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FOREWORD

This research program was initiated 1 January 1962 by the
Control Criteria Branch of the Flight Dynamics Laboratory, Research
and Technology Division (formerly the Flight Control Laboratory of
the Aeronautical Systems Division). The work reported herein is a
portion of the joint effort carried out by the Grumman Aircraft
Engineering Corporation, Bethpage, New York, and the Aeronautical
Research Associates of Princeton, Inc., Princeton, New Jersey. The
remaining portions of the program are reported in FDL-TDR-64-17 and
FDL~TDR-64~82. The program has been supported primarily under Con-
tract AF33(657)~7313, which was within Project No. 8219 and Task
No. 821902. Mr. Donald Hoak was the project engineer for the Control
Criteria Branch. The author wishes to express his appreciation to
Mr. Hoak for his encouraging aid during the course of this program.
The author also would like to thank Mr. Robext O'Brien of the Digi-
tal Computing Group of the Research Department of the Grumman Air-
craft Engineering Corporation for tending to the sometimes unpleasant
tasks associated with the numerical computations.
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ABSTRACT

The supersonic flow over cones of arbitrary shape has been
investigated by using the method of integral relations. The equa-
tions are derived for one strip using a body-oriented coordinate
system. Various choices for the basic equations are discussed.
The solution of the boundary wvalue problem for a number of funda-
mentally different cases is discussed in detail and various sug-
gestions concerning improvements of the method and othex related
methods are made. Due to severe computational difficulties, how-
ever, no nmumerical results are presented.

This report has been reviewed and is approved.
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SYMBOLS

The principal symbols used in this report are given in the
following list. These symbols plus any necessary auxiliary
symbols are also defined in the text when they are first used.

a

hgs b,
M

N

P

q

r, ¢, &

r, €, 0

R

s, n, t

S

Tys 855 Ky

T n
Vgr Voo Vi
Voo Vi

FDL-TDR-64-7

isentropic speed of sound

scale factors in coordinate system s, n, t
reduced curvature of the body surface

Mach number

number of strips used

pressure

magnitude of crossflow velocity

spherical polar coordinate system
orthogonal conical coordinate system

gas constant

general body-oriented orthogonal coordinate system
specific entropy

particular terms or groupings of terms in the
equations of motion

velocity components in the spherical coordinate
system r, P, ©

velocity components in the conical coordinate
system r, 7, €

veloclity components in orthogonal cooxrdinate
system s, n, ¢

crossflow velocity components tangent and normal
to the shock wave, respectively
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XE: Xn
Ql, Qz,...ﬂlo

Subscripts
b

i

0

00
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SYMBOLS (Cont.)

magnitude of wvelocity at a point
maximum adiabatic velocity for a perfect gas

vector quantities referring to va, Vib? T, P
respectively

vector quantity referring to perturbation quantities
angle of attack

angle between a plane normal to the shock wave and
a surface £ = constant

adiabatic index
angle between planes £ = constant and ¢ = constant

angle between free stream crossflow velocity and
planes £ = constant

density
shock layer thickness measured in surface £ = constant

reduced conical scale factors for the coordinate
system x, £, 7

coefficients relating the derivatives of certain
quantities to dr/dé&

conditions at the body surface

refers to a particular equation of motion
(e.g., 1 =1 is the continuity equation)
refers to quantities on the th
(k = N is the shock wave)

strip boundary

conditions at the shock wave

stagnation conditions

free stream conditions

vii
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SYMBOLS (Cont.)

denotes inverse method
quantities at crossflow stagnation points

dimensional quantities; also used with certain
coefficients defined in the text

denotes integration from the body to the strip
boundary n = T/2

bar over symbol denotes vector

double bar over symbol denotes matrix

|

s O B EE O E OB E E O B E e

mE B R B o ea



Ll

e

=

1. INTRODUCTION

The problem of the hypersonic flow over cones of arbitrary cross
section is discussed in this report. The approximate method of solu-
tion employed is the method of integral relations due to A. A. Dorod-
nitsyn. The use of the term hypersonic, above, is rather loose and
is not based upon the relative size of any parameters. Rather it
stems from the fact that solutions, particularly surface pressures,
show good agreement with exact calculations in the range M_ > 3-5,
which is the range of interest here.

Many other authors have studied a variety of fluid mechanics
problems using this technique, which is primarily applicable to prob-
lems involving two independent variables. However, by making extra
approximations, problems in three independent variables can also be
treated in the spirit of this report. An example of this is the
work of Holt (Ref. 1) and some unpublished work of the present author.
To cite a few examples, we mention: The work of Belotserkovskiil
(Ref. 2) and Traugott (Ref. 3) for the flow over smooth blunt bodies;
that of Gold and Holt (Ref. 4) and Belotserkovskii (Ref. 5) for the
flow over flat faced blunt bodies; that of Vaglio-Laurin (Ref. 6) for
the flow over two dimensional asymmetric blunt bodies of quite arbi-
trary shape; and that of Pallone (Ref. 7) for some boundary layer
problems. Additional references may be found in the article by
Dorodnitsyn (Ref. 8). Of particular interest in the present context
are the articles by Chushkin and Shchennikov (Ref. 9) and Kennet
(Ref. 10). These papers have considered some of the problems de-
scribed in the present work. However, we have taken a more general
approach to the problem and although our numerical work has not been
successful, we have uncovered some results not obtained in Refs. 9
and 10. The above papers are discussed at appropriate places in the
text.

As mentioned, we considered the hypersonic flow over cones.
Specifically, we hoped to develop a method for calculating the flow
over cones which would be valid in and above the Mach number range
where linear theory becomes inaccurate, but where approximate hyper-
sonic theories are not yet applicable. Again we emphasize that this
range is, to a certain extent, undefinable. For example, in Ref., 9,
a calculation is presented at M _= 3.53 for a circular cone at

Manuscript released by the author — 30 May 1964 for publication as
an FDL Technical Documentary Report.
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incidence which compares well with the Stone-Kopal results (Ref. 11).
Also, calculations to be presented later (similar results are shown
in Ref. 9) show that for circular cones at zero angle of attack the
agreement with Kopal's tables (Ref. 12) is excellent for strong shock
waves (M _sin &5 J 1).

In an approximate method, such as is being employed here, one
must be careful not to oversimplify the problem to the extent that
important effects are ignored. This viewpoint is succinctly ex-
pressed in Ref. 13 where it is stated: "In search of a suitable
approximate method one is obliged, on the one hand, to eliminate
difficulties not connected with the essence of the problem; on the
other hand, one endeavors to preserve difficulties one meets which
are of inherent character. The specifically investigated problem
is such that an approximate method claiming success must not avoid
the following difficulties: 1) nonlinearity; 2) effects stemming
from the mixed type of the equations; 3) explicit dependenecies.”
The problem referred to in this case concerned blunt axisymmetric
and two dimensional bodies. However, the comments apply equally
well in the present case. It will be shown that each of these con-
ditions is met by the present theory and in fact, some results which
could not be discermed from the basic partial differential equations
are found. The other authors, mentioned previously, have also found
these three conditions to be true, the most important, of course,
being the existence of a singular line, analogous to the sonic
(parabolic) line of the exact theory.

In the previous paragraphs we briefly described the problem
under consideration. In the following paragraphs, the work de-~
scribed herein will be briefly outlined. In addition, pertinent
comments concerning other problems employing the method of integral
relations will be made where applicable. Unfortunately, the numeri-
cal calculations performed have shown themselves to be extremely
sensitive to the initial wvalues so that no numerical results are
presently available.

In the next section, we shall discuss the choice of the coordi-
nate system, the approximations, and the basic equations. We have
employed the perfect gas equations throughout.l? It is shown that
a body-oriented coordinate system leads to singular points of the
derived system of oxrdinary differential equations which coincide
with the sonic points of the flow. More or less simultaneously, the
approximations to be used and the choice of basic equations are dis-
cussed. Consideration of the results of other investigators shows
that the use of linear profiles across one strip can be expected to
yield satisfactory results and on this basis a set of ordinary dif-

TSuperscripts refer to notes at the end of the report.
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ferential equations for certain flow properties are derived. It is
also shown that different groupings of terms in the basic equations
lead to restrictions on the cone geometry. It is then shown that
results similar to those discussed occur in other, nonrelated, prob-
lems. The final part of the next section presents a derivation of
the equations governing the flow in the two-strip approximation. In
this case we note that the entropy distribution on the boundary be=-
tween strips is not determined from the solution and must be found
independently. From the foregoing discussions we conclude that an
interesting variety of results can be obtained from the choice of
coordinate system, approximations, basic equations, etc.

In the following section the properties of the derived boundary
value problem are investigated. Since the equations are quite non-
linear one cannot expect to find analytic solutions, so a numerical
scheme must be employed. Hence, the resulting two-point boundary
value problem must be solved by an iterative procedure2 and we must
concern ourselves with the relationship between initial conditions
available and end conditions to be satisfied.

For the one-strip approximation it is shown that in certain
cases where the crossflow is entirely subsonic, no problems arise.
However, 1f one must allow the locations of the crossflow stagnation
point to be free, it may not be possible to obtain a solution. When
the flow becomes of mixed type, it is found that the introduction of
an inner shock is necessary to satisfy all the boundary conditions.
Again, in this case, stagnation points may be moving and a solution
may not exist satisfying all conditions. However, it may be possible
to obtain an approximate solution by ignoring one of the conditions
connected with the stagnation point. For the two-strxip case similar
conclusions apply, but in addition, the matrix of coefficients of
the derivatives at the stagnation point becomes singulax and thus it
is not possible to specify independently the expected number of con-
ditions.

The foregoing discussion applies to the case of cones with
smooth profiles. However, if the cone possesses a sharp edge, as
for instance a flat delta wing, then it is shown that within the
one-strip approximation it is not possible to obtain a solution for
configurations with the shock attached to the leading edge. It is
suggested that the method of integral relations using a different
method of choosing strips may apply to these cases. At high angles
of attack, where the leading edge shock becomes detached, a solution
is possible only if one can specify the behavior of the flow near
the leading edge a priori. Unfortunately the analysis of this be=
havior has not as yet been carried out so that at present a proper
solution of this case cannot be found.



In the section on Numerical Calculations, we discuss the numexi-
cal difficulties which have prevented the obtaining of solutiomns to
the equations for one strip. First the flow over circular cones at
zerc angle of attack is calculated. This calculation has been per-
formed primarily to provide some indication of the accuracy to be
expected from the method. In this case the differential equations
reduce to algebraic equations which can be solved iteratively to
any degree of accuracy. The severe dependence of the solution on
the initial conditions is then demonstrated by using these results
in the differential equations with the angle of attack set equal to
zero. Similar results are obtained for finite angles of attack,
despite precautions, which are discussed, taken to eliminate some
of these problems,

In the final section we present a brief description of the solu-
tion by linearization, suggested by the work of Vaglio-Laurin (Ref. 6),
plus a discussion of the inverse case.
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2. BASIC EQUATIONS AND APPROXIMATIONS

In the following, we shall employ an orthogomal conical co-
ordinate system (r, £, n), with corresponding velocity components
(Vf, Ves vn), such that the surface of the cone is the surface
n = 03 (see Fig. 2.1). In this coordinate system the elemental
arc length on the surface of the sphere r = constant is written

(ds)2 = r2

G ? +t@n?|

where Xg and Xﬂ are surface scale factors. The possibility of
using a nonorthogonal coordinate system has been discussed in Ref. 14,
whexre the divergence form of the gas dynamics equations was developed.
However, the extra complication which results from using a nonoxrthog-
onal system is not justified for most cone geometries. Other orthog-
onal coordinate systems could have been used, such as the spherical
coordinate system employed in Ref. 9. However, depending upon the
choice of basic equations, it may turn out that the singdlar points
of the derived ordinary differential equations do not coincide with

the sonic point on the body. This will be discussed later.

The method of integral relations may be summarized as follows.
First, certain of the partial differential equations of gas dynamics

are written in the formé

%(Ti) + 385(31) = K, G=1,2, ..., n) , 2.1)

where in general Ti’ S.,, and Ki are functions of all the de-

pendent and independentlvariables. In addition to (2.1), there
may also be some integrals of the motion, such as Bernoulli's equa-
tion. These are not important here, however. We divide the region
between the shock and the body into N equal5 stripsﬁ, and inte-
grate (2.1) using the fact that the body is the coordinate surface

n =0 to obtain
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Fig. 2.1 - Body Orlented Orthogonal Conical Coordinate System
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0 0
where k=1, 2, ..., N; the subscript k denotes quantities at

the kth strip outer boundary and the subscript b denotes quan-
tities at the cone surface. When k = N (shock wave), we shall

use the subseript s. The shock wave is defined by 7 = T(E).

Now, by assuming a variation of Ti and Ki with 7, we
may reduce (2.2} to a system of nN ordinary differential equa-
tions involving the unknown velocity components on the body and on
the strip boundaries. The choice of this variation is arbitrary,
but common sense compels us not only to satisfy as many known con-
ditions as possible, but also to make the simplest possible choice

consistent with these conditions.

The simplest scheme is to consider N = 1 and assume that Ti
and Ki vary linearly across the shock layer.7 In this way only
flow quantities at the shock wave and at the cone surface are re-
quired, and none of their partial derivatives. Traugott (Ref. 3)
has carried out this type of analysis for the smooth axisymmetric
blunt body problem and obtained good results in the subsonic por-
tion of the flow. However, when rapid variations of curvature
occur, irregularities appeaxr. Traugott tries to correct for these
by taking higher order polynomials across one strip. For instance,
he uses a cubic profile in n (his noxrmal coordinate) and then
employs partial derivatives of the unknown quantities at the shock
and at the body to determine the extra coefficients. This compli-
cates the analysis considerably by raising the order of the system
of differential equations. To bypass this extra labor, he attempted
to evaluate these partial derivatives by using the results of the



linear approximation. Unfortunately, the irregularities of the
linear approximation were amplified by the higher approximation in
the region of rapidly changing curvature; only a slight improvement
was noted upstream of this region.

Belotserkovskii (Ref. 2) has solved the axisymmetric blunt body
problem by using 2 and 3 strips and approximating the equivalent
of our Ti and Ki by parabolic and cubic profiles, respectively.
In this case, the coefficients of the polynomials depend only upon
the unknown quantities at the strip boundaries. Although the ac-
curacy of the solution is shown to increase by increasing N, the
computational labor is significantly increased and the simultaneous
satisfaction of the regularity condition of the singular points
becomes considerably more difficult.

Kennet (Ref. 10), in studying the flow over flat delta wings
at high angle of attack, uses a parabolic profile, with no linear
term, across one strip. This approximation is based on the assump=-
tion that the entropy gradient normal to the wing is zero. This
would appear to be a valid assumption for this particular case;
however, the possibility of a finite or infinite entropy gradient
normal to the wing cannot be eliminated a pr:i.ori8 and the validity

of the assumption must be established by a more exact analysis.

Chushkin and Shchennikov (Ref. 9), in solving essentially the
same problem as under investigation here, employed linear varia-
tions across one strip using a spherical coordinate system and ob-

tained good numerical results.

Thus, the results of Traugott and of Chushkin and Shchennikov
using one strip lead us to assume for Ti and Ki’ the form

T. -~ T.
_ is ib
=Tt 7 L
(2.3)
K - K
_ ig = Mp
Ki = Kib.+ T m
8
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Substituting Eq. (2.3) into Eq. (2.2) with N =1, we obtain the

system
dr,, dT,
T(E) l_?ijéh"'_ag—% TS %WF% T(E) Ryt Kygl = 20855 = Sy ) (224

Up to this point, we have not specified Ti’ Si’ and Ki‘
This depends not only on the partial differential equations used
but also on how they are written. For example, in Refs. 9, 10,
14, 16a, and 16b, the equations employed were the continuity equa-
tion (i = 1), the £-momentum equation (i = 2) and the n-

momentum equation (i = 3). The system is closed by the use of
Bernoulli's equation and the assumption of constant entropy on

the body.

In Ref. 16a, the & and 1 momentum equations were written
such that the terms

2
g%(P* + p#v: )

and

2
> , % * %
(P +pv
an( P ﬂ)
* % % * . )
appeared. Here P, p , Ves and vn are the dimensional pres-
sure, density and velocity components. Writing the equations in
this way leads to terms in K,, and K,  which involve axglaﬁ.
If we wish to have continuous coefficients in the system of oxdi-
nary differential equations, we must require axglaﬁ to be con-
tinuous. Since Xg is related to the body curvature, this re-
quires that the body have a continuous firxrst derivative of
curvature. However, i1f the system of partial differxential equa-

tions is written with terms



2
iL[ * % % ] %
SE P +p Ve )X’ﬂ %
and
2
26"+ 5|
Y AR AP 7Y I &
appearing, as in Refs. 16b and 14, this difficulty is eliminated %

and the requirement of continuous coefficients requires only the
weaker condition that the body curvature be com‘:inum.ls.9 Kennet %
(Ref. 10) also noticed that the divergence form of the equations |

can be written in more than one way, but since he employed a

spherical coordinate system, the restriction on body curvature

g

does not explicitly appear. Using the requirement of continuous

curvature, we find (Ref. 14)
T = % %
1 =p XT]VE

%

S, = +* b
1 =P ngn

2 3 *
p XnX€Vr

e
I

3

g - * %
2 = P Xg¥eVq
2 oy 0X ﬁ
% % & % % k * Kk
K2 P +p VT] ) S 3p Vrvgxnxg P Vévn on iz
T = x % % .
37 P XyVeVy
2
% * %
S4 = (P +pvn)x€
2 dy oX
~ % g % g - % % % _ * % % "9
K3 = (P + p ve ) an 3p VrVnXExn P Vevn YA .

10
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In addition to these relations, we have Bernoulli's equation

*
* 2 2 2 P
Y P % *, Y T0x
;:T'—;‘+ %(vr tv, + Vo ) Py aal
P PGoo

%
*

P _ %o
%V w
P P

where the subscript 0 denotes local stagnation conditions, and

v 1is the adiabatic index.

Let us introduce the nondimensional wvariables P, p, Vo.s vg,

* * %* *
and vn such that P = PPOm’ PPyws Vi = VfVﬁax, Vg = vgvmax,

% * )
and vn = vnV where PODO is the free stream stagnation pres
*
sure, pg, the free stream stagnation density, and V the

maximum adiabatic velocity. In terms of the free stream physical

variables

Then the quantities appearing in Eq. (2.4) become (employing

vnb = 0)

le - pbvﬁbxnb Tls - psvésxns

S1p = 0 S1s = PsVnsXés (2.3)
Kip =~ 2pbxanEbvrb Kis = -Zpsxnsxésvrs

11



T, =(7"1 _ -1 2
2b 27 Pb + PpY Eﬂ)xnb TZs T\ 2y Ps + psvés xns
Sip = 0 Sps = PeXesVesVns
v-1 axn y-1 2 12Xq
Kop = 2y Py 514 Kos = 2y B + psvnslai <
ox |
B 3pbvrbvﬁbxnvx€b " PsVesVns 3 ) 3psvrsVEsx€sxns
(2.5)
Typ = O I3 = PeXnsVesVns (Cont.)
S = 1:£ P = -T-l P + ]
3b 2y ‘b Xep S35 = 2y psvns Xeg
_ [t X ! 2 12X
K3y, = [27 Pyt oppy &b]én b K3g = | 2y Pyt PsVes om s
ox
- —a} -
PsVesVms BF s 3psvfs nsXésXns -
Bernoulli's equation takes the form
£+ v =1, (2.6)
a2 g2 .
where = V. + 0 + Vo and the entropy equation becomes
P
L9 (2.7)
¥ Y
P’ P

In order to reduce Egs.
nary differential equations, we must

conditions for our coordinate system.

wave, we employ two angular type variables:

12

(2.4) to the desired system of ordi-

derive the shock boundary
In specifying the shock
ng = T(€) which
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specifies the shock surface, and £ which is the angle between a
plane normal to the shock wave and a suxface £ = constant passing
through the point in question. Referring to Fig. 2.2, we may deduce

the relations

Vo =~ Yy cos(x - B)
(2.8)
Vi = 9 sin(x - B)
where v and v are the crossflowlo components of velocity

Neo Toe
normal and tangential to the shock, respectively, on the upstream

side; q_ 1is the magnitude of the free stream crossflow velocity
given by

q = Vo -~ v s (2.9)

00 @ '™

where V_ is the free stream velocity, and Vo the radial com-
ponent of veloecity at the shock on the upstream side. The angle «x

is given by
k= gin T ==, (2.10)

where Ve is the upstream component of Ve at the shock.

The downstream conditions at the shock (subscript s) are

obtained from Prandtl's relation

XL g2 L2

and the condition of constant tangential velocity, which give

the relations

13
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Fig. 2.2 - The Geometry of Velocity Components at Shock Wave
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V. =V (2.12)

and

= vy = 49, gin(x - B) . (2.13)

Using Fig. 2.3, we may deduce

vés = VTS cos 3 - VNS sin B
g. (2.14)
% vns = VNS cos B + VTS sin B .
| Furthermore, it is possible to relate P and dr/df, an
E expression we shall need further on to complete our system of
equations. Figure 2.3 shows that
b dr _ Xes
—_— = tan p = R . (2.15)
k ”
In terms of the nondimensional free stream velocity, the total
pressure and total density behind the shock may be written
Y L
-1 v=1
2 v 2 2
p v+1 Ve (-1 @ - v) (2.16)
= p = " .
O0s 05 L2 412 bt = (12 - V)

Finally, combining Eqs. (2.6) and (2.7), the density and pressure
may be written

1/(v-1)

o
i

po(l = V)

(2.17)
o Y/ (¥=1)
P = Pyl ~ V)

15
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Shock Wave n =1 (¢)

Fig. 2.3 - Differential Geometry of the Shock Wave
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Before obtaining the set of ordinary differential equations,

we must express the variation of certain quantities along the shock

wave,

We do this by the relations

qoo = qm (T: &)
K =X (T: é)
Vg = Vts(T’ £) = vrm(T, £)
an = an(T’ 6) s
which leads to the expressions
dgq oq oq
—_ = x4l _ dr
€ 5t T Tt g
de  _ ox ox  dr _ dr
A& "3 Tty =Bt g
dv ov ov
rs _ _re , __xe df _ 4T
dE = Toe T oy aE = %t 9% gt
d
Pg _ Mg Mnsgr _ L o G2
d¢ o€ oT dé 7 8 dt

Substituting Eqs

(2.5) through (2.19) into the set of

Eqs. (2.4) leads to the result

- g dVE

5(1 - KL
b

dVg

Mﬂ:1 dt
b

rb dr B
tdh e Tt I3 I
dr dp

+%de+%ﬁ+mﬁ=%

4d&=Q51
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(2.18)

(2.19)

(2.20a)

(2.20Db)

(2.20c)



where

T

= (1 - v - vé - vﬁ) s

which, with (2.15), completes the system of ordinary differential

equations. The coefficients in Eqs. (2.20) are listed in APPENDIX I.

It is evident from the determinant of the coefficients of
Eqs. (2.20) and (2.15) that the singular points of the system of
equations occur at crossflow sonic points on the body. This cir-
cumstance is true only because we have written the equations in a
body-oriented system. We point out here that this result is not
true in the work of Chushkin and Shchemnikov (Ref. 9) except for
the case of the circular cone, even though in the form in which
they write their equations it appears to be so. What they have
done is as follows.11 First, they derived a set of equations analo-
gous to Egqs. (2.20) and (2.15). In their case the coefficients Q1
and Q2 appear because T3 does not vanish on the cone. Most
important, however, is the fact that the coefficients of the deriva-
tive of the crossflow velocity do not all contain the same factor
1 - véb/aﬁ as in Eqs. (2.20). Only the continuity-equation yields
this term, the other equations giving coefficients which depend on
the body slope. Hence, the determinant of their system does not
vanish at sonic crossflow velocity and in fact the singularity con-

dition becomes so algebraically complicated that the a priori loca-

tion of the singular point becomes impossible. Chushkin and Shchenni-
kov have reduced the solution of their equations in the following way.
First, they eliminate £ by Eq. (2.15). Next, they solve the system
(2.20) for dzT/dﬁz. Then two of the equations are used to eliminate
dvgb/dﬁ and obtain dv b/d& in terms of dZT/dé2 Finally the con-

tlnulty equatlon is used to solve for dvgb/dE in terms of dv b/dE

and d T/dE and since, as mentioned above, the continuity equation
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yields the term 1 - véb/ai, this gives the false impression that
the singularity is at the sonic point. However, their stated purpose
is to solve the equations for entirely subsonic crossflow so that
this reduction of the equations presented no computational difficulty

and probably does not affect the obtained pressure distributions.

One finds a similar result when applying the method of integral
relations to nozzle flows. Here, the basic equations are the con-
tinuity equation and the axial momentum equation in Cartesian or
cylindrical coordinates. Bernoulli's equation and the constancy
of entropy are used to close the system. Then, using profiles of
the form A + By2 across one strip, one finds the result that the
continuity equation yields a singularity at M = 1, but that the
momentum equation has a singularity which depends on the nozzle
shape. It is suggested here that this circumstance can be corrected

by the use of intrinsic coordinates.12

Now, returning to Eqs. (2.20) and (2.15) we solve for the in-

dividual derivatives:

dr

¢ ~ Rg (2.21a)
B TRy

€ T Q, ° Usg (2.21b)
& 3 (MM, U_-M.R,) =~ M (J.-

Vep _ T MM U MRy - My (359, Us-I5Rs) (2.210)

d& % *
T My=JoMy
dv W' |
b 1
dg‘ - (2.214)
I~ve /ey
, (I3, U~JR.) = J,(M.~M,U.~MR,)
Wl ) 4Us™I3Rs g Mg~M, Ug=MaRg (2.21e)

* %
J1My=J oMy
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This system of equations, which results from our choice of basic
partial differential equations, can in principle be integrated for
specific boundary conditions to give the solution to a variety of
conical flow problems. However, it is easy to show that Egq. (2.20c)
apparently contradicts the assumption that the entropy on the body is
constant. To see this, we write Crocco's equations in our general

orthogonal coordinate system. There results

B B EE OB W

x aﬂ ) Vﬁ) &(& ) xgaé> (2.22a)
VEID 2 Ve __alas
[ag(xnvn) - an(XQVg)] -V Xn[xnan - VT] = = YR 31 (2.22b)
ov v 2
- x| _ afo ) - . &. 38
er«i[vﬁ xe2E| T x, [ag(?( Vo) - n(xgvg)] = -SRI (2.22c)

where S 1is the entropy and R the gas constant. If we evaluate
Eq. (2.22¢) on the cone surface where vy = 0 and 0OS/0tE =0, we

obtain the result

dv b

—ED
e = , (2.23)
Eb xgde

as consistent with constant entropy on the body. It is unlikely
that the right-hand side of Eq. (2.21c) will equal XepVen at all

points, so that we propose here to replace the E£-momentum equation

et
| L)

O EE B B B OB BB B B s B e e

with the condition of irrotationality on the cone surface, Eq. (2.23).

%
Referring back to Eq. (2.20b), this is equivalent to replacing M;,
M, and M, by zero, M, by one, and M5 by XepVep Eqs. (2.21)
then take the form
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dv
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dE - XepVep (2
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Pep _ 1 @
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which is one form of the equations we shall use.

It is interesting to see why this discrepancy arises. As men-

.24a)

.24b)

.24¢)

. 24d)

.24e)

tioned, the first step in utilizing the method of integral relations

is to wrilte the basic equations in divergence form. The previous

papers on conical flow have used continuity and two momentum equa-
tions as basic, and Bernoulli's equations and the entropy equation
as extra conditions. All of these papers have overlooked the fact

that for steady flow the entropy equation

—
V:vs=0

when combined with the continuity equation, and

v (§€5 =0

can be written in divergence form as

_>
v - (pVS) =0 . (2

21
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Hence, for a strictly consistent approximation to the flow, Eq. (2.25)
should be used along with the other 3 equations. The system is still

closed by the use of Bernoulli's equation which provides a true con-

stant of the flow.

An analysis of the basic equations in this latter system {(not
presented herein) leads to the result that the entropy on the body
is not constant, but is determined by the solution. This circum-
stance is similar to that which occurs in calculations of flows over
cones by other methods, for example in Ref. 19. There, the non-
constancy of entropy on the cone is due to ignoring the entropy
layer near the cone where normal derivatives of entropy, which have
been neglected, are large. In the present case we can attribute
the variation of the entropy on the surface to a similar cause; the
linear, one-strip approximation to Eq. (2.25) which is an averaging
process cannot possibly be wvalid locally, i.e., within the entropy
layer. However, it may be possible to include, to the same degree
of approximation employed thus far, a description of the entropy
layer or "inner" solution which matches the solution discussed above
("outer" solution). However, previous work on entropy layers (e.g.,
Ref. 20) shows that the extra labor involved does not significantly

alter the pressure distribution on the cone.

Thus we see that within the basic framework of the method of
integral relations there is a wide range of results to be obtained.
The choice of the coordinate system, the basic equations used and
the approximate profiles chosen all lead to systems of ordinary
differential equations with different propexrties. From among these
possibilities, one must choose those which are as consistent with
known facts as possible. In the numerical calculations we have em-
ployed both the system (2.24) and the system (2.21) for the linear

approximation across one strip. Due to the numerical instabilities
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encountered, however, it was not possible to assess the relative

merits of the two approximations.

The conclusions drawn from the above discussion apply as well
to the other flows. For instance, Vaglio-Laurin (Ref. 21) has de-
rived a set of first order partial differential equations for the
flow over general three dimensional bodies using the one-strip
approximation of the method of integral relations. In that work,

a result similar to Eq. (2.21c¢c) is obtained, that is, a result which
is apparently not consistent with the constancy of entropy on the
body. We propose that this equation can be replace with the corre-
sponding equation of irrotationality. Using a body-oriented orthog-
onal coordinate system (s, t, n) with corresponding velocity com-

ponents (Fig. 2.4) Crocco's equations take the form

a_ 2s _ _'n |3 -3 e [ .2
YR hsas N hshn as(vnhn) Bn(vshs)] hsht Btcvshs) as(vtht)]

_a- 38 _ Tt [ - ]_&_A -3 ]

YR hnan - hnht[an(vtht) at(vnhn) hshn Bs(vhhn) ancvshs) (2.26)
-Q'E._a_s_.=_v§._[i(h)_.§_(h)]__‘_rll_.[_a_(h)__a_( h)]

YR htat hsht dtWWsls s Vet hnht on Vet Ot “Vn'n

where (hs, hn’ ht) are the scale factors of the coordinate system.
If we evaluate the first and third of these equations on the body

surface where v, = 0 and S = constant, we find

-a%(hsvs) - gag(htvt) =0 (2.27)

as the desired condition of irrotationality.
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Fig. 2.4 - General Body Oriented Orthogonal Coordinate System
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We shall now outline the derivation of the ordinary differen-~
tial equations corresponding to the two-strip approximation. In
this approximation we are faced with the difficulty of deterxmining
the entropy distribution on the boundary between the strips. This
difficulty will be glossed over because an approximation to the
entropy can be made simultaneously with the solutibn, or some itera-
tive procedure can be used. Here we are interested in the form of
the equations for purposes of discussion. The exact entropy dis-

tribution does not alter this form.

For this approximation we assume Ti and Ki vary as

2
T, = a; + a,n + a,n

1
(2.28)
_ 2
Ki = bl + bzn + b3n s
where the a's and b's are determined by setting
= 1ry = =
T30 = Ty, TG0 =Ty, T =Ty
= 1 = =
K, (0) = Ky, K; BT = Ky R (1) = Ky -
Carrying out the calculation we find that Egs. (2.28) become
n 2
Ty = Typ + (WTgp = 3Ty = Ty 7 2Ty + Ty, - 2050)(7)
(2.29)

2
— - - n -
Ky = Ryp F GKyy = 3Ky - Ky 2K + Ky 2K12)<T>

25



Substituting Eqs. (2.28) into Eq. (2.2) for k=1, 2, we obtain

the'system of equations '%
dv dv dv dv i
% Eb 2 r2 G
Je (L - Veb/%) T+ 3 - ve,la) gk + Iy R 4 Iy 5 “
v (2.30a) E
n2 4T g _ 3
0 "q T aE T Y aE = -
§
dv dv dv dv ]
Ta - w2 jah—E + T - _ﬁi Toxb x2 |
J6(1 vgb/ab) T + J, (1 vgzlaz) + I3 3¢+ Jg 3¢ i
(2.30Db) -
+ 3 T2 + 3 L5 4
Y10 df 11 d¢ 12 d¢ fﬁ
dv dv dv
* o _£tb - _E._ 2 :
ML - Vi + 1A - Veplap)g Ms Mg ¢ ¥
(2.30¢)
dv
N2 ar ap _ B
t Mg "ge t My et Mo g = M3 “
dv dv dv ]
Nk 20, 20 "Eb AR ) n oo i
Mo (L -~ vip/ap) =g +M5(L "ez""‘z) +Ms da My 3¢ -
(2.304)
A W A R R o
D2 dar _
+ My qe T Mg gt M aE T M3 ,
dv dv o
* 2 2 £2 X2
Q (L - vy, /a)—5¢ Q 5t
(2.30e)

dv
_n2 4T a8 _
t Qo ~de T Qi art U g = Q

&vgg A Qv
QG - veylap—git + Qg
(2.30£)

4

i

N AV A i
+Q10'?12'2'+Q11§E+Q12%% Qs 8
i

i
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where the continuity equation, £-momentum equation and mn-momentum
equation have been used. Equation (2.13) closes the system. The
coefficients of Eqs. (2.30) are listed in APPENDIX II.

Note that the condition of irrotationality has not been included
among Eqs. (2.30). In the two-strip approximation it is not clear
where this condition belongs. Apparently, either Eq. (2.30c) or
Eq. (2.30d) could be replaced by Eq. (2.23) but there is no reason
why it should be one or the other. An alternative would be to
solve Eqs., (2.30) for the individual derivatives and then replace
dvrb/d€ by XepVen leaving the other equations intact. This could
have been done also with Eqs. (2.20) to obtain a system of equations
different from Eqs. (2.21); however, this is a less satisfactory
procedure than that which has been employed, and in any case using
Eq. (2.25) should become more useful as the number of strips in-
creases. However, Eqs. (2.30) are sufficient for purposes of dis~

cugsion.

It is easy to see from Eqs. (2.30) that the singular points of
the system occur at the sonic point on the body and at Veg = @, on
the strip boundary. Thus, we see that with two strips (or any arbi-
trary number), the singular points of the system of ordinary differen-
tial equations do not correspond precisely to the sonic line of the
flow. This, of course, is due to the fact that the strip boundary
of the flow 7 = 4T 1is not a stream surface. However, for small

vnz, the singular point v62 = a, will lie close to the sonic

2
point. Naturally, for more than two strips, the discrepancy between
the singular points and the sonic points will increase as the shock
is approached. A similar result occurs for the blunt body problem

and is discussed in Ref. 22.
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3. THE BOUNDARY VALUE PROBLEM

The boundary values one must specify vary according to the
geometry of the body. Initially, we shall consider smooth cones
in the one-strip approximation. Other cases, including the two-
strip approximation, will be discussed later. In all cases we
shall assume that the cone is at zero angle of y'awl4 so that a
plane of symmetry exists. No new features are introduced by non-
zero yaw, however, so that the extension to this case follows
easily.

First let us investigate the elliptic cone at zero angle of
attack.15 In this case, for the correct solution of the two-point
boundary value problem, Eqs. (2.24) must satisfy the symmetry con-

ditions

ng(”JT/Z) = B(r/2) = ng('”') =g(m) =0,

where the argument in the above relations is the meridian angle

2 of Fig. 3.1. Since Eqs. (2.24) constitute a fourth order sys-

tem, the above conditions are sufficient to determine the solution
completely. Because of the highly complex nature of the system (2.24),
an analytical treatment is not conceivable. Hence let us inquire into

the procedure for a numerical solution.

The solution should start at the stagnation point (i.e., the
saddle point) since the entropy on the cone is constant and must be
determined by its value at crossflow stagnation points. In the case
of elliptic cones at zero angle of attack [0 is measured as negative
in the plane Py = 0 and positive in the plane oy =T (see Fig. 3.1) ]
the stagnation streamlines lie in the half-planes of symmetry (major
axis) P, = m/2, 3m/2 as shown by AB in Fig. 3.1. (For a circular

cone at angle of attack the stagnation streamline is on the windwaxrd
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Fig. 3.1 - Flow Pattern Around an Elliptic Cone
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side.lé) It is easily shown that in either plane of symmetry,

Ve = B =0 implies dvrb/di = dr/d€ = 0, and that if any two of
the quantities v, T, dVEb/dE’ or dB/df are chosen, the other
two may be found (a similar result does not hold true in the two-
itrip approximation). Thus, for instance, one may choose $rb and
T (the ~ will henceforth denote quantities at the coordinate of
crossflow stagnation points) as initial values and integrate

Eq. (2.24) from w/2 to T to obtain Ve and P at DC of
Fig. 3.1. If these are not zero, as is likely, an iteration pro-
cedure can be used to obtain the correct initial values and hence
the entire solution. This procedure is satisfactory for the case
when the crossflow is all subsonic. However, the situation changes
when the singularity in Eq. (2.24a) must be passed. If, as in the
case of the elliptic cone, the conical body is smooth and amalytic,
then we should expect the velocity distribution to be analytic
through the singular point v, = a,, and hence dvgb/dﬁ will be
continuous. At such points, then, we must satisfy the regularity
conditions Wi = 0. However, the boundary condtions require the
flow to be elliptic in the neighborhood of both planes of symmetry.
Hence, if one parabolic point exists on the body, then at least two
parabolic points must exist on the body except in the exclusive case
of a single sonic point (see Fig. 3.1). Thus, we find that both
initial values $rb and T are required to satisfy regularity
conditions at the two sonic points and no conditions remain to
satisfy the downstream symmetry conditions, where by downstream we
mean generally the boundary of the flow in either direction away
from the stagnation point. This eventuality suggests the introduc=-
tion of an inmer shock wave (Fig. 3.2) to bring about the transition
from supersonic to subsonic crossflow. As a consequence, the regu-
larity condition and one downstream symmetry condition can be satis-
fied by wvarying qu and % while the location of the inner shock

is free to satisfy the remaining condition.
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Region of Attenuation of Inner Shock (see text)

Second Sonic Line (cannot exist)
Inmer Shock

Supersonic
Crossflow

\

Outer Conical Shock

Sonie Line

Subsonic
Crossflow
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Cone Surface

Fig. 3.2 - Flow Pattern Around Elliptic Cone for Mixed Crossflow
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By introducing the inner shock wave we are undoubtedly strain-
ing the validity of the assumptions of linear wvariations across the
shock layer. In Ref. 14 various configurations were conjectured
upon for the flow structure in the hyperbolic region. 1In all of
these, it is possible that the inner shock will penetrate planes
£ = constant which certainly violates the linear assumption. How-
ever, it was also shown in Ref. 14 that insofar as the one-strip
approximation is concerned, all of these configurations are equiva-
lent to the case where the shock does lie in a plane £ = constant.
Hence, we shall assume that the introduction of the inner shock does
not violate the linear profile approximation. As we shall see this

is no longer possible in the two-strip case.

Because of the boundary condition at the cone, the inner shock
must be normal to the come suxface. Hence, the shock will produce
a jump in vy and correspondingly a jump in dvgb/dé (vfb remains
constant). By referring to Eq. (2.24), we find that if we impose

T = constant and B = constant17 at the value of £ corresponding
to the innex shock position, then the effect of the inner shock on
the main conical shock is to produce a jump in curvature (i.e., dB/df)
of the latter. Thus we see that the inmer shock produces no unusual
effects in the flo'w18 and theoretically may be easily incorporated

into the numerical solution.

The foregoing discussion applies to the elliptic cone at zero
angle of attack and the circular cone at angle of attack. However,
when the elliptic comne is placed at an angle of attack «, a new
problem arises; the stagnation point moves from the plane of symme-
try to a position which must be determined by the solution :i.tsel;E.]'9
On the cone surface, the stagnation point is determined by the condi-
tion Vep = 0. To see what this implies, let us yefer back to the

linear approximation for T, [Eq. (2.3)].

33



The expressions for T, and T, are (with v 0)

b~
PeVes = PpVey
PVe = PpVe, t n
and (3.1)
pvgy, =

At the stagnation point € = £, Vep = 0; hence

[a ¥ V) N Ny Tl
PV = PgVeg ¥

S
(3.2)
N Ny - LAY Mo _11
vavn = pSVeSvnS % .

Combining Eqs. (3.2) leads to the result Vn = ﬁns = constant
which is clearly impossible. Only if we allow %e to be identi-
cally zero can $ﬂb = 0 (in fact the distribution of $h becomes

undetermined, but easily can be shown to be linear). Hence, we con-

clude that the stagnation streamline lies in a surface ¢£
As a consequence of the requirement ?ES = 0, we find from Eq. (2.14)

cos E = V.  sin E . (3.3)

v
Ns

Ts
Using Eqs. (2.8) and (2.18), Eq. (3.3) reduces to a relationship

of the form

B = B(r, £) . (3.4)
Thus we see that the stagnation streamline does not necessarily
pass through the shock normally and also that within our approxi-
mations the stagnation streamline need not possess the maximum
entropy in the flow.
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This latter point has been the subject of recent controversy.
Vaglio-Laurin (Ref. 6) originally made the assumption of maximum
entropy on the stagnation streamline in his paper concerning the
solution of the two dimensional asymmetric blunt body problem by
the method of integral relations. Swigart, (Ref. 23) contested
this point of view and presented calculations showing that the line
of maximum entropy does not wet the body. However, the difference
between the body entropy and maximum entropy proved to be small.
Vaglio-Laurin (Ref. 24) noted this to be true in a later work by
a derivation similar to that above, but suggested that since the
difference is small, the maximum entropy should be assumed for
entropy on the body for the sake of convenience. Our results, al-
though for conical flows, tend to confirm these views but it is
this writer's opinion that the point is still open to question

since each of the methods used has been an approximate on.e.20

Now let us ascertain the effect on the numerical solution of
not knowing a priori the location of the stagnation point. First,
one aisumﬁsma iocation E fgr the sEagnation point. Since $€b =0
and 8 = B(r, €), we have 7T and V.4, &t our disposal to satisfy
the downstream symmetry conditions in ogne direction away from £
(see Fig. 3.3), say at CD. Note that during this integration we
may encounter the sonic point and inner shock wave mentioned pre-
viously. Once the conditions at CD are satisfied, we integrate
in the opposite direction to determine the conditions at AB. 1In
general, the symmetry conditions will not be satisfied here. Un-
fortunately, we now have only one parameter at our disposal to sat-

"]

isfy two conditicns at AB, that is, the location £ of the stagna~
Ny no S

tion point. Hence, we must adjust £, Vb and T in such a way

that the boundary conditions at AB and CD are satisfied, if this

is possible. Thus, it cannot be said with any assurance whether a

solution can be found for this configuration.
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Fig. 3.3 - Flow Pattern Around an Elliptic Cone at Angle of Attack
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Alternatively, the solution can be carried out by sarting at
AB (Fig. 3.3) and integrating up to CD using an assumed value
for the entropy on the body. By iterating on the value of the body
entropy (obtained in each step from the location of the stanation
point E), a solution satisfying the symmetry conditions can be
obtained. However, it is doubtful whether Eq. (3.3) will be satis-
fied at € = E, but this may prove to be the only way a solution
for this configuration can be obtained.

Let us now consider the flow over an elliptic cone at zero
angle of attack by the two-strip approximation. At the plane of
symmetry in the one-strip approx1mat10n it was found that the two
symmetry conditions V&b = B = 0, and arbitrary values of v b
and T were sufficient to compute the four derivatives in Eq. (2.24)
(two of which are zero). In the two-strip approximation, we have a

different result.

It can be shown from the coefficients listed in APPENDIX 1II
that at the stagnation point (which is in a plane of symmetry here),
the system of Eq. (2.30) reduces to:

dv dv
ke Eb , V& g EE -
J6 @t t Iy J12 & = I3
~k TEb Nk TE2 A A8 A
Jo Ta& tJ; TaE tIndE < i3
dv dv dv
M kb o X2 v _m2
Mg g¢ t Mg g +Myy g =0
x dv x dv X dv
rb r2 n2 _
Mg G * Mg g tMy g =0 (3.5d)
a dvgz + e E_E _ n
7 @t TRo@E T Qs (3.5e)
Fa _g-zl Fal g‘é _ Fay
G Ee Tlhra T Y3 (3.5%)
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where 5 = d;/di &b ‘EZ has been used. All the coefficients

in (3.5) depend upon v b’ Vr2’ v n2? and T. Now, it is easy to
show that the determinant of the coefficients of Eq. (3.5) is zero
so that the system (3.5) is singular. In fact, Eqs. (3.5c) and
(3.5d) form a set of two equations in three unknowns and Eqs. (3.5a)
(3.5b), (3.5¢), and (3.5f) form a set of four equations in three

unknowns. The solution of the former system is seen to be

dv dv dv
—~kb _ _x2 __ M2 _
at at - at -9 - (3.6)

The latter system, however, has a unique solution only if two .of
the equations are dependent. Equations (3.5e) and (3.5f) give the

solutions

(3.7a)

A

Wep _N3%p T Uske
& "2 x &
Q

(3.7b)

]
=

(3.8a)
(3.8b)

[a¥] [a "]

A*m [
Jg(J13 = J1oN AN - (3.9)
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Thus, since the coefficients in Eq. (3.9) are functions of Grb’

N N

Vo VnZ’ and 7T, we obtain a relationship, e.g.

[
(2%

= Vnz(Vfb, V.o T , (3.10)

vn2
and we see that although the number of equations has been in-
creased from four to seven by the addition of another strip, we
are at liberty to prescribe only six initial conditions in the
numerical solution, e.g., 7T, Vb’ Vo and Véb = Vg T B =20.
In general, the matrix of coefficients of Eq. (2.30) will not be
singular at succeeding points and Vﬂz can be found as part of

the numerical integration.

At the downstream plane of symmetry, we must specify
Vep T Veg = g = g. These conditions can be satisfied by varying
$r2’ $rb’ and T when the crossflow is all subsonic. However,
when the crossflow is mixed, we must again consider the appear-
ance of a shock wave. If the flow first becomes supersonic on
the body then the procedure outlined previously will work since we
have one new initial condition and one extra boundary condition to
satisfy. If the flow becomes supersonic on the strip boundary, the
regularity condition again absorbs the extra condition so that a
shock must be introduced to satisfy the downstream boundary condi-

tion.

On the strip boundary, however, the flow can no longer be taken
normal to the shock wave so that an extra parameter, namely, the
slope of the inner shock, is introduced. There is no criteria for
determining this quantity so that it appears that one mustcalculate

it from an assumed shape of the inner shock, for instance, a para-
bola.
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We emphasize here that the quadratic profile assumption for
the two-strip approximation almost certainly will be violated in
the vicinity of the inner shock. However, the method may still
provide useful results for the pressures on the body. This can

only be ascertained by comparison with known results.

Now, let us shift our attention to wing-like conical bodies
(sharp edges), for instance a flat plate delta wing. At small
angles of attack, the significant featurxres of the flow on the com-
pression side of the wing are as shown in Fig. 3.4. According to
Ref. 25, the sonic line AB is determined uniquely by the uniform
flow in the hyperbolic region ABC, so that we can restrict our
attention to the elliptic region ABDE. We shall also employ an
orthogonal coordinate system such that the plane of symmetry DE
and the sonic line AB are coordinate surfacele (see Fig. 3.4).
We assume that the calculation is to be started at the sonic line
AB, with conditions on AB determined from the hyperbolic region,
and to proceed to the plane of symmetry DE where the conditions
B = Vey T 0 are to be satisfied. Hence, we must have two quanti~
ties free at the sonic line. Physically, we expect these two quan-
tities to be dvgb/dﬁ and dﬁ/dﬁ.22 However, referring to
Eq. (2.21), we see that dp/df = Us
values of Vip? V&b’ T, B on AB and consequently is determined

is determined by the known

leading to, in general, dvgb/dﬁ becoming infinite. Thus, there
is no freedom of the initial conditions and we must conclude that
this is unsolvable by the one-strip approximation. It is easy to

see that similar reasoning and results apply to the many-strip case.

Generally it is true that any attempt to start calculations by
the one-strip approximation at a known sonic line will not succeed
because of the lack of freedom in choosing initial conditions. 1In
fact, it is impossible to solve for the flow over any wing-like con-

figuration (see Fig. 3.5) for the same reason. In these cases a
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Fig. 3.4 - Flow Pattern on Compression Side of Flat Plate Delta Wing
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solution may possibly be obtained, however, by taking the strips
normal to the body (Fig. 3.5) and using a coordinate system which
contains the plane of symmetry and either the sonic line or limit-
ing characteristic (Fig. 3.5) as coordinate surfaces.23 This
analysis has not been performed and is a subject for further inves-

tigation.

Now if the angle of attack is high enough, the shock wave will
detach from the leading edge and the flow pattern will appear as
shown in Fig. 3.6 (illustrated for the flat plate wing). In this
case we start the integration at the plane of symmetry AB (which
is now a stagnation point) with unknown values of (say) vrb and
T. The integration is continued up to the leading edge where we
must have a singularity corresponding to the sonic line CD. There-
fore, one of the initial conditions must be wvaried until the sonic
point lies at the leading edge of the wing. The remaining initial
value is then free to satisfy another condition. Vaglio-Laurin
(Ref. 27) has shown that the flow in the vicinity of the corner of
a flat-nosed body exhibits a boundary layer behavior and that on

_2/5

the body the velocity varies like (sc , Wwhere s 1is the

coordinate along the body and S the coordinate of the corner.
Hence the velocity derivative becomes infinite like (sc - s)-B/S.24
Extrapolating this result to our case, we see that the second initial
value must be varied until the flow in the vicinity of the corner
behaves according to a certain law. Unfortunately the corresponding
analysis for conical flow has not been carried out so that it is
impossible at present to prescribe the second boundary condition

precisely.25

Kennet (Ref. 10), as mentioned, has analyzed the same problem

but obtains a system of equations for which it is only necessary to

specify one initial value, say 7T, to obtain a solution.26 This

result is somewhat unexpected but a possible explanation is as follows.
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In Kennet's basic equations, the term corresponding to our dvrb/dE
is missing. However, by investigating the derivation of the equa-
tions it appears that this term can be removed only by the use of

the irrotationality condition, Eq. (2.23). Thus, if this equation

is used in addition to the result from the €&-momentum equation,

the effect is to reduce the system from fourth to third order and
hence only one initial condition is required. Kennet, however, has

obtained good results, which are hard to argue with.

This completes the discussion of the boundary value problem.
In it we have shown that not all conical flow problems can be han-
dled by the approximations employed (e.g., flat plate delta wing
at low angle of attack) and that others are questionable (e.g.,
moving stagnation points). It has also been shown that an unexpec~
ted phenomenon (inner shock)27 occurs for other geometries. In the
following section the numerical work performed to date will be de-~

scribed.
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4, NUMERICAL CALCULATIONS

Before proceeding with the discussion of the numerical calcu-
lations performed, let us now make definite our coordinate system.
Many orthogonal body-oriented coordinate systems are possible;
however, we shall employ a boundary layer type, that is, the
£ = constant surfaces will be taken as planes normal to the cone
surface. Intersection of the £ = constant and r = constant
surfaces then form great cixrcles on the spherical surface. The
coordinate 7 then is analogous to the polar angle of a spherical

coordinate system, to which it reduces for circular cones.

With this definition we have xn = 1 and (Ref. 29)

Xg = €08 T = Kb(i)sin n ,

where Kb(E) is the nondimensional principle curvature of the
conical body.28 In what follows, we shall refer the body-oriented
system to a spherical coordinate system (see Fig. 4.1). Kb(i) = Kb(wb)

can then be expressed as (Ref. 29)

3 2
f 9 CcoSs 6b d Sb
Kb(¢b) = = 1(l + sin ﬁb)cos 8, cot eb - > } , (4.1
sin Qb dmb
where the body is given by
and
ds
1 b
tan 5, = —% . (4.3)
b sin eb d$b
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The relationships between the
by

cos 8 = cos &, cos
s b

sin(@b - %)

8

sin 5 = sin
s

Other expressions which are necessary to calculate Q

)

two coordinate systems are expressed

sin eb
cos © dcpb (4.4)
b
T -~ cos & sin 6, sin T (4.5)
= o sin T
sin & oin 5 (4.6)
sin eb
% s, %.7)

1 through

8 are found in APPENDIX TIII.

To determine what accuracy could be expected from the method

of approximation, we first investigated the case of a circular

cone at zero angle of attack.

nate system reduces to a spherical polar system.

For this configuration the coordi-

To simplify the

algebra we have actually used the latter system for this case. As

mentioned, there are two ways to write the basic equations, and a

secondary purpose of the present analysis was to ascertain the rel-

ative accuracy of the two.
IBM 7094 computer.

All calculations were performed on an

In a spherical polar coordinate system, the basic equations

can be written:

Method 1

d
Eg(pve_sin 6) = - 2pvr sin ©

(4.8a)
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d ~y~1 2
35<%$~ P + pve) = - pv (3v_ + v, cot 6) (4.8b)
%+ v =1 (4.8¢)
P
E_9_ constant . (4.8d)
44 Y
o' o

Method 2

Equations (4.82), (4.8c), and (4.8d) remain unchanged and
Eq. (4.8b) becomes

df,x-l 2o o] o XL _ o
8[(27 P + PVé)Sln 9] =7y P cos 9 3pvrv8 sin 6 . (4.9)

Performing the integration between eb and GS, we obtain

the relations

PsVas sin SS + [psvrs sin O + PRV sin eb](es - eb) =0, (4.10)
and
yoL
2 2y .
Vo T 1 - 1 A s (4.11)
where
A = B/C (4.12)
I i T~ 3 - .
B = 27 P + p v8 )sin 6+ [2 PgVpgVpg ST 85
(4.13)
(v l)2 rls P cos 6_ + (v 2) 2 cos 68 ](8 - 6.)
2y 2 Vos s L} b
C = [(v~2)2 sin &+ (v-l)z(sin 6, + L cos 6, [ = ¢ ])] (4.14)
s b 2 b s b ) :
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Here Vv =1 denotes Method 1 and v = 2 denotes Method 2;

pS = pS/pO, PS = PS/PO'

The solution is obtained by choosing 5y calculating v,
from Eq. (4.11) and substituting this result into Eq. (4.10)

until it becomes equal to zero. The results of some sample cal-

b

culations are presented in Table 1 along with the corresponding
exact results from Kopal (Ref. 12). It can be seen that both
methods give results which become increasingly more accurate as

M and Qb increase, with Method 2 being consistently more ac-
curate. By comparing the difference between the results of Method 1
and Method 2 and the exact results of Kopal with the quantity

M, sin 6, we see that for M sin 8, > 1 we obtain good accuracy.
This corresponds to the "strong shock" condition of Hayes and Prob-
stein (Ref. 22) so that we may anticipate reasonable results in the
general case when the "strong shock" assumption is satisfied locally.
It is gratifying to observe that Method 2 gives the more accurate
results since in the general case the equations written with the
weaker condition on body curvature should then also give more ac-

curate results.

The first case we chose to test the applicability of the metﬁod
to nonsymmetric flows was the circular cone at angle of attack. How-
ever, before proceeding it was decided to first test the numerical
sensitivity of the equations by trying to reproduce the zero angle
of attack results using Eqs. (2.21) and Eqs. (2.24). To carry out
the calculations we first transformed the equations, in a manner
similar to the regularization technique of Temple (Ref. 30), in order
to eliminate the violent oscillations which occur if a singular
point is inadvertently passed. Using Eqs. (2.24) as an example [the
same transformation holds for Eqs. (2.21) ],we write, using $£ as a

new independent wvariable
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dvgb _ sin Sb Q4

=¥ (4.15a)
d¢b 1 cos & Q4(0)
2
dv sin 6, Q v
rb - b 4 _ _ﬁ_
do. Véb cos 6, Q, (0) Cl a2b> (4.15b)
b b
Q:L _ sin Qb Q4 _ E_
dmé = R Cos 5 Q4(0) (1 a2b> (4.15¢)
b
2
(Q -Q,R ) sin &5 v
s _ s 375/ 7 b _Vep
de.  @(0) cos tb ¢ a2b> (4.15d)
b b
= g 12@_1;) (4.15¢)
YT - . 156
PR HORC

All we have done here is to remove all the possible sources of
zeros from the denominators of Eqs. (2.24)29 and grouped them into
the new independent wvariable ¢é. The singular ?oint Vey = ab or
(possibly) Q, = 0 is now determined by d¢b/d$b = 0. If either of
these cases occurred, the program was made to stop and indicate which

condition prevailed.

The case chosen to test was: M = 5.5457, Gb.= constant = 20°,
v = 1.405. At zero angle of attack the solution of Egqs. (4.10) through
(4.14), when carried out to the limit of machine capacity (with single

precision arithmetic), provided the following solution:

o, = 24.520304918°
Vo = .849812187
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Previous experience showed that the solution is more sensitive
to vrb(O) than to T(O)-(QS(O) - eb); hence the following values
wexre used as initial conditions for both Eqs. (2.21) and (2.24) (trans-

BB B BB e

formed):
T(0) = 4.520304918°
Vep = . 84981209 Gase 1 .
= ,84981219 Case 2
= .84981229 Case 3

The rather distressing results are shown in Figs. 4.2 and 4.3.

As can be seen from Figs. 4.2 and 4.3, the solutions proceeded
smoothly near zer030 up until a certain point at which the solution y
rapidly blows up to sonic velocity or reaches P = 180° with in- ?

correct values. We can conjecture from this that two factors are at

work to cause the disintegration of the solution. First, not enough
significant figures have been retained in the calculation. This is
apparent from a close inspection of the results neat % = 0. For
Eqs. (2.24) with Case 2, we find a slope dvgb/dmb of about
1.4 x 107>, Changing v, (0) by +07’

about =5.5 x 10_2, a factor of about =4000. Secondly, as the cal-

changes this derivative to

culation proceeds a further loss of significant figures can cause the

sonic singularity to become influential, resulting in a complete break-

;
%
;
.

down of the solution.

In conclusion, it seems apparent that the solution of either

Egs. (2.21) or (2.24) requires the use of a double precision method
of solving simultaneous differential equations. Such a system is not
available presently at Grumman, hence the calculations cannot be com-
pleted.Bl In any case, even if such a scheme were available, it is

doubtful whether the method "as is" would be of practical value since
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it would require the choice of two initial conditions by the user,
whose values must certainly be correct to 9 or 10 significant fig-
ures. If practically useful solutions can be obtained by the method
of integral relations,32 it appears necessary to choose the strips
differently, as mentioned on page 43, or to introduce additional
approximations as Mikheev (Ref. 31) has done.
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5. SOME OTHER APPROACHES TO THE PROBLEM

In this section we shall describe some othexr approaches to the
posed problem which have been investigated during the course of the
contract work. These include the solution of the inverse (shock

given) problem and the linearization of the equations.

The solution of the inverse problem of conical flow, that is,
given a shock wave to find the body which produces it, has been:
attacked previously by several authors (Refs. 33, 34, and 35), using
a step-by-step numerical solution of the governing partial differen-
tial equations. It was felt that a similar solution, using the
method of integral relations, might be useful, at least for compari-

son, since these are the most exact solutions known at present.

The governing equations for the inverse method can be obtained
by manipulating Egs. (2.24) so that derivatives of the quantities
specifying the cone surface, eb and 6b appear. In addition,
it was found to be convenient to retain the angle £ as a dependent
variable. The angle o has been used as the independent variable.
Carrying out the manipulations, we find the governing equations

Pk Vi e i S goog 1 i
5(-3) G, 23, T e, T Tudwm T s
3,
dv .
—xb = iy
do 5
b
. T
i. d8 , i b _ 1
Yag ¥ g T GD
. . ds
a8 i —b - 1
®, dp, ¥ P de, T Ry
do
£ _ iy
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where the coefficients are listed in APPENDIX 1IV. Note that the
irrotationality condition on the body has been used here.

The properties of the system (5.1) are much the same as those
for Eqs. (2.24). For instance it can be shown that Vi = B, = 0
at a plane of symmetry implies B = 0 so that the free initial
conditions are eb and Vip ' Also, the singular points lie at
crossflow sonic points. However, if one desires to pass through
the singularity of Eq. (5.1), one again runs out of initial condi-~
tions to satisfy the downstream boundary conditions. Thus, some
nonuniformity is required downstream of the singular point. By
inspecting Eq. (5.1) and the coefficients listed in APPENDIX 1V,
we see that it is again necessary to have an inner shock wave
somewhere downstream of the sonic point. In addition, we must
also have a jump in the curvature (dﬁb/d¢b) of the body at this

point.

Thus we see that in mixed flow, according to our approximate
equations, an analytic body produces a nonanalytic outer shock and
an analytic outer shock produces a nonanalytic body. Due to the
afore-mentioned computational difficulties, this case has not been

investigated further.

The second approach we will discuss is the solution of Eqs. (2.24)

by linearization. This has not been investigated in any great detail

until now, but since it may form the basis for future work, we will
outline the method. The following discussion is an expansion of the
work reported on in Ref. 36. First let us rewrite Eqs. (2.24) in
the form

dxy
EE_ = fi(xi; Eu POb) P) (52)

where X} = Ve Xy = Vope X3 T T, and x, = B. The fi are
self-explanatory. Note that the explicit dependence on POb has
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been indicated. Now, assume that some solution x(o) is known,
which presumably satisfies the boundary conditions, and which is

assumed to be near the correct solution. Then, we can represent
the correct solution as

T Xj(_O) + ¥ Iin/IXj(_O)I K1l. (5.3)

Then, substituting Eq. (5.3) into Eq. (5.2), we obtain

% = ﬁi(O)(E) + % cig)(g)yj +P (), (5.4)
j=1
where J
Ot - (O - S o
and
ei ) (£) = 85 @ (5.6)

1

The Pi(ﬁ) term arises from the fact that the total pressure on
the cone surface is unknown and this forms one point of departure
from the two dimensional solutions of Vaglio-Laurin (Ref. 6) where,
as mentioned, one could assume the entropy on the body is the maxi-
mum flow entropy. In this case, the entropy is determined at cross-
flow stagnation points and hence, from Eq. (3.4), it must be related

to §3. It can be shown that the P.(£) term then has the form

e @ =D @D ®y, (5.7)

The coefficients of the above equations will not be listed
here. Let it suffice to say that they occupy a quite substantial

amount of space.
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At present no detailed discussion of Eq. (5.4) for the mixed
flow case will be undertaken. It is obvious from Ref. 6, however,
that in the vicinity of the sonic point one must perform a PLK
type of expansion and that solutions in several different regions
must be matched. In addition, some iterative procedure will be

necessary to account for the @, (£) term.

In the all subsonic case, however, it is possible to obtain a
solution to Eqs. (5.4) in terms of a Green's matrix. Briefly, the

solution to the vector boundary value problem

—

dy - - -
3F = <(Oy + HE) , (5.8)

subject to the boundary conditions

My@ +Nym =0, (5.9)
where (a, b) 1is the interval of interest and M and N are
constant matrices, can be written (Ref. 37)

b
y(& = | T, niwav . (5.10)
a

Here, E(W) = 5(0)(¢) + E(HJ(w) where F(n)(¢0 correspondé to
the nth approximation to the total pressure on the body. The

matrices M and N can be written

(5.11)

=il
I
© o o
o o o o
!
o
C O = O
=]
i
o = o ©
o o o o
o o o o
= © © ©
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where k = 0 1if the stagnation point is fixed in a plane of symme-
[a¥]
try, and k # 0 if the stagnation point is not in a plane of sym-

metry. G(t, ¥) 1is the Green's matrix given by

J?Eca)?l(w + oI p<E

G(E, W) =3_ _ (5.12)
F(5HTw) vk,
where
- = = == == =
J(@ = - Ma(@) + No(b)] Nad)e “(¥) , (5.13)
and g(ﬁ) is the solution of
ﬁ% = c(t)d with o(a) =1 . (5.14)

where f is the unit matrix.

Now, in the case of the circular cone at angle of attack,
a=0, b=, the stagnation point is fixed and the necessary
iteration procedure is straightforward. But, for the elliptic
cone at incidence, we encounter the same difficulties mentioned
in Section 3, that is, we must apply Eq. (5.10) in the region

[a¥] [a ¥}

from € to 7 and again from £ to 0, and match the solutions
at £ = £, However, we again have the problem of matching two
quantities with one free parameter (€) so that the method ap-

parently will not work in this case.

As stated previously, neither of the methods discussed above
has been carried to the computational stage. They may be of in-
terest for future work, however, particularly the linearized so-

lution for the circular cone over a wide range of angle of attack.
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10.

6. FOOTNOTES

The extension of the method to a real gas in equilibrium, while
perfectly feasible, only tends to complicate the analysis and
except for very strong shocks should not greatly influence the
results obtained.

It is possible to linearize but this brings up new problems.
These are briefly discussed in Section 5.

In addition, the coordinate system should take into account any
known conditions of symmetry. Aside from this, it can be arbi-
trarily chosen.

This is possible for quite arbitrary coordinate systems (see
Ref. 14).

This is convenient but not necessary.

By strips we mean, of course, the regions into which the shock
layer is divided by conical surfaces lying between the shock and
the body.

This is equivalent to using the trapezoidal role for integration.

In fact, Melnik (Ref. 15) has shown that Js/on = « (s = entropy,
n = normal coordinate) for circular cones at small angle of attack.
However, this solution comes from an analysis of the entropy layer
and thus, while Kennet's assumption may be rigorously incorrect,
the fact that the entropy layer is so thin probably does not
affect the over-all result.

This requirement would not appear to be important. However,
Koppenfels (Ref. 17) has shown for two dimensional, incompres-
sible flow that strong local accelerations occur near jumps in
curvature. In order to pass such jumps in the present case,
the local behavior of the veloecity must be known, but this
problem has not yet been solved.

We shall refer to velocity components tangent to spheres

r = constant as crossflow components of wvelocity. When re-
ferring to streamlines or sonic lines we mean the intersection
of stream surfaces and sonic surfaces with spheres r = constant.
Similarly, reference to points means the intersection of conical
rays with spheres r = constant.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Chushkin and Shchennikov have used a spherical coordinate
system. However, the discussion which follows is carried
out by using the present system of equations as an example.

This difficulty can also be overcome by using the condition
of irrotatiomality which is wvalid everywhere in this case
instead of the momentum equation. Holt (Ref. 18) has done
this in his calculations for nozzles.

Note that this assumption is not valid everywhere in the flow
field in contrast to Holt's (Ref. 18) nozzle calculations
wherein the eptire flow field is irrotational.

Note that we have distinguished between angle of attack and
angle of yaw here.

In the present context, the circular cone at angle of attack
has the same features as the elliptic cone at zero angle of
attack.

We shall consider only cases where there is one crossflow stag-

nation point in the region of interest. Extension of the fol-

lowing discussion to more than one stagnation point is possible

but considerably increases the complexity of the analysis.

This allows dva/dﬁ downstream of the shock to be calculated.

This is true in our approximation. Actually, the outer shock
is affected by the inner shock through some attenuation
process which is beyond the scope of this discussion.

As the angle of attack increases, the stagnation point will
move from the major axis of the cone until it reaches the

minor axis where it becomes stationary again and the preceding

discussion holds. This is for the case when the angle of
attack vector lies in the plane of the minor axis. If the
angle of attack wvector lies in the plane of the major axis,
the stagnation point will always lie at the major axis on
the windward side.

We note here that the assumption of maximum flow entropy on
the body is of no use in conical flows since we do not know
this quantity anyhow.

It may not be possible to comstruct such a system beforehand,
but it can be determined along with the solution.
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22.

23.

24,

25.

26,

27.

28.
29.

30.

31.

dvgp/dfé  can be shown (Ref. 26, APPENDIX III) to be finite

at point B on the subsonic side. dB/dé which is essen-
tially the curvature of the shock, must jump since the segment
AC 1is straight.

Depending on the geometry, one or the other may be the correct
boundary to take for the elliptic region (Ref. 25). Generally
the calculation should include both the elliptic region and
transonic region, if any.

Note that Belotserkovskii (Ref. 5) has employed the regularity
condition for this case and obtained good comparison with
experimental results. This agreement may be due to the fact
that the regularity conditions gives a velocity derivative
which while finite, is very large.

Note in Fig. 3.6 that the flow on the rear side of the wing is
unknown and is immaterial for our purposes.

In this case one only need specify that the singular point is
at the leading edge.

This is not entirely unexpected. Many authors have conjectured
the existence of this shock on the lee side of a flat delta

wing and Tracy (Ref. 28) has obtained a similar shock experi-
mentally, although the strong viscous effects on his experiment
mask the true origin of the shock.

The actual curvature = er(E).

The QQ(O) term is included solely to make d¢b/d¢£ = 1,
1

Q,=0

The oscillations seen at the higher values of ©¢,_ in
Fig. 4.3 were also present for smaller values of N but
with negligible amplitude.

Attempts to obtain a solution at o = 5° were made, but the
severe dependence of the initial derivatives on the initial
conditions made the proper choice of the latter impossible.
We also mention here that the reverse scheme was also tried,
that is, to pick the derivatives and calculate Vfb(O) and

T(0). However, this required the iterative solution of trans-~
cendental equations which, due to the necessity of picking an
error criterion, also introduced errors causing the subsequent
disintegration of the solution. Various accuracy criteria in
the solution of the system of simultaneous equations were also
employed but produced no improvement in the results.

69



32.

Chushkin and Shchennikov (Ref. 9) and Holt and Lee (Ref. 32)
have obtained solutions by the method of integral relations.
However, they used different formulations and did not comment
in detail upon the numerical difficulties encountered.
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APPENDIX I

COEFFICIENTS OF THE ORDINARY DIFFERENTIAL
EQUATIONS (2.20) FOR THE ONE-STRIP APPROXIMATION

= TPban

_ PpVrpYepXnp!
2
b

a

T[sznsvﬁs + QBPSVES + szsxns] + (TlL - Tls) (I-1)

( o
L.
TlKlb'*'Kls X FS1 b (lensvﬁs*'ﬂ7psvﬁs+ Dlxnsps) ls
= TPpVepXnp
v2
- ﬂ
prvrbxnb 1+ a%

(e 24Xl ] . [¥-L 2 ]
T[ E —*-G + 2p Vg ZJX 4-T2b TZS*-TQSLZV Ps*'psvisj (I-2)

T[F 2y Xl 4 ]
BVES 2y 73 P VES 31X

P 2 v-l _
T|(= F)Veg = 3y O " 2PgVegD) g F Kop F Kz 2594
y-1 2 ] y-1 2 1oy
- T{[zv Pyt PgVeg )% + 5P + PpVen gt }
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where

and

_sznsvisvns + QSpsvﬁsvns + szsxnsvns + Ezpsxnsvﬁs] - T3

]
_F3xnsvésvns + DBPsvnsxns + E3psxnsv€sJ

J _[
T1K3s + Ky [lensvﬁsvns + Q7pst.svns + Dlpsvnsxns

] -
+ Elpsxnsvﬁsl} T 28y, - S34)

A, = X q 3

co

Sl
—= « Q, tan(x = B)

)
A.2 =X E: - 94 tan(x - B)
Ay =X tan(x - B)
2 2
2y o |1 ViNeo ¢vﬂm
0 2 - and, - rnPa - V)

==
il

1 meB cos(x - B) + Ql sin(x = B)

=]
[

9 = qmﬂ4 cos(x ~ B) + Qz sin(x - B)

B3 =-q_ cos(x - B)
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.——-LQ.V + B,v | + v 5_92 cos(x ~ B) - QAVTW.} (1-6)

= B1 cos B - Cl sin B
= B2 cos B - 02 sin p (I-7)

= (By = vy Jcos B - (03 + Vo )sin B

B, sin B + C1 cos B

1

32 sin B + 02 cos B (1-8)
(B3 - st)sin B + (03 + st)cos B
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pOs a2
s

Ps

sVps T Dlvis + Elyns)}
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s
By v
G, =P 5;- B —E(Qﬁvrs t Dy EZVnS)
s ag
G P[b— Lo +Ev)}
= - e v .
3 slPoS az 3%Es 3'ns

Above, we have written, for example

dp

_0s _ dr )
de ~ A tA T A T

Similarly, derivatives corresponding to B, C, D, E F, G are

those of Vipg? VNg? vgs, v

ns’ Pg? and Ps'
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APPENDIX II

COEFFICIENTS OF THE ORDINARY DIFFERENTIAL
EQUATIONS (2.30) FOR THE TWO-STRIP APPROXIMATION

NOTE

The total pressure on the strip boundary 1 = 47(€) 1is denoted
2 in the following. The value of 8,, as noted in the text,

not given by the system (2.30) but must be determined independently.
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APPENDIX III

DETERMINATION OF

1 THROUGH ¢Q

8

The radial component of wvelocity at the shock wave, Vyg?

be expressed

= = J’cos 8 cos -~ g8in 8 sin o co
Ves Vew le s a s si cos ¢S}

Hence, differentiating, we find (using Eqs. (2.19))

aes a¢s
95 = Voo SE—-+ Vo 510 O 3%
36 o9
= ——S 1 —-i
Q6 ve°° ST + V@m sin 93 F -

Then, we find from Eqs. (2.19), (2.9) and (2.10)

v
= - =E2
Q]. q, QS
v
= - k=
Q2 q_ n6
Q, = —1 avgg - El tan x
3 q_cos x of q,
ov 9/
1 T %
& = q_ cos x OT q, tan x
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90 1
gg- sin 881(s:.n Qb cos T + cos ﬁb cos eb sin T)sin 6
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39 cos © 0526 ds
s b . sin T 225 % b
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Also, from Fig. 4.1
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APPENDIX IV

COEFFICIENTIS OF THE EQUATIONS OF THE
INVERSE METHOD

The shock wave is defined by 6 = 95(@5)

]
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‘ (Iv-1)

J p- de sin 6
-—3'r +r _i.._S}..mz b
r; 3 4 Py dCPS cos Enb
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a p, do
) J’COS b _& ) .
lsin eb r2 + r4 P, dCPS -+ T, tan B k2 sin Ttisin eb tan Bb

™

= = T{Zpsvrs[cos T - (kl + k2 sin 6,, tan ﬁb)sin' T] + Zpbvrb

+ [x61v€.s + x41ps]} - Zpsvns[cos T - (kl + k2 sin Qb tan 6b) sin T]

= T{Zpsvrsk3 sin T

l-l h
=-T{[I—'P + p 2

2y b bYeD |
v-1 2 ]
+ {27 Py + PgVeg|

= XgoVeg ~ x42ps} + 2psv_qsk3 sin T

(Iv-5)
[1<1 + k2 sin Qb tan ﬁb]

[sin T + (k‘l + k2 sin 6, tan ﬁb)cos 7]
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‘?’P’Y

T

~— r- e

+ BPSVrSVns[COS T - (k1 + kz sin 6, tan Bb)SLn T]

fx-1
+ XleEsvns + X4lpsvns * x51psv€s} + 212v b

- {l:l P +p v%s][cos T = (k1-+ k2 sin Bb tan 6b)sin T]}

2 s 5
(Iv-5)
Cont.)
N %! 2 o o [l 2] (
me = T{lZT Pb + pbvebJRS + |27 PS + psvgsjk3 cos T
- 3pS\J']__SW.)'T]S‘K.3 sin T + xszvgsvﬂs + x4295vns
+ + 2{1:3 P + z 1k in T
X50PsVeg 2v ts T PgVeg|T3 SID )
The rj come from the relation
Py b b %
which is obtained from Eq. (4.5). Thus
rl = COS Gb sin T + cos Eb sin eb cos T
r, = - {sin 6y, cos T + cos 5 cos 6 sin T} (IV-6)
r =

3 sin ﬁb sin eb sin T

sin 6 .

8
The k.j come from the expression for K , Eq. (4.1) which can be
expressed

d@b de

K= + k, 50— + kg —
b kl k2 dmb 3 dmb
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where

kl = = (1 + sinzﬁb)cos 5, cot @

b b

b

.2
sin eb

2 .
cos Bb sin 5, cos QE

cos B
k, = 'T_‘_h
3 sin 6
b
The pj come fxom the xelation
do dﬁ do ds
s _b b
P Go. =P *p +p +p
1 d@b 2 3 d¢b 4 d@b 5 d@b
which results from Eq. (4.6). Here,

do do sin ¢

s 4 S b
Py = cos 63 d¢s + T, cot T sin © EE— + Sin T
sin &
Py = Sin 1 08(% = 9
Py = cos B
Py = 7 sin 53T—I cot T ~ cot eb}
r
-
Ps 7. cot T sin GS
1
where
de
5

tan g = —=
S sin es d@s
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In addition, from the results of APPENDIX III we find

Eﬁ
%'

ds,_
@ =t + o &,
where
er
E B117 " g s
. f12°7q, s
Vrm
B21 = "¢ %1

e o 11,1 _tanx

31 q_ cos x q_ 11
- 511, 2 _ tan x c

32 q_cos x q 12 (Iv-10)

SlZ, 1__ tan x ¢
q, cos ¥ q 21

oo

51 = s31'veoo + 541V¢w sin es

t52 = 532veoo 4 542V¢m sin es
t61 = sllv800 + SZlvcpm sin GS
t62=0 .

95

rt
-~
i—l



The Sy 1r S4,p come from the expansions of bGS/BT, etce. For
instance ,BGS/aT = 5195 aes/aa = 84 + s3z(d5b/d¢b).

s17 = BQS/BT
891 = 30 /3T
831 = zig-gg{sin Qb cos T + cos ﬁb cos Qb sin T}
oy = - sin ﬁbszzsaéh_sin T
s
o :Zz ZE + Sin &g E%%(;s - ¢b) sin B, ot 9. 84
S42 = sin es" i%%(gs - ) {Si“ O, cot Og83;, ~ :?.:1 zi} (1v-11)

J
tan Sslcot eb sin 6b 331 cot es

851 %
c0326b
S52 = T tan 5s'COt'esSBZ + cos BS sin SS
1s)
s = —=
61 T

541 = v, sin a cos $3541

572 = V; sin o cos ¢Ss42
ov

3 = ——t

8l oT
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i—l

899 = " Vi.,S32 + vwm cos 88542
e
10, 1 or (IV-11)

(Cont.)

$11, 1 = (veoo cos b = Vo Sin 65)551 + sin ﬁssgl + cos 63571

811, 2 = vy, cOS B = Vo sin 58)552 + sin 6 _sg, + cos B_s-,

ov

L T

12, 1 oT

The xj come from expressions of the form

dﬁb
Al’ Bl’ er. = le + sz EE;
AZ’ A3, B2 ... are independent of the body geometry because
tj2 =0 for j even. Hence
t
- xl-lLl _ -
%11 quw tqy tan(x - B)
t
S ot VA -

(Iv-12)

X517 = 4 t31 cos(x -~ B) + tll sin(x - B)

X9y = qmt32 cos(x - B) + t12 sin(x - B)
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1 Yol
v 2 s Vew T Xop Vi, ]+ Vgl cos(x - B) t31VTm]}

N PPl § -8y -
Vol 2 L Es2Vee ¥ XopVp ] F Vg [y, cos(x - B) tszvrm]}
X,y COS B~ x3l sin B

Xy, €OS B - X39 sin B

x21 sin B + x31 cos B

Xoo sin B + X4y €OS =

Pslgii - :E[t5lvrs + x4lv5§ + XSanS]}

pslzﬁf ) jz[tSZVis T XyVes t X52vns]}

Ps{gii - jg[tSIVrs + X41Veg T X51Vns]}
LT

Y
[tV F X, Ve + X_.V ]} .
slPOS ai 527rs 427 ¢€g 52%ns
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