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ABSTRACT

Eshelby, Read, and Shockley's theory of dislocations in an anisotropic
elastic continuum has been used to derive formulas not involving complex num-
bers for the stress components of straight dislocations in certain symmetry
directions. From these the dependence of stacking fault energy Ygon the ori-
entation of the Burgers vector and on the width of extended dislocations and
triple partial ribbons and the dependence of Yg on the radius of curvature of
extended nodes have been calculated. The results are rigorous for hexagonal
crystals and approximate for general directions in (111) planes of FCC crystals.
The theory is applied to graphite and close-packed metals. All three methods of
determining Yy for graphite yield results which are compatible with the value
0.6 £ 0,2 ergf;:m" . The rough estimate of error is based on uncertainties in the
elastic constants and differences in experimental results. The dependence of
width on depth from the stress-free surface has been calculated for an arbitrarily
oriented dislocation lying parallel to the surface of a semi-infinite isotropic body
and a 30° extended dislocation and a symmetrical, screw triple partial ribbon in
certain symmetry directions in an anisotropic plate. A procedure for correcting
the widths observed in electron microscopy of thin films is given.
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1. INTRODUCTION AND OBJECTIVES

This work arose from the immediate need of accurate formulas to use in
the interpretation of electron micrographs of dislocations in thin films of
graphite. That formulas for an isotropic material may not be even approxi-
mately correct for graphite is indicated by the anisotropy factor A = 2 cgzg /
(cn - c13), where the cj; are the elastic stiffness constants. For an isotropic
material one finds A =1, for many metals of cubic symmetry A= 3, but for
graphite A= 1/190., The source of this anisotropy is, of course, the weak
binding between layer planes,

Up to the present almost all theoretical work on dislocations has been
based on the linear elastic continuum theory of dislocations. A general method
for deriving the displacements of atoms and the components of the stress field
surrounding a straight dislocation in an infinite anisotropic crystal has been
deriv cgby Eshelby, Read, and Shockley(l) and extended by Foreman (?}and by
Stroh'*). This general method yields results in the form of a surn of terms of
complex (in the sense of N-T) quantities plus their complex conjugates., The
fir st objective of this work is to carry out for dislocations in the basal plane of
graphite the elementary but tedious rationalization of these expressions to
obtain formulas containing real quantities only. The results, presented in
Section 2, are applicable to dislocations in the basal plane of a hexagonal
crystal and for dislocations in certain directions in other crystal systems. In
Section 3, formulas previously given in the literature for the line energy of dis-
locations in symmetry directions are expressed in terms of the notation used in

this report. Nurnerical results are given for these dislocations in graphite and
several metals.

The second objective of this work is to use the stress components for the
anisotropic case to calculate by standard methods the dependence of stacking
fault energy on width of an extended dislocation, on width of a triple partial
ribbon, and on radius of curvature of an extended node, These formulas and a
tractable formula for the force between parallel dislocations in the orientations
mentioned above are presented in Section 4., Experimental values reported by
electron microscopists of dislocation widths and radii of curvature in graphite
have been used to obtain an estimate of the stacking fault energy of graphite,

The thickness of films used in electron microscopy is of the order of 1000 A,
which is about the same as the width of an extended dislocation in graphite. Since
the distance between partial dislocations is comparable to the distance from the
partials to the surface, it appears to be possible that the stress-free surfaces of
the film might considerably affect the width of an extended dislocation. The
third objective of this work is to calculate the variation in width of an extended
dislocation lying parallelto a plane, stress-free surface as a function of distance
of the dislocation from the surface. In Section 5 results are given for an
arbitrarily oriented dislocation in an isotropic solid with a plane surface and for
a 30° extended dislocation and a symmetiical, screw triple partial ribbon in an
anisotropic plate. The results are applied to graphite.

Manuscript releasedby author April 1962 for publication as an ASD Technical
Documentary Report.



The work reported herein forms a part of a broad and long range inves-
tigation of the theory of the mechanical properties of graphite, In antici-
pation of future needs, all the stress and displacement components have been
obtained, although only a few stress components were needed for the specific
applications mentioned above.

In some instances the application of dislocation theory to the mechanical
properties of graphite is the same as that for metals. Consequently, it is
occasionally desirable to compare a result for graphite with the corresponding
result for metals, particularly the close-packed metals. In order to do this,
the notation used in this work has been kept general, and certain results appli-
cable to metals but not to graphite have been obtained. This was necessary,
for example, in order to evaluate the effect of neglecting the Peierls force by
comparing the relation between stacking fault energy and dislocation width
derived here with other work in the literature on certain hexagonal close -packed
and face-centered cubic metals.

The main results are summarized in Section 6.

2. DISLLOCATIONS IN SYMMETRY DIRECTIONS

The formulas of the general theory for the components of displacement
and stress of a dislocation consist of a sum of products of complex numbers.
Their simple analytical form makesthese formulas useful for general theo-
retical applications; but the explicit dependence on the elastic constants and on
the coordinates is obscured by the complex number formalism. For certain
orientations of the coordinate system the final results can be expressed in terms
of real quantities in a way that is only slightly more complicated than the corre-
sponding formulas for an isotropic medium. The explicit dependence on the
elastic constants is also easily surveyed. In the first section the conditions on
the elastic constants are derived under which the general theory simplifies.
Next, the displacement and stress components and certain other related quanti-
ties are obtained for dislocations in the special symmetry directions, Finally,
the stress and displacement components of a screw dislocation in certain sym-
metry directions parallel to the surfaces of an anisotropic plate are obtained.

2.1, Derivation of Conditions on the Elastic Constants

Eshelby et al{!) and others (213,4) have pointed out that the general theory
of dislocations in anisotropic crystals becomes much simpler when the dis-
locations are along certain directions of high crystal symmetry. The usual
method of deriving the conditions under which the theory simplifies is to require
the vanishing of certain coefficients in an algebraic equation (the sixth degree
equation for p in Eshelby et al.'s paper). This procedure yields certain re-
strictions on the elastic constants ¢;. defined with respect to a set of Cartesian
coordinates with x, parallel to the ~ direction of the straight, infinitely long
dislocation. Undef these restrictions on the cj; one then finds that the screw
and edge components of the dislocation become ” completely independent in the

sense that the screw component us of the displacement from equilibrium depends



only on the screw component bs of the Burgers vector and the edge components
of displacement u; and u, depend only on the edge components b; and b, of the
Burgers vector. The following alternative derivation of the conditions for the
separation of edge and screw components may be of some interest in that it is
more direct and shows the necessity as well as the sufficiency of the restrictions
on the Cij*

The fundamental requirement of the general theory is that the elastic field
be independent of x3 ., Under this restriction the three equilibrium conditions on
the stresses T, reduce to

! 2

Z Bry /dx, =0 . (2.1.1)

k=1

Combining these with the stress-strain relations expressed in terms of derivatives
of the displacements u; yields three simultaneous second-order partial differ-
ential equations for the uj, One way of simplifying these equations is to impose
restrictions on the elastic constants which will uncouple one displacement com-
ponent from the other two. From the stress-strain relations one finds that 7y,
contains a term cgg (01, /0x, + O0u; / 9x;). Since cgg is always greater than zero, it
follows from (2.1, 1) that the first two equilibrium equations will always contain
uy; and vz . Therefore, the only possibility for uncoupling the displacements is to
eliminaté uy from the first two equilibrium equations and uy and v, from the third
equation. On carrying out the algebra one finds the restrictions cyy = cp = czq =
Cz5 = Cq46 = Cs6 = 0, already noted in the referencescited above. For convenience
of reference we will refer to a set of elastic constants for which at least these
six cij are zero as Type II constants, This analysis shows that the separation

of the elastic field of the dislocation into edge and screw components for Type

II constants results from an uncoupling of the fundamental equations of equilibri-
um and that this uncoupling can be done in only one way.

It has been pointed out by Eshelby (1) and by Foreman (2) that the algebraic
manipulations of the general theory for Type Il elastic constants become much
simpler when the only nonzero constants are cjy, Cizy, Ci3s €225 C23+ T334 Cads
css, and cg. A set of elastic constants for which these are the only nonzero ¢;;
will be denoted as Type I constants., Type I constants are a particularly simplé
case of Type II constants for which the sixth degree equation for p, referred to .
above, factors into one equation quadratic in p? and one equation quadratic in p.
The orientations of the coordinates x; with respect to crystallographic axes for
which the elastic constants are Type 1 or Il are given without derivation in
references (1) to (4), In the Appendix we outline a simple derivation of these
orientations.

Except for the Appendix, the remaining results of this work apply to Type I
elastic constants only,



2,2, Displacements, Stresses, and Related Quantities for Type I Elastic
Constants

2.2.1, Definitions of &;, C:, and C;*

For Type I elastic constants the formulas of the general theory for the
displacements, stresses, and related quantities can be put in a form which
does not contain complex numbers and which gives the explicit dependence on
the elastic constants. In order to present the final results in a compact form,
we introduce the following symbols:

&

2
c CyiCay = Cy3 = 2C4,C
/11,62: 11€22 ~ €33 12 66,53=P_5j. , (2.2.1)

by = €13Cz2 =~ Cy2Cp3 & = €11C23 ~C35€C3
4 = Fi ] 5 —
C11Cz2 - €32

. 2.2,2
Cuczz"clg ( )

If 2cgg = Nc11Cpp ~ €y, defined as Case 3 in Section 2.2.2,

6, = 26, =2 f:-:—; . (2.2.3)

The most important examples of Case 3 are all dislocations in isotropic
crystals and dislocations parallel to the ¢ axis in crystals of the hexagonal
system, For these examples

61=1, 62:2, a.nd 6321 H (2.2.4)
while for isotropic crystals only

- - __C12 -
84 =85 = e = v (2.2.5)

where

_ Ci2 _ : ' :
v= —Ad2__ - Poisson's Ratio. 2.2.6
cnnteg ( )

The &; are dimensionless real parameters that in part characterize the
anisoflropy of the crystal.



2
Let C, = C11C22 -C312

2T cyy (26,75, N2 (2.2.7)
C, = (cuu c55 )l/z /2w . (2.2.8)

From {(2.2.1)
28+ 8; = (Ncpicae - c12) (Weyp ez +C12 +2¢66) JC22 Co6 (2.2,9)

The stability c onditions for the elastic stiffness constants are in part that
each factor on the right-hand side be positive. Hence

26 +6, > 0, (2.2.10)
and C; and C; are always real positive constants., For Case 3

1
Cy =(ciycez -anz)/‘le(Cnsz)/z (2.2.11})

and for isotropic crystals

Cy = (cyf -c;f/4mcy, = G/27 (1 -v) (2.2,12)

CZ = (Cll - Ciz2 )/41T = G/ZTI’ ’ (ano 13)
where

G = {cy;; -cy2 }/2 = Shear Modulus. (2.2.14)

The C; have the dimensions of elastic stiffness constants and for anisotropic
material replace the quantities (2.2.12) and (2.2.13) which occur for
isotropic material,

Certain formulas obtain their simplest form in term3 of the quantities

* Cl 2 1/2
Cl = 46 = (CIICZZ - C12 )/81T61sz (261 +62) (2°2°15)
1
C 1
Cz* = 42 = (C“ Cag )/2 /817 . (202016)



For Case 3
%
Cy = (c11 co2 - 1)/ 16w ¢y ’ (2.2.17)

and for isctropic materials

Ct = (c - c.d)/16m ey = G/Bw (1 -v) (2.2.18)

CF = (cy - cyg)/ 16w = G/ 8 (2.2.19)

2.2.2. The P Aij’ Di’ Bij and di

The general theory of d1slocat10ns in anisotro 1c crystals has been given in
detail in the papers of Eshelby et al. ) and Stroh (3)and for brevity will not be
repeated here. The general theory contains a number of quantities defined
implicitly as the solutions of certain equations. For nonsymmetry directions of
the dislocation line these equations can only be solved numerically, but for Type
I elastic constants the explicit, analytical dependence on the elastic constants
and components b: of the Burgers vector can be obtained for the quantities de-
fined by Eshelby et al. and by Stroh. These new results are g1VEn below. The
inherent arbitrariness in the quantities! Aj; and Dj is fixed by using Stroh's
choice of his matrix elements L; ije Three cases must be considered; quantities
which are different for the three cases are given first, followed by those which
are the same for all three cases. Let the subscripts R and I denote the real and
imaginary parts of complex numbers and let the index f have the values 1, 2.
The following results are only applicable for Type I elastic constants.

Case 1: 26, < 6, or 2ces < (cn czz)llz e
Per = Ppr * - [63 (1P (03 - 48 :]1/2 (2.2.20)
Aqpr= 0 Ajpr = (a2 P+ cra/(en €22 - 1f) (2.2.21)
AZﬁR= 0 Azal = =(c1z Pﬁlz +ecy)/{cy ez - clg)pﬁI (2.2,22)
DBR = (-1)'3 {cyy €22 -¢122) by/2cy;, (6,2 -46 13)1/2 (2.2.23)

D1 = (-10P (cur ez -c12?) byl 2cy, (87 - 457 )1/2 P (2.2.24)

BI

This Aij is equal to the A(j)i of Eshelby et al.



1
Case 2: 261> & or 2ceg > (cucu)/z -C12

per = (1P 27 26y -5 )

-1 1/2
1:“3:[:2 (261 +63)
AjpRr = -(caz &2 * 2zl 2{cnczz -c12?)
AlﬁI = (-1)‘3_l cz2 (46,2 -6f )l/z [2{cyy czz -c12?)

- 1
A2[3R = (-1)'3 ' (c2z 6, -c32 W26y - ﬁz)lzlz(cnczz -c12%)

1
AZﬁI ={cas 6 + ca M2 & +8;) IZ/Z(Cu ca2 ~€12 2)

-1 1
DﬂR = (-UB (cr1c22 -c122) by/4cy, 6, (28 - 5z)lz
c11 €22 ~C12° r (-1)5261131
Dﬁl = 7. T; +b2]'
depy 6y (26, + 6,02 L (265 -5, 12
1
Case 3: 25y = 6, or 2c¢ce = {c11T2z) f2 -C1z

(2.2.25)

(2.2.26)

(2.2,27)

(2.2.28)

(2.2.29)

(2.2.30)

(2.2.31)

(2.2.32)

(2.2.33)

In this case. two of the p, are equal and the general theory for the other

quantities does not apply.l

Cases 1, 2, and 3

=0 =5
’ p31"’ 3

P3R
Ayz = Ag3 = Agy = Ay = 0

- - 1,
Agzg =0 Agyp = -1/{caucs)

(2.2.34)

(2.2.35)

(202& 36)



1.
D3R = 0 D3I = (C“(‘,ss) 2 b3/2 (202037)

-l
C, 0 0
1
B. = -1 2.2.38
[ Jk] 2T 0 6; Cy 0 ( )
-1

0 0 Cz

dl = ZTTCIbl dz = 2TT61_1 clbz d3 = ZTTCzb3 (2.2., 39)

Stroh's matrix elements L;; and M;j; are functions of the p;. The
expressions for the real and imaginary parts of these matrix elements can be
obtained so easily from Stroh's formulas and the formulas above for the p; that
the results need not be given here.

2.2.3. The Displacements uj

Outside the core of a dislocation the leading terms in the series expansions
of the components u; of the elastic displacements from equilibrium, due to a
dislocation along the x3 axis, can be expressed in terms of real quantities in
the following way:

- -1 2 2 2 2
u, = (27) " EJ.{(Ain D_jI + AijIDjR) In[ xf + ZPjR X1Xz2 +(pJ.R +ij s ]
- -1
+2 (Ain DjR AijI DjI) tan [pjl xz /{x) +ij X3 )]} tug {(2.2.40)

in which i, j take the values 1, 2, 3. The constants u i represent a uniform
translation of the entire lattice and are usually chosen to make the logarithmic
terms vanish at atomic distances and to locate the slip plane across which the
uj are discontinuous.

Although formulas (2.2,40) in conjunction with the results given above are
suitable for numerical computations, they do not readily reveal the dependence
of the u; on the elastic constants and Burgers vector. On substituting the
expressions given by (2.2.20) to {2.2.37) into {2.2.40), one obtains the
following results,



Case 1

2 2
N a-1 C22PaIt €12 b, 2, -1
uy —Z(l-l) dncy, (67 - 468)1T2 Py ln(xl"‘w&p(11 x3) + 2bytan pullexl +ug
a=

(2.2.41)

2 2
_ a-1 C12PgltCn 2 z_2 2b, -1
u; = Z;—l) 4‘??(:32 (622 _ 4612)1/2:[)(11 blln (xl +paIXZ) --}_;-;; tan pallexi -f-l.lo2

(2.2.42)

Case 2
2

1/z2
_ a-1 C11Cz2 - ‘3132 b {c11C;5) - Ciz b
“ 'Z {[(-1) Bwcyces (40L - 62)1/2 l+8ﬂ[°11¢zz(251+6z)]1r" 2

a=1

b
In[ x{ '("l)u(25l - 62)H2xy%, + 8, x£] +l: I;:-

(enez)'/24cy, (25,4 86,)1/ 25, +u
1/z 2 ol

a -1
HEN T encas (28 - 5,)] tan T (1) (26, - 5 P,

(2.2.43)

T 8mcyy (26, + 6,)1/2 81 CppCeq (467 - §2)1/2

2
N 1fz _ Cel2
1

(ci11c )1/z+c
ln[xl?--(-1)“(261_52)1/2x1xz+ 61 x7] +[(' 1)° 4“;:;(!2261_62)1,212 by

(261'[‘ 6;“)1/2}{2
besgs

b
by -1 0
= ] tan o —(-1) {26, - 6,) P x, (2.2.44)

The formulas for Case 3 can be obtained from those of either Case 1 or Case 2
by a limiting procedure in which &, approaches 25, .



Case 3
b, [(Cucg)'/" -C1p

(cuce)/2+c xf
uy = FPRTRYID In(x?+ 6y xf) + % 12 %

2 (cyycz;)t/? C2z xf + 8y x7

by - (602 x, [(Cllczz)’/z+clz] 5.1/ xyx,
+ 5L [tan 2 4 ——L2— | 4ug,

= 2(‘311(322)11Z xi+ 6q %} {2.2.45)
e e [- (enea) 2o cpp In(xf+ 6y xH) + fey ng"lz"'czz xg 3 ]
s 2 (cpyc)t/? €22 xf +06yxf
+ tan~t At T2 11€22 12] V1 1Xz +u
ar ™ 2 (cpyeq) /2 x?+ 6, xf 02 (2.2.46)

In most applications of Case 3, c¢y; = ¢ and §; = 1, which considerably
simplifies {2.2.45) and (2.2.46).

Cases 1, 2, and 3

1
uz = (by/27) tan - B, 2 xa/x; + Ugq (2.2.47)

In order to get the well-known formulas for isotropic materials, set
6, = 63 = 1 and note that

2 XZZ = X3 - X.zz

xlz + xz?' xlz + XZ

(2.2.48)

2.2.4., The Stresses Tij

Unlike the displacements, the general formulas for the stress com-
ponents of a dislocation along the x3 axis simplify considerably on substituting
into the general formulas the values of the A;;, D:, and p, given by {2.2.20) to
(2.2.37). Furthermore, the results are vali& fol all thiee cases.

Cases 1, 2, and 3

711 - C! "ble[ (61+ 62)][12“" ﬁfx%] +ble (xf‘ -~ 61)(22) (2.2.49)
x].4+ 6zxf'X2z+6fo4

10



(byx; + byx,) (xf - 6y x7)

Tyz = 2.2.,50
12 xl“+ 62 xlz Xzz'l' 5,2_x34 ( )
-1
_ byx, (xf - & x2) +byxg [ 61 xf +(1+46,/6,) xf)
T22 = C (2.2.51)
xl4+ 62 xlzxzz+612xz4
bi63x%,
Tis = ~Ca 3206, x2 (2.2.52)
byx)
Tes = Ca 3200, x7 (2.2.53)
Ty = 84T +057 (2.2.54)

In the usual applications of Case 3, one has 2 6, = 6, = 263 = 2 and these
formulas reduce to the same functional form as the well-known stress com-
ponents in an isotropic material.

2.3. Screw Dislocation in an Anisotropic Flat Plate

For later applications we shall need the stress components of a straight
screw dislocation lying parallel to the stress-free surfaces of a flat plate of
infinite lateral extent. Let d be the thickness of the plate and a be the
distance of the dislocation line from one of the free surfaces. The coordi-
nate system is chosen as shown in Figure }. The stress and displacement
components of a dislocation in an
infinite medium must be modified to
make the stresses satisfy the boundary
conditions,

Y STRESS-FREE

Ty = 0, Tz = 0, T3 :O1
f 20301
DISLOCATION atx; = 0 and x, = -d , S

that the surfaces of the flat plate be
stress free. Leibfried and Dietze (%)
STRESS-FREE SURFACE have solved the corresponding problem
of a screw dislocation in a flat plate of
isotropic material. Their method was
to add infinite sequences of "image"
screw dislocations above and below the

Figure 1. Coordi.nate system plate. This method can also be applied
for a dislocation in a to the case of a {lat plate of an aniso-
flat plate. tropic crystal. We assume as always

that the orientation is such that the
elastic constants are of Type I.
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2,3.1, The Stress Components

For a screw dislocation the only nonvanishing stress components are
Ti3 and T33 . ¥ the dislocation line passes through the point {-a, 0, 0), then
by (2.2.52) and (2.2.53) these components in an infinite crystal are

oo b363x3
Ti3= -C; (x +a)?+ by x? (2.3.2)

and

o _ b (xy +a) 2.3.3
T23= Cg (x; +aye+o63xf ° { }

Leibfried and Dietze show that the surfaces can be made stress free by adding
infinite sequences of "image' dislocations along the positive and negative x;
axis. Using the same procedure for the case of Type I elastic constants, we
obtain

o

13 = T3z P32 (xg~a+2nd)2+8;xf (x3+a+2nd)?+ 6y xf
n= ~c
and
= %y +a+2nd _ x) ~a+2nd ] (2.3.5)
T3 = Czbs Z [(xﬂ a+2nd)?+dyxf (n-a+2nd)?+b;xf | ° *e
n= -

Summing these by the method of Leibfried and Dietze, we obtain

6 1/2c.b sizzh-|-rt'."3l/‘2d"l X3 sinh-n-!i:,,l/"'d"l X,
T 13 = —2 — 1/2 -1 -1 - 1723 1%, - cos wd-1 )
13 2d cosh851/2d 1x, -cos rd~Y{x;-a) coshwd, x, - cos rd " 1(x;+a)
{2.3.6)
and
wC,by sin rd™! (x; + a) _ sin wd~! (x; ~a) il
T23= 7 Zd | cosh 63 /2d x; -cos nd™! (x;+a) coshwb;/2d7 x;, -cosqpd H(x-a) |
(2.3.7)

It can directly be verified that these expressions satisfy the equations of equilib-
riurmm and the boundary conditions and represent a dislocation through the point
(-a, 0, 0). Unfortunately, this method cannot be used to find the stress compo-
nents of an edge dislocation in a thin plate,

12



2.3.2. The Displacements

The only nonzero displacement, u3, can be found by the same method used
to obtain the stress components, There results
o0

- b o 650k 8 %x |
uy = 2-‘-'—'.- tan X3 rat2nd tan m + u03 . (2.3-8)
n=-mo

As suggested by Leibfried and Dietze, we integrate (2.3.6) and (2.3,7), rather
than sum (2.3.8), to obtain

_ b -1 tanh w83/ 2x,/2d .1 tanh n8;1/2x,/2d | ,
Us = ﬁ[ta“ tanv(qta)/2d 2" Tanwlx -ai/ed | Fves - (2:3:9

This applies only to Type I elastic constants.

3. LINE ENERGY OF DISL.OCATIONS

In this section some results pertaining to the line energy of a dislocation
which have been previously given in the literature are reformulated in terms
of the present notation. Itis shown that as a consequence of the near-
isotropic nature of a (111) plane ina FCC crystala simple formula for the line
energy of dislocations along face diagonals is approximately valid for dis-
locations in arbitrary orientations in (111) planes. This result is important for
the estimation of stacking fault energies. Numerical results are given for the
line energies of dislocations in symmetry directions in cubic and hexagonal
crystals.

3.1. Analytical Results

The formula for the elastic energy per unit length of the stress field of a
straight dislocation contained within a cylinder of ocuter radius R and inner
radius r, was first obtained for Type I elastic constants by Foreman (2} by
another method. The formula is also obtained easily from Stroh's formula(56)
in reference (3} and the results (2.2.38) and {2.2.39) given in the preceding
section. For convenience of reference this formula for the elasticenergy per
unit length is given here in terms of the present notation. For Type I elastic
constants

U==[Cibf +(Cy/6)bf +C;bf] In R/xy (3.1.1)

For most dislocations of interest in cubic and hexagonal crystals this formula
can be put in the form!

U=KbllnR/ry, , (3.1.2)

! This K is equal to the K/4w of Foreman(?) and DeWit and Koehler“ ).

13



in which b is the magnitude of the Burgers vector and

K =

N'n—

[K +K . HK

-K 2a . 3.1.3
screw edge screw edge)cos ] ( )

where a is the angle between the Burgers vector and the dislocation line. The

explicit form of Kgcrew and Kedge for the common possible slip planes (the

plane containing the Burgers vector and dislocation line) is given in Table 1.
TABLE 1

ANALYTICAL LINE ENERGY FACTORS FOR DISLOCATIONS

Dislocation Slip K Formula
Direction Plane screw edge for cj;

Hexagonal Crystals

Basal Basal 2C* 2C* I.2.2
Prismatic 2CF L ¢ I.2.2
C Axis Prismatic 2C* 2C,* 1.2.1

Cubic Crystals

< 001> (hk 0) 2Cx* 2CF 1.2.3
<f10> (001) 2¢* 2C* 1.2.4
(110) 2¢c,F Lc, 1.2.4
(111) 2C*F 2C ¥ (1+26,)/3 1.2.4

The last column in the table indicates the formula in Appendix I which gives

the elastic constants with respect to the dislocation coordinate axes in terms
of the standard tabulated elastic constants. The K for dislocations other than
screw or edge are easily found from (3,1,3). For example, for a 30° partial
dislocation in the <110> direction in the {111} slip plane K = +(3K

1icX (1 +28 )3 +3CH.

screw * Kedge)=
F

3.2. Numerical Results

The numerical values of the energy factors K and K are given
screw edge

in Table 2 for several substances of hexagonal and cubic symmetry for the

14



TABLE 2

NUMERICAL LINE ENERGY FACTORS FOR DISLOCATIONS

Dislocation in Basal Plane

Dislocation along

e

Kedges b in Kedgev b 7 C AXiSK
Substance screw Basal Plane along <0001 > screw edge
Hexagonal Crystals!
Graphite 0.25 0.36 0.072 0.018 4.3
Be 1.17 1,23 1.32 1.29 1.15
Cd .220 .282 .188 . 161 . 404
Co . 583 .992 1.072 . 601 . 869
Mg .131 .195 .199 . 130 . 191
Zn . 395 . 442 . 275 . 309 .619
TiB, 1.49 2. 14 1.71 1.99 1.78
Dislocationalong <001> Dislocation along < 110>
X edge’ bin K Kedge’ bin Kedge' b in Kedge' b in
Substance screw (hk0) Plane screw (001) Plane {110) Plane (111)Plane
Cubic Crystals!
Ag 0. 367 0.332 0.211 0.420 0.376 0.391
Al . 225 .312 . 204 .324 .316 .319
Au .334 . 342 .198 . 421 .394 .403
Cu . 598 .502 .333 . 652 .570 . 597
Ni .979 .873 .615 1.077 . 946 . 990
Pb .115 . 096 . 058 . 130 L1117 .121
TiC 1.39 1.83 1.46 1.79 1.82 1.81

! Based on elastic constants given in Table 5. K in units of 10! dynes/cm?,

elastic stiffness constants given in Table 5 {(Appendix I}. The accuracy of the
results depends on the accuracy with which the elastic constants are known.
The values for Ag, Al, Au, Cu, and Mg are probably within *1 per cent; and
the remainder within £5 to 10 per cent, except for Be, graphite, and TiB;.
The values of the elastic constants of graphite are at present obtained by
indirect means whose accuracy is difficult to evaluate, but *25 per cent seems
reasonable,
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370'2 e 1 o Gl‘aphite

The results for graphite are consistent with a model of elastically rigid
Planes relatively weakly bound together. For convenience of reference we
shall use the following notation due to Fujita and Izuil'), An edge dislocation
in the direction of the ¢ axis is designated as Type 1, a screw dislocation
along the ¢ axis as Type 2, a dislocation with a basal slip plane as Type 3,
and an edge dislocation in the basal plane with Burgers vector perpendicular
to the basal plane (prismatic slip plane) as Type 4. The relative abundance
of each type is determined by the core energy, the elastic field energy, the
Peierls stress to move the dislocation in the crystal, and the nature of the
sources.

Type 3 dislocations should have the lowest core energy and Peierls
stress because no C-C bonds in the layer planes are broken for this type.
This is confirmed by the fact that Type 3 dislocations are by far the most
common type observed by electron microscopy even though their elastic field
energy U is roughly twice as great as that of Type 2 dislocations. Type 2
dislocations can be produced by a spiral growth mechanism and have been
observed by Tsuzuku (8}, Type 4 dislocations, possibly in conjunction with the
easily produced Type 3, also are produced by growth mechanisms either at the
edge of extra layer half planes, as observed by Fujita and Izui {7), or at con-
densed vacancy disks, as observed by Amelinckx and Delavignette '?), It is
not known at present whether Types 2 and 4 dislocations can be moved in the
crystal by external stresses, Since for a Type 1 dislocation the Peierls stress
and both the core and elastic field energy are high and the probability of for -
mation by growth is small, this type of dislocation should be very rare; and in
fact, it has not been definitely identified experimentally.

3.2.2, Metals

At the present time there is some interest in estimating stacking fault
energies in face-centered cubic metals from the radius of curvature of extended
dislocation nodes observed by thin-film electron microscopy. The formula,
discussed more fully in Section 4,4, relating these quantities contains the line
energy of the dislocation. The problem of practical interest is that of the line
energy of a partial dislocation arbitrarily oriented with respect to its fixed
Burgers vector; on the other hand, formula {3,1.2) solves the problem of a
dislocation line fixed in a certain direction with an arbitrarily oriented Burgers
vector. For an isotropic material and for dislocations with basal glide planes
in hexagonal crystals the two problems are equivalent and have the same
solution. Because of the pseudo-isotropic nature of a {111) plane in a cubic
crystal, the two problems should have almost equal solutions for dislocations
with (111) glide planes.,

Figure 2 shows the variation in K for the two problems of fixed Burgers
vector and of fixed dislocation line D as the angle a betweenband D is varied.
The solid curves are for a fixed Burgers vector in the <110> direction and a
variable orientation of the dislocation line in the (111) plane. The solid curve
for gold was computed numericallyby Foreman'2 ), that for lead by DeWit!é!,
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and that for copper both by Foreman

and by DeWit. The dotted curve is
L0 for a dislocation line in the <110>
direction and different Burgers vec-
tors in the (111) plane. Total dis-
locations occur ata = 0° and 60°,
and partial dislocations ata = 30°
and 90°, The dotted and solid curves
must coincide at the encircled points.
The dashed curves are for an iso-
tropic material with a shear modulus
equal to cyy and Poisson's ratio of 1/3.
The dotted and isotropic curves were
computed for the same elastic con-
stants used by Foreman and De Wit,
The maximum difference between the
dotted and solid curves is less than
4 per cent; which is probably less
than the error in U caused by neg-
lecting the variation in core energy
with orientation. The considerable
improvement over the values given
by isotropic theory is apparent.

K (10" DYNE/CM2)

Physically, the near isotropic
nature of the (111) plane is indicated
by the invariance of the velocity of
the longitudinal and both transverse

o : l 1 l L 0 sound waves as the direction of

a (DEG) propagation in a (111) plane is rotated

about an axis perpendicular to that

N-2253 plane. Mathematically, the near

Figure 2. Variation of line energy isotropy follows from the behavior of
factor K with angle a be - the elastic constants with respect to a
tween dislocation and coordinate system with x; in, say, the

Burgers vector for (111) <11I> direction as x; and x3 are ro-

slip plane. tated in the (111) plane about x; . It

can be shown that the only elastic con-

stants which vary are the off -diagonal

coupling constants cz5, Ca6 C3, C36»
Cq5, and cq¢. We would not expect the elastic energy to depend strongly on these
constants, and in addition, these constants are numerically small (typically,
1/5) compared to ¢,; . Therefore the curves of K versus a for fixed b and for
fixed D should never vary by more than a few per cent.

Several substances have been included in Table 2 only for purposes of
comparison., It is seen that only in graphite is there any large variation in K;
and that the elastic line energy of dislocations with basal slip plane in graphite
is comparable to that for similar dislocations in Cd and Zn.
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4. FORCE BETWEEN DISLOCATIONS AND STACKING FAULT ENERGY

In this section we obtain the specialized form of the formula for the
force of interaction between two parallel partial dislocations in an infinite
crystal for which the elastic constants are of Type I. These are used to
derive the relations between stacking fault energy and widths of extended
dislocations and widths of triple partial ribbons. Finally, the relation be-

tween stacking fault energy and radius of curvature of an extended node is
obtained.

4,1. Force Between Two Parallel Dislocations

Peach and Koehler's {(1%) formula for the force per unit length on a dis-

location due to its interaction with an external stress field Tij is

f=(b-TIxv , (4. 1.1)
where v is a unit vector in the direction of the dislocation segment.

4.1.1, Arbitrary Burgers Vector and Position

Consider two parallel dislocations D and D' with D along the x; axis
and D' passing through the point (x;, x; 0). Let b be the Burgers vector of
D and b' that of D'. According to (4.1.1) the components of the force per
unit length on D' due to its interaction with D are

3

fy = Z,"'Zibi's f, = “Z"lib‘i' and f; = 0 , (4.1.2)
i=1 i=1

in which 7;; are the stress components of D. Substituting (2.2.49) to {2.2.53)
for the Tij we get for Type I elastic constants,

i =l byby x; + {byby + byby } %,] (Xf - 83%2) + byby %y [ 6722 + (1 + 5,/ 8y) 2]

xj, + 62}(1 X‘ + 61 x&

]
+ G, };——’f——;’:‘? (4,1.3)
and
f = [(b!bz +bzb1)x1+bzb2 %3] (- x{ +61x¢)+b1b1 %y [ (84 8)xf+ ﬁfxzz]
4 O,xfnt + 68t
byby' 5%, (4.1.4)

Cz XI?'+ 63]{2
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4.1.2. Partials of an kxtended Dislocation in lHexapgonal Crystals

Consider a straight, extended dislocation in the basal plane of a hexa-
gonal crystal. If the x; axis istaken to be perpendicular to the basal plane,
then the elastic constants are of Type 1. lL.et a be the angle between the
total Burgers vector and the dislocation line and b_ be the magnitude of the
Burgers vector of a partial dislocation, as indicated in Figure 3.

If ais
P :
a T at30° D Xy
30° b W
total b
30° l P q330°
a0
I, ’DT
fxz P
N-1568
Figure 3. Schematic drawing of an extended dislocation in the x, xy planc.

the length of the fundamental lattice vector in the basal plane, then bp =
a/N3. From {(4.1.2), {(4.1.3), and {(4.1.4) we find, for the components of the

force per unit length on D' due to its interaction with D at a separation
w, fl' = 0, f3' = 0, and

% ¥ % *
f, =b [Cy +Cy 1+ 2{Cy -Cy Ycos2a] w™l . (4.1.5)

The cij to be used are expressed in terms of the standard, tabulated elastic
constants by formula (I.2.2).

4.1.,3. Partials of an Extended Dislocation in FCC Crystals

Consider a straight, extended dislocation in the <110> direction in a
face-centered cubic crystal. If the x; axis is taken in the <001> direction and
the x, axis in the <110> direction, then the eclastic constants are of Type L.
Let o be the angle between the dislocation line and the total Burgers vector
in the (111) slip plane. If a is the length of the fundamental lattice vector
along a cube edge, then the magnitude of the Burgers vector of a partial dis-

location is b_ = a/~B. From Figure 4 we see that the partial dislocation D!
passes through the point

Xp = - NZI3 w, xz=w/~N3, x3=0 . (4.1.6)
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Orientation of an Extended
Dislocation in the (111)
Plane,

The components of the Burgers vectors of D and D' are

by = - mbpsin(ui 30°) by = -NZT3 by, sin(a¥ 30°)
b, (bp/\rg)sin(ud:30°) b, (bp/\r3)sin(u-;30°) (4,1, 7)
b, bpcoa(u:l: 30°) by

1
1}

It

b_cos{a ¥30°)
P

Substitution of these into (4.1.3) and (4. 1.4) gives, for the nonzero components
of the force per unit length on D' due to its interaction with D,

2
' 2 * Z+961-4612+63 _ % 3
£, = - /-3- EWB[CI 2167725, (1 -2cos2a}+C, m(l+2c032a {4.1.8)
and
1 bpz * 61(-10+961+2612+462) * 36
fz :HW[C‘ 4+612+26z (1 -2¢cos 20)"‘02 ‘ZT-g; (1+ZC0520)]|(401-9)

1
From these we obtain the component f, in the (111) plane and the component
f) perpendicular to the (111) plane:
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bZ

s 1 2 .
£ :-\.g_[cz +c,*—+3-91+2(c;‘-c,* 1—152_5-) cosZu] (4.1.10)

and
| 2 - 2 3
(- NZ by [ CF 24198 - 1361 - 267 - 48,63+ 85 (1 _ 2 cos 2a)
w 3(4+6IZ+263)
6
Cz ﬁ_ (l+2.cosZu)] {4.1.11)

in which £,' and w are positive in the <112 > direction and ;' is positive in the
<111> direction. The c;; to be used are expressed in terms of the standard,
tabulated elastic constants by formula (I.2.4). Note that, unlike the situation
in isotropic and hexagonal crystals, there is now a force f ' which tends to make
a partial dislocation climb out of the {111} slip plane.

4.1.4. Dislocations with Fqual Burgers Vector

Consider two straight parallel dislocations (partial or complete) with a
common slip plane and equal Burgers vectors. We assume that the elastic
constants arc of Type I for the coordinates shown in Figure 5. Let a be the

angle between the Burgers vector and the
dislocation line, b be the magnitude of the

x3 Burgers vector, and w be the distance be-
tween dislocations. From (4.1.2) to (4.1.4)
D ‘D' we find, for the components of the force per
unit length on D' due to its interaction with
b b D, f] =0, fs' =0, and

%* % - % %
f,' = 2b%[C, + Cy + (Cy -Cy Jcos2a]w-t
(4.1.12)

4,2. Stacking Fault Energy and Width of

. W . Extended Dislocations
- According to current theory the equi-
Xz librium separation of the two partials of

an extended dislocation depends in part on
their elastic interaction, and there must
necessarily be a certain amount of dis-
tortion from perfect stacking fault positions
in the entire region between the partials.
For this reason, the average stacking fault
energy per unit area must be a function

Figure 5. Schematic draw-
ing of dislocations
with equal Burgers
vectors.
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Yr (w, a} of the width w of the extended dislocation and of the angle o between
the dislocation and the total Burgers vector. As w becomes much greater
than the diameter of the core of a partial dislocation, this function asymptoti-
cally approaches a constant value Yp. Equating the decrease in elastic
energy in a small virtual increase in w to the increase in stacking fault energy
gives the well-known conditions of equilibrium:

YF =1 (W' G.) ’ (4:e2c 1)

where f is the force of repulsion- per unit length of the partial dislocations
due to their elastic interaction.

4.2.1. Analytical Results

For extended dislocations in the basal plane of hexagonal crystals (4.2.1)
and (4.1.5} yield

2 E * * *
YFW-_-bp [Cz + Cl +2(Cz 'Cl )COS ZG] N (4:2.,2)

in which the c;; to be used are given by (I.2.2). It is sometimes convenient
to write this as

o * *
YFW45 = bp2 (CI +C2 ) (4«20 3)
and
’ C * C *
W=(l -2 —1-*;——2?-(:05 ZQ)W45° , (40204)
Cy +C;

where wys°® is the width of a 45° extended dislocation and also is the average
width of extended dislocations.

For extended dislocations in any of the (111) family of planes in face-
centered cubic crystals (4.2.1) and (4.1.10) yield

_ * * 1 +28 * * 1+28
yFw—bp-’-[cz +C, .__§__1_+2 (Cz -C, __3._.__.1_ cos Za] '

{(4.2.5)

in which the cj; to be used are given by {1.2.4). From the derivation of (4.1.10)
it follows that %his formula is exact only for @ = 0° and 60°, screw and

60° extended dislocations., However, because of the pseudo-isotropic properties
of a (111) plane, (4.2,5) should be a good approximation for all a with a
maximum error of about 10 per cent, This estimate of error is based on the
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known error of a similar approximation formula, (3.1.2), for the line energy
of a dislocation in a (111) planc, as discussed in Section 3.2.2.

4.2.2. Numerical Results

The numerical values of the product ygp w of stacking fault energy times
width of an extended dislocation are given in Table 3 for several substances

TABLE 3
STACKING FAULT ENERGY TIMES DISLLOCATION WIDTH

\(FW(IO_" erg/cm)

nga
Substance a=0° a = 307 a = 45° a= 60° a= 90° wpe

Hexagonal Crystals?!

Graphite 4,0 5.1 6.2 7.3 8.4 2,1
Be 19.9 20,4 20.9 21.4 21.9 1. 10
cd 5.60 6.51 7.42 8.33 9.24 1,65
Co 7.92 12,20 16.49 20.78 25,07 3.17
Mg 3.41 4.51 5.61 6.71 7.81 2.29
Zn 8.80 9.35 9.90 10,46 11,01 1.25

Yp W {107¢ erg/cm) Woq®
a=0° a= 30° a = 4h° a=60° a=90" wp®
Substance Exact Approx. Approx. Exact Approx, Approx.

Face-Centered Cubic Crystals!

Ag 3.38 5.88 8.37 10.87 13.36 3.95
Al 4.00 5.57 7.14 8.71 10.28 2,57
Au Z.65 5,48 8.32 11,16 14.00 5.29
Cu 4,38 7.25 1n,12 13.00 15.87 3.63
Ni 8. 84 12,73 16,61 20.50 24,38 2.76
Pb 1.08 2.37 3.66 4.95 6.24 5,77

! Based on elastic constants given in Table 5.
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of hexagonal and face-centered cubic symmetry for the elastic constants given
in Table 5 (Appendix I}. The accuracy is the same as that of Table 2, dis-
cussed in Section 3.2, The angle a is the angle between the dislocation line
and the total Burgers vector of the extended dislocation. The variation of the
product Yp W with a is shown in Figures 6 and 7. Since Yg is a constant,

Co

N
H

% w(10"€ ERG/CM)
N *)) @)

m -

4 GRAPHITE

T

0 A ] i | |
0 30 60 90

a (DEG)

N-2256

Figure 6. Stacking fault energy times
width of extended dislocation
versus orientation.
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Approximate value of
stacking fault energy
times width of extended
dislocation versus
orientation.



these graphs essentially show the variation in width of an extended dislocation
with orientation relative to its Burgers vector. As discussed in the preceding

section, the curves for face-centered cubic crystals are exact only at a equal
0° and 60°,

The product Yp W for graphite has about the same range as for other metals,
Therefore, the large width of extended dislocations in graphite is due to its low
stacking fault energy and not to unusually strong forces of repulsion between
dislocations. As noted in Table 3, the width of an edge dislocation in graphite is
about 2.1 times the width of a screw dislocation,

Read (”)reports that for isotropic crystals the ratio w for edge to w for
screw dislocations is (2+v}/(2 - 3}, which is about 2 for typical values of
Poisson's ratio. As shown in Table 3 this ratio varies from 1.1 for Be to 5.8
for Pb, for the twelve materials studied. The ratio is greater than 2 for all
the face-centered cubic metals studied. The deviation of these values from the
results of isotropic theory depends on what criteria are used to choose values
for the shear modulus G and Poisson's ratio. For graphite the isotropic theory
with G = ¢y and v=1/3 gives results which are low by a factor of about 13, For
rnetals the isotropic theory is in error from 0 to 80 per cent with 30 per cent
being typical,

The derivation of vy w is based on the assumption that the cores of the
partials do not interact. From Figures 6 and 7 it is seen that this should not
be valid for materials with stacking fault energies greater than about 100ergs/
cm?, such as Al, Cd, and Zn (\(F for Be and Mg is unknown and for Ni is vari-
ously reported as from 100 to 400 ergs/cm?). An estimate of the effect of
neglecting the core interactions can be made by cornparing the present results
with those of Seeger and Schéck (#12) Their method treats the core inter-
actions approximately by making a simple assumption as to the Peierls force
between atoms on opposite sides of the slip plane. The elastic field elsewhere
is treated rigorously by the anisotropic elastic continuum theory. Table 4gives

TABLE 4
COMPARISON WITII RESULTS OF SEEGER AND SCHOCK for Y W

Yp W for Screw Dislocation® Yp W for Edge Dislocationl
Seeger Present Isotropic Seeger Present Isotropic
Substance Schock Theory Theory Schock Theory Theory
Al 6.3 4.0 4.0 8.6 10,3 9.4
Cu 4.6 4.5 6.1 12,2 15.7 12.3
Ni 7.4 8.1 8.6 23.9 23.7 20.0
Co 8.8 5.9 6.4 39.6 18.0 15.0

1 Yp W in units of 1076 erg/cm.
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the value of Ypw obtained by Seeger and Schdck and the values given by the
present theory and by isotropic theory for the same elastic constants as used by
Seeger and Schock. For the isotropic theory Poisson's ratio was taken asv=1/3.
For face-centered cubic crystals the shear modulus G = {cy - ¢p2 + c4q)/3 for
shear across a (111)-type plane was used; and for hexagonal crystals G = Cuy for
shear across the basal plane was used.

The stacking fault energy of Co is about 25 ergs/cm?. This gives w > 24 A
for a screw dislocation and w >72 A for an edge dislocation. If, as seems
reasonable, there is negligible core interaction at these distances, then Seeger
and SchBck's theory and the present theory should give identical results. The
rather large discrepancy for the edge dislocation raises some question as to the
validity of the approximations used by Seeger and Schock. For Al the partials
are separated by less than 5A and there should be considerable core interaction.
Assuming Seeger and Schock's values are correct, we see that the neglect of core
interactions in the present theory causes an error of 20 to 30 per cert. This
should be taken into consideration when applying the present theory to other
materials of high stacking fault energy. It is of interest to note by a comparison
of Tables 3 and 4 that the change in Y w for Ni and Co due to changes in the
elastic constants used is of the same order as the difference between the isotropic
and anisotropic results,

In summary it is suggested that the present theory is essentially as easy to
apply as the isotropic theory and will give more accurate results except possibly
in the case of strongly interacting cores, The use of more accurate theories is
only justified if the elastic constants are known accurately and perhaps only if a
more accurate treatment of the Pelerls force is made than any up to the present.

4.3. Stacking Fault Energy and Width of Triple Partial Ribbons

Amelinckx and Delavignette (13, 14) have observed extended dislocation ribbons
in graphite consisting of three parallel partial dislocations with the same Burgers
vector as indicated in Figure 8. They have shown that the triple partial ribbon is
formed from the interaction of two extended dislocations lying above nearest
neighboring Or next nearest neighboring planes., In the first case the ribbon is
symmetrical and the stacking fault energies are equal; in the second case the
ribbon is unsymmetrical and the stacking fault energies are unequal,

The analysis of Amelinckx and Delavignette for isotropic materials can be
easily generalized for anisotropic materials. Since the interlayer distance is
only a few angstroms while the widths w' and w'"' between partials are several
thousand angstroms, we can make the simplifying approximation that all disloca-
tions lie in the same plane. The error caused by this is negligible compared to
the present experimental error in determining w' and w''. Equating the force
of repulsion between dislocations with equal Burgers vectors, equation (4.1.12)
to the surface tension of the stacking fault yields two independent equations of
equilibrium., From these it follows that
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vp' = B(2+ R*)/w y." = B(2+ R)/w,

D D D
‘ ‘ (4.3.1)
bp4 bp bp where

R=w'/w' w=w'+ w'(4.3.2)

1 n
.yr.' YF and
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N-1570 YE_ = 2% R 434
1 -1
Figure 8. Schematic drawing of a YF 2+ R

triple partial ribbon.

Equations (4.3.1) and (4. 3. 2) yield

w! = BBI(ZYF' - YF”-}-JYF‘ZEYF'YF”'F YFHZ) (4_3-5)

b

" o " t
w't = 3B/(2\(F “Yg YFlz_YF' YF” + YF"Z) (4.3.6)

—_ B(YFH- YFH+ :\[YFIZ_YFlYFu + YFHZ)/YF‘YF"
(4.3.7)
These formulas differ from those for the isotropic case only in the definition of
B. For triple partial ribbons in the basal plane of hexagonal crystals the Cij to

be used are given in terms of the standard elastic constants by (1.2.2).

For a symmetrical triple partial ribbon YFI = \{F" =Yg and
w = 3BIYF . (4.3.8)

Comparison with {4.2.3) shows that the average width wys i, at a = 45° of a
symmetrical triple partial ribbon is related to the average width wysSext of an
extended dislocation of equal stacking fault energy by
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e {(4.3.9)

w . w
45°,rib 45°, ext

The factor of 6 does rot exist at other orientations, but

nd (4.3.10)

W .. = bw a w .y = bw
0°, rib 30°, ext 90°, rib 60° ; ext

Thus, the width of screw ard edge symmetrical triple partial ribbons can be
obtained easily from Table 3.

4.4. Stacking Fault Energy and Radius of Extended Nodes

Whelan () has shown that the stacking fault energy can be estimated by
equating the surface tensior of the stacking fault to a force due to the line
tension U of a partial dislocation and the radius of curvature r of an extended
node, according to the formula

YF:U/I' . (4.4.1)

The line tension may be estimated by assuming that it is the same as the line
energy per unit Jength of the elastic stress field of a dislocation. As discussed
in Section 3.1, the line erergy within a cylinder of outer radius R and inner
radius r, can be calculated from {3.1.1) and subsequent formulas in which b is
the magnitude bp of the Burgers vector of a partial dislocation and a is the angle
between the Burgers vector and the partial dislocation at its midpoint. Reference
should be made by Section 3 for further details ard numerical values,

The major difficulty in applying (4.4.1} and (3.1.1) is in estimating the
factor In R/r_,. Presumably, R is approximately the average distance between
total dislocations and r is approximately bp; but there is no unique way of de-
termining these quantities,

4.5. Stacking Fault Energy of Graphite

In the three preceding sections, formulas based on anisotropic elasticity
theory have been presented for estimating the stacking fault erergy of graphite
from the width of an extended dislocation, from the width of a triple partial
ribbon, and from the radius of curvature of a large extended node. All three
of these lengths can be obtained from electron micrographs of dislocations in
thin films of graphite. In this section we shall neglect the effect of the stress-
free surfaces of the thin films on the widths and radius of curvature; and
assume that the observed lengths are the same as those in an infinite crystal.
Williamson (16) and Amelinckx and Delavignette (53 ) have reported that the
average width of extended dislocations is about 1000A. From Table 3, y,.w _ =
6.2 x10°% erg/cm so YF = 0.62 erg/cm®, From observations on sin lg; g‘?ently
curving extended dislocations Siems, Delavignette, and Amelinckx (17 report
that within their experimental error w varies as cos 2a with Voo Iw .= 2.6
and Woe, = 850 A, for which the present theory gives Yp = 0.73 erg/("i’mZ . The
present theory predicts that w90°/ Woe = 2.1,

-]
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Delavignette and Amelinckx (18) have observed symmetrical triple partial
ribbons with average total widths of wp® = 5300A and wg g ° = 7000A, which by
(4.3.8) both yield a value of yp of 0,58 erg/cm?, The exact agreement is for-
tuitous, as the uncertainty in Yp is roughly * 20 per cent.

In Sections 5.2 and 5.3 we shall show that the effect of the stress-free
surfaces of the thin films is to reduce the width of dislocations. At present the
experimental data are too incomplete to draw definite conclusions. It appears
that the change in widths of extended dislocations and triple partial ribbons in
the thin films used in electron microscopy may be up to roughly 10 per cent
smaller than the width in an infinite crystal. The calculated stacking fault
energy might be 10 per cent less than the values given above, due to this effect.

On electron micrographs taken by Williamson and by Amelinckx and
Delavignette, the radius of curvature of extended nodes has varied from 0.9 to
1.7 pn. Where it has been measured, the partials have been in screw orientation
at their midpoint; the average distance between dislocations is roughly 1 u.
Taking a = 0°, R =14, and rg = =1.42A, we find from (4.4.1) and (3.1.2)
that yp is from 0.25 to 0. 50 erg/crn These computed values of yp should be
less than the true value because the repulslon between the three partlals in an
extended node has been neglected in the theory. It appears that all three methods
of determining the stacking fault energy in graphite give results which are con-
sistent with the value

VFZO,éi 0.2 erg/cm? {4.5.1)

Numerous measurements of widths of extended dislocations and triple
partial ribbons have been made on electron micrographs taken at this
laboratory by R. Bacon and R. Sprague. As the orientation of the dislo-
cations was not determined, only the general range of dislocation widths can be
determined. Several extended dislocations indicate an average width in the 800
to 300 A range, and a few symmetrical triple partial ribbons indicate an
average width in the 0.5 to 0. bprange, in agreement with the results of others.
However, the experimental results are not as simple as indicated above.
Several well-isolated dislocations with widths in the 1500 to 2000 A range were
observed. On some plates with a dislocation spacing of a few thousand
Angstrom, the widths of extended dislocations varied from 1000 to 3000A and
some symmetrical triple partial ribbons occurred with widths from 2000 to
4000A. These anomalous widths occurred for a considerable range of
orientations on a given micrograph. Further work is being done fo attempt to
determine which of several possible causes is responsible for these results.

5. INFLUENCE OF A STRESS-FREE SURFACE ON DISLOCATION WIDTHS

Three cases for which the influence of stress-free, plane surfaces cn the
widths of dislocations can be easily determined are considered in this chapter.
The first is that of an extended dislocation in any orientation lying parallel to
the plane surface of a semi-infinite isotropic solid. The second and third are
those of a 30° extended dislocation and of a screw triple partial ribbon lying
parallel to the plane surfaces of an anisotropic crystalline plate for which the
elastic constants are of Type I,
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5.1. Arbitrary Extended Dislocation in a Semi-Infinite Isotropic Solid

Dietze and Leibfried (!9) have calculated the stress components of an
edge dislocation lying parallel to the parallel, plane surfaces of an isotropic
plate of infinite lateral dimensions., Simple formulas in closed form suitable
for analytical applications could not be found. However, they did obtain
simple formulas for the stress components of an edge dislocation lying
parallel to the single plane surface of a semi-infinite isotropic solid, The
effect of the stress-free surface on the dislocation width in a semi-infinite
solid should illustrate qualitatively the effect that the stress-free surfaces
of thin films or plates have on the dislocation widths observed in electron
microscopy.

Let a be the distance of the extended dislocation from the stress-free
surface, as indicated in Figure 9. The Burgers vectors are as shown in
Figure 3, The plane x; = 0 is the stress-
free surface of the semi-infinite isotropic
solid. Eshelby (2°) has shown that the
force per unit length on D' due to its inter-
action with D and the stress-free surface
is given by (4.1, 2) in which the 74, = 75 +
Tij are the components of the total stress
field due to the partial dislocation D acting
alone, The T-l°-° are the components of the
stress field of D in an infinite body. The

X
' STRESS-FREE
SURFACE

Figure 9. Coordinate system

Tij called the image stress-field components,

represent a stress field with no singularities
within the body and which is equal in magni-
tude but opposite in sign to ch- on the stress-
free boundaries. For, screw "dislocations
the singularities of 7;. can be interpreted as
image dislocations; but for edge dislo-
cations this interpretation and the corre-
sponding method of calculation are not
possible.

for an extended dis-
location in a semi-
infinite solid.

Dietze and Leibfried (19} give

(a+a){(x+a)®-xf] _(x1-a)fx; -a)?-xf]

[('—"[14“51)?""3(22']z [ (x; -<’2‘-)2‘H‘*'-.z‘2]z

Ty = Clbz[

_2a 3Bx1-a)(x) -a) - 6x) (x) -a) xf - x? } (5.1.1)

[ (% ~a)2+ xzz] >
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[ (x +a)? - xf] _ %[ (x - a)? - xf]

[(x,+a)2+ %)%  [(x-a)+xf)?

Tiz = C1bz [

3 (x; - a)? - x2
- 1.2
4a xyx, [ (% - 8.)2 +xzz] 3 (5 )

X + +a)d+ 3} xy -a)[ {x; -a)?+ 3%
nz=clbz[‘ 1t al [ G +al+3xf] b -a) [ -a)s Sx]
[ (x+a)%+x5) [ (x1-a)2+xf)
» 20 Lt albuzal - bx o - a) xf s ] (5.1.3)
[ (x; -a) +x7]
_ ] X + X2
T13 = Czbs LT a+a)exd  (x -a)z+xzz] (5.1.4)
Xp +a ) Xy -a
Tzs = Czbs |_(11+a)2+xz?' (xl-a)2+xzz] (5.1.5)
Tz = viTnn +722) {5.1,6)

in which C; and C, are given by {2.2.12) and (2.2.13). The formulas for an edge

dislocation have also been derived by Head (27,

Equating the stacking fault energy per unit area Y to f} and evaluating f;'
by {4.1.2), {5.1.2), and (5.1.4), we get

- a’Gby . w? (3w - 4) |, ]
YF—ZTr(l—V)W(W?‘+4aZ)[2 v-2ycoszas (w? + 42)2 (1~-2cos2a) . (5.1.7)

In the limit a — = this reduces to the known formula

_ z _
Y Yoo = Gbp (2-v-2vcos2a)/8x(l-v) . {5.1.8)
relating the stacking fault energy to the width w_ of an extended dislocation in
an infinite, isotropic medium. For our purposes it is convenient to use {5.1.8)
to eliminate Yg from (5.1,7); there results
W 4_-3_2 w2(3w2_4a?-) (I-ZCOSZQ) ] . (5'1‘9)
w? + 4a? (w?+ 42)% (2 -v-2vcos 2a)

Weo
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Since this cannot be solved algebraically to yield the explicit dependence of w
on a, we proceed as follows, Measure distances relative to the width of the
dislocation in an infinite medium by introducing the dimensionless quantities

W:w/wm and A?a/wm ) (5.1.10)
Define a dimensionless parameter
$=wf/2a= W/2A (5.1.11)

and the function

. 1 2 (302 -1) (1l -2cos2a) ] .
g(fv, a) = 1+§2 [H(H@z)’- (2-v~2vcos2a) |~ (5.1.12)

The dependence of relative width on relative depth from the surface is given
parametrically by

W=g(J; v, a) (5.1.13)

and

A=g(G; v,a)/2T . (5.1.14)

Figure 10 shows the variation in relative width versus relative distance
from the surface for Poisson's ratioc v=0.3 and for several orientations. It
follows from (5.1.12) that the curves for 30° and 60° dislocations are in-
dependent of v. The dependence of W on v for screw and edge dislocations is
shown in Figure 11, From these we see that for all orientations of dislocations
in all nearly isotropic materials there will be no strong variation in width un-
less the dislocation is closer than w, to the surface. As a decreases from
about 0.6 W, {(3\/3/8 in the isotropic case) toward zero, the relative width of

a screw dislocation approaches zero more rapidly than that of an edge
dislocation,

Although there are no anomalous variations in width for v in the range of
practical interest, 0<v <0, 5, there are extreme variations in the width of
predominantly screw {(a < 30°) dislocations if vis about 2/3. This is indicated
by Figure 12 for a screw dislocation. In this range the width may be much
greater than w_ and there may be two positions of stable equilibrium separated
by a position of unstable equilibr ium (the dashed curve). There has been
speculation in the past that the anomalous behavior for large values of v in
isotropic materials might also occur in strongly anisotropic materials. How-
ever, there does not seem to be any proven example of this,

5.2. A 30° Extended Dislocation in an Anisotropic Plate

5.2.1. Analytical Results

For a 30° extended dislocation the Burgers vector of one of the two partial
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Figure 10. Variation in width of a dislocation in a semi-infinite isotropic
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Figure 12, Variation in width of a screw dislocation in a semi-infinite
isotropic solid of large v with depth from surface.

disloca tions is in the pure screw orientation, and for Type I elastic con-
stants the partials interact only through the screw components. The stress
components for a screw dislocation lying parallel to the surfaces of an
anisotropic flat plate were derived in Section 2.3, The coordinate system
is shown in Figure 1; except that a- second partial dislocation must be added
passing through the point (-a, w, 0). Setting yp = f, we obtain from
(4,1.2) and (2.3.6)

_ N, C, b2 [sinhﬂ«/‘sz dlw sinh 7N B, d”!'w

= s {5.2.1)
YF a coshnNG; d"'w-1 coshaNd; d"lw-cos2mm ]

where

m=ald . {5.2.2)
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For hexagonal crystals the c.. to be used are given in terms of the standard

elastic constants by formula ' (I.2.2}). In the limit m = constant and d — <,
this reduces to

_ 1
YEWeo © — Co bp’* , (5.2.3)

relating the width w_ of a 30° extended dislocation in an infinite anisotropic

crystal to the stacking fault energy. Using (5, 2.3) to eliminate Yg from (5, 2.1},
we obtain

d _oE [sinh a8, d=lw sinh w6, d~'w }
W = I
w0

- 5.2.4
2 |cosh yNf6;d 'w-1 coshaNB; d 'w-cos2m ( }
In order to analyze this introduce the relative distances
W=wlw,, D=d/w_, and A=alw_. (5.2.5)
Then
m=al/d=A/D. (5.2.6)

Solving {5.2.4) for A, we get

A =L cos-t [mrsg sinh wa/3; D! W - 2D cosh 7N, D™! W (cosh na/8; D! W -1) ]
Zw aNS; sinh N 5; D' W - 2D (cosh nNB; DIW -1)
(5.2.7)
which is convenient for computing curves of W versus A at constant D,
Alternatively, we can introduce the dimensionless parameter
Q= noNG; w/d = oNS;, W/D (5.2.8)
and define the function
(2, m) = Sllzlhﬁ [coshlﬂ-l b coshﬂ-lcos Zmn] . (5.2.9)
Then
W = Qf(Q, m) (5.2.10)
and
D= nA8; £(R,m) , (5.2.11)

which give a parametric form of curves of W versus D at constant mn. For a
dislocation in the middle of the plate m = 1/2 and the formulas reduce to

W = Q/sinh (5.2.12)
and

D = 7N&; /sinh @ . (5.2.13)
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To apply these results to the analysis of 30° extended dislocations observed
by electron microscopy it is necessary to measure w, d, and a. Then one can
comptte, in turn, m, £, £, W, and W, = W/w; and the stacking fault energy can
be determined from (5.2.3), At the present time it seems to be impossible to
measure the distance a of the dislocation from the surface. However, for a
given plate thickness d the dislocations in the center are widest, Consequently,
it should be safe to conclude that m = 1/2 for the widest of a large number of
experimentally determined dislocation widths in films of the same thickness.
Then W can be computed from (5.2.12), and the stacking fault energy obtained
as before.

5.2.2. Numerical Results for Graphite

Measurements of w and d for the same film of graphite do not appear to
have been made, although this should be possible. Estimates of d for films
used by different experimentalists have ranged from, say, 200 to 2000A, To
get an estimate of the effect of the stress-free surfaces, let us assume that
a-0.5d for a width of 1000A. Using the numerical values of the elastic con-
stants of graphite, we find

Q- 0.23 wfd . (5.2.14)

The W versus @ curves for several values of afd are shown in Figure 13 for a
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Figure 13. Width of a 30° extended dislocation in a graphite plate versus the
parameter {2,
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30° extended dislocation in a graphite plate. For a = 0.5 d and, say, W=0.90,
the parameter Q is found to be 0.80; for which d = 290 A, This indicates that

the stress-free surfaces decrease the width by less than10 per cent if d is
greater than 300A., If d >1000A and w = 1000A, then W>0.99, The orientation
studies in a semi-infinite solid indicate that this conclusion should be valid for
all orientations in a graphite film. On the other hand, if d < 300A, then there

is a significant decrease in the dislocation width which probably depends strongly
on the orientation.

Figure 14 shows the variation of Wwith A for graphite for several film
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Figure 14. Width of a 30° extended dislocation in a graphite plate as a
function of depth from surface and thickness of plate.

thicknesses of interest in electron microscopy. For all D> 0,5, the width

w is less than 0.9 w_ only if the dislocation is within 0.1 w, of the surface.
From the rather flat top of these curves it follows that the widths of almost all
dislocations will be within a few per cent of wg in films of thickness d > 0, 5we.

5.3. A Symmetrical, Screw Triple Partial Ribbon in an Anisotropic Plate

5.3.1. Analytical Results

For simplicity we shall consider only the symmetrical, screw triple
partial ribbon of total width w. The coordinate system and other notation are
the same as in Section 5.2, The single condition of equilibrium is
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vp = f2 (W + 6 (3, (5.3.1)

where fz' is given by (4.1.2) and (2.3.6). For Type I elastic constants this yields

y =ﬂmczb§2[ sinh oN G, w/d . sinh nA/0; w/d
F =238  LcoshnNB3w/d-1 coshnNB;w/d-cos2mm

sinh nT; w/2d sinh 7N, w/2d " (5.3.2)
t coshaN®; w/2d-1 coshnNT; w/2d-cos2mm .

In the limit m = constant and d ===, this reduces to
Vg Yoo =3cszz . {(5.3.3)

in which w, is the total width of a symmetrical, screw triple partial ribbon
in an infinite anisotropic crystal. As in Section 5,2.1 introduce relative
distances W, D, and A defined by (5. 2.5); Q defined by (5. 2. 8); and {(Q, m)
defined by {5.2.9). Then (5. 3.2) and (5. 3. 3) yield

W = 3719 [{(2,m)+£(2/2, m)] (5.3.4)
¢ D=3"'gNb [£(2,m)+{(2/2, m] (5.3.5)
A=mD . {5.3.6)

These results can be applied to the widths of symmetrical, screw

triple partial ribbons observed by electron microscopy by the procedure dis-
cussed at the end of Section 5.2.1.

5.3.2. Numerical Results for Graphite

The W versus Q curves for several values of a/d are shown in Figure 15
for a symmetrical, screw triple partial ribbon in a plate of graphite, In
order to illustrate the method we shall arbitrari(h_g assume that the 5300 A wide
ribbon observed by Delavignette and Amelinckx ‘! ) was in the center of the film.
Then for a 1000 A thick film, one obtains €2 = 1,22 and from Figure 15W=20,89.
The width in an infinite crystal would be 6000 A, which by (5, 3.3) gives a
stacking fault energy of Y. = 0,51 erg/cm?®. For a 2000A thick film, Q= 0,61
and W = 0,97, The width ™ in an infinite crystal would be 5500A, which gives a
stacking fault energy of yp = 0.55 erg/cm®. These are to be compared with
the value of Yg = 0.58 erg/cm?® for an uncorrected width of 5300A.

From these results it appears to be desirable to apply a correction to the
widths of triple partial ribbon observed in films less than about 2000 A thick.
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Figure 15. Width of a symmetrical, screw triple partial ribbon in a graphite
plate versus the parameter .

Figure 16 shows the variation of W with A for several film thicknesses
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Figure 16. Width of a symmetrical, screw triple partial ribbon in a graphite
plate as a function of depth from surface and thickness of plate.
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of interest in electron microscopy. For a film thickness of 1000A, D is
about 0,2, The curves of W versus A are not so flat topped as the curves of
Figure 14 for extended dislocations. Consequently, it is necessary to observe
a larger number of triple partial ribbons to be sure that the widest of these
lies at or close to the center of the film.

6. SUMMARY AND CONCLUSIONS

This report presents results of a theoretical study of dislocations based
on the linear, anisotropic elastic continuum approximation. The main results
fall into three groups: the derivation of formulas not involving complex numbers
of stress and displacemeant components of dislocations in certain symmetry direc-
tions, the application of these formulas to derive the relation between stacking
fault energy and width of extended dislocations, and a study of the effect which a
stress-free surface has on the width of extended dislocations lying parallel to the
surface.

Formulas are given for the stress and displacement components of dis-
locations in the basal plane of a hexagonal crystal, along cube edges or face
diagonals in cubic crystals, and in certain other directions. These formulas
have the same functional form as in the isotropic case except for the occurrence
of dimensionless parameters which are ratios of the elastic stiffness constants
and which arise because the different Cartesian coordinates are not equivalent
in an anisotropic crystal. Also, formulas are given for the stress and dis-
placement components of a screw dislocation in certain symmetry directions in
an anisotropic flat plate with stress-free surfaces,

Formulas already given in the literature for the energy per unit length of
the elastic field outside the core of a dislocation are evaluated for graphite and
several metals. It is shown that these formulas, although exact only for sym-
metry directions, are not more than about 10 per cent in error for any direction
of the dislocation in a (111) plane in face-centered cubic crystals. Consequently,
such formulas should be a considerable improvement over formulas for iso-
tropic materials for estimating stacking fault energy from radii of curvature of
extended nodes. The numerical values of the elastic field energy of different .
types of dislocations in graphite show a much wider variation than in hexagonal
metals. The fact that the elastic field energy is not smallest for the most
commonly observed type of dislocation in graphite indicates that the core energy
and Peierls stress may be as important as the elastic field energy in determin-
ing the equilibrium configuration of dislocations in graphite.

From the stress components, formulas are derived for the components of
the force of interaction between parallel dislocations with arbitrary Burgers
vectors lying in certain symmetry directions. Formulas relating the stacking
fault energy to the width and orientation of extended dislocations and triple
partial ribbons are derived from the force of repulsion between partial dis-
locations. These calculations neglect the interactions of the cores of the
partial dislocations. That this is probably legitimate except for metals of very
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high stacking fault enérgy is shown by comparing the results given by the
present theory with the results of Seeger and Schock who treated the core
interactions of several metals in an approximate way.

The stacking fault energy of graphite has been calculated from the widths
of extended dislocations, from the widths of triple partial ribbons, and from
the radii of curvature of extended nodes, as reported by experimentalists from
observations of electron micrographs of dislocations in graphite. All three
methods give results which are compatible with the value 0.6 * 0.2 erg/cm?.
The probable error is only an estimate based in part on uncertainties in the
values of the elastic constants of graphite and in part on an estimate of the
experimental error in determining widths and radii of curvature.

The variation of the width of an extended dislocation with depth from the
surface has been calculated for an extended dislocation lying parallel to the
stress-free, plane surface of a semi-infinite isotropic solid for all orientations
from screw to edge. When the dislocation is at a distance from the surface
greater than 0. 65 ww, Whére wy is the width in an infinite rnedium, the width is
reduced by less than 25 per cent of wy for all orientations. As the distance
from the dislocation to the surface is decreased to zero, the width of a screw
dislocation monotonically decreases to zero but the width of an edge dislocation
at first decreases, then increases, and finally decreases to zero. These
results are valid for all values of the elastic constants of an isotropic
material and should be typical of the behavior of an extended.dislécation near
a stress-free surface of a nearly isotropic metal.

From the stress components, mentioned above, of a screw dislocation
lying parallel to the stress-free surfaces of an anisotropic flat plate, the
variation of width with depth from surface has been derived for a 30°
extended dislocation and for a symmetrical, screw triple partial ribbon.

The effect of the surfaces is considerably less for dislocations in graphite
with the basal plane parallel to the surface of the plate than for dislocations

in isotropic solids. This is due to the fact that the strain field of a dislocation
in graphite decreases more slowly along a direction in the slip plane and more
rapidly along a direction perpendicular to the slip plane than in a metal. The
present theory indicates that the stress-free surfaces will cause the widths of
30° extended dislocations and symmetrical, screw triple partial ribbons in the
middle of a graphite plate to be less than 90 per cent of the width in an infinite
crystal only in plates thinner than 300 A for the extended dislocation and1000A
for the ribbon. It appears that, except for the thinnest films of graphite used
in electron microscopy, the observed widths of extended dislocations of all
orientations are within a few per cent of the widths in an infinite crystal. On
the other hand, except in the very thickest films of graphite used in electron
microscopy, the observed widths of triple partial ribbons are significantly
less than the widths in infinite crystals. Definite procedures are given for
deriving the widths in an infinite crystal from the observed widths in thin
films for 30° extended dislocations and symmetrical, screw triple partial
ribbons lying along certain symmetry directions,

The calculation of the stacking fault energy by different methods, the
variation in width of dislocations and ribbons with orientation, and the effect of
the surfaces of thin films are phenomena which can be accurately checked by
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experimental observations with the electron microscope. This provides an
unusual opportunity to either verify the correctness of the anisotropic elastic
continuum theory of dislocations as here applied or else to show that other
factors must also be considered. For example, even in annealed crystals
the equilibrium positions of partial dislocations may be influenced by the
local stresses of point imperfections, the long range thermal and applied
stresses, and the fact that the crystals may warp or be small enough in
lateral extent that the crystal edges perpendicular to the basal plane must be
considered. In view of the widespread "~ use of thin film microscopy to infer the
behavior of dislocations in bulk material, it is important to determine all the
factors which strongly influence the dislocations.
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APPENDIX I
ELASTIC CONSTANTS

1.1 Derivation of Coordinate Systems for Types I or 1I Elastic Constants

That the sufficient conditions for Types I and II elastic constants given
in the literature are not necessary is illustrated by a simple example. Ina
cubic crystal the elastic constants are Type I if the dislocation is along a
face diagonal and the x, axis is along a cube edge. Yet in crystal classes 23
and m3 the tace diagonal is neither a twofold axis or perpendicular to a
reflecting plane.

Since it does not seem to be possible to find simple necessary and
sufficient conditions based on symmetry for the occurrence of Type I or I1
elastic constants, it is of interest to outline an elementary procedure for
finding such systems based oun the transformation properties of the elastic
stiffness constants. The following analysis applies to all classes of all
crystal systems except the cubic system. The cubic system will not be
treated in detail since the elastic constants of cubic crystals for different
coordinate orientations are given in the literature. Except in the sense already
discussed for the cubic system, no other cases of Type I or Il elastic constants
were found which are not given by the sufficient conditions for these constants
cited in the literature.

l.et the crystallographic axes be denoted by X,;, X;, X3 and let the
standard, tabulated elastic stiffness constants, defined with respect to the
crystallographic axes, be denoted by cjj. In all crystal systems except cubic
Ca3° is greater than zero and unequal to any other standard elastic constant.
Therefore, a necessary condition for Type I or Il elastic constants is that the
six elastic constants cy4, Ci5, Cp4, €35, Ca4, and csy, defined with respect to
a rotated Cartesian coordinate system x,, x;, X3, must not depend on c¢33°. If
the two coordinate systems are related by

xi:Z_ By X, (i=1,23 (I.1.1)
J

then, according to Hearmon (23} | the elastic constants are related by

Z -
Cia = B3 Bzs B33 €33
- a3
Cy15 = B3 Bas c33
_ 3 o
24 = B23 Pas €33 '+ terms in other c?., . (I.1.,2)
—_ 2 o 1]
C25 = PBya Paf Baz ¢y
c4 = B3 Bz% Bs3 c23
_@p2
css = By5 P2z Bsa c33
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In order for these c;; to vanish it is necessary that either Py3 = f,; = 0 or
B33 = 0. These are " equivalent, respectively, to the requirements that
either x; be parallel to X; or x; be perpendicular to X;. In effect this reduces

the problem from a study of three dimensional rotations to a study of one
dimensional rotations.

It is easily proven that under a rotation of x; and x, about x; both Types
I and II elastic constants transform into either Types I or Il elastic constants.
For the case of x3 parallel to X;, it is sufficient to consider only those
standard elastic constants which are Type ! or II and to rotate x; and x, about
x3 = X; to find other orientations of the coordinates for which the elastic
constants cjj are Type I or II. For the case of x; perpendicular to X;, first
choose x; =" X; and rotate x; in the X;X, plane through an angle ¢. Second,
for each angle ¢ for which the elastic constants were found to be Type I or II,
rotate x; and x; about x; to find the remaining orientations of the coordinates
for which the elastic constants are Type I or II.

1.2. Examples of Type ] Elastic Constants

I.2.1. Hexagonal Crystals

If the x3 axis is along the ¢ axis, then
Cij: Cij . (I.2.1)

If the x; axis is in the basal plane and the x, axis is along the ¢ axis,
the cij are related to the C;j by

(cs3 e e 0 Y
<1l C1z 0 0
° 0

feyl = c11 A (1.2.2)

ey -cgd) 0 ¢

C4t 0

I.2.2 Cubic Crystals
1f the x; and x3 axes are along cube edges, then

c..=cl. . (I.2.3)

1) 1]

If the x; axis is along a face diagonal and the x; axis along a cube
edge, then

44



€1} €2 ci3 0 0 0
cjptc’ cp-c® 0 0 0
0+ [}
[eyy) = ciite 0 ° % waza
Hei-cpl) 0 0
ca 0
X 27
where -
c® =eg-leg -e3M2 . (1.2.5)
1.3, Numerical Values of Elastic Constants

The numerical values of the standard elastic constants and magnitudes of
the Burgers vector of partial dislocations used in this report are given in Table
5. The values of b_ were computed from data in W. B. Pearson, Handbook of
Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, 1958,
There is usually some uncertainty in the last digit given of both b_ and ciis
reference should be made to the original literature for probable errori The
values are for a temperature of 25°C, except for Zn of 22°C.

The elastic constants of graphite have been computed from thes data of
Riley( %) and of Bowman and Krumhansi { 26). From Riley's results, recom-
puted with the more recent compressibility of Kabalkina and Vereshc:hagin(""r ',
we get

—

chtcd = 148, 2x 10 dynes/cm? |
cy = 10,87 . (1.3.1)
i c33 = 4.58
From Bowman and Krumhansi N
ctcd = 141, x 10M dynes/cm?]
c3= 28.2 : (L3.2)
i ca= 0,23 i

The values given in Table 5 are an average of these two sets of data.
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TABLE 5

NUMERICAL VALUES FOR ELASTIC CONSTANTS AND BURGERS VECTORS

(ci"j in units of 10! dynes/cm?)

b

Element p cy} Cyz Cqa cn C1 Ref
Graphite 1.421 A 116, 29, 0.23 10.9 4,66 t
Be 1.320 29.23 2,67 16.25 1.4 33,64 2
Cd 1.720 11.52 1.972 2.025 4,053 5.122 3
Co 1. 447 30,71 16.50 7.55 10. 27 35.81 4
Mg 1.853 5.928 2.590 1,632 2.157 6.135 5
n 1.538 16,368 3.646 3.879 5.30 6,347 6
TiB, 69. 41, 25. 3z, 44, 7
Ag 1. 668 12.397 9. 341 4,613 8
Al 1.653 10.732 6.094 2,832 9
Au 1. 665 19,221 16,279 4,202 10
Cu 1.475 16.809 12,145 7.511 11
Ni 1.439 25.3 15.6 12.3 12
Phb 2.021 4,66 3.92 1.44 13
TiC 50.0 11.3 17.5 7
1. See text.
2. J. F. Smith and C, L. Arbogast, J. Appl, Phys. 31, 99 {1960).
3. C. W, Garland and J. Silverman, Phys. Rev, 119, 1218 (1960),
4. H. J. McSkimin, J. Appl. Phys. 26, 406 {1955},
5. 5. Eros and C. S, Smith, Acta Met. 9, 14 (1961},
6. G. A. Alers and J. R. Neighbours, J. Phys, Chem, Solids 7, 58 {1958).
7. J. J. Gillman and B, W. Roberts, J. Appl. Phys, 32, 140571961).
8. R. Bacon and C. 5. Smith, Acta Met. 4, 337 {1956).
9. R. E. Schmunk and C. S, Smith, J. Phys. Chem. Solids 9, 100 (1959).
10.  W. B. Daniels and G, 5. Smith, Phys, Rev. 111, 713 (1958).
11.. R. E. Schmunk and C. 5. Smith, Acta Met. 8, 396 (1960),
12. R. M. Bozorth, W. P. Mason, and H, J, McSkimin, Bell System Tech. J. 30, 970
(1951},
13. L H. Swift and E, P. T. Tyndall, Phys. Rev. 61, 359 {1942).
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11.

12,

13.

14.

15.
16.

17,

18.

19.

20.

21,
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