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ABSTRACT

A discrete stochastic optimal control model of the human operator is developed for the
single-loop compensatory and pursuit tracking situations. The model generates signals cor-
responding to those in the physical closed-loop tracking situation. Thére is one primary
model parameter which is varied to match model-experimental normalized tracking error at a
bandwidth of B= 1. 0 rad/sec for an input which approximates a rectangular spectra. With
this parameter fixed, the model then predicts normalized tracking error and power spectra
of control loop signals across a range of input bandwidths of 0.5 to 2. 0 rad/sec. The model
is applied to simple first- and second-order controlled elements in both compensatory and
pursuit display situations.

A comparison between model and experimental normalized tracking error and power
spectral density data confirms the model capability of matching and predicting operator per-
formance with sufficient correlation to warrant its application as a tool in manual vehicular
control system design, Furthermore, the success of the model substantially confirms the
hypothesis that the human operator behaves in some optimal manner when performing in a
closed-loop tracking task.
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SYMBOLS
a plant time constant
b plant gain
e=x-1 gsystem error
i= Xy forcing function input
k noise filter gain
8 Laplace transform variable
t time
u control input
X=X, system output
Xy intermediate noise
X, system velocity
A A matrix
B B vector
Gi{n) feedback gain matrix
J cost function
K(n) estimation gain matrix
N number of samples
Q convariance matrix of plant noise vector
R convariance matrix of observation noise vector
R(T) autocorrelation function
S control weighting
T sampling period
v state weighfing matrix
v observation noise vector
w W plant noise vector
X state vector



AFFDL-TR-70-129

SYMBOLS (CONTD)

X conditional expectation of X

Y observation vector

w5 forcing function bandwidth or nolse filter time constant
w frequency (rad/sec)

T f variance of forcing function input

0’% variance of system error

O’i variance of control input

0-(21 motor noise variance

a-‘zr observation noise variance i=1, 2, 3, 4

i

¢ state transition matrix

¢ (w) power spectral density (PSD)
E [zl y] expected value of z conditioned on knowing y
E {z] expected value of z
2 {z(n), z(n-1), ... , z(o)}
NTE normalized tracking error = O‘fj/ Gf'
Yc(s) controlled element transfer function
db decibels - 10 loglo ()
nT time increments n=90, 1, 2, ... , N
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SECTION 1

INTRODUCTION

1. BACKGROUND

In the early 1950s, designers of manual vehicular control systems (pilot-aireraft,
operator-automobile, gunner-gun platform, etc.) bégan to determine the feasibility of
describing the control characteristics of the human operator in such a manner that the re-
sults could be incorporated with the concepts of servomechanism design theory. With such
a knowledge of human-operator characteristics, the designers could design the remaining
system components about these characteristics to approach or equal some predetermined
performance level.

The human operator's control characteristics should be studied only under carefully
defined control situations if universal results are to be obtained. The control situations
which have received the most atiention are those in which the human operator is involved
in a closed-loop control task such as stabilizing a vehicle subject to random disturbances

or tracking a random appearing input signal by controlling the vehicle,

As recognized by McRuer (Reference 22: 3)1, a unique control characteristic of the
operator cannot be expected, since a description of the operator will depend on at least

the following factors:
a. The dynamic characteristics of the vehicle being controlled.

b. The particular disturbance or input signal; such as its predictability and frequency

content.

¢. The actual individual reaction times, thresholds, etec., of the operator during a

particular control situation,

d., The motivation, attention, training, and psychological condition of the operator at
the time of the experiment.

The human-operator modeling concept has been to assume that the operator is well
motivated, attentive, well trained, and that psychological conditions do not affect the
operator characteristics. The models have been developed with parameters which can be
varied to account for factors a, b, and ¢ above, After a description of the types of manual
control systems congidered for modeling purposes, reference will be made to some of the

more successful models,

1Indicates the item and page numbers in the Bibliography.
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2, TYPES OF MANUAL CONTROL SYSTEMS

The control situations that have received the most attention are the single-loop compen-
satory and pursuit tracking tasks where a random signal appears either as a vehicle distur-
bance to be stabilized by the operator or as an input signal to be tracked by the operator-
vehicle combination. The single-loop compensatory and pursuit tracking situations are de-
scribed by functional block diagrams in Figure 1, Since only the tracking (not stabilizing)
gituation is considered in this investigation, the figure represents the tracking task, Here,
a stationary random forcing function i (t) is applied to the system input. The operator has
control of a manipulator whose output u(t) acts on the vehicle (controlled element} to pro-

duce the system ouiput x(t}.

The primary difference between compensatory and pursuit tracking is the nature of the
display presented to the operator (Figure 2). In the compensatory display, the operator is
presented with an indicator showing only the difference or error e(t) between the forcing
function input i(t) and the system output x(t). The operator's task is to minimize the error
by trying to keep the error indicator superimposed on the stationary zero-error reference.
In the pursuit display, the operator sees both the forcing function input and the system out-
put. Again the operator's task is to \minimize the error existing between the location of the
input bar (target) and the output bar (follower) by pursuing the target with the follower.

3. EXISTING MODELS

Reference 9 presents an inclusive hibliography pertaining to modeling the human operator
as an element in a control system tracking loop, Works of special note are denoted by two
asterisks, and of the 65 modeling papers only two are so denoted. The first is the quasi-
linear describing function model (Reference 19) and the second is the sampled-data model
originated by Bekey (Reference 3). Modeling work has, for the most part, persisted in the
quasi-linear describing function approach with some exceptior= (References 8 and 12). One
notable exception has been an optimal control approach to modeling developed by Kleinman et
al (Reference 16). The assumptions and details used in deriving each of the referenced models
will not be discussed here since they are readily available in the literature. A few comments
will be made, however, on the general concepts of operator modeling which have been basic
to all the modeling work undertaken and on some of the problems encountered.

The general approach to modeling the human operator has been to match the experi-
mentally obtained output response of the operator with a response generated by a model
which has been subjected to a similar input, The forcing function most commonly used is
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VISUAL OPERATOR SYSTEM

STIMULUS OUTPUT OUTPUT
SYSTEM i(t) HUMAN u(t) CONTROLLED | x (1)
FORCING DISPLAY I——— oopRATOR "1 ELEMENT

FUNCTION
X (T)T

a. Functionol Block Diaogram of o Pursuit Control System

VISUAL OPERATOR SYSTEM
STIMULUS QUTPUT OUTPUT
i) elt) HUMAN ult) CONTROLLED | (1}
S —
DISPLAY OPERATOR ELEMENT

xf{t)

b. Functionali B8lock Diagram of a Compensatory Control System

Figure 1. Functional Block Diagram of Single-Loop Tracking Situations



AFFDL-TR-70-129

System Error
elt)=ift)-x{t)

Stotionary Reference

a. Compensatory Display

System Input
(Target) tSystem Error
System OQutput
Stationary {Foiiower)
Reference

b. Pursuit Display

Figure 2. Compensatory and Pursuit Displays

a stationary random appearing time signal so the operator cannot predict future input data
and must operate in a continuous feedback tracking mode., The models are usually defined
mathematically by some linear operation on the input stimulus, and the cutput response match
is normally made in the frequency domain. The portion of the operator output not linearly
correlated with the input is called "remnant. ' Most constituents of th;a model are chosen to
represent some obgerved or assumed physical or physiological operator characteristic such
as time delay, neuromuscular behavior, and indifference thresholds. These model param-
eters are then varied to obtain a '"best fit"' to the experimental tracking data. The number of
model parameters normally determines how well the model output can be made to match the
actual operator data, the better fits requiring more parameters.
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Because of this curve fitting approach, many models have no practical use since the
model is essentially a match for a particular control situation and there is no way of pre-
dicting whether the model will apply if the controlled element, type of display, or frequency
range of the input is changed. A good model should respond to these changing situations. The
quasi-linear describing function model (Reference 19) and the optimal control model (Ref-
erence 16) have been the most successful models developed using this criterion. Both models
have been applied to various controlled elements over a wide range of input frequencies, but

both have been limited to compensatory tracking tasks.

Many investigators have found conflicting data (References 1, 7 and 29) concerning what
information the operator actually uses when controlling a pursuit display. Hence there is no
single well-defined operator input-output relation, and the concept of a single transfer function
for the operator is no longer considered possible. There have been a few attempts to use the
describing functions in pursuit tracking (References 1 and 29), but none have developed a suc-
cessful model. Kreifeldt (Reference 17) proposes a sample-data pursuit tracking model, but
the moedel is essentially a four parameter curve fit to data obtained for a pure gain controlled

element,

In Reference 21 the authors devote a chapter to listing deficiencies in the existing quasi-
linear models. One deficiency which has long been cited is the requirement for engineering
"artistry' if the model is to be applied effectively (i.e. verbal adjustment rules). The authors
suggest the inverse optimal control and direct optimal control approaches as possible methods
of alleviating this problem. As a result of their investigations in these areas, the authors
found that the performance criterion which yielded an optimal controller which matched
human operator data was different for each type of controlled element, Furthermore, they
found that if it is assumed that the operator-control system satisfies the criterion

J =min E [ez+ Sua]
where S is a constant, e is the difference between the desired response and the actual sys-
tem response, and u is the operator output, then there is a consistent trend towards small
negative values of S when actual test data are analyzed. Negative values of S in performance

criteria are a little disquieting when applying optimal control theory because stability via

Lyapunov's Second Method is no longer assured.
4, PURPOSE OF INVESTIGATION

The object of this investigation is to develop a model of the operator-vehicle control loop

which will predict operator performance, reproduce the essential control characteristics of
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the operator, be applicable over a wide range of forcing function bandwidths and controlled
elements, and apply to both pursuit and compensatory tracking tasks. The approach taken
here is novel in the sense that there is no attempt made to derive an input-output operator
transfer function or impulse response. Rather, the tracking loop dynamics are written in
state equation form, and an optimal controller is synthesized to minimize a specified cost
function. The synthesis is accomplished using linear discrete, stochastic, optimal control
‘theory. The resultant optimal control model is construed to represent the total human
operator-display-controlled element tracking system.
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SECTION 1I

THE DISCRETE STOCHASTIC OPTIMAL CONTROL MODEL

1. THE CONCEPT OF OPTIMAL CONTROL MODELS

The concept that the human operator acts in some optimal manner has been considered
by many authors. McRuer et al (Reference 19) recognized the notion of optimality and one
of the parameter adjustment rules for the describing function model states that "... param-
eters are adjusted so that ... closed-loop low frequency performance in operating on the
forcing function is optimum in some sense analogous to that of minimum mean-squared
tracking error, " With the advent of modern optimal control theory, there has been some
effort to relate the performance of the human operator to that of an optimal controller
performing the same task (References 6, 21 and 30). The most successful of these modeling
efforts has been the work of Kleinman et al (Reference 16).

Kleinman et al have developed a continuous, stochastic, optimal control model of the
human operator in a compensatory tracking task, The model includes the psychophysical
limitations inherent in the human operator such as time delay, neuromuscular dynamics,
and remnant. The model attempts to relate its constituent parts to the physical processes
attributed to the human operator while performing the closed-loop tracking task. Conse-
quently, there are many adjustable parameters in the model, In addition, the concept of
attempting to relate model parameters to physiological activities requires that the mathe-
matical construct of the physical plant dynamics be accomplished very selectively, This is
so because of the underlying hypothesis of the model is that the visual stimuli presented to
the operator (the observation vector) can be derived by a linear transformation of the state
vector in the model conirol equation. Then the operator "acts like'" a Kalman filter and
estimates all the components of the state vector. Many of these state vector components
may be quantities which the human operator would never consider during the control task,
and so the validity of a model-physiological parameter match may be questionable.

The works of Kleinman et al, Roig, and others have reinforced the hypothesis that the
well trained human operator behaves in some optimal manner and have motivated the develop-
ment of the discrete, stochastic, optimal control model to be described. As mentioned in
Section I, the model to be developed will be construed to represent the total closed-loop
tracking situation, human operator included, It is to be considered as a mathematical
construct which will simulate the performance of the required tracking task in a "similar

manner" and with "eomparable results. ' In a '"'similar manner" means that the power
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spectra of the signals in the model conform to the power spectra of the corresponding signals
in the physical control situation in terms of bandwidth and cutoff characteristics. With "com-
parable results" means that the normalized tracking error (0'2E/ 0-21) of the model will agree
with the tracking error obtained experimentally within the 1 sigma limits of human operator
tracking performance.

2, DESCRIPTION

The physical situation to be modeled is the closed-loop tracking situation described by
the functional block diagrams in Figure 1, No distinction will be made between pursuit and
compensatory tracking tasks. This approach can be taken since there is no attempt made to
relate the physical situation to the model structure other than by defining the element to be
controlled, the signal to be tracked, and the quantity to be minimized.

The operator is presented a display as in Figure 2 and is given a manipulator with which
he can control the output of a controlled element (plant) described by a linear, constant coef-
ficient, differential eguation of the form

X = AX + Bu (1)

Equation 1 is a vector-differential equation describing the response of the controlled element
to a scalar input command u (t) generated by the human operator through the manipulator.
The operator is generally instructed to control the plant output so as to minimize the mean-
squared error between the displayed input signal and the displayed output signal (pursuit
case) or to minimize the mean-squared value of the displayed error (compensatory case).

The hypothesis of this dissertation is that a discrete, stochastic, optimal control system
can be synthesized which will generate a control signal u that will stimulate the plant to
respond in such a manner that the normalized tracking error agrees with human operator
performance. In addition, the power spectral densities of the signals in the model will
conform to the corresponding signals in the physical tracking loop. The first step in develop-
ing the model is to establish the differential equations relevant {o the physical {racking
gituation.

a. Input Forcing Function

The forcing function chosen for this tracking task is a wide-sense stationary
stochastic process with a Gaussian amplitude distribution and zero mean whose autocorrela-

tion function is

4

kTexp I—wal'rl)

2

Ry (1
4wB

[Ic] + 1 /wg] (2)
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and whose power spectral density is

4
b= -

(3)

4
B

This process was chosen because it is representative of the kinds of inputs which

wt+ 2w; w? + w

an operator might be required to track in an air-to-air gunnery of aircraft pursuit situation
and also because it has application to clesed-loop compensatory tracking situations where
the operator is required to stabilize the vehicle when subjected to the input as a plant
disturbance. The model is not limited, however, to this forcing function, and only the dif-
ferential equations which generate the desired input need be changed,

Sample functions for the process described above can be obtained by operating
linearly on a Gaussian amplitude white-noise process with two first-order filters, each of
which is governed by the following differential equation;

z + wg? = kw {4)
where k = constant
Wg = bandwidth frequency (rad/sec)

Thus, if w(t) denotes a sample function from a Gaussian amplitude white-noise

process, a sample function of the desired input x2(t) is generated as follows:

X ) T-wgx (1) + kw (1) (5)

where x,(t) is an "intermediate noise, "

h. Conirolled Element {Plant)

In an actual tracking situation, the operator would normally have control over a
complex vehicle whose input-output characteristics are described by a set of differential
equations. These equations might be linear, nonlinear, or even time-varying. As a first
step in system analysis, most designers will linearize the equations about some operating
point and will try to eliminate time varying effects. When transformed into the frequency
domain (Laplace transform), the resulting set of differential equations will have dominant
poles and zeros which determine the gross behavior of the vehicle, gross behavior being
defined by descriptions such as first-order, second-order, stable, and conditionally stable.
In accord with this design practice, the controlled elements considered in this dissertation
are limited to simple plants whose linear input-output differential équations represent first- .

and second-order conditions.
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These conditions can be synthesized by two differential equations. They are

X = ax + bu (7)
and

X = bu (8)

where
a = plant time constant

b = plant gain
u = piant input
x = plant output

The second-order condition is described in Equation 8 and first-order stable,
unstable, and neutrally stable conditions are described in Equation 7 with the plant time
constant 'a' being negative, positive, and zero, respectively. The Laplace transforms of
the impulse responses for the linear systems above are, respectively

b

¢. Manipulator

The manijpulator, or control stick, used in the experiments conducted in this investi-
gation was an AC powered stiff-stick transducer. This type of manipulator was chosen be-
cause it has an easgentially linear voltage output versus applied force, and, hence, unwanted
nonlinear control stick characteristics are eliminated. Thus the manipulator transfer char-
acteristic is merely a gain, and no manipulator dynamics are included in the model. if a
manipulator whose transfer characteristics can be described by a linear differential equation
is used, this equation can be combined with the plant equations and the result considered as
an augmented plant.

3. PLANT AND OBSERVATION EQUATIONS

Now that the differential equations which describe the operation of the control loop with-
out the operator have been established, they will be combined to form one linear vector-
differential equation of the form

X = AX+ Bu+ W (n

LetX = (xl, Koy eoey xn) denote a "state" vector (column) of dimension n with components
Xps gy eeny KXo Let A denote an nxn matrix and B a column vector of dimension n, Let u

10
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denote the scalar control applied to the plant input. Let W = (wl, Woy «ons wn) denote a
""plant noise" vector (column) of dimension n with components Wi Woy eney Woo Select a
particular plant equation, Equation 7 or 8, and combine the plant equation with EqQuations
5 and 6 as follows:

x (= cwgx (4) + kw (1) (12)
Xp (1) = - Wok, (1) + kx, (
2 xy (t)

872 ! 13)
;t3 (t) = axy(t) + bult) Using Equation 7 (14)
. - Using Equation 8
4 {t) = bu (t) {16}

The decomposition of Equation 8 into two first-order linear differential equations is
known as reducing a linear differential equation to '"normal form" (Reference 31:29), and
the same approach can be used to decompose plant equations of higher order,

To distinguish between the choice of a first-order plant and a second-order plant, the
choices will be categorized as Cases | and II, respectively. Thus the combined vector-
differential equation is

X = AX + Bu + W an
where
Case 1 Xo® intermediate noise
*2 = desired noise input
*3 = system output
- Wp 0 0
A = k - w o]
8 (18)

0 0 a

11
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Case I11:

-3

intermediate

noise

desired noise input

system output

system velocily

12

o O o ©Q
Q

{19

(20)

(2h

(22)

(23)
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This completes the first step in developing the model. Note that no special effort is
made to formulate the state equations so the states represent some physical guantity ob-
servable or derivable by the human operator, The states are chosen as a logical conse-
quence of writing the differential equations in "normal form. "

The next step in the modeling procedure is to add the observation equation and then to
put these equations in discrete form.

Define the observation equation as
Yit) = X(t) + VL) (24)

where Y = (yl, Yor eves y3) is an "observation" vector (column) of dimension n with com-~
ponents Vs Yoo eees ¥y and V = (zl, Vo «vos _qn) is an "observation noise" vector (column)

of dimension n with components(v,, v v ).

27" -

If the A matrix and B vector in Equation 17 are constant, then Equations 17 and 24
represent a time invariant linear system, and the complete solution for X(t) and Y(t) for
such a system is given by {Reference 10:376)

X(t) = B-1)x(1) + J;‘dau—fm[eucfy + wié)] o€ (25)
Y(t) = Xt} + Vi(t) (26)
where
t = observotion time
T = time ul(t) wos applied

D t) = exp(At) = state transition matrix

The state transition matrix can be calculated in several different ways, some of which
are the Cayley-Hamilton technique, Sylvester's Theorem, and the infinile series method
(Reference 10).

For computational purposes, it is desirable to develop a model which can be simulated
on a digital computer. Consequently, Equations 25 and 26 will be converted to a discrete
form to which discrete, linear stochastic, optimal control theory can be applied and which
can be simulated on a digital computer,

Consider the situation where the control signal u(t) and the plant noise vector W({t) are
sampled every T seconds and applied to a zero-order hold network which maintains the

i3
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value of u(t) and W(t) at the sampling instant for a time T, i.e.,

u(t) ulit) nT € t<(n+1}T n = 0,1,2,...,N

wit)

wi(t) nT € t<(n+i1)T n = 0,1,2,...,N

It is shown (Reference 31:126) that the response of a continuous time system to a sampled
input of the form above at the sampling instants (t =0, T, 2T, ...) is

x[en)T] = @mixeT) + {_;T@(f)df[au (nT) + WinT)] 27)

Dencte :
A =M (28)
B * {)TCDIEMEB (29)

XLIn-H.) T] = Xin+l)

X(nT} = Xin)
Y(nT) = Y{n}
vinT) = V(n)
W(nT) = W(n)
uinT) = win)

T
Ww(in) = £¢{§}a£wm (30)

Then, the value of the output state vector of a continuous time system at the sampling
instamts t=0, T, 2T, ..., nT, ... is given by
X(n+1) = AX({(n) + Bu(n) + W{n) (30
Y{n} = X{(n} + Vin) {32)

The calculation of @ (T), A, B, and Wn) for Case I is shown in Appendix I. The results
are similar for Case II.

Case I: a #0

exp '{-wBT) 0 D
A = |kTexp (-wyT)  exp(-wgT) 0 (33
0 o] explaT)

14
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[ o
B=10 (34)
L-h[e:u:' (oT)-—l]/u
%a[—e:p (-—wBT)]wl {n)
win) - —"—z-[l—e:p(-w T (l4+w T)]w (n} (35)
W = |wZ B B )"
| "
q =
exp (—wBTl 0 0
= | kT ~w T -
A exp { wgT) exp ( wBTJ 0 36)
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Note that Equations 36 and 37 reduce to Equations 33 and 34 as 'a' approaches zero, Thus
Cases | and II are represented by Equations 33, 34, 35, 38, 39, and 40.

Now that the discrete plant and observation equations have been developed, a means of
considering operator remnant will be incorporated into the model.

4, REMNANT

Attempts to model the human operator by matching experimental data with a linear model
have shown that there is always some portion of the operator's output which is not linearly
correlated with the input. A comprehensive discussion about the possible sources of remnant
is included in Reference 22:37. The essence of the discussion is that the remnant could result
from the following sources:

a. Operator response to other than the desired input.
b. Nonlinear operation by the operator on the desired input.
¢. Injection of "noige" into the tracking loop.

d, Time varying behavior by the cperator,

The status of remnant data as it pertains to the quasi-linear describing function model of the
human operator in compensatory tracking tasks is summarized in Reference 19:188. Ref-
erence 29 includes an analysis of the remnant data found in pursuit-plus-disturbance tracking,
and the author concludes that the remnant for the compensatory and pursuit-plus-disturbance

tracking is identical for tasks that have the same input spectra and controlled element dy-
namics,

In Reference 18, the authors propose a model for human operator remnant in which the
remnant is assumed to arise from an observation noise vector whose components are linearly
independent white-noise processes. The power spectral density level of each component of
the vector is assumed to be proportional to the observed variable, That is

. (41
vit) =

N ol vr{tl
X
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where

<
—_—
[d
T

n

observation noise vector

vi(ﬂ = white - noise process such that E[vi Vj] =0

e
n

variance of the observed variagble

N. = "noise constant

The validity of the model was tested by comparing predicted remnant results with
observed remnant data obtained from a variety of single-loop compensatory control experi-
ments. The basic model was substantially validated and makes this concept of remnant
representation attractive for use in optimal control models of human operator behavior,
Thus the "observation vector! V in Equations 24 will be interpreted as a noise vector whose
components are linearly independent, Gaussian amplitude, white-noise processes. The
power spectral density level of each component will be proportional to the variance of that

noise component.

In addition to the concept of remnant as an observation noise, compensatory control
experiments have shown that under certain circumstances (Reference 13:12) the human
operator will generate control output even though there is no external forcing function input,
As mentioned (Reférence 19:189), there is alsc evidence of a pulsing behavior in control
of second-order controlled elements, and this pulsing behavior of the operator's output
contributes an additional source of remnant. These portions of the remnant are described
as "noise injection' in the quasi-linear model. To account for this observed behavior, a
Gaussian amplitude white-noise process W, {t) will be added to the control output u(t), and
this is the control which will be applied to the controlled element. Thus if the control signal
is re-defined to be

u' (1) = ult) 4 ow,t) (42)

the discretized equations for Cases I and II are modified as follows:

Case 1

A unchanged

B unchanged

17
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Cose II
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The “observation" and "'motor'' noises have been incorporated into the moedel to investi-

gate their effect on model performance and as parameters which can be varied to obtain cor-

relation between model and human operator performance. There will be no attempt made to

associate the effects of these parameters with human physiological behavior,

OPTIMAL CONTROL MCDEL

The plant and observation equations

X(n+1) = AX{(n) + Buln} + Wi(n)

Yin) = X(n) + V(n)

18
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are represented schematically in Figure 3. Note that a box labeled ""optimal controller" has

been included in this figure, The optimal controller is the mathematical construct from which

the control u{n) is derived on the basis of the observed output Y (n). Thus Figure 3 is the

schematic representation of the proposed discrete optimal control model of the human oper-

ator in a closed-loop tracking task, The form of the optimal controller is now described.

The theory of discrete optimal control has been developed and documented by Kalman
(Reference 14), Meditch (Reference 24), Aoki (Reference 2), Meier (Reference 25), and

others. The specific case where the plant and observation equations are linear and the cost

function is quadratic is derived in detail by Meier (Reference 25:19). The problem is defined

as follows

Given:

a., Linear plant and observation equations

X{n+l} = AX(n) + Buln}) + W(n)

Yi{n) = X(n) + V(n)

b. Quodroatic cost function
N T N N
J = E[Zo X(n} vx(n) + Suim 2 |¥", 1]
n=

¢. Goussian probabitity distributions

-1

: % ion)T %
piXy) = coexp [(x(0)-X(0) M (x(0)-X(0))]

D[V_V(n}] czexp[ﬂtn)TO'i_V!tn)]

D[!(n)] C4e%p [y(n)TR'lg{n)]
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watn} w, {n)
{ u'ln)

uin) X (n+1) X (n)

B Unit

” Delay
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Optimal e Yin) +

Controller
Vin}

Figure 3. Schematic Representation of the Discrete Optimal Control Model
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where
(:I ' cz, c3 = constanis
M = covariance matrix of X{0)
Q = covariance maotrix of plant noise vector
R = covariance matrix of observation noise
vector

X(0) = a priori mean of X{(0)

d. _v_u_I(n) and !i(") are independent and X (0O) is

independent of both W(n) and V(n) for all n.

e. uin) € £l{n) where £l{n) is the class of

admissible controls.
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Find: The admissible combined controller and estimator that minimizes J where

a, A combined controller and estimator is defined as any algorithm which at time n

generates u{n) as a function of the present and all past cbservations,

b, An admissible controller and estimator is defined as any controller and estimator

which, when used in the closed-loop system shown in Figure 3, yields an admissible u(n).

For the linear case, Meier (Reference 25) proves that the combined optimal estimation

and control problem can be divided into two parts: control, which is the selection of the

optimum input to the plant as a function of the conditional probability density of the state of
the plant; and estimation, which is the computation of the conditional probability density, The
control equation is generated by an application of dynamic programming, and the estimation
equation is generated by an application of Baye's Rule. The results are

uin) = -G{m) X(n)

X{n+1) = AX{n)+Bu(n)+K(n) [an-q—l)-t_A_X (n) +Bu (n))]

where

given Y = {Y(n],Y(n-i),. ..,Y(O)} and
un_1 = {u(n-l}.u(n-z).....u(O)}
Gin) = [BTP(n+1)B+s] B P(ns1)a

Pin) = Vv + ATP(n+IJ['IA-_B_G(n}}
P(N) =V

K(n+1)r = P(n) [g(n) + Fi(n+1]]"1
Pln+l) = Q + Q[I - K(n+1)]g(n)g"'

P(0) = Cov[x(®)] = M

The optimal controller and estimator can be simulated with Equations 45 through 57.
To simulate the optimal controller and estimator for the human operator model, a cost
function must be defined. In both Cases I and II, the control u{n) is a scalar, and hence

22

X (n) = E[X(n)ﬂYn,un-i]-= conditional mean of X (n)

0<n<N

0<n<N

O<n<N

0<n<N

{49)

(50)

{51)

{52)

{53}

(54
(55)
(56}
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the weighting on the control in Equation 47 is the scalar value S, The matrix V is formed

such that

Xtn) TvX (n)

Thus for Cose I

O 0 0
vV = o | -
0 -l |
ond for Cose II
—
Q 0 0
o 1 -l
VvV =
0 - |
O 0 O

The convariance matrices of the plant and observation noise vectors are formed as

follows:

(System Input

°]

~ System Oufput)?

tet: Q = covariance matrix of plant noise vector.

Assume : E[ﬂ(n)] = 0 ond E[wi (n)w; (n)] = 0,

Then: Q = E[_“!""}!’.("}T] and qy =E[!i {n)!](n)]=

Case I

Q = lap) 4pp
0 o0
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where ) {6Q)
9 E[!lf") ]

= -u"T:- [l- exp («-wBT)]aE[Wl‘“}z]

m

a4, = Ay, - E[_v!l(nlgzinl]

3
k -
=Eg[1 - exp l-—wBT)] [1 ~ exp ( wBT! {1+wBTl]'
2
E[wl (n) ] (6l)
_ 2
A5 ° E[gz(n) ]
4 2
=k - - 2
_wg[l exp (w T) 1+ [T € [w, (n) ] | (62)
. 2
933 ° E[Ea(") ]
2 2
- b 2
2 [exp_(aT)-l] E[wz(n] ] (63)
93 % Az * E[gltn)ﬂ3(n)] = 0 by assumption {64
LY = 05, © E[!zln)v_v3(n)] = O by assumption {65)
Caose 11
@ Y2 © O
q q 0 0
0 - 21 922
0 0 a4 95,
0 0 q q
i 43 Y44 |
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where

a,) is given by Equation 60

QIZ : o:;2| is given by Equation &l

9,3 = 43, © E[_\gl(n)!?’(n]] = O by assumption (66)

94 “ %9, ° E[.u, (n)_w_4!n)] = 0 by assumption 67

9,5, is given by Equation 62

dp3 ¥ A3 = E[m_2 (n )13 (n)] = 0O by assumption {68)

Apgq  dgp °© E[\_w_z(n}!q{n)] = O by assumption (69)
- 2 _ peod 2

agy : efngtm2] = v27%€[w (m?] (70)
- - - h2s3 2

9 % 43 ° E[y_s(nl_w_4(nl] = bT E[W2 {n) ] (70
. 29 . 242 2

9%, E[gqfn) ] beT E[wz(nJ ] (72)

Let: R = convariance matrix of the observation noise vector,
Assume E[g(n)] = 0 and E[!i (n)xj (n)] = 0, t+ # ]

. T - -
Then: R = E[j((n}_\g(n) ] and 'ij'E[!i (n)y,] tn)]-r“
The a priori expected value of X(0) is taken to be zero, and the convariance matrix M

of X (0) is taken to be Q, i.e.,

X(0) = 0 (74
Equations 45 through 74 are all that are req:uired to simulate the closed-loop tracking
gituation and as such represent the discrete, stochastic, optimal control model of the human
operator in a closed-loop tracking task. These equations are in a format which can readily
be programmed for simulation on a digital computer.
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SECTION III

DIGITAL SIMULATION OF THE OPTIMAL CONTROL MODEL

The discrete, stochastic, optimal control model is simulated on an IBM 7094 digital
computer using FORTRAN 1V language. The computer program generates N values of 1 (n),
X (n), e(n), and u{n) where

X, {n) = i(n) = digitized value of system input at t = nT
Xq {n) = x{n) = digitized value of system output at t = nT
e(n) = i(n) -~ x(n)

u{n) = digitized value of control input at t = nT

The power spectra of these signals are computed and the spectra are plotted versus
frequency. The variances of the input and error are calculated and the normalized ftracking
error defined as

2 /2
NTE = :
E aE /J'I (75)
is computed

The computer routines for generating the data are included in Appendix II.

1. DESCRIPTION OF SYSTEM-MODEL PARAMETERS

The parameters in the model are tabulated below. These parameters are classed as
either system parameters or model parameters. The system parameters are those which
are specificed by the dynamics of the tracking task to be modeled, The model parameters are
those which can be varied to change the model characteristics.

System Parameters:

a = plant time constant (for first order plant)
“B = forcing function bandwidth
0'12 = variance of input forcing function

b = plant gain

Model Parameters:

T = sampling period

S = control weighting in cost function
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2 . .
o= E[ LN (n) ] = motor noise variance

o =E [g. (n)Z] = variance of ith component of V(n), i=1, 2, 3, 4
N = number of samples

2, SELECTION OF MODEL PARAMETERS

As mentioned in Section II, a sample function for the input stochastic process can be
generated by operating on Gaussian amplitude white noise with two first-order filters. The
digital simulation of this process requires a sequence of N "random' numbers whose
statistics approximate those of theoretical white noise. A random number generator called
RANDNM is used in conjunction with the digital simulation. The routine is based on a modified
table look-up technique (Reference 23), A detailed study by Bowser and Schubert (Reference 5)
presents the results of a digital simulation of Gaussian amplitude white noise being operated
on by one first-order filter, The principal result is a plot of dispersion versus mBNT. The
percent dispersion is defined as

e -
—* 100 = percent dispersion

Ty

where cr; is defined by the desired autocorrelation function

- 2
Ryy {r) = 0" exp (-wBITIJ

and 0‘2 is defined as the variance of the difference between the autocorrelation function
defined over a doubly infinite domain (assuming ergodicity) and the one defined over the

finite sample length of the random variable,

The value of N is chosen to obtain the minimum percent dispersion of the first-order
noise simulation without exceeding the memory capacity of the IBM 7094, For all of the
model simulations in this development, the value of N is fixed at 4000.

The value of T is chosen to obtain a power spectral density plot within the frequency
range of interest. As noted in Appendix III, the maximum frequency at which the power

spectral density can be computed is determined by the equation
“mox = W/T rad/sec

A value of T = 0.1 sec is chosen to provide power spectral density plots up to w max -
10 rad/sec. All data of interest in manual control tracking tasks fall well below this value of

W axt Thus a value of NT = (4000) (0. 1) or NT = 400 is used in this development and the
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resulting values of percent dispersion versus w BNT all fall below 10% for the values of

wB under consideration,

The remaining model parameters are the noise variances and the control weighting.
The noise variance €i1, which represents the variance of the Gaussian amplitude white-
noise process is taken to be unity and the gain factor k in the noise filter equation is chosen

Kk = ,\/2_31 () Ya
2

so that Rii(O) = o can be entered as a system parameter. The choice of the control
weighting and the motor and ohservation noise variances will be discussed in Section V,
E xperimenta) Results and Discussion.

as
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SECTION IV

EXPERIMENTS

1, EXPERIMENTAL OBJECTIVES

The experiments conducted during this investigation were undertaken to "validate' the
proposed model and to expand the limited data base of human operator tracking data in the
pursuit mode. To "validate" the proposed model is to show that the normalized‘tracking
errors and power spectra obtained experimentally agree with the same quantities predicted
by the model.

2., EQUIPMENT

A block diagram of the experiment equipment layout is shown in Figure 4.

NOISE ANALOG TAPE
GENERATOR — COMPUTER ~—® RECORDER

t

HUMAN CONTROL

DISPLAY  |—® (pgRrATOR —™  STICK

Figure 4. Experimental Equipment Layout

The Gaussian amplitude white-noise process, with which the input forcing function is
generated, is obtained from an Eigenco Incorporated, low-frequency, noise generator, Model
310A.

The analog computer used is an Applied Dynamics Inc. Model AD-64PB. The computer
is used to simulate the control element dynamics, generate the forcing function input,

compute mean and mean-square values, sum signals, and make signals available for display
and recording.

The tape recorder is a Sangamo Model 4700 FM 1/2-inch tape recorder and is used to
record the analog signals from which the power spectra are computed.

The display is a Dumont dual-beam cathode-ray oscillograph, Type 322, Both channels
are calibrated to have the same linear gain over the portion of the face utilized (+3 cm). Two

moving purple markers are used; a long bar (2 cm) representing the system output, and a
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short bar (1/4 cm) representing the target. In addition there is a reference indicator as
shown in Figure 2b. '

The control stick used is a Measurement Systems, Inc,, Model 435 AC-powered stiff-
stick transducer. The transducer has no damping, back lash, or dead zone and produces an
essentially linear output voltage proportional to the applied force (0.1 volt/1b).

Figure 5 shows an operator and the scope display arrangement.

3. TRAINING

The experiments will be categorized first by controlled element and then by Wpy» the
forcing function bandwidth frequency. Four frequencies { wB =0,5, 1.0, 1.5, 2,0 rad/sec)
were used for each controlled element considered. Subjects were trained on each controlled
element at each bandwidth frequency until their learning curves of normalized tracking error
stabilized to a mean value with a "reasonable" 1-gsigma standard deviation. The term "reason-
able' is used here because the dispersion about the mean increases with wB, and hence the
suitable 1-sigma values vary. A typical learning curve is shown in Figure 6. The learning
curves normally stabilized after about 20 runs. Each run lasted 90 seconds and runs were
made in groups of two or three at each frequency both during the training and during the

data experiments. Lines between data points in Figure 6 indicate successive data runs,

4. EXPERIMENTAL RUNS

The experimental data runs were planned to meet the experimental objectives stated
earlier. Specifically, the runs were designed to obtain human operafor performance data
in terms of normalized tracking error and power spectral density plote as a function of
controlled element, forcing function bandwidth, and type of display. Two types of displays
were investigated; the pursuit and compensatory (Figure 2). Four types of controlled elements
were considered. In the Laplace transform domain, they are represented by their impulse

responses as follows:

Y =

. K/s
Yc = K/s+]
Y. T K/s-1
Y = kys?

Four forcing function bandwidth frequencies were investigated. They are w
2, 0 rad/sec.

B=O.5, 1,0, 1.5,
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Figure 6. Typical Learning Curve

For the pursuit display situation, normalized tracking error (NTE) and power spectral
density (PSD) plois were obtained for each of the four controlled elements at each of the four
forcing function bandwidths. For the compensaiory display, NTE data were obtained for each
of the four controlled elements at each of the four forcing function bandwidths, and PSD plots
were obtained for the Yc =K/s+1 plant at wB =0.5, 1.0, and 2. 0 rad/sec. PSD plots for the

remaining three controlled elements were obtained at w_ = 1, 0 rad/sec only.

B

Four subjects were used during the experiments. Two were rated Air Force cfficers
(pilots), one had a private pilot's license, and the last was a nonrated Air Force Officer,
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SECTION V

EXPERIMENTAL RESULTS AND DISCUSSION

1, MODEL MATCHING TO THE EXPERIMENTAL DATA

Since the experimental data and model output will be shown comparatively in most of
the following tables and figures, it is appropriate at this point to discuss how the remaining
model parameters {control weighting, observation noise variances, and motor noise variance}
are chogsen. For all the controlled elements considered, a forcing function bandwidth of
wB = 1,0 rad/sec was chosen as the data point at which to match the model to the data and

at which to evaluaie the effects of model parameter variations. This value of wW_ was chosen

B
on the basis of an analysis of the tracking data presented by McRuer, et al {(Reference 19).

Assume that the root-mean-squared (rms) value of the input is chosen so the display
remains active within some central area of the scope face; then for a given controlled
element, the difficulty of the tracking task is determined by the bandwidth ( wB) of the forcing
function input. For very low wh (< 0.5 rad/sec), the input signal moves so slowly that the
operator does not respond to minor deviations from the desired condition of zerc errer, Such
behavior has been characterized by an "indifference threshold" effect in the describing func-
tion model (Reference 19:;16). Conversely, as w B becomes large ( > 2.0 rad/sec), the task
difficulty increases significantly and the operator tends to devote more attention to mini-
mizing the error. This behavior has been well documented, and McRuer (Reference 19:159)

presents curves of effective time delay versus w _, for various controlled elements. These

curves indicate a decrease in effective time delayB(a parameter in the describing function
model) as the foreing function bandwidth increases. A decrease in effective time delay is
related to a corresponding decrease in normalized tracking error (Reference 19:180), and,
hence, as the bandwidth increases the operator hehavior departs from what the linear model
would predict. McRuer attributes this decrease in effective time delay with increasing

forcing function bandwidth to the human operator neuromuscular system.

The above discussion indicates that the human operator may not operate in a linear
manner across the range of forcing function bandwidths considered. Thus a mid-point
frequency (wB = 1, 0 rad/sec) is chosen as the data point at which the human operator
performance will be closest to any linear representation of the operator and hence the point
at which the model parameters will be adjusted to match operator performance.

33



AFFDL-TR-70-129

a. Observation Noise

As can be seen from Equations 53 and 55, the convariance matrix of the observation
noise does not influence the a priori calculation of the gain matrix G{n) but appears as an
additive term in the recursion formula for the estimation matrix K(n). Thus the effect of the
observation noise variances is to influence the a priori calculation of the estimation matrices
K(n) which in turn affect the on-line calculation of the conditional mean of the state vector
X(n) through Equation 50. When the estimation of the state is degraded by increasing the
observation noise variances, the control u(n) is affected through Equation 49, and the extent
to which the performance of the system is degraded can be measured by computing the NTE,
The effects of observation noise variances éan also be determined by examining the PSD plots
of the various signals in the control loop.

The state equations for both the first- and second-order controlled-element tracking
situations have been formulated so that the first two state equations simulate the desired
forcing input. In order to generate a faithful reproduction of the desired input PSD (Equa-
tion 13}, the observation noise variances for the first two components of the observation
noise vector are chosen to be 1 x 10—6. This number is chosen so the variance of the additive
Gaussian amplitude white-noige process is 6 orders of magnitude less than the variance of
the forcing function input and hence has no appreciable effect on the desired PSD. See Ap-
pendix III for a comparison of the theoretical and simulated PSD for the desired forcing
function input,

Thus the variable observation noise parameters will be restricted to the variance of the
additive obgervation ncise on the controlled element position in Cases I and IT and to the
variance of the additive observation noise on the controlled element velocity in Case II,

As an aid in investigating the effects of these observation noise variances, an auxiliary
computation routine was temporarily added to the digital simulation program. The purpose
of the routine is to get a quantitative imeasure of the effects of observation noises on the
estimation of the conditional mean cf the state vector. The rationale for the routine calcula-
tions is as follows. Let the actual value of a state vector component at time nT be denoted
by x A(n) and the estimated value (conditional mean) be denoted by )LE(n). If the estimation
is exact, then

"

xE(n) XA(n)

ctherwise

11

xg {n) cxp (n) c #1
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To measure the performance of the estimator, the following calculation is performed for
each component of the state vector at each sampling instant nT, 0 £ n £ NT:

¢ - xpinl-x,p(n)

CX 5 (nl—xA {n)
{n)

fon)- Xp

Thus .

¢ = |e-1
is a measure of how good the state estimation is, for if the estimation is perfect, ¢ = 1 and
c'=0,If xE(n) =0.5 xA(n) or xE(n) =1.5 xA(n), then ¢’ = 0.5, etc. As the estimation error
increases, so does ¢'. A reference value of ¢! is chosen and compared with the actual values
of ¢! calculated at each sampling instant for each state vector component. A cumulative total
of the number of times the actual value of ¢' exceeds the reference value is kept for each
component of the state vector. Finally the percentage of total samples that e:_cceeded the

reference value of ¢! is computed for each component.

A reference value of ¢' = 0,5 was used throughout fhe model analysis, For all the cases
where the variance of the observation noise process was 6 orders of mégnitude less than the
variance of the input, the percentage of samples that exceeded the reference value of ¢! was
less than 1% for all components of the state vector., To measure the effects of observation
noise, the motor noise variance was chosen so it was 6 orders of magnitude less than the
variance of the forcing function input and the value of the control weighting S was fixed. The
system parameters were fixed for the particular controlled element being considered. Two
model simulation runs were made: & reference run with the variances of the observation
noises 6 orders of magnitude less than the variance of the forcing function input and the
second with the variances of the chservation noises equal to the variance of the forcing
function input. The effects of the observation noises on the NTE and the pexrformance of the
estimator are tabulated in Table 1. The effects of the observation noises on the PSD of the
tracking loop signals are shown in Figures 7 and 8. The normalization 9‘311(0) in the PSD
plots is really ¢ ii(o' 1 rad/sec) and is an approximation to ¢ ii(O).

It can be seen from Table I that the effect of adding cbservation noise was most severe
in the second-order and unstable first-order controlied elements. As a matter of fact, the
addition of observation noise above the reference level had little or no effect on the K/s+1
and K/s controlled elements, The variance of the control signals ( 0'121) and the normalized

tracking errors for these controlled elements were unchanged, and the PSD plots for the
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noise versus reference cases were identical and hence not included here. For the K/ s2 case,
the variance of the control signal was unchanged, and hence the PSD of the control signal
(qbuu(m) )} is unchanged (Figure 7). The NTE for the noise case, however, was greater than
the reference because of the degradation of plant output estimation and the effect is an in-
crease in the error PSD at low frequencies (Figure 7). For the K/s-1 case there was a
significant increase in control signal variance and hence a rise in the PSD of the control
signal {Figure 8)., similarly, the increase in NTE for this case resulted in a higher level

of the error PSD (Figure 8).

Although only one deviation from the reference was investigated, the resuits of
the analysis indicate that observation noise effects do not change the basic shape of the PSD
plots although there can be significant changes in control signal variances and normalized
tracking errors, Significant increases in control signal variances correspond to increases
in NTE, and these cause upward shifts in the error and control PSD plots relative to the
reference levels. As mentioned in Section V1a, any change in control signal variance be-
cause of observation noise is caused by the increase in variance of the conditional mean of
the state vector and not by the multiplicative gain matrix G in Equation 49. Because observa-
tion noise effects do not change the basic shape of the tracking loop PSDs, it was decided not
to try to develop a rationale for picking observation noise variances based on controlled
element or forcing function bandwidth. Instead the obgervation noise variances were fixed

at the reference value of 1 x 10°°,

b. Motor Noise

The covariance matrix of the plant (motor) noise vector does not influence the
a priori calculation of the gain matrix G(n). It appears as an additive term in the recursion
formula for P(n), Equation 53, which in turn is used in the recursion formula for the estima-
tion matrix K(n+1), Equation 55, T'o determine the effects of motor noise, a reference
situation was established with the motor noise variance ( o-fl) setat 1 x 10'6. Again, this
number was chosen so the variance of the additive Gaussian white-noise process is 6 orders
of magnitude less than that of the forcing function input. The system parameters were fixed
for the controlled element being considered, the control weighiing was fixed as before, and
the observation noise variances were also set at 1 x 10_6. The motor noise condition was
established by choosing 03 such that the variance of the additive motor noise process was

equal fo the variance of the forcing function input.

As was to be expected, with the condition of essentially no observation noise, the motor

noise had no effect on the state estimation. For all controlled elements, the percentage of
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samples that exceeded a reference value of ¢' = 0.5 was less than 1% for all components of
the state vector for both the reference and the motor noise situations. As Table II indicates,
however, there were significant changes in NTE and control signal variances. The cor-
responding effects of the motor noise on the power spectra are shown in Figures 9 through 12,
As the figures indicate, the increases in NTE are reflected by upward shifts of the error
power gpectra. The effect of the motor noise on the control spectra for each controlled
element can be predicted by noting that the motor noise is additive only to the state equation
describing the dynamics of the controlled element, and not to the equations which generate

the foreing function input,

TABLE 1II

EFFECT OF MOTOR NOISE

Controlled Motor 2
Element Noise NTE %y

2 NO o.1l 3.05
K/s

YES | 0.15 5,86

NO 0.040 | 1.23

K/s+1
YES 0.23 1.91
NO 0.047 i.17
K/s-1
YES 0.29 3.96
NO 0.040 ] 0.51
K/s

YES 0.3i 1.61

The control signal u(n) is a linear combination of the estimated components of the
state vector, and, with motor noise in the system, the plant output is the sum of a component
due to the control u and a component due to the additive noise Woe The control PSD is also
a sum of the spectra and cross-spectra of the terms in the linear summation for u(n), and
hence the control PSD with the motor noise will differ from the reference by the contribution
of the motor noise to the plant output., Figure 13 shows the power spectra which result from
operating on Gaussian amplitude white noise with each of the controlled elements considered,
As Figure 13 indicates, there is a high gain at low frequencies ( < 0. 1 rad/sec) for the K/s
and K/ 32 controlled elements. This explains the emphasized upward shift of the control
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spectra for these plants in the low frequency range. Similarly, the steep drop off of gain
(-40 db/decade) for the K/ 52 plant explains why there is a smaller high frequency (> 1.0
rad/sec) shift in the control spectra for this plant than for the remaining three. The shift
for the remaining three should be essentially the same for w greater than 0.1 rad/sec
since the gains for these plants all fall off with the same slope of -20 db/decade.

K/s2
40 o 0 o K/stl|

-_———- K/s

Ioglow

¢ (w)db

Figure 13, Power Spectral Density Asymptotes

Although there are significant changes in the shapes of the control spectra for the
K/s and K/ 82 controlled elements, it was again decided not to develop a rationale for in-
cluding the effects of motor noise in the model. This does not preclude the possibility of
using motor noise as a parameter to obtain better coxrelation of model-operator power
spectra if this becomes desirable, It will be concluded in the next section that the problems
of developing a rational approach to including motor noise as an active model parameter are
not warranted if one is only interested in the essential bandwidih and cuioff characteristics
of the power speciral data, Thus the motor noise variance was fixed at the reference value
of 1x1075, '

At this point, all the model parameters have been discussed and fixed with the
exception of the control weighting 8, This parameter is the principal model parameter and
its effect and the method of choosing it will now be discussed.
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¢. Control Weighting

The confrol weighting S is the primary parameter which is varied to match the model
to the experimental data, To evaluate the effect of control weighting on model performance,
the motor and observation noise variances were fixed at their reference values,

An initial trial of § = 0 indicated that the model output in no way matched human
operator performance in any of the cases examined, With 8 = 0 the model performed the
tracking task ideally in the sense that the NTEs were extremely low, the PSD of the plant
output was an almost perfect reproduction of the PSD of the forcing function input, the PSD
of the error signal was essentially zero, and the PSD of the control signal was the theoretical
optimum, As an example of the controlled elements considered, the case for Yc =K/8 with
S = 0 resulted in a NTE of 0, 00084 (operator's NTE about 0, 04) with PSD plots as shown in
Figures 14 through 17. The error PSD is typical of the case when 8 = 0 for all of the con-
trolled elements considered. By increasing the value of S from S = 0, the performance of
the model is degraded and the error spectra and normalized tracking errors begin to match
human operator performance,

The control weighting S is chosen to obtain a model-data match in the following
manner. The value of S is varied in the digital simulation program to obtain a plot of NTE
versus S for each controlled element. A value of S is chosen so the model value of NTE
maiches the mean value of NTE obtained experimentally at w B= 1.0 rad/sec. This value
of S is fixed and the model simulation is repeated to predict NTE performance at the re-
maining | bandwidth frequencies wp = 0.5, 1.5, and 2. 0 rad/sec. PSD plots are obtained
for each of these simulations for comparison with experimental PSD data.

Now that the procedures for fixing all of the system and model parameters have
heen described, the remainder of this section will be devoted to an analysis of the predicted
and experimental NTE and PSD shapes.

2. EXPERIMENTAL RESULTS

The results of the experimental data runs will now be presented. The first data to be
presented will be the NTE versus input forcing function bandwidth for both the compensatory
and pursuit display situations.

a. Normalized Tracking Error

The results of the NTE data experiments for one subject are presented in Table III
and IV and are representative of the data collected. The experimental mean and 1-sigma
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values of the NTE data as a function of forcing function bandwidth, controlled element, and
type display are listed in Table III. The mean values of NTE are repeated in Table IV along
with the corresponding values of NTE obtained from the model simulation. The value of the
control weighting parameter S is also included in Table IV. The results in Table IV are pre-
sented graphically in Figures 18 through 21. These figures illustrate two items of interest.
First, they show the comparison between pursuit and compensatory tracking performance
(as measured by NTE data) for each of the controlled elements considered. Figures 18 and
21 show that, for K/s-1 and K/s2 controlled elements, the pursuit tracking performance

is increasingly better than compensatory as increases. Thesge resulis agree with those

w
obtained by Wasicko, et al (Reference 33:44). F]?gure 19 indicafes essentially no difference

in pursuit and compensatory performance for the K/s+1 controlled element and for the K/s
plant. Figure 20 indicates slightly better compensatory performance at low bandwidth inputs
and slightly better pursuif performance at higher bandwidth inputs. Wasicko (Reference 33:44)
found compensatory performance for the K/s plant to be slightly better than the pursuit at
both low and high bandwidth inputs with essentially no difference for moderate bandwidth in~
puts. Reid (Reference 29:24), however, found no significant difference between compensatory
and pursuit NTE scores for the K/s controlled element. With respect to the data for K/ 52
and K/s-1 controlled elements, the differences for K/s plant dynamics between pursuit and
compensatory are small enough to consider, as Reid does, that there is no significant dif-
ference between pursuit and compensatory tracking performance. There is no comparative
data in the literature for the K/s+1 controlled element. The data presented here supports the
conclusion of Wasicko (Reference 33:46) that, in general, the NTE performance improvement
with a pursuit display is largest for the more difficult controlled elements and inputs.

The second item of interest in Figures 18 through 21, is the comparison between
measured and predicted values of NTE. As mentioned earlier, the predicted values of NTE
are obtained by firset choosing the control weighting S so the model NTE matches the experi-
mental NTE at a forcing function bandwidth of wB = 1, 0 rad/sec. Then with all the model
parameters fixed, the system parameter wo is varied to obtain model NTE predictions at
values of wp =0.5, 1.5, and 2. 0 rad/sec. These data points are plotted and joined by a
smooth curve in the figures. In the K/s-1 and K/ ,s.2 cases, where the compensatory per-
formance differed significantly from the pursuit, a model match was accomplished separately
for each display condition. Note that the model does not distinguish between pursuit and com-
pensatory tracking, All that is varied in the model, regardless of the display situation, is

the value of the control weighting S.
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Figures 18 through 20 show the results for the first-order controlled elements.
The experimental mean values of NTE for these cases generally conform {o the predicted
values with deviations above and below as shown. At most of the data points, the +1-sigma
range of experimental NTE include the predicted value. For the second-order controlled
element (Figure 21), the experimental NTE is greater than predicted for the compensatory
situation at W B= 1.5 and 2, 0 rad/sec. The trend towards higher than predicted NTE in the
compenastory case is predictable on the basis of compensatory tracking data collected by
McRuer (Reference 19). McRuer found that, in general, the operator remnant increases
with task difficulty, and for a given controlled element, task difficulty increases as wy
increagses. Since remnant is associated with the control output not correlated with the
desired input, if is expected that NTE will increase as remnant increases. Thus as remnant
increases, the human operator characteristics depart from the linear model and hence the
actual NTE is higher than that predicted. For the pursuit situation at Wy = 2.0 rad/sec,
the operator NTE is lower than predicted, As mentioned earlier, this behavior might be
attributed to a decrease in effective time delay as noted by McRuer (Reference 19). it should
be noted that no attempt was made to compute describing functions for the experiments con-
ducted, and hence there were no guantitative measures of remnant or effective time delay
to support the above discussion. Some qualitative measure of remnant can be made from
the PSD plots and this will be done in the next subsection.
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Thus although there are some departures of the actual from the predicted values of
NTE in Figures 18 through 21, they all have plausible explanations, and, consequently, the
predictions are close enough to warrant their use in evaluating the effects of input bandwidth
changes on a given controlled element-display situation,

b, Power Spectral Densities

Experimental and model power spectiral densities were computed and plotted for the
following tracking loop signals

1. System forcing function i(t)

2. System output x(t)

3. System error e(t) =i(t) - x(t)
4. Control signal u(t)

Power spectra were computed using a modification to the computation routine
described by Bendat (Reference 4). This modification is discussed in Appendix III. The
data reduction was done on an IBM 7094 digital computer. The analog data tape recorded
during the experimental data runs was digitized at a rate of 417 samples/second/channel
for use on the IBM 7094. This gsampling rate is well within the minimum required to re-
cover the highest frequency of interest in the data, With the highest frequency of interest
taken to be 30 rad/sec, a minimum sampling rate of 9. 06 samples/sec is required in ac-
cordance with Shannon's sampling theorem (Reference 28:17). The sampling rate in the
model is 10 samples/second and the digitized experimental data was sampled at 13.9
samples/second for PSD calculations,

Since the error spectrum characterizes the desired input-output data match and
can be interpreted more readily than individual input and output spectra, the input and out-
put spectra will not be presented, Instead, the normalized error and control PSD data will
be used to compare model and experimental results and characterized system and operator
performance. As mentioned earlier, the normalization ¢ ii(0) in the PSD plots is really
¢ ii([). 1 rad/sec) and is an approximation to ¢ 11(0)- The model and experimental results
are plotted simultaneously for comparison purposes. The results will be grouped first by the
type of display, second by the type of controlled element, and finally by forcing function band-
width.
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¢. Pursuit Display

The first PSD data to be presented are the results for the K/s controlled element,
a pursuit display, and wp = 1. 0 rad/sec, The PSD data for each of the four subjects are
presented (Figures 22 through 25) to show the range of operator-to-operator variability. The
model PSD data for each operator was generated using the value of 8 which resulted in the
NTE match for that operator. This was done in lieu of matching the average value of NTE
across operators because individual variances from the optimum are of interest. In every
instance, the operator error PSD is consistently above the model PSD at the higher fre-
quencies ( > 1.0 rad/sec). This is to be expected, as an analysis of the control PSD shows
that the operator consistently has more control power than the model across the frequency
spectrum, particularly in the 2-10 rad/sec frequency range. This excess of control power
{over the model) can be explained by realizing that the operator does not operate in a per-
fectly optimum manner. Extensive quasi-linear modeling data (References 19 and 33) have
shown that there is definitely a portion of the operator's control ocutput which is not linearly
correlated with the input and can be considered as an additive white noise to the operator's
output, This would explain an excess of control power across the frequency range. The
emphasized excess of control power in the 2-10 rad/sec range has been observed by Smith
(Reference 32) and McRuer (Reference 19). They have concluded that this peaking at the
high frequency end of the spectrum is not due to nonlinear or periodic behavior by the oper-
ator but is most likely caused by the neuromuscular system. The intracperator control
spectra do show some variability in the extent of this high frequency excess which could be
atiributed to the variability of the individual characteristics of each operator's neuromuscular
system. Finally, note that, although there is some variability between operators, all opera-
tor output spectra have essentially the same bandwidth and cutoff characteristics and they
match the model output with the exception of the excess in control power mentioned above,
Since this is the cage, the remaining PSD data will not be shown on an individual basis, but
rather will be the results of the most experienced of the four operators.

The remaining pursuit display data are shown in Figures 26 through 40. For each
controlied element there are PSD plots of normalized error and control at values of wp =
0.5, 1,0, 1.5, and 2, 0 rad/sec. The value of S for each controlled element is determined
by the model-data NTE match at Wy = 1, 0 rad/sec and is then held constant for prediction
of NTE and PSD data at the remaining values of Wy
istics of the error PSD do not vary with controlled element bandwidth, but the control PSD

characteristics do,

. As would be expected, the character-
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The basic characteristics of the control PSD for each of the controlled elements
considered can be predicted by the following analysis. As the cost function indicates, the
optimal control will be such as to make the system output follow the system input at each
sampling instant. If this is accomplished successfully, the PSD of the output will match
that of the input, Thus, if the Fourier transform of the impulse response of the controlled
element is denoted by Y {j w}, then the power spectrum of ifs output in response to an input
u is given by ¢uu(w) |Yc(jw) | 2 (Reference 27:347). If this PSD is to match the PSD of
the input, the required control PSD is

Piqw)

Py W = —————
uu 2 76
Iy, Ciw) | el
For the input PSD {Equation 3) and the first- and second-order controlled elements used,
the corresponding required control power spectra are
¢, (w) = f ‘“’:’fgz’ . (77)
uu
+ +
w Zwa Wy
4 4
K w
¢ (w) = (78)
vy w4+ 2w§w2+ufa

These .control spectra are plotted in Figure 41 as a function of @ . A comparison
between Figure 41 and the control spectra in Figures 22 through 40 shows that the model
and operator control PSD characteristics are as predicted except for the effects of control
weighting in the model and the physiological limitations of the operator.

d. Compensatory Display

The PSD data for the compensatory display are shown in Figures 42 through 47.
Note that the characteristics of both the control and error power spectra are the same as
for the pursuit case and conform to the predicted results. This result is to be expected,
since, regardless of the display situation, the task of the controller is to generate an input
to the controlled element such that its output follows the system input.

Thus, for both the pursuit and compensatory display situations, the predicted power
spectra reproduce the essential bandwidth and cutoff characteristics of the experimental
data and thus can be useful in the design of control system augmentation devices,
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3. PURSUIT-COMPENSATORY COMPARISONS

As mentioned in Section I, most human operator modeling to date has been applied to
the compensatory display situation. The two most successful results (quasi-linear describing
function and optimal control models) have relied heavily on a close association of the model
parameters with known and assumed physiological properties of the operator. In the pursuit
display, the operator is presented with more information than in the compensatory case
(Figure 2), and, as a result, the association of operator behavior with specific input stimuli
becomes very difficult (References 1, 7, and 33).

Because of the system approach to modeling developed in this investigation, there is no
need to distinguish between compensatory and pursuit tracking situations, and hence the
model results can be compared with both pursuit and compensatory experimental data. More
specifically, the PSD of the control signal of both the operator and the model are the most
gignificant results to examine, The contrel signal spectrum is examined not with the idea
of relating it to a specific input stimulus but rather by noting that it is the result of a con-
troller trying to minimize & given cost function. In the case of the model, the cost function
is given by Equation 47. By varying the value of the control ‘weighting 5 in this equation, it
has been demonstrated {Figures 22 through 47) that the characteristics of the model control
spectra match those of the human operator. This does not infer, however, that the operator
is trying to minimize the same cost function. As mentioned in Section I, McRuer et al (Ref-
erence 21:123) assumed this to be the case and tried to determine the value of 8 in the cost
function by analyzing experimental data. They found a trend towards small negative values
of 8, although the 8 values for the K/s and K/ s2 controlled elements were provisional be-
cause of discrepancies in the experimental data. The direct optimal control approach used
in this dissertation is based on a positive value of 8 in the cost function and has been adequate
to reproduce the basic human operator control characteristics manifested in the power spec-
tral density data and normalized tracking errors. It may be inferred then that the human
operator is acting in an optimal manner when tracking and by analogy must be trying to mini-
mize some equivalent form of cost function. It is significant to note that the form of the cost
function in the model does not vary over the range of controlled elements considered. Only
the value of the control weighting S changed.
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SECTION VI

CONCLUSIONS AND RECOMMENDATIONS

1, CONCLUSIONS

As mentioned in Section IV, the experimental objectives of this investigation were to
"*validate'" the proposed model. As a result of the normalized tracking error and power
spectral density data collected and analyzed in the last section, it is concluded that the
model is valid over the range of controlled elements and forcing function bandwidths in-

vestigated,

Because of the system approach taken, i.e., modeling the complete operator-display-
controlled element tracking loop, it is possible to congider both the compensatory and
pursuit digplay situations with a single model, Although the model formulation does not
distinguish between the two display situations, the model outputs correlate with the pursuit
and compensatory tracking data obtained experimentally. Thus the model overcomes the
difficuities encountered when trying to apply describing function techniques {Section 13) to
pursuit tracking situations and provides insight into operator behavior in this tracking mode.

Furthermore, this approach has substantially confirmed the hypothesis that the human
operator behaves in some optimum manner when performing a closed-loop tracking task
and tends to minimize a cost function equivalent to that minimized in the model formulation.
It is significant to note that the form of this cost function (at least in the model) is invariant
with respect to the controlled elements, forcing function bandwidths, and displays investi-
gated.

An important aspect of the model is its ease of application. The system equations can
be derived once the type of input, type of controlled element, and type of manipulator are
specified. These equations can then be digitized to obtain the equations necessary for digital
simulation of the optimum controller, The model-operator match is accomplished by varying
the control weighting parameter S to match the model NTE to measured or estimated oper-
ator performance for the compensatory or pursuit tracking situation. System parameters
can then be varied to investigate their effects on performance in terms of NTE and PSD
plots. Thus, the model has sufficient simplicity and predictive capability to make it useful
in manual vehicular control system design.
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2. RECOMMENDATIONS

In the interest of developing a model which can be applied with a minimum of engineering
"artistry, " no attempt was made to use the motor noise variance as an additional model param-
eter, Although NTE and PSD comparisons between model and operator are close enough to
warrant the use of the model as a preliminary design tool, one might be interested in obtain-
ing closer correlation between model and experimental data. A more detailed investigation
into the effects of motor noise variance might provide a means of afiecting this data match;
however, the addition of this parameter must be accompanied by some rationale for choosing
the noise variance over the range of conditions investigated and predicted.

The general framework of modern optimal control theory is ideally suited for formulating
and solving multiaxis and multiloop control problems, There has even been developed (Ref-
erence 26:527) a means of determining an optimal observation or measurement strategy
based on the minimization of an observation cost function, Thus the modeling procedure
developed in this dissertation could be extended to the multiaxis and multiloop tracking
situations. Actual tracking experiments would then have to be conducted to determine the
validity of this model extension. If this technique is successful, the model might then be
expanded to predict the optimum sampling strategy required for the multidisplay situation.

I this prediction is successful, the model would then have application in display design and
sensor selection.
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APPENDIX 1

COMPUTATION OF ¢(t), A, AND B

@ (t) is computed using Sylvester's Theorem (Reference 10:279) and A and B are com-
puted using Equations 28 and 29. The method is illustrated for Case I.

~wg 0 0
A = k —wy 0
0 o q
Compute the eigenvalues of A,
—wpTa 0 O
|A-Ig| = k “wgp-a 0
0 0 a-o

Set IA—I a I = 0 to obtain the characteristic equation

la+wa) la-v-wB) {a-a} =0

03'=0

Sylvester's Theorem {confluent form} is stated as follows (Reference 34:609):

Let A be a constant nxn matrix with characteristic equation

_ _ - _ ﬂ'l' _ mz o - ma.
pla) = |a-Ia| = (a-q,) ' (a-a,) -la-a )

where al?*aziéaa#....#a

o

ai has multiplicity m,

Let £ be an analytic function such that £ maps the space of real numbers onio the space of
real numbers, Then there exist constant matrices ZO( a.) ZI( al), . Zml—l( al),
ZO( az), e Zmz—l( a 2), .... dependent only on A such that

. < (i
flA) = 3 _Z f (ai)zj(ai)
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where f(j) (ai) is the jth derivative of f evaluated at o i

Thus for Case I,
f(a) = f{a,) Zo(al) + f (t:tI)Z1 (ail + f (aB)ZO(ai)
Note that the Zj( di) are independent of the function f and hence can be evaluated by a

judicious choice of trial functions.,

Pick fix) = (x—aliz
Then f (x} = 2 (x~a,)
fla,) = 0 f' (@) =0
- _ 2 _ 2
f(as) s (03 ai) = (a +WB)
and >
f{A) = (A-Ia) = ffaa)zota3)

Solve for 20(03)

2 .o
(A-Iay) (A+IwB)2

Zo(a.) =
03 fla,) t(a)
- 2
rO 0 0
LO 0 u+wB~
(a+wp)?
g 0 0
=10 O
20(03) 0
0 0 (ot+wpg?
2
fa+wg)
0O 0 0
Zolag) = {0 0 0O
0 0 1
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Now pick fix) = x - a;

Then f (x} = O

f(aL) =0 f
f(Qs) = (13 - 01
and
f (A} = A - Iai =
Solve for z1 (alj
0 0 o
= 0O 0 0
z:‘“i’
0 0 -(u+wB]
|
Fo 0O 0
21(011 z k 0 O
LO O 0
Finally pick f{x}) = 1
Then f (x) = O
f(all = 1
f(as} = 1

ond

t(A) = 1 =2Z (a) +2Z,(a,)

Sol f
olve for thal)

- -

I 0 0

z,tap ={o 1 o
0. 0 of

89

=

-

L

= A - la, -(u+wB)Z°(a3)

0 0 o

k 0 0
OO<:+¢uB
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Thus
0O O
f(A) = flag) o 1 O +f‘tu1
LO o 0
+ f(aa}
Now the particuilar f{A) of inferest is f(A)}
Thus
f (x) exp (xt)
f'(x) = texp (xt)
So
| 4]
d(t) exp (@) |0 |
0 0
exp(alg)
P(t) = |k-t-expiayt)
)
exp (~wgt)
Pdit) = k-t.-up(-wat.)
0
R

90

o 0 0
) k 0o 0
c 0 0
L. -
O 0 0
0 O O
0O 0
= exp (At) = P(1)
0 c 0O 0O
0| + l.exp(alt) k 0 0
0 o 0 0O
o 0 0o
+enp(a3t) 0O 0O O
c 0O }
0 0
exp(alt) 0
0 exp (ot)
-
0 0
exp(—wBt)
0 exp (at)
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A =P(m)

éch (1dgp= B

exp t-wB‘I’) (o]
hTexp (—wBT) exp (—wBT)
0 0

H
wl_B[l-exp(-wBT)]
hyg =0

k
'-Jg [l-e:p(-wBTl (1+wBT)]

hgp = O

-}f [exp (aT]*—l]

~— -

0
B = o

%[exn (aT)-l] |

b -
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{)chm dEW = w

Iz

“’LB [1-exp (-wg T)]w,l(n)

2
—-"—2- [I-exp {-wBT Y {1 +wBT)]w1(n)

w
8
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APPENDIX II

DIGITAL SIMULATION PROGRAM FOR OPTIMAL CONTROL MODEL
This appendix contains the Fortran IV digital computer program which implements the

discrete stochastic model of the human operator in a closed-loop tracking task. A complete
set of comment cards is included in the program to explain its operation.
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SIBFTC MAIN

DECK

C*3»aDISCREFE STCCHASTIC OPTIMAL CONTRCL MODEL

aX2N2XsRsk2laslaksglizlzlsalnlalizulzsEslalalalaXe ezl lslalalaEaRalaalalaRalazRa ke aRaa N e el el

CASE I LINEAR PLANT YC=B/5-a

PURPOSE

TO GENERATE A2 SERIES OF DATA POINTS FOR EACH CF THE
FOLLOWING PURSUIT TRACKING LOOP SIGNALS

I{K) FORCING FUNCTION INPUT

X{K) PLANT OUTPUT

E(K)=T{K)-X{K) SYSTEM ERROR

U(K} CONTROL

CESCRIPTION OF PARAMETERS

Ve-w=-SAMPLING PERIOD (5EC)

wB---TIME CONSTANT OF INPUT NOISE FILTER (RAD/SEC)
SIG--STANDARD DEVIATION OF FGRCING FUNCTION INPUT
BB---PLANT GAIN

AA===PLANT TIME CONSTANT

S===-LONTROL WEIGHTING

N-==--NUMBER COF SAMPLES TO BE GENERATED

QSQ--MOTOR NOISE VARIANCE

VARL1-INTERMEDIATE NOISE OBSERVATION NOISE VARIANCE
VAR2~FORCING FUNCTION INPUT OBSERVATION NOISE VARIANCE
VAR3I-PLANT OQUTPUT OBSERVATION NOISE VARIANCE

REMARKS

1) N 15 LIMITED TO 5000 OR LESS BY THE DIMENSION STATEMENT
2) THE CHARACTERISTICS OF THE PSELDD WHITE NOISE GENERATOR,
RANONM, ARE AS FOLLOWS..GIVEN A LARGE SAMPLE OF POINTS
X{K) GENERATED BY XIK)=RANODNM({W] THEN

MEAN(X)=0.C

VAR(X)=1,0

PSOXX{NW)=0.1 WHERE PSDXX(MW) 15 THE POWER SPECTRAL
DENSITY OF X AS A FUNCTION OF FREQUENCY

1OLOG{PSDXX(W})==1C (DB}
3} IF A NEW SET OF SAMPLE POINTS IS GENERATED BY

Y{K)}=VAR*X{K)=VAR®RANDNM{ W}
THEN THE STATISVICS OF Y ARE

MEAN(Y)=0,2

VAR(Y)=VAR

PSOYY({W)=VAR®PSDXX (W) =0.1*VAR

LOLOGI(PSDYY(Wh)==10 + 1OLOG(VAR) (DB}
4} THE POWER SPECTRAL DENSITY OF THE FORCING FUNCTIGON INPUT
AT wW=0 RAD/SEC IS

PSOLI(O)=10L0G 4. #SIG*SIG/WB)
5) THE PUWER SPECTRAL DENSITY LEVELS OF THE WHITE MOTOR AND
OBSERVATICON NOISE PROCESSES ARE SET AS DESIRED B8Y CHOOSING
THE VARIANCES AS FOLLOWS..

PSDN{W)=NVAR®(],1 WHERE PSDNI(M) I5 THE DESIRED
POWER SPECTRAL DENSITY LEVEL OF THE NOISE PROCESS AND NVAR
[S THE REQUIRED VARIANCE OF THE NOISE BEING CONSIDERED
6} AA IS POSITIVE FOR UNSTABLE PLANT AND NEGATIVE FGR
STABLE PLANT

DIMENSION Al343),V(343),R13+31,Q03,3)+0(3,3),ATP(3,3),P(3,3),B(31,
LAHAT(3,3),BDEL 13,31 ,BTP(3431,X1(3)4ONE(343),CAY{3,3)
DIMENSION DEL(5001,3) S , )
DIMENSION AX(3),ZETA(3),GNUI3),X213),X2A03),X1A13),BUL3),Y(3)

101 FORMAT(6F1C.4)

102  FORMAT(1HB, 5Ky 2HT=yF5,25 5Ky 3HWB = 4F5. 245K s4HS TGy FL10.4 95X 2HBR o F5.2
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LeSXp2HS=;Fl0.695Xs2HA=,Fb. 2}
103 FORMAT{LHB SX, 4HQSQ=4Fl0. 6y 5Xs SHVAR]L =, F10,6:5X s 5HVAR2=,F1l0,6,5X.:5H
1VARI= 4 F10.645Xs 2HN=, ]16)
109 FORMAT(4F10.641101.
110 FORMAT{ 1HB +5X, 26HNORMAL LZED TRACKING ERROR=,El0.3}
150" READ(S+10)1)IT WB+SIGBB+AA,S
READLS5y109)QS5Q s VAR] ;VARZ2:+VAR3 4N
WRITE{6,102)TyWB,S5IG,BBs5,AA
WRITE(6,103)Q5Q)VAR] ,VAR2,VARI N
JJ=3
DO 41 I=l,Jd
00 41 J=1,JJ
Vil d=0,0
R{IyJ}=0.0
QiisJd)=0.0
ONE(1+J)=0.0
41 All,J)=0.0Q
CesCOMPUTE A MATRIX AND 8 VECTOR
IFtAA)201,200,201
201 Al3¢3)=EXP(AAXT])
GAM={A{3,3)=1.01/A4%

GO TC 202

200 A{3,3011.0
GAM=T

202 A{ly L)=EXP(-WB*T}
C23SQRT(2.0*WB*51G)

C2=C2%SQRT{SCRT(10.0%WB )}
C3=(1.0-Al1,1)}/WB
C3=(2+C3
Ca=C29T%ALl1,1)
AlZ2,11=C4
Al2,2)1=A{1,1)
Bt{1)=0.0
B(21=0.0
B(3)=GAM*BE
CosCOMPUTE ¥V MATRIX
Vi2y2)i=1.0
Vi2,3)=-1.0
Vi3,2)==1.0
vi3,31=1.0
C**{OMPUTE Q MATRIX
CS5sA(1,1)*(1.0+uB*T}
C5={1.0-C51/(WB*KB)
CS5=C2#L2%C5
Qlly1)=C3%C3
QL2,2)=C5%CS
Ql2+1)=C3%C5
Q(1,2)=Qi{2,1)
QU3,31=B{3)+B(3)*Q50
C*2COMPUTE R MATRIX
RilyLi=VAR]
R{2:+2)=VAR2
R{3,3)=VAR2
Co**COMPUTE IDENTITY MATRIX
DO 405 I=1l,JJ"
405 ONE(I,1)=1.0

REWIND 9
C*%SET P(N)=V
DO 1 Jd=l.JdJ
D0 1 K=],JJ
1 PlJyKimV(J,K]
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c

MM=N+]

M=N+2

CALL MXTRN(A:ATP,JJd,J4J)

DO 29 K=l,MM

K2=M-K

COMPUTE 8TP

CALL MXMULIB+P+BTPy1eJdedJ)
COMPUTE BTPB

CALL MXMUL(BTP,B+BTBIVslsJJel)
BTBIV=1./(BTBIV+S)

COMPUTE BTPA

CALL MXMULIBTP,AsX1s14JdsJd)

C*#COMPUTE GIK)=DEL(K)

[ 2N = S o B ]

00 & L=1,JJ

DEL(K2yL }=BTBIVEXLIL)
Y{L)=DEL{KZ2sL}

COMPUTE BDELI(K}

CALL MXMULI(B+Y4BOELyJJslsdd)
COMPUTE A-BDEL{K)

CALL MXADD{A.BDEL,AHAT JJsJJe-1)
COMPUTE ATP

CALL MAMUL{ATPsP+BDELsJJrdJydd)

C*sCOMPUTE P(K+1l)

29

CALL MXMUL{BDEL »AHAT (BTP+JJeJJdrJdd)
CALL MXADD(VBTP,PsJJsJJdel)
CONTINUE

C#3SET P(O}=Q

16
C
c

DO 16 i=leJJd

DO 16 J=1,JJ

P(lsJ)=Qll,d])

DO 800 K=l,MM

COMPUTE P+4R

CALL MXADD{P,RyBDEL:JJedJyl)
COMPUTE {(P+R) INVERSE

CALL MTXEQ(BOEL+BTP,ONE,JJ,JJ)

Co*COMPUTE KI(K+11)

c
C
c
c

CALL MXMUL(P,BYP+CAY,JJyJdJsdd)
COMPUTE I=K

CALL MXADD(CNE,CAY{BDELyJJedJs-1)
COMPUTE (I-K )P _

CALL MXMUL (BDEL+P3DsJIvJdsdd)
COMPUTE A{I-K}P

CALL MXMUL{AD,BTPyJJsJdJdydJ)
COMPUTE A(I-X)PAT

CALL MXMUL{BTP,ATP,BDEL,JJsJdsJJ)

Co#COMPUTE P(K+1}

950

800

CALL MXADDUBODEL,QyPeJdJdsJJsl)

DO 950 I=1,44

Y(1)=DEL(K2,1)

CALL MXMUL{B,Y,BDELsJJsLls JJ}

CALL MXADD{A,BDELyAHAT»JJyJJ»-11}
CALL MXADU(ONE.CAY,Dy¢JJsrdds-1)
CALL MXMULIDyAHATBDELyJJyJJeJJ)
WRITE(9)((BDEL{IyJ)ed=ledd)s1=i,0J}
WRITEIGIU{CAY LI s d)ed=leddisIxldd)
REWIND 9

REWIND 10

Co##GENERATE N SAMPLES OF [+X.EV

SIGL=SQRTIVAR])
S$IG2=SQRTIVAR2)
SI1G3=sSQRT{VAR3)
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58

&5
6&

8l

RQ=SQRT(QSQ)

SET XID)} Xx#(0)} uiQ) ZETAIOY
DQ 43 I=l,JJ

X1A{I)1=0.0

X1(1)=0.0

U=0.0

NN=]

NM=2

COMPUTE AX

CALL MXMUL (A +X1A AKXy JIyJJel])
COMPUTE BU

DO %6 I=1,J4

BUCT)=U*B(])

COMPUTE PLANT NOISE VECTOR
WhH=RANDNMIMN)

ZETA{L}=Ca®ui

ZETA(2)=C5%KN

WW=RANDNMIW)
2ETA{3)=B(3}*RQ*NW

COMPUTE X2A

DO 47 I=1,4J
X2AC(L)=AX(I)+BULTI+ZETA(])
COMPUTE Y

WH=RANDNMIW).

GNU{1)}=S1IGl¥WW

WW=RANDNMIW]

GNUI2)=S51G2%hWW

WH=RANDNM{W)

GNU(3)=SIG3%uN

CALL MXADDUX2A,GNU,YsJJdslsl)
COMPUTE E(X/Y)
REAC(IICIATP U ) s d=14Jdbsl=ly0d)
READ(9I{(BTP(Iyd)sd=LlydI)sl=1ydd)
CALL MXMUL{ATPoX1yBUyddeJdyl)
CALL MXMULIBTIPsYX1yJJsdJdyl)
CALL MXADDIBU.X1yX24JJslysl)
CCOMPUTE U

SUM=0.0

DO S8 I=1,J4J
SUM=SUM+0DELINM, 11¥X21 1)
Us=-SUM -

E=X2A(2)1-X2AL13)
WRITE{LO0IX2A02) +X2A03)4E,V
RESET

00 &6 1=1,44

X1tIlax2i1}

XLACT)=X2A01)

NN=NK+1

NMsNN+1

TFINN-MM} B0, 80,81

REWIND 10

Co*COMPUTE NORMALIZED TRACKING ERROR

710

SUM1=0.0

SuM2=Q.0

SUMSQ1=0.0

SUMSC2=0.0

DD 710 K=]l,MM
READ(10)DELIK,1)4C2,0EL(Ks2)+DE
DO T11 K=1:MM ~
SUM1=SUML+DELIK,1)
SUM2=SUM24DEL{K,2)
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711

SUMSC1=sSUMSQL+DEL(K,1)%DELIK,1}
SUMSQ2=SUMSQ2+DEL (K, 2)*DEL(K,2)
EM=MM

XMEANaSUML/EM

EMEAN®=SUM2/EM
XVAR={SUMSCL/EM)-XMEAN®XMEAN
EVAR={SUMSQ2/EM ) =EMEAN*EMEAN
EM=EVAR/XVAR

WRITE(&4L10)EM

GO TO 1590

END
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SIBFTC MAIN

CeeswDISCRETE

[zl EalalaslalalalalalalalalalalalaNate sl asNalelalalslalalal o N alalal ol alal ol ol a¥alalala N NaRalelaNaNalyl

DECK
STOCHASTIC OPTIMAL CONTROL MODEL

CASE 11 SECOND ORDER PLANT _YCeB/S#S
PURPOSE

TO GENERATE A SERIES OF DATA POINTS FOR EACH OF THE
FOLLOWING PURSUIT TRACKING LOOP SIGNALS

1{K) -7ORC UNCTION INPUT

X(K) - PLANT OUTPUY

E(K)=T{K)-X(K) SYSTEM ERRGR

U(K} CONTROL

DESCRIPTION OF PARAMETERS

T====SAMPLING PERIOD (SEC)

WB===T[ME CONSTANT OF INPUT NGISE FILTER (RAD/SEC)
SIG--S5TANGARD OEVIATION OF FORCING FUNCTION INPUT
B8B---PLANT GAIN

AA--=PLANT TIME CONSTANT

S--==CONTROL WEIGHTING

N-~=~NUMBER OF SAMPLES TO BE GENERATED

QSQ==-MOTCR NOISE VARIANCE

VAR1-INTERMEDIATE NOISE DBSERVATION NOISE VARIANCE
VARZ-FORCING FUNCTION INPUT OBSERVATION NOISE VARIANCE
VAR3I-PLANT OUTPUT DOBSERVATION NOISE VARIANCE
VAR4-PLANT VELOCITY OBSERVATION NOISE VARIANCE

REMARKS

1) N [S LIMITED TQ 5000 OR LESS BY THE DIMENSION STATEMENT
2) THE CHARACTERISTICS OF THE PSEUDO WHITE NOISE GENERATOR,
RANDNM, ARE AS FOLLOWS..GIVEN A LARGE SAMPLE OF POINTS
X{K)} GENERATED BY X{(K}=RANDNMi{W) THEN

MEAN{X)=0.0

VAR{X)=1l.C

PSDXX{W)=0.1 WHERE PSDXX{(W) IS THE POWER SPECTRAL
DENSITY OF X AS A FUNCTION OF FREQUENCY

LOLOG{PSDXX{N})==10Q {DB)
3) IF A NEW SET OF SAMPLE POINTS 15 GENERATED BY

YIK)=VAR®X{K)=VAR*RANDNM (W)
THEN THE STATISTICS OF Y ARE

MEAN({Y)=0.0

VAR{Y)=VAR

PSOYY(W)=VARSPSDXXIW)=0.1%VAR

10LOG(PSDYY(MWIi)=-10 + LOLOG{VAR) 1(DB)
4) THE POWER SPECTRAL DENSITY OF THE FORCING FUNCTION INPUT
AT W=Q RAD/SEC [5

PSODIT(Q)=10L0G{4%.*SIG*SIG/WB])
5) THE POWER SPECTRAL DENSITY LEVELS OF THE WHITE MOTQR AND
OBSERVATION NOISE PROCESSES ARE SET AS DESIRED BY CHOOSING
THE VARIANCES AS FOLLOWS..

PSON{W)=NYAR*0.1 WHERE PSDN{W) 1S THE DESIRED
POWER SPECTRAL DENSITY LEVEL OF THE NOISE PROCESS AND NVAR
1S THE REQUIRED VARTANCE GF THE NOISE BEING CONSIDERED

DIMENSION Af434)yV{as4) RU4G34) Q{44140 (4s4)sATPLG &) 4Pléy4i8(4]),
L1AHAT 444 ) oBDEL L 444) yBTP 494 ) o X1 1 4) yONE (4,4 ) JAX{4) o ZETALS) GNULSG) X
L2041 o X2A04) s X1LA(4) 4BUG) 4 Y(4)4CAY{4,4)
DIMENSICN DEL(4001,4)

101 FORMATL LHB ¢ 55Xy 2HT =y F1lO 0% s SXy SHWB =y Fl0ah ¢ 5X s 4HSIGT 3 F 10049y 5Xe2HB=(F1
LOsbyS5Xy2HS=2, ELD.3+5X s 2HN=,16)

102 FORMAT!{ LHB»5X+4HQSQ=3F10. &y 5X + SHVARL= 4 FLlOe 625X+ SHYARZ=24F104.6+5Xs5H
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ILVAR3I=,F1l0.6,5X¢s5HVAR4=,F10.6)
167 FORMATISFL0.6)
1¢9 FORMAT(SF10.64110) )
110 FORMAT(LHB¢5X+ 26HNORMALIZED TRACKING ERROR=,EL10.3)
150 READ{S,»LOT )T, WB,SIG+BB,S
READIS,109)QSQ,VARL, VARZ ,VAR3 , VARS N
WRITE(6+101)T,WB»SEG+BB,SsN
WRITE(6,102)1Q5Q+VAR]LVAR2, VARSI, VAR
JI=4g
DD 41 I=1,J0J
D0 41 J=1,JJ
Viled)=0,0
R{L,4)=0.0
Qii+J)=0.0
ONE{13J)20,40
41 AllL,J)=0,0
C#*LOMPUTE A MATRIX AND B VECTOR
Alle 1)=EXP{-WB%T)
C2=SCRT(2.,*S[G*wWB)
C2=C2*SQRTISQRT{10.*wB) )
Ci={l.0=A{1,1)}/WB
C3=(C2%C3
Ca=C2%T¥A(1,41)
Al2,1)1=C4
Al2:2)=2A(14+1)
Al3,3)n]1,0
Aldy4)=l.0
Al 4)=T
B{1)i=0.0
Bl2)=0.0
B(3)=0.5%BB*T=T
8l{4)=ppeT
C#*COMPUTE V MATRIX
Vi2,2)=1.0
ViZy3l==1.0
Vi3, 2)=-1.0
Vi3, 31=1,0
Co*sCOMPUTE Q MATRIX
CS=A{1l,10%{1.0+WB*T}
CS5=2(1.0-C5}/{wWBsuR)
C5=C2%C28(5
Qil,1)=C3%C3
Qi2,2)=C5#L5
Qi2,1)=C3%C5
Qily2)=Q(241)
Qi3,3)=B13}=B{3)*Q8Q
Qlée4)=81l4)*Bt4)*QSQ
Qi3:4)=B8{3)1%8(4)%Q5Q
Qi4,3)=Q(344)
C*eCOMPUTE R MATRIX
R{ls1)=VAR]
Ri2,2)=VAR2
R(3,3)=VAR2
Rt4s4)=VARS
C*e«COMPUTE IDENTITY MATRIX
DO 405 'I=1,4J
405 ONE(I,;1)=1.0
REWIND &
C¥*SET PIN)=v
DO 1 J=1,J4
00 1 K=1,J44
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1 PlJeKInv(JeK}
MMx=N+1
M=N+2
CALL MXTRN(A,ATP,JJ,JJ)
DO 29 K=1,MM
K2=M=-K
Cc COMPUTE aJP
CALL MXMUB(B+P,8TPyleJddydJ)
C COMPUTE BTPSB
CALL MXMUL(BTP,B,BTBIV,14sJJ,1)
BTRIV=1l./{BTBIV+S)
C COMPUTE BTPA
CALL MXMUL(BTP,AsXLlelyedJdedd)
C**COMPUTE GIK)=DELIK)

DO 4 L=lydd
s DEL(K24L)=BTBIVEX1iL)
4 Y{L)=DEL(K2Z,L)
C COMPUTE BDEL (K)
CALL MXMUL(B,Y,BDEL,JJylydd)
c COMPUTE A-BOEL(K)
CALL MXADD{A,BDEL,AHAT ydJ,ddy~1)
c COMPUTE ATP

CALL MXMUL(ATP,P+BDELsJdsJdedd)
CeeCOMPUTE PiK+)1)
CALL MXMUL (BDELyAHATBTP,JJsddydJ)
CALL MXADDIVsBTPPydJyJJdsl)
29 CONTINUE
C#+SET PLO)=Q
DO 16 1=1,44
DO 16 J=l,JJ
16 P{LyJ)=QiI,J)
D0 800 K=1,MNM

C COMPUTE P+4R
CALL MXADDIP R, BOELyJJeddsl)
c COMPUTE (P+R) INVERSE

CALL MTXEQ(BOEL,BTP,ONE,JJyJJ}
C#*COMPUTE K(K+1}
CALL MXMUL{P,BTPyCAY,JdsdJsJdd)

c COMPUTE 1-K
CALL MXADDIONE,CAY,BDELedJsJdJe=1)
C COMPUTE {1-K)P '
CALL MXMUL{BDEL )P0y JJdsddsdd)
C COMPUTE A(I-K}P
CALL MXMUL[A5D¢BTP,ddeddsdd)
c COMPUTE A(I-K)PAT

CALL MXMULIBTP,ATP,BDELyJdsJdJedd)
C*sCOMPUTE PIK+]1)
CALL MXADD(BOEL sQ+P4Jdsddsl)
DO 950 I=1,J4J
950 YiI)=DEL{K2,I)
CALL MXMUL{B+Y+BDELsJJoeleJdJ}
CALL MXADD{A/+BDEL AHAT s JJeJdJd,y—1}
CALL MXADD{ONE,CAY,0,Jd0JJs—1)
CALL MXMUL(D,AHAT ,BDELJJedJsJdd)
WRITE{9)((BDEL(I4J)oJd=12Jd},[=1rJJ)
800 WRITE(9Y{ICAY I sdted=1,ydddyI=1,yJJ]
REWIND 9
REWIND 10
C*+*GENERATE N SAMPLES OF I.XsEsU
SIGL1=5QRT{VARL)
SIGZ2=SQRTI{VARZ)
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58

65
.1

el

SIG3sSQRTIVARY)
SIG4=5QRTIVARY)
RQ=SCRTIQSQ)

SET x{1Q) x=(0} ul{0}
DO 43 1=1,JJ4
Kl1A(1)=0.0
Xi(1)=0.0

U=0,0

NN=1

NMa2

COMPUTE AX

CALL MEXMULCAX1AcAX,JJ00ddsl)
COMPUTE BU

DA 46 I=1,JJ4

BUll)sueB{])

COMPUTE PLANT NGISE VECTOR
WW=RANDNNIW)

LETA(Ll)=C3%uw

ZETA(2)=C5%uMW

W=RANDNMIW)
ZETA(3)=BII}*RQ*WN
ZETA{&4)=Bl4)*RQ*WN

COMPUTE X2A

DO &7 I=1.JdJ
X2A(I)=AX{T}+BUCI)+ZETALL])
COMPUTE ¥

NW=RANDNM{ W)

GNUL1)=S1GLl*wMH

WHsRANDNM (W)

GNUL2)aS1G2%wN

NW=RANDNM{W)

GNU{3)=51G3*WN

Wh=RANDNM(W)

GNUl4)=51G4*hNW

CALL MNXACDIXZ2A)GNUY3JJyls1l)
COMPUTE EIXZY)
READISIULATPII s Jhed=1dddel=1dd)
READ{GIL(BTR I J)sd=lyddisi=ledd)
CALL MXMULIATP,X1+BU,JJydd51)
CALL MXMUL(BTP Y eX1lsdJeJJdsl)
CALL MXADD(BUsXLsX2edJelsll}
COMPUTE U

SUM=Q,0

DC 58 1=1.JJ
SUMsSUM+DELINM, T )*X2(1)
Us=5SUM

E=X2A(2}=-X2A(3)
WRITE(L10IX2A(2)sX2A03)4EWV
RESET

DO 66 I=l,JJ

X1(1)=X2(1}

X1ACI1=X2A{1)

NN=NN+1

NM=hN+1

LF{NN-MM)B(C,80,81

REWIND 10

ZETALO)

CesCOMPUTE NORMALIZED TRASKING ERROR

SUM1=0.0
SuUM2=0.0
SUMSQL=0.0
SUMSC2=0.0
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910

711

00 910 K=l,¥MM
KEADIICIDELIK1)+C2,DEL(K,2]),DE
00 711l K=1,Mp
SUML=SUMI+CELI{K,1)
SUMZ=SUMZ+CELIK,2)
SUMSCL=SUMSQL1+DELIK,1)*0ELIK, L)
SUMSQ2=SUMSY2+DELIK s 2)*DEL(K,2)
EN=V}F

XMEAN=SUML/EM

EMEAN=SUMZ/EM
XVAR={SUMSCL/EM}-XMEAN®XMEAN
EVAR={SUMSQ2/EM }~EMEANSEMEAN
EM=EVAR/XVAR

WRITE(4+110)EM

GO TG 150

END
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APPENDIX III

THE POWER SPECTRAL DENSITY DATA REDUCTION

The power spectral density data reduction program used is based on the presentation in
Section VII (Digital Computer Techniques) of Reference 4. The section discusses the digitiz-
ing of continuous data and the computation of autocorrelation functions and power spectral
densities. The section includes all the formulas required for these calculations and the data
reduction program. There is one modification to the Bendat procedure that was implemented
in the formulation of the data reduction program used, and this modification will now be dis-

cussed in detail.

Bendat (Reference 4:292) recommends that the power spectral densities be calculated
only at the M+1 discrete frequencies

-
L]

ki, /M k = 0,1,2,....,M

T

sampling period

This spacing provides M/2 independent spectral density estimates. Spectral estimates at
points less than ch/ M apart are correlated.

Since low frequencies (0-30 rad/sec) are of primary interest in human response work,
it is desirable to have the ratio fc/M as small as possible. As noted by Bendat though, M
should be chosen much less than N, the total number of samples, for small uncertainty in
estimates of power spectral density. Thus a compromise choice of M is necessary and
Bendat recommends that, as a rule of thumb, choose M less than one-tenth the sample
size N, This was the rule used in the selection of M for the data reduction, however, a
modification was incorporated in the data reduction program.

The modification to Bendat's procedure is to compute the power spectral density esti-
mates at discrete frequency intervals separated by 0. 1 rad/sec until f = fc /M is reached.,

At this point, the estimates are computed at intervals of fc/ M until fm = fc is reached.

ax
The justification for such a modification is that first, the interval of frequency from 0 to

f c/M is a small fraction of the total frequency interval of interest. For example, if T =0.1
sec, then w, = 2'rrf.c =27/0,2 =10 7 rad/sec, and, if M = 100 (as is used in the data

reduction program) then w c/ M=2 'inc/M = 0, 17, Secondly, the modification does not
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alter the recommended Bendat procedure, it just augments it at the low end of the frequency
scale. Thirdly, and finally, when the modification is applied to the computation of known
power spectral density shapes, the results fit the known shapes correctly. Specifically, when
the power spectral density of the forcing function input is computed with the modification to
the data reduction program, the result can be directly compared with the theoretical spectral
density

Kk

L. fw) o=
¢)|| w4 +2w

m M

4 -
w? 4 wy (c-n
A comparison is shown in Figure 48 for frequencies greater than wc/M. Power spectra
were obtained for both the simulated noise generated in the digital model simulation and
from the experimental forcing function obtained from the noise generator and the analog
computer, These spectra are plotted along with the theoretical spectrum obtained from
Equation C-1. For frequencies less than wc/M, refer to the comparison in Table V.

TABLE V

POWER SPECTRAL DENSITY (DB)

Digital Analog
wlrad/sec))| Theoretical [Simulation Simulation
0, ! -0,088 0 o
0.2 -0.34 -0.13 -0.2
0.3 -0.75 -0.35 -0.7
0.4 -1.29 ~-1.2

This modification should not be construed to be universal and should be used only when

a priori knowledge of the power spectral shapes confirm the validity of the modified calcu-
lations.
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