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THE HEAT CONDUCTION AND THERMAL STRESS ANALYSIS
BY THE FINITE ELEMENT METHOD

T. Fujino* and K. Ohgaka**

Technical Headquarter, Mitsubishi Heavy Industries, Ltd.
Tokyo, Japan

There are many engineering problems which require thermal
stress analysis, because the objects to be treated are Subject to
thermal load. In order to solve the problems, it is necessary, to
know the stationary and transient temperature distribution prior to
the stress analysis, Fortunately, it is possible to apply the finite
element method to the analysis of heat conduction, as to the stress
analysis.

In this paper, we studied a method of analysis and its accuracy for
heat conduction and stress by means of the finite element method
using the triangular element with three and six nodes.

*Dr. Eng., Assistant to Manager, Technical Administration De-
partment,
**Technical Section, Technical Administration Department.
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SECTION I

SUMMARY

The analysis of heat conduction and temperature distribution is an important problem
just as stress analysis is in the engineering field. The problem is described mathematically
by partial differential equations which are solved numerically by digital computer by re-
placing them with difference equations based on an orthogonal lattice system.

But this calculation method is not efficient for the problems, in which the boundary has
an arbitrary shape, because the orthogonal lattice gystem is not suitable for it. The matrix
method or the finite element method are preferable in this respect, because we can use an
arbitrary shaped element. The finite element method is usually used for the stress analysis
of plate and solid. But they are also effective for the continuum analysis of all kinds, for

instance, heat conduction, hydrodynamics, electro magnetic field and so on.

In this paper we studied a calculation method of transient heat conduction, stationary
temperature distribution and thermal stress by means of the finite element method, and pre-

pared computer programs which have general purpose applications.

. It is necessary for us to study the calculation method with high accuracy for the saving
of calculation time and memory space of the computers. Formerly, in the analysis of heat
conduction and temperature distribution by means of the finite element method, triangular
element with three nodes which give the linear temperature distribution in an element was
used, This method has sufficient accuracy for the analysis of stationary temperature dis-
tribution when there is no heat exchange in the given domain, In other cases, however for
instance, when there is heat loss due to the temperature rise or heat input or output due
to the heat transfer on the surface of a plate, the temperature distribution is not a harmonic
function, so that a linear temperature distribution in an element does not exist.

If so, the heat balance in the element cannot be kept, and hence the temperature distri-
bution of more than second order polynomials must be used instead, Concentrated heat
capacity and heat transfer were used for the analysis by the finite element method, but this
method lacks accuracy due to the assumption of concentration of heat capacity and heat
transfer. In this paper, we tried some test calculations to study the accuracy of various
kinds of elements related to the above theory. For this purpose, elements of regular triangle
and equilateral right triangle were used. Test calculation results obtained by the concentrated
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and uniformly distributed heat capacity and heat transfer were compared with the theoretical
value, and we came to the conclusion that both numerical calculations are not accurate,
whereas mean value of them gives nearly correct value.

Calculations based on the regular triangle are stable, but those of equilateral right
triangle are disturbed by the difference in the node valency. Regular triangle element system
has the valency of six at all nodes, while in the other element system, node 1 has the valency
of eight and node two has four as shown in Figure 16, resulting in disturbance of calculation.
For the remedy of this defect, a modified system is introduced as stated in detail in Section III,
The modified element system gives fairly accurate calculation results as shown in Figure 15,
The modified element system with six nodes has more accuracy, but in most cases when
special accuracy is not needed, modified element system with three nodes may be used with
sufficient accuracy,

Transient heat conduction calculation method by the finite element method was also
studied. Laplace transformation, inverse Laplace transformation and modai analysis technique
were applied in this paper,

Finally, we studied calculation method of thermal stress using the triangular element with
six nodes.
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SECTION II

FUNDAMENTAL EQUATION OF HEAT CONDUCTION

The differential equation of heat conduction of thin plate in a given domain is given in the

following:

98 __ ¢ 08 2 268
: Ah + 2 amE=+a (O - 8+, ()

Ch
ot dx ox Jy dy

and the boundary conditions
g - Bb = given {2)

28
)L—;,F]' = Gb(®b"'g )+qb (3)

By Laplace transformation Equation 1, we have

0 28 d o8
— - —— — ———— —— -— +
ch{ 9°+56 ) ™ Ah 3 + 3y Ah 2y +a, (®a 8) q,

or (N

P 3 . 9 d o
{ax A gt =2 M 5 la +Ch5)}9- (a, +a @ +Ccho,)

where 90 are initial temperature.

To solve the above equation by means of the finite element method, it is necessary to

find the functional which gives the above differential equation by variation.

In accordance with the siress analysis, we introduce the following temperature strain
energy V and the temperature virtual work &'w as follows:

LD (8] Yooy rersr 8% ] e

4 2
+2§;abh8 ds (5)

8'w=ﬂ; (a, +a,8,+Ch b, )Sedxay+§; hlay+a,®,) 3es (6
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Just like the case for the stress analysis, we have the following variation equation:

3v-8w:f n {)\——--ab(®b-3)—qb 1564

e e A PR L

+qu +au @a + ch@ ] 88dxdy = © {7)
The above equation gives an identical differential equation with the Equation 4 and the
boundary conditions 2 and 3. Hence we are able to use the Equation 7 as the fundamental equa-
tion of the finite element method applied to the heat conduction analogous {o the stress analysis,

When the temperature distribution in an element is given by

a- Z m (X, y) 8 (8)

where Pm(x,y) are the shape function and Bm the node temperature, we have the following
temperature stiffness matrices:

V=2'~— K &8 8 (9)

Kmn=fj;{>mtpm Pax +Pmy Pay )+ (CNS +ag 1P B }axdy

+95 ay hP, P, ds
S

(o)
and the effective heat source
Q. fL (qq ta,®,+Cnb, VP, dxdy
+ h P
92 (q, +a, ® 1P, ds o
Summarizing them for the total system, we have
zr: K ij ai &, (i2)
: rz Q; 36, (13)
and finally we obtain the equations of heat conduction for the finite element method as
follows:
-‘?-‘f-—o =Y k.8 -a -
36, i poro (14)
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SECTION LI

ANALYSIS OF STATIONARY TEMPERATURE DISTRIBUTION

In this study, we used triangular elements with three and six nodes, and the area coordi-

nate which are defined as

C <Am /A =0, +b x+Cphy (m=1,2,3 ) (15)

Where A is the area of triangular element and Am is shown in Figure 1,

3

Figure 1

Differentiation of area coordinate is given by the following equations

0y oty
ax m dy m

(i)

Integration of temperature strain energy and virtual work are easily given by using area
coordinate., An element 1-2-3 in x-y plane is transformed into the corresponding element
1' 2' 3’ in area coordinate €| . Ca plane as shown in Figure 2. The area integration referred

to the element 1, 2, 3 can be written as

ﬂ;fdxdy = a (=2A)f_];fdg|d§z

Therefore, if we define
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as the basic functions, because the arbitrary functions are given as the polynomials of
area coordinate, we have the following integration formulas

' -G m Mg .Mz
—ILE 0 00 anay =2j;-d§|j; gLt e, el

2m| ! ma ! IT\3!

(m| +m,+m, +2H i)

where ml, m2, m3 are arbitrary integers.

X-¥ Plane Transformation of element
in x-y plane into areg
y 3 52 coordinate plane
Ta'
2 i0
' L
3I
X 5
Figure 2

TRIANGULAR ELEMENT WITH THREE NODES

In this element, shape function Pm(x,y) are the same as the area coordinate §m(x,y)
and the temperature distribution in the element is given by

8= 2 (.6, (18)
m
Therefore, the temperature stiffness matrix is
Kmn =A (Ah 1"rnn"'at:l Pmnltap h vy, (19)
where
- L
Wmn iy ff(bm by+C, €, )dx dy (20)
i
,.Lmn=1-ff#(x,y)gm;n dx dy | L—ffp.(x.y)dxd,:l (21)

22)
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and the effective heat source is
Q, = f(qa+aa®u)§m dx dy +g5 hiq +a, @ 1L ds 23)
S

Generally Ah and @, are the function of x, y in the element, but for the simplification we
may assume a uniform distribution without large loss of accuracy. Formerly lumped heat
capacity ch and heat transfer coefficient a, were assumed in the analysis of transient heat
conduction and stationary temperature distribution, but they were accompanied by the loss

of accuracy as shown in Figure 19,

For the development of calculation method, we introduced the following four kinds of
elements which contain respective distribution function u (x,y) ofch and @, namelyu (x,y) =1
for the uniform distribution, p (x,¥) = pmg (x-xm, y—ym) for the concentrated constant system
where 8 (x,y) is the two-dimensional delta function, and & (x,y) = (1 + pmS(x-xm,y-ym))/z
for the mean constant system.

1. (C3) Concentrated constant system element with three nodes
3
Fon | H

M2
Hi3 )

- - |
T e Sl o Sl 3

B =AY /A (m=1,2.3 )
|
Figure 3
2. (D3) Uniformly distributed constant system element with three nodes

(I
2 |
I I 2

3. (E3) Mean constant system element with three nodes
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4, {M3) Modified mean constant system element with three nodes

For the purpose of elimination of disturbance in calculation caused by the coexistence of
nodes which have a different number of valency, for instance, in Figure 16 node 2 has four
valency whereas node 1 has eight valency. Difference relation for node 1 and node 2 are not
the same as shown in Figure 13, therefore when there are different kinds of nodes, which
have different valency, the calculations are disturbed as shown in Figure 16, For the remedy
of this difficulty, there is introduced a modified element as follows,

Two triangular elements 1, 2, 3 and 1-3-4 which have the side 1-3 in common, shown in
Figure 4, are also divided into another set of triangular element, namely elements 1-2.4 and
2-3.4. The stiffness mafrix referring to the rectangular element 1-2.3.4 Kij is given by

K k! +xk% +k> +x*
i) =K i i ij /2

where Kirj ig the stiffness matrix referring to the rth triangular element,

Modified elements are shown as Figure 4,
3

3 3
4 : 4 4
-1
e +
| [
e 2 |
2

Modified element Figure 4

In the above figure (r) denotes the element number.
TRIANGULAR ELEMENT WITH SIX NODES

This element is shown in Figure 5. The node 4.5.6 are the middle points of the sides
2-3, 3.1 and 1,2, respectively.
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The shape functions of this element are

P, =§| { C.-Eg“Qa’
Pp = gz(_gl"'gz'ga)
Py =0y (=8, -, +C3)

Pg = 4 gz gs
Ps = 4 Cs CI
P6 : 4 gl cz {24)
and the temperature distribution in the element is given by
6
8 -2 e 8 25)
m=l
The temperature stiffness matrix K is

K n =ff{>\n(Pm Pox T Py Pny}+aap_(x,y)PmPn}dx dy

+ ¥ f ha,, P_P_ds
b m'n L
£z £
Ah :
= A q2 'pmn ta, ""mn)+ fz"l hab[ Yimn
The g matrices are given as follows in reference to the distribution function

- -* 3
1. (C6) P ™A /A

. H
F‘mn - 3
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2. (DS6)
£ mn ="'3—0 6 -l -i -4 i
-1 6 1 -4
-1 -1 6 -4
-4 32 16 16
-4 16 32 B
i -4 16 16 32
3. (E6)
""mnMS : ”"mnc6 + ""mnos'}/2
'l 1-
where Yy ocil2e, -4 -4f, 164, 164,
l2d, -44, 6/, 16.45
12d, 164, 164,
f 3243 324,
Sym. f 32/,
f
dy=byve; |, dy=iy, +cp . dy =b3 +ch
£, b, byt cpe5, Ly =by btcge,, Ly=b by +¢ cy

-
1

Vimn

Imn

1-‘I"'.orrln B

16 (d, +d, + dg

Sg

)

* T30 1-Iﬁmn
[ a4 -1 2
-1 4 2
! 2 16
- a -y 2 ]
-l 4 2
2 2 16
L -
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SECTION IV

STUDY ON THE ACCURACY OF CALCULATION

We conducted a series of studies on the accuracy of calculation by the finite element
method of various kinds which are stated in the previous paragraph. The regular triangle and
the isosceles right triangle elements were choosen for the systematic study of accuracy.
For both e¢lements, calculation formula by the finite element method are turned into the
difference equations referring to the nodes as follows.

REGULAR TRIANGLE ELEMENT WITH THREE NODES

Let a side length of a regular trianglebe a, We have then the following temperature stiff-
ness matrix from the Equation 19,

2ZAhA 3

Kon =A(AD ¥+ a p-mn)=—-;2———-(¢mn+?a T
where a =a2au/kh and
- JE 2 -1 -
ma -l 2 -
= -
. i 7
P’mn - J ? !
I for (C3)
I
I
12
| 2 I for (D3)
[ i 2
2—'4 e ot 1 7]
| 6 | for (E3}
L o !

From the above equations, we have the following difference equation referring to node 1 as
shown in Figure 7,
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cf—se (B

a b
C3 | 96+24 1 16
7 D3 |96 +12 a 16 - 20
E3 [96+18K 16 - d

2 3 @ e

Figure 7

08, —b (8, + 05 +0,+085+8¢ +6,1: 0

REGULAR TRIANGULAR ELEMENT WITH SIX NODES

Similarly, for the regular triangle elements system with six nodes, we have the following

aj b, o] a2 bz c2
C6 | 3604804 20 C6 |480+950 4 80
D6 | 360+364| 20-2a | 4 & D6 |480+640 |80 -16 4 4 o«
Es |360+63d| 20— & 2d E6 |480+7T7TA {80~ 84 24

Difference relation of regular element with six nodes

Figure 8
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THE ISOSCELES RIGHT TRIANGLE ELEMENT WITH THREE NODES

7\ /) P
C -b c c b C
Q—O—F¢ €x pO
N Vs
Nos
)\
2N
4 \
‘b C
>—) )
\\ /,
/A\
,/ ~ \\
é‘/ <) F—F—
o b cl az b2 Qa b c
D,3|l92+32a| 484 | 4 & Dz3 |i92+164/48 -4 C3 |192+48k 48
Ei13|I1924400|48-2d | 2 & E23 |192 +324|48-2 & M3 li92+36d| 48-2a| o
Figure 9

THE ISOSCELES RIGHT TRIANGLE ELEMENT WITH SIX NODES

1134

al bs ci di az2 ba cz2
C 6 360+90« | 30 C6 |360+904«a 30
D6 360+48a | 30-2& | 4 A 2d D26 | 360+ 24  [30-2d| 4 «
Ei6 | 360+684| 30-a | 2 «a E26 |360+574A (30-4 ] 2 &
Figure 10a
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PO
<)
a3 bz c3 a4 ba c4 da
C6 |480+90¢ 120 C6 (4804906 120
D6 |480+64d|l20~164] 4 & D6 |480+64 M| 20-164| 16 ol | 4 &
E6 i480+77A|120- 84| 2« E6 |480+77TA|i20-BK]| B | 2 K
Figure 10b

The temperatures at the center of a regular triangular plate versus a or a* are shown
in Figures 11 and 12, a = a2 ag/Ah and a@* = !2aa/ Ah . The calculated temperature
based on the mean constant system element is nearly the mean value of the concentrated
and distributed constant system elements below a*= 250, Where £ = na.

Figure 16 is a temperature distribution of a rectangular plate which is divided into
5 x 5 sub~rectangular plates. It gives unsymmetric temperature distribution caused by the
coexistence of nodes of different valency. These disturbances are remedied by the modifi-

cation of elements as shown in the same figure,

Figure 19 is the error percentage of the temperature at the center of rectangulaf plate,
It is clear as shown in this figure that calculations based on the modified element and the

element system with six nodes have high accuracy compared with others,

The reason why the temperature calculated by the mean constant system is about the
mean temperature of concentrated and distributed constant systems is explained as follows.
For simplicity, we treat one dimensional problem.

The equation of stationary heat conduction in nondimensional form is

a¢ 8

— -af =0
x
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We assume a temperature distribution of

8 = {80 +(9|_80)K

8o + (8, -8, 1(2-x)
The temperature strain energy in the concentrated, distributed, and mean constant Systems

O <x < |
| < x <2

are

<
“

2 a 2 2
c (9_80)+_2-(90+9I)

<
"

2 a 2 2
o = 18-8,) +35(6,+6,8+6, )
and
2 g 2 2
v - ‘9. —80) +35 (580+2809[+56, )

regpectively, from which we have

81 2 . a 6 2
(o) zaa sim 5 +aga —
8 6~ .

( l) = a :t__a.._.i._4a2._

.Bo o 6+2a 2 24

8, 2—a . a 5 »
(80 )E' 2¥5q - '~ 2 T 23 @ -

The theoretical value is

2]

.

(—eql—)_r=cosh ﬁ +

sinh Ja
|~ h2
Sinhe o (1~ cos Ja )
a + 5 az_...
2 24

therefore the following relation

(g ) (g

SRR S CORIO

E

is varified except for extremely large value of a ,
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SECTION V

TRANSIENT HEAT CONDUCTION

When we calculate the transient heat conduction, itis convenient to divide the temperature
stiffness matrix Kon into two parts as follows:

-1
K> - [[{xnee, p, Py By g Py 0 baxay +S§ a, hP_ P dxdy (26}

1
Kmn =S [fch Ry P, dxay (27)
t

s
where Kmn . Kmn

are the stationary and transient temperature stiffness matrices, re-
spectively.

Referring fo the total domain, we have

Kije ; Kmn = Kjj (28)
t t .
Ki] = I'Z Kmn =S A|j {29)
and the equation of heat conduction from the Equation 14
T (K +SA;1 8, -0, (30)
The solution of the above equations are
Fii (8)
8 = AL bt Qs a3n
| >,: Fisy 8!
where F(S) is the characteristic equation and Fji(S) are the cofactor about ij element
F{s) = det (Kij+SAij)=o (32)
and then Bi(t) are given by the inverse Laplace transformation as follows:
-l F..(S)
8,1 - L q (s)
1 i [ % F(S) | B ]
F..(s,)
= 2 2 ’.‘ i oj(s ) e5m! (33)
m j  F(s,)
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This calculation, however, is very troublesome in practical application, and hence we
used instead the modal analysis like that which is applied in vibration analysis

Considering the symmetric property of K and A matrices, following orthogonal re-
lations about normal functions are derived.

[~ Smap ntm
%Kij mi nj ‘{ o) n#m (34)
n=m
sz 9 8 O n#m (35)
I

where Gm are normal function referring to the proper value S

There is a following linear relation between node temperature 3 and normal mode
*
temperature Gm as

*
8 -3 86,8, (36)
m
and inversely
*- *
Bm =z Z Gmi 9i (37)
!
where
= A
)j: . ij /e, 38)
Applying the above equations, we have the following normal mode heat conduction equation
* *-
where

*' -
om(S)-Zi Bmi Q. (s)

i (40)
Equation 39 is a single variable equation referring to the m th mode and we can obtain
the solution very easily.
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The time domain solution of the Equation 39 is

9:“):,,[-'[ Q% (s) I Q% (s, Snt

ﬂm(s_Sm) um

* -
When the Bm(s) is expressed by the polynomials in S 1 as

* -2!* - o
Q¥ (S)zoy, Gt Qr, +S70 +

normal mode temperature is given by

* * * * - nes
gm(t )= 8r'ﬂo gmo“ =+ Qmocma“H'me ;rnz (t)+

where

-1
Cmolt)® :L [ (s S )] i °Smt
gm' (”:[-l [d mS(;-Sm)] ] arlnsm(-l-*-esmt )

| St
, e i —(1+S 1) +e ™
°m3 (s-s_ )] ums,,f{ )+ }

2
'2

S mi [a 33(5 Sm )] ﬂmsrﬁ{ (H'S""+§m?‘)“°s"'1

o;(naiﬂ[o:(s)] .

t
z Q OSHH- (Q, tHQ 5+ lult)

sz

where 3 (t) and u(t) are the delta and step function, respectively.

41)

(42)

(43)

(44

(45)

{46)

47}

{48)

When the normal temperature force Qm(t) are given by the polygonal line of time interval

to as shown in Figure 20,

b % -
Qo +(Qm| -Qmo 't

* ¥ —
0¥ (1)e Q% +laf -af W=D

* - *
om, + (a7 -op, Nr -2)
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Qilts)
_— In case of
"'-c;- ti4, ~ti = constant
¢
0 o L {z. I3 s ts
Figure 20
where T =t/to and
* ”*
zi: emi jZ Alj 9jn:) “Om zl: emi Bio F umemo
The solution from t = 0 to to is
* *
» _ »* Sm" * (ol'm 'ano)
grit): 8% e + Qo Ly, ('rl+-—~--—to Lot

From the above equation, we have the following cyclic equation

* * * % %
Bmt *6mo Emotmo Coni+ Q=) i 0<t <ty
* * * * %
Omz 28mi Cmot{Qpm LHQr—Q 0L o to <t <t
- * 5%
er:s ‘9:2 Como + {Qmz L, HQms—CmzCme h <t< t;

where
S.,.t Sm t
ze"Mmo s (-l+e"m0 o_ S
CO L] g'l ( )/m

§m2={-(l+smt°} +es""°}/a,,,,,s,z,,to

m?

{50}

{51)

The temperature distribution due to a moving heat source such as in the case of welding

is calculated by replacing it with the time dependent node heat source as follows.

Let us assume that a point heat source on the side line 1-2 of the element 1-2-3 shown
in Figure 21 and 22 moves with a constant velocity V, the node heat sources 9 and q2 are

given by the following temperature virtual work

; ' 3 3
8'w:[ ats ,nS0ds,=fa T L 86 ¢s,=F q_ 86,
m=| m=|
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3 . q] q2
=
E
o
vV 2 I 2
Figure 21
e
/ o
ql q2 Q3 q4 q5
2 3 4 l 2 3 4 5
Figure 22
where
q(t)=q8(§z—r) \ T= Vt/s,
q, =fq(t)§‘ds.3 =qfl~1)
qa=fq(t)§2dss=qr (563)

Referring to the triangular element with six nodes, we have the following time dependent

node heat sources s (l-T)i-27), a, s (21 —~t), a, - 4r{l—1)

3 q, d,
—_ q3
e
5 =
4 g
6 VvV 2 | 6 ~—v"2
Figure 23
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The accuracy of results by means of the above method may be independent of the time
interval, it is, however, needed to obtain exact eigenvalues and eigenvectors and then to
conform the sum of the eigenvectors to the exact temperature distribution as accurately as
possible,

Table 1 shows the eigenvalues of the typical characteristic equations calculated by the
various element system in the same manner such as analysis of stationary temperature
distribution. The result of type C3 is equal to one of the difference equation. The result of
type C3 gives lower value and type D3 higher than theoretical one,

Then the higher degree eigenvectors are required to obtain the accurate temperature

distribution of the plate heated on the spot region, the test calculation was, therefore, done as
shown in Figure 24,
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0(*- 144
a number of degree of freedom = 40
Ba =1000°¢ on hatched region

= 0°C except hatched region
3 4 56 789
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SECTION VI

THERMAL STRESS ANALYSIS

When there is a temperature distribution in a plate, the strain energy V is given by

v =—2'-ffu{(a” -af )z +2v(%—:'--a9)(aa: -aB)

ox
aV 2 aU aV 2 (5”
+(ay —a9)+>\(ay +ax)}dxdy
where
e = En/U1—wv?, A=(1-v V2

The inplane stress distribution is solved by the finite element approach based on the

foliowing variational equation.

8V=¢ o[{(du w2 T aB)—:-:——)\(g: + g: )%}Su

o gy
(G Gr) 2 (v e g T a8) e e
—ff[{a%-u(g—:—+u g-;—-m a9) +-g—y-—)\n (%UT+%!"-)}SU
+{-a%>~o(%:—+—g"'7)+z%u(v%u:+-g—‘;—-—l+_v ae} 8v]dxdy=0 (s2)

From the above Equation 52, we have the following equilibrium equation

oX ax
s Y o {1+v)aab

ox dy
OX yx OXyy
= +
3 + P (l+v) aal (53)
where
du dv , du dv
X - = —evmree—
A ay)' Xxy ’“’(ay"'ax)
_ du v
ny -u(v ax+_ay)
It is assumed that the temperature distribution in an element is expressed by
3
8- rngl gm em (54
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and the displacement components u and v are

[ 8
TS P Um v oy P ¥m (55)
m=| m=1

where Pms are the shape function of triangular elements with six nodes.

Substituting the Equations 54 and 55 into the Equation 51, we have the following biquadratic
form

5 3
v ?ffa{ (ma Pax €m a‘mz_ gmem)
6 3 3
rer (X n g -a8r 6)( T € -a3t8 )
12 3 2 -] 12 2
(2 a6 -2 6,6,) \( e g, +2 n €, ) Jaxey
m=7 m=| m= | ms 7
(L Gy 22, 6 %)
where
=l ~ 6
5m‘ { ::_s :::7-»!2
P, = P 6 m=7~ 12

In the above equation, l(mn is the stiffness matrix and is expressed as

Kon -ff u(me an+XPm,Pny ) dx dy
2. m=1~6,n=7~1]2

Kmn =ff o (v me F’ny + )\Pmy‘an )dxdy

Knn =ffa (Pmy F'ny +)\me Fax ) dxdy
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we have then

fon = U +v}ffu a P, , dxdy

The above area integrals are easily evaluated by using the area integral formula or

table shown in the Equation 17,
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SECTION VII

CONCLUSION

From the results of this study outlined in this paper, we reached the following conclusion:

1. Accuracy of the calculations of the transient heat conduction and stationary temper-
ature distribution by means of the finite element method based on the triangular elements with

three or six nodes, is improved by assuming the mean system of concentrated and distributed
constant,

2. Calculations based on the system of nearly regular triangular elements, all the nodes
of which have the valency of six, are not disturbed by the method of element divigion.

3. On the contrary, calculations based on the nearly equilateral right triangular
elements are disturbed by the coexistence of nodes, which have the valency of four or eight.
This difficulty is remedied by the application of the modified element system, which is
described in the previous paragraph.

4. Laplace transformation and nodal analysis method are effectively used for the
analysis of the transient heat conduction problem.,

5. Thermal Stress

Thermal stress due to the temperature distribution is calculated by means of the finite
element method using the triangular elements with three nodes or six nodes. The strain or
stress distribution in an element is constant when it is calculated by the elements with three
nodes, whereas is linear by the elements with six nodes. Generally the latter is more accurate
than the former when there is shear deformation.
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APPENDIX

NUMERICAL CALCULATION OF LARGE MATRIX

One of the most important problems of the numerical calculation presented in the
engineering field is: how effectively to solve large scale simultaneous linear equations? It
is because a partial differential equation which appears in the engineering problems may be
substituted approximately by a difference equation with a finite number of unknowns, which
is described by simultaneous linear equations or characteristic equations as a general form,
The finite element method is also a technique for reducing a continuous system to a dis~
continuous system.

For the reasons which have been described above, it would be easy to obtain a numeriecal
solution of such problems with sufficient accuracy for practical use if the large scale simul-
taneous linear equations could be solved in economical computation time. The amount of the
computation time for it may become, however, far greater than the upper limitafion of the
computational capability of today’s supercomputers. Therefore, this approach never will be
useful without the development of an efficient numerical calculation method.

Now, the number of operations of addition and multiplication which is needed to solve the
linear equation with n unknowns may be described as a function of n as the following:

v: a4 32 (57
3 2

This is for the case of using the Gaussian elimination method, which gives the minimum
amount of computation except for the iterative methods.

The regquired location is
S =n% 4+ n (58)

In the above two expressions, it is clear that the higher order terms of n should be
preferably reduced as far as possible to make use of computer most effectively,. It seems,
however, to be almost impossible to realize it by a mathematical approach. But it seems
possible by a physical approach, namely, to utilize the fact that the state of equilibrium at an
arbitrary point is determined only by the neighboring boundary condition around the point.
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Considering the form of matrix from this view point, the nonzero elements in the matrix
should be arranged in the band form itself as shown in Figure 25. The matrix obtained would
be generally symmetrical.

m —=
= N\
LY
N
x —
> 1
\\
by
N
Ay
nonzero _
element —
c - garea —]
s i ]
R 1
~ s |
~ 1
1 N\ —
L
5
*
\\
hY
| I S
-ﬂ LY
L Y
N
\‘
Figure 25

When the width of the band is m, the number of the operations to solve the linear equation

with the band form matrix by the Gaussian method may become

V. = rnzn——zm:5 (59)

B ~ 3
It should be noted that the Expression 59is linear in n. Considering that m/n is practically
about 0.1 at most, the ratio Expression 59 to 57 is

\:/B = 3( T )2—2 (T’“)3= 0.03 (60)

and the required location is

SB=(m+I)n (61)
The ratio Equation 61 to 58 is

Sg m+

—= = = 0.
5 e = 0 (62)

From the above results, it is seen that there is great merit in using this property of
the matrix for the practical calculation.
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And further the process of the reduction of matrix may be usefully separated into two
parts. The first step is the conversion of the coefficient matrix to a triangular matrix, namely,
the forward elimination. The number of operations required in this step is about

2

Vf=m n__2_m3
3

{63}
The second step is the conversion of the constant vector as the first step conversion. Then the
triangular matrix is converted to the diagonal matrix and the conversion of the constant vector,
namely, the backward elimination. The number of operations in this step is about

Vp = 2mn —m? ©4)

Vb shows the number of additional operations in the case of changing constant vector.
The ratio Vb to Vf + Vb is about
b s 2 (65)
Vf +Vb m

In the next place, we will describe the calculation method of the solution of characteristic
equations,

There are a number of approaches for solving characteristic equations. No effective
method for a large matrix, however, has yet been presented.

The following method obtained after trying various approaches is fit for solving large
scale characteristic equations., The characteristic equation isgenerally represented in matrix
form by

z (K” +SA”)BJ = 0 (66)
i

where, in the heat conduction problem, Ki. is defined as the heat conductivity matrix, Aij the
heat capacity matrix, and Gi the vector of temperature distribution.

Supposing ani the eigenvector corresponding to nth degree eigenvalue Sn of the solution
of Equation 66

ij enj - 67)
On the other hand, Equation 67is transposed by the symmetricity of the matrix as follows:

K +S . =
52 ij eni n ‘z Aa; enl 0 ©8)
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From Equations 67 and 68
'izj Kij Bmi 84j +50 % A emienj

== Snp ZAij 9rni enj + Sy zAijemi an';
ij ij

1)
= 0
when Sm # Sn' Equation 69 becomes

%Au 8., enj =0

From this result, an arbitrary vector Bi may be written as the following:

8i = a|6|.l +0292i+0383i 4.

where
z Ay 6.8,
m z Aijarniami

The above expression may be obtained by using Equation 70, that is
1] k=1

ij ij =
: am z Aij emi emj
i

Now, suppose an arbitrary initial vector 8 (o) described as follows:

(o)
ei : 2 Qn emi
m=|
Substituting Equation 74 into Equation 66,

(o) [
A = - —_ .
%— i & %Au R O
-y k8"
>j: il
Similarly,
{1) | @
A. U = . — .
JZ J d ? J mz=| (sm) @080,
.5 9.(2}
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After k times repetition, we obtain

i mo) o m “mi {77}
and then
S, \k
gfk) Q a|i - ", (gn:n_) e, 9mi
—— =5 = (78)
{k+1) : S| \k+
8, a,8; ~Z (5=)" anby
m=z m
Supposing ,S, l < lSz l < ,83 l < --»----, the minimum eigenvalue may be obtained after a
number of times repetition, for
(k)
. ei {79)
lim - _Tm— = Si
— M
k ei

And rth degree eigenvalue and vector may also be obtained in the same manner for the
first eigenvalue by substituting arbitrary initial vector Bi (©) into

{80)

Our method here is a modified form of the well-known iterative approach. This method,
however, is fundamentally good in several respects, that is, the inversion of a large matrix is
not needed, both the eigenvalue and eigenvector are successively obtained from the first
degree to the higher ones and the solution may easily be obtained without the expertness in
numerical calculation, and consequently, it is easy, generally to make a general purpose
program.

Furthermore, the procedure of computation for the solution of the characteristic equation
is approximately the same as that of the linear equation and it may be effectively used to do a
program development.

Practically, the above-mentioned fact was profitably used in making the multipurpose

application programs for the dynamical and critical load analysis of framed structure, named
FRAME, which we developed in 1964.
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