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." This report describes investigations of networks with adaptive ability distributed through 
WJ:tem. It is thought that large-scale adaptive systems can be constructed of adaptive building 

blocks. These adaptive systems would be flexible in function, reliable and would resist severe 
damage characteristics of living creatures. Neuron models were tested by interconnecting 
them into various networks to perform simple control tasks. The test results were evaluated 
and the evaluation used to improve the theory and the neuron model. The distributed adaptation 
concept was analyzed from an abstract algebraic approach, using optimal control theory. The 
combined approach, when studied in depth, contributed to the understanding of the problem. 
Although the conclusions of this report are at best tentative, one conclusion seems reasonably 
valid: any required adaptive controller can be built using iterative elements provided only that 
all terminal segments of optimal trajectories of the process are themselves optimal trajec
tories, and that the process is controllable and observable. 
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SECTION I
 

INTRODUCTION
 

This program is an effort to discover whether adaptive systems can be built that are " modeled on the known characteristics of neurons, with adaptive ability distributed among the 
elements. Each neuron receives input signals from other neurons. On the basis of these in
puts and outputs, it is postulated that each neuron uses some internal criteria to decide whether 
or not it should produce an output. The adaptation in a neural net is not centralized, but is 
distributed throughout the net, with each neuron contributing to the whole. 

An aim of the research has been to develop models and techniques that are consistent 
with known facts from both physiology and behavior theory. The writers know of no physiologic
al evidence that neuron synaptic weights or connections on a lower level are directed by signals 
from higher centers. 

The basic premise of the work presented here is that large-scale adaptive systems with 
great flexibility can be constructed of adaptive building blocks. Each building block adjusts its 
own behavior according to some relatively simple rule. Reference 1 points out that systems 
based on this concept should tend to display the wide range of plasticity, reliability, and ability 
to operate effectively after severe damage that is displayed by liVing ·creatures. 

The basic problem has been attacked from four points of view. 

(1)	 An overall system approach using abstract algebra 
(2)	 A simulation approach using optimal control theory for linear systems 
(3)	 Analysis of threshold logic networks 
(4)	 Review of behavior literature and one experiment with animals (company sponsored) 

-. A coherent picture is emerging. Although it is incomplete in many details, the following 
salient points appear: 

(1)	 There are ways to design a system so that many single, independent decisions made 
according to definite rules at local points within the system will cause a single com
plex global (overall) criterion to be met. 

(2)	 A linear system can be controlled optimally by an adaptive controller made of many 
autonomous identical elements. 

(3)	 Logical decisions of any desired complexity can be made adaptively by a "hierarchy 
of decisions" (described later). 

(4)	 Observed animal behavior indicates that the decisions made and the methods used for 
making them resemble the mathematical models that are being developed. 
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SECTION n
 

GLOBAL PERFORMANCE CRITERIA AND
 
THEIR LOCAL IMPLEMENTATIONS
 •A.	 GENERAL 

Early ideas as to how a neuron acts locally to optimize overall system performance are 
reviewed in this section of the report. The flaws in these early schemes are pointed out, and 
the progression to more complex ideas of a performance functional is outlined. Present con
cepts are based on the theory of sequential machines, dynamic programming, and concepts 
from behavior theory. 

Although implementations of the various schemes are mentioned, they are not discussed 
in detail in this section. Detailed implementations have not yet been developed for the latest 
concepts. Some implementation requirements that have been considered will be discussed in 
Section m. 

B.	 EARLY RESEARCH 

At the beginning of the program it was believed that each neuromime could adjust itself 
by considering solely the time histories of its own inputs and outputs. The adjustment rule 
that was used required the neuron to attempt to minimize its inputs and output while providing 
the necessary control of its environment. More formally, a "system power" function, ~, 

was defined by 
n 

-f" = R0 2 + L R i 2	 (1) 

1	 • 

where Ro and Ri, i =1, 2, ... , n, are respectively the neuron's output rate and various in
put rates. It is readily shown that if the appropriate partial derivatives exist and are well
defined, a minimum of ~ is obtained when 

n 
~ aRi	 ( ) 

Ro=-LJ~Ri	 2 
1 

For adaptation, the system had to "test" its environment, discover with sufficient accuracy the 
values of the partial derivatives of Equation 2, and adjust its response accordingly. 

The result of the experimentation was to point out a need for a more sophisticated view 
of the nature of the function to be minimized. Failure of the empirical model under some con
ditions to operate as initially hoped served to direct the succeeding research, and it is thus 
worthy of brief discussion. 

The elements of the system were electronic units that attempted to mimic certain charac
teristics of biological neurons. The following characteristics were selected for modeling. 

(1)	 Any particular neuron (excluding sensory neurons) receives inputs from many sources. 
These inputs are pllse trains of variable repetition rate. The output is a pulse train 
similar to those appearing as inputs. /(2)	 Some inputs tend to excite the neuron to emission of output pulses, some tend to "'. 

inhibit the production of output pulses. In the model, we associated a parameter e
2
 



Wi, -1 < wi < 1 with each input to the hyperpolarizing or depolarizing effect of 
the separate endbulbs. If wi > 0, the ith input is excitatory, and if wi < 0, the ith 
input is inhibitory. (If wi =0, the ith input has no effect on the output of the neuron.) 

(3)	 A neuron takes the spatial and temporal sum of its inputs and compares this weighted 
sum against a threshold. The threshold can vary with time. 

(4)	 Neurons usually produce outputs only when they are receiving inputs whose net effect 
is excitatory. They occasionally produce spontaneous actiVity (pacemakers). 

For the experiment, elements were constructed resembling Harmon's "neuromimes" 
(see Figure 1 and Reference 2). The elements displayed the characteristics listed above. In 
addition, the weights Wi were adjustable, and various empirical rules for adjusting them were 
investigated. 

The scheme seemed to operate more or less satisfactorily in simple networks, as judged 
by the fact that the signs of the computed synaptic weights became such that control signals of 
the proper polarity were produced for simple "environments." For more complicated environ
ments, or for more complicated networks of elements, the empirical system very quickly 
began to show defects. It was determined qualitatively that these defects resulted from two 
causes. The first was an inability of any individual element to determine whether changes in 
its input were the result of its own activity or the activity of other elements. The second was 
the inability of the network elements to consider the long-term effects of their activity. 
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Figure 1. Modified Harmon Neuromime Transistor Circuit Used in the Experiments 
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At this point, a twofold analytical attack on the problem was initiated, in which both dis
crete and continuous models were investigated. For the discrete models, it was assumed that 
the environment was a sequential machine or Markov process; for the continuous models it was 
a linear process. Hand-computed results of the discrete case and analog simulations of the 
continuous case are discussed later. 

The concepts that have been developed since that early research allow one to exhibit the. 
limitations of the earliest scheme in terms of mappings between sets. The assumption was 
that stimuli map into responses, i. e., there is some function F such that 

F: S-+R, 

or that this rule holds at least at the level of the individual neuron. Variability of behavior 
was assumed to result only from changes in the internal parameters of the mapping. These 
parameters are the "learning" of the neuron. It will be shown later that for various reasons 
additional "storage" is needed. 

Despite the flaws, the moderate successes of the simulation for simple control tasks 
implied that a more sophisticated rule for adaptation might increase the range of environments 
the simulation could successfully control. The rules that were investigated next were attempts 
to retain the basic concept that each neuron adjusts itself, while making the overall system 
criterion more complicated. The major attempt was directed at control of linear systems. 
The linearity assumption is an extremely restrictive one. However, optimal control of linear 
systems has been extensively studied. The investigation of linear systems has given a great 
deal of insight into the problems the research has attempted to solve, so that the value of the 
study apparently has not been adversely affected by this restrictiveness. 

C. APPROACH USING OPTIMAL CONTROL OF LINEAR SYSTEMS 

Following the early work reported above, a system was developed which was made up of 
many autonomous elements and which could adapt so as to minimize a global cost functional 
defined on the system by local computation of an adjustment rule. 

Consider Figure 2. The "environment" is assumed to be a linear differential system, •
described by 

Y = AY + BM + D (3) 

where Y is an n-vector, MI is an m-vector, D is a disturbance vector, A is an n x n matrix of 
constants, and B is an n x m matrix of constants. Let the "system power" be defined by 

:fJ = {- f 110 (yty + MtM)dt,
 

o
 

v
and define the optimum control vector M to be that control which produces 

~ = min [110 (yty + MtM)dt 

o
 

where .aM is the space of all possible control vectors M. 

• 
4 



NETWORK 

a 

COMPUTED VALUES 

b 

a b 

Figure 2. Neuromime Network in a Linear System 

Expressed concisely, we wish to find a vsuch that 

v v 
V = v(M) 

(4)
 

subject to the constraint that 

Y = AY + BM. 

Using the methods of calculus of variations we can write that the Hamiltonian, H, of the above 
is 

where P =col (Pt, P2' ... , Pn) is a vector function to be determined. It is well-known that 
"the functional is minimized for 
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• aU 
-p = ay 

" auM =M: ---aJ.T is minimum 

and we obtain for the specific problem at hand the following three simultaneous equations • 

It = -Atp - Y (5) 

M = _Btp (6) 

Y = AY +BM (7) 

with boundary conditions 

Y(O) = YO 

lim P(T) = col(O, 0, . • • , 0)
 
T-. oo
 

= 0 

The result is the classical two-point boundary value problem, which has been studied 
extensively (Reference 3). Routine manipulation betweenEquations 3, 5, and 6, assuming 
D = 0, yields that p = KY, where K is a positive definite, symmetric matrix which satisfies 

K = -I -AtK + KA + KBBtK, 

K(T) = 0, 

a matrix Riccati equation. 

Solution of this equation in non-trivial cases is somewhat refractory, but yields to solu
tion by quadratures, or to numerical integration by computer. In the case where the time of 
i}ltegration of the cost functional goes to infinity, K goes to the asymptote given by setting 
K =0 above. The resulting matrix quadratic can be solved by machine methods. A digital 
computer program was developed to solve a matrix Riccati equation. This program is dis
cussed in detail in Appendix VUL 

The elements of the autonomous-element system that was developed used the components 
of the equations derived above to adjust their individual parameters. Experimental tests were 
successful for environments up to second order. A fifth order system was simulated, but 
tests were not completed because of hardware design problems. The evidence indicated that 
the system would have operated properly had hardware problems been solved. 

The use of a quadratic global cost functional, with the resulting derivation of the Lagrange 
multipliers, P, leads to consideration of some concepts from behavior theory, particularly the 
drive-reduction hypothesis. (A discussion of this concept is presented in Appendix m.) D: 
appears that the variables P are, in a sense, predictions of things to come, in the same sense 
that the state vector Y is a summary of events past. 

Note, for example, the relation between Lagrange multipliers, P, and the expected change 
in cost-to-go to the end of the trajectory. Each of the components of P represents the negative 
of the derivative of cost-to-go with respect to the corresponding Y. One can maximize some 
function of the vector P as equivalent to minimizing a function of Y, a saddle-value property 
of such minimization problems which is well-known. It is also well-known that for stable sys-, 
tems the equation in P is stable in backwards time. This property, coupled with final condition. 
on P, exhibits its role as a summary of events to come on the optimal trajectory. 

6 



The drive-reduction hypothesis leads to similar ideas. One wishes at each instant of 
time to take that action which will serve to maximize the reduction of drive level. Drives can 
be acquired, i. e., they can be synthetically produced variables like the components of P. 
These considerations lead .the writers to question whether optimal trajectories could be defined 
on sequential machines, and whether synthetic variables could be introduced that resemble in 

&:fme way the variable P. The answer to both questions is affirmative. 

-.p). OPTIMAL CONTROL OF SEQUENTIAL MACHINES 

1. Definition of Cost Functional 

The following paragraphs show that a cost functional can be defined on a sequential ma
chine in a way that is analogous to the linear system presented earlier, and that such systems 
can be related to organism-environment interactions. 

Before discussing creature-environment interrelations, it is instructive to consider the 
problem of optimal control of a sequential machine, without regard to the form of the controller. 

Consider a sequential machine with state set Z, initial state set Zh output function r/J , 
and state transition function, t. (See Appendix L ) Assume that some particular state, ZO' has 
been selected as a desired state and that there is a mapping C(z, n) which we will call a cost 
functional. The system has the following properties: 

(1) There exist pairs (Zh nil such that 

(V Zi) ( 3 nil [(zi E Zi) -+ (ni E N)A t(Zh nil] = zo 

(2) C(zi' nil exists for all pairs (zi' ot), such that (1) holds and is undefined otherwise. 

(3) C(zi' Of) E R+ (the non-negative reals) when it exists. 

~t Of E N be written as 

n1' n2' n3' .•• , nm• 

We define an optimal trajectory from zi to be the sequence of pairs 

(Zi' n1), (t(Zi' n1)' n2)' (t(t(Zi' n1), n2), n3)' ••. , 

(t(t( ••. t(zi,n1)· •• (nm-2)' nm-1), nm») 

such that 

C(zi'ot) = min (C(Zi,n»). 

Consider the case where at some time, t, the machine occupies state (t). In general, the 
optimal input to the machine at time t, i. e., that input n(t) for which t (z(t), net») is the t + 1th 
member of the optimal sequence, cannot be determined from the knowledge of z(t) alone. There 
is nothing in the definition that prevents the existence of two sequences which are defined to be 
optimum as follows: 

(zi,n1), (t(Zi,n1), n2) ••• , (t(t( ••• t(zi,n1) ••. ), no») 

(Zj,na), (t(zj,n), n) ••• , (t(t( ••• t(zj,na)··· Ilw» 
U~ which the first component of the ith pair. of the first sequence is equal to the component of 

.j jth pair of the second sequence, while the corresponding second components are not equal. 
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A large class of interesting systems, however, display the following properties: 

(1)	 Every terminal segment of an optimal trajectory is an optimal trajectory. 

(2) A non-negative real number (transition cost) can be assigned to each pair (zi' Sj), 
where 3..f E A, the generators of N, in such a way that the trajectory functional defined as the.,. 
sum of £he transition costs for each step of a trajectory to zo is minimized for the optimal 
trajectories. 

(3)	 1 ..... 2. To show this we introduce concepts from dynamic programming. 

2.	 Dynamic Programming Considerations 

Suppose a sequential machine X 5; N X V is given, together with a set of allowed initial 
states, Zi 5; Z for the machine. Suppose further that one particular state, Zo E ·Z, which 
is accessible from all initial states, has been selected as a desired state, and that there is a 
cost associated with each transition in the machine, i. e., there is a mapping C: Z X N -+ R+ 
(R+ is the set of non-negative reals). 

We develop in the following paragraphs an algorithm for discovering optimal trajector~es, 

defined as those input sequences which take the machine from any given state to the desired 
state with least cumulative cost. 

The objective is to show that another machine (a controller) eXists, which can generate 
the input strings leading to these optimal trajectories, and to examine the properties of such 
controllers. We first exhibit an algorithm for assigning to each state a pair (b, c) where c is 
the minimum cost for reaching the desired state and b is the input symbol which will transfer 
the machine from the given state to a state which is the succeeding state along the optimal 
trajectory to the desired state. 

(1)	 The Algorithm - Initial Step. Assign to the desired state, zo' the trajectory pair 
(bO' cO) = (A, 0). A is the empty string. • 

(2)	 Iterative Step. Consider each member of zp of the set of states Zp that have at least 
one transition to a state which has an assigned trajectory pair. Let the set of those 
states that have assigned trajectory pairs be called Za. Any given zpi E Zp either has 
an assigned trajectory pair or it does not. Order these states by any convenient 
scheme. Taking them in order, assign to each zpi the pair (bpi, Cpi) where 

cpi = min [ C(Zpi' n)+ Cai]
 
Vn
 

where ca.i is the trajectory cost associated with the successor state t(~Pi' n). The 
input that yields minimum cost is npi; cpi is undefined if cai is not defined. 

(3)	 Repeat Step 2 until no further assignments or replacements can be made. 

It can be proved by induction that the algorithm yields optimal trajectories and terminates 
for a finite set of states. We assert that there is a minimal length optimal trajectory from any 
given state which does not occupy any state twice. The absolute length trajectory can tra.verse 
at most every state in the machine. 

By inspection, the algorithm finds all optimal trajectories of length one on the first 
iteration. Assume that at the end of the nth iteration, all least-cost trajectories of length n 
or less have been found, and further that the assignments and replacements yielded exactly 
those least-cost trajectories that are of the length n. From the algorithm, a pair will be as- • 
signed or replaced for a given state during a particular iteration only if one of its immediate 
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successors has had a pair assigned or replaced in the previous iteration. The new trajectory 
from any node that receives an assignment or replacement on the n + first iteration is there
fore of length n + 1. No other path of length n + 1 or less from that node is superior, or it 
would have been selected by the algorithm. Since there is a maximal length of optimal path, 
the process must terminate. 

Since much of the experimental work described later is devoted to the continuous or
~screte cases where the number of states is not finite, it should be pointed out that to the 

writers' knowledge no algorithm exists for finding optimal trajectories in the general case. 
Halkin (Reference 4) and others have found algorithms for cases Satisfying certain convexity 
conditions on the constraints, however. 

From the termination proof we also see that each terminal segment of an optimal tra
jectory is an optimal trajectory. We now show that if every terminal segment of every optimal 
trajectory is an optimal trajectory, then appropriate transition costs can be defined. 

Assign a transition cost of zero to every transition in every optimal trajectory. Assign 
a transition cost of one to every other transition. Clearly the transition takes on a non-zero 
value for a non-optimal trajectory. 

3. The Optimal Controller 

Given a sequential machine (or process) with a set of initial states, a desired state, and 
a set of optimal trajectories, we wish to find a controller which drives the process along the 
optimal trajectories. The following paragraphs show that the controller is (as would be ex
pected) closely related to the process. There are a number of possibilities: (l) the case of 
the generalized optimal trajectory versus the case where each terminal segment of every op
timal trajectory is an optimal trajectory; (2) the case where the initial state of the process is 
known versus the case where it is not; and (3) the case where outputs from the process are 
accessible versus the case where they are not. 

•..•~ Our attention will be primarily confined to the case where terminal segments are optimal.d outputs from the process are accessible (but may not be one-to-one with the process states). 
The initial states mayor may not be known. In the more general case, where terminal seg
ments of optimal trajectories may be non-optimal, a moment's reflection shows that the con
troller must have as many initial states as there are initial states of the process. The total 
number of states can be as large as the sum of the lengths of all optimal trajectories. The 
writers were unable to discover any interesting properties of this case. In contrast, consider 
the case where all terminal segments of all optimal trajectories are optimal trajectories. As 
was pointed out earlier, this reqUirement can result in assignment of a pair to each state; one 
element of the pair is the optimal transition out of that state, the other is the cumulative cost 
to the desired state. 

We show first that there exists a controller that is a Moore machine and that has exactly 
as many states as the process. Formally, we have the process, X p S N X V, and 

tp: Zp X N -. Zp' 

Assume a controller Xc S V X N such that 

and 

'" t/Jp: Zc -+ N 
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with the initial state sets Zph Zci, and a desired state of the process Zoo together with a set 
of pairs, U(n, c) defining optimal trajectories. We need define te only lor those pairs that are 
necessary to produce optimal trajectories. Consider first an "open loop" controller. Let te 
be independent of V, i. e., 

te: Zc -+ Zc (a generator) 

Let the states Zc E Zc be paired one-to-one in any desired way with the states zp E Zp, •
i. e., there exists a mapping 

f: Zp -+ Zc 

and f-l exists. Define "'c such that 

"'c(f(Zpj» =nj, 

where nj is the first component of the pair (nj, Cj) assigned to Zpi. This is clearly always 
possible. Let te be chosen in such a way that 

which is always clearly possible. 

From the construction, X c is an optimal controller, in the sense that given an initial 
state of the process Zpi, there is a corresponding initial state of the controller zci = f(Zl?i), 
such that the output sequence of the controller starting in state Zci is the sequence that will 
drive the process from state Zpi to the state Zo via the optimal trajectory. 

We now show that it is possible to find an optimal open loop controller with fewer states 
than the process it controls. It is obvious that such would be the case if the process were not 
reduced and connected, i. e., minimal. We therefore assume a minimal process. Also, we 
assume that there is an optimal trajectory terminal segment from each state in the machine, • 
so that no states can be immediately omitted from the controller on that account. We show 
that under these conditions the controller can stUI have fewer states than the process. The 
result follows immediately from the conventional reduction process for sequential machines. 
Consider first the process. For each input-state pair there is associated a next state and an 
output. Two states can be merged if for every input their outputs are identical and their next 
states lie in" the same equivalence class. .Nelson describes the algorithm thoroughly (Reference 
5). Assume, therefore, that the process contains two states whose outputs are not identical. 
Assume that the optimal trajectory from each of these states goes to the same successor state, 
and that the same input symbol produces the optimal transition for each of the states. 

Consider now the two states of the controller corresponding to those two states. Clearly 
they produce the same output symbol and have the same successor state. They can therefore 
be merged. 

We have so far confined ourselves to Moore machines. The following paragraphs show 
that a Mealy machine exists which, under certain conditions, is an optimal closed-loop con
troller. Further, such a controller may have fewer states than a minimal Moore controller. 

We consider the simple case where the outputs from the process are such that 

and has an inverse, i. e. , 

•
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exists and is unique. Each output from the process can be identUied with only one process 
state. The process Xp is described by 

"'p: Zp X N -. V 

~ tp: Zp X N -+ Zp 

and the controller Xc' is described by 

t/lc: Zc X V -+ N 

where tp, t/lc can be constructed as follows. Let f: Zp -+ Zc be one-to-one. Let "'c be such 
that 

where nj produces the optimal transition out of process state zpj. Let 

Note that tc is constrained for only some of the pairs in Zc XV. The others can be selected 
arbitrarily. 

Clearly, Xc is an optimal controller. To show that an optimal controller with fewer 
states may exist, we consider the following case. 

~ Consider first the process. Let it coIitain exactly two states, ~1 and Zn2' for which 
the optimal trajectories occupy the same successor state, Zp3' and for whichthe optimal tra
jectories re~ire respectively the input symbols nl and n2. 

Consider now the controller. Let the states corresponding to~-'pl and Zo2 be, respec
tively, zcl and zc2' with their common successor denoted by zc3. We have tliit 

t(zcl' "'P(Zpl» = zc3 

t(zc2' tPp(Zp2» = zc3 

It was originally assumed that 

These states can be merged, while with a Moore controller they cannot. 

The question of the complete description of the mapping te: Zc X V -+ Zc has so far 
been deferred. Only those transitions required for the optimal trajectories have been dis
cussed. The remaining transitions can sometimes be assigned in such a way as to identify 
an unknown initial state. The question of process state identification is discussed later. 

Before continuing with the relation of the results to iterated element theory, it is perhaps 
.j~seful to consider some of the assumptions implicit in the construction above. From a control 
.,-meory point of view, we have the following results for sequential machine processes and con

trollers. 
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(1) If a process is controllable to a given final state, then a controller exists to drive 
it there. 

(2)	 If optimal trajectories exist, then a controller exists that will drive the process along 
them. 

(3) The controller may have fewer states than the process it controls.	 • 

(4)	 The existence at each process step of a number which is monotone decreasing only 
along optimal trajectories implies that all terminal segments of all optimal trajec
tories are optimal trajectories, and vice versa. 

We have assumed that the process is noiseless, i. e., its transitions are determined 
uniquely by the initial state and the signals from the controller. We have also assumed that the 
initial state of the process is known and the corresponding initial state for the controller is 
selected. 

If the cost-to-the-desired state is equated formally to the concept of drive level in be
havior theory, it follows that the drive-reduction hypothesis requires that each terminal seg
ment of an optimal response chain be an optimal response chain. To the writers' knowledge,. 
the best evidence that this is so is the phenomenon of chaining itself, in that creature "trajec
tories" are often acquired backwards. Several facets of the system theoretical problem that 
are pertinent to creature behavior have not been considered, however. 

The assertion is that a creature-environment relation is modeled by a system which 
devolves in state (Appendix I) in such a way that after a long time only optimal (or "near
optimal") trajectories are traversed. The possible methods for it to devolve in state have not 
been discussed; we have only considered terminal behavior. 

4.	 Comparison of Algebraic and Linear Systems 

Consider now the analogy between the abstract algebra formulation and the linear syste~ 
which was discussed earlier. We have ---., 

General	 Specific 

(1) "'p: R X Zp -+ S	 Y = AY + BM 

(2)	 tp: R X Zp -+ Zp.- Y = AY + BM 
(state and output are identical in this 
case) 

(3) t c: S X Zc -+ Zc	 P = -Atp - Y 

(we can identify Zc and D) 

(4) M: Zc -+ R 

The parallelism of the construction shows that optimization of trajectories, in general, 
leads to the generation of "intervening variables" - a term borrowed from behavior theory. 
The next section shows how these intervening variables can be of use in the local computations 
at the level of individual neurons or neuron-like elements. 
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SECTION m 

LOCAL RULES AND THEm IMPLEMENTATION 

This section discusses methods for generating the local rules for neuron adjustment. 
The adjustment rules for each scheme that has been investigated are discussed. Detailed 
implementations of the most recent concepts have not been completed. However, results of 
some aspects of the implementation that have been examined are presented. 

A. EARLY WORK 

The earliest scheme that was investigated established only the algebraic sign of a par
ticular synaptic weight. Each neuron adjusted each endbulb according to 

Wi = -k RO sgn f(Ri) , 

where k was a positive constant and f was a function of Ri that strongly reflected the influence 
of the first derivative. 

Two concepts were considered that incorporated the adjustment rule. In Concept 1, the 
neuron model adjusted the synaptic weights of its inputs. If a neuron model had 1000 inputs, 
it would compute 1000 synaptic weights. In Concept 2, the neuron model adjusted the synaptic 
weight associated with its own output. If the neuron model synapsed on 1000 other neuron 
models or had 1000 inputs, it would compute only one synaptic weight. Previous research 
sponsored by GAC used Concept 1. It was believed, however, that Concept 2 was more plaus
ible physiologically. It seemed reasonable that a neuron could more readily adjust the effects 
of its own endbulbs than the endbulbs of other neurons. Also, research by Dale (Reference 6) 
has indicated that all of the endbulbs of any particular neuron are either excitatory or inhibitory. 
The most recent work uses a combination of both concepts, together with considerably more 

"comPlex rules for adjusting the weight. A more complete discussion of the physiological con
siderations is given in Appendix U. 

B. THE LINEAR SYSTEM 

In the previous section it was pointed out that optimal control of a linear process with 
quadratic cost functional defined over all time led to the following set of equations: 

Y = AY + BM (8) 

P = _Atp _ Y (9) 

P = KY (10) 

M = -BBtp (11) 

yeO) = YO (12) 

P( 00) = 0 (13) 

Equations 8, 10, and 11 can be used to define a feedback optimal controller for the sys
tem of Equation 8, assuming K and B are known. It is a linear system as is shown in Figure 
3. However, the system has no adaptive ability, which can be introduced as follows: 

Let the kij be initially unknown. Instead, parameters "ij' which are the best estimates 
• j available, are mserted into the network. For simplicity, assume temporarily that A is O. 
-,We have that 
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Figure 3. Feedback Controller for a Linear Process 
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(14)p ='X. Y; 

One obtains from Equation 14 for A =0 that 

:><'Y + Y = EV 

6(here El is an error signal. The error signal can be used to revise the values of the Kij. 
The rule used in the experimentation 

. afl
lCij = - sgn[flli = Yj sgn[E 1 1 .
 

alCij .LIl
 

The rule is discussed in Appendix VUe Figure 4 illustrates the method. Note that each ele
ment uses only information found in its own inputs to adjust its input weights. 

It was assumed above that B was known. Assume now that, like K, B is only apprOXi
mately known, and that estimates, 13ij' are originally inserted. The equation 

. 
Y - BM = D 

becomes 

when the disturbance is zero. 

ALGEBRAIC 
SIGN 

SGN 
€ ..

IJ 

K··JI 

y.
J d 

Cit 

d 
Cit 

ADDITIONAL SIGNAL FROM OTHER 
UNITS (Atp) REQUIRED IF A ¢ 0 

ADJUSTMENT 
OF Kj i SHOWN. 
OTHERS ADJUSTED 
SIMILARLY 

Figure 4. Method of Adjusting the K Optimal Control Parameter 
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The values J3ij can be adjusted by a method similar to that used for adjusting ~ Figure 
5 shows the method. The output signals mi are multiplied by the same coefficients J3ij that 
have been computed as weights on the output of the element. The J3ij are altered by equations 
of the form 

~ij = - mi sgn [f 2] j 

Again, each element uses for computation only signals which are directly accessible to it. • 
From the description of the simplified system it is now possible to see how an element 

to handle a more general case would be constructed. A block diagram is shown in Figure 6. 
The parameters aij are adjusted in a method analogous to that already presented for the J3ij' 
using the equations of the system in their complete form (A ~ 0). 

The above has described only one method for adjusting the parameters. Others, perhaps 
perturbations or correlation computations, might be suitable for some sort of iterative com
putation, depending on the exact system to be controlled and the statistics of the disturbances 
expected. The system that was instrumented for experimentation assumed that disturbances 
occurred rarely. Convergence conditions for the rule are discussed in Appendix IX. 

The important point that has emerged from the investigation is that for this linear sys
tem there are two separate error equations, both of which must be satisfied by the individual 
elements. It seems intuitively likely that at least two analogous equations must be instrumented 
in the general case. 

PRINCIPAL 
INPUT Yj 

TO 
CONTROLLED 

PROCESS 

DIFFERENT lATE 1-----.,. 

ADJUST 

ADJ~STMENT 
OF J:1ji SHOWN, 
OTHERS ADJUSTED 
SIMILARLY 

SGN 
ALG EBRAIC 1-__€..=2_----IlISIGN MULTI PLY .... ....J 

Figure 5. Method of Adjusting the J3 Parameter • 
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Figure 6. Block Diagram of Adjustment Mechanism of a Single Neuron Model 

The equations have a physical interpretation. The first equation (E 1) detects errors in 
the transformation of environment states, Y, to equivalent controller states, P. The second, 
E2' detects errors in the controller's internal model of the environment. 

As is discussed in the next section, more generalized linear systems than the one that 
has been investigated lead to additional requirements on the El, E2 equations. We defer this 
question for the moment, however, and consider a method that has been developed for imple
mentation of appropriate mappings in the sequential machine case. 

C.	 HIERARCHY OF THRESHOLD ELEMENTS
 

In the linear case, one obtains that
 

P = KY,
 

M = _Btp
 

two linear transformations. In the more general case, one would have 

p = K(Y) and M = -B(P), 

~. .J'; i. e., the matrices would go over to generalized functions. A method has been developed for 
.., generating components of P and M. This method, which assumes the problem variables are 
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Boolean variables, appears to be amenable to adjustment by an error equation. The imple
mentation needs only to be presented with information as to whether its output is right or 
wrong, and it will approach the correct behavior. Convergence in all cases has not yet been 
proved, but seems intuitively likely. 

Consider an element which receive$ Boolean inputs from n sources. Define a vector 
A =col (ah 82, ••• , an), where 3i takes on the values 1 or °according to whether the • 
corresponding input is energized or deenergized, respectively. Associated with the element 
are n weights, wh w2, • • • , wn' and a threshold, T. The element produces an output iff 

(W,A) > T 

where W is the vector col (Wit w2' ••• , wn), and the notation (W, A) represents the inner 
product of WandA. The equation above with the equality holding and continuous A defines a 
plane in an n-dimensional (Euclidean) space. B; is immediate that all points A which satisfy it 
must lie in the closed half-space "beyond" the separating plane. The set I = A of admissible 
vectors is such that the vectors A have components equal to either 1 or 0, and form the 
vertices of an n-cube in the space, with one vertex at the origin. B; follows that only those 
functions can be generated by a threshold logic element in which the minterms of the function, 
considered as vertices of an n-cube, can be separated from the minterms of the function com
plement by a single plane passed through the cube. We define a linearly separable logic func
tion as one which meets this criterion. 

In the following, we restrict our attention to logic functions that are zero for the zero 
input vector. It is easily shown that this restriction introduces no loss in generality, since 
it can always be met by replacing one or more input variables with their complements. The 
restriction is equivalent to restricting the threshold to positive values. 

A slightly different geometrical interpretation of the problem lends some insight into 
the algorithm to be presented. Consider the space D of all possible vectors W. Each ad
missible vector A, (except the zero vector) together Jith the threshold T, defines a plane in 
the solution space, Dw, i. e., given any 

Ao€IA}, Ao' 0, • 
the set of 

IWI<W,Ao> = T} 

is a plane in Dw• Each possible non-zero input vector, A, defines a plane in the solution 
space which is perpendicular to the vector from the origin to the point Ai. The distance from 
the origin to the plane is determined by the threshold. No two of the planes are parallel. 
Selection of a particular logic function for the instrumentation corresponds to selecting a set 
R =Bt. C I, i =1, 2, ••• , m, of vertices of the n-cube for which the threshold is to be 
reached or exceeded. The selection defines a set of inequalities 

(W,Bl> > T 

(W,~> > T (15) 

(W,Bm ) > T 

and also the set of opposite inequalities 

(W,Cl) < T
 

(W,C2) < T
 
· (16).· · 

(W,Cn_m_1) < T 
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where C is I-R. These 2n-l inequalities can be interpreted geometrically as dictating that W 
must lie in a particular one of the two half-spaces defined by each of the 2n-l non-zero input 
vectors. A logic function which is not linearly separable arises when the 2n-l constraints are 
not consistent. As an example, consider the function 

f = (avb) A (a I\. b '), 

k "exclusive-or" function. 

The three corresponding inequalities, defining three planes in the solution space (Figure 
7) are (letting T = 1) 

(W, (1,0» > 1
 

<W,(O, I» > 1
 

<W, (1, I» < 1
 

The inconsistency can be seen from the figure, and also from the fact that the left-hand mem
ber of the third inequality is the sum of the left-hand members of the first two. 

I I I I I II I I I 

LIE IN THIS

(W,l!e T 1 - 

Figure 7. Three Planes in the Solution Space 

D. HIERARCHICAL NETWORKS 

The intuitive notion which is instrumented by a hierarchy of threshold elements (Figure 
~iS as follows. Weights for the lowest element (labeled No.1 in the figure) are first chosen 
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so that the lowest element, if it were operating by itself, would fire on all inputs that are 
supposed to produce an output, even though it may also fire on some inputs that are not sup
posed to produce outputs. The next higher element in the hierarchy is then adjusted to correct 
all the lowest element's mistakes, in that it prevents the lowest one from firing when no output 
is supposed to be produced. Its input to the lowest element is inhibitory, 1. e., the weight, 
w21' associated with it is negative. The second level element may also make mistakes, in4 
that if it were operating without inputs from the next higher element it might prevent the lo~ 
element from firing when the network should produce an output. The third-level element is 
adjusted to correct all the second-level element's mistakes, and so on. The following para
graphs prove that a hierarchy with a finite number of levels can always be found to produce 
any given logic function of n variables. 

Given a logic function,.;(, defining two sets, Rand I-R, where R does not contain the 
zero vector, we consider the inequalities of Equations 15 and 16 above. Select a vector WI 
which satisfies all the inequalities of Equation 15. We note in passing that if all inequalities of 
Equation 16 are also satisfied, the function would be linearly separable. 

•EACH 
SUCCEEDING 

NO. N, NTH LEVEL 

NO. N+1, N+1ST LEVEL 

I LEVEL IS 
I _4---INHIBITORY 
I ON NEXT 

LOWER 
LEVELNO.2, 2ND LEVEL 

NO.1, LOWEST LEVEL 

INPUTS 

Figure 8. Hierarchy of Threshold Elements • 
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The vector W clearly can be chosen so that equality holds in at least one of the Equation 
16 set. Let an input vector for which equality holds be labeled Ba• Assume some collection of 
Equation16 are not satisfied, in that vectors Ea, Eb' ... , E:Q' which are supposed not to 
produce outputs, cause the threshold to be reached or exceedeo when their inner product is 
taken with Wl. It will be shown that a vector W2 can be chosen which causes the second level 

~eshold to be exceeded for all vectors Ea, Eb' ... , Ep,and for which at least the vector 
, a will be below the threshold. We consider two cases. 

Case I - The inner products of the vectors Ea, Eb' • . , Ep, with W1 all exceed the 
threshold by at least an amount 6. Select W2 to be 

Wl-col( 6/n+1), 6/n+1, 6/n+1, ... , 6/n+1). 

Since the components of any input are 0 or 1, it is seen that for any non-zero Ai 

6 « ~ 6 6 6 6) n6- < A· co - - - - >n+1 - l' n+1 ' n+1 ' n+1' .•. , n+1 - n+1 

and the necessary conditions are satisfied. 

Case II - The inner products of some subset of the vectors Ea, Eb' ..• , Ep' are 
exactly equal to the threshold. Since no two input vectors are parallel, all of the vectors, 
Ea, Eb, ..• , Ep, have components orthogonal to Ba. Form W2 by first subtracting some 

6iBa' 6 > 0, 

from W1 and then adding some 

62 'P1, 63 'P2' 

etc, where P1, P2, ... are orthogonal to Ba. Clearly, 61, 62, ... , 6p+1 can be chosen 
, to satisfy the requirement. 

~ By an identical argument, the third-level vector can be chosen to allow the second-level 
element to fire on at least one of the inputs Ea, Eb, .•. ,Ep' The fourth-level can allow 
the third-level to fire on Bb' etc. 

At each level the threshold element corrects all the mistakes of the previous level while 
allowing the previous level to fire on at least one input for which it operates correctly. We 
have
 

f1 = (Ba V Bb V V Bm YEa V • V Ep) (lowest level)
 

f2 = (Ea V Eb V V Ep V P1)Ba (second level)
 

where P1 is some proper subset of the Bi
 

f 3 = (P1 V Ql)Ea (third level)
 

where Q1 is some proper subset of the Ei
 

f4 = (Q1 V P2)~ (fourth level)
 

where P2 is some proper subset of P1 and ~ £ P 1, and so on.
 

The output of the network is given by
 

f = f1 .... (f2 .... (f3 -. . • (f2n) . • • »,
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which simplifies to 

f112 V flfS£4 V flfSf5fti V • • • V flfSf5 ••• f2n • 

Substitution yields 

fi£2 = Ba V (R - Pl) 

flfS£4 = (Ba V BtJ V V:on V Ea V V Epl 

(PI V ~}Ea • (P2Ql V ~) 

Since PIS R and ~.S Ea V • •• V Ep, 

flfS4 = (PI V ~)Ea (P2 ~ V Bt». 

We note that Bt:> E Pl, which yields 

fifs4 = (Pl - P2) Q:aEa , 

and that Pl and QJ. are disjunct, yielding finally 

flfS~ = (Pl - P 2) • 

Similarly 

flfSf5f6 = (P2 - PS) , 

and so on, yielding that 

f = (R - Pl) V (Pl - P2) V (P2 - PS) • •• • 

Since R is finite, and P i+l is a proper subset of Ph the construction must terminate in a fini. 
number of steps. 

E. PROCEDURE FOR ITERATIVE WEIGHT ADJUSTMENT 

To aid in the understanding of the weight adjustment procedure for hierarchies, we first 
consider a geometric interpretation of weight adjustment for a single element to generate a 
linearly separable logic function. As·was argued previously, anyone of the inequalities listed 
in Equations 15 and 16 corresponds to requiring that the point Win DW lie on one or the other 
particular side of a plane in DW• Consider the following procedure. All possible input 
vectors are presented repeatedly in some convenient order to the element. Each time the 
element "makes a mistake, " the vector W is to be adjusted. Let the set of values of W which 
satisfy the logic function to be represented by DO, DO E DW• Testing whether the logic 
function is satisfied for a particular inP1t corresponds to testing whether the present value of 
W lies on the same side of the plane defined by the input as does the solution space. An error 
is detected when Wand DO lie on the opposite side of the plane in question (Figure 9). The 
shortest distance to a point in the solution space from the present value of W can be expressed 
in two components: a component that is perpendicular to the plane being tested and a compo
nent that is parallel. Each time an error is detected, let the point W be moved exactly to the 
plane being tested along the path perpendicular to the plane. This procedure clearly reduces 
at each step the distance from the point W to the solution space. Since at each iteration this 
distance is reduced, the process converges, although not necessarily in a finite number of 
steps, as is illustrated schematically in Figure lOa. 

Convergence in a finite number of steps can be produced by the follOWing additional con
struction. Note that DO is bounded by a set of planes. Define DO to be a subset of DO that •.. 
lies a distance • from each of the boundary planes of DO. • is chosen sufficiently small so . 
that DO ' is not empty. 
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At each iteration the point W.is moved perpendicular to the plane being tested to a posi
tion a distance from the plane on the same side as the solution space (Figure lOb). By the 
identical argument presented previously, the point W converges to gO'

I 
Fra,m elementary 

theory of infinite series, there exists a finite M for which the distance to DO is less than or 
equal to I. 

To produce the motion of W along the perpendicular to the plane being tested, we note 
that each inpUt vector is exactly the perpendicular to the plane it defines. At each step where 
an error is detected one can write that the successor of W, W', is given by 

W' = W+kA 

where k is chosen to make 

~',A) = T ± 1 • 

The plus sign is chosen when (W', A) is supposed to be greater than or equal to T, the 
minus sign when (W', A) is supposed to be less than T. 

It should be noted here that the usual form of the algorithm to select W is to increment 
W according to the rule 

1
W' = W ± n+l A, 1 fixed, 
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Figure 10. Convergence of W in Solution Space 

with the positive or negative sign chosen by the rule given above. A moment's reflection 
shows that this rule is analogous to the one given, but in general might converge somewhat 
more slowly. 

For adjusting the weights in a hierarchy, the procedure presented below will sometimes 
move the weights for a particular element in the "wrong" direction, i. e., away from its solu
tion space. It will be shown, however, that at each step of the algorithm, a number tends to 
decrease which is the sum of the projections of the distances to the separate solution spaces 
onto the input vector for each of the elements in the hierarchy. Since these distances are 
non-negative, they tend individually to go to zero. 

The first case to be considered is the case in which exactly two levels are needed for 
synthesis of the function. Let each test of the network be characterized by (1) the value of the 
function, ~ , for A; and (2) the output of the network for A. 

From these data a signal can be derived which informs the network when it makes a 
mistake. The rule that the elements will follow in their changing weights will be one in which 
an element's weights change when it could be "at fault" for the error. If either element COUld. 

24 



be culpable, they will both change by equal increments (although, it so happens, with opposite 
signs). The rules of adjustment are as follows: 

Case I - The network fails to produce an output when it should. 

(l)	 Case Ia - The second level is inhibiting the first level. 
Rule: Reduce weights of second level along the direction of input vector until second 

level sum is reduced to T - ij • 

(2)	 Case Ib - The second level is not inhibiting the first level.
 
Rule: Increase weights of first level until sum is T + ij •
 

Case II - The network produces an output level when it should not. 

(1)	 Case ITa - The second level is inhibiting the lowest level. 
Rule:	 The second level weights are unchanged. Weights of first level- including 

inhibitory connection from the second level - are decreased along the vector 
input to the first level until sum is T - ij • 

(2)	 Case fib - The second level is not inhibitory to the first level. 
Rule:	 The lowest level weights are decreased and second level weights are increased 

simultaneously in equal amounts until either the first level reaches T -" or 
the second level reaches T + 6. 

Note that Case Ia can go over to Case Ib if first level weights are too low. Similarly, 
Case lIb can go over to Case IIa if the second level is not sufficiently inhibitory on the first 
level to inhibit outputs from the first level. 

To examine whether these rules converge to the solution space, one can list 18 possible 
conditions that are the result of taking all possible combinations of: 

" (l)	 Projections of first level weights on input vector are too high, within solution range, 
too low 

(2)	 Projections of second level weight on input vector are too high, within solution range, 
too low 

(3)	 Network is firing when it should not, and not firing when it should 

These possible conditions (Table I) together with the rules above, define the motions of 
a point in a P1, P2 plane, where P1 and P2 are the projections on the input vector of the re
spective distance of the weight vectors W1 and W2 from their solution spaces. Note that W1 
has one more component than W2, since it includes the inhibitory weight of the second level 
element on the lowest level element. Figure 11 illustrates graphically that for every possible 
weight condition, and for f =1 and f =0, the sum of P1 and P2 either reduces or remains 
constant, as can be seen from the direction of motion of the vector in the P1, P2 plane for 
every possible condition. 

Consider now the case where three levels are needed for synthesis. Partition the net
work into upper and lower sections, the lower section containing two elements, the upper sec
tion containing one. Let P1 be the sum of the projections onto the input vector of the distances 
from their respective solution spaces of the lower two elements, and let P2 be the projection 
onto the input vector of the distance for the upper weights. The same argument intuitively 
applies as was used previously. There is, however, at least one factor omitted from the in
formal discussion above. For many logic functions, several distinct syntheses exist, depending 
on exactly which minterms are chosen for each level to control. There are not unique solution 

• J>8paces corresponding to P1 - P2 = 0, but perhaps numerous disjunct regions in the W1 X W2

"space that are allowable solutions. Intuitively it seems likely that convergence would continue
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Table L Eighteen Possible Conditions of the Weight
 
Vectors of a Two-Level Hierarchy
 

ConditionsG Change 

f f1 f2 wfl wf2 

0 - - - -
0 - 0 - -
0 - + - -
0 0 - ~,- t,
0 0 0 - -
0 0 + - -
0 + - ~ t 
0 + 0 ~ t 
0 + + ~ -
1 - - t -
1 - 0 t -,~ 

1 - + - ~ 
1 0 - - -
1 0 0 - -
1 0 + - ~ 
1 + - - -
1 + 0 - -
1 + + - ~ 

Remarks • 
No possibility of error 

J 

Changes if f2 is supposed to inhibit f1 

No possibility of error 

Steady if f2 = 0, decreases if f2 = 1 

•
No possibility of error 

G In columns f1 and f2' + indicates that weights are too high, - indicates they are too 
low, and 0 indicates they are acceptable. 

when one of these solution reglons is approached, but it is not certain at this time. In view of 
the potential applicability of such methods to adaptive control problems, the question should 
undoubtedly be pursued. 

• 
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SECTION IV
 

THE STATE IDENTIFICATION PROBLEM AND
 
AN ALGEBRAIC STRUCTURE OF LEARNING
 , 5

~' 

• 

One factor that has been ignored in the work presented to this point is that the output 
from the environment at any instant may not define its internal state. As an example, consider 
a linear process which satisfies 

. 
X = AX+ BM 

y = CX 

and in which only variable Y can be observed by the controller. Such problems are standard 
in the literature. Such systems are said to be observable if the state vector Y can be deter
mined by observation of the vector X over finite time. It is readily shown that a linear system 
is observable if, and only if, the columns of 

F = [ct, AtCt, (At)2 Ct , •.. , (At)n-l ct] 

span the state space. 

Similar remarks apply to controllability. A system is controllable if it can be transferred 
from the initial state to the zero state in finite time. Again, for the linear case, the require
ment yields a relationship on the system variables; 1. e. , 

G = [B, AB, A2B, ..• An-1B] 

must span the state space. 

From the standpoint of networks of iterated elements, the implications are that any com•ponent of the intervening variables P cannot be computed using only the present values of the 
components of Y, but must also consider the past history of Y. 

For adaptive control by iterated elements, a further complication is introduced. One is 
led to question whether a process can indeed be identified by an adaptive controller. The prob
lem has been investigated for sequential machines, with affirmative results. Assume first 
that a given finite state process with finite input set has two properties: 

(1)	 Every state is accessible from every other state (strongly connected) 

(2)	 The process is a Moore machine with the property that the output mapping l/J: Z -+ V 
is one-to-one. 

A state-transition function for the machine can obViously be discovered in finite time by 
exhaustive testing. By the same argument, a state-transition function for the equivalent Mealy 
machine can also be discovered. 

Consider now a process, X, like that above except that 1/1: Z --+ V is not one-to-one. 
We define such a process to be observable if, knowing the state transition function and the 
function, it is always possible to determine the present state of the machine from a finite num
ber, r, of immediate past observations. The state-transition and output function of such a 
machine can also be discovered in finite time by the following proof. 

Define a new machine, X', such that its input alphabet is all sequences of length r or•.
less of symbols from n, its set of initial states is the set of states of X, and its output alph 
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is all sequences of symbols of length r or less from v. For each point in time, define the in
put to X' to be that element from its alphabet that corresponds to the last r inputs to.E, and 
its output symbol to be the one corresponding to the last r outputs from X. Clearly the map
ping X' is one-to-one for this new machine, and the preceding argument applies. 

"',!Ii. Thus it is possible to discover the state transition and output functions of any finite state 
"-"uential machine that is observable and strongly connected. Note, however, that the deter
mination, in general, can only be made by an exhaustive process. If outputs from the machine 
are from the set S, we have a mapping 

Ip: Sr ..... Zp. 

Consider, however, the fact that the optimal controller may have fewer states than the 
process. The controller states then represent a set of equivalence classes of process states 
suitable for optimal control. For control purposes' it is adequate to identify only the equivalence 
class of the process state. We have then the mapping 

I: Sr ..... Zc'
 

where Zc = tZp} and tZp} is the set of equivalence classes of Zp .
 

It has been preViously established that for each process state there is an optimal input
 
symbol the controller should emit, 1. e., there is an optimal control function C:
 

C: Zc -N.
 

This can be combined with the state identification map to yield a "feedback law, "
 

F: Sr ..... N, 

so that it is possible to control a pr_ocess optimally with a controller consisting of a mapping, 
....,~of stimuli into responses, if the cost of state equivalence class identification is ignored, 
.. if identification is possible in a finite (and bounded) number of steps. 

Let us consider now the various mappings that have been ascribed to the controller, or
 
to the computation of optimal trajectories, at various points in the discussion above. First
 
there are the transitions of the controller itself:
 

t c : Zc X S - Zc
 

rPc: Zc X S ..... R
 

which yields the pair (b, c), where c is cost to the desired state along the optimal trajectory
 
and b is the response that should be emitted to follow the optimal trajectory. Combining tc
 
and C can yield a prediction of the next cost to desired state, which can be denoted by the
 
second mapping
 

C': S X Zc ..... D'
 

where D' is defined as the change in cost-to-go which should be observed. In addition,
 

M: D R gives the output of the controller, 

I: Sr Zc identifies the process state, 

R: Zp ---+ Zc establishes equivalence classes of process states, and 

" F: Sr ..... R is the overall feedback law obtained by combining I and rPc • 
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We are now in a position to point out that intuitive ideas of "le.arning" include two 
algorithms: (1) a procedure for process identification, which reconciles the results of the 
functions I and tc, and (2) a procedure for establishing optimal trajectories, which reconciles 
C and C' . 

If the steps taken in arriving at this point are indeed justified, we are led to an intere•.~ 

ing conclusion. An iterative element synthesis of any required adaptive controller is possi 
provided only that all terminal segments of optimal trajectories of the process are themselves 
optimal trajectories, and that the process is controllable and observable. 

•
 

•
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SECTION V 

SUMMARY AND CONCLUSIONS 

The major algebraic results presented in this report are as follows: 

(1)	 A model of creature behavior and of neuron function is presented in which both the 
creature and its environment are assumed to be sequential machines, and the neurons 
implement the transitions of the "creature" machine. 

(2)	 It is shown that if costs are assigned to the transitions of the environment and one 
environment state is selected as a desired state, one can define and find the optimal 
trajectories of the environment from each possible initial state. 

(3)	 The number of states in an optimal controller for the environment above is less than 
or equal to the number of states in the environment. 

(4)	 If the environment is observable and connected with respect to the desired state, the 
optimal trajectories can be discovered by an orderly testing procedure, which estab
lishes the trajectories ''backward, " in a pattern analogous both to dynamic program
ming and to chaining. 

(5)	 An auxiliary variable can be defined in such a way that its value is monotone, de
creasing along any optimal trajectory, and can be identified with "drive level. " 

(6)	 Six mappings for the controller can be defined, two of which are "predictions" and 
two "confirmations, " which can be implemented with neuron-like elements. 

(7)	 In the linear case and in at least some selected discrete cases, algorithms are 
exhibited for comparing the predictions with the confirmations and correcting the 
operation of the controller so as to cause it to traverse optimal trajectories, using 
neuron-like elements. 

These results show that insofar as the formal assumptions hold for creature behavior 
experiments, a drive-reduction hypothesis for creature behavior is a purely theoretical con
sequence of the assumptions, whether it has any physiological validity or not. 

Although the result most easily exhibited is the validity of the drive-reduction hypothesis, 
other consequences of the analysis pertinent to behavior theory have been exhibited. 

(1)	 The analysis tends to support the view that stimuli do not become indicators of re
sponses directly, but indicators of environment state equivalence classes, which in 
turn become connected to responses. That is, the mapping 

S X Zc -'+ R 

is the result of two mappings 

s X Zc -+D' 

D' -+R • 

Although these two mappings can be combined formally into a single mapping, the 
introduction of the intervening variable offers computational advantages and also 
offers an explanation of some creature behavior and of neuron interconnections. The 
construction resembles Tolman's sign learning. 
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(2) The various mappings exhibited form categories for classifying behavior and 
physiological experiments and can define meaningful experiments for future research. 
One example animal experiment was actually performed. 

The research makes some minor contributions to optimal control theory and to algebraic 
systems theory, in that • 

(1)	 An algorithm is presented for discovering optimal trajectories on a sequential 
machine. 

(2)	 An adaptive system for minimizing a quadratic cost functional on a linear system is 
exhibited. 

(3)	 A method is given for generating logic functions that are not linearly separable by 
use of threshold elements. 

Any conclusions advanced as coming out of the research described in this report are of 
necessity tentative. The neuron has not been modeled in sufficient detail and with sufficient 
proved accuracy for one to say with any degree of assurance that the conclusions are firm. 
Nevertheless, the research results point strongly to the view that neurons could operate in
dependently, forming their own connections to other neurons and adjusting their own synapses. 
By these actions they could produce overall organism behavior that would optimize some 
global performance criterion. No evidence has yet been discovered to refute the view. The 
concepts of synthetic intervening variables, hierarchies of decision making, equivalence classes 
of stimuli, and optimal trajectories seem to have cogent relations to the results of both 
physiological and behavioral experimentation, and to the introspective views of cognition and 
thought. 

Whether these relations will continue to hold must be revealed by future research - the 
problems are not close to being solved. 

The concepts advanced so far do appear to have applications in the field of adaptive oP. 
timal control. If the present promise is fulfilled, complex adaptive systems could be built 
entirely of iterative building blocks like those described in preceding sections. 

It is the view of the authors that the research shows at least as much promise for the 
future as it did when the task was undertaken, and that the interim results could, with addition
al study, become "spin-offs" of value in the control field. 
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APPENDIX I 

ALGEBRAIC SYSTEMS, SEQUENTIAL
 
MACHINES, DEVOLVING SYSTEMS
 

A. ALGEBRAIC SYSTEMS 

The following discussion presents a formal algebraic construction that relates sequential 
machine theory to systems that show more variability of behavior initially than they do later 
in time. A number of properties of sequential machines are reviewed. 

We define a system, 1;, to be a relation, 1; £; N X V. For reasons that will be apparent 
later, we will call N the disturbance space and V the parameter space. N and V are arbitrary 
sets. 

We use the conventional definitions of such terms as function, relation, linearly ordered, 
semigroup, etc. See, for example, Goffman (Reference 7) or Nelson (Reference 5). 

We will say that 1; has a state representation if there exists a set Zo and a mapping 
t: Zo X N -V such that 

I = ~ (n,v) I (z,n) E (Zo X N) -t(z,n) = v} 

Windeknicht (Reference 8) has shown that every system has a state representation. We will 
call Zo a set of states for the system. 

Let us now let I be a partial groupoid. We will call the system I a normal system if 
"e exists a set Z and a mapping I/J and t such that 

I/J: Z X N - V 

t: Z X N- Z 

where 

(V:z) ('In) [nI 1/J(z, n)] 

(Vz) ('In) ('In') [(I/J(z, nn') = I/J(z, n)l/J(t(z, n), n'))A(t(Z, nn') = t(t(z, n), n'))] 

and where nn' represents the groupoid product of n and n' if it exists. We say that 

Z is a set of states of the system, 
I/J is a state representation of the system, 
t i~ a state transition function of the system. 

As has been pointed out by Windeknicht, the set Zo and the set Z must satisfy 

Zo £; Z. 

We must therefore distinguish between a set of states for a normal system and a set of 
initial states for that system. We call the set of pairs [(n, v) I (n, v) E I] the "disturbance

response" pairs of the system 1; •
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B. CONCEPTS FROM THEORY OF SEQUENTIAL MACHINES
 

Let N be a semigroup on a set of generators, A, and let the semigroup be a product of 
the system concatenation. Such a system can be identified with a "sequential machine." A 
conventional definition of a sequential machine, or a semi-Thue system, has been defined by 

HNelson (Reference 5) to be a quadruple F = <A, B, a. ,to> where A is an alphabet, B is th.' 

set of words on A, a... is an axiom or axiom scheme (a. € B), and ~ is a (finite) set of rules 
of inference (productions) of the form: 

,
PgQ -.Pg Q 

where g, g' E Band P, Q are syntaptic variables on B. 

A finite transducer (or sequential machine) is defined by Nelson to be a semi-Thue sys
tem, T = <A, B, Q...,..p) where A consists of two not necessarily disjunct subalphabets Sand 
R and a subset of auxiliaries Z disjunct from S and R. The axiom is of the form Zix*', where 
zt E Z, X E B. 

-fJ is a set of rules of the following type: 

(1)	 PisjQ --.PrkqtQ
 

PZi*' -+P (*', *' E A, is a special symbol to denote the end of a word in B).
 

(2)	 There is exactly one production of type a for each pair (zi' Sj) C Z X S and exactly 
one of type b for each zi E Z. 

(3) Nothing is a production unless its being so follows· from 1 and 2 above. 

In the formal system theoretical context above, let N be a free semigroup on a set of 
generators S, and V be a free semigroup on generators R. We can make the following identifi... 
cation with Nelson's definition. • 

The alphabet of Nelson's system is identified with SURUZ where Z is the state set. 

Let zi be in Z, and let SjQ be a word on B. P is empty, Q mayor may not be. The 
production 

PZiSjQ --.PrkzLQ 

is defined by 

zt. = t(zi' Sj) 

rk = I/J (zi' Sj) 

Clearly, since"', t are functions, there is exactly one such production for each pair (Zh Sj)' 
We can further require that 

(VZ E Z) ["'(z, A) = t(z, A) = A] 

where Ais the empty string. This satisfies the requirement that for all Z in Z, there exists a 
production of type b, where the special symbol *' stands for the empty string. 

The transition diagram of a sequential machine with finite number of states, Z, is a 
directed linear graph in which there is a node for each state, z, and for each elemental map
ping of t(z, s) = z' there is a directed branch from the node Z to the node z'. Each such er 
branch is labeled either with the symbol s or with a pair [s, '" (z, s)] , depending on the form . 
of "', as is discussed below. 
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Two states, z1 and z2' are equivalent (written z1 == z2) if"
 

(vx) [tz1 (x) = tz2 (x)]
 

where x is any string of symbols from N. 

A sequential machine is reduced if" (VZi) (VZj) [(Zi = Zj) +-+ (Zi = Zj)]; 

otherwise it is redundant. 

Two machines, XA and XB' with common input and output alphabets S and R, are 
homomorphic if there is a function, f, on Za into ~ such that 

f(ta(z, s» = !b(f(z), s) 

and 

rPa(Z, s) = rPb(f(z), s) • 

The machines are isomorphic if r 1 exists. 

The following differs slightly from the usual definition. A sequential machine is "connect
ed with respect to initial state zo" (zO. E ZO) if for each Z E Z there is an n E N such that 
t(zO' n) = z. If the machine is connected with respect to each state in Z, it is "strongly con
nected." A strongly connected system does not devolve in state, a concept which is discussed 
later. 

A sequential machine is minimal if it is reduced and connected. A submachine, or sub
system of a machine X = (S,R, Z,I/J, t, ZO> is a machine (S',R', Z',rP', t', ZO> such that 

6,i.' s z, S =S', R' S R, Zo c ZO' and for which t' and I/J' are the restrictions of t and I/J to 
~'X S'. 

Two machines are indistinguishable if for every za E Z~ and s =s1s2. . . en E S there 
is a zb E Zb such that the sequence of outputs I/Ja (Za' S1~' rPa\ t(za, s1)' S2)' .•. , 

I/Ja (t(•.. (t(za, s1)· .. ), sn) is equal tOrPb (Zb' S1) , I/Jb (t (zb' s1), s2)' •.. , 

I/Jb (t(•.• (t(zb' s)•.. ), sn). and vice versa. 

Two forms of the function I/J have been studied in the literature. The first is such that 

and the other is 

The first formulation has been called Mealey's machine. The second is equivalent to the 
formulation called Moore's machine in which 

t/J: Z-+R 

is the form of the output function. 

That these are equivalent is shown, for example, in Nelson (Reference 5). The assump
.·~tion of one or the other form does lead, however, to differences in the instrumentation of 
~iValentmachines. The implications of this fact to the present discussion is examined later. 
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In presenting a formal model of a creature-environment system, a slight change is made 
in semantic identifications. Consider three free semigroups, S, R, and N, on sets of genera
tors A, B, and C, with concatenation as the semigroup operation. We will call them, respec
tively, the stimulus, response, and disturbance semigroups. 

Elements of the various semigroups and sets will be denoted by corresponding lower case.;;;, 
letters. Let the system E be such that 

E£NXRXS 

We now require that the system display the following partitioning properties. 

There exist two sets, Zc and Ze' and mappings such that 

t/Jc : S X Zc-+R 

(R X N) Xt/Je:	 Ze-+ S 

t : S X Zc -+Zcc

te : (R X N) X Ze	 -Ze 

and further that the transition conditions on t/J and t given in the definition of a normal system 
are satisfied for each of the subsystems. 

The parentheses are inserted above to clarify the notion that the "input" to the environ
ment is the Cartesian product of creature responses and disturbances (perhaps random effects 
or perhaps effects introduced by the experimenter). 

This partitioning is a special case of system interaction, studied by Birta (Reference 9). 
It is readily shown that E is a normal system by eliminating S between the four defining map
pings, yielding 

t/Jc: R X N X Ze X Zc - R • 
tc : R X N X Ze X Zc -+ Zc 

te : R X N X Ze -+ Ze 

Let the state set of the overall system be Z £ R X Ze X Zc' and let its output be R. Re
arranging the above yields 

"': N X Z -+R 

t: N X Z -Z 

Note that Z may be a proper ~bset of R X Ze X Zc. The point is examined further below; 
not all elements of R X Ze X Zc are reachable. 

To define reachable states, consider a normal system on free semigroups N and V (as 
defined earlier) with set of initial states Zo. Form a sequence of sets ZO' Zt, ••. , as fol
lows: 

(The set of initial states) 

Zl = t(ZO X A)	 (The set of all possible successor states to Z00 A is the set of 
generators of N) • 
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Z2 = t(t(ZO x A) x A) (Possible successors of Zt) 

Zn = tete. • • t(Zo x A). .) X A) (Zn is the set of states reachable after n steps) 

w· EXTENDED AND DEVOLVING SYSTEMS
 ~..•...'("'
..~,


The following discussion defines two terms, an extended system and a devolving system, 
and formalizes the intuitive concept of a system that shows more variability of behavior initially 
than it does later. The motivation is to formalize the experimental situation in which liVing 
creatures are observed to alter their behavior from time to time, tending toward stereotyping 
or habit formation. 

E ooWe construct formally the following new system, ~ N X V, which we will call the 
extension of the system E ~ N XV. 

00 

Let the state set Wo of Eoobe U Zi (the set of potential states of Eat t = 0). 
i=O 

Let tw = t E and "'w = "'E 

D: is immediate that 
00 

U 
i=j 

Physically, this construction corresponds to the union of all possible right translations 
of the time origin of the original system; i. e., any point on the trajectories of the original sys
tem can be considered as occurring at t =O• 

• " The definition for a system that devolves in state is for all i, 0 S i, for which trajectories.;1 

WlLre defined, 

(1) Wi-t 2Wi 

(2) There exists at least one i for which Wi-t :::> Wi • 

We consider a normal system E ~ N XV, where N is a free semigroup with set of generators 
A. We require that the set of initial states Zo be equal to the initial set of potential states, 
W00 We note that a free semigroup with identity is closed under left cancellation. (We include 
the empty string as a member of the semigroup.) Consider any arbitrary pair (n, v) EX, 
where n =' ntn2. The following theorem examines the relation of the extended system to the 
original system. 

Given a system X and its extension E oo as defined above, 

A proof of the theorem can be supplied by contradiction. Suppose there exists an (n, v) 
E X such that no appropriate (n2' v2) can be found. From the definitions above, the initial 

segment of (n, v) (we write (nt, Vt» is in X. We can write that 

(n, v) E X) - 1(:J z) [(z E ZO) A(",(z, n2) = V2)] 
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From the definition of normality, however 

(ntn2, VtV2) EE)-+-(3Z0J[I/1(ZO, ntn2} = I/1(zO,nt}l/J(t(zO,nt )n2)I\ 

(t(zO' ntn2) :; t(t(zO, nt}, n2)] • 

or 

where 

z = t(zO' nt) . 

From the definition of t 

t(zo, nt) E Z, 

which implies, from the definition of WO' that 

t(zO, nt) EWO, 

and our assumption that Zo =Wo is violated. 

The above demonstrates that any terminal segment (11t' Vt) of any pair (n, v) E X is also 
in X. It does not follow, however, that the converse is true, i. e., (n, v) E Xdoes not imply 
the existence of an (n', v') E X such that (n, v) is a terminal segment of (n', v'). In fact, we have 
chosen in the main text to examine the case in which there exists at least one pair (n, v) which 
is not a terminal segment of any (n', v') EX. Such a system devolves in state, since the 
initial state Zo such that v = I/1(zO' n) never recurs. 

The above has formalized the concept of initial variability of behavior which disappears 
with experience, as typified by a system that devolves in state. Although the concept of a 
devolving system allows for variability, it does not account for the fact that creature behavior 
is goal-directed. To include this idea, we earlier considered certain concepts of optimal 
control of a sequential machine. 

•
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APPENDIX II
 

PHYSIOLOGICAL CONSIDERATIONS
 

"
 Physiologists have apparently spent little effort on the theory of learning as related to 
known characteristics of the nervous system. Hebb has postulated that if a neuron A repeatedly 
or persistently aids in the firing of neuron B, A will become excitatory on B (Reference 10). 
Milner extended this postulate to include inhibitory connections (Reference 11). The rule bears 
at least some resemblence to Thorndike's more or less discredited "law of exercise" (Reference 
12). It has been repeatedly shown in behavior experimentation that practice without reinforce
ment leads to Uttle or no strengthening of response tendency. One is tempted to question Hebb's 
statement, in view of modern behavior theory. In justice to Hebb and Milner, it must be pointed 
out that their statements were tentative, and not central to their principal studies of the nervous 
system. 

However, since the origin of behavior is the nervous system, it is helpful to review some 
of the known facts of neural behavior. The brain is made mostly of two kinds of cells, neurons 
and glial cells. The neurons generate electrical activity and are the primary source of be
havior. The glia (from the Greek word meaning "slimy") were up until recently considered 
only as something to fill up the spaces between neurons. Some recent research shows that 
they playa more complicated role. There are about 1010 neurons in the human brain, and 
perhaps 100 to 1000 times as many glial cells. 

A neuron cell body is a few microns in diameter and its input and output extensions, which 
are part of it, are of the order of one to three microns in diameter. The extensions (processes) 
go surprising distances, often several inches or a foot. Glial cells are of the same order of 
magnitude in size as neurons and also take on all sorts of odd shapes.

' Most of a neuron's processes are inputs (dendrites). A neuron usually has only one out
"C (axon), which branches profusely. Each branch ordinarily is terminated with an endbulb, \tw ich usually lies very close to some part of another neuron. The place where one neuron af


fects another, i. e., the place where an endbulb touches or almost touches another neuron, is
 
called a synapse.
 

Each neuron (except sensors) receives pulse train inputs from many other neurons. Es
timates on the number of inputs to a neuron range from hundreds to lmndreds of thousands. A 
neuron emits pulse trains that may affect severallmndred other neurons. When a neuron gen
erates a signal, an electrical pulse is transmitted down its output lead to its endbulbs. The 
endbulbs emit a chemical agent under the electrical stimulation. This transmitter agent affects 
the following neuron on which the endbulb terminates. Some chemical agents tend to cause the 
following neurons to emit a pulse, some tend to inhibit pulse emission. Whether a neuron emits 
a pulse at any instant is determined by the consensus of its inputs and by the time histories of 
its inputs and output over the immediate past. As far as the gross anatomy is concerned, the 
nervous system both inside and outside the brain is highly organized. There are thousands of 
interrelated regulatory and control loops. 

There are about 106 inputs to the brain from the eyes, and perhaps 104 from the rest of
 
the body. There are perhaps 104 output leads going ultimately to muscles. Presumably, any
 
number of these inputs and outputs can be activated at the same time. There is evidence that
 
the inputs to the brain are not raw data, but are extensively preprocessed by peripheral neuron
 
assemblies before reaching the brain, and that outputs are postprocessed before reaching
 
muscles. Some quite sophisticated reflexes operate directly on the spinal or medullar level,
 
requiring 00 intervention from the higher centers at all.
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To the writers' knowledge, no direct evidence exists to bolster the view that synaptic 
connections change in any way as the result of experience. Neither, however, is there any 
direct evidence to refute the view. As is discussed later, various writers have presented 
models based on neuron assemblies in which "learning" is the behavior change due to changed 
physical connections. The view dates back in essence to Thorndike (Reference 12), who used 
the then known properties of neurons in his theory, although not in any way so as to make t.·.~ 
properties essential to his theory. 

•
 

•
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APPENDIXm 

CONCEPTS FROM BEHAVIOR THEORY 

'-GENERAL 

The presentation below follows generally the format of Hilgard (Reference 13), with 
some interpolations from Dollard and Miller (Reference 14) and from Spence (Reference 15). 
Paraphrases and direct quotations fr om these sources are frequent. 

Most behavioral data is derived from conditioning experiments in which the subjects are 
often lower animals. Such experiments are usually diVided into two categories, classical con
ditioning and instrumental (or operant) conditioning. Although the two types of conditioning 
differ in external form, one can argue that each contains at least some elements of the other. 
In all such experiments the subjects are presented with stimuli, some of which are controlled 
by the experimenter, and the responses are obserVed, usually over numerous trials. 

Some problems of definition immediately arise in describing such experiments. By the 
word "stimuli" one can mean either the attributes of the environment the subject is sensing at 
a particular instant (often called effective stimuli), or all the attributes of the environment that 
could be sensed (potential stimuli); or the meaning can be expanded to include proprioceptive 
stimuli, which are not usually amenable to observation by the experimenter. Similar difficult
ies attend the definition of "response. " 

Despite these semantic and observational difficulties, one can confirm some intuitive 
notions by such experimentation, and can examine whether certain Widely held beliefs about 
behavior that appear to be "common sense" notions are really valid. Some of the notions of 
this type, which are accepted by most experimentalists without serious objection, are listed 
below. 

(1) Creature behavior changes from time to time, as a result of prior experience." (2) Under more or less identical circumstances, the behavior of two or more subjects 
will often be significantly different. Further, the actual observed behavior of a 
single subject will vary from time to time, regardless of the effort expended to 
duplicate the previous experimental situation. 

(3)	 Each time a particular behavior pattern is reinforced in a given experimental situa
tion, the probability that the same or a similar pattern will recur in similar future 
situations is increased (Thorndike's law of effect). 

(4)	 A stimulus and a causally unrelated response that occur contiguously can become 
associated, in that the stimulus tends to elicit the response (classical conditioning). 

I
 (5) The presentation or withholding of certain stimuli, contingent on the subject's prior
 
behaVior, serves to reinforce or extinguish response patterns (operant conditioning).
 

I
 
(6) Complex acquired behavior patterns are often acquired by concatenating simple ac


tivities backwards in time (chaining).
 

To explain these phenomena, certain constructs, which mayor may not have a physiolog
ical basis, have been introduced. 

I (1) Intervening variables are those constructs that are introduced formally with no direct 
physiological correlation that determine which particular one of the possible responses 
to a stimulus will occur in a particular experimental trial (Reference 13). 
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(2)	 Drives are those factors that motivate behavior. Drives lJlust be carefully distin
guished from stimuli, although they have stimulus properties. According to Dollard 
and Miller, all drives are stimuli but not all stimuli are drives. Drives are often 
categorized as basic or acquired. Early writers often wrote lists of basic drives, 
with such categories as hunger, thirst, sex, and self-preservation. The modern 
tendency is to avoid such lists. 

(3)	 The drive-reduction hypothesis can be summarized by saying that in a given stimulus •situation those responses are strengthened that lead to reduction of the intensity of 
the drives contiguously with the occurrence of the response. For any stimulus-drive 
situation the subject tends to make that response that in the past has led to the great
est net reduction in drives. An element of prediction can be included; drives may 
not be reduced as an immediate consequence of the response, but may be reduced 
ultimately by response activity of the present. 

B.	 LEARNING THEORY 

Freud did not present an explicit theory of learning. He did state a pleasure principle, 
i. e., that people and lower creatures seek "pleasure" and avoid "pain." In this he was voicing 
an idea that dates at least to Aristotle (Reference 16). He also introduced the idea of reduction 
of tension as a motivation,antic1pating Hull's more formal drive reduction. The earliest formal 
theories that gained wide acceptance are those of Thorndike, Ebbinghaus, Bryan and Harting, 
and Pavlov, circa 1900. Since that time, some major divisions have sprung up among theorists. 

Some theories still current are Guthrie's contiguity theory, Hull's systematic theory, 
Skinner's operant conditioning theory, the Gestalt theory (typified by Lashley), Lewin's field 
theory, and Tolman's sign learning. The functionalism of Dewey and others, originally sepa
rate schools, has been more or less absorbed into current reinforcement theory. The various 
theories differ in the importance they place on cognition, the role of reinforcements in con
ditioning, and the importance of responses themselves in the conditioning process. As is 
pointed out by Hilgard, "all the theorists accept all the facts . . • the differences between two 
theorists are primarily differences in interpretation" (Reference 13). Expressed in another .'" 
way, the theories differ in the constructs they use to explain observed facts, rather than dif
fering in the facts they explain. 

On the roles of ideation and cognition in learning, the theories can be divided roughly 
into (1) connectionists, who ascribe changes in behavior to formation of abstract (or physiolog
ical) connections between stimuli and responses (or between successive responses), and (2) 
cognitivists, who ascribe changes in behavior to ideation and the formation of cognitive struc
tures. Most of the work presented in this report is of a strictly connectionist point of view. 

The connectionist philosophy is more easily modeled by the methods of this report, and 
for that matter has been more often modeled by others than has the cognitive approach. B: is 
therefore proper to mention briefly some of the observed phenomena with which the strict 
connectivist view can be challenged. Three such phenomena are place learning, latent learning, 
and reward expectancy. 

(1)	 Place Learning - Experiments can easily be designed to show that the learner does 
not move from starting box to goal box by a fixed system of movements, but varies 
his behavior with changed conditions to reach the goal. 

(2)	 Latent Learning - An animal can learn by exploring a maze, without food being pre
sented, as evidenced by the fact that it performs better than a naive animal when 
food is later placed in the maze. 

(3)	 Reward Expectancy - The pertinent behavior was first observed by Tinklepaugh 
(Reference 17). A monkey was allowed to observe a banana being concealed under _ 
cup. The monkey was then removed from the location and a lettuce leaf was • 
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substituted for the banana. Later, the monkey showed skill in choosing the correct 
cup, but rejected the lettuce leaf and searched for the banana. Similar experiments 
are numerous. 

The above phenomena lend credence to, for example, Tolman's sign-learning theory, 
Q1WhiCh stimuli are signs and the animal learns relations between signs and their significance. 

the other hand, numerous results can be cited which bolster the view that movements are 
learned. Guthrie observed that cats escaping from a puzzle box frequently exhibited exactly 
the same behavior as was successful in their first escape from the box. This stereotyping 
argues against the ldeationists. 

C. CONNECTIONJSM 

The basic tenet of the connectionist view is that learning results from sense impressions 
becoming associated with impulses to action. The view as to how these "bonds," "associations, " 
or "connections" are formed is the basic differentiating factor among the theorists. The con
tiguity theorists (Guthrie was probably the leading proponent of this view) hold that "a combina
tion of stimuli which has accompanied a movement will on its recurrence tend to be followed 
by that movement It (Reference 18). The bond is assumed to reach full strength on its first 
occurrence. Variabllity of behavior is explained by variations in the stimulus patterns present 
from occasion to occasion. The ''principle of postremity" and associated concepts have been 
put in postulational form by Voeks (Reference 19). 

Reinforcement theorists hold to some form of Thorndike's law of effect. Quoting Htlgard, 
(Reference 13) "when a modifiable connection is made and is accompanied by or followed by a 
satisfying state of affairs, the strength of the connection is increased; if the connection is made 
and followed by an annoying state of affairs, its strength is decreased. " 

Hull and Skinner are two major reinforcement theorists. Hull's view differs from that 
of Guthrie in one essential way. For Guthrie, stimuli and responses occurring contiguously 
are always strengthened. For Hull, an association is strengthened only if the response occurs 

~","Jn company with positive reinforcement. In Hull's view, reinforcement is brought about by a 
~ecrease in the stimuli produced by a drive, or by a decrease of stimuli associated with the 

anticipation (i. e., prediction) of a decrease in these stimuli. 

A similar point of view is taken by Skinner. However, Skinner emphasizes the predictive 
nature of conditioned behavior by his distinction between respondent and operant behavior. 
Classical theory considers only responses elicited by stimuli. Skinner contends that some 
activities are emitted that are not necessarily correlated with stimuli, but simply tend to occur 
as a result of having been reinforced on prior occasions. Stimuli may serve as descriminants, 
so that one or another response may be emitted depending on the sttmulipresent, but they do 
not elicit the response. Responses occur because they are reinforced. 

Skinner and his followers have displayed quite striking success in animal training through 
use of his methods. He has, however, studiously avoided postulating any intermediary con
cepts to explain observed phenomena without themselves being observable. He uses the con
cept of drive as a mediator of conditioning but states (Reference 20) that a drive is n9t a 
stimulus, nor a physiological state, nor a phychic state, nor simply a state of strength. For 
his purposes, a drive results from certain operations he may perform (such as food depriva
tion) and affects the outcome of his experiments in a different way from these things that are 
reinforcements. 
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APPENDIX IV 

BEHAVIOR MODELING 

Numerous investigators have attempted to model creature behavior mathematically. The. 
earliest such attempt reported by Hilgard (Reference 13) is due to Ebbinghaus, who fitted an 
equation of the form 

lOOk
b =-----

(logt)C + k 

to an experimentally obtained retention curve. In this equation b is percent of retained learn
ing' t is elapsed time and c and k are arbitrary constants. As Hilgard points out, in contrast
ing such empirical curve fitting with rational curve fitting, It••• in empirical curve fitting 
. . . we select the curve family solely on the basis of fit, and not on the basis of any theory. 
. . . the word "rational" implies that the family of curves is chosen according to some theory 
or theoretical deduction.•.. " 

Empirical curve fits can be useful to the experimenter, but yield little insight into the 
underlying mechanisms. Rational curve fitting is the approach that has been used in most 
succeeding models. 

Mathematical theories of learning are classified by Hilgard as based on the following: 

(1) Information theory 

(2) Theory of feedback mechanisms 

(3) Game theory 

(4) Differential calculus (a misleading name the models are based on theory of differen.- i> 

tial equations with constant coefficients) 

(5) Stochastic models 

Each of these fields of study promises to relate intuitively to creature behavior. It is 
not surprising that various investigators have studied their applicability, with greater or lesser 
success. 

The feedback theory approach was investigated extensively by Wiener (Reference 21), 
but thus far has been little used in learning theory. The Game theory of von Neuman and 
Morgenstern (Reference 22) has been particularly useful in economic theory. Its applicability 
to learning theory was tested by Flood (Reference 23). Since Game theory is one possible 
basis for an optimal control theory, it also enters into the research presented here. Theoret
ical aspects of behavior have been studied by Hovland (Reference 24). 

Models based on probability theory and differential equations of probabilities are numer
ous. Examples are the work of Estes and of Bush and Mosteller, reported in Hilgard (Refer
ence 13). 

The models of Hull (Reference 25) and Spence (Reference 15) do not fit readily into any 
of Hilgard's classifications. To the writers they appear to be algebraic theories, based on 
the algebraic properties of the real number system. We present a simple example from Hull's 
formulation. 

We define SHR to be the "associative strength" of a particular stimulus onto a particular 
response. SHR is variable with time, and its value depends on reinforcement history. We •
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define SER to be the observed tendency to respond to the stimulus with the particular response 
in question. Hull postulates that 

"'here V is stimulus intensity, D is drive level, and K is "incentive motivation, " 1. e., a 
measure of how "desirable" the results of activity will be. These various factors are said to 
be multiplicative, since if anyone is zero, SER is zero. Other factors in Hull's complete 
theory become additive or subtractive. He thus uses the algebraic properties of the real 
number system to model behavior. In at least one case he defines a novel binary operation in 
terms of elemeI!.tary arithmetic operations. If SHR is the habit strength due to reinforced 
practice, and SHR is habit strength due t.Q transfer of other learning, Hull states that the 
combined strength, denoted by SHR + SHR, is given by 

I 
I 

This last equation is of a form which occurs in adding probabilities. It can be interpreted in 
terms of the disjunction of two independent measurable sets. 

Spence's approach is in some ways similar. He uses the algebraic properties of multi 
plication, addition, etc, on the real line, and also defines what are effectively mappings from 
one linearly ordered set into another. 

Sudden impetus was given to biological modeling by Pitts and McCulloch, who pointed out 
in 1943 (Reference 26) that the behavior of a neuron can be partly described by appropriate 
Boolean algebra. This concept was instrumented by Rosenblatt in his "Perceptron" (Reference 
27), which presumably modeled contingent reinforcement conditioning. 

More recently, a number of researchers have investigated electromechanical systems 
.,fhat instrument some of these concepts. Examples are the work of Widrow (Reference 28) and 
WLee and Gilstrap (Reference 29). The investigators make some case for the notion that learn

ing in liVing creatures is in some way directed by signals from the environment which change 
the strength of neural connections and which "reward" the creature for doing the "right" things 
and punish it for doing the "wrong" things. The idea is clearly borrowed from eontingency re
inforcement experiments, and there is no doubt that such an electromechanical system re
sembles, at least superficially, a reinforcement conditioning experiment. Louis Fein (Refer
ence 30) has pointed out that to his knowledge (and to the writers') none of the research into 
these models has resulted in "a particular experimentally verifiable piece of knowledge of how 
the brain works." But from a purely theoretical point of view, networks of threshold logic 
elements pose some interesting problems in analysis. Investigation of such networks and other 
bionic research have certainly contributed to technology in a number of ways, both by posing 
problems which had not previously been considered in technology and by suggesting novel 
"lifelike" solutions to long- standing problems from other fields. 

Most behavior theorists today subscribe to some form of drive-r~ductionhypothesis. 
The research presented above has attempted to incorporate such a concept into the framework 
of present theory, thus making the theory more ''lifelike, " and thus by definition more bionic. 

From a drive-reduction point of view, any stimulus becomes a positive or negative re
inforcement only if it serves to reduce or increase the drive state of the subject at the time of 
reinforcement. The following paragraphs describe the Pitts-McCulloch model and point out 
how this model and experiments based on it fail to include certain known characteristics of 
both individual neuron behavior and those characteristics of gross creature behavior that lead 
to the drive-reduction concepts. Some of these lacks have been remedied by the research pre
sented above. The attempt is certainly not to denigrate the significant contributions of Pitts,.-

W 
..,.. 
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McCulloch, and others, but rather to point out that, like all first steps into a new field, their 
contributions must be refined, expanded, and ultimately integrated into the main body of scien
tific knowledge. 

Although Pitts and McCulloch showed that certain aspects of neuron behavior could be 
modeled with Boolean algebra, their model ignored the observed time dependence of neuron 
behavior, usually referred to as temporal integration, and took little note of the fact that the .'d 
rate of production of action potentials in sensory neurons is a function of the intensity of the 
stimulus applied. 

Their model assumes that a neuron receives inputs that are either present or absent at 
any instant, and can be represented by a 1 when present and 0 when absent. Some endbulbs 
are excitatory and receive a weight of +1 when a signal is present; others are inhibitory and 
receive a weight of -1 when a signal is present. The neuron produces an output whenever the 
weighted sum of the instantaneous inputs exceeds its threshold. If 9 represents production of 
an output, T is the threshold, ai' ••. , 8e are variables which are 1 respectively when the 
separate excitatory endbulbs are energized, and bl' •.. , l>t take similar roles for inhibitory 
inputs, one can write 

as a description of the model. Since one afferent can have numerous endbulbs synapsing on 
one internuncial, the above can be modified to 

n 

9 ....E Wi~~T 
i=l •where Wi are weights associated with the separate afferents and ~ now represent afferents, 

rather tlian endbulbs. In the Pitts-McCulloch model the Wi'S take on integral values. Later 
workers have allowed the Wi to be continuous. The difference is only of minor interest, since 
the analytical results are so far the same. 

Note that the equation 

n 

:E wi~ = T
 
i=l
 

is the equation of a plane in an n-dimensional Euclidean space and that 

n 

:E wi~ > T
 
i=l
 

•
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is the equation of the half-space lying above the plane. Since each possible input configuration 
(minterm) can be represented by a vector of l's and O'S1 representing the ~ in order, the 
model is a mapping of all such vectors into the space El. Further, the sets of vectors mapped 
to 0 and to 1 must be such that they can be separated from each other in n-space by a plane 
~llassed through the n-cube "of which they are the vertices. 

~ Needless to say, many logic functions do not meet this linear separability requirement.
 
In fact, a majority of them do not. A simple logic function that cannot be instrumented by the
 
model is to distinguish, for any fixed number of inputs greater than 2, between an odd number
 
of inputs excited versus an even number.
 

Rosenblatt was the first to attempt to instrument the Pitts-McCulloch model physically 
and to introduce a notion of plasticity of neural connections. His "Perceptron" was modeled 
generally after a contingent reinforcement experiment. There" are, however, several dUfer
ences between the operation of his machine and contingent reinforcement conditioning. 

The following describes generally the organization of most recent "learning" machines, 
such as Widrow's "Madeline" and Rosenblatt's "Perceptron." Consider a collection of 
threshold elements like those described above. Figure 12 shows three elements, which are 
enough for descriptive purposes. Each input to each threshold element is equipped with an 
adjustable weight, which can range continuously from, say, +1 to -1. The thresholds are 
fixed at some arbitrary value, say O. 5. It is established a priori by the experimenter that he 
desires that the presentation of one subset of the possible input patterns should produce output 
No.1, another subset should produce output No.2, and a third should produce output No.3. 
Further, no input patterns other than tbose selected should produce the outputs. Weights are 
set at any arbitrary initial values and then adjusted from time to time by the following orderly 
scheme: 

(1)	 A pattern is presented on the inputs. 

(2)	 If the output is what has previously been selected as "correct, " no adjustments are 
made. 

(3)	 If an output appears erroneously, the weights to the threshold element producing the 
erroneous output and associated with those inputs that are presently excited are re
duced in value by some" small increment. This has often been referred to in the 
literature as "punishing" the output. 

(4)	 If the correct output fails to appear, those weights to the appropriate threshold ele
ment corresponding to inputs presently energized are increased ("rewarded") by a 
small increment. 

(5)	 The procedure is repeated until the outputs are "correct" for all possible inputs or 
the experiment terminates. 

On the surface, such experimentation appears to contain the elements of contingent rein
forcement conditioning. There are, however, several criticisms that can be level~"at the 
model. Consider steps 1 and 4 of the adjustment procedure. The machine receives no 
"reinforcement" when it does the right thing (step 1) and receives a positive "reinforcement" 
when it does the wrong thing (step 4). To the writer, the scheme resembles classical condition
ing more than it does instrumental conditioning, since the procedure consists of presenting a 
stimulus and contiguously forcing (or inhibiting) a response until the stimulus and response 
become associated. It is an axiom of instrumental conditioning that the first requirement is a 
motivated subject. The "motivation" of the Perceptron is nonexistent. 

A second point of the model that can be criticized is its failure to handle "decisions" that 
~-ye not linearly separable. One can readily show that a two-layer cascade arrangement of 
~eshold elements can produce any desired logic function. To the writers' knowledge, however, 
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WEIGHTS SUM THRESHOLD OUTPUTS 

(1) • 

BOOLEAN 
INPUTS 

Figure 12. A Three-Element Threshold Logic Network 

•no one has yet exhibited an effective algorithm for adjusting the weights in such a configuration 
without access to the responses of" the first layer. Appendix X presents the results of a con
ditioning experiment on rats involving a decision which is not a linearly separable logic func
tion. The learning curves show the interference phenomenon that was predicted by the model 
of this report. 
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APPENDIX V
 

PREDICTION THEORY
 

The usual approach to the problem of prediction of stationary time series is the Wiener 
approach. One assumes a weakly stationary random process, x(t} such that the set of possible 
inputs to the predictor are elements of the process. One then tries to find a weighting function 
w(t} such that 

x*(t) = (ootjtJ1 w(-r, u}x(t --r )d-r 

is the best least squares prediction of x(t + u); i. e., 

E [ x*(t) - x (t +u)] 2 is minimized. 

An alternate approach to the prediction problem was formulated by Kolmogorov almost 
simultaneously with Wiener's work. The Kolmogorov approach, in contrast to Wiener's, does 
not assume that the entire past history of the signal is available. When expressed in sampled 
form, the Komogorov formulation seems more suitable for application to the neuromime net
works under study. Following is a discussion of this application of the Komogorov theory. 

Suppose a function f(x}, where both x and f(x) are real variables, is given in terms of 
equally spaced samples, 

f(-n}, ... f(-2), f(-1), F(O), (17) 

, and its next value f(1} is to be predicted. Further, suppose f(x) is weakly stationary, and 
wnerefore 

{1} It has a finite second moment, 

E Hf(x)] } < 00 (18) 

where E stands for "expected value. " 

(2) The joint probability of any two of its values is a function of their separation only, 

E [f(x) f(x--r)] = II>ff(-r}. (19) 

(3) It has a continuous covariance function, II>ff( -r}. 

Assuming the prediction should be based only on the known samples of Equation 17, the 
simplest process of finding f(l} will be to consider it a linear combination of these samples: 

f{1} = aof(O) + a1f(-1} + • • • + 3nf(-n}. (20) 

The problem is to find the appropriate values of the weights ~. 

Multiplying Equation 20 successively by the right-hand members of Equation 17,we get 
~he following set of equations: 
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f(O)f(1) = ao£(O)f(O) + a1f(0)f(-1) + ••• + anf(O)f(-n)
 

f(-l)f(1) = aof(-l)f(O) + a1f(-1)f(-1) + ••• + anf(-l)f(-n)
 
(21) 

f(-l)f(l) = aof(-n)f(O) + a1f(-n)f(-1) + ••• + anf(-n)f(-n) • 
The expected values of the left-hand members of each equation in Equation Set 21 will be the 
following set: 

E [f(O)f(1)J = aoE [f(O)f(O)] + a1E [f( 0 )f( -1)] +... + 3nE [f( 0 )f(-n)] 

E [f(-l)f(1)] = aoE [f(-l)f(O)] + alE [f(-l)f(-l)] + •.• + 3nE [f(-l)f(-n)] 

E [f(-n)f(1)] = aoE [f(-n)f(O)] + alE [f(-n)f(-l}] + ••• + 3nE [f(-n)f(-n)] 

However, due to the weak stationarity conditions given by Equations 18 and 19, the expected 
value E [f(i)f(i % ~ )] , exists and has the value 

E [f(i)f(1 % ~)] = E [f(x)f(x % ~ )] 

Then, by making i successively equal to 0, -1, ••• , -n, and ~ equal to 1, 0, -1, .•. , -n,. 
we get from Equation Set 22 • 

E [f(x)f(x + 1)] = aoE [f(x)f(x)] + alE [f(x)f(x - 1)] + •.• 

+ anE [f(x)f(x - n)] 

E [f(x)f(x + 2)] = aoE [f(x)f(x + 1)] + alE [f(x)f(x)] + ••• 

+ 3n,E tf[x] f[x - (n-1)]l 

E t f [x] f [x + (n + l)n = aoE [f(x)f(x + n)] + alE t f[x] f [x + (n - 1)l) 

+. . . + 3n,E [f(x)f(x)] 

By the condition of Equation 19, 

E [f(x)f(x %e)] = f/>ff(% ~) 

where f/>ff is the autocorrelation function of f(x). Consequently, 
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,u<-1) = ao'f:r<O) + a19>Wl) + ••• + an'ftCn) 

9>ff(-2) = ao'ftC-1) + a19>ff(0) + ••• + an9>ff(n-1) 

9>ff [- (n + 1)] = ao9>ff(-n) + a1'ff [- (n - 1)] + ••• + an'ff(O) 

Since f(x) was assumed to be a real variable, its autocorrelation is an even function, i. e. 

(27) 

Therefore, 

'ff(l) = ao9>ff(O) + a1'ff(l) +. • • + 3n'ff(n) 

'ff(2) = ao9>ff(l) + a19>ff(0) + ••• + 3n'ff(n - 1) 
(28) 

This is a system of (n + 1) equations in the (n + 1) unknowns ao, a1' ••• 3n' and can be put in 
a matrix form suitable for a computer solution: 

" 9>fr<°) 9>ff(l) 9>ft<2) 9>ff(n) ao 

9>u<1) 'ff(O) 9>ff(l) 9>ff(n - 1) a1 
(29) 

= 

9>u<n) 9>ff(n-1)9>ff(n-2) ••• 'ff(O) 3n 

R can be shown that the values of the weights ~ found from Equation Set 29 minimize the 
square error between the left- and right-hand members of each equation in Equation Set 22. 

If instead of the sample f(l) a more distant sample f(k) is desired, then replace f(l) by 
f(k) in Equation 20. R is easy to see that in this case Equation Set 29 becomes 

=
 

It ~ 1. (30) 

51 



In a similar fashion, a missing sample f(O) from a set of equally spaced samples of the 
function f(x) , 

f(-n), f [-(n - 1)] , ••• f(-l), .£(0), f(1), ••• , f(m - 1), f(m) , (31)

can be reconstituted. 

Similar to the previous analysis, we express f(O) as • 
f(O) = a_nf(-n) + ••• + a_lf(-l) + alf(1) + ••• + amf(m). (32) 

Mter multiplying Equation 32 successively by the members of Equation 31, the expected 
values will be 

E [f(-n)f(O)] = a_nE [f(-n)f(-n)] + ••• + a_IE [f(-n)f(-1)] 

+ ~E [f(-n)f(1)]+ ••• + arnE [f(-n)f(m)] 

E [f(-l)f(O)] = a_nE [f(-1)f(-n)] + ••• + a_IE [f(-1)f(-1)] 

+ alE [f(-l)f(1)] + ••• + amE [f(-l)f(m)] 

E [f(1)f(O)] = a_nE [f(1)f(-n)] + ••• + a_IE [f(1)f(-l)] 

+ alE [f(1)f(1)] +... + SmE [f(1)f(m)] 

. 
E [f(m)f(O)] = a_nE [f(m)f(-n)] + ••• + a_IE [f(m)f(-l)] 

+ alE [f(m)f(1)] + ••• + amE [f(m)f(m)] 

(33) 

•
 
Using the conditions of Equations 19, 23, and 27 as before, Equation Set 33 becomes the set 

I/>ff(n) = a_nl/>ff(O) + a_(n-l)l/>ff(1) + •.• + a-ll/>ff(n - 1) 

+ all/>ff(n + 1) + ••• + am-ll/>ff(n + m-l) + aml/>ff(n + m) 

I/>ff(1) = a_nl/>ff(n - 1) + a_(n_l)l/>ff(n - 2) + ••• + a-ll/>ff(O) 

+ ~l/>ff(2) + ••• + Sm-ll/>ff{m) + Sml/>ff{m + 1) 

I/>ff(1) = a-nl/>ff{n + 1) + a_(n-l)l/>ff(n) + ••• + a_ll/>ff(2) 

+ all/>ff{O) + ••• + Sm-ll/>ff{m - 2) + Sml/>ff{m - 1) 

I/>£f{m) = a-nl/>ff{n + m) + a_(n_l)l/>ff{n + m-l) + ••• + a_ll/>fim + 1) 

+ all/>ff{m - 1) + ••• + 3m-ll/>ff{l) + arnl/>ff{O) 
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In matrix form, Equation Set 34 is 

4>ff(l) ••••• 4>ff(n-1) 

•......fJ...... 
[A] = 

4>frCn 1) 4>ff(n-2).... 4>ff(O) 4>ff(2) • . • • 4>ff(m) 4>ff(m+1) 

4>ff(n+1) 4>ff(n) ••••• 4>ff(2) 4>ff(O) • • • • 4>ff(m-2) 4>ff(m-1) 

therefore 

[A] = = 

Finally, suppose a second function g(x) is known to be the result of the function f(x) being 
modified by a linear operator whose response is to be determined. This is the case of plant 
identification. In the general case, the present state of the response depends on all past values 
of the input function f(x). We may write 

g(O) = 3.of(O) + a1f(-1) + ••• + 3nf(-n) 

Successive multiplication of the terms of Equation 36 by the terms of Equation 17 yields 

E [f(O)g(O)] 

E [f(-l)g(O)] 

= 3.oE [f(O)f(O)] + alE [f(O)f(-l)] + ••• 

+ ~E [f(O)f(..,n)] 

= aaE [f(-l)f(O)] + alE [f(-l)f(-l)] + ••• 

+ ~E [f(-l)f(-n)] 

(37) 

E [f(-n)g(O)] = 30E [f(-n)f(O)] + alE (f(-n)f(-l)] + ••• 

+ SnE [f(-n)f(-n)] • 
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Therefore, 

cf>fg(O) = aocf>ff(O) + a1CPU<l) + ••• + ancf>ft<n) 

cf>fg(-1) = aocf>U<-1) + a1cf>ff(O) + ••• + ancf>ff(n-1) 

where 

cf>fg( ~) = E [f(x)g(x- ~ )] }cf>ff( ~) = E [f(x)f(x- e)] 

Here again, because of Equation 27, 

cf>fg(O) = aocf>ff(O) + a1CPff(l) + ••• + ancf>ff(n) 

cf>fg(-1) = aocf>ff(l) + a1cf>ff(O) + ••• + ancf>U(n-l) 
(40) 

and in matrix form, 

cpU<2). • • • cf>ff(n) 

CPff(l) • • • • cf>ff(n-1) 
(41)= 

The negative sign in the argument of the cross-correlation function ~g means that the 
physical significance of the weights ~ may be deduced from the output g(x) of a linear device 
being caused by an input f(x); 

x
 

g(x) = fa f(x - T)w(T)dT
 

where w(T) is the unit input response or weighting function of the device. 

•
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For the case of a dis~rete, instead of continuous, system where f(x), and therefore g(x), 
is given in terms of equally spaced samples, Equation 42 has the counterpart 

g(x) = Xw('T)f(x - 'T) 

= 0, 1, 2, ... 

hence 

g(x) = w(O)f(x) + w(t)f(x - 1) + ••• + w(n)f(x - n). (44) 

Since this equation is true for any value of x ~ 0, it will hold for x = 0, i. e. , 

g(0) = w(O)f(O) + w(t)f(-1) + ••• + w(n)f(-n). (45) 

It can be seen from Equations 36 and 45 that 

a(i) = w(t) 
(46) 

i = 0, 1, 2, 

Therefore, ~ is the value of the system input response at the point x =i. 
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APPENDIX VI
 

EQUIPMENT DEVELOPMENT 

A. TRANSISTOR CmCUIT DEVELOPMENT •
Figure 13 shows the transistor threshold circuit of the modified neuromime at the begin

ning of the program. Tests run on neuromime networks dUring the contract period indicated 
certain circuit changes and additions. The threshold circuit shown in Figure 1 of this report 
evolved from these changes and additions. 

Figure 14 is a block diagram showing the threshold circuit operation. The threshold cir 
cuit has two inputs and one output. The two inputs are the sums of weighted and unweighted 
neuromime pulses. The neuromime's output is a bust of pulses whose repetition rate is 
roughly a concensus of the neuromime's input activity. A separate circuit accepts the first 
negative-weighted input in a series of inputs and injects a short pulse into the summation point 
of the threshold integrator. The neuromime output is fed back with a reversed sign and inte
grated with the two input summations and the short injected pulse. This integral is then 
summed with the rest threshold potential and the neuromime's output. The threshold equation 
is then 

-nt 
T = To - KRo - [XRi + get) XWiRt - h(t) Wie - ARo] dt.fa t 

Figure 13. Original Neuromime Transistor Circuit • 
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where 

T =threshold 

To = rest threshold
 

Ri = ith input to neuromime
 

Wi = ith weight associated with ith input
 

Ro =neuromime output
 

g(t)	 =0 when Wi~ < 0 
• 1 when WiRi >0 

h(t)	 = 0 when all Wi < 0
 
= 1 when at least one Wi, say Wk, <0
 

K, A, n = constants 

t = time variable. 

When the neuromime firing threshold was exceeded, the trigger circuit shown in the 
diagram triggered the gate, and the neuromime fired a burst of pulses. The threshold circuit 
determined the length of the burst of pulses, and also how long the neuromime waited before 
producing another burst of pulses. 'Without inputs, the threshold circuit returned to its quies
cent state. 

Tests were run on the threshold circuit to determine its response to inputs, weighted and 
unweighted. The response curves are shown in Figures 15, 16, 17, and 18. 
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Figure 14. BlockDiagram of Threshold Circuit 
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Figure 19. Transistor Gating Circuit 

In addition to the circuitry developed for the neuromime model, a transistor circuit was 
developed as support for the neuromime hardware. This circuit was designed and built to .. 
combine a neuromime's output pulse rate and synaptic weight. The circuit turned the synaptP 
weight (d-c voltage) on and off at the same rate as that of the neuromime. The result was a 
voltage porportional to the synaptic weight, with a pulse rate equal to that of the neuromime. 
The circuit is shown in Figure 19. 

B. ANALOG CIRCUIT DEVELOPMENT 

The analog computer has -played two roles in the development of the neuron model. The 
first role was that of the synaptic weight computer used as support for the transistor hardware. 
The second role was that of the total neuron model simulation. 

Figure 20 shows the analog computer simulation of the synaptic weight computer at the 
beginning of the program. Tests on the neuromime networks led to several revisions of the 
analog weight computer circuit. Figure 21 shows the resultant analog computer circuit. 

The block diagram of the synaptic weight computer simulation is shown in Figure 22. 
The weight computer has three inputs and one output. The summation of the neuromime's 
inputs is the first of the three inputs to the weight computer. It goes thrwgh a cl (S) circuit, 
which yields, roughly, the time changes of the summation. The changes enter a gate circuit, 
which is controlled by a gating function, g(S). The gate circuit passes the summation changes 
unimpeded if it is "open." When closed, no changes pass through the gate circuit. The two 
remaining inputs to the weight computer, the neuromime's own firing rate and a function, ht, 
are used to trigger the gating function. 

The gating function, g(S) in the block diagram, controlled the in~ts to the weight inte-,. 
grator by operating a gate. As long as the gating function received an input, the gate was • 
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Figure 22. Block Diagram of Synaptic Weight Computer 

"open" and the weight integrator received inputs. If the input to the gating function disappeared, 
the gating function gradually "closed" the gate so that the weight integrator received smaller 
and smaller inputs until the gate "closed." 

The gating function was the most critical circuit of the weight computer simulation, and
 
subject to more changes than any other weight computer circuit. It controlled the times that
 
the weight integrator could compute. Figure 23A shows the weight integrator gate circuit at
 
the beginning of the contract. The neuromime's gating circuit let the weight integrator inte

grate the inputs during the neuromime's firing period.
 

When the distal neuromimes stopped firing, the gating circuit changed the algebraic 
signs of the weight integrator inputs and let the synaptic weight integration continue. The 
gating circuit was changed as shown on Figure 23B to let the weight integrator work only dur.":' 
ing the distal neuromimes' firing cycle. 

Further neural net tests showed that the gating circuit should allow some weight computa
tion after a neuromime stops firing. The gating circuit was changed to let-the weight inte
grator integrate during a neuromime's firing time and shortly after (see Figure 23C). 

Further tests pointed out another fault with the synaptic weight computer. The gating 
function circuit allowed some neuromimes to compute synaptic weights Without ever firing. 
Figure 23D shows a gating function circuit that corrected this fault. In this circuit, no synap
tic weight could be computed unless the neuromime was firing. 

Other tests showed that the gating function was adequate when a neuromime had a single 
input, but was inadequate when the neuromime had more than one input. A neuromime was not 
getting enough information from its distal neuromimes to discover whether or not it was caus
ing the distal neuromimes to fire. The gating circuit shown in Figure 24 allows a neuromime 
to compute a synaptic weight only if it is firing, or has recently fired, and at least one of the 
distal neuromimes is firing against the orders of its weighted inputs. 

The second role played by the analog computer was that of the complete simulation of the 
neuron model. This neuron model development was inspired by the application of optimal con
trol theory to neuromime networks. Two basic models were tested, each using a different 
method to compute its synaptic weights. 

Figure 25 shows the first neuron model using the optimal cmtrol concept. In this model, 
the synaptic weight computer computed the weights by comparing a ''predicted'' trajectory wi~\. 

the actual trajectory of the input signal. Any difference between the "predicted" trajectory aw 
the actual trajectory was used to correct the synaptic weights. 
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The method used to compute the synaptic weights was based on the optimal control equa

tions given in the text. However, preliminary tests showed that this computing method was
 
too difficult to instrument for neuron models having several inputs.
 

Figure 26 shows the second basic neuron model using the optimal control concept. The 
.,"}aptic weight computing method for this model was based on a modification of the optimal 
.trol equations. The modification is an assumption. To compute the synaptic weights, the 
neuron model assumes that the optimal control output is a linear combination of the environ

ment outputs. The neuron model computes the entries for a transformation matrix. This
 
matrix maps the environment output vector into the optimal control vector.
 

The development of the second basic neuron model was pursued in lieu of the first. The 
second neuron model showed the ability to compute optimum synaptic weights as well as the 
ability to accept large numbers of inputs. 

Figure 27 shows the results of the neuron model development. Comparison with the 
neuron model in Figure 26 shows the various changes. Briefly, the significant changes are 
the addition of a sign-taking circuit and a circuit that indicates when an input variable and its 
time derivative have opposite signs. The sign-taking circuit enables the neuron model to use 
a single error signal to compute many parameters. The technique for computing the synaptic 
weights using the sign-taking circuit is a form of hill-climbing, and is also known as the 
gradient method of steepest descent. The second additional circuit evolved from certain test 
results which revealed that the optimal control equations developed were not valid when an 
environmental disturbance was present. To obviate this invalidity, it was postulated that a 
disturbance was present when an input variable and its time derivative had the same sign. 
(This postulate is not true for all cases, but the approximation is good for transient conditions.) 
This circuit, then, was designed to stop synaptic weight computations during disturbances. 
Tests on the neuron model using these additional circuits have proved their usefulness. 

Two additional circuits, shown in Figures 28 and 29, were developed for use in the simu
lation of an adaptive autopilot using neuron model networks to control a two-channel aircraft. 
"se transistor circuits were designed for three purposes: 

(1)	 The circuits supported the extension of the previous simulation to the more complex 
two..channel aircraft adaptive autopilot. 

(2)	 The circuits provided a more reliable SWitching response than could be obtained 
from the analog switching simulation. 

(3)	 These transistor circuits represented the beginning of the reduction of the analog 
computer simulation to hardware. 

The first transistor circuit yields the algebraic sign of its input signal as its output.
 
The equations relating the circuit's input and output are
 

if: y>O x = +1 

y <0 x = -1 

y:ll	 0 x = 0 

where y is the input signal and x is the output. This circuit replaced two operational amplifiers 
in the analog computer simulation of the neuron model. 

The second circuit was a gate circuit which was triggered by the output of the first tran
sistor circuit discussed above. The specific task of this circuit was to accept an analog volt 
age and, depending on the sign of the trigger signal, yield either an inverted or non-inverted 
.·,:,pal proportional to the input voltage. If the trigger signal is zero, this circuit has no output 
"age. The two circuits, the aircraft simulation unit,and a unit of five neuromimes are shown 
in Figure 30. 
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APPENDIXVU
 

NE'lWORK EXPERIMENTS
 

"
 A. GENERAL 

The tests described in this appendix represent the form and the results of the experi
mental work on the contract to date. FollOWing is an outline of the experimental work: 

(1) Tests using the transistor neuromime hardware 

(a) Networks with contralateral connections 

(b) Networks with internal feedback 

(c) Network with paralleled neuromime output 

(d) Approximation to an aircraft pitch channel 

(2) Tests using the new optimal control concept 

(a) Preliminary test circuits 

(b) Tests on more complex systems 

(c) Tests on the convergence of the neuron model's parameters to optimum values 

(d) Tests on redundant networks 

(e) Tests on a roll-yaw coupled aircraft 

Although most of the tests were designed to parallel the analytical work, some tests were 
performed to aid the instrumentation development. The former tests are emphasized, because 
their results hold more significanee for the contract work. Diagrams of the test circuits, 
accompanied by brief explanations of the tests, results, and evaluations, are presented in this 
appendix. 

B. TESTS USING THE TRANSISTOR NEUROMIME HARDWARE 

1. Networks with Contralateral Connections 

Two environment transfe r functions were tested with the net - a gain and an integrator 
(see Figure 31). The purpose of the test was to determine the net's capability to reduce an 
error signal to zero. The weight computation rates observed were judged to be slower than 
expected. The time taken for a weight computatim generally exceeded five munutes, com
pared to an expected value of one or possibly two minutes. However, the weights computed 
for the various synapses usually had the correct algebraic signs. In several cases the wrong 
sign was computed for a synaptic weight. The reason for the wrong synaptic weight signs was 
discovered to be a faulty computing method. The synaptic weight was computed cmtinuously. 
The synaptic weight integrator integrated the input changes occurring during the firing cycleI and subtracted the integral of the input changes occurring after firing stopped. The computed 

I
 
synaptic weight was correct only at the end of a firing cycle. If the synaptic weight computa

tion was started or stopped at some time within the cycle, the computed synaptic weight had 
a wrong sign. 

~ 
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Figure 31. Network with Two Simple Environment 
Transfer Functions • 

A second order environment was used to test the network (see Figure 32). The net was 
tested to determine its ability to reduce the error signal to zero and to note its response to a 
second order environment. The environment used has the following transfer function: 

2wG(S) =----- 
S2+2w~S+w2 

where 

G(S) = env1r<mnent transfer function 

w2 = environment gain 

~. = damping variable 

S = Laplace transform variable 

The value for w was varied from 0.3 to 10 and the value for ~ varied from 0.03 to 0.8. The 
results of the test are plotted as a stability curve in Figure 33. The network would not com
pute synaptic weights with w's over 5, which limited the test results somewhat. The network 
made small synaptic weight computations when l/w was below the network response time of 
ale secood. Some difficulty was experienced when testing the system for the stability points e.'w
plotted in Figure 33. 

70
 



4r-----------__. 2 

+.....---------..........

3'--------....
 

(j Indicates Weighted Neuron 

Figure 32. Test Network with Second Order Environment 

Figure 33. Stability Curve 
of Second Order Environ
ment Test 

1.0..------r-----.-------r-----r---  __ 

4 

w 

71
 



Figure 34. Test Network Connected to a Gain with a Control Reversal •
For the next test, the network was connected to a gain, or "envirooment" transfer func

tion (see Figure 34) and tested to determine its ability to stabilize the system after an"envi
ronment" input control reversal. The computation of weights following the input control re
versal was sluggish. Preliminary tests showed that several changes should be made 00 the 
neuromime model. These changes were made and the new network was tested as outlined later. 

2. Networks with Interlml Feedback 

Environments of a gain and an integrator were used to test four networks (see Figures 
35,36, 37, and 38). These four networks were connected to study the effects of internal feed
back. The network was tested with and without internal feedback connections. Further, the 
network's control connections to the environment were severed to test the ability of int~rnal 
feedback to assist the network to revise the synaptic weight computations when the netWork's 
output no longer affected the envirmment. 

In the network shown in Figure 35, neuromime G2 has an environment change input and 
a feedback change input. The feedback change input has an opposite effect on neuromime G2 
from the environment change input; i.e., neuromime G2 computes a negative synaptic weight 
with only feedback changes, and a positive synaptic weight with only environment changes. 
The ratio of the magnitudes of the environment changes to the feedback changes was defined to 
be A. Three values of A were used:· A < 1; A = 1; and A >1. 

The network without internal feedback computed positive synaptic weights and stabilized ,I 

the system, 1. e., reduced the injected error signal to zero. Then, when the network outputs. 
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were disconnected from the environment. input, the synaptic weight values stayed cmstant. 
The network could not and did not revise its computation. The network with internal feedback, 
when connected to the environment, also computed positive synaptic weights and stabilized the 
system. When the network outputs were disconnected from the environment input, the synap
tic weight computations slowly computed negative values. If neuromime G2's weighted rate and 

~imweighted rate wtput were equal but opposite in sign, G2 's synaptic weight computation 
"topped. Neuromime F4's input is the sum of the weighted and unweighted rate outputs of 

neuromime G2. If the weighted and unweighted rate outputs are equal but opposite in sign, 
their sum is zero. Neuromime F4 can never fire with a zero input. If F4 can never fire, the 
feedback loop to G2 is broken and all feedback changes seen by G2 stop. 

Since neuromime G2 needs input changes to compute a synaptic weight, the broken feed
back loop stops G2's input changes and synaptic weight computation. 

With A < 1, neuromime G2 computed a negative synaptic weight. With A = 1, neuromime 
G2 computed a zero synaptic weight. With A >1, neuromime G2 computed a positive synaptic 
weight. 

In the network shown in Figure 36, neuromime G4 replaced the direct feedback connec
tion from the output of F4 to the input of G2 (as shown in Figure 35). The extra delay time of 
neuromime G4 was the only difference between that network and the previoos one. The test 
results were the same as the previoos one. 

In the next network (Figure 37), the feedback neuromime G4 bad a computed synaptic 
weight, in contrast to the previous network. Neuromime G4's synaptic weight became nega
tive in all tests. The other test results were much the same as those reported for the prev
ious network. 

The networks shown in Figures 35, 36, and 37 had two separate feedback loops. In the 
next network, shown in Figure 38, neuromime G3 replaced the two feedback loops. The test 
results were the same as those reported for the previous networks. Although some interplay 

.,2etween the two separate network channels due to the common feedback loop was expected, 
Wlone was seen. 

In the next network to be tested, a gain and an integrator were used as environments
 
(see Figure 39). The environment control connections could be reversed. The two aims for
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the series of tests were to determine the ability of a network to adjust to an "environment" 
input control' reversal and to determine the difference in network action made by internal feed
back. The test results shown in Figures 40 and 41 are typical analog computer test runs. 
Since this network used internal feedback, the testing procedure was similar to that of the 
previous four networks using internal feedback. The ability of the network to adjust to an 
environment input control reversal is shown on these analog computer test runs. The network" 
did adjust to the control reversal. A careful study of the two test runs, one for the network • 
with feedback and the other for the network without feedback, showed no significant difference. 
Notice that the neuromime revised its synaptic weight computation to adjust to the new situa
tim. 

The analog computer runs show a heterodyne IJl. ttem in the environment output error 
signal caused by the network input to the environment. The interference of 'one network output 
with the other produces this heterodyne pattern. 

3. Networks with Paralleled Neuromime Output 

A gain and an integrator were the environments used in the next network tests (see Fig
ure 42). The purpose of the tests was to study the effects that many neuromimes firing at 
once had on the environment. Two to four neuromimes were connected to the same stimuli 
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and their outputs added together. This sum was the network output and produced a heterodyne 
pattern like that observed in the previous network. 

The network reduced an error signal to zero, but took a longer time to do this task than 
a similar network with one output neuromime. The synaptic weights were computed correctly, 

~\JJut slowly. When three and four neuromimes were paralleled, the network took longer to Per
Worm the cmtrol task than the network with two neuromimes paralleled. Of course, the 

synaptic weight computations for the networks with three and four neuromimes Paralleled were 
also slower than those of the network with only two neuromimes Paralleled. The tests showed 
that the approximation to many neuromimes firing by Paralleling two to four neuromimes was 
too crude. 

An attempt was made to test the network with a second-order environment. '!be environ
ment was designed to allow a control reversal. The purpose of the test was to study the net
work interconnections necessary to control a second-order environment after a control rever
sal. However, preliminary tests on the system showed a lack of knowledge of the network 
interconnections that would be required to control a second-order environment without a con
trol reversal. The network was revised to study the control of a second- and third-order en
vironment. 

4. Approximation to an Aircraft Pitch Channel 

A third-order environment was used to simulate, rather crudely, an aircraft pitch 
channel (see Figure 43). '!be parameters used in the simulation were not designed for any 
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Figure 43. Test Network with Rate Feedback 
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specific aircraft. The basia study was that of controlling a third-order system. The premise 
for the tests was that a neuromime network that controls a third-order system could control a 
third-order pitch channel with specific aircraft pitch parameters. The network was tested 
both with and without pitch-rate feedback. The results of the pitch-rate feedback tests were 
evaluated to aid the instrumentation development. 

The analog computer recordings (Figures 44 and 45) show that the network reduced Pitc. 
error to zero regardless of the presence of rate feedback. Further, all synaptic weights had 
the proper algebraic sign. However, the synaptic weight computations did not perform as 
expected. Some synaptic weights were small and had little effect on the control. The overall 
system response was improved when pitch-rate information was supplied to the neuromime 
network. 

The network Without pitch-rate feedback did not reduce the transient "Wiggling" response 
of the pitch-error signal to a step input. Further, 'this network did not reduce the overshoot 
which occurs as the pitch-error signal swings through zero. The network with pitch-rate 
feedback improved the system response in both these conditions. 

C. TESTS USING THE NEW OPTIMAL CONTROL CONCEPT 

Networks were designed to study the application of optimal control theory to neuron 
model networks. The networks tested for this phase of the neuron model development used no 
external hardware. All simulations were done on the analog computer. The equations instru
mented for the tests are discussed more fully in the text of this report. In this appendix, the 
networks tested are described and significant results are summarized to illustrate the develop
ment of the neuron model through the application of optimal control theory. In general, the 
equations used to describe the tests in this section are as follows: 

Y= AY + BM + 0 (47) 

M =-Btp (48) 

_p = Atp+ Y (49) " where Y is the environment output matriX, M is the neuromime network output matrix, 0 is 
the environment disturbance matriX, and A and B are envirmment coefficient matrices. The 
matrix P entered into the equations from Pontryagin's maximum principle. 

The optimal criterion was to minimize a system "cost" function, which closely resem
bles a minimum energy criterion. The equation is 

C = ~ /00 (yty + WM) dt.
 

o
 

1. Preliminary Test Circuits 

The preliminary tests presented here were designed with two immediate gcals in mind: 
first, to develop instrumentation methods for use with the optimal control theory; and second, 
to illustrate certain parts of the theory. 

Figure 46 shows the first circuit using the new optimal control concept. To control the 
system optimally, initial conditions on the integrators within the neuromime network were set 
at optimum values. These initial conditions for the parameters of the test network were com
puted by hand to yield an optimum path. These parameter values were then set on the analog 
computer and tests were run on the network. The network converged to zero follOWing the .'" 
computed optimum path. If one of the network parameters was varied away from the com
plted optimum value, the system diverged. 
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Figure 46. First Test Network for New Concept 

The neuron model network used for this test was then extended, and an adjustment rule 
~,;ltulated so that the neuron model computed the optimum parameters automatically. In this 
WJustment rule a neuron model considered the reaction of its inputs to its output and com
pared the actual input reaction to the predicted input reactim. Any deviation of the predicted 
reaction from the actual reaction was integrated, and the deviation integral was used to adjust 
the predicted reaction. When adjusting the predicted reaction, the neuron model subsequently 
adjusted its synaptic weight. The result of the adjustments was a predicted input reaction that 
matched the actual input reaction. At the same time, the optimum synaptic weight was com
puted. The major problem with the simulation was the difficulty encountered when the size of 
the system was increased to three or more neurons. The instrumentation problems arising 
from this attempt were too restrictive. 

To further the instrumentation development, six networks were set up and tested to 
determine the effect of feedback on the computation of synaptic weights. Figure 47 shows block 
diagrams of five of the networks tested (the sixth will be shown in Figure 49). The net
works used either one or two neuron models and two environments, an integrator and an 
exponential decay. To test the networks, the optimum system response and the corresponding 
synaptic weights were computed. The networks were then tested and the synaptic weights 
and system responses recorded. These recorded values were compared with the ideal com
Plted values. 

Figure 48 shows a set of typical responses. The responses shown in Figure 48A and 
48B were obtained from the test networks shown in Figure 47A and 47B, respectively. Note 
that in Figure 48A, the predicted value of the input is updated until it matches the actual value. 
The updating is a result of the synaptic weight adjustment. The neuron models at first computed 
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E =ENVIRONMENT 

•
-8

-0

E 

-E-

Figure 47. Five Preliminary Test Networks • 
synaptic weights that overshot the optimum synaptic weight, and then approached the optimum 
value asymptotically. The environment used for this test was an integrator. One control 
input, that of the neuron model, was used. In this case, the information fed back to the 
neuron model was the neuron model's own output. 

When another control input was added, as in the system shown in Figure 47B, the neuron 
model computed a non-optimum synaptic weight. The extra control input was viewed as 
another neuron model or, possibly, many other neuron models. In this case also, the feed
back information was the neuron model's own output. Figure 48B shows a typical response to 
disturbances injected periodically into the system. Notice that the predicted path and the ac
tual path of the input trajectory are different. This difference is caused by the non-optimum 
synaptic weight computation. The synaptic weight computed was such that the integral of the 
error between the predicted path and the actual path of the input trajectory was zero. 

One general conclusion resulting from analysis of this test series is that the neuron 
models seem to require feedback information about the activity beyond the synaptic junction, 
rather than activity at the junction. 

A block diagram of the last test in the preliminary test series is shown in Figure 49. 
This test examined one particular adjustment rule for computing synaptic weights. The en
vironment used for the tests was an integrator. The equations derived for the system in Figure
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49, using Pontryagin's maximum principle, 
were 

y = bx (50) 

-P = y (51) 

m = -fJP (52) 

where y was the environment ootput, m the 
network output, fJ and P parameters coo
trolled by the neuron model, and b the fixed 
environment parameter. The adjustment 
rule used for this system was 

y = KY (53) Figure 49. Last Preliminary 
Network Tested 

where K is a parameter cootroUed by the 
neuron model. By comparing y with its time 
derivative y, the neuron model computed the value of K. Proper manipulation of Equations 
50, 51, 52, and 53 yielded the equation 

P = -Ky, (54) 

which gave the value for P when the value for K is given. Combining Equations 50 and 52 
yielded the equation 

(55) 

which the neuron model used to compute fJ given the value for P. Notice that Equations 53, 54, 
and 55 are interdependent. The three equations reacted in a 'bootstrapping" fashion to com- .. , 
PIte simultaneoosly all three parameters, K, P, and P. The analog computer circuit of the" 
neuron model used for this test is shown in Appendix VI, Section B. There were two parts t~ 
the test. The first part showed that the hand-calculated optimum parameters were optimum. 
The second part showed that the neuroo models actually computed these optimum parameters. 

For the first part of the test, the system equatioos and the criterion used by the neuron 
model were used to calculate optimum values of K, P, and fJ for various values of the enviroo
ment's parameter, b~ The calculated optimum values for K, P, and fJ were tested to be cer
tain they were indeed optimum. The criterion used to determine optimality was that used in 
the development of the optimum system (Equations 50, 51, and 52). This criterion is 

i 
T. 

C = (y2 + m 2) cit 
o 

where C (cost) is to be minimized, and y and m are the neuron model's input and ootput, re
spectively. To test the calculated optimum values, the values were set up on the analog com
puter and the values of C were measured. The values of C for corresponding values of K, P, 
and fJ around the optimum values were also measured. The tests were cmclusive, proving 
that the calculated optimum values were indeed 9pt!mum. A typical result is plotted on the 
graph in Figure 50. 

For the secood part of the test, the system was tested with five values of the environment 
parameter b. The environment parameter b had a range of 0.5 to 2.0. A step voltage was 
used as an output from the environment. The neuron model computed the optimum values for 
K, P, and fJ as verified by the previoos test 00 optimum values. A set of ideal values for th.·"··· 
parameters K and b was plotted on the graph in Figure 51 and compared to the set of values 
computed by the neuron model. 
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2. Tests on More Complex Systems 

Two tests were performed in this test series. In both tests the environment was second 
order. 

a. First System Tests. The environment for the first test system, shown in Figure 52, .<c: 
was quite simple, having only two parameters. An additional equatiori. was used for the simu
lation. The equation was 

P = KY (56) 

The specific parameter and. state variable matrices for this test were as follows: 

a 
y A = (57)=[ 

Y1 ] [ 0 ]0 0Y2 

P1 
B = P = (58)[: :] [ ]P2 

0 (59)[Kl1 K12]M= K =[ ]m K21 K22 

NEURON 
MODEL NO. 

NEURON 
MODEL NO.2 

ENVIRONMENT 

Figure 52. First Complex Test System 
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Further, the matrix K had the following form in terms of the parameters a and b: 

1 
± 1 + b~ b 

a 
K = 2a

+
1 ±V 1 b 
b b 

where Y is the envirmment output matrix, M is the neuromime network output matrix, and 
A and B are environment coefficient matrices. The matrix P entered into the equations from 
Pontryagin's maximum principle. The matrix K enters into the equations from an assumption 
described in detail in the main text of this report. The criterion used to evaluate the tests was 
the same as that described at the beginning of this appendix. 

There were three parts to the test. The first part was performed to show that the 
optimal controller did yield a minimum value for the system cost function. Various param
eter value sets were tested by holding all parameters in a set constant except one. This one 
parameter was varied and the cost function measured. Each parameter value in a set was 
tested in like manner. During these tests, neuron models made no parameter computations. 

The second part of the test was performed to show that the neuron models did compute 
the optimum parameters. The neuron models tested used a hill-climbing technique to com
pute their parameters. Various parameter value sets were programmed into the environment 
and initial conditions set for the neuron model parameters. Then environment disturbances 
were injected and the neuron models were allowed to compute. 

. The objective of the third part of the test was related to the second. Tests were per-
Wformed to observe the reaction of the neuron models to two simultaneous disturbances of the 

same (and opposite) polarity. The two simultaneous disturbances, which formed the complete 
disturbance vector, took the form 

D= [:~]. 
Note that in the secmd part of the test, either dl or d2 of the disturbance vector was zero. 

In general, all of the test objectives were achieved. Figure 53 is a graph of normalized 
cost versus a. The parameter a corresponds to the entry ''a'' in the environment coefficient 
matrix A in Equation 40, and was computed by the neuron model. The zero point on the cost 
axis is the theoretical point at which the cost is a minimum. The graph shows a 2 percent 
deviation from the theoretical point. Figure 54 is a comparison of various theoretical. values 
of a and the actual values computed by the neuron models. The straight line is the locus of 
all points where the theoretical and actual values of a were equal. The graph shows milior 
deviations of the points tested. No point has more than a 5 percent deviation. 

The curves in Figures 55 and 56 are similar to Figures 53 and 54, respectively, but 
represent typical results of the neuron model computations of the K matrix parameters in 
Equations 56, 59, and 60. The graphs show accuracies similar to those obtained with the a 
parameter computations. 

"" Figure 57 is an analog computer recording. It shows the system reaction toa distur
.. ance in the environment. Starting at the top of the chart, the first two channels make up the 

89
 



1.92 1.91 2.0 2.04 2.08 2.12 
CI 

1.0 

5.0 

4.0 

1/

7 
/

/' 

•
v 
CI 5.0 

2.0 

1.0 

o 1.0 2.0 3.0 4.0 
CI (Calculated) 

Figure 53. Normalized Figure 5r4. Theoretical 
Cost versus a versus Actual Values 

of a 

3.0 

25 •2.0 

'" .4 I 

~ 
.3 

\ '57
.1.1 

7" 
\ 

\ ( 
-

0 

/
/ 

iv'1' 

V 

1.0 

.5 

.80 .825 .85 .811 .90 .125 o .5 1.0 1.5 2.0 

Ku (Calculated)KI1 

Figure 55. Normalized Figure 56. Theoretical 
Cost versus K versus Actual Values 

of K 

90 • 



\ 
-=+++=~ 

1;1 
",~~:::L_,_._L 

CALCULATED VALUES 

HI~lE., r' rI~-='-'~ 

'\IV 
I VI 

C'IC"I"llccITJH~Fl: 

\ r-l¥'rV'\Iht-r 
v-t\\ 

~=:-l-: 

i - t·~-

- \ 

YI.~
~+ 

t-~t:'i t ~-l"ii' 

~l =i-rl-t'.l-\.~.\-\.· •.·.\~~c\_ 
\.. '1".\. ~.. _.\.. -:.\~\ .1\\ .\~ \
n\'I+\~'\\ 1\1 

-1.'I~'~ 

~ln lJ-*
I\V
It~ \ I \1b»\-::I,'
--I' \1=\ 

I' 1-". 

I-r~ I~I 
rrr 

i~I....•.•• ~ ..•.•... -.•--, ::..•..••. , ., - - - ::::.
-;,. -

'\ ..._;--\ 

I I 
r--f 
tt 
¥ 

~ 

~1<irlJ;:
~IIILLJ.i::1'hI ttltlF••~'lIg#,1,.. . -_.~ ""J-L~ ,~_ . "--'-' i, 

Y21 
i -Of 

(-(

I-L 

KII =0.866 
K22 = 0.866 

, --I 

KI2 =0.5 
a =2.0 

K21 = 0.5 : 
~ =2.0 I 

r: 

Cr\\j 
l'b+=kl..::J:· 

.. \-\ \ \ 

I. \\11111\ I I I=r--f.fl I 111\-; _--TIl··· \<> t.\=.\\=--·J"( .I!. ,I'
\j\\=\\ 1'11-' Itd-I'I \ I \ 
\ 1_\"'1' \1 11111 1 ' i.111, ,.~.••...... ,,-- ~-\ ,II 

.r 
7" 

I 

I I 

.-t 

1/:1''''1'=
{--l 

tftJ 

-l 

~J!ll 

\X~ID.g=: 

1\ \ \\-tt\ 

/···/:f..:1~t·r=r' 

W 1 I 1 J 
'eI': 

I 

Rf 

,

I 

\

1 i\ 

\-11 

-Dl 
GEDA GOOD...... _COAPT COIlPO 

7·· II L; •... /: t-I}:I·]--=14~11-

f -I. 
( -

/ .. / 

j;;?'r' 
1 f-LCIFH= 

-f4fJ+-  .
~ 

\ \, \ 
- \ ILl 

,

:~'kY1 

~jf 

\I,Y-,_II 

'IN 

\ ... \ Ic,YE\ , 

r-> 

" '......rl:cr 

F~t=:=f~fI=VFI····r-I.1 {/.. {{ f 
:=g J ,'..:1 vi J I tJ'I/' 

'~t=t==.. l~'~O\lr~\····\=:\\~~\\pGi, 
\.-\ \..b ". I 

I 
! I 11rr\\-i-mlt-l*f='\·+'LI-,=··t~;,;-C· .•. ~\ 

1\ \\T\\.\1 \ 
\J\b\\\ IV\ 

l;llllll.-m'. \ I. I \ \ \ • If f \~L ~ I .••..•.••.•~••••••.• =: ..••••••. == 

\~ \ I I \, \.~~~;.~ I I \cy' 

I 1~;::: 1--, I L.:_L:..'._:f._':::::;:J

I STA 
KIl 0.5\~'I'=t 
KI2 0.7 . _1_1 

... K21 0.3 
K22 1.2 

'1 a 2.2 
I ~ 1.2 

1 i I I IJ 

T i IJll.I'mrtJ..·.·.· .~lJ!~-.ilII •.............'.~ p (=:1111n I r11/1-[ ._ .'.'- ~-~l='l •....• - "-I,'/=-~' I:ff~1 m~fi;J~hjfti:t:tEd'= III 

Uf fJ~1 ~ui~1f~ffarn M/2 0 

co .... 

, ' '{IC! lo/eli litIllfJIII·:.f11 

+(-1 I (f '·.1' IDTuJ-I\L 
.'" \\-\\1 '.' i. i 1'+'l'1=J 1 

l I 

\'. 
jL 

I~l:+\. 

I~L~?~~ f: 
OtT' 

~ 
..... _--_._.._

-" ---_... ,,_._- ..__ ., ._.... ---,"- '~-- '--'-" -- '.. ... 

.•••..• ::. .~ -:; ••.•••~..•~, ~.:.·t= 
f=-=\= 

~==r~: 

~t~~ 

=t~, 

1- E 

- r 

Figure 57. Analog Computer Recording of System Response (First Test Series) 



environment output matrix, Y, as in Equation 57. The next two channels, labeled P1 and P2, 
make up the matrix P, as in Equation 58. The last two channels are the neuron model output, 
M, and the cost function. The system was given ample time to settle down after a disturbance 
before another disturbance appeared. Note how the value of the cost function decreased as the 
system adjusted to the optimum parameters. After the third disturbance, the cost function 
remained fairly constant, indicating completion of the optimum parameter computation. • 

When one of the neuron model's parameters was held fixed, the neuron model computed 
parameter values that were not optimum for the total system. However, the parameter values 
computed still caused the cost function to be reduced. This indicated that the neuron models 
did the best they could under other than optimum ccnditions. When part or whole of a neuron 
model was "damaged, "the remaining neuron models readjusted their parameters to allow for 
the "damage." The result of the readjustment did not yield the optimum system respcnse, but 
the response was near optimum. Of course, any damage that might disconnect the neuromime 
network from the environment would stop system control. 

In the third part of the test, the correlation between the two disturbances seemed to con
fuse the neuron model computations. Improvements were made on some of the analog circuits 
to lessen the confusion. Although the parameters computed by the neuron models were not 
optimum, the value of the cost function was decreased. 

In all tests the system was stable. An exception to this statement occurred when the 
neuromime network's control output had a reversed sign. In this case the system diverged. 

b. Second System Test. The environment used for the second test was more complex than 
that used for the first test. The second-order environment was changed to admit all entries 
in the environment coefficient matrix, A, as follows: 

12 
A-_[au a ] . (61) 

a21 a22 

A comparison of Equation 61 with Equation 57 illustrates the increased complexity. 

The test on this system was composed of three parts. The first part showed whether or 
not the system parameters, computed by hand, minimized total system cost. Each parameter 
affecting the system cost was varied separately, while other system parameters were held 
constant at the optimum values computed by hand. The result of the test series was a set of 
cost versus parameter variation curves. The second part showed whether or not the neuron 
model computed the optimum parameter values. The test was made by simply allOWing the 
neuron models to react to environment disturbances. The result of the tests was a set of 
analog computer recordings showing a time history of the total system cost as affected by the 
neuron model parameter adjustments. The third part demonstrated the ability of the neuron 
model to adapt to external damage. The external damage was an environment parameter 
change. 

Figure 58 shows the results of the first part of the test. A glance at the shape and loca
tion of the curves is enough to see that the objective was accomplished. The method used to 
compute the optimum parameters by hand was shown to be correct. Further, the method can 
easily be set up for digital computers. 

Figure 59 shows the results of the second part. Note the change in the system response 
as the parameter values approach optimum. The response went from a damped oscillation to 
an exponential decay, which was the expected result. Note also the reduction in total system 
cost as the neuron models adjusted their parameters. 

Once the optimum parameters were reached, the total system cost tended to oscillate .';;'; 
slightly about a minimum value. This slight oscillation was caused by small variations in til 
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parameters about their optimum values. The total system cost curve was flat around the 
minimum cost; thus cost variations about the minimum cost were expected to be small. 

The results of the third part of the test were as expected. The neuron models adjusted 
their parameters within their adjustment range to accompany changes in the environment's 
parameters. Actually, adjusting to a new set of parameters after a parameter change was no 
different to the neuron models than initially adjusting to the original parameters. The worst 
case for an environment parameter change was a change to some value outside the neuron 

\,f0del's adjustment range. The neuron models in this case did not compute the optimum 
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parameters. Rather, the maximum (or minimum) values for the neuron model's parameters 
were computed. Even though in this case total system cost was not minimum, it was reduced. 

3. Tests on the Convergence of the Neuron Model Parameters to Optimum Values 

L~ Tests were designed and set up to examine the convergence of the optimum control 
.rameters of a simple, first-order system. Basically, the tests performed were quite 

simple. A first order system was set up on the analog computer. At the beginning of the 
tests the controller was not the optimal controller. The task of the controller (a neuron model 
network) was to adjust its parameters and become the optimal controller of the plant. 

The analytical basis for the convergence tests comes from the system equations listed
 
at the beginning of this appendix. A formal derivation is given in Appendix IX. One obtains
 
that
 

(a. - A) - (f3 - B) {3tK = cp. 

If A and B are given, a complete zero-error trajectory in the Q, {3 plane is defined for each 
value of K. It was postulated that perturbations in the value of K allowed the a and {3 param
eters to converge to the optimal parameters. In the tests two values of K were switched back 
and forth to demonstrate the theory. The two values were chosen far enough apart to exag
gerate the convergence trajectory. Figure 60 shoes the zero-error trajectories in the a, {3 
plane for two values of K. 
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Figures 61, 62, and 63 show the results of the tests. Each figure is a section of the 
curve shown in Figure 60. Note the zigzag convergence path in all the figures. This path 
explains, at least in part, why the parameters in other experiments have taken so long to 
converge to the optimum values. The error equation and also the curve of Figure 60 show 
that with a. = A, (3 can have two values (3 =Band (3 = 0, regardless of the value of K. Whenever 
the starting point (a, (3) was on an error trajectory between those two points, the parameters 
moved to the right as shown in Figure 62 until they arrived at the (3 =B, a. =A point. Figure 
63 also shows the change in direction of movement for the initial starting point (a, (3) as this 
initial starting point was moved from the left half of the plane to the right half of the plane. 

Notice in Figure 63 that when the initial starting point was in the left half of the plane, 
the parameters did not converge to the optimum values. There were two cases: 

(1)	 As the parameters, which were zigzagging between the two zero-error curves, 
approached the (3 = 0 axis, progress toward the axis stopped. 

(2)	 When the initial starting point for the neuron model's parameters were on the (3 = 0 
axis, the parameters went straight to the (a. = A, (3 = 0) point and stopped. 
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In the first case, the noise level interfered with the parameter computation and stopped 
the progress toward the {3 =0 axis. In the second case, the {3 computation was dormant be
cause {3 =0 initially. The adjustment drive for the neuron model's {3 parameter was propor
tional to the initial {3, and in this case was zero. With no signal to adjust its {3 parameter, the 
neuron model made no {3 adjustments. 

fw Generalizing the above result, the {3 =0 point must be excluded as a possible value of {3 
to ensure that the neuron model's {3 parameter will converge to the optimum value. 

4. Tests on Redundant Networks 

Three tests were performed on redundant networks using the optimal control concept. 
One of the tests used the transistor hardware previouslydeveloped for the neuron model. The 
other two tests used the analog computer exclusively for the simulation of redundant networks. 
So far, small-scale networks have been tested. The lessons learned from these small-scale 
networks wi 11 be used as guidelines for the larger networks. 

a. Redundant Network Test using Transistor Hardware. The first test used the Harmon 
neuromime (Reference 2) and other transistor hardware developed for the neuron models. 
This test was broken into two parts. The first part tested the reaction of the Harmon neuro
mime to weighted inputs. The second part tested the adjustment properties of a redundant 
network of neuromime elements. 

The test for the first part was straightforward. A Harmon neuromime was set up having 
a weighted input. The weighted input had a constant pulse rate. The object of the test was to 
discover the weight required to force the Harmon neuromime to exactly follow the input pulse 
rate. Three different input pulse rates were used. Figure 64 shows the result of the test. 
Note that as the input pulse rate increases, the weight required to force the Harmon neuro
mime to follow also increases. Also, notice the plateau effect of the Harmon neuromime's 
output. The plateau occurs at a submultiple of the input pulse rate . 

., The test for the second part was set up as shown in Figure 65. The Harmon neuromimes 
were not directly in parallel. The inputs to all of the neuromimes were the same. All out
lUts were weighted and fed to another Harmon neuromime. This neuromime produced the 
network's output. Synaptic weight computers were set up on the analog computer. The task 
set for the redundant network was to maintain a constant input-output network relation, re
gardless of internal failure. 

Figure 66 shows the synaptic weight values computed by the neuromimes as failures 
occurred. The failures were in the form of total neuromime function loss. Note that the 
synaptic weights computed by each of the surviving neuromimes increase to absorb the failures. 

b. Redundant Network Tests using Analog Computer. The second test, shown in Figure 
67, used the analog computer exclusively for the simulation. The environment used for this 
test was second order. For this test two neuron models were simulated in parallel, each 
contributing its share to the total system control. One of the neuron models had its param
eters fixed at optimum values; the remaining neuron model had to compute its own optimum 
values. The first two columns of Figure 68 show the results of the computations. 

After the two neuron models were controlling the system optimally, one of the neuron 
models was "destroyed." The last two columns of Figure 68 show the results of the one 
neuron model adapting to the severe internal damage. Even with only two neuron models in 
parallel, the loss of one did not affect the total system cost too drastically. Neither was the 
amount of adjustment required of the surviving neuron model drastic. 

This resultcan be extended to networks with 10 or more neuron models. The effect of 
~IOSing one, two, or three neuron models simultaneously in a network would not appreciably 
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Figure 67. Redundant Network with Two Neuron Models in Parallel 

affect the total network resprose. Further, the larger the number of neuron models in a net
work, the smaller the dynamic range of an individual neuron model need be. 

The third test, similar to the one in Figure 67, also used the analog computer exclus
ively for the neuron model simulation. Two neuron models were simulated in parallel. Each 
model contributed to the total system control. This test differed from the second test in that 
both neuron models were free to compute their optimum parameters. To simplify the instru
mentation, a first-order environment was used for this test. Interest was focused on the ability 
of the two neuron models to begin at some initial state and adjust to the optimum state, with both 
sharing the control load equally. '!be optimum state for the two parallel neuron models occurred 
when the parameters of both were equal, and when these parameters were the optimum values. 

Figure 69 shows a plot of parameter differences. The optimum point on the graph is at 
the origin. The graph shows that the parameters of the two parallel neuron models converged 
to the optimum values simultaneously. The graph shows only that the parameters of both 
neuron models adjusted until the neuron models shared equally the crotrolload; it does not 
show that the final adjusted parameters were optimum. However, the parameters checked 
well with the optimum parameters when they were checked at the end of each run. 

Note the zigzag convergence pattern in Figure 69. This pattern resembles the conver
gence patterns obtained for the convergence test of the previous section of this appendix. The 
convergence pattern observed in this test was also due to perturbations in the K parameter. 
The pattern was obtained by holding the K parameter of roe neuron model fixed at a value dif

t./erent from that of the other neuron model. 
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s. Tests on a Roll-Yaw Cwpled Aircraft 

A fifth-order environment was constructed to simulate an aircraft obeying the following 
aerodynamic equations: 

•• g g YQ • Yp • Yr
fJ + 1/1 - q, - - 1/160 - = fJ ,_tJ + q, .. + l/J u·0uO uO uO 110 •

(62)~. - ifjizx • IfJ8 + L~iJ + l~~ + '6a 6a 

~ - ~kzx· 7/{JfJ + 7/~~ + 7/.~~ + 7/6r 6r 

where fJ is the sideslip angle, l/Jthe yaw angle, q, the roll angle, 60 is a fixed pitch angle, cfa 
the aileron defection, 6r the rudder deflection, and all other parameters are constants deter
mined experimentally. All angles are measured With respect to the body axes of the aircraft. 

Using standard state variable techniques, routine manipulation yields: . 
l/J2 = Q1q,2 + Q2V12 + Q3fJ1 + Q4t/11 + Q5q,1 - QafJr - Q16a . 
q,2 =R1q,2 + R2l/J2 + RSfJ1 + R4.p1 + RSq,l - Ra6r - ~6a (63) 

fJ1 = G1q,2 - G21/12 + GSfJ1 + G4l/J1 + GSq,S 

where "'1 • l/J, l/J2 • ';'1 .,p, q,1 • q" q,2 • ~1 • ~, and fJ1 • fJ. 

Converting to matrix form yields: 

1 0 0 0 0 0 0 0 0 0 0.p1 "'1 

0 0 0 -Qa -Q1 0ifJ 2 Q4 Q2 Qs Q1 Qs 1/12 
. •
0 0 0 1 0 Q 0 0 0 0 0q,1 • +q,1 

0 0 0 -Rt; -R7q,2 R4 R2 RS R1 RS q,2 6r 

0 0 0 0 0G4 -G2 GS G1 GS 6afJ1fJ1 

The above form corresponds to the linear matrix equation discussed in the text of the 
report. 

Ya AY + BM (64) 

where Y is the environment output matrix, M is the control matrix, and A and B are environ
ment coefficient matrices. 

The aircraft equations (in state variable form) were then programmed on an analog com
puter as shown in Figure 70. The aircraft simulation was first tested without a ccntroller to 
ensure that its response was equivalent to that of the aircraft being simulated. A digital com
puter program was used to determine the optimal control parameter matrix, K, necessary to 
control the aircraft simulation. A more thorough discussion of the digital program is presented 
in Appendix VIll. A nonadaptive optimal controller was then programmed on an analog com
Plter and connected to the aircraft simulation. 

Figure 71 shows the optimal controller simulation. Cost curves were run on the optimal 
control parameters in much the same manner as in previous experiments on optimal control • 
systems. Two of the cost curves obtained are shown in Figure 72. Their quadratic shapes 
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are similar to those of previous experiments and illustrate that the parameters computed by 
the digital computer are indeed optimum. 

Following the successful checkout of the aircraft dynamics and the nonadaptive optimal 
controller, the adaptive capabilities were instrumented into the system and preliminary tests 

. begun. Two basic equations were used to provide the adaptive capabilities. The error equation 
A.Jerived from the system equations and the parameter adjustment equation derived from the 
~radient method of steepest descent are shown in matrix form: 

ICY + At P + Y = If' (65) 

. .2.!i.K = - 13K Sgn If' ( 66) 

where K is the optimal control matrix, If' is a generalized error vector, and Sgn If' is the signum 
function with the following properties: 

Sgn If' = 

(67) 
Sgn If' = 0 iff If' = 0 

Figure 73 shows the instrumentation of the above equations using the analog computer and 
the transistor gating circuits. Only three of these parameters were made adjustable, because 
of the demand on the analog computer nonlinear eqUipment. 

& ~.. 
FROM P COMPUTATION 

e/>. SGN ¢.
J J

SIGNUM 

. 
SIGNUM 

GATE 

fY.
J 

y.
J 

TO P COMPUTATION 

8e/> 
8K..

IJ 

TO K COMPUTATIONS 

" Figure 73. Instrumentation of Equations Providing Adaptive Characteristics 
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The first series of preliminary tests on the adaptive controller uncovered several prob
lem areas. For these first tests no disturbances were used. Initial conditions were set on 
the aircraft dynamics and the system was allowed to return to normal. These tests showed 
that some of the parameters adjusted to values close to the predicted optimum, while others 
adjusted to values that differed drastically from their predicted values. In the second series 
of tests, in which disturbances were injected into the aircraft, some of the parameters di- .,,}, 
verged. 

Most of the tests on the parameter adjustment were run using a disturbance vector with 
a single entry. To provide enough information for the parameters to adjust correctly, the 
fifth-order space (the total system) must be spanned by the disturbance vector. Analysis 
showed that the aircraft simulation required a disturbance with two entries to span the space. 
A transistorized pulse generator was developed to provide a periodic disturbance vector with 
two entries. Tests on the aircraft simulation using the new disturbance vector showed little 
improvement over previous results. Although the underlying problems were not completely 
defined, it is evident that hardware problems such as noisy gating circuits, circuit sensitivity, 
and transistor amplifier asymmetry significantly degraded system performance. 

As in previous experiments, the adaptive controller instrumentation was plagued with 
noisy error detection circuits. A close analysis of the instrumentation revealed that to in
crease the signal-to-noise ratio in one section of the instrumentation would mean decreasing 
it somewhere else. Although the overall signal-to-noise ratio could be improved, different 
error detection techniques, such as correlation and prediction techniques, would probably 
have to be incorporated in the model to significantly improve the present error detection. 

•
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APPENDIXVm
 

SOLUTION OF THE MATRIX RICCATI EQUATION
 

The set of linear system equations for the optimal control approach discussed in Section 
IT led to the equation 

which gives the relationship of the optimal control parameter matrix K to the process para
meter matrices A and B. R is a diagonal matrix (in most cases, R =I, the identity matrix) 
and q, is an error matrix. This equation is clearly a matrix Riccati equation. 

In general, an explicit solution to this matrix equation does not exist, and iterative tech
niques using the digital computer must be used to obtain an approximation. 

A digital computer program was written which iterated the K matrix until q, =E, wher.e 
E was a preselected tolerance. The adjustment of the K matrix was effected by letting q, = K. 

aK
 
at
 

aK = Kat = q,at. 

After each iteration, the new K matrix would then be 

Knew = Kold + aK 

",,,The new K matrix was then plugged into the Riccati equation and computation resumed. The 
Wt:ime increment, at, chosen at the beginning of the program must be small enough to ensure 

convergence of the iteration process. Choosing at small enough for a given problem was the 
major drawback of the computer program. Before very large matrices (10 x 10) can be handled 
efficiently, some method of accelerating the convergence process is needed. 

Following is a list of the program's Fortran statements. This program was written for 
the mM 360 computer. 
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.... _._ .._---_. ------- ~ 

20 REAC(I,4) M,N,NIT,~Nl,~NP,IOPT,lN,INlAST 
------·---ff·(-M=-Mf-)30~-f6C;16G-·	 -------.--.-.--~----------.----

--jO·---R-fA-6(T;Tf-DECf~s	 --~---.-------

=--==~= __ ~~·hC:DJ.~--:T2~T~-i .,hM, M,,-,0,,--,),--_ 
CAll REAOlO,M)

·C -m-Jil=-AO~Ib.I-~._.j.fAT.~I!, PRJNT, AND COMPAC T 

-~~t~-~~~~h~~~~f~:.~J-'Ml,A' D)	 .~~~~~_-_--._...~. -=.-._~. 
C------·R£AD -fHE-B-~-Af·RT){;--pR1N-T, ANO:::.....cC:o.:U::.:H.:.:P-'A.:.:C=-T"--_~ _-----.--- -M2- = r-*M .--.-.-.... _. ----,---.-------- ..------ 

tAU~REAOl0-;;·1).-.--------------------- 
~~.~:··_::~(~i.C-,fRKAj.nC~M;M.:;BI; tot (t.~tJJ'-')'__ . -_--_-~--.-_-_~_- ~=.~~=~.-_~~-

CALL PRINTlO,M,lB)-C·----··REAlf 0 IAGONAi·-MATRIX---- .------...---.----- .---~ 

------.- -i( fA-a-.1: -~i '--CkTn;-I;;r;-M-)--- ~--------...----. 
- --- ---- ---CAli---·P'R-.-NTfR-;-M-~-IR ).. ---------..-------- 
-c---------· C-L E":A-R---THE --t<--i4-,ffR-fx·---------·- --'-..---'~--
=~~~_=·_~Q:q_:_~O.·.T;-r-,-~-2-.~-_~~==~~~_-.~:-:=__==_	 .__ .. _-=---=-==-==:-===='.. _ 

HI )=0.00--40 -·-----AK-(Il---;··--o-:"[f(f----- ---------	 --------------...-- 
-----~--".. -----I_~~<. :~_o~~-t:-i-4 ~~ ~ ~~?~;,~!_ .._...~ --~~~~ ..~_-~~=~. . ,. ~ . ._.. .' . .. ~_=~=~_-~- . 

41	 CAll READlO,M.-.CAI~'l- FiR-'t-N f( D,--i~f;--j-K-'i'---·--"	 .----..--.....---. ---.----- ---~------------._-.-. -- ...----- 
CALL-ARRA y'r~',Y;~-~-t-!(, ~j.,AK;:Ql-=~. __..__· ~===~~.~==~=.=._:.:::==~~=:.:=~..-:._.=--=__=: .:':'==.: 

42	 CONTINUE 
- -_.. --_. - _.... ------------- _.-------	 -------_.-------------_...._--._-----_._--_ .._-----

C .IRA~S pes E fti.E _A .~AIBJ)(____ ._.__. .__ .__.. ._ . . __
 
_CALLM TRAl .\ ,A r ,,..,' ... ,.Q.L_____. .. .__ .._... .... ._.._. __...._._ .._.__
 

C .IRAN ~p qSL.IHE .. ~MA IR_Lx . .__.. __. ....__._..
 
<:M.. LMTR Al l:l, 8r,M, M, 0 J _ ._. . . .__._.. _ 

.C_ .._~QMPUH:.Q _ _._ __. . . . ._.. ' 
__ c,ALLMATAl BIt'l,!'1_,M 1 0L_. _ __.__~__..... 

NP = 0._______ . . ._. ..__ ._.. __ ._.... 
IS\lii = 0 
OAK22 = 1.01e 
NI = 0 
t\!.,AST = ° 

C COMPUTE K-DOT 
45	 CALL MPRDlAT,AK,TlMP,M,4,O,O,~.
 

CALL MPROlAK,A,TEMPI,M,~,O,O,MJ
 

CALL MPRO l AK, Q, TEMP2 , M, M,0 , l.t,.,L . .
 
CALL folPKOlTEMP2,AK,b,M,M,IJ,0t.MJ_. ._. _ .....
 

CA ll_""A0 1)( n MP , TE!'1 eJ., .~_!<.R.L~,~.tJLr..QJ ._ ._._.. __.. . _. _._ .. __..
 
CALL MAOClAKO,R,AKO,M,M,0,2)

CAL L MSUB l AK 0, B, AK 0, M; M,0, 0f'-~---------

DO 50 1=1,M2
 
50 AK lH I )= AK 0 lit *DII T
 

LALl M~DOlAK,AKD,AK,M,M,J,OJ
 

IF« ISw) 140,6C,140.__ ~.. . ._. ._.. __._....._
 
bO IFlNP-NI)80,70,80
 
10 CALL ARRAYll,M,M,MI,~l,AK,OJ
 

CALL PRINTlO ,M,IK)
 
I\P = NP + ~NP
 

80 CONTINUE
 
100 1f IN 1-III IT) ~ l~,J?C, J2Q . .. _ .. . __..... '_'~'
 

110 t\1 = N1+1
 
Gt TO 45
 

120 W~ITEl3,5)Nl
 

130 lSW = 1
 
GU TO 45
 

14(). CALL ARRAyl 1, M,M, i-1 A.1.t-11t.~.!S_1-'lL __·· _.,__. - _.._ _._ ._
 
tALL PRINT(O,M,IK)
 
IFlNLAST-NNl)1~C,IC,10 

150 NlASl= NLAST + 1
 
Gu TO 45
 

IbO CALL PUNLH(O,M.
 
CALL EXII
 -.- -----_. •
Et\O 
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- -
EA23C 

FA23\) 

tA230 

[,\230 
tA2?O 
E A 23 () 

t 1\2 j;) 

1:1\23(1 
( 

II EXEC FORTRAN I 
SLBRUUTINE PUNCH(D,~)
 

DIMENSION D(10,10)
 
_DOUBLE PRECISICN 0
 

1 FLR.,A It 5H 0.6)
 
9 FORMAH/ /)
 

DO 10 l=l,M
 
10 WR I TE (2, 1) (U ( I , J), J= 1, M)
 

WR ITE( 2,9)
 
____ ~O_l,iRN_
 

END 

/I EXi::C FORTRAN
 
C SUIjROUTINE MAOO ,VAJiJ 0('4
 
C '-1ADD CC-:>
 
C PURPOSE . . . _ _ ~lADD f)(:6_
 

C ADO TWO MATRIC~S ELEM~NT ~y ELf~ENT TD fO~~ ~~SULTANr MAi)O 007- - ._--. , 

C fl!ATRIX ~AI)D C'(8 
C MADD (l09 
C USAGe Mt>DD 01 J 

CALL MADDU,B,R,N,M,MSA_,~~B.5 _ />IAODOll~ 
C _MA.QO_QJ2 

~,;C_--~--_----- --Ot;SCRIPT -I eN- OF-PARAMEI~~~~=~=-~----~-=-~---~ __ -~ MADD Cp, 
~C A - NA~E OF INPUT MATRIX "'ADD 014 
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-----

--------------------------

:.~------=~~_ -~~[AMJ~OF (~PUT MAnu x ===-==.=~~:-=-~:='=~~~=~-A~Q_ (\I~~ 
C R - NAM E OF OUTPUT MATR I X ~AQ.!L01 b 
c-~-~--N-.::--NuMB-rR-oF-R6wsIN A,B,R I.1AOD 017. 
-C -=--=--=--=-=-~_H::~=_~v..~~~Rjj~E_-_~I)Ll1~NS IN A,B, R ._. ._..__ ._. ....... ..11l).I2!L..Q-liL 
C MSA - ONE DIGIT NUMBER FOR STORAGE MOUE OF r..1.AT'U.~~ . ._.I:!AOl'_.Q_L2.c----------------------O--=-GENE-R-AT-- MADO n 2 Q 

c"-- --------f--::,:--SYMMETRIC ----- .. ----·- ..---~A 0'0 02.-<;'-
c------------·- --z--::- 0 I AGONAL - . ==-=---=-_=E~_QQ= Q_L_ 
c--·------ M5B :..- SAHEAS MSAEXCEPT FOR HATRI X B .t1_~g.!L..923 
£-------.-~=~..=~.~====== ,, ._. .. .._MA Q(L..QZ 4..__...._
C REMARKS _ MAOD ...225 
_~~___ NONE fv'A)D_!-,_2~ 

C MAOD ~27 
-C-----su~OUTINES AND FUNCTION SUBPROGRAMS REQUIRtD MADD 028 
C LOC MADD 029 
C =... ... _ .~AOO 02.Q. 
C METHOD MADD 031 
c-------·--·STORAGE MODE OF OUTPUT MATRIX IS FIRST DETERI\1INED. AODITION MADO ~32 
C OF CORRESPONDING ELEMENTS IS THEN PERFORMED. MAUD 033 
C-------THEFOLLOWING TABLE SHOWS THE SroRAGE MODE OF THEOUTPU-T---MADD 034 
C MATRIX FOR All COMBINATIONS Of INPUT MATRICeS -------MADO 035 
C A B Ii... ----MADD 936 
If-- GENERAL GENERAL GENERAL MA~O 037 
C GENERAL SYMMETRIC GENERAL __ MADD _o38 
C GtNERAl DIAGONAL GENERAL MADD 039 
C SYMMETRIC GENERAL ---"GENfR""Ai. MADD 040 
C SYMMETRIC SYHMETRIC SYM~ETRIC MADO 041 
C SYMMETRIC DIAGONAL SYMMETRIC MADD 042 
C DIAGONAL GENERAL GENERAL MADO 043 
C DIAGONAL SYMMETRIC SYMMETRIC MAUD 044 
C DIAGONAL DIAGONAL DIAGONAL MADD 045 
_C_ MArJD 046 
C •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• MADO 041. 

-~-I------ ;~~~oU~_~:~R~~:---·lL-c-B-_===_=_~-_-_------- - -===~_~-y~_=Q_::Q. 
C MSUB 005 
C -_-__ PUR-p:g~S.E --=.--=-=---=--=: .. __===-~_=_==~=-~=~·~·: __~-S_QB~J!Q.~ 
..L SUBTRACT TWO MATRICES ELEMENT BY ELEMENT TO FORM RESULTANT MSUB 007 
C MATR IX ----------------MSUB--008 
C ----------------------------·-------M"SUB--OQ9 
C USAGE -------=--==_~~-_-_E.~u B:::'[Cti

~C~----=~C7A7""ll;--M:-:cS:::-:U-:cB;;;:-;%;;-A=-,--;B=-,-;:R:-,""7N;-,--;-;M_::;,~M~S::.A;;,~M~S~Bc..:<-=-'_- _-_-_-_-_-_-_-_-_-_-_-_-_-_--_-_-_-_-- MSUB 01 1 

C ::--:::-:-.:-:-:-~:=_=_=_-----------=----=--==--=--== Ms1iif_0 fz_c ::::.O::.E~SC:;.:R~I~P'--:T~I~O::=:N=___==O:_::F:_==P:7A'-'::Rc:..:A~M:=E-:=:T-7E-=R-=-S-:-:-:-- M_5_U_B_O_1_3 
C A - NAME OF INPUT MATRIX MSUB 014 
C B - NA ME OF I NPUT MAT RI X =~~_·=_-_-_-M_S Q~_-_O_1_5 
~C~--------~R~--NAME OF OUTPUT MATRIX MSU8 016 
C N - NUMBER Of ROWS IN A,B,R MS_U_B__O_12
 
C M - NUMBER OF COLUMNS IN A,B,R .__ MSUB Q..lil.
 
C MSA - ONE DIGIT NUMBER fOR STORAGE MODE OF MATRI X A ~SU~ 019
 
C 0 - GENERAL MSUB 020
 
C 1 - S YMME TRI C -..:.ksUJ~-=-02l
 
~C~----------;2~-----:D:--::I;-:;A:-=::G:-=O~N,.::A~L MS.UB 022 

C M56 - SAME AS MSA EXCEPT FOR MATRIX B MSUB 023 

~C~ =:_:_:_=_:_::_=--------------------------------;-;MSUB 024 
C REMARKS "SUB 025 
C NONE MSUB 026 
C MSUB 021 
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED MSUB 028 
C lOC MSU B 029 
C "SUB 030 
C METHOD MSUB 031 
C STRUCTURE Of OUTPUT MATRIX IS FIRST DETERMINED. SUBTRACTION MSUB 032 
C 
C 

OF 
15 

MATRIX B ELEMENTS 
THEN PERfORMED. 

fROM CORRESPONDING MATRIX A ElEMENTS'-~MM=SSu=UBR- 0033--~~A
34W' 
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C THE -FOllUi~aNG -fABTf SHOwS THE STOKAGE ;'40DE OF THf olTfp~T_--_--_~-~-S-U-B0-.3-5
cMATRIX_FOj'f~I~=~oMBnfAJ IONS OF INPUT MATR ICES __ MSUB 036 
C A B R MSUB 031

•• __ ._•• 0 '.__._" 

C G~NERAl GENERAL GENERAL MSUB 038-C ---- --- ------- --GEN-E-RAl ----=-S-=Y:,-;.M-7'--'-I:T=--R=---=----IC~-----GENf~L------- MS=:--:U=:-"::B=-------':;;0-=-3-=-9M
-C----'- --------GENERAl D [AGONAL GENERAL MSUB 040 

6i~~::---:-::-~:--~~:--:-:::---:-----~~_-_:::=!J~~I~~_l~~ ~ ~i~ ~~~ ~ I C ~ ~ ~~ ~.~~ I C ~ ~=:-..::~=-=~'--------=-6.....:..:-=-~ 
C SYMMETRIC DIAGONAL SYMMETRIC MSUB 043-t-------- --- ---- -----------i5iAGONAL GENERAL Gf.NERAl MSUB 044 

C----::_-~_:-_:::~-: ::-_-:_-~--_-_QI~~~ffN.:l\.L SYMMETRIC SYf-1"'1ETR IC MSUB 045 
_~ ..QJ~~.9_NAl DI AGONAL DIAGONAL MSUB 046 
C MSUB 047 
C •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• MSUB 048. 

/.1_ _ EXEC E(}RT~A~__________ _ 
_C_ SJIBRQUUNJMPR..9 . . ~~e..RD OC4_ 
C __ ._ _ .___ ~J)_B.Q 005 
CMUlT IPI,. Y _T~9 M~lRtl;_E~_LO FOR}LA_~ESUl TAN.T__t:1A TRI X t1YRJl. OOI 
~_________ _ .__________ _ t-!PRO 008 
~ __ ~ . lJSAGE_ .. ~__ MPRD 009 
_~___ CAL t ~I'K Q_~.A!..~.LR,J~_~_f", MS A..!...M S B, l < . ------.11.PR 0 01 0 
C MPRD all 

----~-------- ---~--------------------------------

_~__ . p~_s~~ IPIJ9~ _OF_eARAME!J::~S MPRD 012 
.c;. . ~~ __::_NAi"I_L9_f E!RS1_1 NP UT MATRIX ._~ "!e.'!!L_Q.ll 
C B - NAME OF SECOND INPUT MATRIX MPRD 014 c··--------··_-------,· R -" NA"i,i"E----tfi='--··O-UTPUT MATRIX MPRD 015 

·c-·········-----·-------- ~-·_~--t\uj·rB--E'·R--OFROWS IN A AND R MPRD 016 
-c--- -----.'---- ---"'M-·'=---N"u;·fa-ER-cfF-c-tl"lUMNS IN A AND ROWS IN B MPRO 011 
C~~_:~-~--_: E1~-~~ __:9~E.=:Ii.I@r-NUMBER FOR STORAGE MODE OF MATRI X A MPRD 013 
~. ._ 0 __-= Gflil;_B_~.!:._ MPR 0 all 
C 1 - SYMMETRIC MPRO 020 

..-- ....---- ---.,---- - -------------_.,--
_C_~ __ 2=_Q.Jt\!'.QNAl MPRD 021 
c . ____~SB__:- SA!'I_E. __~~ MSA EXCePT FOR MATRIX 8 MPRO 022 
C l - NUMBEK OF COLUMNS IN Ii AND R MPRO 023 

~~=:~-~-.~:_-::-f(E-~~I<-~_i.~::::-~_-~~_=-_~=-_ _ ~ ::g g~ ~
 
~ MA!~I~.~_~~~NOT BE IN THE SAME lUCATlON AS MATRICES A OR 8 MPRO 026 
C NUMBER OF COLUMNS UF MATRIX A MUST BE EQUAL TO NUMBER OF ROwMPRD 021-t- -- ----------~OF--i·fAT-RO-d-- MPR D 028 

_... - ~--_._---- _•..~-- -- ._-_.._--_._._~ ..-.

_~_________ ~ ~_______ MPRD 029 
C SUBROUTI~ES AND fUNCTION SUBPROGRAMS REQUIRED MPRD 030-e -----------~-~-~L:o ~~_=:-=_=________ MPR 0 a31 

C MPRD 032
C- ------ME-n-idif------ MPRD 033 
-~---------------- ..--- -- ----- .. ---- --,------,-:-c--=---::-:-,--------,,---::c--::-------::---,--,--=-=----=-----=---------,---=---------=---,---,-------::c-----"'----:--'
~ __.. __. :Lt_:!;_J1__.!i'L!-_ MATRIX B IS PREMULTIPllED BY THE N BY M MATR[X A MPRO 034 
c __ ~ . At_!JLI.t:!.E__RESULT IS STORED IN THE N BY l MATRIX R. THIS IS A MPRD 035 
_~ ROW INTO COLUMN PRODUCT. "PRO 036 
_~_. .. __I.IjJ;__ f.._Q.b.b_Q.~[ NG TABLE SHOWS THE STORAGE MODE OF THE OUTPUT MPRD 031 
~ ~~TRJX FOR ALL COMBINATIONS Of INPUT MATRICES MPRD 038 
C A B R MPRO 039 ._..--"_._- ._-- - -. ---.- -_._--_._-~-- ~---

C GENERAL GENERAL GENERAL MPRD 040._--._.. _..-_ .. _--- --------- .. 

C 
---~

GENERAL SYMMETRIC GENERAL "PRO 041 
.C ---==:=~_=_-=-~_~=~.=__ GENERAL 0 I AGONAL GENERAL MPRO 042
_L .. . S YMMETR IC GENERAL GENERAL MPRO 043 
C SYMMETRIC SYMMETRIC GENERAL "PRO 044 
y------~---. SYMMETRIC 01 AGONAL GENERAL MPRO 045 
~ -==--=~_~~-=~______ DIAGONAL GENERAL GENERAL MPRD 046 
C DIAGONAL SYMMETRIC GENERAL MPRD 041 
C DIAGONAL DIAGONAL DIAGONAL MPRD 048 
~ .___________ "PRO 049 
C MPRO 051 
__~S:U8R_OUJINE MPRD%A,B,R,N,M,MSA,MSB,L< MPRO 052 

DIMENSION A%l<,BU<,RU< "PRO 053 

~==--~=-~~DO_lJ..~~I;_ P~;C I.§JJllLA, B,R MPRO 054 
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C SPECIAL CASE FOR DIAGONAL BY DIAGONAL MPRD 055 
C MPRD 056 

____ IF~f4S-22~ --=3=:-=0'-'-,-=1..;::.0-'-,.=..30""-- .. MPRD 058 
10 00 201U,N ~M:,:::PRD 059 
20 RU<'A'I<*B~I< MPRO 060 

-C~RrnRN---· ~:~~ g:~. 

C ALL OTHER C_A~S_Ecc..S_______________
-C---------- 

HPRD
MPRD 

063
064 

30 IR'l MPRD 065 
00 90 Kt!.tJ. HPRD 066 

__----!tiL__9~0~J....''-''1~t-'-'N-------------------'-------------','M'-'-P...,.R...,D-",-0",,-,-67 
R~IR<'O MPRO 068 
DO 80 l'l,M MPRD 069 
IFIMS< 40,60,40 MPRD 070 

40 CALL LOCIJ,I,IA,N,M,MSA< HPRD 071 
CALL LOCII,K,IB,M,L,MSB< 

_______ lfllA< 29-L!l0~..tL:5~C~ 

MPRD 072 
.u.H'_'PR~p"'__'0"_'7"'_'3 

50 I FI I B< 70, 80 t.-=-7-"'0 -;Me:-;P~R::.::0~0:_::7=_=_4 

60 IA.N*~I-1<&J HPRD 075 
___._ IB.M*~K-1<&1 MPRD 076 
_----"7c.:::0 RI I R<MRU R<,~&~A~~_=_I!:...A<~*~6~*~I~B~<~ __;M_;_;;P~R'_::D~0_=7_=_7 
_--=8;.:::0'--CONTINU.L 

90 IR' IRU.. 
---;-M;-;;P:-::::R.';:CD~0=_78.;:-

....;M~P~R~D~0!..!7~9 

RETURN MPRO 080 
END MPRD 081 

II EXEC .~F=-'=0o-:-R=_=T:-'-'R'-:-'A_=N----------------------
C SUBROUTIN~ MTRA MTRA 004 

_C 
-' 
~__ 

C 

~ _ 
p UR POS.&; _ 

TRANSPOSI; A MATRIX 
. 

. MTR~ 005 
JiTRA OQ2.. 

Mo-,-:T:=--,R.=Ac.........::0c.:::0--=:-7 
MTRA 008 

~ . U_S_A.....:~~~~L~L"____'_'M'_"_T~R~A~*A~,L'R~,!...:.N~,~M~,~M'-=S~< -,:.~:-:~=:'-":::........::g~!-:=-~. 
C DESCRIPTION 
-.:!C~------=""""""''-':'A~--=NAME 

OF 
OF 

PARAMETERS 
MATR IX TO BE TRANSPOSED 

MTRA 
MTRA 

012 
013 

C R - NA~E OF OUTPUT MATRIX MTRA 014 
C N - NUMBER OF ROWS OF A AND COLUMNS OF R MTRA 015 
C f4 - NUMBER OF COLUMNS OF A AND ROWS OF R MTRA 016 
C MS - ONE DIGIT NUMBER FOR STORAGE MODE OF MATRIX A ~ANO RC MTRA 011 
C 0 - GENERAL MTRA 018 
C 1 - SYMMETRIC MTRA 019 
C -------  2 - 01 AGONAL MTRA 020 
C MTRA 021 
C REMARKS MTRA 022 
Cc:- MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX A MTRA 

MTRA 
023 
024 

C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED MTRA 025 
C MCPY MTRA 02b 
C MTRA 027 
C METHOD MTRA 028 
~C~---~ TRANSPOSE N BY M MATRIX A TO FORM M BY N MATRIX R BY MOVING MTkA 029 
_C____ EACH ROW OF A INTO THE CORRESPONDING COLUMN Of R. IF MATRIX MTRA 030 
C A IS SYMMETRIC OR DIAGONAL, MATRIX R IS THE SAME AS A. MTRA 031 
C 
e 

MTRA
•••••...••••••.••••..••••.••••.•.•.....•.•...•..........••.•...... MTRA 

032 
033 
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-----------------

-------------

------------------_. 
II EXE~_ FORTRAN ....,-,-------------- 
C SU BROl!Tl NE MCPY ,.,~PJ_Q.Q~_
 

~ ~____ J·L~P_Y_~i 

c ~..!J.B~j; . . . ~_Cp.'L.Q..Q.Q.. 

C COPY ENTIRE ~4.ATRIX . ,.,~XY~QI 

C ~CP 'L.9_<2..~ 

~ USAGE ~__ . l'tc;ELQOI1 
~ --,C;:;.;.ALL MCPV ¥A,R,N,M,MS< _-_--_=--_--=-=~~~~}-glj: 
--:C:.-__----'C::.:E=S:..,:C:.:..R"-'I'-'-P.T I ON OF PARAMET ERS J1C._P..'LR!..? 
--:Co-- A, - NAME OF INPUT MATRIX ~_CPLQ.!.1 

C R - NAME OF OUTPUT MATRIX MCPV 014_ 
C N - NU MBER- OF ROWS IN A OR R MCPV 015
C ~ - NUMBER OF COLUMNS IN A OR R MCPV 016 
C MS - ONE DIGIT NUMBER FOR STORAGE MODE OF MATRIX A %AND R< MCPY QlI 
C 9 - GENERAL ~.Qll 

C 1 - SYMMETRIC MCPY 01_9_ 
C 2 - 0 IAGONAL MCPY 020 
C _Jo1CP 'f. 021 

--::C:-- REMARKS MCPY..J)2.l. 
-=C,--_~__ N-=.O.:...:.N=E__. _----:M--'C=-=PJ_023_ 
..:C:-- .--=-~=_=___:_:__:_::__=_:__:_:_:_::-=-=~---:~-::-::--::-:"_::_:_=-::___:_=_=_::__-- ..--M.c.e.Y~l.~ 
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED MCPV 025 
C LOC MCP'( 026 

--::C;-- ==--:-c~-_--------------------------------MC-P-V-O-2-7 
C __--'-'M=ETHOD _YCPV 028
 
C EACH ELEMENT OF MATRIX A IS MOVED TO THE CORRESPQ~OING MCPV 029
 
C------ _.ElEMENr OF MATRI X R MCPV 030
 
C MCPY 033 
__S=U=BROUTINE MCPYlA,R,N,~,MS< MCPV 034 

DIM ENS ION _A!l_<, R%'--"'1'--'<'-:-- _ __~CPY__032 
DOUBLE PRECISION A,R

C CaMP UT E· _)/e C"-'T=-':O~R~L'-::E:-N--:G-=T:-H-,---:(~-=T:----------------- MCP Y-a-3-7 

_C -=--:=--::-c--:-:--:-:-:--:-___________________ .__ ~_V 038_ 
~_-----=C::.:.ALL LOC%N, M, IT. N, M,MS< MCP'C 03.2 

t-----~MA_'__T::..:.R~I::.X_. ~ --~-g;~}--g-:-~ 
__-=---::D~O~l_::_.UH,IT Me PY 043 

1 RlI<.All< MCPY 044 
RETURN ~CPV 045 
END MCPV 046 

-,-=-'-=-------=Ecc-Xc=EC--F-ORTRA-,-N--- --------- --_. 
._._---~-_._------

C Sl,J_~~QJ,J.!.HtE MAT:...:.A-,--_ _ . .. _t1~I~_Q.04 
C MATA 005 
~---------p-u~pil$~=~~_~'==_~_. . -,=-~.-_-~~-_---- .._-~--~~~_-_ .. ~=~~~~~-RijLQQi>= 

C f.R~~!JJ._!.l"_LY A MATRIX BY ITS TRANSPOSE TO FORM A MATA 007 
C SVMMETRIC MATRIX ----------MATAOC8 
-C---------------- --- --·----M-A-T-A-0-09 
C USAGE --------------- ----- MAlA 010 

C CALL MAT AlA, R=.!..,N'-'-'L:M,--,-,--,."'-'-'5"--<"---________ MA TA () 11 
C . ----=--:---:-:-:-::==-:::-:=--___________ MAT A 012 
~C~ ~O=E=S~C=R~IPTION OF PARAMETERS MATA 013 
~C~ A - NAME OF INPUT MATRIX ~M~A~TA 014 
~C~-----.~R-'--_--NAMEOF OUTPUT MATRIX MATA 015 
C~ ~N~ - NUMBER OF ROWS IN A MATA 016 
C M - NU"BER OF C O::::L~U':-:-M-;-7N';';S;--:;I~N:--:cA-.--;A-=-L-;;:S~O,-----:-:N::-:U-;-;M-=-B-=E-::-R--::-O:;;;-F-R;::-O::::cW-:cS;;--A::-:Nc:-:D::--------:-M::-:A;-:T:-'-:A~0:..:1~7 

~.___ NUMBER OF COLUMNS OF R. __ MATA_018_ 
C ----'--''''..::.5 - ONE DIGIT NUMBER FOR STORAGE MODE OF MATRIX A MATA Olq 
C 0 - GENERAL MATA 020 

--:C'-- 1 - SYMMETRIC MATA 021 
C 2 - DIAGONAL MATA 022 
~ MATA 023 
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II 

C 
C 

REMARKS MATA 024 
MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX A MATA 025 

C MATRIX R IS ALWAYS A SYMMETRIC MATRIX WITH A STORAGE MODEjl MATA 026 
MATA 027
 

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED MATA 028 
LOC 

METHOD 
CALCULATION OF ~A TRANSPOSE A< RESULTS IN A SYMMETRIC MATRIXMATA 032 

C ELEMENTS OF MATRIX A ARE NOT CHANGED.	 MATA 034 

C
C
C
C
C 

REGARDLESS OF THE STORAGE MODE OF THE INPUT MATRIX. THE MATA 033
C 

C MATA 035
 
••••••••••••••••••••••••••••••••••••••~ ••••••••••••••• •••••••••••• MATA 036 

EXEC FORTRAN
 
SUBROUTI NE ARRAY	 ARRAY004
C 

C	 ARRAY005
 
PURPOSE ARRAY006 

CONVERT DATA ARRAY FROM SINGLE TO DOUBLE DIMENSION OR VICE ARRAY007 
VERSA. THIS SUBROUTINE IS USED TO LINK THE USER PROGRAM ARRAY008 
WHICH HAS DOUBLE OIMENSION ARRAYS AND THE SSP SUBROUTINES ARRAY009 
WHICH OPERATE ON ARRAYS OF DATA IN A VECTOR FASHION. ARRAYOIO 

ARRAYOll 
USAGE ARRAYOl2 

C 

C
C
C
C 
C
C

C 

ARRAY013
 
C	 ARRAY014
 

DESCRIPTION OF PARAMETERS ARRAY015 
MODE - CODE INDICATING TYPE OF CONVERSION ARRAY016 

1 - FROM SINGLE TO DOUBLE DIMENSION ARRAYOl7 
2 - FROM DOUBLE TO SINGLE DIMENSION ARRAYOl8 

C
C
C
C

C 

J 
I 

N 

NUMBER OF ROWS IN ACTUAL DATA MATRIX	 ARRAYOl9 
NUMBER OF COLUMNS IN ACTUAL DATA MATRIX ARRAY020
 
NUMBER OF ROWS SPECIFIED FOR THE MATRIX 0 IN ARRAY021
 
DIMENSION STATEMENT ARRAY022
C

C
C 

NUMBER	 OF COLUMNS SPECIFIED FOR THE MATRIX 0 IN ARRAY;;, 
DIMENSION STATEMENT	 ARRAY 

S	 IF MODEtl, THIS VECTOR CONTAINS, AS INPUT, A DATA ARRAY025 
MATRIX OF SIZE I BY J IN CONSECUTIVE LOCATIONS ARRAY026 

M 

COLUMN-WISE. IF MODEt2, IT CONTAINS A DATA MATRIX ARRAY027 
OF THE SAME SIZE AS OUTPUT. THE LENGTH OF VECTOR S ARRAY028 
I S I J, WHERE I J'I*J. ARRAY029 

C
C
C
C
C
C
C
C IF MODE'I, THIS MATRIX ~N BY H< CONTAINS, AS OUTPUT, ARRAY030
 

A DATA MATRIX OF SIZE I BY J IN FIRST I ROWS AND ARRAY031
 
o 

C 

C

C
C
C

C
C
C
C

C
C
C

C
C 
C 

C
C
C
C 

J COLUMNS. IF MODEll, IT CONTAINS A DATA MATRIX OF ARRAY032
 
THE SAME SIZE AS INPUT. ARRAY033
 

ARRAY034
 
ARRAY035
REMARKS
 

VECTOR S CAN BE IN THE SAME LOCATION AS MATRIX D. VECTOR S ARRAY036 
IS REFERRED AS A MATRIX IN OTHER SSP ROUTINES, SINCE IT ARRAY037 
CONTAINS A DATA MATRIX. ARRAY038 
THIS SUBROUTINE CONVERTS ONLY GENERAl DATA MATRICES ~STORAGEARRAY039 

MOOE OF 0<. j\RRAY040 
'ARRAY041 

SUBROUTINES AND FUNCTION SUBROUTINES REQUIRED ARRAY042 
NONE ARRAY043 

ARRAY044 
METHOD ARRAY045 

REFER TO THE DISCUSSION ON VARIABLE DATA SIZE IN THE SEcn ONARRAY046 
DESCRIBING OVERAll RULES FOR USAGE IN THIS MANUAL. ARRAY047 

ARRAY048 
ARRAY050 

SUBROUTINE ARRAY IMODE,I,J,N,H,S,D< ARRAY051 
ARRAY052 

DOUBLE PRECISION S,D 
NI,N-) 
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C 

C TES T TV PE--;:'Cf~C;;C::-;N:nVII:E:iiR;CS"WIr;O:;:;N------------------~A"""R=R=A=Y=0=5~6 

ARRAY057 
If~MODE 1< 100, 100, 120 ARRAY058 

C------~·- =c-~-=='-=----------------~-------!A~R~R~A!,!Y~0~52-9 

C_~~.~~~T FROM SINGLE TO DOUBLE OIMENS ION ARRAY060 
~._---------_.. ARRAY06l 
~~O IJ'I*J&l ARRAY062 
___ NMU*.,&l ARRAY063 
___00 1l0-Ktl,J ARRAY064 

NM'NM-NI ARRAY065 
00 110 lll,I ARRAY066 
IJ'IJ-1 - ARRAY067 
NM'NM 1 

110 DlNM<'S~IJ< 
GO TO 140 

C CONVERT fROM DOUBLE TO SINGLE OIMENSION 
C 

C 

C 

120 IJ'O 
NM'O 
00 130 KIl ,J 
00 125 L'l,l 
IJ'IJ&l 
NM'NM&l 

130 NM'NM&NI 

140 RETURN 
END 

ARRAY068 
ARRAY069 
ARRAY070 
ARRAY071 
ARRAY072 
ARRAY073 
ARRAY074 
ARRAY015 
ARRAY076 
ARRAY017 
ARRAYO:T8 
ARRAY079 
ARRAY080 
ARRAY081 
ARRAY082 
ARRAY083 
ARRAY084 

II EXEC FORTRAN 
C 
C 

SUBROUTINE 
~ 

loe LOC 
lOC 

004 
005 

C PURPOSE LOC 006 

~ 
f.......... 
~ 

COMPUTE A VECTOR SUBSCRIPT 
SPECIFIED STORAGE MODE 

fOR AN ELEMENT IN A MATRIX Of LOC 
LaC 

007 
008 

LaC 009 
C USAGE LOC 010 
C CALL LOC II,J,IR,N,M,MS< LaC 011 
C lOC 012 
C DESCRIPTION Of PARAMETERS LOC 013 
C I - ROW NUMBER Of ELEMENT loe 014 
C J COLUMN NUMBER Of ELEMENT LOC 015 
C IR RESUL TANT VECTOR SUBSCRIPT Loe 016 
C N NUMBER OF- ROWS IN MATR IX LOC 017 
C M NUMBER OF COLUMNS IN MATRIX LOC 018 
C MS ONE DIGIT NUMBER FOR STORAGE MODE OF MATRIX laC 019 
C 0 - GENERAL LOC 020 
C 1 - SYMMETRIC LOC 021, 
C 2 - DIAGONAl Loe 022 
C LOC 023' 
C REMARKS Loe 024 
C NONE LOC 025 
C lOC 026i 
C SUBROUTINES AND fUNCTION SUBPROGRAMS REQUIRED LOC 027 
C NONE LOC 028 
C Loe 
C METHOD LOC 
C MS'O SUBSCRIPT IS COMPUTED FOR A MATRIX WITH N*M ELEMENTS LaC 031!· 
C IN STORAGE IGENERAL MATRIX< LaC 
C MS.1 SUBSCRIPT IS COMPUTED fOR A MATRIX WITH N*SN&1<12 IN LOC 033. 
C STORAGE ~UPPER TRIANGLE OF SYMMETRIC MATRIX<. IF lOC 034 
C ELEMENT IS IN LOWER TRIANGULAR PORTION. SUBSCRIPT IS LOC 035 
C CORRESPONDING ELEMENT IN UPPER TRIANGLE. LOC 

.-~ MS'2 SUBSCRIPT IS COMPUTED FOR A MATRIX WITH N ELEMENTS LaC 

.., IN STORAGE SDIAGONAL ELEMENTS OF DIAGONAL MATRIX<. LOC 
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C IF ELEMENT IS NOT ON DIAGONAL lAND THEREFORE NOT IN LOC 039 
C---------~-----------------STORAGE<, IR IS SET TO lElW. LUC 040c--- ----~--------------------------- LOC 041 

C----·, ---:-.:-:-.~-;:-~-:"~:-~-~- •.,~-:-: ••••••••••••••••••••• -••••••••••••••••••••••••••• LOC 042 

---~~-------=E:-:-A--=2--=3--=C 

------:EA230 
EA230 

____~ ~ EA230 
___--=-EA230 

•
 

•
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APPENDIX IX 

CONVERGENCE OF THE LINEAR SYSTEM 

., We are given a linear system described by equation 

Y = AY + AM
 

and cost functional
 

C = f 00 (yty + WM)dt, 

o 

with optimal controller described by 

P = KY
 

M =-Btp,
 

where it is known that the auxiliary variables P must satisfy 

P = _Atp - y, P(oo) = o. 

It is desired to investigate the convergence of the rule set forth in Section II for adjusting 
the computed values of A., {3, and K, which are estimates of A, B, and K.
 

The adjustment rules are as follows.
 

~et 
y - Q..y - 13M = t 1
 

and
 
Xy + a tp + Y = e2. 

We note that 

aa.y
= 

a~j 

and that similar results obtain for the other variables.
 

It appears that an appropriate gradient method might be to set
 

3.tj = -ryi sgn c'1' r > 0, 

since such a form would seem to tend to drive each of the entries in the matrices a., {3, andy( 
toward their respective values in A, B, and K. To investigate whether such is actually the 
case, let us state formally the following expression. 

Y - ay - 13M - Y + AY + AM = t..l 
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Rearrangement yields that
 

(A - a.) Y + (B - t3) M = Cl.
 

From the fact that M = -{:t7(y in the operating system, one can obtain that 

(A - a..) + (B - t3) {3tXY = C'1 • 
It is going to be shown that the magnitude of II as given by the above equation almost 

satisfies the requirements for a Liapunov function for the parameter adjustment system, and 
that some additional peculiarities tend to produce convergence along somewhat unusual tra
jectories. Note first that various values of Y are presented to the system from time to time, 
and presumably span the Sly. Note then that c\ is continuous and has continuous derivatives 
everywhere except where el is zero. The discontinuity in the derivatives can be removed by 
postulating that in every region close to e"1 = 0 the function t 1 is replaced by an appropriate 
"rounded" function that satisfies' the necessary continuity conditions t'1 on the boundaries of 
the region. This rounded region can be arbitrarily small, and in the limit clearly goes to e1. 
Thus € 1 satisfies the continuity requirement of a Liapunov function in the limit. It does not 
satisfy the requirement that cl = 0 only at the point A = a.., B = {3. Instead we see that 

(A - tL) + (B - (3) {:tX = 0 

dictates only that 

0-= A + (B - (3) {:t/( (68) 

i. e., for each ~ A and B, Gis a quadratic function of {3. 

Suppose, however, that X takes on various values from time to time. For a sufficiently 
wide range of values X, A = a and B = {3 are clearly the only values of a and {3 that will 
always satisfy Equation 68. Examination of the one-to-one case (see Figure 60 in Appendix ~ 
VII) yields some insight into the situation. One sees in this figure that two values of X give .. 
two t 1 = 0 curves, having common points at a = a, {3 =. b, and fJ = o. If the values of a and 
{3 are driv:en along a trajectory that uses the gradient method preViously discussed and that 
alternates between the two values of.'(, the system will converge for all initial values of a 
and {3 in the right-half plane, excluding the {3-axis. This follows from the fact that forX';' 0, 
the terms (A - a..) and (B - (3) in Equation 68 ensure that a component of the motions of a 
and {3 will be in the directions of a and b at each step in the alternation procedure. The fact 
can also be confirmed readily by systematically plotting vectors corresponding to 

a = -ky sgn t'1 

b = -kbky sgn el 
in the various regions of the figure. If the above two-dimensional argument holds for larger 
systems, they too will converge. Although of considerable interest, this problem was not 
pursued, since it was not directly pertinent to the main argument. The various systems that 
were simulated did converge, which was considered adequate for the present purpose. 
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APPENDIX X 

LEARNING OF THE EXCLUSIVE-OR FUNCTION IN RATS 

" The hierarchy implementation discussed in Section m offers an explanation of interference 
phenomena that are observed in psychological experimentation. 

An experiment was performed at Goodyear Aerospace with company funds to test whether
 
observed behavior would match behavior predicted from a hierarchy method for generating the
 
state identification function. The results w~re quite satisfactory. They are included here to
 
demonstrate the agreement of the algebrai'structure with experimental results.
 

The theoretical conclusions concerning adjustment of hierarchies of threshold elements
 
discussed in the text were tested by an animal experiment. IThe authors were assisted in con

ducting the experiment by Messrs. R. H. Kause and J. R. Davis (Reference 31).
 

The subjects (Ss), 12 albino rats from three to five months of age, had not been used in 
any previous experiments. The apparatus used was a single choice-point Y-maze (Figure 74). I·...... 
Guillotine doors, which are visible on the figure, separated the various sections of the maze. • 
Dimensions of the maze are shown on the photograph. Various portions of the maze were 
painted white, gray, and black. Two 3v flashlight bulbs at the choice-point were operated by I.• 
toggle switches beside the start box. ! 

Prior to experimentation, Ss were reduced to 80 percent ad libitum body weight by 48- ~ 
hour food deprivation followed by limited daily feedings for 10 days (Purina lab chow). After I 
weight reduction the Ss ranged from 256 to 326 grams. Weights were held to within ±1 to 3 
grams of the calculated 20 percent weight reduction during the experiment. 

Ss were familiarized with the maze situation for 15 minutes each on each of two succes
6,ive days before training. On the first day, all guillotine doors were removed, and Ss were 
.,raced in the start box. Since most Ss went to the black arm of the maze, on the second day 

they were placed in the white goal box. 

The Ss were divided into two squads of six animals each. All received 15 training trials
 
per day for twenty days. Rewards were four food pellets. To counterbalance the inherent
 
side preference, the reward locations were reversed between the two squads; as shown later:
 

Reward Locations
 

Squad 1 Squad 2
 

One Light L R 

0, Two Lights R L 

During each trial, subjects were kept in the starting box for 15 seconds and allowed to
 
remain in the goal box for 30 seconds or until food was consumed, whichever was longer. Upon
 
completion of each trial Ss were returned to their cages, where water was available.' ApprOXi

mately 25 to 30 minutes separated the trials for each S. After the 20-day training period, Ss
 
were randomly divided into two groups. Both groups were run an additional eight days. Group
 
1 received 50 percent reinforcement of correct responses; Group 2 received no reinforcements.
 
After the eight-day interval, Group 1 was run an additional eight days with no reinforcement.
 

The histories of percentages of correct responses to each discriminable light condition 
~~ shown in Figure 75, together with theoretical curve fits. The interference phenomenon pre
~ted in Section III for a hierarchy is clearly seen on the figure. 

121 



Figure 74. Single-Choice Point Y-Maze for Testing Learning of the Exclusive-Or Function 

If one assumes that the strength of an S-R connection is proportional to the probability 
of the response, and that the rate of change of the strength is proportional to the percentage 
of responses that are mistakes, one obtains an exponential described by 

p = kl (p - p). p(O) = 0.5 

where p is the asymptote, p is the instantaneous probability of correct response on the one
light case, and k1 is the inverse time constant. For the 0, two-light case one can write that 

it = k2 (q - q) - fk1 (p - p). q(O) = 0.5 

where k2 is the inverse time constant, f is a positive constant, and q is the asymptote. The 
second term of the right-hand member expresses the intuitive notion that changes in the one
light probability are reflected as interference with the 0, two-light probability. One would 
predict intuitively that the value of f might be 2, since twice as many inputs are present for 
the two-light case, and that k2 might be about the same as k1. 

A standard non-linear regression computer program was used for curve fitting. Value' 
obtained were 
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Figure 75. History of Percentages of Correct Responses 
versus Theoretical Curves 

p = 0.88
 
k1 = 0.35/day
 
q = 1. 009
 
k2"; 0.205
 
f '= 2.18
 

The asymptote q is clearly slightly in error, since 1. 0 is its maximum possible value. 
However, if the data had been extended beyond 20 days with no change in reinforcement sched
ule, the computed value of q would have been more realistic. 

The experimental results support the hypothesis that a decision-making hierarchy of at 
least two levels models the discrimination learning task of the experiment. Further experi

."Jllentation with logic functions requiring three or more separating planes could determine 
W'whether the hierarchy instrumentation scheme is a satisfactory model for more sophisticated 

tasks. 
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APPENDIX XI 

MARKOV PROCESSES 

The discussion presented here shows ways in which a cost functional can be defined as • 
an expectation for Markov processes. Although the implications of the derivation have not 
been completely investigated, a hand-computed example indicates that further research along 
these lines might be fruitful. 

Consider a system that has a finite number of states, zl' z2' .. ,zn' At any instant 
in time it occupies one (and only one) state. There exists a vector for each zb the components 
of which are in order the conditional probabilities that at the next instant of time the system 
will occupy any particular state of the n possible states. The system is described by an n x n 
matrix, P = Pij where Ptj is the conditional probability that the system will occupy state zi 
at time t + 1, given the fact that the system is in state Zj at time t (Reference 32). 

From the above description the following formulation can be written. Assume that the 
respective probabilities that the system is in one or another of its possible states at time t be 
represented by a vector 

From Bayes theorem, 

one can write that 

Z(t + 1) = p. Z(t) . 

Such systems have been extensively studied. The above system is free, 1. e., it receive' 
no interference from an outside source, vI' v2' , vm' which alter the probabilities that 
various transitions will occur, 1. e., PI, P2' , Pm' such that 

(Pk)ij = (state i follows state j I input k is present). 

If the probabilities of the various inputs occurring are known, such a system can be re
duced to a free Markov process by the fact that 

Pij = (Pl)ij (VII Zj) + (P2)ij (v2IZj) + .•• + (Pm)ij (vmIZj) . 

We wish to show that if costs are associated with the various transitions or with occupying 
certain states, then optimal input sequences are defined under some circumstances. 

We consider first a free Markov process. It is well-known that the probability that the 
process will occupy a certain given state after a very long time is given by the solution to 
setting pet + 1) = pet), yielding, 

ZI (I - P) = 0 

where <ZI' ZI) is normalized to 1. This eigenvector for the unity eigenvalue of P gives, if 
unique, the probabilities of occupying any state after a long time, starting from any state. If 
the eigenvector is not unique, the probabilities after a long time are dependent on the starting 
state. 
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Assume now there is a cost, 

associated with each transition between states. Then the expected cost at each instant of time 

61 m n n 

~1 = L ~ L 
k=l i =1 j =1 

Minimization of ~ yields a schedule of probabilities P(Yk zi) which will produce the lowest ex
pected cost at each instant in time. To the authors' knowledge, no general computational rule 
exists for minimization of such an expression, other than exhaustive computation. 

By analogy with some results of Game theory, it seems likely that the probabilities 
p(Yklzi) would tend to become selections, in that for each state zi, some certain Yk would 
usually be the "best" response and its probability should be maximized. As an alternative to 
the above formulation, one can assume that costs C = col(C1, c2, ... , cn) , are associated 
with occupying respectively each of the states, an~ that transitions do not contribute to costs. 
The expected cost at each instant is then 

and symbol probabilities can be chosen to minimize~. Both these formulations lead naturally 
to the concept that the "desired" state is simply the one that has the highest probability of 
occupancy when ~ is minimized. 

In a third possible formulation, costs could be assigned both to state occupancy and to 
transitions. It is immediately apparent that one should minimize 

" ~ = ~1 + ~2 
by appropriate selection of the input symbol probabilities p 

None of these formulations has been studied in any detail in this research. Some relative
ly crude hand-computed examples, which are discussed next,indicate that the general results 
obtained for the deterministic case are still applicable. 

In the .discussion of specific methods of instrumenting "learning" procedures presented in 
Section. m, one idea that is used is that the controller can "explore" the environmental be
havior more or less randomly, and "learn" by changing the conditional probabilities of its 
responses. 

The major result of the linear investigations presented earlier was to illustrate the
 
necessity for the mappings
 

f/J: S X D-'R 

I : Sn-+D 

to be non-trivial in D. The usual picture given in behavior theory texts is one of stimuli mapping 
directly to responses. Although motivation is mentioned, its role is not clear. The following 
paragraphs outline how the concepts might be extended to Markov processes. 

We assume that a process to be controlled is a finite state Markov process described by 
a matrix B. The elements btj are respectively the probabilities that state i will follow state j. 

"
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• 

Figure 76. Example of Markov Processes • 
The controller is able to alter certain of the elements bij. It is desired to find those 

values of the bij that cause the process to spend the maximum percentage of the time in one 
particular state, selected a priori. The specific example discussed below illustrates why the 
empirical rules that were first tested failed, and why an approach based on the methods of the 
present analytical model promise utility. A process (Figure 76) is described by the matrix: 

Xi a2 0 b4 0 

bl x2+e bS 0 a5 

B = e 0 Xs 0 0 

al 0 as e+x4 b5 

0 b2 e a.t e+x5 

where ~ and hi are the probabilities that inputs a and b will occur in state i, and e is the prob
ability that the environment will make a "spontaneous" transition. The Xi'S are chosen so as 
to make each column add to 1. 
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Assuming that the probabilities of each of the transitions between states on the figure 
are O. 1, we obtain that 

0.7 0.1 0 0.0 0 

0.1 0.8 0.1 0 0.1 

B = 0.1 0 0.7 0.1 0 

0.1 0 0.1 0.8 0.1 " 
0 0.1 0.1 0.1 0.8 

The eigenvector corresponding to the unity eigenvalue is computed to be 

1/6 

1/4 
S = 1/18 

1/4 

5/18 

-

0.19 

0.25 

0.05 

0.25 

0.28 

n was shown previously that this eigenvector (normalized) is the vector of the probabilities
 
that after a long time the process will be in each of the states.
 

In the empirical model discussed previously, the weights associated with the various 
input to an element and its particular output were to become more positive if past history in
dicated that production of that output tended to remove the inputs. U,on the other hand, produc
tion of an output tends to increase the input, the input weight would tend to become negative. 
Let a, {3, and 'Y be the signals from the process that are inputs to the controller. One can list 
·;pa.t effect each of the two controller outputs will have on each of the three process signals, 
" rting in each of the five states, in tabular form (Table II.) A + 1 corresponds to increasingtte signal, a -1 corresponds to decreasing it. 

Table II. Changes in Inputs Caused by Various Control Signals in Various
 
States of the Markov Process in Figure 76.
 

State Control a {3 " 
0 a 

b 
0 
1 

1 
0 

0 
0 

1 a 
b 

-1 
0 

0 
1 

0 
1 

2 a 
b 

0 
1 

1 
0 

-1 
-1 

3 a 
b 

1 
0 

0 
-1 

1 
0 

4 a 
b 

0 
-1 

-1 
0 

-1 
-1 

" If each of these changes is multiplied by the probability of occupying the particular state 
., which it occurs and the values are summed, we obtain 
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Control a " 
a 0 -1/18 ...1/12 

b -1/18 0 1/12 

This last matrix is clearly proportional to the long-term determination as to whether a Weighte 
should be increased or decreased from its initial value by the empirical rule. 

An illustration of the flaw in this empirical rule is given by the following crude example 
of such a rule. Assume that as a result of such observations over a period of time, some 
mechanisms alter the probabilities of occurrences of the various transitions so as to increase 
the probabilities of those transitions that usually lead to a reduction in the input signals (and 
also to decrease the probabilities of those transitions that cause increases in the input signals). 
We assume as a crude approximation that those transitions that show correlations of -1/18 
have their probabilities increased by 0.2 (from O. 1 to O. 3), and that those showing the correla
tions of -1/12 have their probabilities increased by 0.3 to 0.4. If multiple correlations are 
present, the transition probability is increased by the sum of all the indicated transition prob
ability changes. The new matrix of the Markov process becomes 

0.7 0.1 0 0.1 0 

0.1 0.6 0.4 0 0.5 

0.1 0 0.1 0 0B' = 
0.1 0 0.4 0.6 0.5 

0 0.3 0.1 0.3 0 

with eigenvector 

1 
= - S' 904 

•180 
270 

20 
270 
164 

We note that the probability of occupying the 3.;.state is considerably reduced, but that 
the probability of occupying the O...state is not significantly increased. Further, the changes 
in transition probabilities that might result from the new correlation matrix will not significant
ly alter this qualitative result. 

Simple computation of weights of stimuli on responses does not appear from this example 
to be an effective method for generating appropriate trajectories. 

Consider now a scheme which includes the idea of a "drive reduction, " where the drive 
level in any process state is the number of 1's in the output of the process when in that state. 
Table m lists the "drive reduction" produced by each of the possible outputs when in each of the 
possible states, and whether any particular input is present in that state. 
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Table m. Drive Reduction 

State Control Drive Change Signals Present 
in that state 

0 a 
b 

+1 
+1 000 

1 a 
b 

-1 
+2 100 

2 a 
b 

0 
0 001 

3 a 
b 

+2 
-1 010 

4 a 
b 

-2 
-2 111 

One can first multiply each of these possible "drive changes" by the probability of that 
state occurring, and can then sum the drive changes which will be seen when each input is 
present, yielding 

" 
Control a ~ ')' 

-29/36 -1/18 -5/9a 

b - 1/18 -29/36 -5/9 

Note the drastic change produced in the 11 and 22 terms by this method of computation. Ex
amination of the sequential machine shows that an acceptable logic function for generating 
optimal trajectories is 

a = a V ')' 

b = ~ V ')' 

where the ambiguity (both a and b should appear) in state 4 is resolved either way. 
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