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ABSTRACT

Two methods have been cutlined in detail, and one of them
hae been mechanized, for calculating acoustic ray paths emanating
from any peoint in a non-uniform transcnic flow field surrounding
a wing. It gives the ray path, and the time, for the minimum time
of travel from the acoustic source point to the field point. The
resulting velocity potential is also computed.

It was necessary to establish an accurate representation of
the flow characteristics in the field surrounding the wing. Some
ray lines travel over the planform and into the surrounding flow
field. It was established that once off the planform they do not
return.

Available methods predict phase lages based on the assumption
that acoustic rays travel in straight lines. The results of this
study show this to be a very poor approximation at transonic speeds.
Therefore, it is recommended that the method presented in this
report be fully developed for the purpose of calculating generalized
forces on wings in harmonic moticn at transonic speeds. A computer
prograx that would predict these phase lags with reascnable
accuracy, and the corresponding flutter characteristica and unsteady
aercdynamic loads on a wing responding to externally applied forces,
such as gusts, would fill an important gap in the available
technology.
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INTRODUCTION

When an airfoil travels through the air at speeds near the aspeed
of sound, the local speed of flow varies from subecnic near the for-
ward adges to supersonic near the trailing edges. These wide variations
of speed from that of the free-stream characterize the non-uniform
traneonic flow. This non~uniformity of the flow field must be accounted
for in accurate calculationa of unateady pressures and forces; partic-
ularly their phase lags.

In order to determine an unsteady transonic flow field one requires
solutions for singularities immersed in a non-uniform steady flow,
(Reference 1). Source solutions for a mean flow that varied in the
x-direction only were given in the high-frequency limit by Landahl
(Reference 2). Rodemich (Reference 3) presented a "box" solution,
based on pulsating doublets, which assumes a uniform mean flow at Mach
number 1.0. No exact solutions for the case of a mean flow with
arbitrary spatial variations have been found, thus far, but Landahl
proposed the basic form of a solution which removes most of the limita-
tions and restrictions of these approximate solutions. The method
focuses attention on the time of transmission of an acoustic signal
from a pulsating sending source to a distant receiving point. The
signal travels through a nearly sonic flow field where the Mach number
varies in a prescribed manner.

This report contains a difference equation approach, and
differential equation approach to computing the paths and the trans-
mission times for acoustic signals. The independent variable in the
latter approach is a spatial rather than a time variable. A pro-
cedure that could be used to calculate the velocity potentials and
generalized forces on an oscillating surface is described.



POTENTIAL OF A UNIT SOURCE

The basic expressions proposed by Landahl for the velocity potential
at the point (x,y,z) due to a pulsating source at (xo,yozo) are:

(a) for a source in a locally subsonic flow region

¢ ii% exp {ia{t'S(XJY:z:onbezo)]] (1)

where

wl
]

w/(x-xo)e + [l-l-fe(x,y,z)][(y-yo)z + (z-zo)ail

Local Mach Number

=
]

X ,y ,zo = Location of sowrce point

g(x,y,z,x TR ) = Time required for a disturbance to travel from

o)yono) to (x,y,z)

(b) for a source in a locally supersonic flow region

g = ﬁ-ﬁ {explin(t-g )] + explia(t-g )1} (2)

where

ga .= a (x,y,z x ,y ,z ) = Time required for the advancing, reced-
’ ing wave to travel from (x 1Y s 2 z ) to

o]
(x:y:z)

It is likely that good accuracy may be obtalned with use of the value
of gy for uniform flow (in the supersonic case, and also for the advancing
wave portion in the subsonic case). However, our purpose is to produce &
general solution for g which applies to both the advancing and the receding
portione of the wave and compare values with those for uniform flow.

Since the primary interest ig in wing flows, we consider that both the
source and receiver points lie in the X, y-plane, so that z = z5 = O.
Furthermore, we consider that signals do not return to the plane once they
leave. The problem 1s thus simplified to one in two spatial dimensions.
Its solution should be applicable to a wide variety of nearly planar 1lift-
ing surfaces,

Consider a signal emanating from a source at the point (xg,y,) on a
wing. A second point past which the signal travels is located an incre-
mental distance (dx, dy) away. There are two components of velocity of
the signal, a radial component, C, where C 18 the local speed of scund and
an x-component, U, where U is the local speed of flow over the wing. A is
the angle the radial component makee with the negative extension of the
x=-axis. The path of this wavefront point will be referred to as a "ray".
The shape of any ray depends on the lnitial choice of A; for a given A, dx
and dy are components of the first element of this particular ray emanating
from (xo,¥o). The situation depicted is general in that it applies not only
at the source, but at any point on the ray path. Thus, the
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~ velocity at any point on the path is a function of three spatial para-

meters which vary with position, U, C, and A. From the sketch, it is
clear that

ax = {U(x, y) - c(x, y) cos A] at (3)

dy = C(x, y) dt sin A

Equations were developed for two methods of tracing the ray path to
eatablieh the magnitude snd the phase relationship at field points to a

unit source. Thege methods are: (1) a difference equation method, and
(2) a non-linear differential equation method.

Difference Equation Method

In this method, time is the independent variable. Eguatione (3) are
two of the three equations needed to establish the variation of x, y, and
A with time, The third equation is obtained by considering the accelera-
tion of the rey in the non-uniform flow field (see Figure 1).

Udt

Figure 1, Velocity Components of a Sonic Ray Line
In A Moving Airstream

In te‘{'lﬁ of components in the directicns of the rotating unit vectors ™
and "

/ '
(T sinA) L +(C-Veos )T ()

- - ’ . . ‘
and Bz (TOsinA+cA)2 +(E-Ucosa)T

It is necessary to express the angular velocity A in terme of space vari-
ables. To do this& conslider that at time ¢ a second ray point is located
at R,» /R,y FR4, vhere BR is small, and it's direction of travel is
My & l?. +éM , Let the superscripts (o) and (1) denote times t, and

tyl= t + At), Then at time ty



R = R+ Pt

and R, = R + B a2
Subtracting the first equation from the second

sR = §R s R Wat (5)
where SR = M, -,

Recalling that the cross product of two vectors 1s a vector normal to the
plane defined by the two vectors, and has a magnitude equal to the product
of the two magnitudes times the sine of the angle between them, then

!
;R (- TR TR 350 4 1) (6)

which has the correct sense. When AA is =small, and when Equation (5) is
substituted into the left side of Equation (6), we get

TR 5742 - f(“(-l‘ﬁ“’ TR ant)

This may be rewritten as
aA _ FJ(e-v cosA)

42 - SR
and in the limit as At - O
r
A=-LV(c-Teosn) (7

’
where the operator f-v is
f‘-v x (sfn.d ‘}& + cos A 'g;)

and operates only on C and U,

Equation (7) has a revealing physical interpretation. From Figure 4 we
see that the gradient of the speed of sound C, on forward portions of the
wing, is a vector pointing forward and slightly outward from the center-
line; whereas, from Figure 3 we see that the gradient of the local flow
gpeed U 18 nearly in the opposite direction. Although it is not apparent
from the figures because they are plotted to different scales, the magnitude
of the gradient of U is sbout five times that of the gradient of C. From
the energy equation 02 + ‘;'l U? = constant, YU = =5.0 vC., The local Mach
number is increasing in the downstream direction. Figure 2 shows that,
under these conditions there are only two stable ray anglee; those for
which the gradient of C - U cos A 18 zero. Ae the ray propagates through
the flow fleld it will always tend towards one of these two orientatlons.




Figure 2. 8Stability of Ray Angles When The Gradient of
Local Flow Speed Exceeds the CGradient of
Local Speed of Sound,

We nov write Equations (3) and (7) in differerce form

&= Ju-ceosn] ag (8-2)
&y = [C sin A)ag (8-b)
and ah = - [sin A (-gf--ca:./z -g—;&) (8-¢)

+cos A (%ﬁ--eos-d%;‘)] ’g

where Ag represents an increment in disturbance travel time g, defined
previously. To determine o(x, ¥y, 0, Xo, Yo, O) it is necessary to kuow
a steady state distribution of C(x, y), U(x, y), and their derivatives
at any point in the flow field over the wing and in the surrounding flow
field in the plane of the wing. A means for establishing these is given
in Section 5. Assume they are kmown., Then the procedure used 1s as
follows:

1. BSelect any source point, on or off the wing, (xo, yo).

5



Select a series of initial ray angles, A., 1 = 1, 2, «=--,

i
Select an initial increment in disturbance travel time, Ago.

i) i)

For each of the ray angles store x(i), y( » sin A(i), cos A( s
and Ag(i 3y 1i=1, 2, anee,

a. At x(i), y(i) compute and store x(j') - x(i) + &(1)/2 and

y(i) + y(") + aar(i)/a, holding A constant.
b. Iterate on :2(1) - x(i) + &(1)/2, 72(1) = :Y(i) + A‘r(i)/i’:

and M(xa(i), ya(i)) until they converge or exceed ten trials.

In the latter case replace Ag(i) by &g 1)/2 and repeat the

1tf;3.t:l.on. :(I:i’ they converge in three trials or less, replace
g by 2Ag* 77,

¢. Replace x(i) by x,
The solutions presented above are believed to be good approximations

(1), y(:t) (1)

byye y and return to a.

to the exact solutions for the following reasons:

1.

2.

3.

For the case of a uniform flow they reduce to the proper linearized
expressions,

The phase of the disturbance will be exact, although the amplitude
may be slightly in error.

In an inner region. in the immediate neighborhood of the source
location (xo, T :o) they approach the correct sslution.

For a one-dimensional mean flow with ll‘ spproaching unity they re-
duce to Landahl's earlier solution (Reference 2).

In the limit of steady flow (® = 0), the solutions give results
squivalent to the local linearization method of Spreiter and Alksne
(Reference 4). This has been demonstrated by Rubbert (Reference 5).

Inasmmich as tha proposed spproximation only affects the receding
part of the solution, the proper limiting solwtion for high fre-
quencies {Reference 1), should always be obtained since then reced-
ing-wave effects are largely cancelled out due to the rapid phase
variations.

This method gives reasonable results, i.e., reasonsble based on a

comparison with results obtained from the differential équation method.
HEowever, the ray paths did not conclusively show the existence of the
focal point that the second method revealed.



Non-Linear Differential Equation Method

From Equations (3) we may write the slope of the ray path
dx - M- aosi (9)
dg - SinA
and sclving this equation for cos A, we get
f / ] - T
cos A = MELTE S M (10)

/+rt
vhere = _41.

The tranamiasion time from source to receiving point is glven by

7 /"" (1)

where the integration is taken along the path and

ds = 1+ r2 dy (12)

The velocity along the path is cbtained from the vector sum of the two
velocity components

Vag /}12+l-2ucosl\‘ (13)

Substituting equations (12), (13}, and (10) into equation (11) we

have:
g° Yi+rt d
z MErYr s/t
Cyss-2m ,E,.,. |

which reduces to

trri)d (14)
CYMErts emtririsi-aw® +ris/-m*

The radicand in the denominator is a perfect square. Thus,

’E (1+r2)da
e mrzyrizi-m*]
which reduces to

;=/ Mrtyris/-mt

d
¢ (M%) / (5)



At this point we relate the local acoustic velocity, C = C(x, ¥y),
to the local Mach number by imposing the condition of comservation of
energy. For non-viscous flow, the total temperature is conserved. It
is easlly verified, that under this condition

ot s¥Mm®

cr T s rAMy (16)

vhere ¥ = 1.4, for a dlatomic gas, has been used. Substituting Equation
(16) into Equation (15), we get

. / Yogm® [Ar 2VrTs-m J
§F= QW (7) (a7

vhere the upper sign applies to receding weves and the lower sign to ad-
vancing waves. Equation (17) contains all the elements for the solution.
However, the integrand is a function of X, y, and dx/dy. This equation
may be wrltten in symbolic form

/ 4 )4y

wvhich suggests the use of Buler's equation to find the minimm time g, for
the disturbance to travel to a field point (x1,y1)

2F _
73;3‘5 onx % (18)

In order to simplify the notation, we set

F(Mrtgs)
F = Ari-j
vhere 5 =58(x, y)= 5+

B=B(x,y,r)-}/r2+l-M2

and r has been previously defined. We will need

4{57 ),.,e, - ¢ 8505 ]

(/f'-/)ef ~24 ]
+‘(Mt ‘Fc') _('f'—;_/):_#_




en, making use of the relationships

M

Y i rﬂfxal-M’

as. _ L], 4dc . -
G LG - mam]
a5

= A
3y = F[r ],
solving for dr/dy, and combining terms, we get
[’”(ﬁ Y L A (7# +.r)]r_
dﬂ J"(#'-/) AME-/ ¥ (19)
+[z MM E)rEp (7 .-.r)]}ﬁ,, { =(r +b)}”¢

Equation {19) is a second order, second degree differential equation
of the form

!—“‘4“ (%9 7%

It is second degree because f§ represents a radical. However, it can
be solved numerically by any of the standard repetitive processes, We
employed a fourth order Runge-Kutta procedure.

There are certain difficulties that arise in the numerical evalua-
tion of Equation (19), These are first listed and interpreted and then
equations used to surmount them are presented.

(1) Along some ray paths dx/dy becomes infinite even when the Mach
nurber is not equal to one,

(2) Equation (19) i1s singular at Mach number = 1.0.

(3) In the supersonic region, signals sometimes become trapped on the
local Mach line. This happens when cos A = 1/M. Signals tend to
gravitate to this condition. Such trapped slgnals cannot then cross
the sonic line, They approach the sonic line as a 1limit, and are
cancelled out there,

To overcome the difficulty listed in Item {1), it is necessary to use
X instead of y as the independent variable, This is done by applying the
equation
z

E4
914-( ,-;;‘- (20)



It is convenient here to introduce scme new notation., Re-write
equation (19) in the form

&= {-!‘_’-(yﬂi)f- +z,4(ﬂ+:)¢ F (74 %s5) .31-},.;

(21)
gz
vhere the new notation, together with some other notation which will be
used later, is defined as follows
x'= %"L A= mtes My = 3’,
1. d . 4ot LA (22)
R = Ya' -(m%1) g=VE'
R, = Vi- g’ (#™)) Ez O V5
Substituting Equation (20) into Equation (21), ve get
7” = A’a M w f-//)-lﬁ(ﬂil)’ﬂi (7 +.s‘)},q (23-2)
’/
e ol G 3 o<y’
a_ 1 [ M, e Lol e Bl gy tes) (23-b)
Y "2z )3 (wru)-ammsi)y 5 B (74 +35)f My
! FY . !
- /‘;ﬂ_((,’ +/)/l/” 5 ¥ <0
The limiting form of Equat:lon (20) at M = 1 is:
~ - 2 A
& Imw. 74 1 a’s }”’ CA L

In the supersonic region, wvhen the signal is tra.pped on the local Mach

line, and
gt '
cort s, wints TEE s Juep

equation (20) reduces to

SIC

sinAs=

10



A complete set of equations, together with their areas of epplica-
bility, will now be outlined.

Complete Set of Equations vwhere Y is the Independent Variable

»

A- 3
a” = 3%{%(”’-#/{)¢"+2#(”$3)¢’3(7"2”*:)%}”1
' (24)
+ -3"’('2’2*5) My
dt _ 1 fent (Mt R) (25)
4 £ i/
» _ 1 .3 ’ _2_.} A 2
I rult & -1 Bk & A e R Y. / —— . 26
& /”=I.a 34 %z ; + A (fl.’, 'f'b) ( )
z| . Sel (et
1 - (x '+ x ) (27)
v| o n(Zen)
l2]=¢
_4:_} A CE (29)
Eax'’ ’

it Ix)=p

A complete set of equations were also developed using x as the indepen-
dent variable. However, for the sake of brevity, and since they are
obtained by a simple change of variable, they will not be listed here.
Equations (26) and (27) apply vhere an advancing ray path crosses the
gonic line, and equations (28), (29) apply where a ray path, in the super-

sonle region, becames trapped on the local Mach line, It remains to
describe the regiona of applicabllity of the upper and lower signs of

equations (24) and (25). In what follows, "right branch" will be speci-
fied vhere (O« A< ? and left branch will be specified if (-m<-L < o).
Here £ is the local value along the ray path. The end points are not
specified hecause for these points we use x as the independent variable.

The upper sign 1s used for
(1) Subsonic, left branch
(2) Supersonic, receding, right branch

(3) Supersonic, advancing, left branch
1



The lower sign 1ls used for
(1) Subsoric, right branch
(2) Supersonic, receding, left branch

(3) Superscnic, advancing, right branch




THE NON-UNIFORM FLOW FIELD

In the application of each of the methods contained in this
report, it is necessary to know certaln of the properties of the
transonic flow field on, and in the neighborhood of, the wing.
Figures 3 and 4 show the distributions of local flow speedes and
sonic speeds over a 65° delta wing model in a wind tunnel in which
the Mach number was 1.04 (taken from Reference 6). Speeds were
computed from steady state pressure data at 27 points on the wing.
The figures are intended cnly to show the genersl characteristics
of the flow, such as: (1) The local sonic line shifts aft with
distance from the centerline but crosses the leading edge inboard
of the tip, (2) Mach nmumber variations in both the streamwise and
spanwise directions must be considered and cannot be considered to
be linear, and (3) Separated flow is indicated over the aft and
inboard portion of the wing., To consider the last of these charac-
teristics is beyond the ecope of this study. However, the first
two are amensble to analysis using available theories and
techniques,

13
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Mach number distributions over areas off the wing were computed
from an approximate theoretical solution of the flow field that matched
pressure distributione on the wing. In order to avoid a discontinulty
at the juncture of the two regions, a small transition region was
defined over which the two functions were joined by a numerical esmooth-
ing technique,

Let:

M'L - MI (x,y)= Mach mumber
q

@ (x,y) = Perturbation votential

n

T = T/c(x,y)n Thickness ratio

For a steady-state, non-lifting flow
T
(1- M,_)q)xx + @y + Fpy =0 (30)

and Pa(*4,07) = + 75, (% Y) (31)

Where -!;(X,g) is a function describing the variation of the surface
from the mean.

Using parametric differentiation with respect toT, (Referemce 5),
9’ = 3 (= ‘J) = 24
T
Fquation (30) becomes:
BT *dvy * 9= (32)
do (%07 = 24,(% )
After having obtained the solution of equation (32), the local Mach mmber

distribution is obtained by relating local Mach numder to the coefficient
of pressure, (Cp). Starting with the following basic relations;

Let w = -"-r-‘r-_!-;-—-.'é'-
(-
then H = igg == C'% (33)
a* +_ﬁ (o-1) ’2:..- Constant (34)

where q = T, at infinity
qa =5 (1+3L) elsevhere
a = speed of sound

16



We have: o +.£(,y_.;)wf = a.f_ +J,_(Y-:)V.’.‘ (143"
W+ T vl (1+aw)
at xr al, (&)l
usine equation {33)
at ¢ ab [+ DMaCp]

The coefficient of nressure, (yp 18 of order {.1), and M is 0f1.).
Therefore. to sufficient accuracy.

a = a, fl-!--“é(dﬁ-l)ﬁbtc’g]

IS

U, = U (1+0)= w6 (1-4Cp)
and from these relations:
M= Moo (1 — :é_ff)
‘ )+ &£(-D MaCp
Noting again the order of M, and Cp, to sufficient accurscv.
-~ z
M S Mo(1-Ep)[1-£(8-1) M Cp ]
e /
or ML= Mqo [’— J‘:— C‘g] { 35)

Fquation (35) is the exoression that was used to relate local Mach
mmber to Cn on regions off the wing.

A solution of equation (32}, using the results of equation (25) was
wvorked out for a specisl configuration. The svecial wineg confipuretion is

devicted in figure (5). Voo
' |
l A T -2
ac
E
¢ be te
J_J

z!" Typlecal Section
Fig. 5. A Thin Wing In Rectilinear Flisht

The solutiom is:
Colz 3)-Cotm o) -26Lhasl s gvsl 218l ]
24 L 185 “Hyrs el )] H(x-2) (36)
~ 28, LS Blges g s, AH(x-b)

vhere f/(z) is a stev function,
17



2. HE L is| T fyrs ) La st
2l Ll Jos) s taa)
pahte s P o5 /szf'f"_']u(x-b) (37)

-l Ay

%%éf:—.ﬂ{e[ 1y~ ¢ [gf—sff"J
+af f,[lg—S, ]E’—{;./gg.s,l'f'"lj H{(x-a)
+2f, E,.[jg—.safé‘-i;- Iy +.s,]'£f’_] H(z-b)  (®

WHERE!:
2 e
Cos“A. - ! s = %
f‘m > & 27a Coo A S n
2 7
_ Cew'Ad, - s :C?-"a')//-a. Jo
j-l.- s,”"‘_’ ? 4- 37"&-&004., ! / C ) ¢

L

! - -
fo= el 6.5 mrea, 0 S FEL U ey

JM /L,: (f"ﬁ)%l"—) Jﬂ—vultz_z(/—b)k""/‘-

After determining a distribution of C end its derivatives from equations
(36), (37), and (38), the Mach number distribution, with its derivatives, is
computed from equation (35).
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DESCRIPTION OF THE COMPUTER PROGRAM

The equetions for the ray paths are solved in the following manner:
Let the independent variable be y and

V1=-5:-

Vo = x
V3 = ¢
Then d
© '3"‘;"'"‘;( th")
i _
;‘?" ﬁ(”,"i,’)

These three simultaneous differentisl equetions are solved in a step-by-
step manner by use of a standard "SHARE" subroutine which is baesed on the

Runge Kutta method. When dx/dy becomes greater then onme, s varisble
change takee place in the program, and x becomes the independent variable.

A signel (in the supersonic region) is considered "trapped” on the
local Mach line when

et (rmtn)| £ E

When, for this trapped signal, (M-1) < E2, the integration stops and a new
ray line is started, This logical flow is shown in the chart on page 21.

The velues of A4, used in the program are determined by the parameter
(NLA). If (NLA) is an odd integer, it will be rounded down in the program
to an even integer. Values of A, vary from zero to # end from zero to -7
in an arithmetic progression.

Computation of a ray path {other than for a "trapped signal") ceases
under the following conditions:

' X
/€4
| ymwax < 14l

NAMAX S NN T

vhere NCNT is the number of points on the ray path already computed. This
logical flow is shown in the chart on page 22.

Subroutine DERIV computes the appropriate derivatives,

Subroutine CNTRL accomplishes variable changes, stores local values
in appropriate locations for later printing, and performs exit tests.

Subroutine FMACE computes the local Mach number and the partial
derivatives of the Mach number.
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Subroutine BONK computes coordinates on the planform vhere M = 1,

Sample data sheets with numbers which have been used in a computer
run are in Appendix II. The output sheets are included. The ocutput
format is self-explanatory, with the exceptions of certain test words
that are printed out at the beginning of the plots for each ray-path.
Definitions for these words can be found in the comment statements at
the beginning of the listing in Appendix I. The values listed for these
teet words apply to the last point plotted for the ray-path.
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Next
Source

READ DATA

COMPUTE A,;

. 1
SET UP GRID LIMITS

YL, YR, XU, XL
i

{carr, rovrTT]

SET UP GRID
CALL GRAPH

Next4e SET IVAR

PLOT PLANFORM
1

CALL GRAPE

PLOT SONIC LINE
l

| CALL PMACH |
I

( INITTAL VALUE)
T

COMPUTE IBR
(Initisl Value)
]

L comp

SET INITIAL VALUES
OF VARIABLES

X, ¥ dx/dy, time

CALL POT

PRINT AND PLOT
VALUES FOR 1 PATH
]

NEXT Ao OR

NEXT SOURCE

MATN PROGRAM

Subroutine SONK Camputes Sonic Line

Subroutine LIMITI Sets Plotting Grid
Limits

Subroutine GRAPR Produces Cathode
Ray T™ube Plots

Subroutine FMACH Cemputes Mach Ro.

Determines Whether X or Y is
Independent

Determines Left or Right Branch

Determines Type of Source

Runge Kutte Integrating Subroutine
Subroutine POT Computes Velocity

Potential Along Path due to Source at
(XO: YO)
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SUEBRQUTINE RKS3

STORAGE
ALLOCATTON

CALL RKINT

SUEROUTINE RETNT

STORAGE
ATION

INTTIAL VALUES
OF Y

CALL DERIV COMFUTE Subroutine DERIV Computes
INITIAL VALUES OF Derivatives
DERIVATIVES

CALL CNTRL Subroutine CNTRL Executes Variable
Changes, Stores Current Values,
Executes Exit Tests

COMPUTE VARTIABLES
- AND DERIVATIVES AT _ This Loop Calls DERIV 8 Times
TWO [EAI.F STEPS

COMPUTE VARIABLES
AT END OF INTERVAL
TEST FOR FIXFD OR
VARTABLE INTERVAL
I

|| IF INTERVAL IS VARIABLE
COMPUTE ERROR. IF TOO
TARGE, DECREASE INTERVAL,
REFEAT STEP, IF TOO SMALL,
INCREASE INTERVAL AND

NTRY ig Re-set in CNTRL

NTRI=1, Compute Next Step
NTRY=2, Exit to Main Program
NTRY=3, Repeat Step

NTRY=l, Restart Integration




DISCUSSION OF RESULTS

This report contains two methods for calculating the velocity potential
along sonic ray lines emanating from any point in a non-uniform flow field,
i.e., one that varies from locally subsonic to supersonic speeds. Both
methods apply to pulses emitted by sources or doublets. It has been demon-
strated that both methods yield nearly identical ray paths and times of
transmission. Those presented were obtained ueing the second method.

Figures 6 through 13 show ray paths of acoustic signals emanating from
various points in & non-uniform transonic flow field. The reader may want
to try his hand at tracing one of the ray paths in a region of interest
such as near a leading edge. If so, i1t should be helpful to recall the
discuseion starting with Equation {7), through the difference equations
of the path, Equation (8), and to the end of that section. An analysis
of the differential equation of the path, Equation (24) should also be
helpful. These show, for instance, that where the Mach number is constant
the curvature of the ray path is zero; for a given Mach number and slope
of ray path the curvature is proportional to rate of change of Mach number
along the path., Figures 6, 7, 9, and 10 conclusively show that when the
varistion in Mach number is parabolic in the chordwise and spanwise direc-
tions focel pointsexist, both in subsonic and supereonic portions of the
flow. None of the present theories accounts for the corresponding multiple
crossings of the acoustic wave front. Figures 9 and 12 show accustic
eignals traveling from regions of supersonic flow to regions of subsonie
flow., This can occur, of course, only when the sonic line is swept dowm-
stream., Figures 9 and 12 alsoc show rays that have been trapped on the Mach
wave, travel outward to the sonic line where the spanwise slope of the ray
path becomes zero, and are cancelied there. A study of the ray paths that
cross the leading edge shows that in practicael applications it is correct
to assume they do not return.

These results permit the formulaticon of a numerical procedure. A box
method is outlined in Appendix III. It establishes velocity potentials at
all bhox centers on an serodynamic surface and the corresponding generalized
forces.
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CONCLUBIONRS AND RECOMMENDATIONS

w0 methods have been outlined in detail, and one of them has been
completely mechanized for calculating the velocity potentials along
acoustic ray paths emanating from any point in a non-uniform transonic
flow field over a lifting surface. The one mechanigxed gives the ray
path and velocity potential for the minimm time of travel from the
source point to the field point.

To calculate pressures over the planform and generalized forces, it
will be necessary to develop a procedure for calculating the veloclty
potential at an arbitrary point due to a sheet of sources, covering the
ving surface, and the flow field in the plane of the wing out to a dis-
tance of several wing spans in the y-direction, or due to a sheet of
doublets covering the wing surface. The latter is recommended for economy
reasons.

The computer program in this report may be used to refine the doublet
box method of Rodemich (3) in such a vay as to include the (possibly very
important) influence of wing thickness distribution on transonic airloads.
A doublet box method similar to the one Rodemich developed (Reference 3)
is recommended. The procedure is heuristically described in Appendix TII.
For each of a selected set of points in a sending box, the distribution of
velocity potentials along ray lines throughout the zone of influence can
be determined. An interpolation scheme will yield from these the velocity
potentials at box centers and a numerical integration procedure will yleld
a velocity potentia) influence coefficient for each of the box centers,

It will be necessary to solve a set of simultaneous equations to esteblish
the strengths of doublets required to satisfy the tangential flowv condition
in the subsonic flow region. The order of the set will be equal to the
number of box centers in the subsonic region on the wing. In the super-
sonic region the doublet strengths can be established sequentially. The
use of doublets to solve unsteady supersonic flow problems has been out-
lined by Ashley in Reference 7.

It 18 recommended that this method be fully developed for the pur-
pose of calculating generalized forces on wings in harmonic motion at
transonic speeds. A computer program that would predict, wvith reasonable
accuracy, the flutter characteristics and unsteady aerodynamic loadse on a
ving responding to externally applied forces, such as gusts, would fil1l1 an
important gap in available technology.
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J1BFTC MAIN
FORTRAN PROGRAM TO COMPUTE (AND PLOT) THE PATHS OF ACOQUSTIC SIG - SNICODiIO
NALS (AND TRANSHISSION TIMES) ON AN AIRFOIL IN A SONIC FLOW FIELD,SNICDOLS
ACCOUNTING FOR VARIATION IN LOCAL MACH NUMBER.

NN ODOODO NN AN NN OHAOAOONDAOANNANO

CH =

APPENDIX I.

500

COEFFICIENTS OF MACH EQUATION.

Program Listings

(SEE SUBROUTINE FMACH )

PLX AND PLY ARE CONSTANTS DESCRIBING THE PLANFORM GEOMETRY.

THE PROGSRAM ALLOWS FOR EITHER X OR Y TO BE THE INDEPENDENT VARIA-

BLE, DEPENDING ON THE CURRENT VALUE OF X-PRIME, WHICH SETS IVAR.
IF IVAR = 1,

YY = CURRENT VALUE OF X

DYY= CURRENT VALUE OF DX

XX (1)= CURRENT VALUE OF Y-PRIME

X% (2)
xXx (3
xXx(4)
Dxx(1)=
Dxxt2)=
Dxx (M=
Dxx(4)=

IVAR 15
PASS

WORK
IFvOD
IFYD

sX =

CURRENT VALUE OF Y
CURRENT VALUE OF TIME
CURRENT VALUE OF R-BAR
Y-DOUBLE FRIME

CURR. VALUVE OF Y-PRIME
CURR. VALUE OF DT/DX
CURRENT VALUE CF DR/DX

CRIGINALLY SET IN MAIN

THROUGH SUEROUTINE CNTRL.

IF IVAR = 2,
YY = CURRENT VALUE OF Y
OYY= CURRENT VALUE OF DY

XX {1)= CURRENT VALUE OF X-PRIME

xx(2)
Xx(¢3)
XX {4)
Dxx (1)
Oxx(2)=
DXx(3)=
Dxx(4)=

PROGRAM,

WORKING AREA FOR SUBROUTINE RKS3 .
FALSE AND IDKP= TRUE FOR VARIABLE INTERVAL.
TRUE FOR FIXED INTERVAL.

CURRENT VALUE OF X
CURRENT VALUE OF TIME
CURRENT VALUE OF R-BAR
X-DOVBLE PRIME

CURR. VALUE OF X-PRIME
CURR. VALUE OF DT/DY
CURRENT YALUE OF DR/DY

AND THEN RESET ON EACH

VECTOR CONTAINING COMPUTED X- VALUES,

SXP = VECTOR CONTAINING COMPUTED  X-PRIME VALUES.
SY CONTAINS COMPUTED Y VALLES
SYP CONTAINS COMPUTED R-BAR VALUES

TIM CONTAINS TRANSMISSION TIMES.
CURRENT MACH NUMBER

FM =

ISORS
I5FROS
1S0RS
IBR = 1
HCNT 18
= NMAX,

"wonoun

-1 DEFINES A SUPERSONIC SOURCE, RECEDING PATH.
O CEFINES A SUPERSONIC SOURCE, ADVANCING PATH.
1 CEFINES A SUBSONIC SOQURCE,

FOR RIGHT BRANCH,

2 FOR LEFTY
THE COUNTER FOR THE VECTORS SX,5Y,SxP,SYP,TIM.

INTEGRATION STOPS, AND THE FLOW PASSES TO NEXT PATH
ITRAP =1 INDICATES SIGNAL IS TRAPPED ON THE LOCAL MACH CONE,
DZ 15 INITIAL VALVE OF INCREMENT.
CINF = REMOTE SPEED OF S50UND IN ROOT CHORDS PER SECOND.
FMINF= REMOTE MACH NUMBER

“POTE - THE POTE MATRIX CONTAINS THE VELOCITY POTENTIALS ALONG A

RAY PATH, NORMALIZED ON BO .

FRE@ =ASSUMED FREQUENCIES IN RADIANS PER SECOND,

EXTERNAL
COMMON

DERIV, CNTRL

#/WORK/ WORK (30D}

SNICoOOoS

SNIC0020
SNICoO2s
SNICO030
SNICOOD3S
SNICOD40
SNICOD45
SNICOO50
SNICDO5S
SNI1CO061
SNICD065
SNICDO70
SNICOOTS
SNICO0os0
SNICO08s
SNICOD30
SNICOD9S
SNICO100
SNI1C0103
SNICU110
SNICD115
SNICO0120
SNICD125
SNIC0130
SNICO135
SNIC0140
SNICO145
SN1COi1%0
SNICO1%%
SNICO0160
SNICD165
SNICO17D
SNICO17S
SNICO180
SNICO185

WHEN NCNTSNICO190

SNICO195
SNICp200
SN1COo205
SNicoz10
SNICO215
SN1CD220
SNI1CD225
SNICD230
SNICO235
SNICD240
SNICD245%
SNICO2%50



icoo
1010
1020

*/XYZ/ SX{104) ,3XP (101),5Y(101),5YP (101) ,AL(41),TIM{1DY)
#/XDX/ XX (4) ,DXx(4),YY,DYY,DZ

*/CM/ CM(6}

*/TABLE/ ATABL (4) ,RTABL (4}

*/PL/ PLX(8),PLY(8)

*/ICHT/ IVAR,NCNT,ISORS, IBR, ITRAP,NMAX
*/SQURCE/ X0(20) ,Y0(20)

*/EPS/ E1,E2,FM, YMAX

*/NNN/ NSS,NLCS,NLLS

*x/ECM/ ECM

*/C4/ CHZ(T)

FCRMAT(2L12 )

FORMAT(6E12.8)

FORMAT(E6I12 }

READ (5,1020) NSORCE,NLA,NPL,NMAX ,NF
READ (5,1000) IFVD,IBKP

READ (5,1010) (XO(I},Y0(I),I=1,NSORCE)
READ (5,101D) {(CM(I),1=1,6)

READ (5,1013) DZ,Ef,EZ2, YMAX

READ (%5,1010) (ATABL (1) ,1=1,4),(RTABL(I),I=1,4 )
READ (5,101 (PLX{(D),PLY{I),I=1,NPL )
READ (5,1010) CINF,FMINF,TAU,TSAA

TAU=MAX. (T/C), TSAA = TANGENT OF SEMI-APEX ANGLE
DIMENSION FREQ(:0), POTE(101,2,10)
READ (5,1010) (FREQA{I),I=1,NF )

DIMENSION XSO(40},YSO(4D)

EXM = CINF#SQRT (5.0+FMINF#*%2)
ECM=1.0/ECMH

CALL SONK (40,NXY, YMAX,YS0,XS0,IER )
FORMAT (49HO ERROR IN SUBROUTINE SONIC. CHECK MACH CONSTANTS )
O T0 (1,2), IER

WRITE (6,2000)

CONTINVE

NYAR =4

NVAR 15 THE NUMBER OF VARIABLES
€M21(1) =0.3

CM2(2) =0.7

CM21(3) =ATAN(1./TSAA)

CM2(4) =TAU
CH2(5) =1.18%TSAA
CM2(6) =.04

CMZ{T)=FMINF

DEVELOP LAMDAS

NL=2#% (NLA/2)

THERE WILL ACTUALLY BE NL VALUES. IF NLA IS EVEN,NL=NLA., BUT NL=
NLA - 1 IF NLA 18 ODD.

NL3zNL-3

35

SNICD255
SNICO260
SNICG265
SNICDZ270
SNICO275
SNICDz80
SNICO285
SNI1CO0290
SN1CO295
SNICO300
SNICO305
SNICD310
SNICO315
SNI1COo320
SN1CO325
SNICO330
SNICO335
SNIC0340
SNICO345
SNICO3S0
SNICO35S
SNICD360
SNICD365
SNICD370
SNICD37S
SNICO380
SNICO385
SNICO3350
SNICO395
SNICD400
SNIC0405
SNICO410
SNICO415
SNICD420
SNIC0425
SNICO430
SNICG43S
SNICO440
SNICD4453
SNICD450
SNICD455
SNICD460
SNICD46S
SNICD4TO
SNICO4T2
$1.C0473
SNICO480
SNICD485
SNIC0490
SNIC0493



io0

13
12

ia
13
20

22

30

31
32
34
36

NL2 =NL/2

XN= NLZ2#%(NLZ+1)
Dtz 6,28318/XN

AL {1} =0.

o 1o J=3;NL1.2

X = (J-1)72

J1 =.J-1

AL (1) =AL (J-2) +X J¥D6
ALtJ1)=-AL ()}
AL(NL)= 3.14159
SET UP GRID LIMITS
xu=a.

XL=g.

YL=-YMAX

YR = YMAX

CALL LIMITI{YL,YR,XL,xu}

DO 60D N$=1,NSORCE
NSS = N3

CALL GRAPH(1,42,-NPL,PLY,PLX,2H Y,2H X,35H ACOUSTIC PATHS )

XOF =XO (NS)
YOF =YO (NS)

NLLS = NL

DO 50D NLC=4,NL
NLCS = NLC
ITRAF = O

CALL FMACH (XOF ,YOF ,FM,FMX,FMY )
TEST1 =FM - COS{AL{NLC))

TESTZ = SIN(AL(NLC))

IF(NLC .NE. NL )} GO TO 13}
IF (YOF .GT. 0.} GO TO 1}

TEST2 = -TEST2

IF (NLC-3) 14,12,14
IVAR=1

GO TO 30

IF(NLC-NL) 18,12,18
IF(TESTL) 22,20,22
IVAR=2

¢O 1O 30

TESY = TESTI/TESTZ
ART = ABS(TEST}

lF ‘ART".D, 20. 12. 12
CONTINUE

SET IBR

FL=zAL (NLC)
IF(NLC~-1) 32,34,32
IF(YOF) 41,41,42
IF(NLC-NL) 36,34,36
IF(YOF) 42,4]1,41
IF(FL) 42,42,42

SNICO500
SNICD505
SNICD510D
SNICO5tS
SNICD520
SNI1CO52%
SNICO530
SNICD535
SNICO540
SNICO545
SNICOS50
SNICDS53
SNICO5S60
SNICD565
SNICO570
SNICOS7S
SNICODS80
SNICD585
SNIC0590
SNICO595
SNICOsD0
SNICOs05
SNICOs10
SNICD61S
SNICD620
SNICOs25
SNICD&3D
SNICD63S
SNICO640
SNICOG45
SNICOs50
SNICO555
SNICOs6D
SNICDG66S
SNiCDeT O
SNICD6TS
SNICOs8B0
SNICO68S
SN1CO6e90
SNICDE9S
SNICO700
SNICO703
SNICOT10
SNICOT1S
SNICOT20
SNICO728
SNICG730
SNICOT3S
SNICOT4D
SNICO749



41

42
30

51
52
53
55
54
58
60
64
68

70

80

a1

82
83

20

9

92
93

1BR=1

¢0 TO 50

IBR=2

CONTINUE

SET [S0RS

C5L =COS({FL)

RM=1,0/FM

IF(FM~1.0} 60,51,51

IF ({(FM-1.0)-E2) 52,52,58
GO TO (53,54),1VAR

YPR =TESTZ2/TEST!

TST= 1,0-YPREX2%X(FHARZ - 1,0)
IF(TST-EL1} 500,500,58
XPR = TESTL1/TEST2

18T= XPR¥%22-(FM#%2-1,0)
GO TO 53

IF (CSL-RM) 68,68,64
1SORS=1

GO TO 70

150RS= -4

« TO 70

ISORS = O

NCNT=3
GO TO (80,90),IVAR
IF IVAR=1,X 18 THE INDEPENDENT VARIABLE,

YY = XOF
IF(TEST1) 81,811,082
pYY=-pDZ

GO TO 83

pyy = pZ

XxX{t) = TEST2/TEST}
Xx{2)=yYoFf

Xx(3) = 0,

Xx(4) = D,

¢ TO 100

IF IVAR=2,Y IS THE INDEPENDENT VARIABLE.
YY = YOF

G0 TO (91,92),1BR
ory = D2

¢ 10 93

oyy = -p2

Xx{1) = TEST1/TEATZ2
xXx(2)= xoFf

xx¢3) = @0,

Xxi4) = 0.

SNICOYSD
SNICOTSS
SHICOT60
SNICOTeS
SNICOTTOD
SNICOoTTs
SNICIT80
SHICOTaS
SNICaT30
SNICOT9S
SNiCosg0
SNICOaoS
SHICOI30
SNICGHLS
sHiCoazo
SNICDA2S
SH1Co8s0
SM1C083S
SNIC0340
SNICOMS
S41CT250
$11C0ass
$%1Coa:0
EN1COA:S
ENICGATO
Litcosrs
541<0330
SHICGAAS
EH1CB30
SHICGAYS
SH1Ca330
ENTCU299
SN1CaI10
SNICONS
SNICO320
SNICO223
SHICGI3D
SNICOI3S
SN1CU%4D
SNICD943
SNICGI50
SNICO?5S
SNICO960
SNICO959
SNICO370
SNICO9TS
SNICD980

10D CALL RKS3 (DERIV,CNTRL,XX,DXX,ATABL RTABL ,WORK,YY,DYY,NVAR,IFVvD,IBSNICO98S

1070

1KP ,NTRY,IERR )
FORMAT(1H1,30X,43H IVAR  NONT ISORS

37

SN1CO%%0
18R ITRAP  NLCS = ) SNICO99S



<

<

<

igs8o

1060

103

FORMAT(1MO,27X, 617 )
WRITE (6,1070)
WRITE (6,3080) IVAR,NCNT,ISORS,!BR,ITRAP,NLCS

FORMAT(22H ERROR IN RKS3, IERR = 14 )
IF(IERRY 103,540,103

WRITE(6,1060) IERR

¢ TO 500 '

SNIC1000
SNIC1005
SNIC1040
SNIC10158
SNICi1020
SNIC1D25
SNIC1030
SNIC1035

1050 FORMAT(1H-,42X,4HX0 = E16,8/ 43X,4HYQO = £16,8/ 43X, 10HMACH NO. = ESNIC1040
116.8/7 23x,31H ACOUSTIC RAY PATH FOR LAMBDA = E16.8///71TX ) 1HX, 17X, SNIC1045

1040
140

1IHY 34X, THX-PRIME, 11X, THR-BAR ,12X,4HTIME// )

FORMAT(IH 7x,5E18.8)

WRITE(6,1050) XO(NS),YO(NS) ,FM,FL _

WRITE(6,1040) (SX{1),5Y(1),S5xP(1),SYP{I),TIM(I),I=1,NCNT )

CALL GRAPH (D,KLC,-NCNT,SY,S5X )
CALL POT (NF,FREQ,POTE }

SNIC105D
SNIC1055
SNICi1060
SNIC1065
SNICiO7D
SNIC1078
SNICiDsO
SNIC1085

1100 FORMAT{1H!,25%,54H VELOCITY POTENTIALS ALONG A RAY PATH FOR A SOURSNIC1090

1CE AT )

SNIC1D95

1130 FORMAT({IH-,42%,4MX0 = E16,8/43X, 4HYO = E16.8/ 43X, BHLAMBDA = E16SNICS100

13120
1020

200

300
500
600

1.8 /739X, 30HALTERHATING REAL AND IMAGINARY )
FORMAT (iH-,6X,THOMEGA =€16.8// )
FORMAT(1H 6X,6E16,.86)

DO 300 Nzi,NF

IFIN .NE. 1) GO TO 200

WRITE (6,1100)

WRITE (6,1110) XO(NS),YO(NS),FL
WRITE (6,3120 ) FREQ(N)

WRITE (6,1090) {({ POTE(1,K,N) ,X=1,2 ),1=1,NCNT )
CONTINVE

CONTINUE

CONTINUE

o 10 3

END

SNICL105
SNIC1110
SNIC1118%
SNIC1320
SNIC1125
SNIC1130
SNIC1135
SNIC1140
SNIC1145
SNIC1150
SNIC1155
SNIC1160
SNIC1165
SNIC1170
SNIC1178



$1BFT

i0

101

103

215

104

i1os
i1
12
13
is
i6

17.

is
91
92

€ DERI sDD

SUBROUTINE DERIV

COMMON
*x/XDX/ XX (4) ,0XX(4),YY,DYY,D2
*/CM/ CM(6)
¥/1CNT/ IVAR,NCNT,ISORS, IBR, I TRAP,NMAX
*/EFS/ E1,E2,FM, YMAX
*/NNN/ NS$,NLCS,NLLS
*/ECM/ ECM

6O TO(10,50), IVAR
X IS THE INDEPENDENT VARIABLE
CALL FMACH {YY, XX (2) ,FM,FMX,FMY )
=xx (1) -

DX (2) =R

B =FM#FM -1.0

TSI = 1,D-R¥R4B

A =FMXFM + 5.0

$A = SGRT(A)

IF(B) 103,103,101

BETA = SQRT(B)

IF(ITRAP .EQ. 1) GO TO 104
IF(1SORS .EQ. 1) GO TO 103

IF(TST .6T. €1) 6O TO 103

ITRAP = 1

GO TO 1Ds

IF(T8I .GE. 0. )} GO TO 245
ITRAP = 2

T8l = 0,

RAD = SART (TSI}

Dxx{4) = RAD

RAB= 1,0/ (A%B)

TM1=FM& (FME%2 + 13,0) /B

TH2= 2, O%FM& (FMR*248, D) RREK2
TH3= ( (RAD#53) /B) % (7, DAF M&%2+5, D)
TM4= (FH/A) %R% (6, D#R%%2 +1,0)
6O 1O 105

ROB = 1,0/ {Bkk2)

Oxx(4) = 0, o

IF (1SORS) 11,15,18

¢O TO (12,13),1BR

IF(ITRAP) 91,91,7

IF (ITRAP) 92,92,8

¢O TO(16,17),IBR

IF (ITRAP) 92,92,7

IF(ITRAP) 91,91,8

6o TO (92,91),18R

IF(R) 4,3,3

IF(R) 3,3,4

Y IS THE INDEPENDENT VARIABLE

39

SNIC1180
SNIC1185
SNIC13190
SNIC1195
SNIC1200
SNIC120%
SNIC1210
SNIC1215
SNIC1220
SNIC1225
SNIC1230
SNIC1235
SNIC1240
SNIC1245
SNIC1250
SNIC1253
SNIC1260
SNIC1265
SNIC1270
SNIC1275
SNIC1280
SNICi12685
SNIC1290
SNIC1295
SN1<31300
SNIC1305
SNICt310
SNIC1315
SNICi3z0

SNIC1325

SNIC133D
SNIC1335
SNIC1340
SNIC1343
SNIC1350
SNIC1355
SNIC1360
SNIC1365
SNICI37OD
SNI1C137T3
SNIC1380
SNIC1303
SNIC1390
SNIC1393
SNIC1400
SNI1Ct40%
SNIC1450
SNICS418
SNIC1420
SNIC1425



50

. 106

108

3414

109
110
52
54
56
60
62
64
69

220

209

CALL FMACH (XX (2),YY, FM,FMX,FMY )
R = XX(1)

Dxx {2} = R

B = FM¥FM-1.0

TSI = R+R-B

A= 5.D+FMEFM

SA = SART(A)

IF(B .LT. D. ) &O TO 1D
BETA = SQRT(B)

IF(ITRAP .EQ. 1) GO TO 109
IF(ISORS .EQ. 1) GO TO 108
IF(TSI .GT. E1) GO TO 1D8
ITRAP = 3

<O TO 109

IF(TSI .GE. D.) GO TO 107
Ts81=0.

ITRAP = 2

RAC = SQRT(TSI)

DxXxX (4} = RAD

RAB = 1.D/(A%B)
TM1=(FM/BY & (FMkx2+11,0) ¥R¥%x3
TH2= 2,04FMk(FM¥E2+8,0) %R
TH3= (RADXX3/B) % (7, QF Mk%2+5,0)
TH4 = {FM/A) k(R4¥2+6.0)

GO TO 110

DxX(4) = D.

IF (I1SORS) 52,60,68

¢o TO (54,56),IBR

IFCITRAP ) 1,21,5

IFUITRAP ) 2,2,6

GO TO (62,64) ,1BR

IFCITRAP ) 2,2,5

IFLITRA? ) 1,1,6

G0 TO (2,1),1BR

FORMULAS FOR THE SECOND DERIVS FOLLOW

IF (ABS(B) .LE. 1.E-03) 6O TO 220

DXX (1) ZRAB#(-TME + THZ - TMI)4FMY + TM4 *FNX
DXX (3) = (SAKECM/B) &k (FMAXX (1) +RAD)

¢o TO 100

IF(ABS(B) .GT. 1.E-03 ) GO TO 209

DXX (1) =(.5/A) % (2, $R&KI*R+D, /RIFFMY + (FM/A) # (R¥AZ46,) #FMX
DXX {3)=(1,224754ECH) #(R+ (1, /R))

¢o TO 100

DXX(3)= RAB#(-TM2+THZ+TM3) &FHY+THE & FHX

DXX (3)= (SARECH/E) # (FHAXX (1) ~RAD)

¢O TO 10D

IF(NLCS .EQ. NLLS) GO TO 4

DXX (1) RAB® (TMI-TH2 +TH3) SFHY ~TH4s FMX

Lo

SNIC1430
SNIC1435
SNIC1440
SNICS445
SNIC1450
SNIC1455
SNIC1460
ENJC1465
SNIC1470
SNIC1475
SNI1Ci1480
SNIC1485
SNIC1490
SNIC1495
SNIC1500
SNICis0S
SNIC1510
SNIC1515
SNICi520
SNIC31525
SNIC1530
SNIC153S
SNIC1540
SNIC1545
SNIC1550
SNIC1555
SNIC1560
S5NIC1565
SNIC157D
SNIC157S
SNIC1580
SNIC1385
SNIC1%90
SNIC1595
SNIC160D
SNIC1605
SNICi1610
SNIC1615
SNIC1620
SNIC162%
SNIC163Q
SNIC1635
SNIC1640
SNICIG45
SNICi650
SNIC1655
SNIC1660
SNICi166S5
SNIC167D
SNIC16TS



204

203

100

3

32

DXXU3)={SA*ECM/B) ¥ (FM + RAD)

¢0 TO 100
IF (ABS (B)

&T. 1.,E-03 ) GO TO 208
DXX(1)==(.B5/7A ¥ (9 4REK4+R%F242,)XFMY = (R/A) % (6, %R¥¥2+1,) &FMX

DXX(3)=(1.22475%ECH) % (] . +R¥R)

¢o TO 100 '
DXX (1)= RAB#(TM1-TMZ-TM3) #FHY-TMA% FMX

DXX 13) = (SAXECM/B) #{(FN - RAD)

60 TO 100

DXX(1)=FMk ((FMY/BETA) +FMX)
DXX {3} = (SAKECM/B)* FM ¥ XX (1)

G0 TO 100

DxX (1) =FME{{-FMY/BETA) +FMX )
DxX(3)= (SAXECM/B)¥FMEXX{1)

GO TO 100
DXX{1)= ~(FMMRBB) x(FMY+BETAKFMX )

OxXX(3)= (SA#ECM/B)&FM

¢o 10 100

DXX (1) SFM%EREB# {~FMY +EETARFMX)
DXX ()= (SA¥ECM/B)¥FM

L7 0.) GO TO 31
Oxx {3) = ABS(DXX(3))

IF(OYY

o T0 32

Dxxt3)
Cxx (4)
RETURN
END

- 1.0%x(ABS(DXX{3)))
-1.0%(ABS(DXX (4)))

k1

SNICi680
SNICi685
SNICi690
SNIC1695
SNIC1700
SNICiTOS
SNICIT10
SNIC1715
SNIC1T20
SNIC1T25
SNIC1730
SNIC1735
SNIC1740
SNIC1745
SNIC1750
SNIC1755
SNIC1760
SNIC1765
SNIC1TTOD
SNIC1773
SNIC1780
SNIC1785
SNIC1790
SNIC1795
SNIC1800
SNIC1805
SNIC1810



$1BFTC CONT sDp SNIC1815%

SUBROUTINE CNTRL (NTRY) SNIC1820
COMMON SNIC1028
®/XYZ/ SX(101),5XP (101),5Y(101),5YP (101) ,AL(41) ,TIM(101) SN1C1830
£/XDX7 XX(4) ,DXX{4),YY,DYY,D2 SNIC1835
£/CH/ CM(6) SNIC1840
#/1CNT/ TVAR,NCNT, 1SORS, IBR, ITRAP ,NMAX SNIC1845
#/EPS/ E1,E2,FM, YMAX SNIC1850
*/NNN/ NSS,NLCS,NLLS SNIC1855
IF(NCNT .NE. 1) GO TO 6 SNIC1860
NCO = 1 SNIC1865

IF (NR .EQ. 1) 6O TO 6 SNIC1870

NR = 1 SNIC187$

IF (ABS (DXX (1) *DYY )} LE. .25) GO TO 6 SNIC1880

4 DYY = .S#DYY SN1C18853
IF CABS (DXX (1) #DYY ) .LE. .25) GO TO 7 SNIC1890

¢o TO 4 SNIC1895

7 NTRY = & SNIC1900
RETURN SNIC1908

6 IF(ABS(XX(1)).LT. 1.0 ) GO TO 2D SNIC1910
1 NTRY =4 SNIC1915
6O TO (2,3),1VAR SNIC1920

2 IVAR=2 SNIC1925
o TO S SNIC1930

3 IVARS1 SNIC193%
¢ SWITCH VARTABLES,SET NEW INITIAL CONDITIONS SNIC1940
5 SAV =YY SNIC1945
DYY = DYY#XX (1) SNIC1950

10 YY = XX(2) SN1C1955
XX (1)=1,0/XX (1) SNIC1960

XX (2) =SAV SNIC1965
RETURN SNIC1970
20 60 TO (25,35) ,IVAR SNIC1975
¢ STORE CURRENT VALUES WHERE X 1S INDEPENDENT VARIABLE. SNIC1980
25 SX(NCNT) = YY SN1C1985
¢ CHANGE 1BR WHEN Y-PRIM PASSES THROUGH ZERO SNIC1990
IF (ABS (XX (1)) .GT. 1.0 E-02) ¢O TO 15 SNIC1995

IF ( (DXX (1) #DYY#XX (1)) .GE. 0.0) 6O TO 15 SN1C2000
IFINCO .£G. 2) 6O TO 18 . SN1C2005
NCO = 2 : SNIC2010

XX (1) =-XX (1) SNIC2D13
NTRY = 4 SNIC2020
¢o TO (131,12), IBR SNIC20253

11 18R =2 SNIC2030
6o TO 19 SNIC2D35

12 1BR = 1 SNIC2040
¢o 10 19 SN1C2045

15 IF(NCO NE. 2 ) GO TO 19 SNIC2D50
IF (ABS(XX (1)) .LT. 1.0 €-01) GO TO 19 SNIC2058
NCO = SNIC2060

b2



19
2§

a7
28

35

50

53
52

53
60
70
80

105
100

110

1F (XX (1) .NE. 0.0 ) G0 TO 27
SXP (NCNT)= UNDEF

¢O TO 28

SXP (NCNT)= 1.0/XX (1}
SY{NCNT) = XX{2)

SYP (NCNT) =xX{4)
TIMINCNT) = XX(3)

60 TO 50

SX (NCNT) =xx (2)

TIM(NCNT) = XX(3)

SXP {NCNT) =XX (1)

SY{NCNT) =YY

SYP INCNT) = XX (4}
CONTINUE

NOW TEST FOR EXIT CONDITIONS
IF(ITRAP .NE. 2) GO TO 54
ITRAP = O

NCNT = NCNT - 1§

¢O TO 100

IFC(ITRAP) 60,60,52

TEST =FM-1.0

IF(TEST) 100,100,5%3

IF (TEST-E2 ) 1b0,100,60
IF (SX(NCNT)) 100,70,70
IF (SX{NCNT)-1.0) 80,100,100
AY SABS(SY (NCNT))

IF (NCNT-NMAX) 110,100,100
NTRY = 2

NR = 0

RETURN

NCNT = NCNT + |

RETURN

END

43

SNIC2065
SNIC2070
SNIC207s
SNIC2080
SNIC2085
SNIC2090
SNIC2095
SNIC2100
SNIC2105
SNIC2110
SNIC2115
SNIC2120
SNIC2125
SNIC2130
SNIC2135
SNIC2140
SNICZ2145
SNIC2150
SNIC2155
SNIC2160
SNIC2165
SNIC2:70
SNIC2175
SNi1c2180
SNIC2105
SNIC2190
SNIC219%
SNIC2200
SNIC2205
SNIC2210
SNIC2218
SNIC2220
ENIC2225
SNIC2230



$1BFTC MACH

c

100

120

200
300

MASTER SUBR., N, MX, MY
SUBROUTINE FMACH{FX,FY,FM5,FHXS,FHYS)

COMMON
*/C47 CMZ(T)

EQUIVALENCE (A,CM2(1)), (B,CM2(2)), (AL,CM2(3)),
* CM2(5)), (R1,CM2(6)) ,{FMINF,CM2(T))
AY=ABS(FY)

AYY = ABS {AK#FX)

IF(AY .LE. AYY) GO TO 200

SK = 1./ (SART(1,+AK¥AK))

T =(AY-AYY)XSK

CALL FMACL (FX,AYY,FMS,FMXS,FHYS)

CALL FMAC2 (FX,AY,A,B,AL,TAU,DIFM,DIMX ,DINY )
CALL FMACZ (FX,AYY,A,B,AL,TAU,D2FM,D2MX ,D2MY)

FMS = FM3 -0.64FMINF*(DIFM-D2FM)
FMXS= FMXS+FMYS*AK~0,64FMINF* (DIMX-DZMX ~AK*DZHY)
FMYS = -D.64FMINF2DIMYR(AY/FY)
IF (T .GE. Ri) GO TO 300

CALL FMAC1 (Fx,FY,;5M,SMX,SHY )
ARG =1,57079%T/R1

31 = SIN(ARG)

SMO = $1%81

FHS= (FMS-SMIkSMO + SM

FMXS$= (FMXS-5SMX) £SMO + SMX

FMYS= (FMYS-5SMY) £SMO +SMY

¢0 TO 300

CALL FMACI (FX,FY,FMS,FMXS,FMYS)
CONTINUE

RETURN

END

SNIC2235
SNIC2245
SNTC2240
SNIC2250D
SNIC2255
SNI1C2260
SNIC2265
SNIC2275
SNIC2280
SN1C2285
SNIC2290
SNIC2295
SNIC2300
SNIC2305
SN1C2310
SNIC2315
SNIC2320
SN1C2325
SNIC2330
SNIC2335
SNIC2340
SNIC2345
SNIC2350
SNIC23558
SNIC2360
SNIC2365
SNIC23T0
SNIC2375
SNIC2380
SNIC2385%
SNIC2390
SNIC2393



$IBFTC MAC2 SDD SNIC2400

<
<
c

20

30

SUBROUTINE FMACZ2(X,Y,A,8,AL,TAY,DELCP,DOXCP ,COYCP) SNIC2405

SNIC2410
SUBROUTINE COMPUTES DELTA CP SNIC2415

SNIC2420
€S= COS(AL) SNIC2425
CS1=1./7(SART(L1.+((1,-A}kk2) % {CSX%2))) SNIC2430
CS2=1./(SART(1.+((1.-B) *%x2) X (C5%%2))) SNIC2435
TA = SIN{AL} /CS SNIC2440
TAL1=(1.-A)*TA SNICZ2445
TA2=(1.-B)*%TA SNIC2450
EPS=TAU/ (2.43.141592T%A%CS) SNIC2435
EPSi= EPS¥CS/CSY SNIC2460
EPS2 = EPS*AXCS/(({1,-B)*C52) SNIC246S
EDS = 1.0 -~ EPS SNIC2470
EDS1 = £PS1 ¢+ 1.0 SNIC2473
EDS2 = EPS2 + 1.0 SNIC24580
S = ABS(X/TA) SNIC2485
812 {X~A) /TAL SNIC2490
82z (X~-B) /TAZ SNIC2495
Q1=ABS(Y-S) SNIC2500
Q2=ABS(Y+S) SN1C2505%
@3=AB3(Y-51) SNIC2510
Q4=ABS(Y+31) SNIC2515
G5 =ABS(Y-52) SNIC2520
46 =ABS(Y+32) SNIC252%
FAC =2,%C8/TA : SNIC2530
FAC1=2,.%CS1/TAS SNIC2533
FAC2=2,.%C52/TA2 SNIC2540
DEL =-FACKX{Q1srERS+Q2REP S-2 . XSKAEF S) SNIC2545
DOX==FACK{-1./{QI%XEDS) +1, /7 (@2%kcuS) -2, /7 (SAHEDS)) & EPS /TA SNIC2550
DDY =-FACK(1,/(QIAREDS) +1.,/ (Q2XFEDS)) * EPS SNIC2555S
IF (81) 10,10,5 SNIC2560
DELCP= DEL SNIC2565
poxce= DDX ' SNIC257D
pDoYCP= DDY SNIC2575
60 TO 50 SNJIC258D
DEL1=-FACI&{1./(Q32%EPS1) +1,/(Q4%%EPS]) -2,/ (S1¥4EPSL)) SN1C2585
DOX1=FACI*(-1,/(Q34&%EDS1) +1./ (QIXEDS) -2, 7 (S142EDS1)) #* EPSE /TAISNI1C2590
DDY1= FACI®(1./7(Q3%kEDSE) +1, /7 {R4R4EDSL)) * EPSH SNIC25958
IF (32) 20,20,30 SNIC2600
DELCP= DEL+ DEL1 SNIC2605
DDXCP= DDX+ DDX! SNIC2610
ppycP= DDY+ DDYI SNIC2615
¢O TO 30 SNI1C2620
DELZ2=-FACZ%(1./(Q54XEPS2) +1,/ (QAGKAEP§2) -2,/ (52%%EP32)) SHIC2625
DDX2=FAC2k(~1./(G5HREDS2) +1./7(Q6HAEDS2) -2. /7 (SISKEDS2)) % EPS2 /TA2SNIC2630
DDY2= FAC2¥(1./(QA5%4CDS2) +1,/(Q6%XEDS2)Y) * EPS2 SNIC2633
DELCP = DEL+ DEL3 + DEL2 SNIC2640
DDXCPs DDX+ DDXL + DOX2 SNIC2645

b5



SNI1C2650

poyce= DDY+ DDYL + DOY2
50 RETURN SN1C2655
END SNIC2660



$IBFTC MACH sDD SNIC2668

SUBROUTINE FMACL (FX,FY,FMS,FMX5,FMYS) SN1C2670

c SNIC2675
c SUBROUTINE COMPUTES MACH NO; MX, MY. SN1C2680
c Fx = x Fy = v SNIC2635
c FMS = MACH NO, FMXS= PARTIAL M W/RESP TO X SNIC2690
¢ FMYS= FARTIAL M W/RESP TO Y SNIC26958
€ E@. FOR MACH 15 M=CM(2) +EXP (-CH (1) %Yk2/X) ¥ (CM (3} kX +CM (4) £X%k%k2+ SNIC2700
¢ CM(S)RYREZ+CM (6) XY *kd ) SNICZTDS
COMMON SNIC2710

*/CM/7 CM{6) SNIC2715

< SNIczrzD
EGUIVALENCE SNIC2725

1 { C ,CM(L)), { FMO,CM{2)), (AL ,CM(3)), { A2 ,CM(4)),SNIC2730

2 (A3 ,CM(5)), { A4 ,CM(6)) SNIC2735
IF(FX .EQ. 0.y GO TO 5 SNIC2740

ARG ={-CHFY#%k2) /FX SNIC2745

ARG1 = - ABS({ARGI) SNIC2750D

IF (ABS({ARG!) .GE. 50.) GO TO § SNIC2755

ARGZ = ALRFX+AZHFXRED +ASHF Y2 +A44F Yhk4 SNIC2760

4 SNIC2765
ARG3 = AL+ 2. ¥ A24FX SNIC2770

ARG4 = 2,%A3XFY +4,%A4%FYik3 SNIC2775

EX = EXP (ARG1) SNIcC278n

¢o TO 10 SN1C2785

5 FMS = FMO SNIC2T90
FMXS = 0. SNIC2795

FMYS = 0. SNICzenn
RETURN SNIC2805

10 FMS = FMO +EX% ARG2 SNIC2810
FMXS5= EX%((~ARGL1/FX)% ARGZ +ARG3) SNIC2815

PAUL= -2.%C¥FY/FX SNIC2820

FMYS= EXk({ PAULXARGZ + ARG4) SN1C282s
RETURN SN1C2830

END SN1C2835

W7



$IBFTC SONI sDD

B N N N Nalaaaala s e

SUBROUTINE SONK (NM,NCR, YM,FY,FX,IER

Nd = MAX NO OF X,Y ALLOWED. MUST EQUAL DIMENSION OF X,Y, IN MAIN
NCR = NO OF X,Y ACTUALLY COMPUTED

YM = MAX. ALLOWABLE VALUE OF Y
FX = X-VALUES
FY = Y-VALUES

IER = 1t IS NORMAL RETURN
IER = 2 INDICATES AN ERROR

CM= MACH CONSTANTS IN THE EQUATION M=EXP (-CM{1)%Y*X2/X) ¥ (CM(3)*X
+CM (4)3XRX +CH (5) RYRY+CM (6) XYER4) +CM(2) .,
THE SUBROUTINE COMPUTES A SET OF X AND Y VALUES ON THE WING WHERE

M= 1

COMMON

*/CH/7 CM(6)

DIMENSION Fx (1) ,FY{1}
IER =%
=CM{1)

FMO=CM (2}

AL =CM(3)

A2 =CM(4}

A3 =CM(5)

A4 =CM(6)

FIRST COMPUTE X WHEN Y=D
ARG = ALE2 -4 .%A2%(FMO-1.)
IF(ARG .GE. 0.0} GO TO 2
IER = 2

RETURN
FX(1) =(.5/7A2)k(-A1+5QRT{ARG))
Fy(1) = 0.

IF(FX (1) .LT. 0.0) GO TO 1
IF(FX(1) .LT. 1.0) GO TO 4
FX(1)=(.5/A2)#{-A3-SART{ARC)})
IF(Fx(1) .LT. O0.0) 6O TO
IF(FXx (1) .GE. 1.0) GO TO §
NCR = 2

NCi= NCR - 3

FXINCR)= FX(NC1}+.01

X= FX(NCR)

R=C/X

B = Xk{AL+AZKX)

TO = FY(NC1)##2

TMI = A3-R4B

THZ = 2.%A4-R¥A)Y

THN3 = REA4

TH4 = 2,.¥A4+RE(R¥B-2,%A))
TMS = RE(REAI-4,%A4)

)

SN1C2840
SNIC2845
SN1C2850
SNIC2855
SNICZ2860
SNIC2865
SNIC2s70
SNIC2975
SNIC2880
SNIC2885
SNIC2890
SNIC2895
SNIC2300
SNIC2905
SNIC2910
SNIC2915
SNICZ920
SNIC2925%
SNIC2930
SNIC2935
SNIC2940
SNIC2945
SNIC2950
SNIC2955
SN1C2960
SNIC2965
SNIC2970
SNIC2973
SNIC2980
SN1C298%
SNIC2930
SNIC2995
SN1C3000
SN1C3a0s
SNIC3010
SNIC3015
SNIC3D20
SNIC3D25
SNIC3030
SNIC3D35
SNIC3040
SNIC3I045
SNIC3050
SNIC3055
SNIC3060
SNICIOD6S
SNIC3070
SNIC3O07S
SNIC3080
SNICI08S



12

14

1000 FORMAT(52HO COMPUTATION FOR SONIC LINE WILL NOT CONVERGE, HO = E

18

a0

TM6 = RxR¥A4
INAX =1
ET =EXP (-R%TO}

FT= ETR(B+A3XTO+A4%TOXTO) +FMO-1.

FPT =ETZ (TM1+TH2ETO-TMI#TO*%2)

FEPT SETH (TMA+TMSATO+TMERTOX*2)

HQO = -FT/FPT

IF ((FT#FPPT) .GE.

HO = ,T3%HO
TO =TO+HD
IMAX =1MAX +}

116.8 )

IF(IMAX .LT. 1D ) GO TO 18
WRITE (6,1000) HO

GO To 1

IF(HO .GT. .0001) GO TO 12
FYINCR)= SQRT{(TO)
IFINCR .GE. NM ) GO TO 20

IF(FY{(NCR) .GE.

YM) GO TO 20

0.0) 60 TO 14

IF (FX (NCR} .GE. 1.0) GO TO 20

NCR = NCR +}
¢O TO 1D
RETURN

END

49

SNIC3090
SNIC3D35
SNIC3100
SNIC3t05
SNIC3110
SNIC3115
SNIC3120
SNIC3125
SNIC3130
SNIC3135
SNIC314D
SNIC3145
SNIC3150
SNIC3155%
SNIC3160
SNIC3165
SNIC3170
SNIC3t75
SNIC3180
SNIC3185
SNIC3190
SNIC3195
SNIC3200
SNIC320%
SNIC3210



SI1BFT

10

12

14

i6

30

¢ POTE
SUBROUTINE POT (NFR,FR,P)
COMMON
*/XY2/ $X{108),SXP (101),5Y(101),5YP (101) ,AL (41) ,TIN(102)
*/7CM/ CM {6}
*/1CNT/ IVAR,NCNT, ISORS, IBR, ITRAP,NMAX
*/SOURCE/ XO(20),YO(20)
#/EPS/ E1,E2,FM,YMAX
#/NNN/ N$S,NLCS,NLLS

DIMENSION FRI(L10),P{101,2,10)
CON=-.25/3.14159

XS =XO(NSS)

Y3 =YO{NSS)

DO 3100 N=1,NCNT
X=5X (N}

Y=8Y (N}

T = TIMIN)

RBAR = SYP(N)

DO 30 NF=1,NFR
IF(RBAR) 12,14,16
P(N,1,NF})=D,
P{(N,2,NF)=D,

O TO 30

F {N,1,NF) =UNDEF

P {N;2,NF) =UNDEF

¢O TO 3o

IF(RBAR .LE. 1.E-9) GO TO 14
FACT = CON/RBAR

ARG = FR(NF)#T

€O = COS (ARG)

81 = SINLARG)
P(N,1,NF)= CONFACT
FIN,2,NF)= =SIXFACT
CONTINUVE

100 CONTINUE

RETURN
END
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JIBFTC RKS3Ix%

$IBFTC RKINT*

10

a0

3o

40

1

1

2

1

2

RUNGE -KUTTA,

FORTRAN IV,

YERSION 13,

SHARE D2%ATFRKS3

SUBROUTINE RKS3 (DERIV,CNTRL,Y,DY,ATABL,RTABL ,WORK,X,DX,N,IFVD
s IBKP NTRY, IERR)

EXTERNAL PERIV,CNTRL
INTEGER N,NTRY, IERR
LOZICAL IFYD, IBKP

REAL Y,DY,ATABL ,RTABL,X

10X

DIMENSION Y(N),DY(N),ATABL (N} ,RTABL (N)

DIMENSION WORK (1)
DIMENSION WORK (9%N+8)

CALL RKINT (DERIV,CNTRL,Y,DY,ATABL,RTABL ,WORK (1) ,WORK (3) ,WORK (5)

IWORK (7) ,WORK (9) ,WORK (2%N+9) ,WORK (4%N+9} ;WORK (64N +9)

RETURN
END

EXTERNAL BERIV,CNTRL
INTEGER N,NTRY, lIERR
LOG ICAL IFVD, IBKP

YWORK {T#N+9) ,WORK (8N+9) ,X,DX,N, IFVD, IBKP,NTRY IERR)

CALLED BY RKS3, RUNGE-KUTTA, F 4, V13, SHARE D2%ATFRKS3
SUBRQUTINE RKINT (DERIV,CNTRL,REALY,DY,ATABL,RTABL,DELTAX X, XHALF
1 XZERO, Y, YHALF, YZERO,DYHALF ,DYZERO,DELTAY, REALX

1DXyN, IFVD, 1BKP ;NTRY, IERR)

REAL REALY,DY,ATABL,RTABL,DELTAX,DYHALF ,DYZERO,DELTAY,REALX,DX
COUBLE PRECISION X XHALF XZERQ,Y;YHALF,YZERO

DIMENSION REALY(N) ,DY(N) ,ATABL (N} ,RTABL (N), Y (N) , YHALF (N) , YZERO(N)

+DYHALF (N) ,DYZERO(N) ,DELTAY (N)

IERR = O
DELTAX = DX

X = REALX

DO 2D I=1,N
¥Y{(I) = REALY(I)
CALL DERIY
GO TO 200
IF (DX .EQ.
DELTAX = DX
Dx2 = Dx/2.
Dx4 = DxX/4.
XZERO = X
0o 40 I=1,N
YZERQ(I) =
DYZERO(I) =
po 110 1=1,2
XHALF = X

X = X+Dx4
REALX = X

Yin
oycn

Do 50 I=1,N

DELTAY{I) = DY(l}#DX4
YHALF (I) = Y(I)
Y1) = Y(I)+DELTAYL(I)
REALY(D) 3 Y(I)

0.) 0 TO 230
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60

70

g

20
o0
110

120
130
140
150

160

7o

180

150

200

210

CALL DERIY

00 60 I=1,N

DELTAY(I) = DELTAY(I)}+DY(I)*DX2
Y{I) = YHALF(I)Y+DY(I)XDXx4
REALY(I) = Y(I)

CALL DERLY

X = XHALF+DXx?2

REALX = X

Do 70 I=1,N

DELTAY(1} = DELTAY{I}+DY(I)*DX2
Y{I) = YHALF(I)+DY({1)#DX2
REALY(I) = ¥(I)

CALL DERIV

oo 80 I=1,N

DELTAY(I}) = (DELTAY{(I)+DY(1}*Dx4)/3.
Y{I} = YHALF (1) +DELTAY(I)
REALY(I) = Y(I)

CALL DERIV

GO TO (90,1100,

Do 100 I=1,N

DYMALF{I} = DY(]}

CONT INUE

IF (IFVD) ¢O TO 200

ERRMAX = O

0O 120 I=1,N )

ERR = ATACL (1) +ABS(RTABL{I)*REALY(I))
IF {ERR .EQ. 0.} GO TO 221

SR = (DYZERO(I) +4 ,#DYHALF (1) +DY (1)) /3. 4Dx%2
ERRMAX = AMAX3 (ERRMAX,ABS (SR-(REALY(I)-SNGL(TZEROC(I)))) /ERR)
IF (ERRMAX-1.} 130,170,160

IF (ERRMAX-.75) 140,200,170

IF (ERRMAX-.075) 150,200,200

DX = DX%1.5845932

o TO 200

Dx = DX/1.5848932

IF (.NOT. IEKP) GO TO 180
ERRMAX = ERRMAX/10.

IF (ERRMAX .GT. 1.} GO TO 160
GO TO 180

DX = Dx/1.5848932

o TC 200

X = X2ERO

DO 190 I=1,N

Y{I} = YZERO(I)

DY(I) = DYZERO(])
GO TO 30
NTRY = 1

CALL CNTRL (NTRY)
¢o TO (30,210,180,30) ,NTRY
RETURN
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220 IERR =
RETURN

230 lERR =
RETURN
END

H
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APPENDIX III. Application to the Boundary Value Problem

A procedure that may be used to match the tangential flow condition
on a wing surface is, in principle, the same as that employed by
Rodemich in the box method for uniform sonic flow (Reference 3). The

velocity potential at a field point (x,y,2z) due to a doublet sheet in
its zone of influence, is

Bx,y,2) = S [ [ aB(e, Mg (x-,y-1,2)aean (39)
) |

vhere A9(2,7) is the velocity potential discontinuity through the doublet
sheet over the region 8§ + W (the surface and its wake), and

g, (x-2,y-1,2) = $ o108, (40)
na=l

were  Bad (002 + (1(x,3,2)] (-1 + £°]

and vhere N represents the number of times the wave front passes the
field point. In uniform subsonic flow N equals one, in uniform super-
sonilc flow it equals two, and in the limiting case of uniform sonic
flow it equals one. As discussed Previously, in uniform sonic flow the
stationary portion of the perturbation wave front is not augmented by
high frequency signals that follow it; instead, the pressure discon-
tinuity is dissipated by them.

When the local flow in a non-uniform flow field is sonic the wave
front gradually becomes stationary and is dissipated. Rays of this
type are shown in Figures 9, 12, and 13. In certain regions of non-
uniform flow a wave front may pass field points more than twice as shown
in Figures 6, 7, 9, 10, and 12. These regions may be in the region of
subsonic flow or in supersonic flow., Multiple crossings normally occur
on receding portions of the wave front. - Ray lines on advancing portions
normally pass over the trailing edge before they cross. In these
regions of multiple crossings of the wave front, care must be taken to
establish an accurate value of N, and of each of the corresponding gn's,
n=1,2, ... N. A computer program that may be used to do this is
contained herein. Figures ll and 13 show that in some regions of both
subsonic and supersonic flow even the receding ray lines do not cross.
All of Figures & through 13 show that once a ray crosses the transition
region at the edge of the planform it does not return to the wing
region. This characteristic is important because vhen a doublet solu-
tion is employed a ray trace can be ignored once it reaches an edge
that is not adjacent to the wake,.
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The next step in the procedure is to define a grid of square boxes
over the region 8 + W, and assume that AZ({%,T) is constant over the
area of each box. For this to be a valid assumption as many as 50 boxes
along the root chord may be required. The upwash adjacent to the upper
surface may be written

W(x,y,04) = Lan $Eatz)

Z={+

or,

re
J oW
Bi!Jl

ﬁ(xilyi)o*') -E Eillj L}
il.j ¥

¥(x -£,y,-n)aean (k1)

i.e., the upwash at (xi,yi) equals the sumation (over all boxes B:l.',j'

that influence it), of products of the constant veloeity potential dis-
continuities and their downwash influence coefficients. The latter are
represented by the double integral of the kernel y over the areas of the
boxes, The limits of integration and Af of Equation (39) are not
functions of z, so from Equation (40) we get

-j_ag
- 1 n
¥(x -®,5,-1) = slm 22 EE_— (k2)
z-O4 R
At this point it is theorized that for non-uniform flow around a nearly
planar surface the variation in signal transmission time with distance
normal to the surface is approximately equal to the variation in uniform
fiow, 1,e.,

%, 3 Mx-t) ¥ R
F.] 4 L} 1 c ( _1)

or, performing the differentiation
og

n 4z
En (43)
oz R

where the upper sign refers to the advancing portion of the wave front and
the lower sign to the receding portion. C is the speed of sound. Making
use of equation (43) when taking the derivative in equation (42).

2 —
*(xi-f,yi-'ﬂ) - %%.Lg;—iﬂ }__. e"’-"%n (m‘)
n

The gn's are those obtained by tracing ray paths through the non-uniform
flow field.
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One way in which Equation (44) may be evaluated and integrated ie as
follows: Say for nine values of (€,7) on each sending box, the values
of the kernel at the center ¢f the receiving box (xi,yd) are evaluated.

Since the ray paths are not known in advance, each of these values must
be interpolated from values in its neighborhood. It is then necessary
to evaluate the integral in Equation (¥1) given the values of the inte-
grand at nine points in the region of integration.

The unknowns in Equation (41) are the Zﬂi,J,'s. When the center of

oY J) lies in the subsonic flow region it lies in the
zone of influence of every other point in the subsonlic region and mey lie
in the zone of influence of a small portion of the supersonic region
(Figure 9). All velocity potentiale in zones of mutual influence must

be determined simaltaneously. O{nce velocity potentials have been es-
tablished that meet the tangential flow conditions on the surface and the
zero pressure difference condltion on the wake they may be fitted with
analytical expressions that have the proper edge behavior. Using these
expressions, local oscillatory pressures and generalized forces may be
cbtained in the way outlined in Reference 3.

a receiving box (x
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