Tracking Equipment

oscilloscope face. The maximum excursion was adjusted to approxi-
mately 2 inches each side of zero. The control lever was con-
strained to move in one plane (to the left and right, in the same
plane as the CRO face) thus positioning & 10K wirewound potentio-
meter and providing feedback voltage as indicated in the block

diagram.

For the intermittent display situation a power relay was used
to add a series resistor to the "INTENSITY" circuit of the CRO,
of sufficient magnitude to blank the spot completely. The pulses
used. to turn the spot on and off were provided by the sampled-data

portion of the analog computer and are discussed below in Appendix

Te
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The subject was seated directly in front of the oscilloscope
and was allowed to adjust his viewing distance and select his arm
and hand position as he desired. Since all the subjects were right
handed, the contrcl lever was located slightly to the right of the

osclilloscope for the most comfortable arm position.

Input and output signals for all rms were recorded on strip-
chart recorders (and for the last set of runs were also recorded
on a Precision Inst. Type PS 207 FM tape reccrder. A switch pro-
vided for the selection of any signsl to be fed to the analog
spectral analyzer. In nearly all the runs (except for calibration

purposes) this signal was the tracking error.

The analog computer utilized consisted of 4 consoles of
assorted equipment including some 110 operationel amplifiers, 4
sample-and-hold circuits, 18 electronic multipliers (dusl channel)

and 12 servo multipliers.

The entire experiment was performed in the Analog Computatiocn
Center at Space Technology Laboratories, Incorporated in El Segundo,

Calllornla.

5.3.2 Input Signals. The selection of a sum of gine weves

was based on the desire to obtain an input which was randcm-appear-

ing and yet completely predictable mathematically. The periods
were gelected such that they were non-harmonic within 0.02 seconds.
The frequencles selected have an spproximately linear spacing be-
tween 1 and 12 rad/sec., this range is close to the upper limit

of the tracking ebllity of humen operators and consequently should
be adequate for testing models in the range where "remnents" are

high. The frequencies used esppear 1n Teble 5.1.

The sine weves were started in phase, However, the measure-
ment of power spectral density began about 120 seconds after t = O

(in order to allow for translents to decay), at which time the
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phase relationships of the sinusoids were arbitrarye. It can be shown
by the Central Limit Theorem (Bendat, 1958, for example) that the pro-
bability density function for the sum of n independent sinuscids

Table 5.1

Frequencies of Sine Waves for Driving Function f(t)

Sine Wave No. Frequency (rad/sec)

1.122
1.995
2.860
2.940
k.,910
6£.10
7.32
8.25
9.31
12.00

O O-1 wWn FloN

e

epproaches a Gaussian distribution as n > co. The forcing func-

tion used here was of the form

10
(5.19) () = E: an(gos @+ ¢n)

n=1

Siskind (1961) shows that for N>8 the distribution is indistin-
guishable from a Gaussian one for most practical purposes. A plot
of the amplitude probability density function for a 100 second
sample of f(t)*, the amplitude guantized into 32 equal levels on

*
Actually the Figure shows the probability density for f£(t) after
filtering by a first order lag. However, if f(t) is Gaussian, f(t)
after filtering by a linsar filter, will also be Gaussian.
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each side of zero (arbitrary units), is shown in Figure 5.6. While
& statistical normaelity test has not been applied to this sample
distribution, the measures of skewness and excess are not large,
and slight departures from normality are not considered to be too

significant in this study.

The actual forcing function consisted of f(t) after it was
filtered by a first-order lag with a break frequency at either 1.5
or 3.0 rad/secq The measured spectra of these forcing functions
are given in Appendix 3, in connectlion with a discussion of the
calibration of the analog spectral anelyzer. The resulting funcw
tions are quite random in appearance, as can be seen by the two

samples shown in Figure 5.7.

5.3.3 Specific Experiments and Procedure. A total of six (6)

cases were considered, the first two being used primarily for train-
ing purposes. The basic input spectra were those discussed above,
i.e., the sum of 10 sine waves filtered by a low-pass filter with a
break frequency of either 1.5 or 3.0 rad/sec. In addition, the
visual display was either continuous or sampled. The training cases
were run either with only the first 4 sinuscids and filter at 1.5
rad/sec or with all 10 sinusoids and an attenusted input obtained
by moving the filter breek frequency to 0.75 rad/secu The six cases
are shown below in tabular form.

Table 5.2
Conditions of Tracking Experiment

case o | Sineveves Froar gié&?{ggg) condfBE
_?7 I 1.50 Continuocus
2 | 10 0.75 Continucus
3 10 1.50 Continuous
i | 10 3.00 Continucus
5 10 1.5C Intermittent
6 10 3.00 Intermittent
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{o) "Easy" Forcing Function: -
Filter Break Frequency = 1,50 rad/sec
Paper Spead = 2 mm/sac

iy

&) "Difficult” Forcing Function: ,
Filter Break Fraquency = 3.00 rod/sec
Poper Speed =5 mm/ac

Figure 5.7 Sample Waveforms of Forecing Functions
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The following comments can be made on the experimental pro-

cedure:

(1) Each run lasted 5 minutes. Of this time, 120 seconds was
required for filter transients to become negligible. At t = tD +
120 the output averaging circuits were connected. Averaging took
place over the final 180 seconds of each run.

(2) subjects unfamiliar with tracking were asked to track
between 6 and 12 trial runs using Cases 1 and 2 or Case 3, until
the results of successive runs vere consistent within approximately
fZO% in the recorded values of power spectral density cbtained from
the snalog computer.

(3) Approximately 100 good runs were made during a 1 week
period.

(4) The last 8 runs using two well-trained subjects were
recorded on magnetic tape for digitizing and processing by the IBM

TO90 correlastion and spectral program.

5.3.4 Subjects. A total of 10 subjects was used in various
portions of the experiment. Good data is available from 8 of them
who were able to participate in most cases of the experimental pro-
gram. Various backgrounds were used in order to obtain as wide a

range of results as possible. The subjects can be identified as

follows:
Subject Background Previous Tracking
Experience

AAR Grad. student UCIA None

GAB Grad, student UCLA Scme

WWB Administrative aide, None

STL

MJF Engineer, STL None

JJP Engineer, STL None

FCR Engineer; STL and ex-pi%ot Extensive
GAR Gred. student UCLA None

TCR Technieian, 3TL None

GNW Gred. student UCLA Extensive
KEZ " Some

110
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All the subjects participated as volunteers. Of the L subjects
used most extensively, GNW and KEZ were aware of the purpose of the
experiment, while WWB and JJP were not and had no background in the
field.

5.k Simulation of the Sampled-Data Models

It has been mentioned asbove that some of the proposed models
of the human operator were simulated on the analog computer and
recordings made during a number of runs. While the study of
sampled-data systems by means of analog equipment has been performed
for several years, a number of innovations were made in the course
of this study. Conseguently some material on sampled-data simula-
tion techniques is collected in Appendix 4. In particular, the
techniques utiliized for the simulation of first-order and modified

first order hold circuits are discussed in detail.

The key to the simulation method utilized is the analog sample-
end-hold channel consisting of two amplifiers, as shown in Figure
5.8, Basically, thils channel is & simulation of a sample~and-zero-
hold operation. Its operation is based on the presence of two pulge

tralins:

(2) The S-pulse {or "sample"” pulse) which actuates the
relay indicated by the letter "S", and
(b) The P-pulse {or "present" pulse) which activates the

second relay a short (but adjustable) time later.

The filrst amplifier samples and holds the input function upon
arrival of the S-pulse. The sampled signal is held for a delay
time of D seconds (where D<T, the sampling interval) and then,
upon arrival of the P-pulse, it is transferred to the second
amplifier. This arrangement offered two great asdvantaeges for our

experimental study:
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(1) An adjustable time-delay was available, so that with
any sampled model 1t was easy to insert a true time
delay into the system as required by the model; and

(2) In order %o provide a "blanking" signal for the
sampled CRO display, the sample-~hold channel provided
relay contacts which closed at the sampling frequency
and remained closed for prescribed lengths of time;
these were used to keep the spot "on" for approximately
one half the sampling period regardless of sampling

fregquency,

R
AN/

!
I
t
|
|
|
J

SAMPLE " PULSES *PRESENT" PULSES
PULSE [ | I l
cenerator [ 1 1 | D/E'B“ | | -
0T 27 omo)l

(2T+D}

Figure 5.8 Analog Sample and Hold Channel




Chapter 6
DISCUSSION AND EVALUATION OF EXPERIMENTAL RESULTS

6.1 Generel Comments

The major purpose of the experimental study, as outlined in
Cuapter 5, has been to obtain power spectral density measurements
of the tracking error in compensatory tracking, in order to have
data which could be used for comparison with spectra of "a priori"
sampled-data mcdels of the operator. The major effort was centered
on obtaining errcr spectra since the variation of the error spectral
density is relatively small within the frequency ranges of interest,
while the output spectrum attenuates rapidly. Conseguently, the
error spectrum is a more sensitive indicator of the system proper-
ties. In addition to a discussion of the error spectra, this
chapter will also present scme comments concerning output spectra
and time domain response, as well as presenting comparisons of

measured and computed data.

The chapter is divided into four major sections which dis-

cuss the following features of the results:

(1) The characteristics of the error spectrum (at the

input frequencies) for continuous inputs
(2) 'The effects of intermittent displays on the spectra

{(3) The characteristics of the spectra between and beyond

the input frequencies

(4) Comparisons of computed and measured responses, both

in the time and frequency domains.

Items (1) to (3) are primarily qualitative, while Item (&)
concerns the quantitative comparison of experimental with analyti-

cal results.
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6.2 General Characteristics of the Measured Error Spectra

As outlined in Chapter 5, error spectra were measured for

eight operators under varicus experimental conditions.

The error spectral density plots from the analog meeasure-
ments described previously are given in Appendix 6. A typical set
of runs for Case 3, Subject JP, is shown in Figure 6.1. Before
considering the significance of these curves, it should be noted
that:

(1) For all the runs of cases 3 and 4 the input consisted
of a filtered sum of 10 sinusoids, and

(2) The points plotted on these curves represent values of
average power in a narrov freguency band, as measured
by the analog method described in Appendix 3. While
these points have been connected with dotted lines in
the figures, the data from which they were obtained
give us no information on the presence of energy at
frequencies intermediate between the 10 measured points.
.(The digital computation of spectral density, to be
discussed below shows that the power between the 10
frequency peaks is lower by 10 to 20 db than the peak
level}.

6.2.1 Relation to Elkind's Work. In Chapter 3 it was noted
that the error spectra obtained by Elkind {1956) were characterized
by dual peaks, at least for "difficult" inputs. The general pattern

was that of & maximum error at some Intermediate frequency followed

by a second peak after which the error attenuates rapidly with in-
creasing frequency. The same general pattern appears 1n most of the
spectra recorded here. This resemblance is significant since the
experiment was conducted under somewhat different physical conditions
(e.g. a "stick" controller vs. Elkind's conducting stylus) and the
input signal consisted of only 10 sinusolds as contrasted with
Elkind's 14k sinusoids.
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6.2.2 Comparison with "a priori" sampled models. The spectral

characteristics of several sampled-data models were computed in
Chapter 4. It was shown that the error spectra obtained by using
first-order hold (FOH) models {both conventional and "modified") pro-
duced a general spectral characteristic of similar shape to that of
Elkind's experiment. Furthermore, the second peak was shown to occur
&t or near ug/z (where o is the model sampling frequency.) Conse-
quently, the presence of similar features in this experiment gives us
g clue to relationships with sampled models, which will be explored
quantitatively in Secticn 6.5 below.

"

6.2.3 OQccurrence and location of the "sampling peak". For

convenience and ease of identification we shall designate the 1 to

3 db peak which follows the maximum in the operator's error spectrum,
as the "sampling peak". An examination of the error spectra in
Appendix B shows that the maxima occur in the range of 3-6 rad/sec

and the "sampling peaks" in the range of 6-10 rad/sec. The occurrence

and fregquency distribution of the "sampling peaks" in the various

experiments is summarized in Table 6.1.

The veristion in location of the "sampling peak" is pro-
bably due not only to the inherent differences and range of human
capability, but to factors such as learning and task difficulty which
will be considered later. The hypothesis we shall explore further in
later chapters is that if the human operetor does indeed operate as a
sampling system, he does so as a system with varlable sampling fre-
quency. Over & glven run however, the frequency may be epproximately
constant. Two consequences of this hypothesis would be: (1) That
some runs would show no clearly evident "sampling peak" if the fre-
quency varies greatly during the run, and (2) That the pesk location
could vary from run to run to some extent depending upon motivatiocnal

factors as well as learning, experience, lnstructions, etec.

6.2.4 On averaging of spectra. The veriation in location of

the "sampling peak”" hes & very interesting consequence. If a number
of runs with different "sampling peaks" sre averaged, the peak may be
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Table 6.1

Occurrence and Location of "Sampling Peak"

in Experimental Data

ase No. and Approximete No. of | % of Total
Description Fregq. of Peak Runs Peaks for
(rad/sec) This Case
Case 3: k.9 1 3.3
Sum of 10 sine 7.3 7 23.4
waves; filtered
by lag filter 8.2 b 13.3
with break freq. 9.3 15 50.0
®p= 1.50 red/sec 10.0 or above 3 10.0
(33 runs total) no peak 3 -
evident
TOTAL 33 100.0
Case &: 7.3 3 20.0
Sum of 10 sine waves;| 8.2 1 6.7
filtered by lag fil-
ter with break freq. 2-3 > 33.3
wy = 3.00 rad/sec 10.0 or sbove 6 4.0
{16 runs total) no pesk 1 -
evident
TOTAL 16 100.0
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obscured by the averaging process. In Figure 6.1 the average of the
six runs is also indicated and it can be seen that this "avereage
spectrum” does not indicate & clear peak in the higher frequencies.
Thus, it 1s possible that ordinary ensemble averaging methods, which
are used due to the variability of tracking data, will have to be

used carefully in fubure studies of the sampling hypothesis.

6.2.5 The effects of learning. While the study of chenges in

spectral density due to learning was not ameng the primery objectives
of this research, some qualitative observations can be made on the
basis of the data in Appendix ©. It should be noted that these are
no more than observations which cannot be substantiated with the data
at hand.

The learning period for the inexperienced subjects in-
cluded approximately 10 five~munute runs and 2-4 runs for experienced
trackers. While 50 minutes of tracking experience over a pericd cf a
g week is probably sufficient to adapt toc the equiprment at hand, the
training problem is aggravated by the fact that the task was extremely
difficult for all the operators. The time-domain traces to be dis-
cussed later are an indication of the difficulty of the task, since
the magnitude of the error signal will be seen to be approximately
equal to the input magnitude. The following comments on learning can
be made:

(1) The "sampling peak”" tends to move to higher fre-

quenrzies with more practice.

(2) The low fraquency error tends to decrease with

practice, but at the expense of increases in high
frequency error. The subjects were simply instructed
tc "keep the dot as close to the center of the

screen as possible” with no directions begin given

on high or low frequencies.

(3) The mean square of the error signal tends to decrease

with training (values of mean squared error are in
Table 6.2 below).

i18
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(4) With additional experience, the "sampling peak” tends

to become more clearly defined for each subject.

None of the above observations can be regarded as definitive
statements of fact; but they are interesting suggestions for future
experiments. The reduction of mean sguared error is e reascnable effect
of treining. The reduction of low-frequency error can be sttributed to

an increase in d-c gain by the opersator.

6.2.6 The effect of task difficulty. Consider Figure 6.2 where
the error spectra of Sublect JP are plotted for several runs of
Case 4. This latter case differs from that of Figure 6.1 only in the
break frequency of the input filter, which is now 3.0 rad/sec rather
then 1.5 rad/sec. The curves of Figure 6.2 are typicel of the complete

set of data in Appendix 6 and lead to the following observations:

(1) As a result of this particular increase in tesk diffi-
culty, the error spectrum is considerably more "flat."
The range of meximum t¢ minimum error power in the
frequency bands considered is about 3 db, while it is
about 6 db in Figure 6.1.

(2) The "sempling peak" is less clearly defined, appear-
ing more as a leveling or slight increase in error
spectral denslty at the highest frequencles considered.
Assuming that the measured pesks sre valid, it can be
noted that they have shifted to a higher freguency,
by inspection of the distribution of peak locations,
as given in Table 6.1.

(3) The mean squared error as given by the sum of the 10
measured error spectral densities (an approximstion to
the integral 5., () ) is significantly greater
than for case 3. For Subject JP, the MSE is nearly
twice the value for case 3, for Subj. WB it about
2-1/2 times as large. However, if these error

spectral densities are normalized by dividing by the
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total input power, it can be seen from Teble 6.2
that one operator's performence has improved
slightly. The great difficulty of thils specific
tracking task (both cases 3 and 4) can be seen by
noting that the error power is approximately 1/2 the

input power over the range of frequencies considered.

(4) ‘The verietlon among subjects is somewhat greater,
possibly because for some operators (such as WB),
Case Ui represents essentially e limit of performance
(see Table 6.2). Ae with Cese 3 the veriation of
MSE is due in lerge part to the abillity of some
operators to reduce the low fregquency errors, where

the amount of input power is largest.

6.2.7 Differences between subjects. Table 6.2 gives & good
indication of the range of varlability for this experiment. Some

past experimenters (such as Elkind) have tended to dismiss variation
among subjects as insignificant, and this is probably true for suf-
ficiently "easy” inputs. However, it appears reasonable that the
varietion of mean squared error in the present experiment is due to
differences in individuel ability, which could not be completely
eliminated by training.

However, while error "scores" differed quite widely, the
shapes of the spectral density curves’are very similar. It will be
shown below when the spectra of the models are introduced, that much
of the veriation in experimental dete can be accounted for by gain

changes or "reaction time" chenges in the model.

6.3 Response to An Intermittent Display

All the results discussed above were based on Cases 3 and &4,
vhere the operator attempted to keep a dot in the center of the
oscilloscope screen. Cases 5 and 6 were concerned with an attempt to

study snother implication of the sampling hypothesis.
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Examination of all the data for sampled inputs in Appendix 6
mekes it clear that: (1) the variation between subjects is consider-
ably less than it was for the continuous case, and (2) the veriation
in location of the "sampling peak" is considerably reduced.

The fact thaet in all the sampled runs made (a total of 21) the
"sampling peek" occurs at or near 1/2 the display sempling frequency

is highly significant and provides support for the assumptions pre-
viously made in the construction of the sampled models. (The quali-
fication "at or near ws/2" must be made since the input included
only 10 discrete frequencies, none of which was exactly equal to
one-half the sampling frequency.)

The effect of changing from & continuous to a sempled display
can he summarized by noting that:

(1) 'The basic shape of the error spectra was unchanged.

(2) The location of the "sampling peak" is clearly related
to the display sampling frequency.

6.4 Energy Beyond the Input Bandwidth

One of the reasons for selecting the sasmpled-date approach to
human operator models was that the sampling operation generates fre-
quencies not present in the input signal. When the input signal is
hand-limited, as was the case in this experiment, the effect of the
sampler is to repeat the input frequencies at harmonics of the
sempling frequency W, - Thus, if the input spectral density consists

"

of discrete spectral "lines,”" i.e.,

ol

(6.1) 8.y (W) =

Nl

) a; [6 (w - wi) + & (w+ wiﬁ

then the corresponding sampled spectrum is given by

1 + o2
(6.2) 5. ¥ () = ;é . )3 S_p (W + n ws)

-




Mean Square Errori For All Runs

TABLE 6.2

SUBJECTS
Case |Trialll w7 | p | s | a8 | W | oW | FR | G
No. NO»
3 1 JT78 755 o T51 805 974 <500 L5620 | L.06
2 632 G379 376 <341 11,02 29 622 910
3 o B4, 663 « 285 <S4 949 o546
L .630 + 689 « 850 1.10
5 +« 520 562 « 700 1.01
6 JThi | .886 936
7 «845
Average BLO | 732 | 815 | W881 | W976 | JLBL | 596 | .980
Normallzed
Average +398 | W456 | 4507 | 5361 .609 | .289 T.3?2 . 610
L 1 1.45 1.43 2,10 234 1.15
2 1.40 1.23 1.79 2457 1.03
3 1.45 1.02
I 1.59 1.07
5 1.29
6 1.56
Average le45 1.33 |1.95 245 1.07
Normalized
Average#
F==N_ : __i
2
{£=2) 2 1,12 .8385 |1.02 1.15
Average L.11l »880 |1.00 [1.,18
Normalized
Averagest L6900 | 548 .62; 735
5 1 » 350 . 925 . 988 .815
(£=3)| 2 LO43 | 768 .89 723
810 826
768
Averare B3| 840 LOL2 | LT69
Formalized
Averape’t 5251 .523 586 | JAT9
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TABLE 6.2 (Continued)

Case & SUBJECT
GW KZ KZ
(£,=3) (£,=6)
MSEs 1.81 213 2.39
Normalized
Value*“ » 53 9 L) 631-]— 0710
#Definitions

Since the spectral density of the error signal e(t) is only
measured at 10 discrete frequencies, we defined the mean-square of
the error as the area of a series of rectangles 1 rps wide, and with
an amplitude equal to the respective measured value of error spec-
tral density, SeeT(w). That is,

- 0

e® = MsE & k lz [seeT(mi)}Am, Aw=1

i=1
The coefficlent kl ig gelected in such a way that the measured power
gpectral density for each input sine wave, before filtering is equal
to 1. Then, the M5 value of the unfiltered input, by the above
definition, is
10

f_(“t)2=kl Y Spp (w) =10k 8

(w,) = 10
Tt 1 ffT 1

i=1l

Normalization.

The averaged values of MSE are normalized with respect to the
total input power (i.e. the MS value of the input signal) for the
particular run under consideration. The two values, for the two
break frequencles of input filter, then become:

—_ 10 w 2
- L) e
i=1 i B

i
1l

1.606 for Wy

3.362 for Wy

The mean-square of the signal r(t) is of course also given by the

1.50 rad/sec
3.00 rad/sec

n
[}

value of the autocorrelation at mero, and for a Gaussian process

corresponds to the variance of the signal:

r(®)° = &, (0) = a?




Consider the block diagram of Figure 6.3 which includes the pro-
posed human operator model. In Chapters 2 and 4 some of the conse-
quences of the presence of the sampler in the loop were discussed.

It was polnted out that the sample-and-hold operations should result
in: (1) certein characteristics of the spectral densities See (w)
and S, (w) of the error and output respectively; and (2) the
rresence of energy beyond the bandwidth of the input signal. The
experimental study of implication (1) was discussed in Section 6.2
above, while that of implication (2) will be mentioned in the next
section, (6.4). However, neither of these deductions were considered
sufficiently crucial to the sempling hypothesis, since the input and
outputs of the operator are continuous. It wes therefore decided to
examine the implications of presenting the operator with a sampled or
intermittent input.

If the block diagram of Figure 6.3 is a valid representation and
the visuel input is made intermittent by being turned off for T/2

seconds every T seconds, we would expect the following conseguences:

HUMAN OPERATOR MODEL

- - 7= _'i
DISPLAY | |
' EPEJT + VISUAL bAT RE#?J::ON | SIoNAL
INPUT A { CONT
INPUT) — NEUROMUSCULAR
o 1 sampLER | HOLD AN [~ ELEMENT, h’_"‘c(
- [ COMPENSATION | "
l |
A

FEEDBACK SIGNAL

Figure 6.3 Block Diagram of Tracking Loop with Model
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(1) If the displey sampling rate is equal to the opera-
tor's sampling rate and the sampling times are
synchronized, his tracking characteristics should not
change significently from the equivalent continuous
display case. Since the sampler is simply an open-
circuit between sampling instants, the presence of
information between sampling times is not important
to its operationa*

(2) If the operator is able to track a sampled display,
'he is forced to operate in a sampled-data manner and
at a constant sampling frequency. This implies that
the "sampling peak" in the operator's spectrum should
correspond to the input sampling frequency and it
should be more clearly defined than in the continu-

cus Input cese.

(3) If the input sampling freguency is changed to & new
rate with which the operator can still synchronize
this should be evidenced as a shift in the location
of the "sampling peek" in his response.

Not enocugh data were obtained to glve definitive verification of
these hypotheses. However, the limited date not only do not contre-
dict them, but suggest that they may be velid. Consider the compari-
son of meen-squared values of the error signal e (t) in Table 6.3.
Two interesting observations can be mede from this data: First, the
range of the MSE for the sampled dilspley is smaller than for the
continuous display, and secondly, it represents less of & change for
the "aversge" tracker then for the excellent tracker. One can only
speculate about the meaning of these observations. However, at least
for some of the subjects, it i1s clear that the sampled display did

not represent a drametic change.

*
This statement, while valid for a mechanical system, has physioclogi-
cel implications which may not be valld. These will be discussed
briefly in Chapter 8.
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Table 6.3. Mean Squared Error (MSE for
Samples and Continucus Displays.

Continuous Sempled
Input Input
Subject
MSE for Cese 2 Sempling MSE for Case 5
frequency
Average Values (Samples/Sec) Average Values
KZ 0.640 3 0.843
JP 0.732 2 1.11
3 0.840
;o GB 0.815 2 0.880
AB 0.861 ; 2 1.00
WB 0.976 2 1.18
3 0.9k2
GW 0. U6k 3 0.769

Exemination of the shapes of the spectrel density curves gives
considerable credence to implications (2) and (3) made sbove. As
pefore, the curves are included in Appendix 6, except for sample
curves for Subject JP which are given in Figure 6.4. The average
curve for the comparable continuous input (Case 3) is also included
Tor comparison. It can be seen clearly that the change in sampling
frequency results in a change in location of the "sampling peak.' Not
enough data are available to perform statistical significance tests on
these observations, but they are included here as qualitative support

for the basic hypothesis.
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which becomes

D N
(6.3) 5% () = = ST [a (*nu -
T 552 nézzLo g;; - " % wl)

+ B (w+n wg = mii]

An enalogous situation applies if the energy 1s concentrated in
finite spectral peaks (as in the present case) rather thaen impulses.
From Appendix 2 or Chapter 4, the output spectral density of an

error-sempled system can Ye written in the form

G (ng

1+ G* (jw)

»*
rr

8., (W) = ()

where G (Jw) is the frequency function of the open loop system,
*

and S (w) is given by (6.3). Consequently, the system output

will contein frequencles beyond the bandwidth of the input.

The human operestor's output is known to contein sll frequencies.
When quesi~linesr models are used, these additional freqpenéies are
included as "noise,” and reports such as Elkind's (1956} give exten-
sive plots of the spectral density of the additive noise.

In the present experiment the analog method of spectiral analysis
provided no information about the spectrum except at the 10 input
frequencies. However, as noted previously, a number of runs were
recorded on magnetic tape and analyzed by a digital computer methed due
to Bleckmen and Tukey (1958) which is described in Appendix 5.

The digitally computed output spectral density for subject XKZ
(run R-1, Case 3} is shown in Figure 6.5 (a). Figure 6.5 {b) shows
the corresponding output spectral density for the MFOH model, with
model pearameters adjusted to give good visual sgreement during the
run. (Final model paremeter values were not available during the
experiment and could not be used to obtain the data.)_ While the fit
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of the peaks could have been improved somewhat by using the proce-
dure described later (See Figure 6.9 (a)), the spectra are included
here in order to compare amplitudes between and beyond the 10 input
frequencies. The following conclusions cen be mede from an inspec-
tion of this figure:

(1) The magnitude of the power spectrum obtained from the model
between the 10 input frequencies is comparable to the
experimental data.

(2) The magnitude of the power spectrum obtained from the
model beyond the 10 input frequencies of the same order of
magnitude as the "noise” generated by the man, but attenu-
ates somewhat more repidly with frequency.

(3) Both the man end model spectra beyond the 10 input sine-
waves are cheracterized by a series of peaks, which would
be expected from sampling.

These conclusions are of crucial importance for the sampling hypothe-
sis. Ward (1958) based much of his work on & qualitative inspection
of the "noise” in his sampling model, but he made no attempt to
measure the power spectra. The importance of these conclugsions stems
from the fact that the output of any continuous linear model will
contein only the input frequencies. Other frequencies can be gener-
eted only by sampling or by nonlinesr behavior. If a noise generator
is added to the linear, continuous model, the spectral pesks still
remain unexplained. |

The ouput "nolse" spectre for runs R-3 through R-7 ere consider-
ably larger in magnitude than the one shown in Figure 6.5 (a), be-
cause the input bandwidth is higher and the operators behavior is more
erretic. The "noise" generated by the model in these runs is of the
same order of magnitude as that of Figure 6.5 (b), and therefore
represents s smaller proportion of the total power than for R-1.

(The spectra for Runs R-1 through R-7 are given in Appendix 5.)
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Thus, the effect of the sampler in the model is to generate
spectral peaks beyond the input bandwidth, but these peaks do not
account for all the "noise" power evident in Figure 6.5 for example.
Consequently, the human operators' behavior cannot be completely
specified with continuous or sampled linear models, but requires
other phenomens for its explanation. The sampled model does, how-
ever, "explain"” & part of the spectrum beyond the range of fre-
gquencies present in the input. The continuous linear model, of

course, predicts zero energy at these frequencies.

6.5 Comparison with Predicted Error Spectral Densities

In this section we shall consider an essential part of the
"proof of the pudding” for the sampling hypothesis, as presented in
this report. Based on the analysis of Chapter 4, we shall compute
the error and output spectral densities of the human operator models
considered, both continuous and sampled, and compare them with

experimental results.

The evaluation will be applied to the 7 runs for two subjects,
which were recorded on magnetic tape and thus accessible to the
spectral analysis technigues regquired for construction of the mathe-
matical models. The seven runs to be anslyzed are listed in
Table 6.4

Table 6.4. Experimental Data Selected for Comparison with Analysis.

ﬁgn Subject C;ge ﬁgéu:f Breii Freg. ggzelof Samplirg
: ‘  Sine Waves Input Filter play Freq.

At Kz 3 10 1.5 Cont. -

R-2 K7 5 10 1.5 Semp.  3/sec

R-3 Kz b 10 3.0 Cont. -

R-4 KZ 6 10 3.0 Semp. 3/sec

R-5 KZ 6 10 3.0 Semp.  6/sec

R-6 oW b 10 3.0 Cont. .

R-T GW 6 10 3.0 Samp.  3/sec
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6.5.1 Construction of continuous quasi-linear model. The con-

struction of the continuous medel is based on a method due to
Booton (1953) presented in earlier chapters. It will be summarized
here only briefly. If in the block diagram of Figure 6.6 the input
r {(t) is a stationary Gaussian process, then the best linear fit
(in the mean-square sense) to the characteristics of the unknown

system ls obtained from the relation

. (Jjw)
(6.5) G () = g3

re

where Src (jw) 1s the cross-spectral density from input to output

and (Ju) is the cross-power spectral density from input to

S
re
error. Since both S, (Jw) end 5e (jw) are obtained from ex~
perimentel data, their ratic 1s the ratio of two complex numbers for
each freguency considered. These plots of amplitude and phase versus

frequency are fitted with continucus models of the form

-JDC w

(6.6) 6, (Ju) = T’%%,—E:-;

since it has been shown previously by McRuer and Krendel (1957) that
(6.6) is the best linear fit possible to the data for systems with no

controlled element dynamics.

The procedure cutlined in the preceding peregreph was
followed for the six runs listed in Table 6.4. The fits to the
plotted data were made "by eye" and checked independently by another
engineer. The fitted frequency functions and the original data are
given in Appendix 8. From an inspection of the fitted curves it can
be seen that they agree with the experimental data within approxi-
mately 0.5 db in amplitude and 10° in phase, except at the 2 or 3
highest frequency points (where the disagreement in amplitude mey be
larger) and the lowest frequency point (where the phase error may be

larger). -
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Figure 6.6 Block Diagram Representation of Unknown
System as a Conbination of a Linear
Element and a Noise Source
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The selection of an analytic function of frequency which
will provide a "best fit" in some sense to & set of points in the

frequency domain is ususlly called the approximstion problem of

network synthesis, and is discussed, for example, by Guillemin (1957),

(Chapter 14) and Balebanian (1958) (Chapter 9). However, the app-
roximetion problem, when formulated enalytically, usually leads to
rational fractions in the frequency domein, thus excluding the pure
delay e-ij Least-squares criteria for approximetion can be used
end instrumented on B digitel computer. For the purposes of this

report, a visual spproximation was considered adequate.

It has been steted above that the input signal r (t)
must have & Gaussian probability density function. The signal used
in the present experiment was spproximetely Gaussian. Its statisti-
cal properties are indicated in Figure 5.6 which shows the
probability density function of r (t).

6.5.2 Construction of the sampled models. The construction of
the sempled-models has been discussed in Chapter 3. Basically, the
method involves the addition of sample end hold circuits to the

continuous models of the previous section, bearing in mind that
"hold" circuits exhibit phase shift and consequently introduce an
effective "time delay" into the model. Consequently, the synthesis
of the sampled model consists of three steps:

(1) Select the parameters K, a = l/fc, and D,

from the continuous models.

(2) Select the sampling frequency fs by observing the
location of “sampling peeks" in the operstor's error
spectrum, and letting the frequency location of the
peak, fp = fs/2“

(3) sSelect the time delay for the sampled model by sub-
tracting the effective delay of the hold (QH) from

the delay obtained in the continuocus model, i.e., let

(6.7) D, = D, — Dy
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As we heve mentioned in Chapter 3, the first-order and
modified first order held circuits exhibit different amounts of

phase shift, consequently the values Dsl and Dle will be
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different. The effective delay due to the first-order hold circuit

has been found to be

(6.8) By ¥ 35 T = §

end that for the modified first order hold:

(6.9) Doy = 0

Based on these considerations, the parameters of the
various models take on the values given in Teble 6.5 for the seven
runs described in Teble 6.4.

Table 6.5. Parameters for Continuous and Sampled Models.

Continuous Model Additional
Run Parameters Sampled Model Parameters
No. -1
K a(sec™ ) Dc(sec) T = l/fs (sec) Dsl(sec) Dle(sec)

Rl 2.30 1.84 0.102 0.33 -0.06 0.102

R2 2.24 1.25 0.114 0.33 -0.05 0.11k

R3 1.52 2.51 0.092 0.33 -0.08 0.09

R& 0.85 3.76 0.1k2 0.38 -0.05 0.14
0.29" -0.01 0.1k

R5 1.00 1.84 0.133 0.38 -0.05 0.14
0.29" -0.01 0.14

R6 2.20 3.76 0.107 0.27 0.01 0.11

RT 1.26 h. ko 0.131 0.33 -0.04 0.13

+0.02"

*
Alternate values also plotted in the Figures.




6.5.3 Computation of spectral density of models. The rela-

tions developed in Chapter 4 for the computation of power spectral
density were based on continuous input spectra. That is, the input
spectrum S (Jw) was assumed to be produced by the action of a
sheping filter on white Gaussian noise. In the experimental situa-
tion reported here the input spectrum was by no means "white" and
thus we must exemine whether the relations of Chepter 4 are valid.

In the case of the continuous model, the equations of
Chapter 4 apply directly, if we ere careful about the definition of
the input spectrum. In Appendix 3 it is shown that the power

spectral density of a sum of 10 sine waves:

10

(6.10) r (t) = ;Z: c, cos (wi t - en)
=

measured for & finite length of run T, can be expressed (under

R
certain conditions) as

10 ¢, sin (w, - w) T
6. 0) = L E: A -
(6:31) SrrT (v am gzi {kwi - w) @]2 ’ (TR 2T)

Expression (6.11) shows that the finite-length spectrum contains
power at all frequencies. At the input frequencies only, the spec-
tral estimate is obtained by teking the limit of (6.11) as w-—> W, 5
to result in

T2

(6.12) 5. () = & oo

I‘I‘T

for each frequency. At each of the input frequencies one can obtain

the output spectral density from
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1+G ijwij

(6.13) S.c (wi) 5., (wi)

in an anelogous manner to the continuous spectrum case.

The problem is more complicated in the case of the
sampled models because of the effects of sempling. In equations
{4.58) end(k.64) for example, which give the output and error spec-
tral density of the first-order hold sampled model, the sempled
spectrum Srr* (w) appears. This quantity hes & very different
meaning for the continuous than for the dlscrete spectrum. For the
continuous spectrum case, we have shown in Appendix 2, the sampled
spectrum can be obtained simply from Z-transform tables as

1l
= 2J8_ (s8)
T { rr } 2 = ed¥T

1 =22
= E: Srr(w+nms)

7 n&Feo

Thus, for a continuous spectrum which is not band-iimited, the

(6.14) s (w)

rr

[

resulting sampled spectrum 1s periodic and includes the effects of
"folding" of the higher harmonics. This process is illustraeted in

Figure 6.7.

ORIGINAL
RESULTING PERIODIC CONTiINUOUS HARMONIC DUE
SPECTRUM S, *(w) SPECTRUM S, {(w) TO SAMPLING
7’ - \)
- - S
-w 0 wg g

Figure 6.7 Sampled Power Spectral Density
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When the spectrum consists of narrow peseks in the fre-
quency domain (neglecting the side-lobes due to equation (6.11) for
the moment), the folding may introduce energy where none was present
before sampling, or it may add to the peaks if, for example,
mJ =W, =W If, however, the input spectrum does not exceed

ws/a, no folding tekes place, and we can write

+

oo

(6.15) 8. " (w) = l? 2o 8, (w+nw)

n -0

]

and the resulting situation ls approximately as deplicted in
Figure 6.8.

QRIGINAL NEW SPECTRA
. | seectRuM L DUE TO SAMPLING
- N 14T1T (.- , (—
/W L h /‘ \
/ \ L
/ \ I, \ L \
| \ | | ‘ { \
| Iy I [
1A i L l¢| _ !
O
2 2

Figure 6.8 Sampled Spectrum Due to Sum of Sinusdids with No
Folding

The location of the peaks in the measured spectra of Appendix 6
mekes it reasonable to assume that fs‘3'3/sec and therefore that
most probaebly some folding does take place (since our highest input
sinusold is at 1.6 cps). Furthermore, since-the operator certainly
does generate output signels at frequencies both between and beyond
the 10 input sine waves, it is important to at least attempt to take
them into account. Since the input spectrum is given by (6.11), it
is possible to substitute this relation into (6.15) and sclve for the
spectra by taking one term in the series at a time. To avoid this
extremely time~consuming procedure, two alternate methods were
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employed: (1) the input signal was considered to be filtered
"white" noise, or (2) the input signal was assumed to comsist only
of spectral "lines" et the 10 input frequencies and folding
neglected completely. It is clear that neither assumption is
correct: (1) will result in excessive energy between and beyond the
10 input "peaks" in the spectrum, while (2) will give no energy
there. It is therefore perhaps surprising that remarkably good
results have been obtained with the use of assumption (1).

With the above interpretation in mind, digital computer
programs were prepared for the solution of equations (4.58) and
(4.64) for the output and error spectra of the first-order hold
model, and equations (4.81) and (4.85) for the "modified" first-order
hold model spectra. Two versions of the programs made possible the
use of continuous or discrete input spectra. An additional program
wes based on equations (4.13) and (4.15) for the continuous model.
The values of parameters from Table 6.5 were substituted into these
programs. The resulting plots of computed versus measured spectral
density are given in Figures 6.9 through 6.15 for the seven.runms

under conslderation.

6.5.4 Evaluation of computed versus measured spectra. An
examination of the curves in Figures 6.9 to 6.15 leads to the

Tollowing conclusions:

(1) The "fit" of the model is much better for output
spectra than for error spectre. In generael, the
error spectrae, while heving the right shape, atten-
uate more rapidly then the experimental points.
(A1l the computed spectra are indicated by dotted
lines, or s0lid lines for continucus models to
show the behavior of the equations involved. Of
course, the experimental date are valid only at the
points indicated.)
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(2) It is epparent that the runs recorded for analysis

(3)

(4)

were selected in en unfortunate wey. Only runs

R-1 and R-2 made use of the "easier” input (filter
break frequency &t 1.5 rps) with the remainder being
taken from cases 4 and 6. The selection of sampling
frequency for the model iz based on finding a clear
"sempling peek" in the recorded spectra. In none

of the runs is it really cleer that the peak had
been included in the ten frequenciles under consider-
ation. The two subjects (KZ and GW) were both
excellent tradkcers. But since the avallable fre-
quencies were limited, trackers such as JP or WB

who exhibited peaks at lower frequencies may have
given a clear indication of the sampling frequency
To tuse in the sampled-deta model. Conseguently,

the fits shown in some of figures are based on
values of fs/2 vhich are greater than 10 rad/sec,
and thus beyond the range of the data.

All the first-order hold sampled-data systems used
for operator models included predictors, i.e., the
value of time delay Dsi became negative for the
sampling frequencies in question. While such a re-
sult is not incenceivable from a theoretical point
of view (i.e., the effective delay from the model is
clearly positive, but an advance is required to cor-
rect for the excessive delay from the hold eircuit),
it is clearly inconvenient. For the digital compu-
tation program, the sign of the delay time is im-
material. For simulation purpeses, however, it is

clearly unrealizable.

For the single low frequency run (R-1) the accurate
selection of the sampling frequency for the model

(i.es, location of the "sampling peak™ in the
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spectrum) is not too significant., Figure 6,16 shows
the effect of changing the sampling period from
0.33 to 0.28 and 0.38 sec, while maintaining the
correct overall time delay. It can be seen that
even with this relatively large parameter change,
the models behave in a very similar way. Again,
more experimental points beyond 10 rad/sec would
have been helpful in selecting the frequency.

The use of discrete input spectra ("spectral lines')
instead of continuous spectra for the input resulted
in invariably worse fits to the data, generally by

3 to 6 db or more. A typical result is shown in
Figure 6.17 for the error spectrum of Run R-1l.
Apparently the inclusion of additional energy be-
tween the input sinusoids did not hurt the model

as badly as complete omissicn of it as a result of

a complete omission of the M"folded spectra"™ due to

sampling.

The match to the spectra obtained with sampled
displays was variable. For Run R-Z, where the best
results should be expected since the input was
easier, the value of time delay obtained by the
method outlined previously resulted in an excessive
peak in the computed output spectrum. Much better
results are obtained when an additional 0.06 sec

of prediction are included in the model,; but the
results are still not outstanding. It 1s possible
that a higher sampling frequency would give a better
fit, but it is difficult to Jjustify such a model
when the display was sampled at 3 cps. 4 similar
situation applies to Run R-4, alsc with a sampled

display at 3 ¢ps, where a peak location would

AT
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suggest T = 0.38 sec, but a much better fit ia ob-
tained with T = 0.29. On the other hand, Run R-7
results in an output spectrum which is fitted very
well by the expected values of T and D.

In Run R-5 the display was sampled at 6 cps, and the
subject found this run extremely difficult. The
sampled model gives a reasonable fit with T = 0.29
8ecC.

(7) The MFOH models, in general, yielded fairly good fi}s
at frequencies above 3 or 4 rad/sec, and exhibit
too much gain at lower frequencies, as has been

noted previously.

6.6 Time domein results.

In addition to the frequency domain results presented above as
plots of power spectral density, time recordings were also made during
most of the runs. The model parameters for the sublects were of
course yet undetermined, since a spectral analysis was required to
cbtain them. Therefore, the values of & and D were set to the
Elkind values mentioned previcusly, and the model gain KB adjusted
to obtain the best visual agreement. For most runs, the model
sampling frequency was set to 3.0 cps. The modified hold was used in
order to make time delay simulation convenient.

In general, in spite of the lack of detailed and accurate model
information, the time traces of man and sampled model show remarkable
resemblance. No attempt was made to obtain results for the continuous
model, since the analog computer simulation of this model would re-
quire simulation of a continuous time delay of approximately 0.1k sec.
The simulation of continuous systems with pure delsy requires either

expensive equipment (such as tape recorders with movable heads) or

approximete methods such as those using Pade approximents to the

=D3.
operator e
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Portions of tracking runs for various subjects are shown in

Figures 6.18 to 6.20. In all cases it can be noted that:

(1)

(2)

6.7

The magnitude of the error signal may exceed that of the input
signal at high frequencies.

Both man snd model show a tendency to magnify input disturbances
when these occur near the "sampling frequency" of the model.

Summary of results

The maJor results discussed in this chapter can be summarized as

follows:

(1)

(2)

(3)

(%)

The measured error spectral densities have characteristics whicH
agree both with previous experimentel date and with those of
the sampled-data models proposed in this report.

The distinguishing cheracteristics of the sampled models are:
() the presence of a spectral peak in the range of 6 to 10
rad/sec, and (b) the presence of energy beyond the range of the
input function bendwidth. Both of these characteristics agree
with experimental data.

The response of the subjects to intermittent displays provides
considerable support to the hypothesis thet the operstor's be-
havior can indeed be represented by sampling operations followed
by extrapolating circults.

Power spectral densities of coperator output, computed from models
syntheslzed by procedures outlined in this chapter, result in
closer agreement with experimental data in the range of 6 to 10
rad/sec than those from conventionel continuous operator models.
The error spectra, while in general having e simller shape to
measured data, result in a better fit to experimental data only
in certain of the experiments, when computed according to the
assumptlons made in this chapter.
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Time responses of sampled-data models are very similar to those
of human operators, even for the tracking signals used in this

report, which represent a very difficult task.
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Notes on Figures 6.18, 6.19, and 6.20
(on following pages)

For all three figures:

Channel 1: Input function f (%)

Channel 2: Man's output c (t)

Channel 3: Man's error e, (t)

Chennel 4: Error in MFOH model en (t)
Channel 5: Output of model ¢ (t)

Channel 6: OQutput of hold circuit in model

All verticel scales are equal, showing the attenuation which takes
place from input to cutput, and the magnification of high frequencies
in the error signal.

Figure 6.18
Subject GW: Paper speed = 2 mm/sec
Input filter break frequency = 1.50 rad/sec {Case 3)
Model sampling frequency = 3/sec; K = 2
Figure 6.19
Subject WB: Paper speed = 5 mm/sec
Input filter break frequency = 3.00 rad/sec (Case 4)

Model sampling frequency = 3/sec; K = 3
F)

Figure 6.20
Subject GW: Paper speed = 5 mm/sec

Input filter break frequency = 3.00 rad/sec (Case 4)
Model sampling frequency = 6/sec; K = 2



164

\£Z

e e e

P e

— e e e e e

i il H Ll
I il R .nu ;11 "y | DR
L 57 L tl e b
I s H M i
E Rt o R
I [ T ._ﬁ._. I Hi1tH H1
o T 1T I e 11
Ml L n H L
i b M
3 B thb o il
‘e - et M 11l
Jul 1Ll Wi [ A L
1 il ] i + H
L] hH| sl ITEL ) LHHHAT
il Ha Hal .__” n
H .A.. THHA ] n | H
H
- ITHTHH |k mH LTl
I 2 dil] |5 L T._L
) = ol 1 M ] o |
H L] o H H e ”-1. P11
.. 1 u I it e Q
il [t R mh M
i M s HHHTT] T 1l
i T L I pe Lt
| I ML il L L I
L] L IHHH TR I U
| Rl | IEHINES RH. IR
i “ H... M i M1l LI
il T MHI 1 LT
i L iy LM b Ay
o r:r, Ll HIE M KR,
Il HHLL:| mifllE I .ﬂ L
iy Ml e T
I Al R _.,.. Il i | I
i [T il T ]
,r._ i T L M 4 i
4 HH L M | L
11T i .._‘ I ._ HITTT|
) g K] | Hil I
] .,_ H ISR Ll (L
I L IR R JEHINIRES
n THHH . T T
HHig Y ) !
L o 1 3 .
L 33 n e i
i 1 I
il I L e HIE il
I L ITH i é 1
h 11 M AP L Ml
i H ITHHH LT
l; l HL] MR L
1 I+ b i
H ! L It
il kUL Kt L
M st

TSRS

1=

E

3=

I e = e e e

T

:,,

e

1= T

=

+

¥

T

=

i e

M
%
f
H

W wy = 1.5 2mm/ sec £,=3

Figure 6.18

e
H EHHET
pr
19l AHENE ._,
mHHHH IR
T 4t
]
|

= e
Eeee e e e e e e e e e e
= o - . - . = - =

=

S T e

pE=T===s=ann




165

Figure 6.19 WB wB 3.0 Smm/sec £,=3
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Chapter 7
SAMPIED-DATA MODELS WITH VhRIABﬁF SAMPLING RATES

T.1 Introduction

The various sampled-data models of the human operator
presented so far have been linear, with a constant sampling
rate and time invariant perameters. However, it has been
noted in the discussion of the previous chapter that the
variation in location of certain peaks in the power spectral
density of the operator's error mey be due to & variation of
the effective "sampling frequency”". It would be reasonable
to expect that if the sampling in the models considered here
acturlly corresponds to & physiological process, that some
kind of optimizing activity takes place by continuous adjust-
ment of the sampling frequency on the basis of an appropriate
performance criterion. If such an adjustment is a function
of system error, for example, the operation would be non-linear.
However, since the measurement of operator responses must
take place over relatively long periods, the “average" or
"effective" sampling rete may be approximately constant; thus
resulting in the essentially linear behavior previcusly
discussed. The purpose of this chspter is to outline some
analytical approaches for the study of sampled-data systems
with variable sampling rates. While no experimental data
are yet available, and the variable-rate models have not been
fully developed, the analyeis methods are presented here
since they represent a step in the direction of further
research, both in human operator models and in sampled-datae
theory.
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The basic system considered in this chapter is shown
in Figure 7.1l. Three techniques for the analysis of such

a8 system are presented.

SAMPLING

INTERVAL e
COMPUTATION

HOLD
CIRCUIT

wit)

LINEAR
PLANT

Figure 7.1 Prototype Adaptive Sampled-Data System

(1) Transient response evaluation using difference equations

with variable coefficients

(2) Stability anslysis using the T-locus

(3) Investigation of asymptotic stability using the "direct

method" of Lyapunov.

The methods will be 1llustrated with examples which will
not necessarily represent a human operator, in order to keep
the basic points as simple as possible.

T.2 3Status of Variable-Rate Sampled Deta Theory

168
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Very little work is availsble in the literature on sampled-
date systems in which the sampling interval is varisble, Time-
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dependent sampling schemes (in which the sampling periods are
given by a known function of time) bave been treated for a

limited class of such functions. Thus, cyclically-varying
sampling rates have been treated by Hufmegel (1958), Jury

and Mullin (1959) and Friedland (1960). A summry of

various techniques is given by Hufnagel (1959) and Bekey (1961).
The work of Kslmen and Bertram (1959) is applicable to a
fairly broad class of sampled data systems, but the methods
are not resdily applicable to general variable-rate systems.
The problem of stability, in particular, bas been neglected
in the literature. Tt is discussed briefly by Hufnagel (1959)
and by Kalman and Bertram (1959), in commection with periodi-
cally time varying systems. Tartakovskii (1957) has presented
& method of studying stability of sampled-date systems with
variable parameters based on the varisble-transfer function
concept developed by Zadeh. No stabllity studies of systems
of the type of Figure 7.1 bave appeared in the literature yet,
to the suthor's knowledge.

A sampled-data system of the type presented here can be
considered adaptive if the sampling frequency is adjusted
automtically in accordance with an appropriate performance
criterion. The systems to be analyzed here are examples of
a class of systems which will minimixe the sampling frequency
congistent with stability and performance requirements.

The importance of such systems stems from the utilixzation
of digital computers as elements of the control leoop In an
increasingly large nunber of applications. Zince such a
computer will generally be time-shared among & nunber of
subgystems, it is desirable to utilize it only as frequently
&8 necessary to achieve the desired stability and performance
characteristics. It should be noted that such utilization way
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also result in lower power utilization; an important issue

in space vehicle control systems.

T.3 Evaluation of Transient Reaponse

Since the sampling rate in Figure T.l is considered to
be dependent on the state of the system, the system is
nonlinear and ordinary Z transform analysis is not applicable.
However, the time domain behavior of a sampled data system can
be evaluated using difference equations even if the sampling
interval is of variable width, since, regardless of the sampling
pericd, sampled-data systems are open-loop between sampling
instants. The response can be evaluated sample-by-sample.
Such a method is discussed by Jury and Mullin (1959) for the
periodically varying sampling rate case.

If we let the linear plant transfer function be G(z),
corresponding to an impulse response h{t), then we can write

(tor t <t g_tml)
-1
3 (Pt
(7.1) c(t) = x (t,) glt-t ) + z £ (t-t) ﬁfg“l
P dt b=t
p=0 n
where x(tn) is the magnitude of the held circuit output at time
t
n

g(t) 1is the step function response of the system G(s)
and fp(t) are time functions resulting from the influence of
past samples on the output signal c(t).

To completely describe a q-th order system, q first-order equations
(or one gq-th order equation) will be required. The additional
equations can be cbtained from (1) by differentiation. The appli-
cation of this technique requires no specific knowledge of the
sampling times tn in advance, and they can be computed as a

function of the system variables. These concepts are best
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illustrated by means of an example.

Consider the system of Figure 7.1 with

(7.2) &(s) = ;rasay

and a gzero-order hold c¢ircuit. The output can be evaluated
(using laplace transforms, for exmample). During the n-th
sampling interval, the output satisfles the equation.

(7.3) C(t) = nﬂ l:(t_tn) - l"'e-(thtnﬂ + cn+én l_e"'(t-tnﬂ

(b, <t < t,)

n+l
which correspond to the form of Equation (7.1) and where

X = output of zerc order hold at time tn=x(tn) = e(tn)
e(t)= continuous system output
C, = value of output at n-th sampling instant = C(tn)

Cn = value of output rate at n-th sampling instant =

(de/at), _ o
n

Differentiating (7.3) once we cbtain
(7.4) ¢(t) = KX [; - e'(t'tnzj + éne'(t'tn)

Setting t = t . in Equations (7.3) and (7.4) we obtain

n+l

(7.5) C 41 = KB T~ 1+ e“Téj +C+ én [} - e‘?%]

A P -Tn
(7.6) Copp =K ;|1-e2 :] +Cpe



where Tn 8 tn+l - tn is the length of the n-th sampling interval.

Corresponding equations for cn and Cn are:

(7.7) C, n-ll: n-l-l + e-Tn‘ﬂ Coat oo l[l-e-T“‘ﬂ
(78) & -xe _ |1-eTodlié [,,—Tn-:l

Terms containing En and c':n_l can be eliminated from Equetions
(7.5) - (7.8). Then substituting X =R -C for the error at
the n-th sampling instant, we obtain the relatiomn
1_e'&n“' Tn-l)] c

n

1-e"Tn-1

(19) 0y, + [K(E 10 -

T N -Tn
+ |K(1 - e'Tn-]. -7 _e B-1) 4 e Th-1 (L__e)c
n-1 1 “Tn-1" n-1
-e
= ~lte In 1-e Tn-1 _ 'Tn—l
= K(Tn l+e )Rn + K(1-e T, _1® )(1 e"]h-l =Y

This egquation, a difference equation with time-varying coef-
ficients, ylelds the output at any sampling instant as a
function of the values of the input and output at the two
previous intervals and the lengths of the two previous sampling

intervals, T and T ..
n n-1

Iat us now assume that the sampling period is governed by
the relation

a
(7.10) T = T+ B 5,

vhere O and P are constants. Then, if the error En increases,
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the sampling periocd will decrease, and the system will tend
to become more stable (as will be noted in the next Section).

Given the "control law" of Equation (7.10) and the
difference equations (7.9) the output response can be
computed sample-by-sample. While this is clearly & lsborious
procedure, it can be easily instrumented on & digital computer.
The procedure above can be applied directly to more complex

systems.

7.4 Stability Determination Using the T-locus

The stability of linear sampled data systems 1s of'ten
studied by using the root-locus method (see for example,
Ragazzini and Franklin (1958) p. 105). The root locus is
& plot of the roots of the characteristic equation of the
aystem as function of the open-loop gain. For linear time-
invariant sampled dats systems, if the characteristics
equation is

(7.11) 1+ Ko(z) =0

vhere G(z) is the open-lcop pulse transfer function, then the
4

root locus is plot of those values of £ which satisfy the

condition

(7.12) K6(z) = 1 /x + 2mn n=1 2,3, ...

-If the roots of (7.11) lie inside of the unit circle in the
complex Z-plane, they represent a stable system. If they

lie ocutside, the system is unstable and if they lie on the unit
circle the system will be neutrally stable.
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Consider now a system in which the sampling rate is not
constant, but varles slowly in comparison to the system
dyanmics. This means that at any particular time, the
sampling period T can be considered approximately constant.
The stability of the system can be examined by plotting the
root locus with the sampling period T &s the parameter. This

locus, which we shall term the "T-locus", will give an
indication of the dependence of the system's stability on
the sampling rate, provided that the initial assumption is
not violated, i.e. that rate of change of sampling period T
is slow compared to the system time constants.

Several classes of T-locl can be readily identified. In
some systems the T-locus behaves like the ordinary gain or
K-locus. In other systems, when the position of the open-loop
poles and zeros is affected by the value of T, the locus
behavior is quite different. Consider the following examples

of various types of loci:

(1} T-locus behaves like K-locus

In the system of Figure 7.1, let the hold be zero order,
and the plant be

niR

(7.13) G(s) =

Then the open loop transfer function is

~Ts
(7.14) GH(s) = %—l
8

and the corresponding pulse transfer function is

(7.15) oH(z) = 2=




Consequently, the chatracteristic equation is given by

(7.16) 1+GH(z)=0
or
(7.17) z + (KP-1) = O

Clesrly, the locus behaves in an identical way to the K-locus.
For T =0, 2 =1, and |z |>lfor T >2/K, i.e. the system is
stable only for T < 2/K. The locus is alwaye real as indicated

in Figure 7.2(a). As usual, the open loop pole is indicated
by an "x".

(2) T-locus resembles K-locus, but open-loop roots move

Now let

Ka
(7.18) 6(s} = 74

Then the open loop pulse transfer function is

-&T
(7.19) ou(z) = KAe")
T ~e

Note that the position of the open loop pole (located at z = e

novw depends on the sampling period. The characterlistic equation
is

(7.20) z+K-eT(14+K) =0

and the corresponding T-locus 1s shown in Figure 7.2(b). The
K-locus is also along the real axis but begins only at the

aﬂs
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open loop pole location. To find the limiting value of T
for stability, let z = -1 in (7.20). Then

-aT1jp _ K - 1
{7.21) e al-are)

and consequently the limiting value of T is

1 K -
(7-22) Tim 7 T30 frﬂ |

Note that while the K-locus continues to - oo, the T-locus
terminates at -K. Thus, for K = 1, there is no value of T
vhich can cause instability.

As an additional example of this type consider a system
with no hold circuit, and

(7.23) 6(s) = ;rhary

Then the pulse transfer function is

(7.2%) 6{z) = K(1-e"")z
(2-1)(z-e"2T)

We have T-dependence in the gain factor and in the location of
one pole. The two loci are indicated in Figure 7.2(c) for
particular values of K, a, and T. It can be seen that both
loci are circles in the z-plane.

(3) No resemblance between K and T loci

In the genersl case, of course, there will be no necessary
resenblance between the two loci. Thus, if we have a zero-
order hold and the plant of (7.23), the resulting pulse trans-
fer function is
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T0 = 00 et

I~ pione

(o) We) = 2

6ls)= 5

T=0 Re
% -
L
1, K ot
D - Hl )=
L o e
/ Gl(s)= -5!—.

s+o

POSSIBLE [LOCATION
OF OPENLOOP POLE

His) = 1

G(s) = Xa

s +a

=== K locus
— T locus

{K=5,a=1)

{For gain locus , T=1}

Figore 7.2 T-loci for Sample Systems
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(7.25) GH(z) = K(1-z™1) z {}1?ii-{]

8" (s+a)

_K {E&T-l+e"aT)z + [i-e-aT§l+aTiB

(z-1)(z-e"%T)

The XK-locus of this system is agein a circle. However, the
T-locus is by no means easy to determine, and must be obtained

by numerical substitution.

It appears that a catalog of T-loci for various types of
systems would be quite helpful in stability studies of sampled-
data systems with adjusteble sampling rates. It is possible
that a systematic method for construction of the loeci can be
obtained, in the course of developing such a catalog of loci.

7.5 Asymptotic Stebility Investigation Using the
Direct Method of ILyapunov

The so-called "Direct" or "Second-Method" of Lyspunov
for determining ssymptotic stability of nonlinear differential
equations has become quite important in recent years (see,
for example, Letov (1960), Kazda (1960), Kalm&n and Bertran
(1959). The method is based on finding & scalar function of
the state varisbles of the system which satisfies certain
conditiong. If such & function, called & Lyapunov fumection,
does Iindeed exist, then the null solution of the differential
equation is asymptotically-stable in the large. The importance
of the method 1s based on the fact that the stability infor-
metion is obtained without a need to solve the differential
equation.

Much less literature is available on the use of the
ILyapuncv method for determining asymptotic stability (either

global or local) of difference equations. The basic references

T




are those of Hahn (1958) and (1959), Kalmen and Bertram {1960)
and Bertram (1960). From these references, the following
stability theorem can be stated (without proof) and applied
to determine the stability of the nonlinear system of
Figure 7.1.

Stability Theorem for Nonlinear Difference Equations

If, for the vector difference equation

(7.26) kA

n+l ° f(yn’ t)

there exists s positive definite scalar function

V(yi, yﬁ, ces yﬁ, t) of the discrete state variables yi, yﬁ,

e yg (which ere components of the k-dimensional state
vector yn) end time t such that v(0,...,0) = 0 and the first

difference

2 k

—_ . 1 1 k
(7°27) AV(Yn, tn) = V(Yn.‘_lx yn+l’°” yn+l’ tn+l) v(yn:'“yn:tn)

of this function exists, then satisfaction of the conditions

J —
(1) v(?n, tn) >0 wheny ¥0

(11) V(yh, tn) is continuous in ¥

(7.28) _ N
(111) V(7 t )» e as | ¥, ll-> oo

(iv)  av(y ,t )< O vheny ¥ 0

implies that the null solution iﬁ = 0 of the aforementioned
vector difference equation is asymptotically stable in the
large and that v(sr'n, tn) is a ILyapunov function for this

system.
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Example. Iet us now apply this method to the problem
of Figure 7.3, vhere Tn’ the n-th sampling

SAMPLING PERIOD COMPUTER

7. 2 __
r ol +

|
]
l HOLD PLANT
it} + I i- ¢~%Tn xn 2K
° s ¢ ‘ s42

Figure 7.3 Nonlinear Sampled-Data System

interval, 1s defined as

(7.29) lrn 1;n+1 - t"n

a8 In Section T.3 above.

We mssume that the system is "adaptive” in the sense
that a large error results in an increase 1n sampling
frequency, and choose a control law of the form

a

{7.30) T = ———
Ixnl + 1

n
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vhere allowsble values of @ for stability are to be found.

The system is clearly nonlinear. The equations at the

sampling instants are obtained as in Sectiom 7.3.

(7.31) X

(7.32) Coeg = e Tn c, + K(l-e'aTn) X
and
(7.33) X =R -C

where the subgeript n denotes the value at the n-~th sampling
instant. That is

A
(7.34) c, = c(t))
Since the sampling intervals are not constant, we camnot

replace t by nT. Substituting (7-31) and (7.33) in (7.32)

ve ¢gbtain the ptate equations for the system:

L(l +K) e _ ﬂ c, + K(l-e'ZTﬂ)Rn

O
Rn-cn+l

(7.35) ¢

n+l

We investigete the stability of the null solution and there-

fore let Rn = 0. Then the equations reduce to:

Bl+K)e-2Tn - Ia c,

o
=} ——
Tn = [c 1 +1
n

(7.36) Chil

]
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Based on suggestions in the References cited above, let us
choose a Lyapunov function of the form

(7.37) V(Cps th) = Oy g

where €, represents the Euclidean norm of the vector Eﬁ.
2
(7.38) v(c,) = ¢,

The first difference of the Lyapunov function will be

1
Q
no
]
2
n

(7.39) v(Cy) =

2 2
n+l ~ Cn

C

Now, since V(Cn) is clearly positive definite, continuous
in Cn and— oo asg || Cn“_’ o0, then for stability we must
simply find a region where AV(Cn) is negative definite.
Now, for AV(Cn) to be negative, we must have a region where
2

(7.%0) c <c,
Substituting (7.36) in this relation

2 2 yp -2, 2
(7.4} c, E(l +X)e "0 - 2K() + K)e “T0 4 sz <Cn

2
Or, since Cn >0
(7.4) (1 + k)%™ - 2k(1 + K)e T 4 K< 1

If ve let X = 2, this inequality becomes

(7.43) e"n (9¢™%n - 12) < -3




or, since e-zmn is greater than zero for all Tn >0, ve

must have

3e-2Tn - h( - -—-}—-—

bl
(7.44) e,

If we interpret the two sides of this lnequality as equations

defining two functions fl(e'ng) and fz(e'zTn) we can obtain
8 graphlcal interpretation of the stability requirement by
plotting £, and f, vs e'ZTh, as done in Figure T7.4.

Tt

REGION WHERE —2r
n
flc 12 AND o >0

e e — N

5

Figure 7.4 Stability Region for System of Figure 7.3
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To find the values a and b which define the limits within

which stability i1s assured, we solve the equation fJ. = f‘z ;
to obtain

(7.45) 3(e-2Tn)2 - ®n 120

The roots of this equation are

k4 \]16-12 1/3
(7.16) =

r 3 r = =
1’ "2 6 1
Therefore, AV(Cn)‘< 0 for

(7.47) -2T

l<e ndl

3

The upper limit clearly camnct be exceeded, since for all
T_>0, e?n ¢

The lower limit means that

e-aTn > %

or

1. 1
2%, >z ;T < Fin3

Using the "control law" for T, a8 given by (7.36), we have

(8
(7.48) =gy +T < 12
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This expression assumes its maximum value for ICnI
and consegquently

In
(7.%9) a= 23
Therefore, provided that O stays below the limit of (7.49),
the nonlinear system (7.36) will have an asymptotically stable
solution if disturbed from the equilibrium pesition Cn = 0.

It is interesting to compare this stability region
with that obtained by plotting the T-locus for the correspond-
ing conatant sampling rate system. The open-lcop transfer
function of the system of Figure 7.3 is given by

(7.50) cn(e) = () (2K

s+2

The corresponding pulse transfer function is

-2
(7.51) GE(z) = (1-271) z[s(wj 2(1"’ T) (for K = 2)

We are interested in the T-locus,,i.e. the locus of the closed
loop roots as & function of sampling period T.

The characteristic equation is given by

(7.52) 1+ GH(z) = O
or (z-e'aT) + (2-2e'2T) =0

and the one closed-locop root 1s given by

(7.53) z = 3e -2
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The T-locus is shown in Flgure T7.5. The critical values for
stabllity occur for

or

Thus, for stability in the constant sampling rate case,
T <:lE§i is required. Note that this agrees with Equation

(7.48), but that (7.48) has much more generality since it
includes the nonlinear case.

‘Im
Z PLANE

POSSIBLE LOCATION
OF OPEN-LOOP POLE

Figure 7.5 T-locus for Example System
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7.6 Summary

In this chapter several techniques for the anelysis
of sampled-data systems with variable sampling retes
have been presented. The methods indicate how transient
response and system stability can be studied for such
aystems.

The mathematical models of humen operators discussed
in detail in preceding chapters have been based on constant
sampling rates. The methods discussed in this chapter are
offered as a possible contribution to the futwre atudy of
nev models based on variable sampling.



Chapter 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The major concern of this vork has been an analytical
and experimental investigation of a class of mathematical
models for the human operator based on the theory of linear
sampled'data control systems. The results show that for
the particular tracking system considered, the sampled-dats
models do indeed result in input-output behavior which more
closely approximates experimental results than is true of
linear continuous models. In particular, it has been
shown that the models which include sampling and first-order
hold circults are consistent with a large body of evidence
in the literature on tracking, that they do produce energy
at frequencies beyond the range of & band~limited input,
that they are consistent with the results of tracking an
intermittent display, and finally, that the analysis of
such models results in spectral characteristics which
check closely with experiment, at least under certain con-
ditions.

The combination of analysis and experiment used for the
study of the sampled-data systems proposed in this report
as human operator models probably represents the ma jor
contribution of this work. Th; faét that the spectral
characteristics of humean operator output and error signals
vhen the input signal consists of simple sum of sine waves
could be predicted from an analysis based on stationary

random processes with continucus spectral density fUnctibns,
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could not be known & priori. A combination of anelysis
and experiment was required to determiﬁe the validity of
such an analytical procedure. The closed-form expressions
for error and output povwer spectral densities proposed in
this report, then, while lengthy and cumbersomes, should
make it possible to generalize the work to other input
functions than those used here, if they are programmed
for digital computation as has been done in this work.

The results of the study can be flewed as a logical
extenslon of previous work with quasi-linear continuocus
models. The continuous models were considered adequate
representations of tracking behavior when the input function
bandwidth did not exceed approximately 3/4 cps. In the
present study the band extended to 1.6 eps; spectral peaks
vere noted in the range of 1 to 1.6 cps (which are consistent
with previous data); and these peaks were shown to be
consistent with linear sampling mcdels as well. In other
words, the sampled models result in a decrease in "remnant”
power, for difficult tasks, where the remmant is consldered
to be that component of the operator'; output which the
model does not explain. The limitations of the study are

reviewed in the next section.

For the particular tracking system and a particular
operator, it has been shown that the sampled-data model can
be conatructed by following a systematic sequence of
spectral measurements, which ylield the parameters of the
* continuous model and the sampling frequency. Unfortunately
the experimental study was not sufficiently extensive to
make definitive statements about a synthesis procedure.
However, the rules suggested in the report for determination
of model sampling frequencies were satisfactory for those
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experimental runs where high frequency spectral peaks
could be clearly observed.

The study has placed considerable emphasis on the
measurement of the esrror spectral density in human tracking,
as & sensitive indicator of tracking performance. In
rarticular, it is concluded on the basis of the present
study that a peak occurs in the error spectrum (here called
the "sampling peak") which is related not only to the
sampling fregquency of the mathematical models, but alsc to
the display frequency when the display is intermittent.

The major conclusion of this work, then, is that
the application of sampled-data theory to the study of man-
machine systems is well justified; that the results of the
present study give an indication that sampled-data models
can be used to predict several important aspects of tracking
behavior; and that much more work remains to be done.

8.2 Limitations and Suggestions for Further Research

The extensions of this work become readily apparent
vhen one examines the restrictions which have been placed
upon it. The removal of the restrictions is the logicel
direction for new research. The restrictions upon the
present study fell into two logical groups: those governing
the experimental situation and those related to the analyticsl
tools which have been employed. Let us consider these in

turn.

8.2.1 Extensions in Tracking Research. Several

directions for new work stem directly from the restrictions
placed on the situation itself:

(1) The entire study has been restricted to
tracking systems with no controlled element dynamics. From




191

past work, as summarized by McRuer and Krendel (1959), it
is clear that the transfer characteristics of human
operators are affected by the dynamics of the controlied
e¢lement, but that in general this variation is predictable
in terms of quasi~linear continucus models. Whether the
streightforward extension of the techniques of this report
to the case where significant dynamics are present can be
made will require further analysis.

(2) The entire study has been restricted to
one-dimensional compensatory tracking. Elkind (1956) has
treated both pursuit and compensatory tracking, and the
error spectra in the two cases are aimilar. Pursuit
tracking spectra, however, do not show the peaks discussed
here until the input frequencies extend past 1 cps. Higher
sampling frequencies will be required in the sampled-data
models if they can be shown to be applicable. The extension
to two-dimensional tracking will be considersably more
difficult, since the intersction between the two channels
in the operator is not understood at present. However, it
is possible that adequate values of sampling frequency and
"time-sharing” between the two channels will result in
better meodels than those presently available.

(3) The models proposed in this study are
primarily applicable to trained operators. From the experi-
mental results of Chapter 6 we have seen that the data would
support & tentative hypothesis that "sampling peaks"” and
consequently model sampling frequencies increase with
practice, along with increases in model gain. The change
in model charecterlatics during learning should make an
interesting experimental project. Except for Sheridan's
work (1960) on time variation, very little has been done
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with models in this ares.

(4) The present study made use of only eight
subjects, clearly toc smell a sample to jJjustify extensive
conclusions. While past work in the field has often been
based on work with a few or even & single operator, this
procedure does not appear to be completely Justified
for tasks of the difficulty of those encountered here.
The tracking task used in this study was close to the

performance limitations of some of the gubjects, consequently

the variation among subjects was quite large, and much more
extengsive experimental work will be required to ascertain
the range and statistical parameters of this variation.

(5) Vvariations in the model for adaptation to
different inputs is also & logical extension of this work.
It has been shown that higher model sampling frequencies
were required with more difficult inputs. It should be

possible to design an experiment in which the task difficulty

changes during a run, and to measure the resulting model
parameters. The length of time required for adaptation may
be in conflict with the time required for messurement, but
this will regquire investigation.

(6) Perhaps most important, the conclusions
of this report will require further study. It has been
noted that the selection of & sampling frequency for the
model has been hampered by both the limited frequency
range of the input functlon and the limitations of the
analog spectral analyzer. In future studies, even with
compensatory tracking, 1t is recommended that input signals
contain some energy to at least 2.5 or 3 cps, and that
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spectral measurement techniques should be adequate for the
detection of peaks in the range of 1 to 2 cps.

8.2.2 Extensions in Analytical Work. The analysis in
this report has been based a&lmost entirely on the study of
linear sampled data systems with "impulse sampling"”. The
following extensions readily suggest themselves:

(1) Impulse sampling does not seem to be a
very good representation of any conceivable physiological
process. The analysis reported here could be repeated using
the finite-pulse-width "P" transforms developed by Farmanfarma
{1958). The first etage in such & study could be based upon
& fixed but finite pulse width, and the resulting behavior
examined as a& function of pulse width. ILater work could
lead into pulse-width modulation as a possible form of
adaptation.

(2) The hold circuits considered here were
clearly inadequate. The firat extension of the work should
give greater attention to partial velocity extrapolation
circuits, possibly extending to systems with some capability
for sensing the 2nd derivative of the project error.

Secondly, it nay be possible to study the
effects of "leaky hold circuits" upon model behavior. If
the hold circuit represents some physlological process, it
is reasonable that it should not have perfect time domain
properties, and therefore, that it should not necessarily
have zeros in the frequency domain exactly at intervals of
2x/T rad/sec. A tentative study has been made of "approximate
hold circuits" based on the Padé approximation to e °° and

the results appear to be interesting.



(3) The modification of the sampled-data
models required to take "adaptation"” into account has been
mentioned repeatedly throughout the report. In partlcular,
some attention has been given to the adjustment of loop
gain and sampling frequency as possible forms of adaptive
behavior. However, only some preliminary steps have been
taken in the snalysis of sampled-data systems with variable
sampling rates. In Chapter 7 & "first look" has been taken
at transient and stability analyses. Both the "T locus"
and the ILyapunov methods are promising, and their extension
would probably be fruitful for sampled-date theory even if
not for human operator models. The evaluation of nonlinear
human operstor models would be a very complex problem since
frequency spectra would have no meaning in the ordinary sense.

(4) The method suggested in the report for
construction of the sampled-data model requires fairly complex
measurement techniques, followed by & sequence of curve fitting
operations. Recently Ornstein (1960) has reported on the
use of a technique develcped by Mergolis and Ieondes (1959)
for determining parameters of an assumed "transfer function"
for the human operator by a modification of the method of
"steepest descent”. It may be possible to extend the
"learning model” concept to the sampled data case, where the
sampling frequency is one of the parameters 1o he tracked.
Once again, such research would be extremely useful to control
theory as well to the understanding of human tracking.

(5) The sampling periocds suggested in this
report have been deterministic in nature, whether they oceur
at fixed intervals of time or at times dependent on the system

state varisbles. It is also possible to consider that the

194




195

sampling interval,is & stochastic funetion of the accuracy
of tracking, for example. Thus, it is conceivable that

the sampling period is given with a certain probability.
Then, a shorter sampling interval could become more probable
if the tracking error is large and less probable if it is
small., The formulatlon of such a probabillistic model would

be an interesting extension of this work.

(6) The first-order-hold circuits suggested in
this report suffer from the serious limitation of including
predictors which are physically unrealizable and thus
make analog simulation impossible. The "Modified Hold
Circuits" were introduced to eliminate this problem, but
resulted in excessive low frequency galn. More research
is needed on the types of extrapolation circuits which are
best suited for human cperator models.

8.3 Speculations and Implications

The discussion of the preceding chapters has been almost
exclusively concerned with measurements performed at the
input and output "terminals" of the human operator, treated
as & system element. Almost nothing has bheen said sbout
poseible physiological mechanisms which could account for
sampling behavior.

While it is certainly clear that the trscking behavior
described in the report can be produced by processes not
involving sampling (such &s continuous but non-linear
operations, for example), it should be indicated that there
is some physiological evidence which strongly supports the
sampling hypothesis. Pitts and McCulloch (1947) suggested
that something &kin to sampling takes place in the central



nervous system. More recently Verzeano and Negishi (1960)
have shown on the basis of studies with multiple micro=-
electrodes that there are waves of inhibition and excitation
vwhich travel in the brain under control of the thalamus.
These waves, in effect, act as "gating"” signals which turn
groups of cortical networks "on" and "off". The rate of
these excitation (followed by inhibition) signals is
approximately that of the alpha rhythm, 7 to 10 cps. Based
on such findings, 1t may be reasonable to speculate that

the signals from a particular sensory inputs are admitted
to the associative and interpretive areas of the cortex only
intermittently. Furthermore, if the basic "elock"
frequency of the intermittency is spproximately constant,
one or more cycles of the "clock" may elapse before the
arrival of feedback information makes it possible to admit
new data. While this account 1s clearly speculative, and
reminiscent of the "moment" theory of Stroud (1955), it is
certainly interesting since 1t does suggest that the
intermittency hypothesis may indeed be founded on
physiological phenomena in the brain.

The research reported here may have some significant
implications in the design of future man-machine systems.
Thus, for example, television displays in future lunar-
landing vehicles may be intermittent in nature and the behavior
of the humen operator with intermittent displays will be
of importance. The possidbility of time-sharing a sampled
display between two channels of information is also conceivable.
Furthermore, as future space systems will be both extremely
costly and of relatively high risk to the humen operator, it
will be desirsble to use anmlytical techniques for design
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and evaluation to as large an extent as possible.
Simulation of various possible failure modes may make

it imperative to use representations of the human pilot
which are adequate under conditlons which approximate
the limits of performence. The sampled models presented
here, may prove to be applicable for this purpose.

But, regardless of practical application, it is
hoped that this work, &s an example of a methodology
for the development of mathematical models, will be &
small contribution to the sclentific study of humen
behavior.
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Appendix 1

INTERMITTENCY IN HUMAN TRACKING:
A REVIEW OF THE EVIDENCE

Al.l Introduction

The purpose of this Appendix is to examine the evidence for
the "intermittency hypothesis" in human tracking, i.e., the
hypothesis that certain aspects of the input-output behavior of the
human operator in a closed loop tracking situation can be repre-
sented by s model which includes sempled as well as continuous
information. An attempt is made in the following pages to collect
and integrate the evidence fram a variety of sources (primarily
psychological journals) by relating it to & background of engineer-
ing concepts on the implications of sampling in a physical system.
The major evidence comes from examinetion of tracking records, from
studles connected with the so-called "psychological refractory
period," from studies concerned with the perception of discrete
events and from reaction time data. Following an examinaticn of
the evidence, some deductions are made on the basis of the
hypothesis and their implications examined. The concluding portion
of the Appendix is a critique of the methods of experimental
psychology.

Al.2 Examination of Tracking Records

One of the earliest arguments in favor of the existence of an
intermittent process in the human tracker is the appearance of
tracking records (Bates, Craik, Tustin, 1947). To many observers
the human response curves (and consequently the error curves) have
pronounced periodicity, with a strong component in the viecinity of
2 cps, even if this component is not present in the input. Cralk
(1947, 1948) contends that the spectrum of tracking records actually
contains a predominant frequency around 2 cps. Ellson, Hill, and
Gray (1947) performed some 15,000 measurements on about 3,000
sections of tracking record and found that over 80% of the

204

g




205

"wavelengths" of the correcting responses of trained trackers ranged
between 0.2 and 0.6 seconds. The major observation the above
guthors and others msake is that visual inspection of the tracking
date suggests that the tracker waits until an error has increased
beyond a glven threshhold, end then acts. Increasing the maénifi-
cation of the display, however, has little or no effect on the fre-
quency of corrections (Craik 1947, Hick 1948). See also Searle and
Taylor (1948).

The evidence is not quite as clear as the gbove paragreph
might suggest. Careful spectral analyses of "remnent” data (i.e.,
the difference signal between humen output and outputs of "best fit"
linear continuous models) do not reveal strong pesks in the vicinity
of 2 cps (Elkind, 1956), unless the input is very difficult (i.e.,
of high bandwidth). In these cases (such as rectangular input -
spectra with cutoff beyond 1 cps) there are well defined peaks be-
tween 2 and 4 cps. (See discussion in Chapters 4 and 6.) However,
in all cases, spectral analysis of human cperetor outputs, when the
input consists of band-limited signels, revesels energy at fre-
quencles beyond the bandwidth of the input. Elkind, McRuer and
Krendel (1957) and others suggest that these additional frequencies
are due to random signals generated by the operator. The Goodyear
studies (1952) were based on the assumption of p&rmonics of the in-
put frequencles. Ward (1958) did some analog computer studies to
support the hypothesis that sampled models could account for the
harmonic content of the cutput signal. Clearly, all three of these
hypotheses appear reasonable & priori: 1n order for frequencies be-
yond the range of input frequencies to appear in the output, the
operator could behave in a nonlinear manner, in an lntermittent
manner, or he might simply generate and introduce additional fre-
quencies. In any case, the generation of hermonics by the sampler
is & possible explenation for the frequency content of human tracking
outputs. Furthermore, the discrete appearance of many of the cor-
‘recting responses would be consistent wlth the presence of sampling.
Typical tracking records are shown in Figures in Chepter 6.
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Arguments such as the above led Craik (1947, 1948) in his
classical article, to postulate that human tracking consists of a
series of "ballistic responses,” which are triggered intermittently
and run to completion regardliess of changes in the input process
which may occur in the following 1/2 second, approximately. This
suggested explanetion was unfortunately linked with the work of
Telford (1931} thus was at least partly responsible for the contro-

versy we shall examine in the next section.

Al.3 The "Psychological Refractory Period"

C. W. Telford published an article in 1931 in which he coined
the phrase '"psychological refractory period” to explain increased

reaction times observed in certain kinds of step-tracking situetions.

We shall examine these briefly below. Basically, Telford suggested
that & process analogous teo the refractory period in a nerve fiber
operates in the central nervous system during tracking tasks. In a
nerve fiber refractoriness refers to the brief time interval follow-
ing the occurrence of a nerve impulse during which the fiber is in-
capable of responding to eny stimulus no metter how intense.
Unfortunately, Telford's analogy to tracking processes, where he
suggested the "refractory period" was of the order of 1/2 second,
vas interpreted very rigldly by a number of psycholeogists, and the
resulting controversy has continued to the present day; & symposium
on the "Psychological Refractory Period" was held in London in
January 1959.

The "PRP" is most commonly used to interpret data from
pursuit trecking of steps, such as those typical responses illus-
trated in Figure Al.l, which are taken from Vince (1949). The sub-
Ject is asked to track step changes in the input which follow each
other at random (or at least unknown and unpredictable) intervals
of time. The response in one direction is essentially the same as
in the opposite, provided the time interval is sufficiently long,
and consists of a reaction time delay of 0.20-0.25 seconds followed

by & corrective maneuver which generally resembles the step response
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Figure Al.1 Typical Step-Tracking Responses

of a second order system with less than critical damplng. However,

if the return step follows the first step by less than about

0.5 seconds, the apparent reaction time to the second step is
lengthened. A number of similar experiemnts were performed by
Vince (1948, 1950). Telford's original work (1931) showed that key-
pressing reactlons to sounds were slowed significantly if the
interval between successive stimuli was 1/2 second or less.

Poulton (1950) showed that the stopping of a movement which 1s
carrled out zig-zag between two rows of contacts 1s difficult if

less than sbout 1/2 second is allowed between the stop-signal and

the time the contact is reached. We shall consider these and other

similar experiments cerried out by Davis, Welford, Elithorn and
Lawrence, Hick and others, which concerned the "lengthened reaction
time to a second stimulus" as part of the problem of the "psycholo-

gical refractory period" (FRP).

The fact that the corrective movement apparently i1s unable
to utilize visual feedback efter it is initimsted was shown by
Vince (1949) who concluded that movements lasting less than about
0.4 seconds suffered no degradation in accuracy when the stimulus
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was remecved after the beginning of the movement. The results
obtained by Vince were used by Welford (1952) to suggest thet the
humen operator is e "single channel” information processing system
and therefore that & new stimulus cennct be dealt with while the
system is occupied either with receiving informetion, processing 1t,
or monitoring the responding movement. Similar suggestions had been
made previously in a series of papers by Hick (1948-50).

Much of the discussion which appears in the psychological
Journals concerning the "PRP" is concerned with how generally appli-
cable some of the above statements are. Davis (1956) indicated that
&n increase in the second reaétion time (RTQ) will occur only if the
interval (I) between stimuli is less than RTl. Vince's own experi-
ments (1950) proved that the crude interpretation of Telford's "PRP"
of about 1/2 second was slmply not true since under proper conditions
corrective movements were poss}blé within approximately 0.25 sec
after the arrivel of the firat stimulus. The delays were consider-
ably reduced when the second movement was in the same direction as
the first.

When the two stimuli follow each other by less than about
0.4 seconds, they tend to be "grouped" and reacted to as & single
stimulus, according to Vince (1950)end Welford (1959). However,
Hallidey, Kerr, and Elithorn (1960) find some exceptions to the
expected "grouping" which leads them to question the entire theory.

It appears clear from a reading of the actual experimental
data that the basic result is not being questioned, i.e., that when
two stimull follow each other by less than about 0.4 seconds the RT
to the second one 1s lengthened, as indicated by the approximste
equation of Welford (1952):

RT2 = RTn + RTl - I for I= RTl

where RT ~ 1is the "normal"” reaction time and I is the interval be-
tween stimulil. Unfortunately, the interpretations of these basic
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data are not so clear. Hick (1948), Poulton (1950) and later
Elithorn and Lewrence (1955) attempt to explain the effect by intro-
ducing a number of new hypothetical concepts, such as the "expecta-
tion" of the subject for stimulus 2 given stimulus 1, or the
"inhibition" of a stimulus. Broadbent (1958) discusses the
"expectancy" theory at some length. A number of writers including
Hich (1948), Hick and Bates (1950), Welford (1952 and 1959) and
Davis (1957) ergue for the "single chamnel" theory of data
processing.

The philosophicel discussions concerning the "psychological
refractory pericd” and its interpretation do not seem as importent
to the present author as the basic data being discussed. The basic
results concerning the apparent lengthening of RT's are consistent
with a hypothesis that a sampled model can produce similar results.
As has been stated sbove, this model will make no pretense of being
unique, but the evidence summarized in this section makes it appear
reasonable.

Al.4  Perception of a Number cf Discrete Events

Additional supporting evidence for the "intermittency
hypothesis" comes from a series of experiments concerned with the
perception of the number of a series of clossly spaced stimuli,
which are denoted by the title "Numerosity" in the psychological
literature (Cheatham and White 1952, 195h; White, Cheatham and
Armington, 1953). The subjects were presented with a series of
light fleshes at rates from 10 toc 30 fleshes/sec, the light-dark
ratic being selected so as to avoid fusion. The rate reported by
the subjects did not exceed 6 to 8/sec regardless of the actual rate.
A Bimilar result was produced with auditory stimuli. Apparently
1 stimulus per 100 millisec is the limit of subjJective perception,
even though these rates are well below the physiological limits for
the sense organs.

Such a grouping of discrete stimuli into "time quanta” is en
expected consequence of sampling processes which admit new



information to the central processors only intermittently. The
apparent rate of lO/sec (rather than 2-3/sec as observed in tracking)
is reasonable since no monitoring of s controlled muscular response
is required in this case. Broadbent (1958, p. 280) has suggested
thet there may be a quantizing of perception intc samples about

1/3 sec in length if moniltoring of response is required, shorter
otherwise. A similar theory was advanced by Stroud (1955) who sug-
gested that subjective or psychological time is discrete rather then
continuous, calling these units "moments" of experience. While these
suggestions are largely speculetive in nature, they grow from the
same background of accumulated experimental evidence and thus they
form part of the retionale for using a sampled-data model to repre-

sent the human operator.

Al.5 Prediction of Target Motion

As discussed in Chapter 1, cone of the features which charac-

"i.e., to

terizes the human operator is his ability to "predict,
extrapolate from the present and past history of an event to the
future over & limited range of time. Thus, in pursuit tracking for
example, the subject may see the target "vanish behind a cloud" and

be instructed to continue tracking in order to pick up the target
later. Clearly, such behavior requires some ebility to formulate and
store the laws of terget motion, as understood by the tracker, for use
in extrapolation. Is this behavior consistent with the sempling

hypothesis?

One of the characteristics of sampling systems discussed above
in Section 3.2 is that if such a system has a continuous output (as
the human operator does) then the system must contain a data recon-
struction element, a digital-to-analog converter which uses values of
a signel obtained at sampling instants and produces an output at all
values of time. Such "hold" circuits may produce outputs having dis-
continuities at the sampling instants, but if they sre followed by
low-pass elements the system cutput may be continuous. Consider now
the action of a first-order hold upon a sampled signal. This clrcuit
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extrapolates between sampling instents with a constant slope, as
determined by the two past samples, as indicated in equation Al.1l

below:

£(t) - £ (¢
(AL1) £ () = £(t) + ) - (6ye0) (t - %) 3

Tt =t
Thus, we would expect that a system containing sampling followed by
a first-order hold would be capable of extrapolating perfectly &
constant-rate input, but that it would always undershcot a constantly

accelerating input and overshoot & constantly decelerating input.

Iet us now examine the psychologicel evidence in this area.
Much of the work on extrapolation and anticipation has been done by
Gottsdanker (1952, 1955, 1956) and Poulton (1950, 1952, 1957).
Gottsdanker (1952a) finds that extrapolation of constant rate move-
ments can be continued by meny subjects with average deviations of
less than 1% from the guided rate; that accelerating movements tend
to be under-estimated and decelerating movements over-estimated. In
this early work, Gottsdanker found no evidence that his subjects
were able to use the acceleration information in the signel for
extrapolation. Later studies (1956), Poulton's work (1957c) as well
as some early studies of tracking behavior such es those of Taylor
and Birmingham (1948) tend to indicate that with sufficient practice,
operators are capable of using some acceleration information. With
relatively little training, however, operators will tend to ex-
trapolate at the average rate of target movement durling the last
1/2 sec or so of target visibility. It is interesting to note that
Hill, Gray and Ellson (1947) in their anelysis of tracking records
found that trackers will tend to accept above-threshold position
errors for several seconds if they have achieved s nesr perfect
match in rate,
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Prediction and anticipation are very complex problems. They
have been Introduced here only to 1llustrate that results in this
field are not in disagreement with the intermittency hypothesis.

Al.6 Precognitive Tracking

This name is gilven by McRuer and Krendel (1957) to the
tracking of targets which follow simple analyticel movements, such
es sinusoidal motion, and thus are perfectly predictable. While this
problem is part of the generel aree of prediction, 1t has been
separsted from it since we refer here to the matching of the movement
of a visible target, rather than prediction of the motion of an in-
visible one. Typically, trackers here will begin to track sine waves
as they do any unkncwn signal, with movements which appear intermit-
tent, attempting to match rate, and gradually, with training,
learning to match acceleration. Following the early phese of
tracking, the operator will tend to lock into synchronism with the
input and neglect smplitude errors for a short time while he adjusts
his frequency, finally attempting to adjust amplitude errors to zerc
as well. Noble, Fitts, and Warren (1955) hed subjects tracking sine
waves from very low frequencies up to 4 cps and found no average
phase shift when ﬁhe subject could stay in synchronism, no obvious
attenuation and no obvious resonances in thelr response. The time-
on-target, however, decreased monotonically with increased fre-
quency. Poulton (1957a) in similar experiments with a simple
harmonic input of 1 cps found' that constent errors in emplitude or
phase would arise slowly, might remain undetected for a number of
cycles, and finally be corrected. Apparently, the tracking is con-
sidered satisfactory if rate and acceleration are matched.

The relevance of these experiments to this Appendix arises
from possible interpretatioﬁs of the results of Noble, Fitts, and
Warren mentioned above. The increase in average tracking error as a
function of frequency in this experiment was due to the fact that
larger phase errors would eppear before being corrected et high
then at low frequencies. The authors -point out thet the subject
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apparently requires a relatively constant time to observe and
correct phase errors, irrespective of input frequency. This fact
would be in agreement with a sampled-dafte hypothesis. 8ince in this
kind of experiment subjects are capable of continuing their tracking
for a short time with their eyes closed, it is suggested by the
euthors that the operator samples and predicts, comparing prediction
with actuel performence, so that his motion is not based on the
stimulus directly but on a continuously predicted response which is

corrected by observed errors.

Al.7  Other Tmplications of the Intermittency Hypothesis

The major psychologicel hackground and Jjustification for the
intermittency hypothesls has been given in the preceding portions of
this Appendix. In this section we shall survey brilefly other rele-
vant materiel which pertains to various deductions made on the basis
of the hypothesis and their verification.

() Periodicities in task performance. Stroud's "Moment"

theory of psychological time (1955) has been mentioned previcusly.

An experiment reported by Augenstine (1955) concerned with scanning
of rows of letters to find a number and the deciphering of anagrams
shows evidence of the solution times clustering at certain times, as

if the solution times were quantized.

(b) Aided-tracking time constants. Aided tracking refers to
providing the operator with a control device whose output contains

not only a position term proportional to the operator's handle dis-
placement, but also a rate and sometimes an acceleration term.
Clearly, the choice of the position, rate, and acceleration con-
stents is a typical control system design problem; in tracking
systems it has been solved primerily by experiment since purely
analytical approaches have sometimes given misleading results, such
as that of Phillips (1947). Searle (1951) used the assumption of
intermittent corrections at 1/2 sec intervals, along with several
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other assumptions, tc design some aiding constants and obtained
excellent agreement with experimental results for his particular

experiment.

(c) Explanation of remmnant date. As outlined in Chepter 1,

linear continuous models of humen coperators are usually obtasined by

messurements of cross-correlation functions (or cross-spectral
densities) so designed that the resulting model best approximates the
operator in the mean square sense. The difference between actual
human output end model output was termed the "remnant" by Tustin
(1947) and the name is still used. Elkind (1956) and McRuer and
Krendel (1957) have analyzed several possible explanations for the
remnant term. One of these explanamtions assumes that the human's
output motion x(t) can be approximated by & series of discrete steps,
each of which inecludes a part linearly related to the forcing function
and & "noise component” or random error which is not linearly related
to the input in any deterministic way. While this model cannot be
considered completely satisfactory even on an a priori basis, its
analysis produced results within an order of magnitude of experi-
mental results, and having the right general trends.

(d) Eye movements in tracking. This is another extremely

complex fleld, partly due to the difficulties of measurement and in-
strumentation and partly due to the complex mechanism of the retina.
There is a wealth of published material on this and related fields.
For example, Tinker (1958) in his review of recent work on eye move-
ments in reeding lists 72 references. Only two aspects of the work
relevant to this study (beceuse visual inputs to human operators are
considered) will be mentioned. First, eye movements are always
Jerky, consisting of rapid position changes followed by fixation
pericds of variocus duratiocns. During free search (Ford, White and
Lichtenstein, 1959) there tend to be 2 to 4 fixations per second, of
about 1/4 sec duration eaéh. Rather than making a smooth circular
movement in radar tracking for exemple, the eyes tend to approximsate
the circle by jerky movements (Grotewohl, 1952). The ability of the
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eyes to move rapldly from position to position i1s due to the fact
thet they have probably the highest force to inertia ratio (from
driving muscles to the organ itself) of all body parts. Secondly,
the eye movements (known as "saccadic" movements) are remarkubly
constent in velocity. Tinker (1958) reports that during 90° sweeps
et rates from 2 to 3 per second there was no observable change in
velocity between reversals of direction. Apparently such constant
velocity tracking is possible through retinal control alone.

(e} Delayed perceptual feedback. If one assumes that central

processes are intermittent In their operation because of the Welford
"single channel of information processing” theory, then the length of
the sampling interval is determined by the time required from percep-
tion through output monitoring. Ome could deduce from such a hy-
pothesis that if the feedback monitoring is delayed by one or more
"sampling periods” that performance would be extremely difficult.

It can be anticipated that the subject would tend to slow or continue
to repeat his performance in order to allow for a lengthening of the
effective "sempling interval” to include the additional delay. As a
matter of fact, experimental data confirm these deductions. If a
delay of 1/4 sec is introduced between the external world and a
subject's ears very characteristic changes occur. With simple tasks
such as key tapping the subject tends to hold the key down longer, to
press harder, and to tap more times then requested. With ettempts

to speak, the subject typically increases his vocal intensity, his
speech slows down, and he tends to repeat sounds (Chase, 1959).

These facts are now well documented and there 1s an extensive biblio-
graphy available on delayed suditory feedback. Recent studies of
delayed visual feedback using video~tape recording and specisl TV
rresentations so that the subject sees only e delaeyed picture of his
performance have similar results, (Smith, McCrary, and Smith, 1960).
Each task takes longer, the increase in time being related to the
difficulty of the task. Tasks, such as writing a letter of the
alphabet, normally requiring about 0.5 seconds, required about

1.2 seconds. More difficult tasks required as much as 10 times



i b o

wibiel i

216

normal times for execution. Furthermore, there was a definite
tendency to repeet movements and duplicate errors twice in succes-
sion, which is analogous to the sound repetition cccurring in de-
layed auditory feedback.

Al.8 Summery and Critique of the Psychological Literature

In the preceding pages a brief survey of the psychological
literature related to intermittency in human behavior has been pre-
sented. The emphasis has been on material growing directly from or
closely related to the tracking situstion to illustrate that ample
experimental Justification is available for the use of a sampled-data
model for the human operator in a tracking loop. The evidence sume
marized has included examination of typlcal tracking records; the
"psychological refractory period” literature, with a particular
emphasis on the results of step-tracking experiments; a review of the
"numerosity" experiments concerned with the perception of a number of
discrete events in succession; & brief study of the relevance of
prediction experiments and pre-cognitive tracking data to the inter-
mittency problem; and scome sketches of other related phenomena such
as eye movement studies, delayed feedback experiments, and some pre-
liminery studies of remnant data. With the exception of the Elkind-
McRuer-Krendel remnant analysis end the preliminary and unguantita-
tive work reported in the dissertation of Ward (1958), the intermit-
tency hypothesis has not been used as the foundation for construction

of mathematical models of the humen operstor in the past.

While the list of references and number of discussions of the
general topics of this chapter in the psychological literature is
quite lmpressive, one is leff with & singulerly unsettled feeling
after reading it. In much of the literature there is more heat than
light end considerable careful reading is required to separate the
significant from the trivial in the refutations and counter-
refutations of previous experiments. To this writer, it appears that
the literature of experimental psychology suffers from the following

problems:
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(1) Premature publication. Many papers are published

without a careful analysis of the limitations and range of applica-

bility of the results. Consequently, future papers in the same fileld
often devote considerable space to analyzing the limitations of
previous papers. While publication of preliminary results is
Justifisble in any scientific fleld, in psychology the situation goes
to extremes. For example, Battig et al (1954) examined the effect

of intermittent dlsplays on tracking proficiencies, and concluded
that there 1s an optimum display presentation frequency and that
higher frequencies than the optimum may actually decrease "time-on-
target" scores. Within a year (Battig, 1955) a new paper indicated
that the so-called opltimum was an ertifact of the experimental pro-
cedure and was due to brightness varistions rather than intermittent
presentation. Garvey, Knowles and Newlin (1956) use most of a paper
on prediction of radar target track positions to refute ancther paper
which also used "prediction" in the title, but actually was a test of

the subjects ability to remember a previously shown trajectory.

(2) The experiments do not Jjustify the claims. The contro-

versy over the "psychological refractory periocd" is an illustration
of this problem. The early papers by Hick, Craik, and Vince pre-
sented results of step-tracking experiments and used them to
substantiate the PRP. Poulton (1950) showed that a significant part
of the PRP was due to causlng the second movement to be in the
opposite direction to the first; if the movement is in the same
direction as the first, the second reaction time shows very little
PRP. It would appear that steps in both directions should have been
used before publication. Vince (1948) indicated that ungraded or
unskilled responses, such as key tapping, appear to be exceptions to
the PRP. Hick (1949) repeated the experiment end indicated that
Vince's findings were not an exception. In recent years the contro-
versy has concerned the problem of "grouping," i.e., the condition
under vwhich two stimuli following each other very closely are
reacted to as a single stimulus. Vince (1950) indicated such an
effect; Elithorn and lawrence (1955) question its existence. Argu-
ments by Hick and Davis have also entered the scene. Now this is &n
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experiment involving human subjects and the procedure must be
carefully analyzed before claiming conclusions. Welford (1959)
enalyzes scme of the past experiments in this aree and shows that in
some cases the subjects knew that stimuli ceme in pairs and thus
could "prepare” for the second one, while in others they did not.

As another example, Gottsdanker (1952) published material in which
he claimed that subjects are not capable of extrapolating target
acceleration but only velocity. As Poulton (1957) points out, many
other experiments have shown that with sufficient practice and

knowledge of results, acceleration can be used by trackers.

(3) Excessive categorizing. There appears to be & prevalent

tendency for experimental psychologists to look for "laws" of human
behavior; even on the basis of fragmentary evidence these "laws" are
glven names which are seldom placed in quotation marks. Conseguent-
ly, as pointed out by many writers in the field of semantics (such as
Hayakews, Lee, Rapoport and others), these constructs tend to become
stratified and much discussion ensues concerning their validity.
Telford's "psychological refractory period” is a case in point;
Elithorn and Iawrence's "central inhibition" and "internal anticipa-
tory set" are another. In the discussions concerning the velidity
of the "laws" some authors seem to forget that hypotheses are not
substantiated by calling them "lews” or "mechanisms" but by the
results of experiments. 1In readi;g some of the defenses of the
"laws" of human behavior, one is reminded of the words of
Lewis Carroll:

"When I use a word," Humpty Dumpty said,

rather in a scornful tone, "it means Jjust

what I choose it to mean -- nelther more
nor less."
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Appendix 2

STATISTICAL ANALYSTS OF
SAMPLED~-DATA SYSTEMS

A2.1 Introduction

The purpose of this appendix is to present the analytical
background for the study of linesr sampled-data systems with
gtationary random inputs. The emphasls will be on the development
of input-ocutput relations as well as relations for computation of

mean squared error and power spectrel density at various points in
a feedback sampled-data system. Problems concerning optimum filter-
ing of sampled-data wlll not be discussed in this section; they are
covered in References 1-5, 10, ll. The present work is based pri=-
marily on the pepers by Franklin {1955), Trembath (1957), Johnson
(1957) and Mori (1958).

The presence of the sampler in sampled-data systems renders
signals in such systems non-statlionary. Consequently, the stetis-
tical characteristics of even a linear, constant coefficlent
sampled-data system differ in thelr ensemble and time-averages. In
general, the statistical characteristics vary periodically at the
sampling frequency since the sampler can be considered to be a

periodically time-varying emplifier.

A2.2 Probability Distribution and Density Functions

Consider a stationary random process (with the ergodic
property) of which the time function r(t) is a member. If we sample
this function periodically {every T seconds) for y seconds, we
obtaln a sequence r*(t), as lndicated in Figure A2.1. ILet the
height of each pulse be given by r(noT)/r so that the area of the
n-th pulse, A = 51521 (v), i.e. the areas will not depend on

n
the pulse width.
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Figure A2.1
Sampled Random Function

Now if the time origin to of the modulated pulse train is
random (i.e. the initial phase & is uniformly distributed in the
interval (0, T) ) then the sampled process (of which the sequence
r*(t) is a member) will be stationary and ergodic if the continuous
process ls stationary and ergodic, provided that r*(t) is assumed
t0o exist only at the sampling instents. Instead of msking this
assumption and proceeding directly to time averages (as Franklin
does) we shall begin with ensemble averages.

Since r(t) 1s assumed to be stationary (and at this point
not necessarily exrgodic) it can be seen that
F]

(A2.1)  Prob[x<r(t) < x + ax] = Prob[x(r-*(t) = % + x|
for nT € %t € nT + y; that 1s the probabillity density function of

the sampled random function evaluszted at the sampling lnstants
is the same as that of the original contimucus function r(t).
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Symboclically
(A2.2) L% (1) (x) = £ (x)
where fr(x) € first probability density function of

the continuous process r(t)

fr*(nT) (x) € first probability density function of
sempled process evaluated at sampling
instants.
However, since r*(t) =0 for nT + v<t <(n+tl)T, we have

(A2.3) fr*(xl‘t:) = 8{x), nT + v<t < (n+l)T

*
i.e. the probability that r (t) has any value other than zero
between sampling instants 1s zero.

The corresponding probabllity distribution functions are
(A2. k) Fr*(x,t) = Prob [r(t) = x] = Fr(x) for nT =t =T + 7
(A2.5) F #(x,t) = u(x); nT + ¥<t< (n+l)T
r

where F denotes the probability distribution function and uf{x)

is the unit step function, indicating that the probability is alweys

1 that r*(t) will be less than or equal tc any value x in the
sample space, Thus, since the probability distribution functions
are dependent on the time origin, the sampled random process is
non-stationary.

Let us now fix our attention at the sampling instants, nT,
and assume that the function r{(t} changes negligibly during the

pulse-on-time y. Then, from equation A2.2, fr*(x, nT) = fr(x,t).

Now, the mean value of the continuous process can be written as

227
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+00

E{r(t)} = f x£_(x,t) ax
-0
+00
- j xE_(,nT) dx = E {r*(n'!)g
-0

That is, the ensemble average of the continuous function equals
that of the sample function at the sampling instants. Now, if the
continuous process 1s both stationary and ergodic, then the ensemble
and time averages are equivalent, il.e.

+00 T
(a2.7) B {r(t)} - -06[ # (x,) G s Ua -ir(t) at

Now, since the time average of a sampled process can be written as

+N
* 1 *
(A2.8) r (nT) = Llim —==— r (nT)
N-»o0 N+l DZ;;
and therefore
(A2.9) £ (a) = r(al)

vwhere the bar denotes time aversging. Therefore, averages of the
sampled sequencesiare equivalent to continuous time or ensemble
averages for ergodic stationary processes. It should be noted,
however, that attention is being focussed only on the sampling
instants nT. The complete time average of the sampled signal
r*(t) will clearly differ from that of r{t) since the sampled
silgnal contains less average power. Thus, the time average of the
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¥ *
sampled signal 1s given by r (t) (rather than r (nT) for the

sequence):

N
(A2.10) r () = lim TéN—ifﬁ Z e (aT) = L x*ar) = LTTE)

N =00 ne<N

The factor y/T represents the fraction of the time when the sam-
pled signel exists, and thus represents a "duty factor". Similarly,
the mean-square value of the pulse-asmplitude modulated signal r*(t)
differs from the mean square value of the continuous signai from
which it was obtained by the same "duty factor", i.e.:

2
(A2.11) ()] =L 22)

A2.3 Correlation Functlons
As in the previous section, a distinction must be made between
signals in sampled-data systems on the one hand and number sequences

on the other hand. As menticned previously, if the continuocus
signal x(t) is a member of a statlonary (and ergodic) rendom pro=-
cess, the sampled sequences x(nT) will likewise be stationary (and
ergodic). In general, however, the pulse modulated signal x*(t)
and signals obtained from linesr operations on it will be non-
stationary. In other words, sighals in sempled~datas systems with
stationary inputs will be statlonary only at the sampling instants.
Therefore, ensemble=gveraged and time-averaged correlation functions
will generslly not be equal.

Conslder the open-loop sampled-data system shown 1n Figure
A2.2 vhere r(t) can be considered as stationary and ergodic, the
sempler is periodic and closes for r seconds every T seconds,
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and h(r) is the impulse response of the linear continuous system.

CONT
l"", ELEMENT c(ﬂ
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e hit)

Figure A2.2
Open-Loop System

Let the autocorrelation function of the input be Rrr(-r). Then the
sutocorrelation of the sequence { r{nT )} is defined as

+N
(A2.12) R_(nT) = lim '2?1-?]‘. Z r(kT) r(kT - nT)
N =+ o ool

Let us now examine the relation of this function to the time-
*
avereged autocorrelstion of r (t), which is defined as

T

1 ° x *
(1213) Ry, (= lm L f () £ (6 - 1) at
rr Toeoo o -7
o)

Since pulse-amplitude modulated signal r (t) is given by

+00
(A2.14) r(t) = Z #(o7) p(t - nT)

N==00




where p(t) is a pulse of width y occurring at t = O, we can
substitute this relation in (A2.13) to obtain

T
Rr*r*('r) = Ti—j;mm —2-%: -4' ° gr(n'r) p(t—nT)Zr(m‘l‘)p(t#r-mT)dt
(A2.15)

If ve let m =n + k and interchange summation and integration
operations where permissible we obtein

+C0
N 1
(A2.16) Rr*r*('r) = Z Nl_i,mm oN+L r(aT) r(nT+kT)
k==00
T
1 o
Llim o0 j p{t-nT) p(t-nT+r-kT) dt

T - 00O o
0 "To

Now, since p(t-nT) dis a periodic function with period T, it can
be averaged simply over one period T. Therefore, if we let

t; = t - oT, and average from - T/2 to + T/2; equation (A2.16)
becomes

(42.27) R, (%) = j;i lim Eﬁéi r(nD )r (nT+KT)
TT K==t N> =
T/2
z f p(t)) p(t)+7-kT) at,
-T/2

The second summation 1s equal to the input autocorrelation evaluated

at the sampling instants, by equation (A2.12), end thus (A2.17)
becomes:

231
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/2

(A2.18) R, (1) = R, (k1) % ; p(ty) Dty +7-kT)dt,
rr == -T/2

If we now let 1y - 0, the convolution of pulse tralns reduces to
an impulse train, and the time averaged sutocorrelation function is

+C0
(A2.19) R 4 (1) =-T:5 > Rrr(k'l‘) &(7 - XT)
rr A

where the bar is used to emphasize the time averaging.

Consider now the ensemble-averaged autocorrelation function,

which we shall denote by R , ,(v,t). It is defined by the average
r oy

(a2.20) R, (0) = o (e) r (b + )
rr

sgain substituting the equivalent summations, but going directly to
the impulse approximation, we obtain

JU——

e P L

o +00  _+Q0
(A2.21) ﬁ: £(1,8) = Z Z r(nT) r(wT) &(t-nT) 5(t+r-mT)
rr ==t m=-co

Since the only random varisbles asre the functions r(nT) and r(mT),
the operations of summing and averaging can be interchanged to yield

(A2.22) Rr* MEAI Z Z r(nT) r(mT) &(t~nT) &(t+7-mT)

r
n m

A T S DT P




The ensemble average r(nT) r(mT) is recognized as the correlation
function of the input (or of the number sequence r(nT) ), i.e,

(A2.23) r(n?) r(u?) = R (T - oT) = R (0T - nT)

since the input process wes assumed to be ergodic. If we let
(m=n) = ¥ equation (A2.22) becomes

(Az.24) iar* L(Tot) = z err(kT) &(t-nT) &(7+t-mT~kT)

and since k +teakes on all velues from =-00 to0o +0 and the time
shift 1 is arbitrary, this can be writien es

+C0 +00

(A2.25) R, f(1,%) = Zonrr(m) 5(-kT) Z 8(t-nT)
rr k== n=~co

Clearly, this function is not identical to the time-averaged auto-
correlation function, R , ,(7) obtained in (A2.19). Rather, and
this is typical of ensemﬂliaaverages in sampled-data systems,
ﬁy;ﬁ;f¥:€3 is seen to be a pericdic function of t, with periocd T.
Ohe"way of eliminsting this periodicity is to aversge R % x(Ts%)
over one sampling period: +this process leads us again t5 the
time-averaged correletlion function., Thus:

T/2 +1/2

-Tl- f Rr*r*('r,t)d‘b=~TJ-'- f { % Rrr(dT)a(r-kT)?(t-nT)}dt

-7/2
(A2.26)

%Zb R__ (kL) 8(r-kT)

233
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This 1s the expected result, since due to the ergedic neture of

r(t), the statistical characteristics of the ensemble are consi-
dered the same, including their time variations; therefore a time
average of single record equals the time average of the ensemble

average.

It should be noted that the ensemble-aversged autocorrelation
function of the output c{t) of the system of Figure A2.2 is also
a pericdic function of t. Consequently, for simplicity, we shall
concentrate on time-averaged properties in what follows. It
should also be noted that the factor of 1/T which arises in equa-
tion (A2.26) as & result of time averasging, represents the "duty
factor" of Section A2.l for the limiting case as the pulse width
r=0.

In sumnary, the sutocorrelation of the sequence r(nT) is
given by the sequence

(A2.27)

*
and the "sampled autocorrelation function" of the signal r (t)
will be defined in terms of its time average &s

(A2.28) Ry (1) =

rr

il

Rrr(kT) 5(t - xT)}
==t0

The cross-correlastions are defined in a corresponding maenner. Thus,

the sequence cross-correlation is given by:
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+N

1
(A2.29 ch(kT) = N}i?oo ol Zi;; r(nT) c(nT + kT)

A2.}4 Pulse-8pectral. Densities

The discrete equivalent of the power spectral density is
variously denoted as "pulse-~spectral density", "sampled spectral
density", or "sampled power spectrum'. Once agein, as in the case
of correlation functions, the definitions must be carefully inter-
preted since the literature is by no means consistent in this regard.

Consider first the number sequence r(nT) , i.e. the values
of the sampled function at the sampling inatants. The autocorrelsa-
tion function of the sequence is given by (A2.27) above, and we can
call this R:r(kT)p Ehen the sampled power spectrum is defined by
the z-transform of Rrr(kT)’ i.e.

10 -k
(42.30) Ser(®) = ) R () 2
k=00

Now consider the autocorrelation Rr#r*(T) as defined by (A2.28),
for the impulse modulated signal x¥(t). We taske the two-sided
Laplace transform to obtain the power spectrum:

+00
8

(h2.31) Sy u8) = [ Ry ar
rr 00 rr

Substituting (A2.28) into (A2.31) we obtain
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+00 =00
(h2.32) 8  4(s) = % [’ Ziﬁo R, .(kT) &(1-kT) e ar
- K

rr

Since Rrr(kT) does not depend on 1T, the sumation and integra-
tion can be interchanged and we obtain

+Q0

(A2.33) Syx(8)=F = R_(x0)e

Trr ké‘;’d)

-5KT

Letting 2z = eST, equation (A2.33) can be written as

N
1 . * =k
(Az.34)} § 4 x(2) = 7 : Rrr(kT) z
rr
k=-00

which, as expected, differs from the sequence spectrum, Srr(z),
by % . Thus, except for a proportionality constant, the sampled
spectrum can be obtained as the z-transform of an appropriately

defined sampled autocorrelation function.

The sequence spectral density can alsc be defined in terms of
truncated series which insure finite energy and consequently
convergence, Agaln, this is analogous to the continucus case. One

introduces the auxiliary series rN(nT)' as

(a2.35) I‘N(nT) =r (nT) vhen  -Nsn<tN

[

ry{nT) = O elsewhere,

Then a "truncated -z- transform" can be obtained as follows:
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N
sT =-nasT
(A2.36) ﬁﬁv(e =T Z rN(n'I‘)e
==N
and finally
(A2.37) S, (s) = lm  rzhe | 1|
2. rr _N—’oo 2N+1)T AN
or, in "z~-transforms"
2

(A2.38) Srr(z) = lim -(Eﬂ_ify'f |AN(Z.)

N=>

where AN(z) is the finite sum z-transform of r(nT).

Relstionships (A2.37) and (A2.38) relate the sampled power
spectrum directly to the time function r(nT), and must be inter-
preted with caution, es in the continuous case. (cf. Laning ¢ Battin)

Finally, the sampled power spectyum can be simply related to
the power spectral density of the continuous functions r(t). If we
recall the alternate representations of the sampled function r*(t)
in the frequency domain, it can be shown easily that (for zero
initial conditions):

+00
* -
(A2.39) Jf[r_(t)] = E r(nT) e nTs z%‘- R(s+3 ..%;.3@ )
n== ==
vhere the "shifting theorem" is used and R(s) =1 [r(t)] . Using
the same rule on equation (A2.33) for the sampled spectrum we
obtain
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w
*®
*
o
+1]
-
1
=1l

Z R, (kT) e~ SKT
"

(A2.%0)

LY aGn B -} 2 [5,00)
n

where equation (A2.40) relates the sampled spectrum to the contin-
uous spectrum and harmonics generated by the sampling process.

It should be noted that all the definitions introduced in
this section are hbased on time-averaging, i.e. that the correlation
functions on which the power spectra are based are time-averaged
over a sampling period.

By analogy with continuous processes, sampled cross-spectral
densities can be defined as z-transforms of sampled cross-correlaw
tion functions.

For our future work we shall base the definitions of sampled
spectra on equations (A2.33) and (A2.40); i.e. whenever possible we
shall evaluate sampled spectra éirectly as z-transforms of contin-
uous spectra times 1/T.

A2.5 Mean-Square Values

*
The mean-square value of & sempled function r (t) can be
evaluated either directly by time averaging or from correlation

functions or from power spectra as in the continuous case.

Considering impulse modulated signals again, it was pointed
out in Section A2.1 that the mean~squered velue of the function
* .
r (t) 1is given by
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(A2.41) [r*(t)]2 - [r(nT)]2

=1l

From the sequence autocorrelation, equation (A2.27), we can write
(A2.41) as

(a2. 42) [r(nT)]‘2 =R_(0) = an maNJ;l
- 00

An alternate expression for mean-squared value can be obtained from
the sampled spectral density, agaln by analogy with continuous
systems, by obtaining the sversge power from integration of the
spectrum over all frequencies. In continuous systems we write

+00
(A2.52") r(6)? = L f 5, (@) d

=00

However, the sampled power spectrum, from equation (A2.33); is &
periodic function of frequency, with period en . Consequently,

T
the mean-square is obtalned by integration over a single period:

+ﬂ/T
sk (@) do
rrm

(A2.43) [r(n:n)]2 - =
w5t/ T

Relations (A2.L1l), (A2.42), and (A2.43) are very important in
design of sampled data systems for minimum mean square error.

A2.6 Relation Between Sempled Correlation and Spectrum

In the continuous case, the autocorrelation function and the
pover spectral density are Fourier transforms of each other, and



thus constitute the so-called Wiener-Khinchine relations. Similar
relations exlst for _sampled-da.ta systems, where Fourier series appear
gince the data are discrete. For sequence correlations R (kT) and
sequence sampled spectral density S (as) we can write, on the basls
of the above derivetions:

+0
(A2. 1) s* () = ZD & (k) 3T
k==
+n:/'l‘
(A2.45) R: o(kT) = '5?? ’/; s:r(m)edm am
-5/ T

A2.7 Input-Output Relations - (Open Loop)

Conslder again the simple open loop system of Figure A2.3,
where the power spectral density of the input is given by Srr(a)).
It is desired to compute both the contimuous ocutput spectrum, Scc(u))

and the sampled output spectrum, 8 ,  (w).
c e

TBPRA [ b e*m)
S @ 8, W Glst SN W

cc

Open Loop System
Figure A2.3

In Figure A2.3 the sampled spectral density is denoted by S (m)
and S (a)) respectively, instead of S, , orS ., in order to
simplify the notation. rr cc

If we agsume Impulse modulation, then the sampled spectrum
Srr*(m) is given by equation (A2.34) or (A2.40), i.e.

240
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L= ] o

(A2.46) Srr* (@) = Z [Srr(s)] Jar

*
Since Srr (w) is the power spectral density at the input of a
linear continuous filter with transfer function G(s}, the ocutput
spectrum can be wriftten immediately as

¥*

2
(A2.47) 8o (@) = 8. (@) |6 (30

If G(s) represents a zero-order hold, the output spectrum is
given by

f JusT
(A2.18) 5,0 (@) = 8, (@) - ;m ) Kl ~ )

Since the sampled output c*(t) can be related to the
sampled input r*(t) directly by z-transforms, i.e.

(A2.49) c(z) = R(z) G(z)

vhere G(z) 4is the z-transform of the filter described by the con-
tinuous transfer function g(s), it can be expected that the sampled
output spectrum S c*(w) can be obtained directly from Srr*(z) by
z-transform cperations.

The cutput sequence, c(nT), can be obtained from the convolu-

tion surmation as

w

(A2.50) e(aT) = Z h(kT) r(aT - kT)
k=0
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where h(t) is the impulse response of the filter in Figure A2.3.
In accordance with equation (A2.28), the sampled autocorrelastion
function of ¢ (t) 1s given by the time average:

R:c(nT) = lim e(XT) (KT +nT)

N - oo

(A2.5l) +N o
N i OOT_TT)' kéﬂ Ig:h(mT):r(m:-mT Z n(1T)r (kT+nT-1T)

Interchanging the order of summation

00 @ +N
* N v 1 N .
Rcc(nT) /. h{mT} ;. h(iT) Nlim T ) r (kT-mT )r (kT+nT=iT )
- 00
m= i=0 k==~N
(A2.52)

The last term on the right is easily recognized as the sampled
sutocorrelation of the input, and thus (A2.52) becomes

(s 0] [ o]
(a2.53) R (nT) = PR l h(iT) R, (WD + nT - 47)
=0 =0

If we now multiply both sides of (A2.53) by z ~ and sum over all
n we obtaln

'l"_CB +00 D Qo
(A2.58) R:c(nT) 2D - Zz n\—h(m’l‘)\ h(4T) R _(a+nT-1T)
ngléo =00 m—O 1—0

2
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The left hand side of (A2.54) is the sampled power spectrum, and
the right hand slde can be rewritten as follows:

a QD e o)
* . - N . - . - -
(h2.55) S, .(2) = n@md" © n(Emz™t O R (urenl-ir)s (mn-1)
m=0 1=0 n=eco

and consequently we have as the desired relationship
_ 1
(h2.56) 8,e(2) = G(2) G( 5 ) 5 .(2)

This relationship among the sampled spectra is the discrete equi-
valent to the relation

(A42.57) Scc(s) = G{s) G(-8) Srr(s)

which applies to the input and output of contimucus systems.

A2.8 Relations in Closed-Loop Systems

Based on the definitions of the above paragraphs, it is now
possible to present relationships for the statlsticel analysis of
closed~-loop sampled-data systems. Equation (A2.56), which relates

the input and output sampled spectra, will be one of the key equa-
tions in this development. It should be noted sgain, that eguation
(A2.56) presents statistical properties which have been time-
averaged over e sampling period. If the relation of (A2.56) had
been derived without such aversglng, it would exhibit time-depen-
dence, end 1t could have been written In terms of modified
z=transforms as follows:

2
(A2.58) 5. (sm) = la(z,m)|” s__(2)
vhere m = %; » (0O =m=1) represents a fractional sampling

*
period, and 8 (z,m) represents the sampled spectral density
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at the output at instants delayed by (AT) from the sampling
instants (nT). The -time dependence m disappears when (A2,58)
is averaged from O to T (see Mori, 1958). In terms of reael
frequency, (A2.57) can be written as

2
(A2.59) 8% (@) = le*e )" 5__ ()

Consider now the closed-loop system shown in Figure A2.k.

. ] ¥
r{t) +® et} P 2t ‘ Gis) c et

Figure A2.4
Closed Loop System

We are interested in the statisticel properties of the error and
output, both the contimicus error and the sampled error. We again
assume r{t) to be a member of a statlonary random process. We

further assume the process to be Gaussian and concentrate on power
gpectra.

The output spectrum i1s obtalned éasily by replacing Figure
A2.4 by the equivalent series open loop arrangement of Figure A2.5.
The cutput power spectral density, Scc (»), is then obtained as a
result of the following series of operations:




rt) r®{1) a*(t) c(n c¥{t)
—_——oF - Gls) el
‘{*m

Figure A2.5 (a)

rit) r ¥ ( e*(t) 608 clt) c*t)
5. {w) HG*(s) o
LA

|

Figure A2.5 (b)
Equivalent Forms to Figure A2.L

Assume that Srr(w) is given. Then the sampled input spectrum is

(2.60) SORS RICWO
Z=e

The sampled error spectrum is given by Equation (A2.59), and becomes

(A2.61) s:e (w) =

2
1 *
s {(w)
146 (j0) | rr
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and finally the output spectrum is given by

2
* G *
(262)  5,0(a) = loa)[* s () - | | ] @)

to which (A2.60) can be applied again to obtain the sampled output
gpectrum, or, the sampled ocutput spectrum can be obtained directly
from the sampled input spectrum as

*
o) *
(2.63) S e

The mean-sgquare error seguence e(nT)2 cen be obtained dlrectly
from equation (A2.61) by using the relationships of Section A2.h4

above:

+x/T
(A2.64) e(nT)2 = é% J( S:e(w) dw
-ﬂ/T

It is still necessary to find the contimuous error spectral
density, Scc(w) and mean-gquared continuous error, ET%TQ . It
should be noted that the continuous error deces not appear explicitly
in Figure A2.5, end therefore it must be obtasined from Figure A2.lL,
To obtain the spectral density of &(t) we define the truncated
function etl(t):

(A2.65) etl(t) = e(t) -t ft ety

e, (t) =0 elsevhere.
1

and then define the power gpectral density in terms of the Fourier
transform of the truncated signal:
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+Q0 5
f e, (t)e%at| = 1m =
1 tI+ oo 1

5
1

- E, (jw)
% 5y

(A2.66) 5 (®) = 1im
eg tl"> o0

=0

Since e(t) = r(t) - c(t), equation (A2.66) becomes

1l
iimoo ;JI[IRtl(m»)I2 +Ictl(.-awll2 - 2IRt£Jm)ct£3w>lJ

(A2.67) See(m) = .

and therefore we obtain, if the limit indicated above exists,
(A2.68) 8,0 (®) = 8, (0) + 8, (0) - 2Re [Src(w)]

The ocutput spectrum is obtained from (A2.61) and (A2.62) as

G!Qm!

1+ G*(;jm)

f

% Z[srr(s)]z=edum

(A2.69) 8o (®)

n
44]
—
£
—

Since the cross-spectral density between input and output is defiined

as
1
(a2.70) 5_ (@) = & [ﬁ-‘%] 5, ()

we have as the expression for the power spectral density of the
continuous error:
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and consequently the continuous meen-squared error 1s

+Q0

(A2.72) e(t)2=-,:-Lé-“- j 5, , (@)aw
)

Since See(w) depends on ejaﬂ', it will in general be a function of

T. Then (A2.72) could be used to set the sampling period for

minimm mean square error.
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Appendix 3
ANALOG MEASUREMENT OF POWER SPECTRA

A3.1 Introduction

The purpose of this Appendix is to present a brief review of
the theory of analog spectral anaelysis end to discuss the construction
and calibration of the device constructed. The discussion will con-
cern only signals of the type used in the present study, i.e.,
signals composed of sums of sinusoids with an additive "noise" com-
ponent. The input functions will be deterministic in all cases and
frequencies of the sinusoidal components known; the purpose of the
enalyzer, then, is to provide & relisble measure of the esmplitude of

the sinusoideal components.

The material which follows is bhased on meny sources, The
theoretical background is teken from Grenander and Rosenblatt (1957),
Davenport and Root (1958) and Bendat (1958). The measurement (or,
more properly, "estimation") of power spectre is carefully treated by
Blackman and Tukey (1958) and Parzen (1960). A number of practical
problems ere mentioned by Chang (1961) in a chapter on spectral
estimates. The discussion on memsuring spectra of signels composed
of sums of sinusolds of known frequency by ahalog methods is based
heavily on Seltzer and McRuer (1959) and McRuer (1960).

Power spectral densities (and therefore correlation functions)
are defined theoretically on the basis of integrals with doubly
infinite limits. In the time domain, this implies that the function
f (t) 1s available for all time, i.e., for - ©0 « t < + 0O,

In the practical measurement problem, we only have a function fo (t)
vhich i1s defined for a finite interval of time, say Th seconds. In
the case of human operator studies the length of this Ilnterval is
governed by factors such as the desire to meintain essentislly
stationary conditions a&s well as economic factors. Furthermore, the
extraction of frequency information in finite frequency bands requires
filters, and physically realizable filters cannot have perfect cutoff
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characteristics. Thus, the characteristies of finite data and
physically realizable filters make the practical situation vastly
different from the thecretical. To these two major problenms, the
imperfections of other components (such as emplifiers end multipliers)
must be added.

A3.2 Power Spectra of Periodic Functions

Before examining the messurement problem, the properties of
perlodic functions will be reviewed briefly. We are interested in
the function

N
(43.1) £(t) = Z ¢ cos (ngs - o)

n=1 n

for two reasons:

(1) The input function utilized in the experiment consisted
of a finite time sample of such a function, and

(2) Since experimental functions will always necessarily be
of finite duration ETR, they can be expanded in a
Fourier series in the interval ( - Tgo TR) i.e., a
series of the form (A3.1) with N = oo .

We assume that f (t) satisfies the Dirichlet conditions (see
Churchill, 1941) and therefore, that an expension in & Fourier series
will be velid almost everywhere in the interval.

Congider the function £ (t) expressed as a Fourier series in
the interval ( - T, T):

a
(A3.2) £ (t) =-2+ g [a cos (B2) t +b_sin (L) ]

vhere the coefficients a, and bn are given by



et R o

irii

T
(A3.3) B, = -% f £ (7) cos (-%E) tdn
T
T
bnz-%f f(-r)sin(%ﬂ-)!rd‘r
~T

Alternatively, we can wrilte

OO nx
(A3.4) £ (t) = an e cos (—-T- t - en)
where
1/2 a b
- 2 2 ) _ o . =1l n
c, = (an + bn) 3oey = m s 6, = ten —-an

or, for the complex form

+ oo I ()t
(A3.5) £(8) = 2 a e T
n=-o0o
where
8y = Jby &y ¥ Jb,
% = 2 5 Cn = =3

There are several weys of approaching the definition of the
power spectral density of f (t).

A3.2.1 Definition from autocorrelaticn function. From the
Wiener«Khinchine relations, the power spectral density is defined in

terma of the Fourier transform of the autocorrelation function as
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+ OO
(A3.6) s (0) = 711[ R, (1) & g

- O

or using the Fourler cosine transform (since Rxx (1) is an even
funetion of 1T)

2l

(A3.7) . (w) = j R, () cos wt ar

Now, since the process f (t) is assumed stationary, the autocorrela-~

tion function can be defined inb terms of the time average as

(A3.8) Roe (1) = £(t) 2 (t - 1)

+T

lm 1 °
=T_,°Q§-1-,—jf(t)f(t-'r)dt
Q [o] T

0

Substituting from (A3.4) we have
+T

lim 1l
(43-9) Rpp (7) = 0500 BT f
o o] -To

{f‘ c cos (wnt - en) E’ c, cos [wi (t—'r)-ei]}dt

n=1 1=]
where wn = n‘:t/T. Therefore, evaluating this expression
2 1 22 2
Rep () = e * 3 f:i ¢~ cosw T

Thus, as 1s well known, the autocorrelation of a pericdic function is
seen to be periodic as well (i.e., it contains all the periodicities
present in £ (t)) and it is independent of the phase relations 6, in
£ (t).



S M S A A A R

id i e S A S

To obtain the power spectral density we substitute
(A3.10) into the defining equation (A3.7)

(o a]
(A3.11) Sep (w) = E c02 _f- cos wrdt
Q
1 2 e
+ = Z ¢y f cos w T 208 wtdt
n=1

o}

To evaluate this expression, one cen express cos OT as

ejwt e-me

(A3.12) ¢os WT = =

+

and proceed formally to evaluate the integrals in (43.11) by using
the relation

+ o0

(A3.13) é— j eIt aw =5 (t)

-o0

where 5 (t) is the Dirac impulse function. Actually, & (t) is not
a "function" in the ordinary sense and must be used carefully. How~
ever, 1ts use is common in the study of random processes and we shall
use it formelly in these notes. The treatment can be rigorized by
following Lighthill (1958). Using the relation (A3.13) to define the
inverse Fourier transform of unity as being & (t), we can substitute
this result into (A3.11l) to obtain

(A3.14) Spp (w) =2 Cga 5{w) + % éii cn2[5 (w - wn) + 5 (w+ wn)]

Thus, the power spectral demsity of & periodic function of infinite

extent in the time domain consists of a row or "comb” of 5-"functions"
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in the frequency domain, i.e., mall the power 1s concentrated at the

frequencies * w (n=0,1, - ).

The average power contained in the spectrum of

(A3.14) is given by integration of the spectral density over all

frequencies
+ oo
= L1 =
(A3.15) Py [f (tﬂ P Spp (w) dw
-0
o< 2
= C 2 + Z l::n
0 n--‘.L--—a—

which is the expected result, since the average power contributed by

e sinusoid of amplitude ¢, is P, = ¢ 2/2.

A3.2.2 Definition from trunceted Fourier transform. A second

form of the definition of the spectral density focuses attention on
the finite length of a record. If £ (t) is an infinite length

record, its total energy
4 OO

(A3.16) j 2 (8) at
- <

will not be bounded unless £ (t) — © &5 tooc. Periodic
functions do not behave in this way, and therefore we define a

truncated function

i

(A3.17) £ (8) = £ (t) |t] =t
= 0 |t] =T

Then the Fourier transform of fT (t) exists end can be written as
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+ oo

o
(43.18) 7, [r (1) =_( £y (1) &7 at =_[T £ (t) eV at

~ o0

Now, Parseval's theorem for Fourier transforms (see, for example,
Bendat {1958, p. 41) states that the total energy can be evaluated in
the time or frequency domain, 1.e.,

+ 00 + o0

2
(43.19) f 22 (£) at = —fa?f [F (0, x)| aw

- Oy

where F (w, x) is the Fourier transform of x (%). Applying this
form to (A3.16) with fn (t) instead of f (t) we obtain for the
total energy in fj (%)

4 O0 + <
(A3.20) B ... = I ) - % j [7rw, f)]

-0

Therefore, the average power in f (t) can be defined as

T
1im- 1 2
(A3.21) Py =T—vm0<"é“i* j < (t) at
-

2

F (w, )
T —> 00 dw

since Fj (w)a can be shown to be an even function.

H

Now, relation (A3.21) gives the average power for all
frequencies. The power spectrel density is defined as the average
power in a narrow frequency band per unit frequency. Let us consider
an ideal filter Yi (jw) which ie perfectly selective such that
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1]
=

for 0

tA
€
A
£
IA
g

(A3.22) |1, (J0)

= 0 elsewhere.

Then, if the signal fj (t) is epplied to the filter Y, (Jw), its
output Fourier transform, B (jw), will be given by

(A3.23) By (w, £) = ¥, (Jo) Fp (w, f)

Using the ideal frequency selective filter defined by (A3.22), the
average output is from {A3.21)

[1\] 2
(A3.24) P - lim + 8 lFT (w, f)l dw

av-out P00 2nx T

(h}
r

Many authors at this point reverse the limiting and integral operation
in (A3.24) and define the power spectral density mes

, ’F (w, £) 2
(A3.25) Bpp (w) = %‘E Tl-li-noo = T |

Unfortunately, this procedure is not mathematically Justified and
fails occasionally, as outlined by Davenport and Root (1958).

However, if we define:

|7, (w, 0]

(A3.26) SffT (w) = 7

with no limiting operations and then obtain the power PT:

2
+ =
Yot 3

(3.2 py e £, W) = [ Spp (u) du
w
c

“g
H
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This quantity represents the average power, in & record of finite
length 2T, in a range of frequencles of width Aw centered about
w . The power spectral density is then obtained (for this single

¢
Tecord f (t))} by a sequence of two limiting operations, i.e.,

p um P {wy T, Aw)

(A3.28) 8pr (@) = Aiso yom
where
(43.29) P (mc’ £, fw) = TiifLoPT (wc’ £, &w)

Equation (A3.25) can be used to leed to the same result
obtained previously for the spectral density of infinite-length sine

waves, if convergence is assumed.

Working with the complex form of the Fourier series,

we have
T, +0 ant
(A3.30) Frn (£ ()] = f { Zaﬂe f ~Jwt o
~-T -0
+00 T i -wt
= za e O dt
n, .
—oC =M
Consequently:
T Jw - w)t
1 2 n
(A3-3l) SffT (w) = BT nz {anl J e at
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Now

j(wn - w)T -J(mn - )T

T J(wn - w)t e - e
(A3.32) °/:T e at j(wn =) for w % W

it

= 2T for w = w
n

Going to the limit, as in (A3.25) results in

1im (w)

(A3.33) T—>c>'osffT =0 for w f wy

lim AT
T>0S 2n

2 -
E: rC&J for w = W
n
This last expression increases without bound, since it corresponds to
the impulses encountered in (A3.14). They can be introduced here as
well by defining the power spectral density as follows:

Definition:

2
(3.3 1et s () =x BT L lry 2 ()] 6 (0= w)

at all points where thls expression is not zero, and

1lim

L g (f (t)],a 1sewh
e oo 3 | Fp elsewhere,
.

Bpp (w)

provided these limits exist. Using this definition, we obtain
+ 00

(43.35) Spp (W) = 2 Z 8 (v - w)

n=

o
n
D
which egrees with (A3.14) if the Fourier coefficients are expressed in
the corresponding form.
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A3.3 The Measurement Problem

The problem of evaluating spectral density functions can be
outlined with reference to the preceding development. Clearly, we
can only obtain a messured approximation to SxxT (w), as defined in
(A3.26), which may also be a valid estimate of 8 (w). The meas-

urement is dependent on 3 major factors:

(1) The menner of obtaining the truncated function Xn (t)
from x (t).

(2) The characteristics of the actual bandpass filter
Y, (Jw) in relation to the ideal filter Y, (Jw).

(3) The relation of run length and filter resolution.

These factors apply regardless of the nature of the input process.
If the input function x (t) is deterministic it is possible to
obtain theoretically exact estimates of the power spectrum (i.e.,
exact with perfect components), provided that certain relations of
frequency spacing, run length and filter characteristics are
observed. If however, the input function is a sample function of =
rendom process, the situation is considerably more complex. The ex-
pected value EL{SxxT (wj} , obtained as an ensemble average of
many runs, mey still not converge to the actual spectral density

8 x (w) of the process. The variance of the estimate will, however,
5t1ll depend heavily upon run length and filter characteristics,
which we shall consider below.

A3.3.1 The time "window.” The function Xq (t) can be
viewed as the result of an operation on an infinite-length function
x (t) by e "window" function w (t). The simplest window is that
used in defining £, (t) in the previous section, i.e.,

(43.36) v (e) = (1 {sl =t

o [t| =t
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and then writing

(83.37) xp (8) = v, (8) x(t)

This product of time functions results in a convolution in the fre-
quency domain, i.e., the Fourier transform of Xn (t) 1is given by

+ OO
(A3.38) F [XT (t)] = Fop [x (£)] = f W, (Jw - .jml) X (,jwl) duwy

-0

Thus, the "time window" v (t) has a corresponding "frequency
window" L (Jw) which affects all frequencies in X (Jw). It is
therefore clear that the choice of w (t) will affect the performance
of a spectral analyzer very significantly.

Consider the effect of the particular window w_ (t)
on the power spectrum of particuler sine wave given by
. t) = t « 8
(A3.39) p () ¢, cos (ay »
which can be assumed to be one of many in & complex input function.

The Fourier transform F, (x, w) was obtained sbove in
equation (A3.32) as

e.j(un:p - w)7 -e-.j(wp - w)T

P J(wp-w)

(A3.50) Fp (xp, w) = ¢

2 sin (m}2 -w) T
(wp-ﬁ)

and hence the finite length spectral estimate stnI. (w) 1is, from
equation {A3.26):

2 2
Te i3 -
. sin [(mP w) T)

A3.41) s w) =
( X () on [(wp -w) 'ﬂe
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At w = wp, this reduces to

2 2
Te sin“ (w_-w)T Tec
1i
(A3.42) 8 ("’p) = _.2_“.‘9_ m ~ P e - eﬂp
T up;ub {wp - )"

2

This latter value can be seen to correspond to the average power x (t)
per "unit bandwidth," where the unit bandwidth is defined in terms of
the frequency separation of the Fourier series in the interval (-T, T).
Since the fundasmental period is 2T, we have the elementary band-
width

n

= _ n_ n-1 b1
(A3.43) o = W - ow g = 2% (ET )

=r | T T

The average power in the frequency bandwidth AP 1s the power of the

sine wave, i.e., 1/2 cpa. Thus, the power spectral density caen also be

defined as

2 2

4P 1/2 ¢ T e
(A3.44) sﬂT (w) o _7“ r 5

which agrees with {A3.42) above.

Now, it should be noted that equaetion A3.41 indicates
that even with a single sine wave there is power present at all fre-
guencies, having the characteristic spectrum of Figure A3.1.

As T-»00, B (W) >ocfor ws= w, end 8 (w) = 0 for w # W

as expected. T T

The result of Figure A3.1l was obtained with one
particular "time window," namely v, (t) as given by (A3.36). A con-
siderable reduction in the side-lobes of the spectrum can be obtained
by using more sophisticated windows, &g outlined by Blackman and
Tukey (1958) and Parzen (1960). Since v, (t) was used in the present
study, we shall not pursue this metter further.
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m w 4
WoT T n W

Figure A3.1 Spectrum of Finite Duration Sine Wave

A3.3.2 The filter problem. The result on frequency spreading

of the previcus section was derived assuming a perfect rectangular
filter Y, (jw)} for the recovery of the average power of & signal in
an elementary bandwidth (4Aw). In practice, of course, any attempt
to extract the fundamental peak Tcpz'/e will be subject to error
since physically realizable filters do not have perfect cutoff. Note
that the area of the fundemental peak in Figure A3.l1 is given by

'I‘c_h2 w + 0w sin® [(mn - w) T} dw
(a3.45) P (2Mw) = _...f n . -
w - S [w, - w).T]
2
B n fﬂ/T :a:l.n2 X
* > dax
-st/’.'l' Xz
But, since
2
+ OO0 2 c
. sin” X e n
J:m—?—ax_u, then Pav(am).:_é_
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In this relstion qne 1s used to denote an arbitrary silnusoid.
Since, clearly it is impossible to obtain & perfect filter, the power
cannot be recovered perfectly. It is shown by Blackman and Tukey
(1958) and McRuer (1961a) that the signel x (t) is acted upon by an
"effective filter' which is the result of the combined effects of the
physical filter and the spectral window. Furthermore, the "pass
band" of this effective filter is at least as wide as the wider of
the filter and window spectra. (See Section 3.6 below.)

The effective bandwidth of the filter is sometimes
taken as the distance between haelf-power points on the filter fre-
guency dimgram. Parzen (1960} suggests that it be considered as the
length of the base of a rectangle which has the same aree and same
meximun height as the graph of the filter Y(Jjw); i.e.,

+ 00
Y (Juw) d w

R | ¥(w)

(Bw)eff =

42.3.3 On frequency resolution. We have noted above that the
effect of finite run length is to cause & spread of the spectrum of

& single sinusoid over the frequency domain. In addition, from the
sampling theorem in the frequency domain (see Bendat (1958) or
Goldmen (1953)), if & function x (t) exists only in the time inter-
val (- T, T) and is zero otherwise, its Fourier transform is
completely determined by the values of the transform F@ (x, w)
evaluated at a series of points 2%/2T rad/sec apart. Therefore, the
run length determines the frequency separation of sinusoids which can
be considered independent (McRuer, 1961b)}. If the truncated signal

%x (t) had, in fact, been sampled from a process with e continuous
spectrum (thus containing ean infinite number of frequencies,) the
finite duratlion (27) would make such & signal indistinguishable from
a sum of sinuscids separated by frequency intervals of n/T rad/sec.

P
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For the present experiment, these comments indicate
the minimum separation of sinusoldal components in the lnput for s

particular run length.

A3.3.4 Ensemble averaging. The analysis of the spectral

measurement method ocutlined in the previous paragraphs was based on a
single run. If the functions f (t) to be analyzed are random or
contain random components, the operations discussed above must be
repeated many times end an average of the results taken ascross the
ensemble. Such an analyéis 1s given below for the spectral analysis
method actuelly used in the study.

A3.4 Belection of Experimental Values

Based on the previous analysis, the followlng values were
selected for the experiment:

Minimum fregquency in Iinput function: fmin = lfl rad/sec.
Run length Ty = 180 sec = 32 cycles of foin

Frequency resolution = Qﬂ/Th T 0.035 rad/sec.
Distance between input sine waves = 1 rad/sec.
Filter effective bandwidth: (See below for description)

2nd order filter with half power frequency at .07 rad/sec,

—~—

Bi_pp = 0.1% rad/sec.

Based on these consideraticons, the experimental sltuation was charac-
terized by the sketch of Figure A3.2.

This particular filter bandwidth was based on Bleckman and
Tukey's suggestion thet the filter be "several to many times l/’l‘R
wide" (p. 114).



S,,T(w)-

APPROXIMATE

)
2
FILTER BANDWIDTH/T TCh /2w

————rm
———

)
Wy -0.070 wy,~0.033 wp wy, +0.035 wp+0.070
1.087 1122 1157
Figure A3.2

A3.5 Description of Measurement Method

The signals we ere concerned with are of the form

5

(A3.L46) x {t) = e, cos (wi t - 91) + N (t)
n

u
-

where N (t) is & noilse component assumed to have zerc mean and we
desire to obtein estimates of the spectral density of x (t) at the
frequencies w, 3 i.e., to measure a value propertional to Tciz/en.
The method selected for the measurement is based on Selfzer and
McRuer (1959) and is discussed in detail in that reference, as well
es in McRuer (196la). What follgws is a heuristic explanation of its
operation, with & more rigorous enalysis given in Section A3.6. The
method 1s based on low-pass rather than band-pass filtering.

We consider a function f (t) glven by a finite sum of sine

waves:

N .
(A3.47) £ (t) = fé; (a.i sin w, t + b, cos w, t)

where the w, are not neécessarily multiples of some basic frequency.

i
Multiplication by sin wdt and cos mJt respectively produces:

266




267

(A3.48) £ (t) sin w, t

3 cos w, t)

+
sin Wy t;; (ai sin w;, t + b,

i}

f (t) cos w, t

+
3 cos w, tZi' (a.:L sin w; t + b, cos w, t)

Now, if there is a frequency component wJ present in £ (t), then
the product results in the followling:

8, cos 2 w,t

1% J
(A3.49) £ (t) sin Wyt = §Q - = + sin Wy t;;:(N - 1) terms
and similarly
b b, cos 2 w, t
(A3.50) £ (t) cos wy t = 53 + -4 5 d .+ cos w, t;Z:(N - 1) terms
i

We now note that these two expressions consist of a d.c. term and an
oscilletory component and we use low-pass filters to extract the d.c.
term. If the fllters were perfect, we would extract the d.c. compon~
ents aj/2 and bJ/E exgctly. Since filters of zero-width and rec-
tangular cutoff are not physically realizable, we obtain instead a
ripple component, the magnitude of which depends on the separation of
the components wy in the originel signal end the run length TR'
Averaging the resulting value decreases the effect of the ripple. If

we denote the filter outputs as

(43.51) 1, (8) = o+ e (1)
b
1, (t) = §i + e (t)

Then we can square these terms to obtain, after adding:



; 2
(A3.52} q + q = 3 (aJ + bJ )+

+ [(aﬂ € * b, eb) ‘+ (532 + €b2)]

Filtering the result tends to reduce the effect of the oscillatory
terms due to the errors €. As noted in the previous section, the
effectiveness depends on the filter bandwidth and aversging time as
well as on the separatlion of frequencles w,. Thus we obtain an

i
estimate of the spectral density as

T
- X R g2 4q?2 o~ J
(A3.53) Sff'r (md) = = fo (4" +a ) at ¥ —

A more rigorous analysis of the operation of this analyzer is given
in Section 3.6 below.

In block diagram form this method of spectral anslysis is glven

in Figure A3.3. Since the driving function used in the.experiments

consisted of 10 sine waves, 10 identical circuits to Flgure A3.3 were

requlred.

MULT SQUARE

f{1) SINGo 1) 2
i LOW PASS g, 9
FILTER »-

ﬂwmﬁﬂ
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f(1 Y. Sy, 0

f1)COS w1 2
costw, 1 " ' Lowepass | %™ 9
FILTER

MULT ' SQUARE

Figure A3.3 Block Diagram of Analog Spectral Analyzer

"WINDOW" |4 frih f
(Eg}*w- .
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A3.6 Analysis of the Spectral Analyzer

Consider now a somewhat more rigorous presentation of the
operation of the spectral analysis method of Figure A3.3 based on
McRuer (1961a). Let the input function be £ (t) as before. If the
time window is denoted by w (t) then the inputs to the filters will
be

(A3.54) fp cos w % £ {t) w (t) cos w, t

f sinw t
o

T £ (t) w (¢t) sin w,

If the filter weighting functions are given by h (t), the filter
outputs will be

t
(43.55) o, ()= [ B () w(6-7) £ (- 1) cosuy (b~ 1) ar

- 00

and

t
(A3.56) Ay (t) = /1 h(rx)w(t-1)f(t-r1)sin W (t -~ 1) dr
Y w00
The upper limit in the integrations of (A3.55) and (A3.56) can be
replaced by ©° with the understanding that f {t - 7) = O for nega-
tive values of its argument. The measured power -spectral density

SXxT (w), as shown in Figure A3.3, is given by

+ o0
(350 s @) = & [ T+ o2 @) a

- L

Now since

- O -0

+ OO R OT OO
(A3.58) [[ T (t,'rl) drl] =J J f (t,'rl) f (t,‘ra) dr, dr,
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we can write (A3.57) in the form

(83:59) 8ge () = 57 f*jf:oljh (13) B (r5) w (% - 1)

w (t - 12) [cos W, (t « Tl) cos w_ (t - 12)
+ sinw (¢ - 'rl) sin w_ (t - 12)} £ (t - 'rl)
£ (t - 72)}d v, @, dt

Now, if f (t) 1s 2 sample function of a stationary random process,
we perform an ensemble average of Sy (w). The only statistical
terms sppearing in (A3.59) are f (t -Ttl) and £ (t - 12), The
expected value of their product is preclsely the eutocorrelation
function of F (t), i.e.,

(A3.60) Res (Tl - 12) = E {f (t - 'l.'l) f{t - 12)}

and consequently we have

+ >0
(A3.61) SffT (w) = %ﬁ ;[Z]Th (71) h (Ta) cos w_ (Tl - 12)

- 122 w(t-1,)w(t- szngl dr, dt

Rep (73 1
Then the "window" function w (t) can be integrated by noting that,

from Parseval's relation:




where W (,jwl) is the Fourier transform of w (t). The autocorrela-
tion function appearing in {A3.61) can be replaced by the Fourier
trensform of the "true" power spectral density

Y A Jo 13 - 1)
(3.6 Ry (-t =g [ s e aw

o of the filter welghting
function h (t) results in en expression involving its Fourier

The integration with respect to Ty end 1

transform H (Jw):

Foo0 oo J(w = w Y1 =1
(A3.61) f f B (x) b () cos (1 - 7)€ 1M1

- ) -

dry dt, = % {‘H [ (w - wl) + wollz +I E [(w - ml) - molla}

Using the above results, equation (A3.61) can be written in the form

B i, T N

(43.65) S, () = [ By (0 Sy ()

where By, (w, wo) can be considered as an effective filter, by
vhich the "true" spectral density is weighted. B, (w, wo) is’
actually the convolution of two filters: the "window" or filter due
to run length, and the physical filter used to extract - Sff'l‘ (wo);'

i.e.,

+00 5 2
(A3.66) By, (w, wo) = %ﬁ&‘m l W (u)l)l lH (o + w - ml)l

+I W (a)l)’le (o - w - ml)la dﬂ)}“’

®
+-}2:T{/ ]H(a)l)'zlw (w+ mo-u)l)|2

+ 'H (wl)'z ,W (w - W, - wl)"z am }
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As we have seen in Section A3.4, if simplifying assumptions are made
concerning H (t) or w (t), 1t is possible to obtain a simple
analytic expreassion for the estimated spectral density. It 1s also
interesting to note that because of the form of By, (w, wo), the
effective "passband" of By will be at least as wide as the wider
of the filter passband and the spectral window W (Jjw). Consequent-
ly, the resolution of a particular analyzer cennot be improved by
choice of a narrower filter, but only by a greater run length.

A3.7 Design of Iow Pass Filters

As discussed above in Section A3.4, the run length has been
selected as 180 sec, and the lowest frequency is approximately
1/% cps, therefore 30 cycles of fl will occur in one run; from this
information we can compute the width of the spectral peak at fl.
The filter bandwidth (the frequency spacing between half power points)
should be wider than the mein lobe of the spectrum, and cutoff
rapidly enough to avoid edjoining peaks. Filters of aprroximately
0.02 cps width and ettenuetion of 12 db octave were selected,
resulting in a situation such as shown in the sketch of Figure A3.h4
below. A filter meeting these requirements 1s & second-order system
with a damping ratio of 0.7 end a resonant frequency of C.0l cps.

The transfer function of such a filter is given by:

2
mO
G (6) = — )
+ +
2t QEF 3 wo

w = 0.07 rad sec, ¢

o o.7

IR 1




NOMINAL
FILTER
BANDWIDTH

o}

0.1 0.2 0.3 0. 05
FREQUENCY (CPS) —=

Figure A3.4 TFirst Three Spectral Peaks of f(t)

There are a number of ways to realize such a filter, both
passive and active. An active realization using operatiocnal amplifi-
ers was selected since (1) the entire experiment wes done on an
analog computer and operational emplifiers are avaeilable, and (2) no
consideration of lcading problems is required, since the operationsl
emplifiers have extremely low output impedance (less than 0.0l ohm
for high-quality chopper stabilized amplifiers). The following

methods were considered:

(1} Direct solution of the differential eguation.

For this method of simulation we cross-multiply
equation (A3.49) to yield

2 2
(52 + 28 w, s LN ) Eo(s) = W Ei (&)

Dividing by 52 we obtein, after rearrangement of terms:

woe 2t w, Ej (s)
(43.68) B (s) = [E (s) = B ()] -2 = _

vwhich cen be represented by the analog circuilt of Figure A3.5.
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( wg.
0 () — <:): |

I -, (1)

<t
Figure A3.5 SeconduOrder Filter

The obvious disadvantage of this circuit is that it requires
3 amplifiers, and since 20 filters are required for 10 channels of
spectral analysis, an alternate circuit with less amplifiers is

desirable.

(2) One-amplifier circuit using T-networks

A one-amplifier circult is shown in Figure A3.6. The
feedback impedance is, in complex frequency notation:

Ag (1 + Top 8)

(43.69) Z, (s) =

| o
1o+ sT . + 2T T

and the input network impedance is given by

(A3.70) Z (s) = A, (1 + T, s)
where
Ir
= = R R
Af ZRf, Ai ZRi t ¢
c
T ™!
— *
T, = (R C)/2
& R R; .,
Tie= 2R, Cop WV | M e
1°
Tye = (Rp Cpp)/2 T

Figure A3.6 One-Amplifier Filter
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The transfer function of the circuit of Figure A3.6 is then

E (s A l+sT
(A3.71) Eg_ég; = - Kf ( - 2f)
1 i (L+es T, +s" T, T,.) (141, 5)
If we select A, =A; and T, = T, then (A3.71) reduces to
E (s)
(A3.72) =T - - —
Ei 8 2 T

L+sTyghs Typ Ty

which is of the desired form.

Circuit A3.6 (and other similar circuits) have a major
drawback, namely, that they rely on cancellation of a pole by a zero,
end such cancellation 1s always imperfect due to component tolerances.
Consequently, by raising the order of the system new problems may be
introduced. Furthermore, many elements are required for this cir-
cuit (4 resistors and 4 capacitors) and this number can be reduced
somewhat for other circuits.

(3) One-amplifier realization using interconnected input and
feedback networks.

The circult selected for experimental purposes is given by
Johnson (1956) and shown in Figure A3.Ta. The input-ocutput relation-
ship for this circuit is established by conventional circuit analysis
techniques, such as application of Kirchhoff's laws. The resulting

transfer function is given by:

E_ (s) ] R3/Rl
(A3.73) E (8]

ClCE) &< + R, C

(R, R 5 Cp (1+ R3/Rl + 33/32) s+ 1

3
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Figure A3.Ta One-Amplifier Realization of 2nd Order Filter

Expression (A3.73) corresponds to the standard form

K

G (S) = =
52/w°2 + 2 s/wo + 1

and consequently we have the releticons:

R - R R
3. 2 1 . 2t 3 3
K==, 0" =e————0—: = =R C (1+ =+ =)
Rl o R2R30102 w, g 71 Rl Ra

The choices of particular component values were governed by the
following two factors:
a) Availability

b) Simplicity (i.e., integral or easy fractional values)
In addition to the obvious need to yleld the correct values of wy

and E. As ocutlined above, the desired values are w, = 07, £§=.7.

276




_T7

On the basis of availasbility of 1% resistors and 5% capacitors, the

following values were selected:

Ry = 20 M, R

Bl = 10 M

c, = 0.33ufd, C

1 3 ufd.

2

Consequently, substituting into (A3.7T4) we find:

(A3.75) w, = = = 0.0707 rad/sec
200

W
(3.3) (5) 5= = 0.58

aid
1]

A3.8 Calibration and Adjustment of Analog Spectral Analyzer

Basically, the anslog spectral analyzer constructed had 10
identical circuits and thus was capable of computing spectral esti-
mates of 10 frequencies, as indicated in Figure A3.7Tb.

The signal to bé-analyzed, £ (t), was constructed by summing
the 10 sine waves reqpi;ed for -the analyzer_circuits and passing the
resulting signal through a low pass filter, as indicated below
in Figure A3.8: 'where wp wes selected to be oge of three values
(o0, 1.5 rad/sec and 3.0 rad/sec). Relay 1 in Figure A3.7 b remained
open for 120 seconds, sufficienﬁly long for the low-pass fiiter
transienté to attenuate to sbout 1% of their initiasl value then
closed and rgﬁained closed for 180 seconds. The finel values
k Syx ,(wi) were read on & digital voltmeter and recbrded. The
gains at the summer input (nominally 0.8) were adjusted to correct
for d.c. gain errors in the low-pass filters.

We can compute the theoretically expected outﬁut by using the
relétionships devéloped sbove. Consider first the situation where

no filter is used on the input (i.e., w, = ©©). Then

B
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Figure A3.7b Block Diagram of Analog Spectral Analyzer
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Figure A3.8 Circuit Used to Obtain Input Function
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(A3.76) £ (t) = %5 %E; (Ai sin w, t + B, cos w, t);

o)
]
o

(The factor of 1/10 was needed to prevent overloads when summing 10
sinusoids, each with a 65V peak value, on the computer.) Tre
multipliier outputs sare:

r

c 10
l T e————
(A3.77) o6 £ (t) [Cl cos W t] = 155 L%éi A, sinw t| cos w t

1 cl 10
(A3-78) 100 f (‘t) [Cl sin wo t] = 156 jé:‘i Ai sin mit sin wo t

where C1 is the amplitude of the sinusoids supplied to the individ-
ual analyzer circuits. Now equation (A3.77) haes no d.c. component,

but from {A3.78) we get

Cle CIAO

l —
(B-79) 100 b (t) [Cl sin l.do t} = “506 -~ 300 sin 2 wo t

G
1
[366 sin mo t ;zj sin wi t}i#o

From (A3.75) the low-pass filters have a gain of 2, consequently we
have for the filter outputs 9 and g,

CA
(a3.80)  q (t)\ -t Rs 4 (W] = R

o o]

vhere R represents a ripple component due to the physical charac-
teristics of the low-pess filters which do not reject perfectly all
frequencies outside of their pess-band. The squarer output is then
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~ (Cl Ao)2 -2 2 -~
(a3.81)  lq (t)]7 ¥ P x10%; [q (8))° T o
W=t 10
Q
Consequently the summer output is, including the gain factor of 0.8:
_ 0.8 2 2

(A3.82) Toat = ;55 ¢ (Ao ) {+ Ripple)
The integretor output, then, assuming the average value of the ripple
t0 be zero, is
( ) )08 2 180 (0.8)(180) ¢,®
A3.83) I_=%k 8§ w ) === h/ﬁ A " dt = A

o e “ffy ‘o ;53 1J, o 100 o

. 2
Since the desired estimate is: Sff.(“o) = 5 ¢~ vhere c_ is the
Fourier compeonent emplitude, we have from the above ke =
2(0,8)(180)012/106, Since for the simulation C, = 65.0 volts,
A = 6.5V, we get from (A3.83) the expected output for all 10 chan-

o}
nels.

(A3.84) I = K SffT (mi) = 25.8 volts
When the sum of sine waves is processed through a low-pass

filter,
1

then we can compute the output power spectrum of the filter knowing
the input, as done previously. The magnitude of the spectral peaks
of the input function is glven in equation (A3.86)

(A3.86) Bep (wi) = 22°8V volts/rad/sec
|I|

e
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Then the filter output magnitude is given by

25.8/ke
sffT (g,

5,5
£iltered 1+ w,%pg

Letting Wy = 1.5 ra.d/sec and wp 3.0 rad/sec results in the

3 calibration curves shown in Figure A3.9. It can be seen that the
measured polnts agree with the theoretical curves within approximately
1/2 db which is considered asdequate accuracy for the present experi-

ment.

Points obtained from the digital computation of power spectra
(discussed in Appendis 5) are also indicated in Figure A3.9.
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Appendix L

ANALOG SIMULATION OF SAMPLED DATA SYSTEMS

The use of an ané.log computer for representation of sampled-dé.ta
systems 1s well established, with the flrst references to such work
dating to about 1954 (See Bibliography et end of Appendix). However,

the simulation of human operator models hes required the development
of some novel techniques which are summarized in this Appendix.

Akl Introduction and Background

The basgic circult presented in the majority of the references
is the approximate simulation of a sempler followed by a zero-order
hold, as shown in Figure Al.l.

(1) s |-o- 8T ylt)
| 3
R¢
.—.——M—n——
c
—] +—4

xtn R / D ye B
—_— A

Figure Alk.1 Simulation of Sampler and Zero-Order Hold

28,




when the switch 8 in Figure AL.1(b) is closed, the circuit has the
transfer function '

Yc(s) Rf 1

(ak.1) X&) TR, TFRLs

and consequently the transient solution is

R, =-t/Rfc
(Ak.2) yc(t) = = E; (1-e ) + yc(o)

If the time constant (Rfc) is sufficiently small compared to-the
sampling period T, the rise time may be negligible. In the sampled-
data simulator used for the work reported here (see Reich and Perez,
1961) the choice of parameters was the following:

o
[}

R, = 50 K {1

C.001 mfd (or .OL mfd by selection)

o]
jou
e}
(9]
]

This the time constant becomes:

RC = (.05M)(.001 pfd} = 50 p sec.

The gain of the circuit is unity, since Rf = Ri and the meximum
allowable sampling rate is determined by the time constant of

50 u sec. If we assume that the input changes insignificantly
during the period of switch closure, and arbitrarily let the switch

closure time T Dbe restricted to

(A4.3) T & 05T
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in order to epproximate impulse sampling, then we have the following

relations:

Time constant ch = 50 u sec
Switch closure time T 2 9.2 RC in order to charge to

within of input

1
10,000
.1 29,2 (50)u sec. If we choose 1T = 500usec = 0.5 msec

then Tosp = 0 (.5 msec) by relation (A4.3) or
Tmin = 0.0l seconds and fmax = 100 cps

Since in the human tracking problem the maximum sampling frequencies
expected are of the order of 3/second, we can use the larger value
of capacitor (0.0l mfd) to obtain better stabllity and still obtain
pulse durations considerably less than 5 % of the sampling period.

When the switch is open, the sampled voltage will be held by
the capacitor. 1In practical present-day computers the leakage
resistance of the capamcitor is sufficiently large to make the expon=

ential decay negligible during one sampling period.

It should be noted that the circuit of Figure 2.1(b) is not
a simuletion of a zero-order=hold, but rather "sampler-followed-by
zero-order-hold", since the modulated pulse train x*(t) does not
appear in the circuit.

AlL.2 Solution of Difference Equations

Consider a difference equation of the form

(Ah.%)  y(t) + aly(tn_l) ¥ ka g y{t,) +a y(t) =

box(tn) + blx(tn_l) + eee + bnnlx(tl) + bnx(to)
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where tn is the n-th sampling instent after time _to' To solve
such an equation on the analog computer, (2n + 1) semple~and-hold
circuits are regulred to obtain and store the present and past
samples of the input x(tn) and y(tn). In block dlagram form the
circuit is indicated in Figure AL.2 for a second order equation.

i) | sampLE- |  x(tn) DELAY x(tg-1) | DELAY xitn—)

AND S-H AND S-H b
. b 2
b
° |
9
y{tn} DELAY DELAY 9

AND S-H [7yp — 7| AND S-H

Figure Ak.2 Block Disgram of Difference Equation Solution

Thus, the n-th sample of the voltage x or y is obtained by means of
a sample-and-hold unit and passed on, at successive sampling
instants, to additional storage units. To obtain the tranamission
of & sampled value, a cascede of sample~-and-hold circuits of the
type of Figure-Ak4.l cen be used, in elther of the two ways indica-
ted in Figure AL.3.

In Figure Ah.3(a) the chain of S-H amplifiers is activated by
energizing the sampling relays in turn, beginning with the last end
working backwards. This arrangement has the following features:

(a) Only one amplifier is required for obtaining and holding
each past sample.



i S -

(b) The sampXing times must be adjusted carefully in order to
insure that a value is transmitted to the next channel
fully before new information is edmitted. If many
chamnels are cascaded, the sum of the individual delays
in each channel can amount to a significant proportion
of the sampling period.

Example
In the simulator utilized in this work, as outlined above in

Section AL.1 we have the amplifier time constant

RC = 50 p sec

and the switch closure time 7,

T =10 RC = 0.5 m sec

Thus, if the n-th sampling ewitch closes at the sampling
instants (XT), the (n+l)st (or previous switch in.the chain)
will close at the timeg (XT + 0.5) m sec, the (n+2)st switch
at (kT + 1.0) m sec and so forth.

An alternate method of obtainling past samples from a cascaded
chain of sample-and~hold circuits is shown in FPigure Al,3{b). 1In
this system a group of "sampling" relays close simultaneously and
at least by 2 10 RC seconds later, when the "sempling" relays
have opened, the "present” relays close and transfer the sampled
values to the next S-H circuit in each pair. This arrangement has

the following features:

(a) All sampling operations take place simultanecusly, rather
than in sequence as in the method of ‘Figure Ak.3(a).

(b) Two emplifiers are required for each channel of sample-
hold. |
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“The simulator used in these experiments uses the two-amplifier
method of simulating sample-and-hold clrcuits, snd future
references will be to this system exclusively, unless clearly
stated otherwise. '

Alk.3 Simulation of a First-Order Hold

The clrcults'discussed above are used for simulation of a
sampler and zerb-orde:_' hold. The human operator models discussed
in this report make use of a first-order-hold to obtain exact
extrapolﬁtion of cor_naltant-velocity inputas. The first order hold
can be described by its transfer function

-sT 2

) B (s) = T(1 + 1) (g )

or by its output time response between sampling instants:

y(t) - ¥(t ;)

(AL.6) y(t) = — n-l’ (g t)+ylt) (b =t<t

n+l )

%

Note that the cutput is _pontinuous between sampling instants and
depends only on the present and past sample values of the input.
An analog computer circult for simulation of a sampler and firgte
order~hold is given in Figure Ak.L, both in block diagram form and
ag a detailed computer diagram, baped on the availabllity of the
sampling pulse traln used in the S5-H circuits.

Two major points can be observed in this circuit:

(a) The integrator mist be reset to zero at the beginning
of each sampling period. - In the system of Figure
AL.4(b) the sampling pulse used for the S relay in the

. 8=H ecircults is also used for the reset operation by
means of a relay amplifier'. (An electronic switch
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could be used here to advantage, but the speed require-
ments in the problem do not make it mandatory).

(o) Potentiometer "P" can be used to transform this circuit
into a simulation of a "partial velocity correction
hold", if it 1s set to k/T instead of 1/T as indi-

cated.
Then for k =0 we have a zero-order hold,
for k=1 we have a full first-order-hold, . and

for O0<k<l we have partial velocity correction.

Al Simulation of Modified Hold Circuits
In Chapter 3 (Section 3.4) the concept of a "modified" first
order hold circuit was introduced. This c¢ircuit is based on contin-

uous rather than discrete slope estimation. The conventional and
modified hold circults with partial veleocity correction are shown
in block diasgram form in Figure Ak.5.

The simulation of the modifled WH circult cen be accomplished
directly by using the é-amplifier sample-and~-hold channels discussed
previously. The simulation diagram is shown in Figure AL4.6. The
prominent festures of this circuit are the following:

(a) The use of S-H channels makes it possible to introduce
time delays in series with the hold circuit of any
magnitude (for D = T) as required for simulation of the
"reaction time". The sampling pulse delay is set to the
minimum relay closure time (approximately 50 u sec) if
no additional time delay is desired. If an additional
delay is desired, the "present" pulses Sp are
correspondingly delayed.
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{l’)

f-a~ T8 _0/4 J-g— T8 I+Ts
S S + y,m

1=k -Ts

a(t)

{a)

[ I-9"T8 14T
0O :
I+ Tgh 5 s

L

Y, (1)
a(t) ™

Ik |-g—T%

(b)

Figure A4.5 (a) Partial Velocity Hold Circuit
(b) Modified Partial Velocity Hold Circuit

(b) Relay S, closes vhen the computer is "Reset” in order
to discherge the capacitor.

(¢c) The approximate differentiation circuit used can be
described by the transfer function 'G(s) =s/(1+ T3 8)
where the time constant T3 is given by Ty = Rdcd in

Figure Al.6.

Time responses of the modified hold circuits for various
values of partial correction Xk are shown in Figure AL.T.
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- Appendix 5
DIGITAL COMPUTATION OF POWER SPECTRAL DENSITY

A5.1 Introduction

The purpose of this Appendix is to outline briefly the digi-
tal computer program ugsed for computation of spectral density in
this study. '

The original input to the digital computer was a magnetic
tape recording of error and output signals in the tracking loop.

This data was digitized as indicated below.

The cutputs of the program were used for three major

purposess

(1) To check on the accuracy of analog measurements of

grror spectra;

(2) To provide information on the presence of energy
between and beyond the 10 spectral peaks which

characterize the input function;

(3) To provide cross-spectral densities Sre(jw) and
Src(jw) (between input and error, and input and
output respectively), required for synthesis of
the continuous operator model. The program was
written by Negron (1961) at Space Technology Lab-
oratories, Inc. and all the runs were made on an
IBM 709Q computer at STL.

A5.2 Basic Equations of the Program
The equations are taken from Blackman and Tukey (1958).
The autocorrelation functicn is computed as
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T. - 7
R
(A5.1) éi('r) = E—_iﬁ_—l'f g(t) gt + T1)dt (TR = 2T)

where g{t) is the function being analyzed and 2T is the total
length of the record. The time-window used is

w(t) = 0.54 + Ou46 cos &, Jt|<T

(A5.2) = 0.04 |t]= T
=0 |z|=T

which is called Mhamming¥ by Tukey. The modified autocovariance

funetion is then computed as

(45.3) R, (v) = P, () w,(x)

for the single i-th function.

The spectral density is then estimated by the Fourier cosgine

transform

i s]
(A5.4) Sgg(f) = Elfﬁi(r) cos wrdt

which is related to the spectral density Sgg(m) discussed in
Appendix 3 by the factor 2m.

For computation of cross-spectra bstwesn two records x(t)
and y(t) the program first computes the modified cross-correlation

funetion using the same time window:

1 T‘|T|
(45.5) ny(r) = w(r)[-irfz;y.j:T_|T|x(t) y(t + T)dt

and hence the cross spectral density is estimated as



+® +o
{A5.6) SXQY(f) = j:w ny("r) cos wrdt + J j_f}q(r) sin wrdr

Thus, the crose spectrum is complex. The program computes the
magnitude and phase of Sxy(f)' By letting x(t) be the input r{t)
and letting y(t) be the error e(t) and operatorts output c(t)
raspectively, it was possible to compute the cross spectral
densities Sre(f) and Src(f) which are required for synthesis of
the human operator modela.

In addition, the program computes @he cohsrence function
C{f) which is a measure of the degree of linearity in the relation-
ship, l.e.

ls_()]?

A5.7 c(f) =
(45.7) ) sxfr%"s‘_(‘iy f

A5.3 Preparation of Input Functions

The original input functions to the program were recorded on

a General Precision Type FM magnetic tape recorder. Both man and

model parameters were recorded as shown in Figure A5.1l.

-8 |
+ et HUMAN ¢, lt) e 2
OPERATOR
B 3
ASSUMED &yt —e 5
MODEL
*8
RECORDER
CHANNELS

Figure AS5.1l Tape Recording Arrangement
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The analcg data were digitized in preparation for the
digital program. The analog data originally recorded at 3 3/4"/sec
and played back at 60"/sec (a speed-up factor of 16) for processing
through an analog to digital converter were digitized at 1666
operations per sec for 4 commutated channels. Thus, each function
was sampled at
1666 ~

(A5.8) fsamp = o 26 samples/sec

Since the relevant frequencies are below 3 cps, this rate is
sufficiently above high to avoid difficulties due to Nyquist

folding frequencies.

AS5.4 BSelsction of Parameters for Programs

The operation of the program requires selection of At,
the interval at which the correlation function is computed and the
number of data points (n) to be used. These two numbers determine

the run length and the frequency resoclution respectively.

Five minutes of data per subject per run were availahle.
Thus, there were (300 sec x 26 samples/sec) or 7800 data points
available., To obtain a comparison with analog data (even though
filter transients do not enter into the digital method) the first
2000 points were skipped and 5000 peints selected.

The minimum At possible was
1
(A5.9) (At)min = 57 sec = .0384 sec
since the data were sampled at 1/26 sec intervals. The interval

used in the computation was 1/13 sec or At = .0768 seconds; the

maximum frequency computed was (from the sampling theorem)
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S
(A5n10) fmax = Z(At) = 605 cps

The frequency resolution follows from the selection of the number
of lag values (m) and the size of the interval At. With m = 260
and (At) = .0768, we have

1 1 1
(45.11) AL = 573%%s = 3707887 (280) ~ (207 - 025 cps

Since the 10 spectral peaks in f{t) were approximately
1 rad = .16 cps apart, this value of (Af) is adequate to obtain
good separation in the computed spectrum.

From the fact that spectral estimates are distributed as
chi-square, Blackman and Tukey give confidence limits for various
measurement technigques. For the method used here, the width of

the 90% confidence band of the computed spectral density, in db,

is given by
m
(A5.12) 20 T
where m = no. of lag values
n =

no. of data points }tsed
If m = 260 and n = 5000, we obtain

(A5.13) 90% conf. band = 3.3db

i.e., there is only a 10% chance that the true value of spectral

density would be outside of the band (Sﬁ. - 1l.65db)=< See

T T
Spr + l.65db, Of course, these confidence limits apply to random
T

-
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processes. For deterministic inputs, such as utilized in our study,
where the output can be assumed toc consist of a deterministic plus
a random component, these limits properly apply only to the measure-

ment of the random component.

A5.5 Results

The digitally computed power spectral densities were reduced
to IBM cards and plotted on a Benson-Lehner plotter. The resulting
plots of error and output spectral density for the 7 runs dis-
cussed in Chapter 6 are given in Figures A5.2 to A5.8. Two major

conclusions can be drawn from these curves:

(1) The amount of energy present between the spectral peaks
is 10 to 20 db less than the peak power. Consequently,
the operator does not introduce large amounts of power

at frequencies where there is no input power.

{2) The error spectral density is significantly lower, again
by 10-20 db, beyond the range of the input function.
Therefore, any evidence of periodicity due to sampling
is extremely difficult to detect. This problem is dis-
cussed in Chapter 6 where computed values are compared
with measured ones. However, it is apparent that there
are dominant peaks in the 'moise® gpectrum and they are

at approximate harmonics of the input frequency.

Cross-spectral densities computed from the program were
used to synthesize linear operator models, as cutlined in

Appendix 7.
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Appendix 6
EXPERIMENTAL RESULTS

The results of the experimental portion of the study are pre-
sented in the following pages in the form of graphs of error
spectral density for the various cases considered and for all

subjects. The graphs are organized in five groups:
(1) Results for Case 3 (mB = 1,5, continuous display)
(2) Results for Case 4 (wB = 3.0, continuous display}
(3} Results for Case 5 (wB = 1.5, sampled display)
(4) Results for Case 6 (mB = 3,0, sampled display)

In each case all the runs are presented for each subject, followed
by curves which represent the averaged spectrum for each subject.

Two points should be noted concerning interpretation:

(1) The data are given in the form of experimental points
connected by dotted lines. The lines are used to connect
a particular set of points from one run for easier visual-~
igation, but they do not imply that there is energy present

between the experimental points.

{(2) Normalization of vertical scale. The power spectral den-
sity scale is referred to the measured values of the
unfiltered input function. Thus, on the same scale, the
spectral density Sff (mi) will yield 10 points at the

frequencies W all Eying on the O db line.
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Appendix T
COMPLETE ANALOG COMPUTER DIAGRAM

The complete schematle dlagram of the analog computer setup utilized
during the experimentel portion of the study is shown in Figure AT.1l.
The disgram consiste of the following basic portions:

(1)

(2)

(3)

(%)

(5)

(6)

10 oscillator circuits used for construction of the input
function f(t) and for the spectral density measurement
circuits. FEach circuit is provided with & damping adjustment
to maintein constant amplitude for the 5 min. runs. At some

frequencies, the damping requlred was positlve, at others,
negative, depending on the amplifier characteristics.

10 speciral density mgasurement circuits which are fully
described In Appendix 3.

The tracking system circuits, which include the summation and

filtering of the sine waves to produce r(%), the error measure-
ment, scope input, and following "stick" output.

The sampled-data model of the human operator, using the
"modified" partisl velocity hold circuit. The simulation of
this circuit is fully described in Appendix 4.

A clock conslsting of en integrator-relay system which started
the spectrum averaging circuits 120 seconds after the start of
s run, and terminated the run 180 seconds later.

An intermittent display circuit which made use of a sampling
pulse from the Sample-~Hold Computer to actuate a power relay
vhich added a 1M resistor to the "intensity" circult of the
tracking oscilloscope, thus blanking the spot completely.
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The equipment consisted of three basic computer consoles: a 60-amp-
lifier Electronic Associates Model 16-131R, a 48-amplifier modernized
16-24D, and a Sample-Hold computer with 2k Beckman/Berkeley ampli-
fiers fabricated at Space Technology Laboratories, In addition, 15
extra dual-channel electronic multipliers were "borrowed" from other
consoles for use in the spectral density meesurement circults.
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Appendix 8

"BEST FIT" DESCRIBING FUNCTIONS

The selection of analyticael forms for continuous operator models,

Gc(jm), is illustrated by the curves in this Appendix. The method
is described in Chapters 2 and 6. Basically, the function G(jo)

is obtained as the ratio of two cross-spectral densities obtalned

from the digital program described in Appendix 5; i.e.,

( ) G{Jw) = —-C(J )
A8.1 I
&)

The magnitude of G is plotted on seml-log paper and the phase of
G 1s plotted separately on linear paper to facilltate the fitting
process. Since the time delay e-D-‘D does not affect the ampli-

tude characteristics, the fitting can be done separately for ampli-

tude and phase.

Based on the work of McRuer and Krendel described previously, it is
assumed that G can be fitted with the form

« 3D

(48.2) G (3) = %{—FWF = G;(jm)e“JD‘”

Using a template for the amplitude of G,, & value of "a" is
selected. The phase characteristic for the resulting lag term,

1/(1 + s/a) is subtracted from the phase plot of G. If the
residual phase plot approximates a straight line on the linear
phase-frequency plot, it represents a pure time delsy, and the "fit"

is considered satisfactory. If not, a new value of "a" is selected,
until a satisfactory fit is obtained.
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et

The value of D in (A8.2) is determined by using the phase relation
of the pure time delay:

(48.3) ¢R = arg e3P - _ ap

At © = 2x we have

(AB.4) fp = = 2nD

and consequently the vailue of D in seconds is cobtained from:

@)
(A8.5) D= f=1
2n(51+3)

Figures AB.1 through A8.3 which follow show the experimental points
plotted separately for amplitude and phase, the fitted amplitude
charscteristic of Gc'(jw) and the residual phase QR for the recor-
ded runs R-1 through R-3.
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