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ABSTRACT

A nonlinear optimal feedback control scheme for controlling a vehicle
re-entering the earth's atmosphere from lunar return initial conditions
is reported.

The optimal feedback control law used in the scheme is obtained from a multi-
dimensional surface fit of the control function for several optimal trajectories.
Partials of the control with respect to the state vector are included in the fit-
ting procedure. The functional minimized by the trajectories is the total
(conveéctive plus radiative) stagnation point heat.

The feedback control scheme is developed, and several re-entry trajectories
are simulated. Modest increases in total heat from optimal values are ob-
served, and large (although tolerable} terminal point errors occur. Itis
believed that the terminal errors can be greatly reduced, if necessary.

A powerful predictor scheme is developed which allows optimal trajectories
to be changed as a function of a parameter. This is used to extend the range
of an optimal trajectory, to perform an " absolute minimum" test, and to map
the optimal re-entry corridor.

Sufficiency tests for a relative minimum are mechanized, and it is shown that

the trajectories considered are minimizing paths, The optimization method
is extended to include the bounded state-coordinate problem.
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SECTION I
INTRODUCTION

Many schemes have appeared, over the past few years, for the control of
vehicles re-entering the earth's atmosphere, They range over a wide spec-
trum of missions, from the attainment of a given landing site to rather
complex in-flight maneuvers, and, in operation, may be completely auto-
matic or may require a pilot in the loop. The schemes have been developed
for a variety of vehicles, onboard sensors, and onboard computing capabilities
and, additionally, cover a wide range of initial re-entry conditions. A good
survey is given by Wingrove in Reference 15.

Under the heading of optimal control, re-entry schemes become.sparse. The

""neighboring op-

only seemingly applicable approach published to date is the
timum control scheme" of Reference 8. This is a linear control scheme based
on small perturbations from a nominal optimal trajectory. Previous studies
(Reference 1) indicate that such a method may not be applicable for re-entry
control, although for other applications it may be perfectly suitable. The
objective of this report is to describe a nonlinear optimal feedback control

scheme, developed and simulated during the contract period.

Figure 1-1 illustrates the approach. The vehicle is the plant to be controlled
through application of the control vector u{t), and sensors measure parameters
of the motion a. The navigator box supplies the state vector and its time
derivative at discrete and equally spaced instants of time, (The time incre-
ment may be made variable if necessary.) A predictor equation estimates
conditions at the next sample point, on the basis of present conditions and past
gtate-vector derivitives, to introduce lead into the control system. The control
generator is a known (vector) function of the state and independent variable
(usually time). Its evaluation gives the optimal control for the predicted point,

The hold circuit supplies the optimal control over the next time interval,
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Figure 1-1, Nonlinear Optimal Feedback Control Scheme Mechanization

Development of the control generator equation comprises the bulk of this report.
Section II considers a two-dimensional re-entry trajectory optimization problem,
in which total stagnation point heat (convective and radijative) is the function
minimized. Terminal values of velocity, altitude and range are specified,
leaving terminal flight path angle and time unspecified. After this problem is
solved, the terminal range is extended, to obtain a design trajectory, and the

" mapped" through the use of a very powerful pre-

optimal re-entry corridor is
dictor scheme, The control function for the mapped trajectories is used for
development of the control generator equation. A data generating program is
described which supplies partials of the control with respect to the state vector
as well as the control itself. This data is punched on cards at equally spaced
values of range, since range is used as the independent variable in the program.
It is also shown in Section II that the mapped trajectories are minimizing tra-

jectories over a large region of solution space,

In Section III, the control data is fitted as a multidimensional polynomial, and

the fit is evaluated, so far as errors are concerned,



Mechanization and simulation of the control equation in the scheme of Figure 1-1
is considered in Section IV, It is found that the scheme produces reasonable
re-entry trajectories with modest-increases in total heat from the optimal

values for most of the trajectories simulated, A few trajectories fail because of
control inaccuracies in the area of the first dip into the atmosphere, so the region
of initial conditions for application of the scheme must be suitably limited, The
regic;n of application is still very large. The terminal condition errors for the
successful trajectories are found to be large (although tolerable) and are usually
biased in sign and magnitude, It is believed that these errors can be greatly
reduced, although no effort was expended in this direction.

Some additional topics are considered in Section II. An inequality constraint

on the sensed acceleration is included in the re-entry trajectory optimization
problem. Several optimization methods are used in an unsuccessful attempt to
obtain a 10-g optimal trajectory. The most powerful method is the predictor
scheme, and this fails because of a singular point on the constrained subarc.

A means of isolating this singular point was devised, but time limitations pre-
vented exploitation of the idea on the computer. The optimization methods are
also extended to the bounded state coordinate problem, and the bounded brachis-

tochrone problem is solved on the computer.

Conclusions and recommendations are presented in Section V,






SECTION II
OPTIMAL TRAJECTORY COMPUTATIONS

THE RE-ENTRY TRAJECTORY OPTIMIZATION PROBLEM

1. Statement of the Problem

A re-entry path which minimizes the total stagnation-point heating

T
J = -[ gdr (2. 1)
0

of a blunt-nose re-entry vehicle is to be found. The heating rate g is the

sum of convective and radiative components

qa=4q, +a., (2.2)
where
- 3 p
q, = ov ~ (2. 3)
. 3/2 v 1128
q, = 7.5N P — . (2.4)
o, 10, 000

The state vector components are the velocity v, flight path angle v,
dimensionless altitude § = %—, and great circle range {. The density p is

given by

-BRE (2.5
oo )
and valuesg for the constants are vehicle nose radius N = 4 feet, c= 2 x 10_8,

earth radius R = 20, 903, 520 feet, exponential constant 8 = 1/23, 500 ft, -1,

and sea level density p = 0.0023769 slugs/ft. 3,



The equations of motion are

dv -3 2 o sin ¥y
— = —pV CD(U) - -—-——2—
dt 2m (1+8)
dy S v cos ¥ go cog ¥y
—_— = —pv CL(u) + - 5
dt 2m R(1+E)  v(1+8)
(2. 6)
dg v o
o T RS
dg v
-a"t—="'—'—"(1+g)cos‘)/.
The vehicle frontal area to mass ratio is —r%= 0.5 ft. 2 - slug—l, and the lift
and drag coefficients are given in terms of the control function u as
Ch = Cpg tCpp, cosu (2.7
Cp, = Cpsinu, (2. 8)
where
CDO = (.88
CDL = 0,52
CLO = -0.505,
Inequality constraints include a bound on the control function
u? - u2 z 0, (2. 9)
with u, a constant, and a pilot's acceleration constraint
B - 2 0. .
a, (2.10)



In Equation (2, 10), B is a specified constant, and the pilot's acceleration is

given by
S pv2 2 72

where g, is sea-level gravity which normalizes the units of ap to g's.
Equation (2.8) was found necessary to produce initial trajectories which
neither skipped out of the atmosphere nor dived in too deeply. It is sequen-
tially relaxed during the optimization process.

Initial conditions are taken as Vo = 35, 000 ft/sec, ’}’0 = -5, 75 degrees,
initial altitude hO = 400, 000 ft, and CO = zero; the terminal surface equa-
tions are
viT) -X, = 0
h(T) - X, = 0 (2. 12)
¢(T) - X3 = 0
with the constants X1 = 1650 ftfsec, X2 = 75,530 ft, and X3 = 979 statute
miles, Note that the final flight path angle and terminal time are left un-
specified,
A fairly detailed examination of this problem is contained in Reference 1,
consequently, only a brief summary of the results is presented here.
The Hamiltonian may be written
H =c-1+p'f+p.(u2-u2,+p.(B—a) {2.13)
1 171 2 P .

where p is the four-dimensional multiplier vector and f represents the
right-hand gide of the system (2.6). The Euler-Lagrange equations, where

zero terms have been omitted, then read



9q af of af of da
1 2 3 4
- = —  + o J—— + p _._.._+p _+p —_— ey ——
P17 % 1y 23 33 v 2y
af 3f f f
1 2 3 4
..p = p -———+p [—— +p +p
2 Tl 3y T2 3y 33y Yoy
34 af af af 3a
1 2 4 b
- = + P + p —— p —_— Py —
Y 1 3% 23g Y ¢ 2 3¢

2. The Unconstirained Subarc

(2.14)

(2.15)

Both the multipliers By and o are zero here, so Equation (2. 15) is used to

determine the control function, Afier the substitutions have been made, the

resulting formula is

“CroP2

tanu =
CpLP1Vv

L

and u is centered about zero by the constraint (2.9); i.e.,

-u, su =su

(2.16)

(2.17)



The minimum-principle equation is

-p;vCpy cosu + pcho sinu s -p,vCp, cos U + pcho 8in U, {2.18)

DL

in which U is any admissible value in the range (2. 17). The left-hand side
of (2, 18) may be considered as a dot product, and the choice of a unit vector

{cos u, sin u) which has minimum dot product with the vector (-pvaDL, pchO) is
sinu = -CLOp*z
V(CLopz 4 lepeeyy)”
cosu = “pLP1” -
-\ACLopz : CpLP1¥ ’

This is parallel but in the opposite direction. Then, from the signs of Py and
Py assuming CLO negative, it follows that:

If p2= 0 and p1>0, then u= 0

p2>0 p1>0 0<u<—121-
kil
Py >0 py= 0 us 5
>0 p, <0 -T—r<u<1'r
P2 ! 2 (2. 20)
P, = 0 pl<0 u = * n(bang condition if u, = )
™
p2<0 p1>0 -~i<u<0
m
Pp<0 = 0 uE -
p2<0 p1<0 -n<u<-ﬂ7 .



There are no singular points if Py and p, are never simultaneously zero.
The subarc ends either when (2, 10) or (2, 9) becomes zero, or when the
stopping condition, the first of (2. 12}, is satisfied.

3. The Constrained Subarc u= % u1

Let ¢ be the angle defined by Equation (2. 16) and the sign conventions given
by (2.20). Then substitution into the minimum principle equation, (2.18), gives

cos (#-u) 2 cos {(¢p- U), (2.21)
which is satisfied if u and ¢ < % m, have the same sign, The condition ¢ = n

indicates a bang, Furthermore, substitution into (2. 15) (with g = 0), and

some rearrangement, gives

ST '—Sz%-\mmpz]z * ICDLpl")z """_Siny)_u) . (2.22)

Since u and sin{¢-u) have the same sign, kS 0, as required,

There are no singular points, and the control function is continuous at the
junction between constrained and unconstrained subarcs. Thus By from
(2.22), must start and end with value zero, since at such points u = ¢.
Then the terminal surface is either by = 0, provided ;'1.1 # 0, or the stopping
condition,

The constrained subarc, over which ap = B, is considered in a separate
subsection,

10



4. The Optimization Scheme and Computer Results

It is shown in Reference 1 that the solution of systems of equations such as
(2.6) and {2, 14), in which u satisfies (2. 16) and (2, 20) {(with My = 0}, orin
which u and by satisfy (2.21) and (2. 22), may be written in the form

x = x(t, X po}

(2. 23)

]
|

= pt,x_.p ),

where X, and P, are the initial values of the state and multiplier vectors
respectively, It is also shown in Reference 1 that the necessary conditions

which augment the terminal equations (2. 12) are

Po(T) = 0
(2.24)
H = o0,

where H is the Hamiltonian (2, 13) with the inequality constraint terms removed.
When the functional forms of the solutions (2. 23) are taken into consideration
(and noting that X, is fixed for the optimization problem), the set (2, 12) and

(2. 24) become

v(T,pO) -X,=0

&T,p) - Xyg = O
¢{T,p) -X, =0
o 73 (2. 25)
pz(T-po) = 0
H(po) =0,

11



These five equations in the five unknown quantities (T, po) may be solved via
the Newton-Raphson method if partial derivatives can be found. The partials
with respect to T are the time derivatives (2. 6) and (2. 14) evaluated at t="T.
The other partials are found by integrating the system of equations

d (ax 32H1 ax| 2%m, [3p

dt \da dpdx\da 3p da

(2. 26)
d[ap\ 2%, [3x 2°m, [ 2p
E _B—a axz da xdp | 9a

in which " a'" represents a particular initial condition. The partial derivatives
of the Hamiltonian Hl(x,p) may change from subarc to subarc, and for each

subarc it is known that

2 2
[} H1 9 H1
2 sz

ax

are symmetric matrices and that

2 of 22
BH1 _.aH1

dpox | axdp |

Since (2. 26) is a set of 2n linear first-order, homogeneous differential equa-
tions, there is a maximal set of 2n independent (column) vector solutions.
When initial conditions are taken as the (2n x 2n) identity matrix, the first n
{column) vector solutions represent partial derivatives with respect to the
vector S and the last n solutions are partials with respect to | The solu-
tions are continuous in time, except possibly at corner peints, where the
discontinuities are well defined.

12



In the present case, discontinuities occur at points tl' where the angle ¢
becomes + m, or equivantly, where P, = 0 with Py <0, Let *nij(t) and
Cij(t), i, =1, ..., 4, be the elements of the

dx(t) dp(t)

Tp, B,
solution matrices respectively. At t= tl' only the second of Equations (2, 6)
is discontinuous when u changes signs, and all of Equations (2. 14) are
continuous (8ince pz(t ) = 0) According to Reference 1, this means that

only the second row of —5-- is discontinuous at t = tl’ with

+( ) -( ) 2 (”c ( P (2.27)
My L) = n,. (t) - — t), j=1,..., 4, 2.27
2j1 2j 1 pz(tl)

and (-}, (+) signifies values from the left and from the right, respectively.

Now assume that a path and partial derivative solutions have been found.
Then the modified Newton-Raphson equations for the system (2. 25) are

ot [vm am aym agm o] [0 ]

dp, E(T) My (T) Ngy(T) mgg(M) g (D [E(T)-X,/R[ (5 g
dp, | = -C CT) M (T N (T) n(T) n,,(T) |CT)-X; |0<Cs1.
ap;_ PolT) $oi(T)  CoolT) Lol G (T | py(T)

dpy 0[O O o o] [ '

The zero in the right-hand vector corresponds to the stopping condition, the
first of Equations (2. 12), which is satisfied by every trajectory. The Hamil-
tonian is a constant for each path, so the last row of the matrix contains its

partials evaluated at t = 0.

13



An optimal trajectory for u, = 16 degrees was obtained and is displayed in
Reference 1, It appears here as the first of a family of optimal trajectories
in Figures 2-1 through 2-8, The second member, for u, = 20 degrees (not
shown), was generated by using the modified Newton-Raphson method with
the 16-degree optimal values for (T, po) as starting conditions, All other
members of the family, obtained in a similar fashion, are displayed in
Figures 2-1 through 2-8, and values for the optimal criteria are given in
Table 2-1,

Figure 2-1 shows that the trajectories dive deeper into the atmosphere and
skip higher as the constraint is removed. All these curves end at the same
point, as required by the terminal surface equations (2, 12), The first dive
produces higher pilot's acceleration peaks (Figure 2-2) but reduces the
secondary peak. The unconstrained maximum value is 20.5 g's. The flight
time increases (Figure 2-3) which is a consequence of the lengthening skip.
This is apparent in the velocity curves (Figure 2-4) which tend to level out
over the skipping portions of the trajectories. The flight path angles (Figure
2-5) also show the deeper dive and higher skip. All these curves apparently
pass through a common point, corresponding roughly with the bottom of the
first dip {see Figure 2-1), The convective and radiative heating rates are
displayed in Figure 2-6. They peak higher, and fall off faster, as the con-
straint is relaxed, The total heating rates of Figure 2-7 have the same char-
acteristics, and show that even though the peaks are higher, the enclosed area

becomes smaller,

The optimal control functions are displayed in Figure 2-8, When the 16-degree
trajectory (which seems to be in a category of its own) is excluded, the control
curves iend nicely to the unconstrained trajectory curve. They all have a
"bang' which goes towards the endpoint as the constraint is relaxed and, in
the limit, produces the -180-degree value of the control function (the angle ¢
goes to -180 degrees at the bang). The first portions of these curves show

that the trajectories are forced into the atmosphere, since positive control

14
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Table 2-1, Control Constraint uy and
Optimal Criterion J

uy J
{degrees) (BTU/ftz)

16 27,334 1{
25 26, 524

35 26, 246

45 26,011

55 25,951
180 25, 736

corresponds to negative lift., Small values of the control also correspond
to maximum drag, so maximum energy is dissipated. Before the bottom
of the dive, the control functions all pass through zero and then on to the
maximum lift condition (-90 degrees for the 180-degree optimal). The
positive lift is required for ranging purposes and is maintained for the re-

mainder of the re-entry process,

RE-ENTRY CORRIDOR MAPPING COMPUTATIONS

It was originally planned that optimal trajectories having maximum sensed
acceleration loads of 10 g's would be used for the nonlinear optimal feedback
control scheme of Section IV. However, a singular point caused compuia-
tional difficulties. (The details of the problem and the method devised to
circumvent the difficulty are presented in another subsection,) It was
accordingly decided to proceed using unconstrained trajectories as a basis
for demonstrating feasibility for the nonlinear optimal feedback control

scheme,

23



The first step in the corridor mapping process was to round out the terminal
conditions following Equations (2, 12) to X2 = 75, 000 feet and X3 = 1000 miles.
The original values {75, 530 feet and 979 miles, respectively) were made
necessary by the initial conditions and the almost ballistic constraint

u, = 16 degrees. The resulting trajectory is displayed in Figure 2-9 as the

1
first member of a family of optimal trajectories for which the terminal range

is the parameter,

1. Range Extension

It was decided to explore the ranging possibilities of the vehicle as the next
step in the optimal re-entry corridor mapping process. The predictor scheme
presented in Appendix A greatly facilitated the computations.

The differential equations are {2, 6) and (2. 14) (with My and Ko zero), and the
control u satisfies (2, 16) and (2. 20). The boundary conditions are given by
(2. 25) where terminal range X3 is the mapping parameter. Differential
equations (2, 26) were integrated to obtain the partial derivative solutions
for the modified Newton-Raphson equations (2. 28). The stopping condition
for the integrations was the attainment of a desired terminal time T (updated
after each iteration), so the zero element of the last vector in (2. 28) was
replaced by the term {v(T) - Xl). The change in the stopping condition was
made because it is somewhat easier and faster to stop at a given value of T

than it is to interpolate for v(T) = X The stopping condition for iterations

1
was that the maximum ratio of variable-change to variable be less than a

specified constant,

Startir}g trajectory initial conditions are Vo = 35, 000 ft/sec, Yoo -5, 75 degrees,
ho = 400, 000 ft, Co = 0, and terminal conditions are X1 = 1650 ft/sec,

X2 = 75,000 ft, and X3 = 1000 miles. The next three trajectories were
obtained using the optimal Newton-Raphson method, described in Appendix B,
with terminal range increments of 10 miles. Succeeding members of the

family were obtained using the Adams-Moulton predictor equation

24



— h I I 4 - 4
X+l = *m + 357 55xm 591¢:m_1 + 37xm_2 Sxm_3
in which x is the vector (T,p), x' is the derivative of (T,po) with respect
to terminal range, and h is the range increment. It is shown in Appendix A
that x ' is the third column vector of the inverse Newton-Raphson matrix in

Equation (2, 28), when (T, po) satisfies Equations (2. 25).

The range was extended to 2020 miles by this process. Most of the inter-
mediate predicted values of (T,po) produced optimal trajectories, which
shows the power of the predictor scheme. As the upper limit on range was
approached, prediction gradually worsened, and it is doubtful that range
could be extended much further for the vehicle and initial conditions con-

sidered,

Five of the family of trajectories are plotted in Figures 2-9 through 2-15,
Figure 2-9 shows that the first dive into the atmosphere becomes shallower,
as range is extended, and that the skip which follows becomes higher and
longer, This behavior is caused by the control function (Figure 2-10) which
leaves the negative lift region (u > 0), and goes to the maximum lift condition
(u = -D00 degrees) earlier in the flight as range is extended. Less energy is
lost on the first dive, as can be seen in the velocity curves of Figure 2-11,
and the decrease in the first acceleration peak of Figure 2-12, The flight-
path angle excursions, Figure 2-13, also become smaller. Toward the end
of the skip, the control approaches the negative lift condition, and, for the
longer ranges, produces negative lift to more quickly terminate the skip.
The secondary acceleration peak rises with increasing range in order to
dissipate the increased remaining energy. There is a minor sashay in the
paths near the endpoints, due to the control passing through maximum 1ift

and (L/D) on its way to -180 degrees.

Figure 2-14 shows that total heat increases with terminal range, as might
be expected. However, it is somewhat surprising that the total flight time
of Figure 2-15 first increases with range, and then decreases for longer

terminal ranges.

25
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On the basis of these results, it was decided that the 1500-mile trajectory
would be used as the'' nominal" trajectory for development of the nonlinear
optimal feedback control scheme., This trajectory represents a reasonable
compromise between total heat, peak acceleration and total length of skip.

2. Corridor Mapping Program

The corridor mapping problem considered is that of sweeping out a reasonable

""nominal" trajectory, and thereby ob-

region of initial conditions about the
taining a set of optimal trajectories covering the expected re-entry corridor,
The terminal values of velocity, altitude and range are the same for all these
trajectories, as is the terminal value of multiplier Ps and the Hamiltonian

(both zero), so that the trajectories all belong to the same field of extremals

{see Section IIIA)},

It is shown in subsection C that {ime is unimportant, so far as this problem
is concerned, and furthermore, that all re-entry trajectories may be started
at a point where initial range is zero. Hence, the only initial conditions which

eed be varied are v and § .
n va o Yo o

It is convenient, for the mapping process, to integrate the system of differ-
ential equations from the terminal point to the initial point., The predictor
scheme may then be used to move the initial conditions over their range of

variation, Accordingly, define '"back time" by

s = T-t, (2.30)

and note that

dx _ dx dt _ dx
495 - ar as - "a (2.31)
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so that the change of independent variable changes only the sign of the right-

hand sides of the differential equations. The system of equations to be integrated
thus includes (2, 6), (2.14) -- with By = By = 0 -- and (2, 26), with opposite

signs for the right-hand sides, and the control u satisfies (2. 16) and (2. 20).

The "initial" conditions for the transformed equations (2.6) and (2, 14) are

g= 0 and

VT - Xl = 0
8 -X,/R = 0
(2.32)
Cp-%3 = 0
Py = 0,
27
with X, = 1650 ft/sec, X, = 75,000 ft, and X, = 1500 miles. Ats=T, the
functional dependence of the solutions on the missing initial conditions may
be written
x=x |[T,p, , ¥YuP ,p)
1p7 ' T BT 4T
(2. 33)
p=p(T,p, »Pg . P ,
1 " 3 4'1‘)
so the set of boundary conditions to be satisfied by each optimal trajectory is
viT,py s¥m:Pq P -X = 0
l 1T T 3T 4T 10
? T,p ;‘}" :p ,p = X = 0
1T T 3T 4TJ 20
ElT.py s¥7Pg Py | - Xqg/R = 0 (2.34)
l Lp' 7T "3 4T 30
T

ClT.Py ,¥Yp:Pq P = 0
L' /T P8 P,
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X X20 and X30 are, of course, the initial conditions at t= 0 {or terminal

10°
conditions at s=T) to be varied in the mapping process.

Let ni.(s) and cij(s), i, j=1, ..., 4, be the solutions of the transformed system

of Equations (2, 26) with initial conditions

[ﬂijio)] = [Cij(O)] =

Then the Newton-Raphson equations for system (2, 34) are

L T i B o B s
=R e~
o o O O
o o o
[ B e B B
‘C) [om B o I =
Q= O O
= O O O

Car] [um e npm mpm nm]
ap, Y(T)  my(T) mpp(T)  MyalT)  my,(T)
dyp | = -|8(T) My (T) ngo(T)  Mga(TH Ny y(T)
dpg | ]S myy g™ gl gy
Iy 0 £,(00  -py(0) f3(0)  £,(0)

—

'v(T)-X:lo
‘y(’l‘)-x20

8 (T)-Xy,/R

¢(T)

H

(2.35)

(2,36)

The first three columns of the inverse matrix may be identified as the deriva-

tives of (T, Pip: ¥Yqs P3ps p4T) with respect to XlO' X20’
pectively, for the predictor equation (2. 29),

and X30/R. res-

Twenty-six trajectories spanning the re-entry corridor were generated using

the optimal Newton-Raphson method and the predictor scheme.

conditions and total heat for these and the '

summarized in Table 2-2. Trajectory 2 was obtained first.

the remaining trajectories. The predictor scheme was used exclusively to

The initial
'nominal" trajectory (at t=0) are
The first three
]:rajectories were determined by the optimal Newton-Raphson method, using
AXIO = +50 ft/sec as the increment. The predictor scheme then generated

obtain trajectory 3, since back derivatives were available from the trajectories

leading up to trajectory 2,
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Table 2-2, Initial Conditions and Total Heat for 27 Optimal
Trajectories Obtained During the Corridor
Mapping Process
Initial Sign of Change
Initifa.l Flight Path | Initial From Trajectory 1
ed ‘?Ftlf’scé?{ (.ﬁ%ﬁleees) Al::fltt;lde 8%, [ 8%y0 [8%50 | eat
1 35000 -5,75 400, 000 0 0 0 28,872
2 35750 -5,175 400, 000 + 0 0 31,888
3 34250 -5.75 400, 000 - 0 ] 26, 252
4 35000 -5, 30 400, 000 )] + 0 29,278
5 35000 -7.65 400, 000 0 - 0 28, 666
6 35000 -5.175 440, 000 0 0 + 29,032
7 35000 -5,175 360, 000 0 0 - 28, 757
8 35750 -5,30 400, 000 + + 0 32,280
9 35750 -7.65 400, 000 + - 0 32,116
10 34250 -5, 30 400, 000 - + 0 26,657
11 34250 -7.65 400, 000 - - 0 25,1792
12 35750 ~5,75 440, 000 + 0 + 32,135
13 35750 -5.75 360, 000 + 0 - 31,844
14 34250 -5,175 440, 000 - 0 + 26,362
15 34250 -5,75 360, 000 - 0 - 26,128
16 35000 -5,.30 427, 500 0 + + 29, 963
17 35000 -5,30 360, 000 0 + - 290,017
18 35000 -7,65 440, 000 0 - + 28,510
19 35000 -7.85 360, 000 0 - - 28,817
20 35600 -5.40 430, 000 + + + 32,444
21 35600 -5.40 370, 000 + + - 31,374
22 35600 ~7.35 430, 000 + - + 31,110
23 35600 -7,35 370, 000 + - - 31,375
24 34400 -5. 40 430, 000 - + + 27,326
25 34400 -5,40 370, 000 - + - 26, 891
26 34400 ~-7.35 430, 000 - - + 26,2186
27 34400 -7.35 370, 000 - - - 26,368
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Trajectories 4 and 5 were generated in a similar fashion, using AX20 = 0,025
degree. It was found, however, that as the flight path angle became steeper
(going toward trajectory 5), the increment could be increased to AXZO = 0.1
degree with very little degradation in the performance of the predictor scheme,

Trajectories 6 and 7 were obtained similarly, and it was determined that
axso = 2500 ft was a satisfactory increment for the altitude mapping process.
From convergence characteristics of the optimal Newton-Raphson process, it
was found that velocity changes were easiest to obtain, and that flight path
angle changes were hardest to satisfy. Consequently, trajectories 8 through
19 were generated using the most easily changed single parameter. For
example, the trajectory for which X20 = -5,30 degrees was the starting path
for the generation of trajectories 8 and 10, and the mapping process took place

over XlO'

Trajectories 20 through 27 were generated in a similar fashion, except that inter-
mediate maps over X30 were performed first, followed by maps over XIO' Thus
for example, the trajectory for which XZO = -5.40 degrees was the starting tra-
jectory to generate paths for which X30 = 370, 000 feet and 430, 000 feet respec-

tively. The X.  map for these paths produced trajectories 21, 25, 20 and 24.

10
The ease of attainment of the various paths varied considerably as a function
of parameter values, As pointed out above, the step size for the Xzo—map
could be increased to AX20 = 0,1 degree as the flight path angle became
steeper. When going in the opposite direction, however, the smaller step
size was required, Trajectory 17 was generated with some difficulty, al-
though the process became easier as initial altitude decreased. In trying to
increase altitude to 440, 000 feet for trajectory 16, the predictor scheme
failed to go beyond XSO = 427, 500 feet,
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In most cases, the velocity-map was easily accomplished, Optimal Newton-
Raphson many times converged in one step, and the predictor scheme (once
started) almost always predicted optimal trajectories. Some difficulties
were experienced in trying to obtain trajectories 20 and 24 (the worst cases
were always shallow initial flight path angle and increased altitude, as might
be expected). A trajectory for X10 = 34, 950 feet was obtained after several
optimal Newton-Raphson iterations, and further such steps would have been
wasteful of computer time. A two point predictor formula from Reference 2
was used to predict trajectories above and below the two members of the
velocity-map family of paths. With these improved estimates, the optimal
Newton-Raphson scheme converged rapidly, and, thereafter, the predictor
scheme predicted optimal trajectories at each step. This again shows the
power of the predictor scheme and indicates thatlower-ordered predictor

formulas might well be of value during the mapping process.

In all cases, the optimal Newion-Raphson scheme was quite sensitive to the
weighting factors used to multiply Equations (2. 34) {see Appendix B). It was
found, however, that a single set of weights could be used when mapping over

a given variable., The numbers used are given in Table 2-3,

Table 2-3, Weighting Factors for the Optimal Newton-Raphson
Method Used for the Mapping Variables.

Weights X Varigble .
10 20 30
Wy 10 1x 1072 1
W, 1x 104 1x 104 1x 104
W, 1x 1072 1x1072 10
W, 1x103) 1x10% | 1x107®
W, 1 1 1
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"nominal' 1500-mile

Trajectories 2 through 7 are compared with the
trajectory in Figures 2-16 through 2-27. It is seen that trajectories 2 and

3 are quite symmetric about the nominal path, except for areas where the
curves cross each other, Larger differences from nominal values are observed
for trajectories 4 and 5 (Figures 2-20 - 2-23), and particularly for trajectory 5.
Note that the steeper initial flight path angle produces a large skip and high
acceleration peaks. Somewhat similar results are observed for trajectories

6 and 7 (Figures 2-24 - 2-27), Here however, a lower initial altitude produces
a longer skip and higher acceleration peaks. The control functions for all 27
optimal trajectories are plotted in Figure 2-28, Note that the characteristics
are similar to those of Figure 2-10. The control functions for those trajec-
tories displaying large skips assume their minimum values earlier, and then
rise higher than those for the better behaved paths. A good coverage of the

control region of interest was obtained during the mapping process,

THE DATA GENERATING PROGRAM

The data to be fit consists of the control function u for the 27 optimal tra-
jectories, and two multipliers like Py and Py The multipliers are included
in hopes that an arctangent relationship such as (2. 16) will produce an over-
all reduction in the size of the control function fit. Additional data includes
the partial derivatives of u and the two multipliers with respect to the state

vector,

1, Statement of the Problem

The problem is transformed to an equivalent, although somewhat reduced
and more convenient, form through a series of transformations, These
transformations are carried out in Appendix C and the results are presented
here. The new set of differential equations corresponding to (2. 2) and sys-
tem {2, 6) are;
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dg al(R+h) pllzv az(R+h) p 3/2 v 4
- + ——— | — —
dz cos ¥ cos ¥ po 108
av _ aq p V(R+h) ot + a’ tan vy
dz cos ¥ D (R+h)
(2.37)
dy ag o{R+h) 3.7
= " %t ey SLW + R
dh _ ;
= - 35 (R+h) tan ¥
dt ag {R+h)
dz Vlfz cos ¥y
with constants defined by
c
a, = —=—a
bon s
_ -4
a, = 7.5x 10 "N ag
CqaS
- 3
a3 ~ mR
a, = Zst7 (2. 38)
c3
ag =
R
a
ag = - 3
2
&y —cBgOR.
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The new independent variable is range measured in miles, which is related

to ¢ through

= b, 280,

and the new velocity and altitude are given by

V=v2
h

= RS

The terminal conditions corresponding to (2, 12) are

2 _
V(zT)—X1 = 0

h(zT) - Xz = 0

Zop - XSI ¢y = 0.
The new Hamiltonian is

- 7
H2_g0+PgJ

(2.39)

(2. 40)

(2.41)

(2. 42)

where g, is the right-hand side of the first of (2.37), g is a four-dimensional

vector denoting the remaining right-hand sides, and P is the new multiplier

vector, The Euler-Lagrange equations are

clP1 i ago Bgl ag2 ag4
T Wt PR i tPyyww t PyTay
-d_P2—=E+P_§ﬂ+Pig_2_+P ag3+Pag4
dz Yy 1 oy 2 oy 3 3y 4 3y
dP dg 3g dg dg 3g
3 °g, 1 2 3 4
"FZ 3R T PiT3ER tPesn t Ps3n oY PaTRh
ap
4 _
— 0.
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The control function satisfies

1 Lo

2CDLP1V

u = tan (2. 44)

with the sign conventions (2. 20). Since P4 is a constant and terminal time is
an unspecified quantity, the transversality conditions require

P.4 = 0. (2. 45)
Thus, the time equation, the last of (2.37), is unimportant in the problem,
and the set of dependent variables is reduced to (V, ¥, h).

Other boundary conditions could be derived. However, this problem is
equivalent to the problem of subsection A {when By = By = 0) with equivalence
relationships (2.39), (2.40), and, as shown in Appendix C,

Py
P1 T2y
Py = Py
P3 - R »
P4 = -H = 0
H2 = —c3p4.

2. The Partial Derivatives

The system of variational equations like (2. 26) for the new system of
differential equations may be written
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- T ~ —
n 3g, dg, 3g dg, 3g, 0 .
1 3V 3y 3h 3P, P, 1
9g, °gy; 2y 38y 38y 0 "
Ma A'a 3y sh 3P, 3P, 2
og 3g
3 3
N, 0 Y =% 0 0 0 "
d
b yurnd = (2- 47)
dz 2®H, o%H, o%H, g, dg,
¢ - - - - - 0 ¢ |
1 ave  3vay aVah 3V a3V
2 2 2
i (¥H, ¥"H, ¥H, 3, g, 32g ¢
2 avay 2ay®  ahdy Y  aY 3y 2
2 2 2
3 H2 - Hz 3 H2 agl ag2 ag3
‘3 “avah ahay ah?  ah ah  3h %
S | — ]
Let the fundamental system of solutions to (2.47) be
dx(z) dx(z)
5X
o] o]
m(z) = f . m{0) = I, (2. 48)
3 P(z) 3P(z)
[-on BPO ]

and furthermore, let the elements of the submatrices be denoted by

dx(z) i 7] o ax(z) [ 1 i= 1,2,3
ax, = L'ﬂij(z) , 1,j=1,2,3; 3P, = Lnij(z) = 4,5,6
) ] (2. 49)
aP(z) [ { ] aP(z) [ 1 i=1,2,3
= s ,1,3=1,2,3; = ‘s . s
3x Lcu Z)J ) , BPO -Cq(z) ) j= 4,5,6 .
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An optimal trajectory in the neighborhood of an optimal trajectory will satisfy

the perturbed equations

o o]
. dP(z) 3P(z)
OP@ = 53— % * 3P %

(2. 50)

at arbitrary values of range, and linearized versions of the boundary conditions

{2.41), (2.45) and

PE(ZT) = 0

at the terminal point. These may be written

p— —

6v

oY

B 1 1
GV(zT) 0 ‘n”(zT) Tllz(zT) n13{zT]
Lt‘.iPz(zT) 0 521‘%) sz(zT) C23(zTi|

oh
o

(2.51)

~ I 7
P

Na4(zp) Naslzg) Ngglzpht (0P,

Coglzp) Coglzq) Coglzy) [5_1’30

(2, 52)

since equation (2. 45} and the last of (2.41) are always satisfied in the reduced

system. Let (2.52) be represented by
Adx + B&P_ = 0,
o o
so that

- .n-l =
GPO = -B Aﬁxo = Kﬁxo,

57
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Note that B is the Newton-Raphson matrix in the reduced system, which must
be nonsingular. It is shown in Appendix E that if B is nonsingular, the path is

normal according to the definition of normality in Reference 7.

When (2. 54) is substituted into (2. 50) the result is

- N
Gx(z} = Bax}fg) + aaxl(zﬂ K ﬁxo
o] (o] i
_ 1 (2. 55)
6P(z) = |30, 2BGg| 5y
() o]

Under the assumption that the first matrix of (2. 55) is nonsingular, it follows
that the partial derivatives of the multipliers with respect to the state are

-1
2P(z) . |la) , 3PG) | | 2xla) , Bxa) i (2. 56)
[0} (4] O

The partial derivatives of the control are derived from Equations (2. 44) and
(2. 56) with the result being

du
dx

Several comments should be rmnade, The process described above constructs

du Bu du 3P
e & 0t ep,r O

(2. 57)

a particular field of extremals in the neighborhood of an extremal trajectory

if the inverse matrix in (2. 56) exists at each point along the path (see Reference
7, pp 237-240 and Section ITIA following). By construction, however, the
matrix is singular at the endpoint. In spite of this singular point, it can be
shown that the results do constitute a field when the endpoint is excluded, so
long as the inverse matrix in (2. 56) exists at all other points along the extre-
mal path. The 27 optimal trajectories extend this field over a finite region of
space. The partial derivatives (2. 57) may be used to construct a " neighboring
optimal" linear feedback control scheme, as in Reference 8, about any one

of the optimal trajectories.
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3. Computer Results

The system of differential equations in the computer program includes (2, 37)
and {2.43), in which the last equation of each set is omitted, and the control
function satisfies (2, 44) and (2, 20). The equivalence relationships (2. 40)

and (2. 46) establish initial conditions from the results of the mapping pro-
gram. System (2,47) is also integrated to obtain the solutions (2. 48). Since
the initial conditions for the multipliers may be somewhat in error, Newton-
Raphson equations are included to adjust them to their proper values. When
the process has converged, the K-matrix of Equation (2, 54) is computed, and
the initial conditions for system (2.47) are changed to

1 I
n{(0) = (2. 58)
K -1

for the last pass. The first three column solutions are then the matrices of
Equations (2, 55), and the last three solutions are used for an auxilliary
sufficiency condition computation (see subsection D). On the last pass the
control u, multipliers P1 and Pz,and the partial derivatives [from (2, 56) and
(2. 57)] are punched on cards at specified values of range. In the present
case 101 sets of data are obtained spaced at range increments of 15 miles,

At the last point {(z = 1500 miles) the partials are omitted.

In computing the partials at the output points, the inverse matrix of Equation
(2. 56} is obtained by inverting the solution in (2, 55). This does not increase
computing time excessively, since the matrix is small (3 x 3). In larger
systems, however, one may wish to solve the nonhomogeneous Ricatti equa-
tion derived in Appendix D, and thereby obtain the solutions (2. 56) directly.

The partial derivatives of the control function for the nominal trajectory are

plotted in Figure 2-28. The %{}- curve appears to be rather uninteresting over

most of the trajectory, until it is remembered that V is a very large quantity

over this region. The hump in the ‘gJI;'IL curve corresponds approximately to the
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bottom of the first dive (see Figures 2-16 through 2-18), where control changes
drastiéally influence the remainder of the path. Beyond this point, the partials
are small, corresponding to the skip in the trajectory. The partials all head
toward + = at the end of the trajectory (by construction). Since the partials
can be used as time varying gains in a linear feedback control scheme {(as in
References 1 and 8) one might wonder why they are not negative, to corres-
pond to negative feedback. The reason for this is that positive control pro-
duces negative lift, One can intuitively justify that the partials, acting as
feedback gains, produce the proper trajectory changes, at least toward the

end of the path.

Figures 2-30 and 2-31 are plots of the multipliers P1 and P2 for trajectories
1 through 7. They are included to show the nature of the variations over the

optimal re-entry corridor,

SUFFICIENCY CONDITIONS

The sufficiency tests described in this subsection are tailored to problems
like the re-entry problem stated above in which the Lagrange form of the
optimization problem is considered and the terminal equations are quite
simple. The tests can, of course, be extended to other cases, such as prob-
lems with more complex endpoint equations, the addition of a function of the
endpoints to the function to be minimized, and the inclusion of inequality

constraints in the problem statement,

1. Sufficiency Conditions for a Relative Minimum

Bliss' theorem 85,1 (Reference 7, page 241) forms the basis for the relative
minimum sufficiency test. This theorem requires
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(1) A field in which the extremal is imbedded
{2) The strengthened version of the Weierstrass condition

H{u} < H(U) (2. 59)

(3} The second variation, evaluated with field elements, to have

a proper minimum at the ends of the extremal,

If thege three conditions are satisfied (for a normal extremal without corners)
then the path is a strong relative minimizing path in the sense of Bligs'
Theorem 82.1 (Reference 7, page 235).

For application to the re-entry problem, consider the formulation of sub-
section C. Condition (2) is satisfied since the control (2. 44) using sign con-
ventions (2., 20) establishes the absolute minimum of the Hamiltonian {with
respect to u) and no other control U gives the same value, The problem is
normal since the Newton-Raphson matrix B of Equation {2, 53) is nonsingular.
It is shown in Appendix E that B nonsingular implies normality in the sense
of Reference 7,

A field is constructed through the use of lemma 84.2 of Reference 7 {pp 238~
240). This requires that the path first be nonsingular. Lemma 87,1 of
Reference 7 (page 247) shows that the path is nonsingular if the strengthened
Clebsch condition (Theorem 78.2 of Reference 7) holds. With a single control
function this requires
32H
Buz

>0 (2. 60)

over the path, which is true for the problem under consideration. Then a
field is constructed if a conjugate system of solutions U,V (both nxn matrices)
to the accessory equations (2, 47) can be found, with U nonsingular everwhere

along the extremal. By definition, a conjugate system of equations satisfies

Uu‘v = v'u. (2.61)
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A suitable choice for U and V is

_ Bx dx  _
U = -Bx—o - TP”O = Wll(Z) + 1112(2) [K"I]
(2.62)
) AP _
Vo= 3%, ~ ?P_ Mg1(2) + Toolz) [K“I]

which accounts for the second half of the initial ¢conditions (2, 58) for Equations
(2.47). The mnotation, adopted here, splits the fundanfental solution matrix
(2. 48) into the four submatrices indicated in (2.82). One can show that the

choice (2, 62) forms a conjugate system because of the easily proved relation-

ships
T Tar T Tar T
ﬂlzf Moy = n22' Mg (2.63)
Tyg Mg = Tip Moy * D

Then a field is constructed if U of (2, 62) is nonsingular at each point along

the extremal,

Several comments should be made. Although the results (2, 62) and (2. 63)

are presented for the problem of subsection C, they hold in general. The
minus sign in (2. 62) arises because of the use of the minimum principle
instead of the maximum principle, as explained in Appendix E. Since the
original problem included u as the derivative of an additional state coordinate,
one might wonder whether the field should be constructed in {n+2) dimensions
ratherthanin (n+1)dimensions, It is shown in Appendix E that the additional
dimension need not be considered. The sufficiency proof is complete at this
point for fixed endpoint problems,

*Matrix K, from Equation (2, 54) is taken as zero in (2, 58), It is only necessary
to show that there is a conjugate system U,V with det U # 0.
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In the computer program, the determinant of U was computed at each output
point (z= 0 to 1500 miles with increments Az = 15 miles). The determinant
started at unity {z = 0), and rose to very large values as z increased (about
1029 maximum) for each of the 27 trajectories considered. Because of the
smoothness of the problem soclutions, it was concluded that the determinant
did not vanish or become negative between output points, and hence, that fields

were indeed constructed for each trajectory.

Condition (3), above, is based upon lemma {87, 2) of Reference 7 (page 247).
This gives generalized expressions for the second variation test for problems
with separated end conditions. There is no contribution to the second variation
at the initial point, since conditions at this point are all fixed, Hence, for the

type of problem considered, it is required that

, - .. .,
- [ao’ a] p(ZT) X(ZT) p (zT) U(ZT) a,
7 - ' > 0 (2. 64)
for all (ao, a) satisfying
:::i(zT)ao + Uflzpla = 0, i=1,...,r. (2. 65)

Expression (2. 684) is the second variation (as derived in Reference 1) evaluated
at the terminal point with field elements, and {2.65) represents the linearized

terminal conditions with subscript i on U representing the ith row vector of U.
In the re-entry problem the terminal value of range is also specified, which
implies a, = 0, and accordingly reduces the size of expression (2.64). The

remainder of the terminal conditions (2. 41) may be written in the linearized

form

Ulzp) a = Al, (2. 66)
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where the middle row of U is included for the unspecified variable ¥, and A
is an arbitrary scalar. When (2. 66) is inserted in (2. 64) (with a, = 0) there

results

-[o & 0] vepulep [o] > o (2.67)
A
0

Thus, the center element of the product matrix in (2. 67) must be negative to
satisfy condition (3). It is negative for each of the 27 trajectories considered,
Hence, the sufficiency conditions are all satisfied, and each of the 27 trajectories
is a stong relative minimizing trajectory.

2. An Absolute Minimum Test

The test given here does not establish global sufficiency. It does, however,
allow a large region of solution space to be examined for other solutions to

the optimization problem. The method is not applicable to fixed end-point
problems. The idea is simple: replace one of the transversality conditions by
a new terminal equation in which a parameter is included. Obtain a set of
soultions to this problem, as functions of the parameter, and examine the set

for satisfaction of the omitted transversality condition,

To illustrate the method, consider the problem statement of subsection A, and
in particular, the set of necessary condtions (2. 25). The fourth of these is
replaced by the equation

y(T.p)-T = 0 {2.868)
in which T is the parameter, and solutions as functions of T are to be

examined for satisfaction of p 2(T) = 0. The Newton-Raphson equations for

the new system of equations may be written
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— - -1 -
. ] [
daT v(T) mn,,(T) nlz(T) ﬂ13(T) N14{T) v(T)—x1
dp g ¥{(T) Moy (T MyolT) NyalT) My, (T) y(T)- T
dpgg | = - [8(T) Mg (T) Mgp(T) Maq(T) Mg, (T) UT)-X,/R (2. 69)
dp 0 f(0)  £,00)  f£.(00  £,(0) L H )
L 40_ | 1 2 3 4 N )

According to Appendix A, the derivatives of the initial conditions with respect
to the parameter T are inthe second columm of the inverse matrix. These

are used with the predictor equation (2. 29) to establish the family of solutions.

An unconstrained optimal trajectory with terminal range of 1450 miles
was used for the test, The results certainly hold for the 1500 mile

trajectory. During computer runs it was found that an increment

AT = 1/2 degree initially produced a member of the family of solutions at
each step. Prediction gradually worsened, however, as the extremes of T
were approached, and it is unlikely that further extension of I can be accom-

plished.

The total heat J for the family of trajectories is plotted in Figure 2-32,
There is only one minimum for the range of T' given, and it is noted that the

minimum is quite insensitive to large variations in terminal flight path angle.

From Hamilton-Jacobi theory, it is known that—pz(T) is the slope of Figure
2-32. The slope is zero for the optimal trajectory, and becomes very large
(in absolute value) at the extremes of the curve, so -pz(T) is never again
zero over the range of T. It is concluded that the original optimal trajec-
tory is the absolute minimizing-trajectory, at least over the obtainable range

of the parameter T,
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THE CONSTRAINT a_= B AND EXPERIENCES WITH VARIOUS OPTIMIZATION
SCHEMES p

1. Constrained Subarc Equations

Consider the problem of subsection A, and include the constraint equation
{2.10) in the problem formulation. When equality holds in (2. 10), the resulting
equation is used to determine the control u, This is squared and rearranged to

obtain
acoszu + 2bcosu + ¢ = 0 {2, 70)
where
a - CDL2' CLo2
b = CDOCDL (2.71)
2

ngoB

Spv2

2 2
c = CDO + CLO (

Upper and lower limits for application are found by substituting u= 0, £ into
(2. 70) and expanding in the vicinity of these points. It is found that the inguality

2mg B
> ——2 = (C

5 > 0 {2.72)
Spv

(C -C

po t Cpr) po ~ “pr’

da
must hold, The expression for ?_L?' is proportional to sin u, which is zero
at u= 0, +m. These points are thus singular points, so equality must be

excluded in (2. 72), Assuming this, Equation (2.70) may be solved to obtain

b
24 1-E% , (2. 73)
a b

cos u =

where the omitted root falls outside the range lcos u| < 1. It is easily shown
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that the term in the square root is positive by substituting the upper limit of
(2. 72) into the expression and evaluating.

The minimum principle again takes the form (2, 21), except that this time

- ] << Jul. (2. 74)

Otherwise, ¢ and u would be identical. Then, once again, ¢ # 0 and u must
have the same sign, and ¢= 0 is the bang condition,

The multiplier Mo is determined from Equation (2. 15) (with by = 0). When all
the substitutions are made, it turns out that

b, = - o [CL:2 * CDZ] “CLopzlz +{CDLP1V)2] sinfu-e) (2.75)
2 v b’ - ac sin u

Since sin {(u-¢) and sin u have the same signs, Mo £ 0 as required. Again, u
is continuous at junction points, so b must start and end at zero; and Mg = 0
with ;"2 #0, describes the subarc terminal surface, unless the stopping condi-

tion is satisfied first.

It is convenient to include B as an additional parameter in the problem, and to
introduce the new terminal equation

B-B = 0 (2. 76)
Bo is the final maximum g-level (usually taken as 10 g's) in the constraint

equation (2, 10}, and the solutions now depend upon B as well as the set (T,po).
This allows the computation of extremals for various g-levels.
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The accessory equations are system (2, 26), modified for the constrained
subarc, and the discontinuities (2. 27) are included for corner points, An
additional column solution is obtained, for partials with respect io B, by
integrating the nonhomogeneous accessory equations

a fax\  2%m, [ax 3%u. [3p a2y
A bk 1 o, 2By (e} °H,
dt \3B| apdx \3B ap? \aB| 3p3B
(2.77)
d [3p %m, [ox 2, [ap| 3%
S DA —- —1 2. 1
at \aB] 2ax? \eB/ ax3p \aB] 3x23B

where the nonhomogeneous partials in (2. 77) are computed through the
appearance of B in the control function (2, 73) from the last of (2. 71), The
forcing terms are zero, of ¢ourse, for the unconsirained sybarc, and the ini-

tial condition for (2. 77) is the zero vector.

Let ni].(t) and 'Cij(t), i=1,....4; j=1,...,5, be the elements of the partial
derivative solutions obtained from (2. 26) and (2. 77). Then the Newton-Raphson
equations for the expanded set (2. 25) and (2. 76) may be written

. — -1 __ —

dT vIT) N (T (1) M o(T) n (T) n (T [ v(T)-X,

dpyq UT) Ny (T) no(T) Mo 1, (T 0, (D] | (D%,

= -1, (2.78)

apgel [Pt (oD CoplM $pn(M oy (M €M | py(T)

dp,, 0 £,(00  £(0) £(®) 1,0 0 H

dB 0 0 0 0 4 1 ' B-Bo

— - P R S ———nad
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2, Ezxperiences with Various Optimization Schemes

The objective of the studies was to obtain a 10-g optimal trajectory, and to
evaluate various optimization schemes during the process. The starting
frajectory was the unconstrained optimal trajectory with terminal range

X3 = 1000 miles, shown in Figures 2-% through 2-13, with peak acceleration
of about 20. 7 g's. Existence of the 10-g trajectory was assumed from the
u; = 16 degrees acceleration plot of Figure 2-2, The function f of Appendix

B was taken as

f = w12 [v(T) -x1]2 + wzz(g('r) -leR]2+w32 (c(T)-X3]2
(2.79)

+ w42 {1‘32(T))2 + W52H2+w62 (B -Bolz'

The problem, as stated, turned out to be extremely difficult, and a 10-g
optimal trajectory was never found. Thus, the optimization schemes were

compared under worst conditions.

The modified Newton-Raphson scheme, used first, refused tc converge after
several successful iterations. Marquardt's method (Appendix B) produced
good initial changes in f, and gradually deteriorated in performance as B
approached Bo. The difficulty appeared to be that second-order terms,
neglected in the development of the scheme, became larger as the minimum
was approached., When the weights in (2. 79) were changed, the scheme again
worked well at first, then deteriorated rapidly. It always, however, produced

some improvement in f.

The parameter B was reduced to about 11. 5 g's during the course of the
experiments, whereas the other components in (2. 79) gradually became larger,
The constrained subarc exhibited a variety of behavior. It sometimes con-
tained a corner, and other times did not, and in some trajectories it was

absent,
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The Fletcher-Powell method was never successfully used. The H-matrix
(see Appendix B), modified after the first step, was either indefinite (it
should be positive-definite), or it had a very small eigenvalue., This was on
the order of computer roundoff error and caused the method to break down.
No means of correcting the sitnation was found, although a recent note

{Reference 10) may contain the answer,

The use of the identity matrix as the initial H-matrix led to the optimal gradient
method, in which the gradient direction is used, and the magnitude of change
is chosen to minimize f. Initial convergence was good but rapidly went to

"saw-tooth" effect. This effect, noted by many users of

zero due to the
gradient techniques, makes level surfaces of { appear as extremely elongated
ellipses, and gradient changes in general, therefore, produce little or no

change in the functional to be minimized.

The use of
-1
g’ Vo
o ~ | 3x ax

H (2. 80)

as the initial H-matrix (see Appendix B) results in the Newton-Raphson
direction for the firsti step of the Fletcher-Powell method, This led to the
optimal Newton~-Raphson method, which was tried on a trajectory which satis-
fied B= B0 but whose terminal conditions were very far from those desired.
The method worked quite well, and almost produced the 10g-optimal trajec-
tory. The singular point u = £m, however, caused computational difficulties,
so the approach was abandened,

The predictor scheme of Appendix A was also tried on this problem, In terms

of the notation of Equation (2, 78), the derivatives used in the predictor
equation (2. 29) are
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T rx'r(T) M (T) M (T) N o(T) Ny (T N 5¢T)

Pyo E(T) My (T) Mao(T) Mga(T) Mgy (T) N5 (T)

Pag| = = [CT) nyy(T) Myp(T) myg(T) My, (D My5(T) (2. 81)
P30 PAT) €5 (T) (,0(T) CoalTh £,y,(T) Cos5(T)

Paq 050 5O 5O Lo o

A 17, 9-g optimal trajectory was obtained using the optimal Newton-Raphson
method {(Equations (2, 28) with C determined to minimize (2, 79) with Wg = 0}.
The initial conditions for the iterations were taken as those for the uy = 55
degrees optimal trajectory of Figures 2-1 through 2-8, A second optimal
trajectory for B = 16,9 g's was similarly obtained, using the 17, 8-g optimal
values as starting conditions. A cubic was fit through the initial conditions
and theirderivatives [obtained from (2. 81)] to obtain estimated initial conditions
for the B= 17,7-, 17,5-, 17.3-, and 17. 1-g optimal paths. The new paths
were then obtained, and the predictor scheme was used [with h=0.2 gin (2. 29)]
to compute optimals down to B = 14.9 g's. All of these paths had a corner
point, which migrated toward the initial point of the constirained subarc as B
was lowered, The predictor scheme failed to obtain the 14, 7-g optimal be-
cause the corner point was too close to the initial point of the constrained
subarc. This caused computational problems because of the singular point u= 0.
On the other hand, the terminal range of the 16. 7-g optimal trajectory was
extended to 1460 miles using the predictor scheme, and the corner point
migrated toward the endpoint of the constrained subarc. Once again, the
singular point u= 0 prevented further range extension. Thus, two parameters
were found which controlled the location of the corner point, and a 10-g opti-
mal trajectory could have been obtained by manipulating them properly., This
was not done, however, since a 10-g optimal trajectory with a continuous
control function was sought. Instead, the constraint equation was modified

80 as to isolate the singular point u= 0 and to thus allow the corner point to

move across the constrained-unconstrained subarc junction points,
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3. Constraint Equation Modification

The singular point u = + m has a clear physical significance: in the next

instant of time the pilot's acceleration will exceed B g's, since no control
function exists which will alleviate the situation., Computations are accordingly
stopped at this point. {(Normally, 0 < | u [ <m, on a constrained subarc, and

| u I moves, in time, toward zero or 7. The subarc either terminates normally,
or runs into computational difficulties as a singular point is approached.) The
point u= 0 should define the endpoint of the constrained subarc, since no control
exists, for the next instant of time, which will keep ap = B g's., It should be
possible fo show, mathematically, that this is so, However, the mechaniza-
tion of any such solution would undoubtedly add complexity to an already com-
plicated computér program. It was decided, instead, to modify the constraint
equation so as to isolate the singular poiﬁt u=0. The modified equation reads

a =-2-P__S"2 Ve l2ic? + 2K_ (2.82)
p mg L D T-cosu ° '

With the constant 2K = 0. 0001, the added term normally contributes very little
to the original equation; hence, there is a very small difference between the

"real" acceleration less than B g's.

two expressions. The error maintains the
As u approaches zero, however, the adder becomes large, and effectively
isolates the point u= 0. The equation to be solved for the control function,
analogous to Equation (2, 70), is
2 2K -

a cos u+2bcosu+c+1_cosu = 0 (2,83
with a, b and c defined by (2.71). Although this may be solved as a cubic,
it was found more convenient to use Newton's method, Also, since cos u may

be close to unity, the transformation

z = cosu-1 {2. 84)

was introduced for somewhat better accuracy.
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The transformed version of (2. 83) reads

22 4 2atb), . (at2b+e) _ 2K | (2. 85)
a a az

The constrained subarc equations in the computer program were changed
for the modification. Lack of time prevented more than one or two debugging
runs to be made, so the corner point was never removed from the constrained

subarc,

EXTENSION TO THE BOUNDED STATE COORDINATE PROBLEM

1. Statement of the Problem

The theory for the problem of minimizing

T
J = ffo(x,u)dw (2, 86)

0
subject to differential equations

x = fix,u), =x{0) = X (2.87)
inequality constraints

Gx,u) = 0, (2. 88)

in which u must appear explicitly, and terminal conditions in either the form

xi(T)—Xi = 0, i=1,..., r=sn (2. 89)
or

xj(T)—Xj = 0, j=1,..., r-1sn (2. 90)

T-K = 0,
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is treated in Reference 1. The objective here is to add inequality constraints

of the form

G{x) =2 0 (2.91)

and to develop a method for numerically solving the resulting problem.

2. Necessary Conditions

A set of necessary conditions for this problem has been known for some time

{see References 11-14), They are stated here with one control function and one
inequality constraint equation (2. 91) assumed for simplicity. Generalization

to more control functions and more inequality constraints is readily accomplished.

It is also assumed that the time derivative of {2, 91),

G=3%* = b (2. 92)

contains the control function explicitly, The case where higher derivatives

are required to involve the control function is treated in References 11 and 14,

The Hamiltonian for this problem is

H=f +p't, (2. 93)

where fO is the integrand of (2.86), p is an n dimensional multiplier vector,

{ ') represents transpose, and f is the right hand side of the vector differential
equation (2. 87). Now a constrained subarc is one over which inequality (2. 91)
is an equation. A necessary and sufficient condition for G to be zero over such
a subarc is that G be identically zero over that arc (see Reference 13). This
condition is included in a new Hamiltonian, defined by

H, = H + uG, (2. 94)
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where the new multiplier p is identically zero over unconstrained subarcs
(G(x) > 0) but may be different from zero over constrained subarcs. Equa-
tions (2.93) and (2. 94) clearly have the same value, and the last term of (2, 94)
may be though of as a constraint on the Hamiltonian,

The usual necessary conditions now hold. The Euler-Lagrange equations
are derived from the Hamiltonian (2, 94), and the minimum principle requires
that

H(x, u, p, #} s H(x, U, p, p), (2.95)

where u is the extremal value and U is any admissible control (satisfying
G = 0 over constrained subarcs). The Clebsch condition must also be satisfied,
and usually is if (2. 95) holds. In fact, it can be shown that the Clebsch condition

gives the necessary condition

L0, (2. 96)

Boundary conditions at the initial and terminal points of the trajeciory are

the same as those given in Reference 1. Addifional conditions may, however,
be required at junction points between constrained and unconstrained subarcs.
If there are only two subarcs, the condition G= 0 may be treated as either an
initial condition or terminal condition, depending on the ordering of consirained
and unconstrained subarcs, and the multipliers will be continuous over the
path, If the ordering is constrained-unconstrained-constrained for a three-
subarc-path, the multipliers will be continuous for the same reason, All

other cases with three or more subarcs will produce discontinuous multipliers,
It is well known (see Reference 12) that the discontinuities take place at one
end of the constrained subarc and that the multipliers are continuous at the
other end, It does not matter which end has the discontinuities (for proof see

Appendix G), so the initial point t. is chosen here, as in Figure 2-33,

1
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Figure 2-33. State Coordinate Geomeiry in the Vicinity
of the Constrained Subarc Initial Point

The necessary conditions at t1 (the analog of the Weierstrass-Erdman
corner conditions) then read
BG(tl)

Pt = plt) - v 5 (2.97)
Bt = H (2. 98)*%
G'(tl) = 0, (2.99)

where superscripts + and - indicate limits from the right and left,
respectively.

Notice that when (2. 97) is substituted into the left-hand side of Equation (2. 98),
the coefficient of v becomes G [ Equation (2. 92)} , which is zero by defini-
tion. Equation (2.98) is thus independent of v, and contains only p values of
the multipliers, This equation can usually be reduced to an equivalent nec-

essary condition.

*
If G contains t explicitly, then the Hamiltonian is discontinuous by the
amount v% (tl) .
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For example, it is used in the bounded brachistochrone problem (subsection
F4) to show that the optimal control is continuous in time at the point tl’
which implies that

G~ = o0 (2. 100)

This condition, rather than (2. 98), is used there,

3. Basis for Computational Scheme

In the optimization problem treated in previous subsections, the extremal
solutions were functions of the independent variable {(call it t} and the multi-
plier vector P, The constant v in equation (2.97) cannot be determined
from the necessary conditions, and hence, becomes an additional parameter
for the solutions. The extremal solutions thus have the functional forms

i
u

x{t, p_, V)
© (2.101)

plt, Py v).

b =]
1]

Each time the multipliers are discontinuous another constant v is introduced.
Unless one has an a priori knowledge of the number of constrained subarcs, the
problem could have a variable number of variables. This gives no theoretical
difficulty, but the practical bookkeeping problems in a digital computer pro-
gram could become unmanageable, In what follows, then, it is assumed that
the optimal path consists of three subarcs, ordered unconstrained-constrained-
unconstrained.

The necessary conditions at the terminal point give (n+1) equations in the

{n+2) variables (T, Py v}. The necessary conditions (2. 98) (or equivalent}
and (2. 99} determine the point t; and give an additional equation in (T.p, V).
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The problem is thus one of determining the solution of {(n+2) equations in (n+2)
unknowns and the Newton-Raphson method may be used to find the golution.

Partial derivatives of the solutions with respect to p, are obtained as before,
by integrating the accessory differential equations. An additional column in
the solution matrix is reserved for partizals with respect to v. Initial condi-
tions for this solution are obtained by differentiating Equation (2. 97}, and
noting that x(tl) is independent of v, The method of solving the problem is

illustrated in the following example,

4., The Bounded Brachistochrone Problem

The bounded brachistochrone problem was chosen to test the theory. It is
simple enough to have an analytical solution, yet nonlinear in nature. The
equations of motion, as given in Reference 11, are

X = v cos vy {2.102)
y = v sin y (2.103)
v = -g sin y. {2.104)
The problem is to minimize the time it takes to go from a given initial point
tox = x. while satisfying the path constraint
G = y-ax-b 20 . (2.105)

The state vector has the components (x, y, v) and ¥ is the control function to
be determined, Figure 2-34 shows the path constraint, terminal condition and
a possible path.
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X (tl) X (t2) Xg

Figure 2-34. Bounded Brachistochrone Problem Geometry

The time derivative of (2. 105) is

é = v(sin ¥ - a cos ¥)

so the Hamiltonian is written as
H1 = 1+ p,vcos ¥ + p,v sin 'y-p3gsiny +pv(siny-acosy) .

The Euler-Lagrange equations become

p, = O

by = o

£)3 = -[pl cos ¥ + pzsin'y]

0 = -pyvsiny+ p,vecosy - pygcosy +puvicosy + asiny)
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Over unconstrained subarcs the multiplier g is zero, so (2, 111) may be solved

for vlv, p;, Py py) as

_ sz = p3g'
tany = T (2.112)
or
-{p,v - p,8}
. 2 3
siny = 5 5 (2. 113)
‘\/(pprl * |pgv - P3e)
cos ¥ = . (2. 114)

‘\/(pl\f]z * [pg¥ - p3g]2

The minus signs in {2.113) and (2. 114) are chosen to minimize the Hamiltonian
(2.107).

On constrained subarecs, solution of G = 0 [Equation (2. 106)} gives
tan ¥y = a, (2.115)

since by assumption v # 0, and Equation(2, 111)gives

P,va - (pyv - pag)
2, ' (2.116)

H -
vil+a

Now let ¢ be the angle defined by (2,113) and (2, 114). This is a convenient
definition, since at the boundary point t’2 (see Figure 2-34) everything is

continuous, so ¢ becomes Y at that point. The constrained subarc Hamil-
tonian may then be written

H=1- V(plvlz + (pzv-pgg2 cos (y- @) . (2.117)
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The minimizing value of ¥ makes the cosine positive, so it must satisfy

@-_2_<-y<q5+—n (2.118)

2 r
thus resolving the ambiguity of Equation (2, 115).
The multiplier p of Equation (2. 116) is negative over the constrained subarc.

To see this, consider the complete statement of the minimum principle for

this problem. It reads

H(y) < H(T) (2.

for all T satisfying G{T) 2 0. Written out,

p,v cos vy + (pzv-pSg) sin y < p,v cos T'+ (pzv-pBg) sin T, (2.
or from (2.117),

cos (y- @) = cos (T- &) . (2.

Now T'= ¢ contadicts (2,121) if y# 4, so ¢ must satisfy C'}(ab) < 0 except at

the endpoint t, where ¥ = ¢ . Thus,

2

é(®)= v(sin ¢ - a cos ¢) <0, t1<t<t2. (2.

Substitution of (2, 113) and (2, 114) then gives

N v {plv a - (pzv-psg)] <0, ty<t <t,. (2,

Vi) + pav-peg)’

The bracketed term of {2,123) is the only term which can be negative, and is

119)

120)

121)

122)

123)

the numerator of (2.116), Since the denominator of (2. 116} is positive, p must

be negative over the second subarc. An interesting interpretation of the angle ¢
is that it is the extremal value of ¥ if the constraint is not present,
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The relevant boundary conditions for this problem are the terminal and

intermediate conditions
x{T) - Xp = 0 (2, 124)

ylt;) - ex(t)) -b = 0 (2.125)

and the transversality conditions

py(T} = 0 (2. 126)
pg(T) = 0 (2.127)
p:(tl) = p;(tl) + va (2.128)
Pylty) = Pylty) - v (2.129)
p3t)) = pglt)) (2. 130)
H(t) = H (t)) (2.131)
H=0 (0st<T). (2.132)

The condition (2.131) implies continuity of the control function at t= tl’ which
in turn implies é_(tl) = 0, or

v(t,) sin y’(tl) - a cos 'y—(tl) = 0, (2. 133)

Continuity of v follows from substitution of (2. 128) through (2.130) into
(2.131), giving

piv(cos ‘y+ -cos ¥y ) + (p-zv-p3g)(sin 'y+ -giny )+ vv[a cog ‘y+ - 8in y+ ]= 0,
{(2.134)

where the parameter t1 has been suppressed and the bracketed term vanishes,
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Now let Y be the angle defined by (2. 113) and (2. 114) using p values. ({2.134)

then becomes
+ -
cos (v -y) = cos{y - ) = 1,

since ¥ = ¥, so it follows that

¥y = Y= vy, (0sy<20)

on the optimal path,

(2.135)

From a numerical standpoint the problem falls into two categories, determined

by the number of subarcs contained in the path,

Case I G >0 Over the Entire Path (One Subarc) -- Although the optimal path

is to consist of three subarcs, it is possible that some intermediate extremal

will not reach the boundary. The reduced differential equations of the extremals
are (2, 102)-(2.104) and (2. 108)-(2. 110) with control ¥ determined from (2, 113)

and (2.114), The problem then becomes one of finding (T, po) which satisfy

x(T,po) - X, = 0

p3(T, p) = 0O
Hip,) = 0.

The modified Newton-Raphson equations are
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s 1
0 x(T} nll(T) m 12(T) “13(T) dT
p 0 0 1 0 dp
2o 1o
-C = (2.140)
p4{T) P(T) {5,(T)  Con(T)  Lgq(T) dp,
o]
H(po) 0 fl(U) f2(0) f3(0) dp30
A B 1 L e
where the n's are the elements of the first row of ?—BX{T) , and the {'s are the
Po

second and third row components of Since the Hamiltonian is zero

Ip{T)
Py

over the entire path it can be evaluated at t= 0 where all p's are initial

values, so the last row contains the partials of the Hamiltonian with respect

to the po's at that point. Equation (2. 136) is used as the stopping-condition for

the integrations which accounts for the zero in the left-hand vector of (2. 140),

The accessory differential equations are

. afl afl ay a_fl 3y dy avY
EE A2 Tl B T P 1 "%, 2 Tap, %3
. 21,  3f, 27 | 3f Fay 3y 3y
LI e T Nt 3y |35, tap, f2tap, b3 214D
. at o dy 3 )
_ 3 3 3 — + Y + =1
L v 3‘% N3 * 5 3p ¢ op > —op &
3 v 1 2 3
¢, = 0
¢, = 0
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and the initial conditions are

) o 0
(g; 0) 0
apo 0
a';g'(b)" i o o -
Py ] 0 1 0 o
0 0 0 |
L -

The last column of (2,142) will, of course, give a zero vector solution
of {2,141). It is included for the three-subarc-case in which case it will

contain the partials of x and p with respect to v,

Case II: Two or Three Subarcs -- The first and third (if present} subarcs

satisfy the differential equations for Case I. Over the second subarc the
reduced differential equations of the extremals are (2.102)- (2.104) and
(2.108)-(2.110) with v determined from (2.115) and (2, 118). Since v is

a constant, the accessory equations simplify to

A = cosy g
'nz = siny ng

ng = 0

¢, = 0

i, = 0

63 =—[cos ¥ g1+sin'y<:'2].
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The initial conditions for (2, 108)-(2.110) are given by (2. 128)-(2. 130), with
constant v to be determined, whereas initial conditions for (2. 143) are

ot
t oo e - x* 1 i, j=1, 2, 3 2,144
T\lJ nlJ + [Xl xi ] 'Fp: ’ I | ¥ » ( }
J
+ .
Nig = 0, i =1, 2,3 (2.145)
+ A
+ - $ j=1,2,3 (2. 146)
Sy T G
2t
+ - oty L/
c3_]' - CBJ + (p3 p3) o,
]
+
g = 2
e (2.147)
€aq = "1
+
C34 = O
Idn these equations j designates the column number in the matrices
T;){- s gp , and i corresponds to the numbering in (2. 143).
o o
Intermediate extremals computed during iterations will not in general satisfy
the necessary conditions at the point t1. In particular, the control function
may be discontinuous, which implies G~ # 0. In this case the partials of ty
in (2. 144) and (2. 146) are computed from G(tl) = 0, i.e.,
at an,. - No. .
-é--l- = __._11.__._.%5._, J = 1,2,3 (G- # 0). (2148)
po;i -ax~ + ¥y

a0



ot

If &}' happens to be zero, the coefficients of a—plz)-_ disappear in (2, 144)
and (2,146). These partial derivative solutions arg then continuous at

t = tl’ and at] need not be computed. All variables are continuous at
apo.
J

the junction point t2 between the second and third subarcs (if there happens

to be a third subarc).

Two additional necessary conditions are required to set up the modified
Newton-Raphson equations. These are

G(tl) = y(tl. po) - ax(tl, p,)-b =0 (2.149)

é'(tl) = 3r'(t1. po) - ax- (tl, po) = 0, (2, 150)

It é'(tl) # 0, then (2.149) determines tl(po), and (2. 150) is the additional
necessary condition to be satisfied. The modified Newton-Raphson equations
are then

0 (T)  nyq(T) m o (T) myg(T) ny ,(T) dT
po(T) 0 (M) Cpp(T) CualT) Goy(D | | dp,
L) 0
p3(T) P3(T) Cg (D) €35(T)  {33(T) Ggu(T) | | dp,
-C ) o (2.151)
H(po) 0 fl(O) f2(0) f3(0) 0 dp30
. 3G (1) 3GTt,) 3GT(L)
= d
G (tl) 0 apl 55, %, 0 v
L ] N o o 0
where
aG‘(tl) . . Btl ’
apl = nlz - a.nz-l +G(t1) E , 1 = ]_, 2, 3, (2- 152)
0 i

g1



E}(tl) = ag(sin2 y - cos2 y), (2.153)

at
and apl is defined by Equation (2. 148). If (2. 150) is satisfied,

04

then it determines ty and (2. 149) becomes the additional equation which

must be satisfied. In this case the last equation of (2, 151) is replaced by

aG(tl) aG 3G
-C Git,) = —=— dp, +5— dp, +5——dp
1 Bp1 1O ap2 2O Bp3 30
0 o o
where
ooty i 2.154
—a;;—-ﬂzj.-aﬂli, i=1,2,3 (.1 )

i

The First Constrained Path -- It is possihle to choose the initial values
(plo’ p2o’ p30) such that the path strikes the boundary (2. 149) before the

stopping -condition (2. 136) is satisfied. There will then be a second subare,
and the problem is that of determining a value of vto go with it. Since the
optimal path is to consist of three subarcs, the scheme chosen is based upon
leaving the constrained subarc as soon as possible.

According to Appendix G, the multiplier discontinuities may be computed
at either end of a constrained subarc. Assuming they are determined at the

point t = t2, Equation (2.110) takes the form

. - + - .+
pg = —[p1 cos vy +p2 siny ]. {2, 155)

Since p] = Py pé = p2 s a.nd‘y is found from (2,.115) and (2, 118),

o
p3(t) is well determined. The conditions p (t ) = 0,* G (t })>0 and ¥ con-
tinuous must be satisfied if t2 is the endpoint of the second subarc The

first condition is solved for v giving

{prv - pZg) - p.va
o = PRV TR TR (2. 156)
v(1+a®)

3

* (t2) # 0 is satisfied, so t2 is well determined.
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whereas the second requires that

et
G (tz) = g(l-azi cos2 'y+>0 (2.157)

Inequality (2. 157) is always satisfied for the value of a considered. The
determining factor is the continuity of ¥ which requires (from the minimum

principle)

sgn(pi +va) = sgn (cosy')
(2.158)

sgn| (pé -y - p3g] = -ggn (sin -y+).

Satisfaction of (2. 158) then determines the endpoint of the second subarc.

If the third subarc comes back to the boundary, the second subarc is ex-

tended to this point, and testing for the end of the second subarc is resumed.

On the other hand, if the second subarc extends to the endpoint, then n14(T) =
C34(T) = 0, and C24(T) = 1. Solution of (2, 151) (or its equivalent if

¢ = 0) gives iterative corrections which tend to satisfy the last three nec-
essary conditions. The computed dv is ignored, since the necessary condi-

tion for pz(T) on a two subarc optimal is pz(T) = vy, rather than zero. The
optimal path is to have three subarcs, so the corrections are used iteratively
with the first constrained path logic. A three-subarc path is eventually obtained.

Numerical Results -~ The constants for the problem solved are the same as

those used by Dreyfusin Reference 11, They are X, = 0, Yo = B, vy = 1,

g = 32,172, a = -0,5, b =5 and X = 6., A set of initial multipliers were

found which produced a three-subarc path having a terminal time of 1. 25429

seconds, The optimal path of Figure 2-35 resulted after 33 iterations, and a

comparison of this path with the exact solution is given in Table 2-4,
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Figure 2-35. Bounded Brachistochrone Optimal Solution
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Table 2-4, Comparison of Computed and Exact Optimal Paths

Quantity ot Vatue
Y, (degrees) -85, 2577 ~85, 2578
t 0.385117 0. 385141
x(t,) 1. 60687 1.60710
yity) 4,19657 4,19645
Gt,) 1x107° 0.25 x 1077
Git,) 0.7 x107° 0
ty 0.533530 0.533526
X(to) 3.18470 3. 18465
yity) 3. 40766 3. 40767
T 0.742246 0. 742245
x(T) 6.00001 6
v(T) 2,75571 2, 75571
H(0) 0.1 %1010 0
H{t) 0.6 x10°8 0
po(T) 0.6 x 10717 0
p4(T) 0.7 x 10711 0

The differences between exact and computed values resulted from rather
loose interpolation procedures in the computer program. Although these
could have been corrected to obtain more accurate results, it was not felt

necessary since the purpose of solving the problem was to prove the method.
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SECTION III
THE CONTROL FUNCTION

A. JUSTIFICATION OF THE FORM. OF THE CONTROL FUNCTION
The form of the nonlinear optimal feedback control function is
u = u(x, t), (3.1)

where x is an n-dimensional state vector and t is the independent variable.
This form is justified theoretically, and a simple example is given. The

general procedure for obtaining the control is also outlined.

1. The:or-)ﬁr

Consider a set of optimal trajectories, starting at various initial conditions,
which all satisfy the same set of terminal transversality conditions. The
control functions for their trajectories are clearly those required for the non-
linear optimal feedback control scheme, The fact that the control for the
family of trajectories is of the form (3. 1) follows from the field theory of the
calculus of variations. For the control problem, a field is a region of (1, x) -
space with which there is associated a set of slope functions, control functions

and multipliers

x=x(t, %
u=ult, % (3. 2)
p=p(t, %,

having continuous first partial derivatives, which satisfy the differential
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equations x = f (%, u), and which make the Hilbert integral
T = I[H(x, u (t, x), p{t, x}) dt - p'(t, x) dx]

independent of path. A field is constructed through the use of a theorem
which states that an n-parameter family of trajectories which smoothly
covers a region of (t, x) - space and cuts a surface transversally exactly
once defines a field. (The proof follows from Bliss' corollary 83,1 and

the fact that I* = 0 on a fransversal surface.) Smoothness is established by
the non-singularity of a matrix representing —g%iy , as in Section IIC, over
each path. The transversal surface is excluded from the field since, by

2x(

construction, the matrix 3% £ is singular at the endpoint of each trajectory.
0

2. Example

Consider the problem

T o
J =,[ lehd'r= minimum
i

[0}
X % %
X, = u,

with terminal conditions

T-X =0

Xz(T) - Xz = 0 .

98
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The Hamiltonian is

2
u

H =5 *piX3 *pyu

80 the Euler-Lagrange equations are
p; =0
i)z = —pl

and the control satisfies

u = -ps.

The solutions after (3. 9) is inserted into (3. 5), are

£2 +3
Xy = X9t Xgot - Pygy *P1pE
2
Xg = Xg0 " Pool *P1o7F
P17 Py

Py = Pggy - Pighs

where the (0) subscripts indicate conditions at t = 0,

conditions (Reference 1) require

pz(T) = \J2
H = vg

99

3.7

(3.8)

{3.9)

(3.10)

The transversality

(3.11)



The last two of (3. 11) can always be satisfied. However, the first and

(3. 6) require

P1o
R TR (3.12)
P20 K ‘
The set of all trajectories which cut the terminal surface (3. 6) trans-

versally are thus found to be

X, = X + Xoat +

(X, - xg9) 2
K

1 10 T %20 7 (3.13)
X Xon)
_ 2 ~ Xgp
Xg = Xpp t K t
py = 0
_ Ky -y
Pa K ’

with control function from (3.9)

(X, - x50}
2 20 , (3. 14)

u = K

The matrix %—- is found to be

[8)
1 {1k )¢
e
Exo O 1__:2 ] (3::15)

which is non-singular everywhere, except at t=K, The trajectories thus
smoothly cover the solution space. The first two of (3. 13) may be solved to

obtain

100



1:2

X1 = ¥ "Xt - Xyxp9) 3K
(3.16)
3 _ Kx2-X2t
20 K-t '

Substituting into the last of (3. 13) gives

p, = 0

X,-x
2 "2

Py * k-1 ¢ (3.17)
with control determined from (3, 17) and (3. 9).
Of course, the control may be deduced from (3. 14) directly in this simple
example, One simply replaces K by (K-to) and regards the present point
as the initial point,
The example illustrates the general procedure of constructing the desired
field. For more complex problems, Equation (3, 9) is found to have the
general form

u = u(x,p), (3.18)
and the solutions (3. 10) are

x = x{t, x5, Po)

(3.19)

p = p{t x,, p,).
The transversality conditiong give the relationships

P, = P, (x)) (3.20)
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so that (3. 19) becomes

"
1

x(t, xo)
{3.21)

T
"

p(t,xo) .

Note that the transversality conditions and terminal equations must
constitute an n-dimensional non-singular (or normal) system to obtain the
solution (3, 20}). Non-singularity of the matrix (3. 15) allows inversion of
the first of (3. 21) to obtain

X, = xo(t, X}, (3.22)

which is the general form of (3. 16). Substitution of (3, 22} into the last
of (3. 21) gives

p = plt, x) {3.23)

as the general form of (3.17). The control (3. 18) then assumes the
desired form (3. 1). Substitution of the control into the original differential

equations then gives the last of the field equations (3. 2},

In more complex problems, the process described above can be done only

in a small region about a trajectory, as in Section II C,

B. METHODS FOR DETERMINING THE CONTROL
As shown in the example, the control may sometimes be obtained by direct

solution of the optimization problem. This is generally impossible; however,

one might include in the category of "direct solution, the faster than real
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time solution of the optimization problem in an airborne computer., This
approach is unrealistic at the present time, due to large computational

requirements,

An alternate possibility is that of solving of an approximate optimization
problem. The model differential equations are usually as simple as the
process allows; however, most optimal {rajectories are fairly insensitive
to path deviations, so far as the optimal criterion is concerned, With feed-
back, the approximate problem solution would approach an optimal solution
as the re-entry progressed so that terminal errors would be nulled as well,

Some time was spent seeking suitable simplifications to the re-entry problem,
and some useful relationships were found. However, the problem was not
realistically simplified to the point that analytical solutions could be obtained.
Another possibility considered was that of using a Rayleigh-Ritz-Galerkin
procedure to compute near-optimal trajectories in the airborne computer,
This process also ran into large computer requirements, and hence, was

not pursued further,

A final alternative is that of using surface fitting procedures to approximate
the optimal control function, This has the advantage of moderate on-board
computer requirements and may well handle large deviations from ''nominal"
re-entry conditions., The method also has growth potential, in that self
adaptive features may be built in by increasing the dimensionality of the fit.
However, several facts should be borne in mind in such an approach. There
is, in general, no way of determining the best form of the approximating
function., Polynomial approximations are probably best from the standpoint
of evaluation in the airborne computer, so this form is assumed for the re-

mainder of the report.
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The region over which an approximation is to be valid is usually determined
by the errors which can be tolerated. It is generally not true that higher-
ordered fits produce more accuracy after a certain point, for computer
truncation and roundoff errors destroy the benefits of the additional terms.
It is better to segment the region into subregions and to use lower-ordered
fits to obtain more accuracy. The segmentation is readily accomplished

and mechanized for one-dimensional approximations, but may lead to serious

mechanization problems in more dimensions.

The larger the dimensionality of the approximation, the harder the problem of
obtaining the fit. It is best, if possible, to split the over-all approximation
problem inte subproblems of reduced dimension.

The polynomial approximation approach was chosen as the approach for
further development of the non-linear optimal feedback control scheme.

DEVELOPMENT OF THE CONTROL FUNCTION

The polynomial approximations considered are of the form

e
= Eb.. ty,? . L.kt 20,
w ijke¥1 Y2 Y3 2 A 2;0 (3.24)
L k.4

where w is the approximated control function u, or one of the multipliers
P, Pz . 2 is range, and the variables ¥q:¥g and yg are related to V., h
through the equations

Y1 = V-Vn
Yo = ¥ Y, (3.25)
yg % h"hn .
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Nominal state variables V. Y hrl are taken as those for trajectory 1
in Table 2.2, and the reason for the transformation is made clear below.
The multiplier approximations are used in evaluating the expression
u - tan _l :.EL&PE._ -
2CDLP1V
It is possible to split the over-all approximation (3. 24) into two parts
because of the method in which the data was collected (Section II C). Thus,

consider the two approximations

= 1
a’ijk(z) = Zbijk{,z ,1=20
'3

Y i+j+tk sm
i3,k

The method of solution is to determine sets of coefficients aijk( zr),

z = 15r, r = 0,1, ...,99,
T

for the three-dimensijonal approximation (3, 28), and to use these as

data for the several one-dimensional fits (3, 27).

Consider, then, the problem of determining the coefficients aijk for
a given value of range, [t is convenient to transform the problem to

the form

o . .
W= kX 1x23x3k s i,j,k =0
Lkl itj+k <m

ijk
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(3. 29)
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in which |x  |s1, n=1,2,3, through the relationships

X Tty

»
ba
[

T agyytH

ag ¥yt 73

The transformation (3, 31) gives a better conditioned system of equations
to be solved for the coefficients, and, moreover; makes it easy to find
negligible coefficients, if there should happen to be any. The coefficients

aijk are obtained by substituting (3. 31) into (3, 30) and rearranging the
results,

When derivatives are included as data, the normal procedure is to

differentiate the approximating polynomial to obtain equations. Thus, for
example,

ow dw AV 3y 1 3w . .
o = . To= Zc ix 1y iy X
3 " BV By %, oy 3 ijk ¥*1  X2'%3 -

ijk

with similar expressions for W oW .

%, * dx The four equations

2 3

B 2 2 2 h [
i X) Xg Xg X{ XXy X3Xg Xy KgXg Xg . wT
0 1 .. AW
0 0 2x:l Xq Xg 0 0 0 -S{-l-

c =

SW
0 0 1 0 0 3 0 2x2 Xq 0 )
2w
__0 0 0 1 0 0 Xy 0 X, 2x3 J 3x3

with vector

l—
€= [°000’ ©100” 010’ 001’ ®200° “110° 101’ 020’ 011’ Sp02’ "
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are expansions of (3. 30) and its partial derivative equations, in which
terms through second-order in x are shown. The matrix of (3, 33) may be
evaluated numerically for each of the 27 trajectories. These are

collected into a matrix system of equations
Ac = f (3.34)
in which A is a (108 x g) matrix, ¢ is a g-dimensional vector of co-
efficients, and f is the right-hand side of (3. 33) for the 27 trajectories.
The dimension q is related to the order of fit m through

q =1 +1-2— (11+6m+m2), (3. 35)

and the range onm is 0<m <86,

1. Lagrange Fits

The approximating function is required to agree with actual function

values and derivatives q times, Then q of Equations (3. 34) are selected
and the right-hand sides contain the relevant function values and partial
derivatives determined during the data generating process. The question
of which equations to use is resolved on the basis of the least singular
system of equations, as determined by the process of Appendix F, Notice
that the matrix of evaluated basis functions is the same, regardless of
which function (u, P,. P2) is fit.

An exploratory program was written to obtain Lagrange fits for (u, Pl’ P2)

for all values of m considered. As originally constructed, the matrix of
basis functions was inverted, and three matrix multiplies produced the
coefficients for the fits, Each fit was evaluated at the 27 data points, and
errors were computed, Output included actual and computed function values,
errors, and the mean and deviation for each fit, computed from
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N\ €
/) 5 (3. 36)

E =
i=1
27 1/2
e,
- e 2
g = Sv - FE (3.37)
1=1

jth trajectory. Additionally,

in which €, is the error in the function for the
the arc tangent relationship (3. 26) was evaluated, and errors and statistics
for this were included as output. Adequate precautions were taken to ensure
that the inverse matrix was well conditioned. If the product of the matrix

of basis functions and its inverse were not close to the identity matrix, a
well-known Newton-Raphson correction was applied. * Those function errors
which were supposed to be zero provided an additional accuracy check {(at
least one function equation must be included in the set of equations solved,

to obtain the ccefficient 0000).

The first attempts at fitting used (V,y,h) in place of (xl, Xy, x3) in Equation
(3. 30). The matrix of basis functions turned out to be very badly conditioned,

s0 the linear transformations

X = ag vV + Bl
X2 = az ¥ +Bz (3.38)
XS = @y h +B3

with | %, [ <1, i=1, 2,3, were introduced. The o's and 8's, of course, are
computed from maximum and minimum wvalues of (V, 4, h) at the given value
of range. The new matrix of basis functions was well conditioned, and fits

for all values of m were obtained.

*See Reference 9, report No. 3, pg. 216. The NASA project reports contain
a wealth of information on surface fitting techniques, as applied to a
problem similar to the one considered here,
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The exploratory program was run for several range points and the

following conclusions were reached:

e Fits for m=5 in Equation {3, 30) were best for most of the
range points explored. Maximum control errors on the order
of 10° were found, although the means and deviations were

much less,

e The control function fit was superior (in all cases) to the
fit obtained from Equation (3. 26),

° The equations used in the fitting process changed from one

range point to the next.

e The equations used in the fitting process changed when the
accuracy of the constants in Equation (3. 38) was increased
from 5 to 8 significant digits (at a given range point), in-

dicating great sensitivity.

e The constants in Equation (3. 38} were dependent on range.

An attempt was made to fit the constants of Equation (3. 38) as functions
of range so that the approximations (3.30) could be used directly. The
Chebyscheff fitting program described below was used in the attempt.

In view of the behavior of the variables {(see Figures 2-16 - 2-28) it is
evident that the constants are only piecewise smooth as functions of
range. Hence, the fits obtained were not good. Moreover, when the
fitted constants were used in the transformation, the inverse basis
function matrix again became ill conditioned. Hence, it became neces-
sary to perform a "back"” transformation by inserting (3. 38) into (3. 30)
and rearranging the results. This gave polynomials in terms of (V, v, h).
The coefficients aijk so obtained were fairly large, indicating that subtraction
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must take place in the evaluation of the polynomial. In a seven digit word-
length computer, this could lead to severe truncation and roundoff error.

Moreover, the back transformation could not be performed at all for fits
like (3.30) in which 3 21,j,k 20, (The computer used had a 12-digit word-
length, and the fits obtained were gomewhat worse than those for m=5
above,) When the transformation {3, 31) was used, the back tfansformation
was readily accomplished, and the coefficients aijk go obtained were well
behaved, Thus the conclusion:

. The approximation (3. 28) with variables (3, 25) should be used for
evaluation in a seven digit wordlength airborne computer,

The transformation (3, 31) is obtained from (3. 38) by adding and subtracting

the appropriate amounts. Thus,
with similar expressions for Xq and Xg.
It was decided to explore least squares approximations as the next step in

the development of the control function.

2, Least Squares Fits

One may readily verify that the system of equations to be solved is (see
Reference 2)

(A'A)c = A'f, (3. 40)



where the notation is that of Equation (3. 34), and vector {f containa function
values and partial derivatives obtained during the data generating process.
Unit weights are used since the derivative equations were of the same order
of magnitude as the functional equations. An exploratory program similar

to that for the Lagrange fits was constructed, except that a subroutine to
solve simultaneous equations was used in place of matrix inversion. The
accuracy of the fits so obtained was very good, as measured by the closeness
to zero of the mean, Equation (3, 36). One may readily verify that the first
normal equation for the system (3. 34) requires (3. 38) to be zero. Then the
deviation, Equation (3. 37), may be interpreted as the functional portion of

the error minimized by the least squares process.

The exploratory program was run with the following conclusions:

] The least squares fits were better than the corresponding

Lagrange fits.
o Fits for m = 5 were again best for most of the range points,

] The control function fit was superior (in all cases) to the fit
obtained from Equation (3. 26).

® The approximation (3. 28) with variables (3. 25) should be used
for evaluation in a seven-digit wordlength airborne computer,

It was decided to use the least squares approximations for the control function.
Accordingly, fifth-order least squares fits were obtained for the range values
(3.29), excluding r = 95 - 99. The order of the best fits for these range

points are summarized in Table 3-1,
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Table 3-1. Order of Best Fits Near Terminal Point

Range Point Order of Fit
,(Ig)‘ (m)

95 4
96 4
97 1
28 1
29 2

The control functions of Figure 2-28 are shown in Figures 3-1 through 3-27,
together with the corresponding errors in the least squares approximations.

The maximum errors occur in the vicinity of maximum change in the control
function which corresponds to the bottom of the first dip into the atmosphere.

The approximations are quite good before this region, and very accurate from
about z = 800 to z = 1300 miles, which covers the complete skip after the first
dive. The approximations become somewhat worse as the endpoint is approached.

3. Chebyscheff Fits

The final phase of the control function approximation is that of performing the
56 one-dimensional approximations (3,27). This was not done, since time did
not permit both this approximation and the simulation studies of Section IV to
be accomplished. It is evident, from Figure 3-28, that the one-dimensicnal
fits must be segmented into several parts in order to obtain any degree of
accuracy in the approximations so the final phase is not a trivial problem.

A Chebyscheff criterion fitting computer program was constructed for this
final phase. The method is due to Professor F. Koehler of the University of
Minnesota, who was a consultant during the contract period. Assume that
equally-spaced data is given over the interval [0, 1] , and that the order of the
fit to be obtained is n. A Lagrange polynomial of order n is constructed for
the (n+1) tabular points closest to the Chebyscheff zeros, denoted by
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= %[1 - COB ‘i -ll—“*] ,i=1, ..., ntl (3.41)

{n+1)
x 21 n+1

i
Let p (1 )(x) denote the Lagrange polynomial, If the function f(x) to be

approximated is a polynomial of degree n+1, then P, (1)(1:) is the solution
which satisfies the Chebyscheff criterion

Max | f(x) - p (x) | = Min. (3.42)
[0 =X s1]

In general, this is not true, so the method proceeds iteratively to the solution.
Let e(x) be the error '

e(x) = fi{x) - pn(x) (3.43)

which vanishes at n+1 points by construction. If the data is smooth enough,
e{x) will vanish exactly n+1 times, and there will be n+2 maximum errors
(two at 0 and 1, and n relative maximum and minimums). The objective, on
each iteration, is to equalize the n+2 absolute errors. Let Zos Byevecs Zpigq
denote the points at which the maximum errors occur, and let n{x) be a

correction polynomial chosen to equalize the errors. Then
— — = = - n -
-z )+ ‘n(zo) = elz,) Nzl = ... = (-1) [e(zn+1) n(zn+1)] . (3. 44)

Let h be the common value in (3. 44) so that

nlzy) = h+elz)
ni{zy) = -h+elz))

(3. 45)
n;zn) = (-)"n+e (z )

_ n+l
T'I(Z[H_l) - (-1) h + e(zn_l_l) .
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Equations (3.45) are n+2 equations in h and the n+1 coefficients of the
nth order polynomial n(x). The approximating polynomial for the next

iteration is taken as
pn(z) {x) = pn(l) x) + n). {3.46)

Iteration is required, since the location of the maximum errors, in genzral,

shifts at each stage.

The method was found to work very well in practice. It rapidly converged
to stationary points, z:s i= 0, 1,..., n+l, and the selection of the same set
of points z, on two successive iterations was found to be a good stopping

condition.
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SECTION IV

MECHANIZATION AND SIMULATION OF THE
NONLINEAR OPTIMAL FEEDBACK CONTROL SCHEME

A, SIMULATION DESCRIPTION

The mechanization of the scheme for the re-entry problem is illustrated in
Figure 4-1, Detailed descriptions of each block in the diagram follow,

INITIAL
CONDITIONS X,

1

PREDICTOR AND CONTROL

RRND SENSORS. | 21 %2 NAVIGATOR | *w % SENERATOR
TWO B e I - e =& xRy Ry g R pehe o)
ACCELEROMETERS %= f(a 20 Bt t=tot 1= eas
Upe1™ Ulxpey)
wp, t,StStoq Holw
CIRCUIT

Figure 4-1. Nonlinear Optimal Feedback Control Scheme
Mechanization for the Re-entry Application

1. Re-entry Vehicle and Sensors

In view of the short time of flight (15 minutes or less), accelerometers are the
only sensors assumed to be aboard the vehicle. They measure the acceleration
components (smoothed, if necessary) in the lift and drag directions,

- Spv2 ,
8 % m Cppsinu
2 (4.1)
_ Spv
3.2 = -‘—-2Tn— CDO + CDL cOosS u N
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S . .
1

The constanis T CLO’ CDO and CDL may be changed from their non?ma

values to evaluate the over-all performance of the scheme, and the density

profile may assume one of several forms for the same purpose.

2. Navigator

The navigator integrates the differential equations of motion and supplies the
state vector and its time derivative at discrete instants of time. In terms of

accelerometer measurements, the equations of motion are

dv g':)R2 sin ¥y
———— a e ———————
at 2  @®+h?

dy 24 Vv COS ¥y g0R2 cos ¥

_,:_...'. -

dt  v¢  (R+h)  v(R+h)?
(4.2)
%% = vsiny

dz _ Rvcosy

dat c3!R+h) .

The state vector components are velocity v, flight path angle ¥, altitude h,

and range z (measured in miles), and the state vector derivative is the right-
hand side of (4. 2). The total heat is also found, for scheme evaluation purposes,
by integrating equation (2. 2) along with system (4, 2).

3. Predictor and Control Generator

The predicior equation is the Adams-Moulton equation

A L) » - -
'y X + T 55}:12l - ho X1 + 37xn_2 - 9xn_3 , (4.3)

n+l

used to introduce lead into the system, Lack of time prevented experiments with
other predictor equations, and A = 1/2 and 2 seconds were the only time incre-

ments considered,

144



Equation (4. 3) requires three back derivatives as well as the present point,
50 it is not applicable for the first 6 seconds of flight. The firat three back
derivatives are generated from (4. 2} with a constant control in Equations
(4.1). The actual value of this control is unimportant since the vehicle is
out of the sensible atmosphere during the first 6 seconds. However, it is
taken as the control generator equation value at the initial point {(which
assumes z = 0) for continuity purposes. (Figure 2-28 shows that the
control is almost constant during the initial phase of the flight.)

In Section III, 100 control function fits of the form

i j k
i,i.k i+j+k < m,

in which VN’ 'YN and hN are "nominal" trajectory values, were found., The
coefficients a;. were noted to be functions of range; however, they were not

reduced to polynomial form due to lack of time.

The control generator interpolates linearly between fitted range points (spaced
15 miles apart) to determine the coefficients 8, ik at the predicted range point.
Also, the nominal trajectory values are determined by the same process, The
polynomial (4. 4) is then evaluated with the predicted values of V, ¥ and h,

Of course, the control is constant for the first 6 seconds of flight. It is also
evaluated differently for the last 30 miles. This ia necessitated by the singu-
lar endpoint and the general compression of the state vector differences near
the endpoint (see Figures 2-16 through 2-28). Hence, a linear interpolation
for the control is performed with range as the variable, The two points used
ntl = 1470, and - mat z = 1500 miles. z = 1500 miles is
the stopping condition for simulated trajectories.

are the control at z

145



4, Hold Circuit

The hold circuit supplies the constant control during the first 6 seconds, and the
linear function of range during the last 30 miles of flight. In the intermediate

region, it is taken as a cubic in time using the points Uiiqs cersr Ypoo to evaluate
the coefficients, The transformation
t-t o {t-t)
S = —— = 2 + — (4. 5)
allows the cubic coefficients to be computed from
aoT 1 0 0 0 U o
11 1 1
3 E 3 ] 3 Un-1
= (4. 6)
1 1
az 1 —2-2- 2 i u,
1 L L 1 u
a3 5 2 2 6 n+1
F— — L‘ — - —

SIMULATION RESULTS

Table 4-1 contains results of simulation runs for the 27 optimal trajectories,
AJ is the difference between simulation and optimal trajectory total heat, and is
seen to be a posgitive quantity; A is the time increment used in the Adams-
Moulton predictor equation (4. 3), and Av and Ah are the terminal velocity and

altitude errors from the optimal trajectory values of 1650 ft/sec and 75, 000 feet
respectively,
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Table 4-1, Simulation Results for the 27 Optimal
Trajectories of Table 2-2,

Trajectory | Total Heat Total Heat Fan) fal Av Ah
Number Optimal Traj. Simulation (BTU/#t2) | (sec) | (ft/sec) {ft)
= —
1 28,872 28, 898 26 2 226 - 8,655
2 31,888 31,913 25 2 59 - 8,565
3 26, 252 26,270 18 2 234 - 8,537
4 29,278 28,285 17 2 218 - 8,082
5 28,666 28,721 55 2 298 - 5,804
8 29,032 29, 051 19 2 227 - 8,898
7 28, 757 28,810 53 2 217 -10, 566
8 32,280 32, 295 15 2 226 - 8,884
9 32,116 32,148 32 1/2 281 - 6,254
10 26,657 26,687 30 2 211 - 9,018
11 25,792 25, 844 52 2 - 49 -25, 640
12 32,135 32,344 209 1/2 220 - 17,649
13 31,844 31,900 56 2 2486 - 9,342
14 26,362 26,382 20 2 225 - 8,952
15 26,128 26,173 45 2 244 - 9,520
16 29, 963 Fail at z = 1056 miles
17 29,017 Fail at z = 1431 miles
18 28,510 28, 562 52 2 243 - 9,603
19 28,817 Fail at z = 472 miles
20 32,444 Fail at z = 1077 miles
21 31,374 31,397 23 2 249 - 8,447
22 31,110 31,173 63 2 250 - 8,168
23 31,3175 31,449 74 1/2 263 - 5,570
24 27,3286 27,348 22 2 220 - 9,048
25 26,891 27,043 152 1/2 137 -12, 201
26 26, 216 26, 266 50 2 253 - 8,930
27 26,368 26,417 49 1/2 - 43 -10, 750
* Az = -6 miles,
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Most of the trajectories were simulated using & = 2 gseconds. The advantage
of making A as large as possible is that the onboard computer can be used for
other tasks (such as computing display information) during the idle time,

It was found that several trajectories failed with this increment (trajectories
9, 12, 16, 17, 19, 20, 23, 25 and 27), and a failure was recorded if the con-
trol for a given trajectory exceeded +500 degrees. This was an adequate test,
since if the control for a given trajectory exceeded +180 degrees, it also ex-
ceeded 500 degrees. Computations were also stopped if the altitude fell
below 50, 000 feet. This happened with trajectory 11, which stopped with a

range error Az = -6 miles, as shown in Table 4-1,

With A= 1/2 sec., only trajectories 16, 17,19 and 20 failed. This time
trajectory 11 stopped with a range error A z = -0, 1 mile, as indicated in
Table 4-2, Trajectory 1 was also run and only small improvement in terminal
conditions resulted {Table 4-2).

A simulation program with no prediction (A= 0) was constructed to test the
ultimate capabilities of the control function polynomial approximation. (The
polynomial is evaluated at each integration step, and the system is assumed to
react instantaneously.) This was run for trajectories 1, 9 and 11 with the
results shown in Table 4-2. There was no change in terminal conditions for
trajectory 1 {(compared with the A= 1/2 second case), and only slight changes
for trajectory 9. Path 11 reached the stopping condition {z = 1500 miles) even
through the final altitude was less than 50, 000 feet, Trajectiories 16, 17, 19
and 20 failed again when run with this program.

Table 4-2, Additional Simulation Resulis

Trajectory Total Heat Total Heat AJ A av Ah
Number Optimal Traj. Simulation (BTU/ft2) |{{sec) (ft/sec)| (ft)
1 28,872 28, 897 25 1/2 226 - 8,655
1 28,872 28, 897 25 0 226 - 8,655
9 32,116 32,147 31 0 281 - 6,279
11= 25,792 25,842 50 1/2 -171 -25, 107
11 25,792 25, 842 50 0 -170 -25, 043
28 29,589 Fail at z = 1044 miles
29 29,011 29,048 37 2 223 - 8,578
30 28,496 28, 551 55 2 253 - 8,026
31 28,687 28,720 33 /2 263 - 8,081

* Az = -0,1 mile
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Four additional trajectories, numbered 28-31 in Table 4-2, were run to test
the nonlinear optimal feedback control scheme for off-design trajectories.

The initial conditions for these are given in Table 4-3, and they correspond to
the initial conditions of trajectories 20-27 with Axlo = 0, Trajectories 29 and
30 ran with A= 2 seconds, whereas A= 1/2 second was required for path 31.
Trajectory 28 fails, even with A= 0, '

Table 4-3, Initial Conditions for Trajectories 28-31

Trajectory Initial Velocity | Initial Flight| Initial Sign of Change
Number {ft/sec) PathiAngle | Altitude From Trajectory
© (degrees) {ft) Axm szo A“SG:
28 35, 000 -5,40 430, 000 0 + +
29 35, 000 -5,40 370, 000 0 + -
30 35, 000 -7.35 430, 000 0 - +
31 35, 000 -7.35 370, 000 0 - -

Path 28 may be compared with paths 20 and 24 to see the effects of initial
velocity changes, since szo and Axso are the same. Numbers 20 {+ Axlo)

and 28 (/_‘.x10 = 0) fail, whereas path 24 (-Axw) is successful with A= 2 secocnds.
Similar comparisons are shown in Table 4-4,

Table 4-4, Effects of Initial Velocity Change on A

. Sign of
Trajectory

Number BX1g | BXgg | BX3g 4
21 + + - 2
28 ] + - 2
25 - + - 1/2
22 + - + 2
30 0 - + 2
26 - - + 2
23 + - - 1/2
31 0 - - 1/2
27 - - - 1/2
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The characteristics of the successful flights are illustrated in Figures 4-2
through 4-5, Only those for trajectory 1 are displayed, since most of the
flights are fairly similar, The first dip into the atmosphere is quite critical,
and the inaccuracies in the control function (Figure 3-1) drastically affect the
remainder of the path., The vehicle emerges into the skip region (where the
control function fit is very accurate) following a new optimal.path. This is
pursued through the second dip to a point (about 1410 miles) where the con-
trol fit again becomes somewhat inaccurate. Inaccuracies from this point
onward do not affecttotal heat very much,- but do contribute to terminal
velocity and altitude errors. Another sources of these errors is the linear
fit of the control in the last 30 miles of flight. The control is still rising

at 1470 miles (Figure 2-28) and the additional lift available to the optimal
trajectory is neglected in the simulation. This causes the vehicle to dive
more steeply and (in general) to lose less velocity as the endpoint is approached.
The terminal errors should be reduced by starting the linear interpolation

closer to the endpoint; however, no experiments of this nature were performed.

It is understandable that trajectory 16 failed. This path was difficult to obtain
during the mapping process, indicating that it was near the edge of the corridor,
and consequently, that the control fit is near the edge of the region of appli-
cability. Control function inaccuracies could easily move the vehicle into a
region where the control function fit is no longer applicable. A comparison of
optimal and simulated trajectories shows that the vehicle is quite far from the
optimal at the point of failure {Av = -450 ft/sec, Ah = 7, 000 feet).

The large inaccuracies in the control function of trajectory 17 (Figure 3-17)
occur in the vicinity of the first dip into the atmosphere (the bottom is at

z = 600 miles). They cause the skip to be quite different from that of the
optimal trajectory. Tﬁe effect, however, is not noticed until near the end of the
trajectory, since the accurate control fit produces a reasonable control for the
intermediate portion of the flight, The vehicle eventually leaves the region of
applicability for the control function polynomial,
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The initial conditions for trajectory 19 cause the vehicle to dive deeper into

the atmosphere which in turn produces greater lift and drag forces. The
vehicle follows the optimal path through the bottom of the dip (at z = 375 miles).
However, the control inaccuracy bulge in the region z = 400 miles to z = 450
miles (Figure 3-19) causes the vehicle to be captured by the atmosphere,
instead of following the skip of the optimal path, This shows the sensitivity

of the paths to the conirol function errors near the bottom of the first dip.

The flights of trajectories 20 and 28 are similar to that of path 16, and they
show that simultaneous positive perturbations in initial flight path angle and
altitude are not tolerated by the control function fit.

The conclusions drawn from the simulation results are:

) In its present form, the nonlinear optimal feedback control scheme
produces reasonable re-entiry trajectories with modest increases
in total heat from the optimal values, for a suitably restricted

region of initial conditions,

@ The inaccuracy of the control function fit over the first dip into the
atmosphere drastically affects the remainder of the flight. The
accuracy of the fit should be made better here to eliminate the
failures, and to consequently decrease the total heat,

¢ It is believed that the terminal point errors can be reduced by
starting the linear interpolation for the control as a function of

range closer to the endpoint.

] The time interval A, used in the predictor equation, was found to
be a function of the simulated trajectory; Ashould be made a vari-
able quantity, dependent upon the state of the vehicle.
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SECTION V
CONCLUSIONS AND RECOMMENDATIONS

ACCOMPLISHMENTS

A re-entry optimization problem is presented and =olved through the methods
developed in Reference 1. These produce an accurate solution to the optimiza-
tion problem. A powerful predictor scheme was developed, which supplements
the work of Reference 1 and which allows the optimal solutions to be changed

as a function of a parameter, This was used to extend the range of the original
optimal trajectory, and to perform an ''absolute minimum" test. The latter
showed that the optimal path is a minimizing path, at least over a large region
of solution space. Sufficiency tests for a relative minimum were also developed,
It was shown that the trajectories considered are relative minimums.

The predictor scheme was used to map the re-entry corridor, and 27 optimal
trajectories spanning the corridor were cbtained, The control functions for
these trajectories, and partials of the conirol with respect to the state vector,
were used to obtain a polynomial approximation for the control function over
the optimal re-entry corridor. The approximation was used in the mechaniza-
tion of a nonlinear optimal feedback control scheme. Simulation results showed
that modest increases in total heat over optimal values were experienced, and
that large (although tolerable)} terminal errors resulted. It is believed that the
terminal condition errors can be greatly reduced, if necessary. A few of the
trajectories failed, which, in effect, limits the region of applicable initial

re-entry conditions to some extent,

Another re-entry optimization problem, in which the sensed acceleration is
constrained to be less than or equal to a given number of g's, was posed, and
several optimization methods were used in an attempt to obtain a 10-g optimal
path., The methods all failed, although the predictor scheme emerged as the
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B.

most powerful of the group. A singular point on the constrained subarc
prevents convergence to the solution. A means of circumventing this

problem was found but remains to be tested.

The optimization methods were also extended to include the bounded-state
coordinate problem,

RECOMMENDATIONS

The nonlinear optimal feedback control scheme in its present form produces
near optimal re-entry trajectories if the space of initial conditions is suitably
restricted. The scheme is technically sound but fails in some instances only

because of control function errors,

The polynomial approximation is based upon control values for several optimal
trajectories, and the paths are readily generated through use of the predictor
scheme, It is possible to generate many more paths than were used in the
study, and consequently, to fill out the optimal re-entry corridor with optimal
values of the control function. The increased number of data points should
enable better control function approximations to be made,

The data processing task is that of reducing the data points to a form readily
implemented in the control scheme, Polynomial approximations are probably
best for this purpose; however, there are many ways of approaching the fitting
problem. It may be that surface fitg of the partial derivatives are well behaved
over a large region of the corridor, so that fits of these, followed by an inte-
gration, may produce more accurate control function approximations. On the
other hand, it may be necessary to segment the corridor into several pieces,
and to perform surface fits for each of these to obtain the required accuracy.
Also, it may be possible to split the over-all fit into several low-dimensional
subfits, so that each stage of the fitting process may be carefully controlled,
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The data processing task is seen to be in an incomplete state at the present
time., Since many practical optimal feedback control problems could be
implemented if this task were accomplished in a practical way, it is re-

commended that:

¢ Practical methods should be sought for performing the data

processing task.

The control function polynomial approximation is presently based upon
unconstrained optimal trajectories. However, many real optimization
problems necessarily contain constraints upon the control and state vectors.

It is recommended that:

] Mechanization problems associated with inequality constraints

should be examined.

In view of the rising importance of adaptive control capabilities, the methods
should be extended to this case. Theoretically there is no problem, although
practically, the dimensionality of the surface fit is increased., Thus:

¢ Problems associated with extending the methods to include
adaptive control capabilities should be examined.

Finally, most feedback control schemes which operate over a finite time
interval contain a singular point at the endpoint. This is true for the problem
studied in the report. The singular point causes difficulties in the vicinity of

the endpoint, and usually results in terminal point errors. Thus:

e The singular terminal point problem should be examined
theoretically to determine if the endpoint errors can be

minimized,
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MATERIALS SECTION (TABLE LXXV)

No work of the nature described in Section 2 of Table LXXV was performed
under Contract AF33(615)-1858, BPS Number 4(6399-62405364-822501).
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APPENDIX A
A PREDICTOR SCHEME

Suppose that one has an n-dimensional system of equations of the form
Y(x,b) =0 (A 1)

in which x is an n-dimensional vector and b is a single parameter. Assume
further that the matrix %g exists and i8 non-singular over the range of b
considered, and that the vector -a—gf also exists, Then by the implicit function

theorem it follows that

x = x(b), (A.2)
and
-1
dax _ |3y v
db - [Bx 3b (A.3)

If m solutions (A. 2) to the system (A. 1) are known for equally spaced values

of the parameter b, and if the corresponding derivatives are computed from

(A.3) (call the complete system x,, ..., x_, and x R xn:l' respectively),

the problem is that of predicting the next member of the family of solutions,

*m+1°

Open type integration formulas are well suited for this task, and many such

formulas are given in Chapter 6 of Reference 2. In particular, a formula

fruncated after third differences (the Adams-Moulton predictor equation) is
n

_ o ’ 4 _ f
x = x_+ 33 {55 X 59 X1 +37xm_2 9xm_3), (A.4)
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where h is the spacing between parameter values.
point and derivative, and three previous derivatives are required for this

equation. OQOther formulas using less back information are easily derived

from the results given in Reference 2.
using only the present point and derivative, is the Newton-Raphson equation,

Xm+1

As an example of the use of the predictor scheme, consider the range

extension problem of Section IIB. The equations corresponding to (A. 1)

are

X

/

+ hx

m m’

V(T,PO) -X, =0

8(T.P ) - Xz/R =0

1

¢T, P)-X; =0

H (PO)

The parameter b is identified with the terminal range XS’ so Equations

(A. 3) become

Flo
PI

= 0

0.

V(T)
g(T)
o(T)
P,(T)
0

b

™1

(T)

n3, (D
N4y (T)

€ gy (T)

(o)
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The simplest such equation,

n12(™)
M 32(T)
M42(T)
C22(M
£,(0)

Ny 3({T)
N33(T)
Mg 3(T)
Cast™

M14(T)
N34(T)
Ngq(T)
Caa(T)
£,(0)

Notice that the present

-1

(A. 5)

(A. 6)

(A.T)



It is seen that the third column of the inverse Newion-Raphson matrix contains
the derivatives for the predictor equation when the solutions (T, Po) satisfy
gystem (A. 6) (for a given value of the parameter XS)‘
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APPENDIX B
THREE OPTIMIZATION TECHNIQUES

In addition to the modified Newton-Raphson method and the predictor
scheme, three other optimization techniques were considered during the
period devoted to optimal trajectory computations. They include the
optimal Newton-Raphson scheme, the Fletcher-Powell method (Reference 3)
and Marquardt's scheme (Reference 4).

As a common basis for discussion, let the system of equations to be solved

by the optimization schemes be
Yix) = 0, (B. 1)

where both { and x are n-dimensional vectors. Multiply this system by

a diagonal weighting matrix W to obtain
¢lx) = Wy(x) = 0. (B. 2)

W clearly does not change the solution, but does aid in the numerical

computations, Define a function
f(x) = ¢ (x)¢(x), (B. 3)

whose absolute minimum value {zero) corresponds to the solution of
(B. 1) or (B. 2), and let g(x) be the gradient vector,

g(x) = 2 Qﬂ%ig) $(x). (B. 4)
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Both the optimal Newton-Raphson and Fletcher-Powell methods require

that a minimum value for f be found in a direction s. Let
X = X + \s {B. 5)

where X is the present point and X is a parameter, and determine a

point

%y =x0+KnS, 0<K<l1, (B. 6)
where

1 = minimum of {1, —Zii((‘_};{i))_s} . {B.7)

Equation (B. 7} was found in the appendix of Reference 3, where W, C.
Davidon (Reference 5) is given credit for its origin. The factor K in
Equation {B. 6) was found necessary for the re-entry problem since
Equation (B. 7), in some instances, produced too large an estimate for m.
If f(xo) g(xo), f(xl) and g(xl‘), are known numerically, then the function
f(x) may be approximated by the cubic equation

2 3

f(x0+)\s) = &y ta; Mt aght aght. {B. 8)
Values for the coefficients are found to be

a, = f(xo}

a; = g ’(xo)s

ay = "K"ITT[ z+g ' (x s (B.9)

ag =;(T(—l)§[ 2Z + g'(xo) s+g’(x1)s]
n

z =g 1) - sxple gt dsrg xp)s
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When Equation (B. 8} is differentiated and evaluated for the minimizing

value . = ¢, it is found that

T 2 .
a = 3a3[ ag +\/a, - 3a,a, 1 (B.10)

50 the approximate minimum value of f in the direction s is given by
f(xo + as),

The direction s in the optimal Newton-Raphson method is given by

the Newton-Raphson change

i [8@(3&0)
= |5

-1
Sy ] 8 (x,). (B.11)

When K and n are both unity in (B. 8) and (B. 7), X, is the Newton-
Raphson predicted point, so the method becomes straight Newton-Raphson

as the solution is approached,
The Fletcher-Powell direction is

Sp = -HOx) glx,), (B.12)

where H(xo) is a positive-definite matrix to be updated after each step
(Reference 3 suggests the identity matrix as a suitable initial choice).

When ¢,

= x0+a SF‘ (B.13)



f(xz) and g(xz) have been evaluated, the updating equations for the next siep

are

H(x2) = H(xo) +A+B

4

_ oo’
A = oty
(H(x Yy Hx )y)’
B = - y, H(XO)_Y {B.14)
g = g SF
y = glxy) - g(xo).

In Marquardt's scheme it is assumed that a linearized expansion adequately
describes the surface behavicr in a suitably small sphere of radius & o about

X,. Thus, Equation (B. 2) may be written

aa&(x )

¢lx, +0) = o(x) + 6, (B. 15)

where the change § is to satisfy the constraint

1l
=]

2
f
] 6-60 {B.16)

The function (B. 3), using approximation (B. 15), is minimized subject to the
constraint (B. 16) by setting the partials of

F (6,0 = f(x +08) +1 {6 -5% (B.17)

to zerc. Upon performing the operations it turns out that

N _melx)
o = — (B. 18)

‘Bds(x ), (a¢(x )
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In practice, X 20 is a parameter. When X = 0, it follows from (B. 4) and
(B, 11) that § is the Newton-Raphson change. On the other hand, if ) is
large, 0 approaches a gradient change. The policy is to make \ as small
as possible during iterations. ‘
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APPENDIX C
THE TRANSFORMED OPTIMIZATION PROBLEM

The system of differential equations for the re-entry problem are

. < 1/2 3 p {3/2 v 12.5
a =y Y ”-5N(p—0") (m) (C.1)
: -5 2 o siny
v o= pv  Clu) - —5
2m D 1+ g)z
, g v cos ¥ g, co8 Y
y = S pv CL(L'I) + - 3 (C.2)
R(l1+g) v{1te)
;v
E = R sin ¥
4 . v
& m cos vy .
The transformation
z = £, c, = 5280 , (.3
3
changes the units of range from feet to miles, and transforms the last
of (C. 2) to
dz . 1 d¢ _ v 4
dt - Tgat T oegirny 7 (.4
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Now z is a monotonic increasing function of t, so z may be used as independent
variable in place of . Using the transformation

4 _ dt g
dz =~ dz dt (C.5)

and (C. 4) on {C. 1) and the first three of (C. 2), one finds

gg _ %3 etf?P
z

V—N‘— CO8 vy

3/2 11.5
-4 {1 +E) v
+ 7.5x 107 N ~—= COST(-P—) ( 0,000 )

%

av CSS (1 +¢g) pv CD(u) Cqog, tan v ©. 6)
dz =~ ~Z2m cos v v{l +E&) '
&y . 2P (1r9p Cy(w+ S3 _ Sa8n
dz 2m COS y R vz(l + )
e _ %3
& Qv ey,
Now let
v = v2 (C.7)
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and note that

dv - av
dz. 2V &t (C.8)

Also, transform altitude to units of feet through
h = Reg (C.9)
Then Equations {C, 6) become

dgq _ °3¢ R +h)pllzv

dz RVN cos Yy

. -4 3/2 23/4
7.9 % 10 coN (R + h) N v
1(]8

+ R cos ¥ %,

-c
av _ P  (R+h) pV _ tan v
dz - mR oS v Cplu) - 2cqg R T (C. 10}
dy _ 35 (R+n)p C. ) + 63 c3g, R
dz 2mR cos ¥ L\ R V (Rth)
dh €3
4z - R/ (Rthitany
4 _ %3 (R+h)
dz R V1/2 cos v
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The Hamiltonians for the system (C. 1) and (C. 2), and the system (C. 10)

are, respectively,

H = t_ +p'f (C.11)

and
- !
H2 = g0+P g. (C.12)
Each Hamiltonian represents a canonical system of equations, so a
canonical transformation may be used, in part, to transform one system
into the other. A second transformation is required for the change of

independent variable.

The generating function F2 (q, P, t) of Reference 6, page 240, represents
a canonical transformation beiween old and new state vectors (q, Q} and

multipliers (p, P). The transformed equations satisfy

BFZ
= —= C.13
p 5 q ( )
Q = —B:F_z-
aP
oF
_ 2
K H+—= .
Let
F., = A vZ+h,v +A\RE +1, = (C14)
2 1 27 3 '

403
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Then in the transformed system,

V = vz
y = v
(C. 15)
h = RE
z = L.
€3
and
P
_ 1
Kl T
g = Py
P (C.186)
R
3 R
My = C3Pyg .

The first, third and fourth of (C. 15) are respectively, the transformations

(C.7), (C.9) and (C. 3), and the second represents the identity transformation
on ¥. The corresponding multipliers are given by (C. 16), and the new Hamil-
tonian K {the same form as the old) is evaluated in terms of the new variables,

The transformation for the change of independent variable is based upon the
proof of Bliss' theorem 74.2, page 205 of Reference 7. Let fo’ f be the right-
hand sides of the differential equations in the variables (V, ¥, h, 2z) = x andu.
The generalized Lagrangian associated with this system is

F = f + 2 (f-X%) (C.

0
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where X\ is the multiplier vector (C. 16), and the first variation of the function

s o va

0

is to be taken.

X

Let the independent variable of (C.18) be changed from t to
4 = 2 This may be done since rangeiis an increasing function of time.
Then (C. 18) becomes

i dx dx5
_ dz dz dt
J = j F X, X, —"'dt » u ﬁ a; dz
! dz dz

whereu is taken as the time derivative of a fifth state coordinaie. The
generalized Lagrangiap for (C. 19) is
3 dx.
1 _ dz 1 dt
o= fo+z MUt M E de
i=1 dz dz

In the following, the derivative subscripts represent partials with respect

to the derivatives. One may readily verify the relationships

Fo_ = th. = -Xl, i=1, 2, 3
i i
dz
_ 1
Fo = Fay
dz
Fl 4
it = F+Zhix1-uFuE‘H1
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In (C. 23), the definition for the Hamiltonian

H = F—Z v Fyi, (C.24)
i

has been used, where the derivatives yi' include the control function
as well as the derivatives of the state components with respect to the
independent variable. In the present case, Fu of (C. 22) is zero (from
the transversality conditions) so that (C. 23) is recognized as the usual
control problem Hamiltonian, When the Hamiltonian for F1 is formed,
according to (C. 24), and (C. 21), (C. 22), and the center expression of
(C.23) are inserted, one finds

H' = -)\4, {C. 25)
On the other hand, when H1 is used for (C. 23} one finds
f f.
L * ] 1 dt
B = f4+Z"i'f“ B, ¥
i=1 4
dx
5 1]
el Fu + )\4f4 (dz f4 (C. 26)
The last expression is zero, so with Fu taken as zero, this is the same
as the Hamiltonian (C. 12), for by the transformation (C.5) (taken as the last
transformation),
fi
g = T i=0,1, 2, 3. (C.27)
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Thus,

2 = M2 2
C.28
Py ( )
Py =23 * R
P,= -H = -H
Hy = H' =-hg = - CgPy
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APPENDIX D

A NON-HOMOGENEOUS RICATTI EQUATION FOR
FIELD PARTIAL DERIVATIVES

The fundamental system of solutions for the system of equations

- i -
i 2%H fH
n Ap ;& apz n
d ) (D. 1)
dt =
c % ¥%m c
a:":2 dx3p J

is

apo

m(t) = 3o t) ( , mlgy = I. {D. 2)
t Ap(t)
S

A field of extremals is constructed by obtaining solutions to the linearized
boundary conditions for the optimization problem such that

(D.3)
0

as, (for example) in Section IIC, and then determining the partial derivatives

| -1

% _ |3p Sp ox Ox

x [ax t 3p K] [ax * 3p , (D. 4)
C o] 0 o]

This field cannot be constructed if the inverse matrix fails to exist at any point
along the extremal {excluding the end point).
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Let

ox dx
U= = + =—K
on Bpo
(D. 5)
Vv = _aR + _ég K.
ox 3p
0 o
Then from differentiation of
-1
Uu = 1 (D.6)
it follows that
vl .ulvuvl (D.7)
Substituting from (D. 1), and premultiplying by V, one finds
" -1 -1 % -1 32H -1
vuUu = -(VU Y + VU - ——— VU . {D. 8)
pdx 3 2
P
Also from (D. 1), by post-multiplying the expression for V by U-l,
. 2 _
gul. [E, Fn ol (D. 9)
[ ax2 oax3dp
When (D. 8) and (D, 9) are added, the left-hand side is found to be a perfect
differential, so that
Ayl = [P L Gyl gt D 1 2%
dt La 2 3xdp dpax 302 .
. x p
(D.10)
From (D.5), (D.4) and (D.3) it is found that
-1 _ 3 op(Q) _
VU~ = ‘?% 5= K, (D.11)

where —%— is known to be a symmetric matrix., Other fields may be generated
by changing the initial conditions to other symmetric matrices, such as the

matrix consgidered in the sufficiency test, Section IIB.
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APPENDIX E
RELATIONSHIPS FOR SUFFICIENCY CONDITIONS

NON-SINGULAR NEWTON - RAPHSON MATRIX AND NORMALITY

According to Reference 7 (pages 230 and 231), the accessory minimum problem
has order of abnormality q if there exist q linearly-independent sets of con-
stants and solutions of the canonical accessory equations

2 2
?"H 3°H
n = n + ¢
dpox sz
(E.1)
C = -.gii_{_ n - azH C
ax2 x3p
of the form n = 0, (), ep. for each of which
ay \ T
G e a'x‘kl‘i l =0 (E.2)
0
T
3y ¥
et . _
eu(at + —a-}':—'] xi) = 0, (E.3)
0
The functions
v, [o.x(0, T, x(m)] = o (E.4)

are end conditions satisfied by the extremal path, and repeated subscripis
in (E. 2) and (E. 3) denote sums . If the order of abnormality q is zero, the
path is normal.
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In the optimization problem the initial conditions are all specified, which

implies
no) = 0
i= 1, , h
¢lo) = - (E. 5)
€ns1 t 31’.‘1(0) = 0.
Thus the solutions to be considered are linear combinations of the solutions
3x(t)
apo nlz{t) rrlz(o) 0
= , = {E. 6)
dplt) !
, | |M22" P T
- | L. - L
with
(E.7)
C(t) = “ﬂzz(t) e L]
By hypothesis, the first of (E.7) are all zero. It is shown that if the
Newton-Raphson matrix is non-singular, the constants ¢ are all
zero, 50 from (E. 7) there are no non-zero solutions m= 0, .{{t}), e. Thus,
q = 0, and the problem is normal by lemma 81. 1 of Reference 7.
The terminal conditions (E. 4) are assumed to be
1-:1_;(T)-Xk = 0, k=1, ..., r<n (E. 8)
T-K = 0 3 (. 9)
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where (E. 9) is omitted if the terminal value of the independent variable is
not specified. The terminal equations (E. 2) and (E. 3) are then

Ck(T) = Ciqakc KT 1, ..., r (E. 10)
Cj(T) = Q, j = r+1, ..., n
€ln+r1)+k Xy () = Tehntr+2° (E. 11}

Assume first that (E, 9) is included. Then the first r and the last (n-r) of
(E.7)att=T = K give

Be= 0, (E, 12}

where B is the Newton-Raphson matrix (as in Section IIC). If B is non-
singular, e¢= 0, and the result follows, If (E.9) is omitted, then (E,11)

must be included, since with ¢ 0, it is an additional constraint

n+r+2
equation. However,

ek (T =~ ST X (T) + pUTINAT) = -C(0)%;{(0) = ¢;%,(0) = 0

(E. 13)

since the expression is constant in t. This may be shown by using the
canonical equations
- a H
X =
op
(E. 14}
3H

P = -3¢

ox

and (E. 1) when differentiating the second of (E. 13) with respect to t to obtain
zero. The Newton-Raphson matrix is formed with the total differentials
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<
1]

dx, (T) = :'ck(T)dT+nk(T) k=1, ..., r
(E. 15)

o]
1]

dpj= ;')J.(T)dT+Cj(T) j=r+l,...,n

and the last of (E, 14), as in Section IIA., Then if B is non-singular the

set (e, €n+1) in (E. 5) is zero, and the result again follows,

RELATIONSHIP BETWEEN MAXIMUM PRINCIPLE AND MINIMUM PRINCIPLE
ACCESSORY SOLUTIONS

The difference in maximum and minimum principle formulations of the opti-
mization problem is the signs of the multipliers, including the unit multiplier
for the integrand fo of J, the function to be minimized. Thus, the Hamiltonian
for the maximum principle is the negative of the Hamiltonian for the minimum
principle. Let the functional form of the solutions for the maximum principle
formulation be

"
I

x(t,xo, zo)

(K. 186)

o]
Ik

z(t, X zo)

and the corresponding forms for the minimum principle formulation be

™
n

x(t, X, po)
(E.17)

p plt, X P,

It follows that

x(t,xo,po) = x{t,xo,zo) (E. 18)

if the multipliers for the two systems satisfy

p(t,xo,po) = -z(t,xo, zo). (E.19)
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The accessory solutions are the partial derivatives of (E. 18) and (E. 19) with

respect to X, Py and z, Upon differentiating, the correspondance between

systems of solutions is found to be

ox K-
ax (t,xon po) bxo (t)xo:z )
(E. 20)

34 ox
= (t,x_,p ) = — ({t,x, Z)___Q. (t.x .,z )
ap0 oo Bzo. dp oz o
dp . —1
ox {t, x ’po) x (t’xo’zo)

0 0

Z azo

T';P)— t,x,,p)) = -3 tx,z) 'F“ (t,x . z,)

In constructing a field of extremals for the sufficiency test, Bliss uses the

maximum principle formulation of the problem. A suitable choice for the

conjugate system of solutions is
vz
U=aa" (t,x, zo)+a" (txz)[“—“o' I]
dz (B, 21)
_ Dz dg o + 1 :
V = 3% c,(t x Zo) + azo (t,xo,zo) [ﬁ:‘ ]

Upon substitution from (E, 20), these become, for the minimum principle,

a Bp
U=Fx£'" ,p)+————(tx,p) - 1
o) 0
{E.22)

ap
v o= 2P _9_ o__
\'s 3%, t,x _,p.) + (t X +P )[ Y I] .
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REDUCTION OF FIELD FROM (n+2) DIMENSIONS TO {n+1) DIMENSIONS

Consider the system of equations

):
- az X,Z,Z

n+1)

= ufx,z, zn+1)

(E. 23)

which arises from the maximum principle formulation of the optimization
n+1 (the integral of u) is considered as an additional state
coordinate. It is tacitly assumed that x

problem when x

a1 does not appear in the right-hand
side of system (E. 23) and that it does not appear in the boundary conditions.

Hence, as a necessary condition,

Zoel T 0, (E. 24)

and the first and third of (E. 23) are the system of equations to be solved for the
optimal trajectory. It is not immediately obvious that the field of extremals

used in the sufficiency test can be correspondingly reduced from (n+2} dimensions
to (n+1) dimensions. This, however, can be shown as follows. The accessory
equations corresponding to (E. 23) are

_ — _ | s
" ¥H | % 3%y n |
d _ |auwe ut _du
at| The © dX 0 _ dz 3zn+1 Th+1
e o e e e s — —— — (E.25)
C _ 221 0o - 2% _Su C
ax§ . dxdz ox
Cn+1 0 0 ) 0 0 Cn-':-l
_ . L ! - -

186



and the fundamental solution matrix may be written

T mt 0 ; M, 5(t) bit)
a'(t) 1 i c'(t) d(t) e = I,
My |T T e
UPPLL 0 } Moq(t) elt)
0 0 ; o 1

where a, b, c and e are n dimensional vectors and d is a scalar.

system of solutions is determined by its initial matrices, now taken as

U(0)

for when the initial conditions satisfy

UV = V'U

then so do the solutions

- 9 - N
U | U, [nll(t) + riz(t)] 0
( = m{t) = [a(t) + c(t)]’ 1
v l v, [my 0+ mpm] 0
] | P 0!

Then the determinant of U is
["11(” + rrlz(t)] 0

det U = det ’ = det [n“(t) + ﬂlz(t)]

[att + c] 1
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A conjugate

(E.27)

(E. 28)

(E. 29)

(E. 30)



so that if Tl‘ll(t) + nlz(t) is non-singular, then so is U. The reduced system

r ] T '] ™ h B i
Ul |m;® 1, | Ug (0) Up (0) I
. ‘ ; = (E.31)
v @ o Vo) V., (0) ! 1
I R _”12 22 _l | 'R J R ]

is a conjugate system of solutinpns which forms a field for the reduced problem
if[nll(t) + nlz(t)] is non-singular. Thus, the field in (n+1)-space implies
the existence of the field in (n+2)-space.

The system (E, 21} results when V(0) is taken as

3z
V() = [ﬁﬂ + 1] 0 (E.32)
O
0 0
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APPENDIX F
THE LEAST SINGULAR SQUARE MATRIX OF AN nxq MATRIX

Let n be greater than q, and let each row vector Vi of the matrix be normalized
to 1,

q
_ 2 _ o
(v, V) = Z Vi s L 1= L. (F. 1)
j=1

The method proceeds by consiruction, so let

WK= a1V1+...+aV (F. 2)

be a unit vector made up of the first K most orthogonal vectors, and find
the maximum projection (Vm,WK) of W, on a row vector V_, m >K. The
projection is the cosine of the angle between Vm and WK’ which, when
maximized, gives the smallest angle between Vm and the K-dimengional
Euclidian space determined by the K vectors in (F, 2). Thus, the problem
is that of finding the minimum of the maximum projections of the remaining

(n-m) row vectors, and using this to form WK+1'
Consider the maximization problem represented by
fm(a) = (Vm, WK) = maximum, m > K, (F.3)

subject to the constraint

(WK, WK) = 1, (F.4)

Introduce a L.agrange multiplier A and form the expression

Fla,\) = (VW) +) [1 - (W, WK)]. (F.5)
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The derivatives of F with respect to aj,j = 1, ..., K, must vanish at a

maximum, S0

da,

2F | 4 - - C s
. 0 = (Vp V9 -2MVy, W)y § = L ..oL K (F. 6)

Multiplying by aj, summing over j and using (F, 4) results in
(WK, Vm) = 2\ = fm(a). (F.T)

On the other hand, the system (F.6) maybe written in the matrix form

way

r 0T 1T
(Vl.Vm) (Vl,Vl) (VI,Vz) . e . (VI’VK) 2N ay
(st vm) (Vz, Vl) (Vz, Vz) P (V2, VK) 2N az
(F.38)
(VK,Vm) (VK,VI) (VK, Vz) . e . (VK, VK) 2\ ag |
L _ - 4 L J
or more simply
bm = C&K (2 a), (F.9)
from which
-1
Ma = [qu] b . (F.10)

Now bm is the left-hand side of (F'. 8), which, when multiplied by a, gives fm’

so in view of (F.7),

2 -
2, 'a) = 1 % = b_¢ [qu l]bm. (F.11)
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Equation (F, 11) shows that the maximum and minimum projections have
opposite signs and allows the squared value of the projection.to be evaluated

in terms of known quantities. This is good enough for the computer mechani-
zation of the scheme, which almost suggests itself,

Consider the (n x n) matrix

— -—

(Vl,Vl) .o V)

(F.12)
(Vnn Vl) . L] . (Vn, Vn)
L .
which is symmetric and has ones-down the main diagonal. At the Kth stage,
this may be partitioned into four submatrices
(F. 13)
B' C J,
so consider the product
b Bl l 0 I B
= (F. 14)
-1
1 ]
B' C 0 I B ¢K C

The (m—IQﬂ1 row of the lower left submatrix times the (m -K)th column of B
gives the square of the projection (F.11). This is easily computed for each of
the remaining vectors, and the minimum of these identifies the most orthogonal
vector to the K-dimensional subspace.

Now suppose that rows and columns are interchanged in the last matrix of (F. 14)
to bring the minimizing row and column next to the identity matrix. This retains
the symmetry of C. Then elementary column operations may be used to obtain
the (K+1) x (K+1) identity matrix for the next step.
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APPENDIX G

PROOF THAT DISCONTINUITIES IN THE MULTIPLIERS
CAN BE DETERMINED AT EITHER END OF A CONSTRAINED SUBARC

The geometry is shown in Figure G-1. It is to be shown that the value

: P, is obtained by following

either path A or path B, Path

A assumes that the multipliers
are continuous at the initial

point t1 and discontinuous at

the endpoint t2' Path B assumes
the discontinuities are at the
initial point.

G>0 Figure G1.
—» t Geometry of the Problem

The necessary conditions for the constrained subarc are

x = f(x, u) (G.1)
' ’
of ; \.r hd
I o . of | oG
PR e p+p{ax (G. 2)
0 = cof 81'_0 + 3G | ﬂ(x u ) (G. 3)
P a—u ju }-lau u » ] pa M :
0 = G (x, u), (G. 4)
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The last two equations are ''solved'' to obtain

u = u(x) (G. 5)
af
po= P-{X; p) = -[‘i{](p'—g% + --a-—ucl). (G. 6)
Ju

Substitution of (G. 5} and {(G. 6) into (G. 1) and (G. 2) gives the reduced
differential equations for the constrained subarc:

x = f(x, ux) G. 7
o ? ol [a B as'}_’
_ u
BT Polx THG (ax Hax "G (ax P G.8)
au u
p, = O, (G.9)

Equation (G. 9) has been added for convenience.
Now (G. 7) and (G. 8) are "uncoupled' since p does not appear in
(G.7), Since x = x{t) and the coefficients of p in (G.8) contain

x alone, (G.8) and (G. 9) form a linear first-order homogeneous

system of differential equations with time varying coefficients,

Yy = ADY, (G. 10)

where Y is the n+l dimensional vector

vl @1
pO
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Let ¢ be the fundamental solution matrix of (G. 10) with qS(tl) =1,
the (n+1) x (n+1} identity matrix. Then the value of Py computed
along path A is

Py P,

A
= $(ty)

Fs
A (3G2
- ax (G.12)
0 i 0

P

Along path B,

= ¢ (tz) A (G.13)

¥ (G.12) and (G. 13) give the same value for p, it follows that

3G, 9G,
ox é (t,) 8x (G.14)
0 0
— 3
aG(t)

and hence that

X is a solution of (G. 8) with P, = 0. To show

this, consider the vector identity

8G . 96 , 3G pu
o (x, u(x)) = = +

3% n ax 0 (G. 15)
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gince

gu _ _ 1 ﬁ'
3x TGy Bx
[u)

results from equations {G. 4} and {(G. 5}). On the other hand,

.t p ' :
86|, o (a6} 2%, e, & jarf| oG
ax ax ox 2 ox 2x |ou ox ¢

ox

Additionally,

d (a_q_) 2’s
dt 9x 5%
Combining (G.15) - (G. 18), one finds
!
' 1 Y
4Gy . |of . — ¥ 3G 8G_
dt | ax 8x (ﬁ au  ax 38X )
ou
¢
which is the same as (G. 8) with P, = 0 and p o Thus o

is a solution of (G. 8) with P, = 0, and the values of p, computed
along paths A and B are the same.
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