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ABSTRACT

This report describes investigations of networks with adaptive ability distributed through
em. It is thought that large-scale adaptive systems can be constructed of adaptive building
blocks. These adaptive systems would be flexible in function, reliable and would resist severe
damage characteristics of living creatures. Neuron models were tested by interconnecting
them into various networks to perform simple control tasks. The test results were evaluated
and the evaluationused to improve the theory and the neuron model. The distributed adaptation
concept was analyzed from an abstract algebraic approach, using optimal control theory. The
combined approach, when studied in depth, contributed to the understanding of the problem.
Although the conclusions of this report are at best tentative, one conclusion seems reasonably
valid: any required adaptive controller can be built using iterative elements provided only that
all terminal segments of optimal trajectories of the process are themselves optimal trajec-
tories, and that the process is controllable and observable.
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SECTION I

INTRODUCTION

e This program is an effort to discover whether adaptive systems can be built that are
modeled on the known characteristics of neurons, with adaptive ability distributed among the
elements. Each neuron receives input signals from other neurons. On the basis of these in-
puts and outputs, it is postulated that each neuron uses some internal criteria to decide whether
or not it should produce an output. The adaptation in a neural net is not centralized, but is
distributed throughout the net, with each neuron contributing to the whole.

An aim of the research has been to develop models and techniques that are consistent
with known facts from both physiology and behavior theory. The writers know of no physiologic-
al evidence that neuron synaptic weights or connections on a lower level are directed by signals
from higher centers.

The basic premise of the work presented here is that large-scale adaptive systems with
great flexibility can be constructed of adaptive building blocks. Each building block adjusts its
own behavior according to some relatively simple rule. Reference 1 points out that systems
based on this concept should tend to display the wide range of plasticity, reliability, and ability
to operate effectively after severe damage that is displayed by living creatures.

The basic problem has been attacked from four points of view.

(1) An overall system approach using abstract algebra

(2) A simulation approach using optimal control theory for linear systems

(3) Analysis of threshold logic networks

(4) Review of behavior literature and one experiment with animals (company sponsored)

A coherent picture is emerging. Although it is incomplete in many details, the following
Salient points appear:

(1) There are ways to design a system so that many single, independent decisions made
according to definite rules at local points within the system will cause a single com-
plex global (overall) criterion to be met.

(2) A linear system can be controlled optimally by an adaptive controller made of many
autonomous identical elements.

(3) Logical decisions of any desired complexity can be made adaptively by a "hierarchy
of decisions' (described later).

(4) Observed animal behavior indicates that the decisions made and the methods used for
making them resemble the mathematical models that are being developed.




SECTION IT

GLOBAL PERFORMANCE CRITERIA AND
THEIR LOCAL IMPLEMENTATIONS

A, GENERAL

Early ideas as to how a neuron acts locally to optimize overall system performance are
reviewed in this section of the report. The flaws in these early schemes are pointed out, and
the progression to more complex ideas of a performance functional is outlined. Present con-
cepts are based on the theory of sequential machines, dynamic programming, and concepts
from behavior theory.

Although implementations of the various schemes are mentioned, they are not discussed
in detail in this section. Detailed implementations have not yet been developed for the latest
concepts. Some implementation requirements that have been considered will be discussed in
Section IIL

B. EARLY RESEARCH

At the beginning of the program it was believed that each neuromime could adjust itself
by considering solely the time histories of its own inputs and outputs. The adjustment rule
that was used required the neuron to attempt to minimize its inputs and output while providing
the necessary control of its environment. More formally, a "system power" function, Vil
was defined by

n
P = Ro2 + E Riz (1)

where Ro and Ry, i=1, 2, . . . , n, are respectively the neuron's output rate and various in-
put rates. It is readily shown that if the appropriate partial derivatives exist and are well-
defined, a minimum of + is obtained when

n
1

For adaptation, the system had to "test" its environment, discover with sufficient accuracy the
values of the partial derivatives of Equation 2, and adjust its response accordingly.

The result of the experimentation was to point out a need for a more sophisticated view
of the nature of the function to be minimized. Failure of the empirical model under some con-
ditions to operate as initially hoped served to direct the succeeding research, and it is thus
worthy of brief discussion.

The elements of the system were electronic units that attempted to mimic certain charac-
teristics of biological neurons. The following characteristics were selected for modeling.

(1) Any particular neuron (excluding sensory neurons) receives inputs from many sources.
These inputs are pulse trains of variable repetition rate. The output is a pulse train
similar to those appearing as inputs.

(2) Some inputs tend to excite the neuron to emission of output pulses, some tend to i
inhibit the production of output pulses. In the model, we associated a parameter ﬁ




wi, -1 £ w; £ 1 with each input to the hyperpolarizing or depolarizing effect of
the separate endbulbs. If wij > 0, the ith input is excitatory, and if wj < 0, the ith
input is inhibitory. (H wj = 0, the ith input has no effect on the output of the neuron. )

(3) A neuron takes the spatial and temporal sum of its inputs and compares this weighted
sum against a threshold. The threshold can vary with time.

(4) Neurons usually produce outputs only when they are receiving inputs whose net effect
is excitatory. They occasionally produce spontaneous activity (pacemakers).

For the experiment, elements were constructed resembling Harmon's "neuromimes"
(see Figure 1 and Reference 2). The elements displayed the characteristics listed above. In
addition, the weights wj were adjustable, and various empirical rules for adjusting them were
investigated.

The scheme seemed to operate more or less satisfactorily in simple networks, as judged
by the fact that the signs of the computed synaptic weights became such that control signals of
the proper polarity were produced for simple "environments.'" For more complicated environ-
ments, or for more complicated networks of elements, the empirical system very quickly
began to show defects. It was determined qualitatively that these defects resulted from two
causes. The first was an inability of any individual element to determine whether changes in
its input were the result of its own activity or the activity of other elements. The second was
the inability of the network elements to consider the long-term effects of their activity.
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Figure 1. Modified Harmon Neuromime Transistor Circuit Used in the Experiments




At this point, a twofold analytical attack on the problem was initiated, in which both dis-
crete and continuous models were investigated. For the discrete models, it was assumed that
the environment was a sequential machine or Markov process; for the continuous models it was
a linear process. Hand-computed results of the discrete case and analog simulations of the
continuous case are discussed later.

The concepts that have been developed since that early research allow one to exhibit the @
limitations of the earliest scheme in terms of mappings between sets. The assumption was
that stimuli map into responses, i.e., there is some function F such that

F: S—R,

or that this rule holds at least at the level of the individual neuron. Variability of behavior
was assumed to result only from changes in the internal parameters of the mapping. These
parameters are the "learning" of the neuron. It will be shown later that for various reasons
additional "'storage' is needed.

Despite the flaws, the moderate successes of the simulation for simple control tasks
implied that a more sophisticated rule for adaptation might increase the range of environments
the simulation could successfully control. The rules that were investigated next were attempts
to retain the basic concept that each neuron adjusts itself, while making the overall system
criterion more complicated. The major attempt was directed at control of linear systems.
The linearity assumption is an extremely restrictive one. However, optimal control of linear
systems has been extensively studied. The investigation of linear systems has given a great
deal of insight into the problems the research has attempted to solve, so that the value of the
study apparently has not been adversely affected by this restrictiveness.

C. APPROACH USING OPTIMAL CONTROL OF LINEAR SYSTEMS

Following the early work reported above, a system was developed which was made up of
many autonomous elements and which could adapt so as to minimize a global cost functional
defined on the system by local computation of an adjustment rule.

Consider Figure 2. The "environment' is assumed to be a linear differential system,
described by

Y = AY +BM + D (3)

where Y is an n-vector, M/ is an m-vector, D is a disturbance vector, A is an n X n matrix of
constants, and B is an n x m matrix of constants. Let the ""system power' be defined by

#-1 / ® ¢ty + mimat,
0

and define the optimum control vector M to be that control which produces

¥ = min f vty + Mtmat
Me Q 0

where Q,, is the space of all possible control vectors M,
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Figure 2. Neuromime Network in a Linear System

Expressed concisely, we wish to find a v such that

Vo= v(m)

. 1 © ot t
min 3 (Y'y + M'M)dt (4)

MGQM 0

subject to the constraint that
Y = AY + BM.

Using the methods of calculus of variations we can write that the Hamiltonian, H, of the above
is

H = Yty + MM + pt (AY + BM)

where P = col (py, P9, . . . , Pp) is a vector function to be determined. It is well-known that
@the functional is minimized for



aH

-p =2

Y

M =M: 2B e mini
= .—a-m- sSm mum

and we obtain for the specific problem at hand the following three simultaneous equations @
P =-Atp - Y 5)
M- B (6)
Y = AY +BM )

with boundary conditions

Y(0) = Yo
lim P(T) = col(0, 0, . . ., 0)
T—bw
=0

The result is the classical two-point boundary value problem, which has been studied
extensively (Reference 3). Routine manipulation between Equations 3, 5§, and 6, assuming
D = 0, yields that P = KY, where K is a positive definite, symmetric matrix which satisfies
K = -I -AfK + KA + KBBIK,
K(T) = 0,

a matrix Riccati equation.

Solution of this equation in non-trivial cases is somewhat refractory, but yields to solu-
tion by quadratures, or to numerical integration by computer. In the case where the time of
integration of the cost functional goes to infinity, K goes to the asymptote given by setting
K = 0 above. The resulting matrix quadratic can be solved by machine methods. A digital
computer program was developed to solve a matrix Riccati equation. This program is dis-
cussed in detail in Appendix VIIL

The elements of the autonomous-element system that was developed used the components
of the equations derived above to adjust their individual parameters. Experimental tests were
successful for environments up to second order. A fifth order system was simulated, but
tests were not completed because of hardware design problems. The evidence indicated that
the system would have operated properly had hardware problems been solved.

The use of a quadratic global cost functional, with the resulting derivation of the Lagrange
multipliers, P, leads to consideration of some concepts from behavior theory, particularly the
drive-reduction hypothesis. (A discussion of this concept is presented in Appendix III.) R
appears that the variables P are, in a sense, predictions of things to come, in the same sense
that the state vector Y is a summary of events past.

Note, for example, the relation between Lagrange multipliers, P, and the expected change
in cost-to-go to the end of the trajectory. Each of the components of P represents the negative
of the derivative of cost-to-go with respect to the corresponding Y. One can maximize some
function of the vector P as equivalent to minimizing a function of Y, a saddle-value property
of such minimization problems which is well-known. - It is also well-known that for stable sys- _
tems the equation in P is stablein backwards time. This property, coupled with final conditionm
on P, exhibits its role as a summary of events to come on the optimal trajectory.

6




The drive-reduction hypothesis leads to similar ideas. One wishes at each instant of
time to take that action which will serve to maximize the reduction of drive level. Drives can
be acquired, i.e., they can be synthetically produced variables like the components of P.
These considerations lead the writers to question whether optimal trajectories could be defined
on sequential machines, and whether synthetic variables could be introduced that resemble in

mee way the variable P. The answer to both questions is affirmative.

OPTIMAL CONTROL OF SEQUENTIAL MACHINES
1. Definition of Cost Functional
The following paragraphs show that a cost functional can be defined on a sequential ma-
chine in a way that is analogous to the linear system presented earlier, and that such systems

can be related to organism-environment interactions.

Before discussing creature-environment interrelations, it is instructive to consider the
problem of optimal control of a sequential machine, without regard to the form of the controller.

Consider a sequential machine with state set Z, initial state set Z;, output function ¥,
and state transition function, t. (See Appendix L) Assume that some particular state, zy, has
been selected as a desired state and that there is 2 mapping C(z, n) which we will call a cost
functional. The system has the following properties:

(1) There exist pairs (z{, nj) such that

(vzy) (3n) [(z; € Z) —(n; € N) A t(zq,n9)]= 2z
(2) C(z4,n;) exists for all pairs (z4,n;), such that (1) holds and is undefined otherwise.

(3) C(zj,n;)) € R (the non-negative reals) when it exists.

Get nj €N be written as

nl,nz,ns, « e« oy Mo

We define an optimal trajectory from 2; to be the sequence of pairs

(zi’nl).’ (_t(zi,nl)’ nz‘), (t(t(zi; nl), nz)) n3)’ LI

(t . . . tzgpng) . . . (g g), np-y), D))
such that

C(zj,ny) = min (C(zi,n)) .

Consider the case where at some time, t, the machine occupies state (t). In general, the
optimal input to the machine at time t, i.e., that input n(t) for which t (z(t), n(t)) is the t + 1th
member of the optimal sequence, cannot be determined from the knowledge of z(t) alone. There
is nothing in the definition that prevents the existence of two sequences which are defined to be
optimum as follows:

(2.m1), (Hzn), ng) - . ., (H(. . . Hzyng) . . ), ny)

(zj,na), (t(z]-,n), n) ..oy (t(t( ..« Hz,ng) . .. “u))

: for which the first component of the ith pair of the first sequence is equal to the component of
wihe jth pair of the second sequence, while the corresponding second components are not equal.




A large class of interesting systems, however, display the following properties:
(1) Every terminal segment of an optimal trajectory is an optimal trajectory.

(2) A non-negative real number (transition cost) can be assigned to each pair (z4, a;),
where a; € A, the generators of N, in such a way that the trajectory functional defined as the g3
sum ofaghe transition costs for each step of a trajectory to zg is minimized for the optimal
trajectories.

(3) 1 «— 2, To show this we introduce concepts from dynamic programming.
2. Dynamic Programming Considerations

Suppose a sequential machine £ €& N X V is given, together with a set of allowed initial
states, Zj & Z for the machine. Suppose further that one particular state, zy ¢ Z, which
is accessible from all initial states, has been selected as a desired state, and that there is a
cost associated with each transition in the machine, i.e., there is a mappingC: Z X N —R*
(R* is the set of non-negative reals).

We develop in the following paragraphs an algorithm for discovering optimal trajectories,
defined as those input sequences which take the machine from any given state to the desired
state with least cumulative cost.

The objective is to show that another machine (a controller) exists, which can generate
the input strings leading to these optimal trajectories, and to examine the properties of such
controllers. We first exhibit an algorithm for assigning to each state a pair (b, ¢) where ¢ is
the minimum cost for reaching the desired state and b is the input symbol which will transfer
the machine from the given state to a state which is the succeeding state along the optimal
trajectory to the desired state.

(1) The Algorithm - Initial Step. Assign to the desired state, z, the trajectory pair
(bg, cog = (A,0). Aisthe empty string.

(2) Iterative Step. Consider each member of zp of the set of states Z, that have at least
one transition to a state which has an assigned trajectory pair. Let the set of those
states that have assigned trajectory pairs be called Z,;. Any given zpj € Zp either has
an assigned trajectory pair or it does not. Order these states by any convenient
scheme. Taking them in order, assign to each zpj the pair (bpi, cpi) where

cpi = min [C(zpi, n)* ca.i]
vn

where ¢ i i8 the trajectory cost associated with the successor state t(z i2 n). The
input that yields minimum cost i8 nyj; cpj is undefined if ¢, is not defined.

(3) Repeat Step 2 until no further assignments or replacements can be made.

It can be proved by induction that the algorithm yields optimal trajectories and terminates
for a finite set of states. We assert that there is a minimal length optimal trajectory from any
given state which does not occupy any state twice. The absolute length trajectory can traverse
at most every state in the machine.

By inspection, the algorithm finds all optimal trajectories of length one on the first
iteration. Assume that at the end of the nth iteration, all least-cost trajectories of length n
or less have been found, and further that the assignments and replacements yielded exactly -
those least-cost trajectories that are of the length n. From the algorithm, a pair will be as-
signed or replaced for a given state during a particular iteration only if one of its immediate @




successors has had a pair assigned or replaced in the previous iteration. The new trajectory
from any node that receives an assignment or replacement on the n + first iteration is there-
fore of length n + 1. No other path of length n + 1 or less from that node is superior, or it
would have been selected by the algorithm. Since there is a maximal length of optimal path,
the process must terminate.

Since much of the experimental work described later is devoted to the continuous or
iscrete cases where the number of states is not finite, it should be pointed out that to the
writers' knowledge no algorithm exists for finding optimal trajectories in the general case.
Halkin (Reference 4) and others have found algorithms for cases satisfying certain convexity
conditions on the constraints, however.

From the termination proof we also see that each terminal segment of an optimal tra-
jectory is an optimal trajectory. We now show that if every terminal segment of every optimal
trajectory is an optimal trajectory, then appropriate transition costs can be defined.

Assign a transition cost of zero to every transition in every optimal trajectory. Assign
a transition cost of one to every other transition. Clearly the transition takes on a non-zero
value for a non-optimal trajectory.

3. The Optimal Controller

Given a sequential machine (or process) with a set of initial states, a desired state, and
a set of optimal trajectories, we wish to find a controller which drives the process along the
optimal trajectories. The following paragraphs show that the controller is (as would be ex-
pected) closely related to the process. There are a number of possibilities: (1) the case of
the generalized optimal trajectory versus the case where each terminal segment of every op-
timal trajectory is an optimal trajectory; (2) the case where the initial state of the process is
known versus the case where it is not; and (3) the case where outputs from the process are
accessible versus the case where they are not.

B Our attention will be primarily confined to the case where terminal segments are optimal

#d outputs from the process are accessible (but may not be one-to-one with the process states).
The initial states may or may not be known. In the more general case, where terminal seg-
ments of optimal trajectories may be non-optimal, a moment's reflection shows that the con-
troller must have as many initial states as there are initial states of the process. The total
number of states can be as large as the sum of the lengths of all optimal trajectories. The
writers were unable to discover any interesting properties of this case. In contrast, consider
the case where all terminal segments of all optimal trajectories are optimal trajectories. As
was pointed out earlier, this requirement can result in assignment of a pair to each state; one
element of the pair is the optimal transition out of that state, the other is the cumulative cost
to the desired state.

We show first that there exists a controller that is a Moore machine and that has exactly
as many states as the process. Formally, we have the process, Ep €N XV, and

tp: Zp X N—>Zp,

Assume a controller Z. € V X N such that




with the initial state sets Zpj, Z.j, and a desired state of the process together with a set
of pairs, U(n, c) defining optimal trajectories. We need define t; only for those pairs that are
necessary to produce optimal trajectories. Consider first an ''open loop' controller. Let t,
be independent of V, i.e.,

te: 2o — Z; (a generator)

Let the states z, € Z, be paired one-to-one in any desired way with the states zZp € Zp,
i.e., there exis%s a mapping

f: Zp-—-b Zc

and f-1 exists. Define ¥, such that
'pc(f(zpj)) = -nj’

where n; is the first component of the pair (nj, cj) assigned to zp;. This is clearly always
possible. Let t, be chosen in such a way tha{

te(f(zp) = flty(zpi,np)),
which is always clearly possible.

From the construction, X, is an optimal controller, in the sense that given an initial
state of the process zj, there is a corresponding initial state of the controller z; = f(zpi),
such that the output sequence of the controller starting in state z.; is the sequence that will
drive the process from state Zpi to the state zg via the optimal trajectory.

We now show that it is possible to find an optimal open loop controller with fewer states
than the process it controls. It is obvious that such would be the case if the process were not
reduced and connected, i.e., minimal. We therefore assume a minimal process. Also, we
assume that there is an optimal trajectory terminal segment from each state in the machine, @&
so that no states can be immediately omitted from the controller on that account. We show
that under these conditions the controller can still have fewer states than the process. The
result follows immediately from the conventional reduction process for sequential machines.
Consider first the process. For each input-state pair there is associated a next state and an
output. Two states can be merged if for every input their outputs are identical and their next
states lie in the same equivalence class. Nelson describes the algorithm thoroughly (Reference
5). Assume, therefore, that the process contains two states whose outputs are not identical.
Assume that the optimal trajectory from each of these states goes to the same successor state,
and that the same input symbol produces the optimal transition for each of the states.

Consider now the two states of the controller corresponding to those two states. Clearly
they produce the same output symbol and have the same successor state. They can therefore
be merged.

We have so far confined ourselves to Moore machines. The following paragraphs show
that a Mealy machine exists which, under certain conditions, is an optimal closed-loop con-
troller. Further, such a controller may have fewer states than a minimal Moore controller.

We consider the simple case where the outputs from the process are such that

¥n(zp) = vk

and has an inverse, i.e.,

'pl-ll (vp) = Zpj @
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exists and is unique. Each output from the process can be identified with only one process
state. The process Ep is described by

q[lp: Zp XN~—V

b ty: Zp X N—12,
and the controller Z,, is described by

V¢! Ze XV—N
te: Zo XV—17Z,

where tp, Y can be constructed as follows. Let f: Zp = Z¢ be one-to-one. Let Y be such
that

wc(f(zpj), wn(zpj)) = nj

where n; produces the optimal transition out of process state Zpg- Let

tollag), ¥lapg)) = £ [tplapy,my)]

Note that t, is constrained for only some of the pairs in Z c X V. The others can be selected
arbitrarily.

Clearly, X, is an optimal controller. To show that an optimal controller with fewer
states may exist, we consider the following case.

& Consider first the process. Let it contain exactly two states, z,y and z,9, for which
the optimal trajectories occupy the same successor state, Zp3s and for which the optimal tra-
jectories require respectively the input symbols ny and n,.

Consider now the controller. Let the states corresponding to ;pl and z,,9 be, respec-
e

tively, z,q and z,4, with their common successor denoted by zc3. have tha
Hzcy, ¥plzpy) = Ze3
t(zcz; d’p(ng» = Z.3

‘R was originally assumed that
These states can be merged, while with a Moore controller they cannot.

The question of the complete description of the mapping t.: Zc X V—r Z has so far
been deferred. Only those transitions required for the optimal trajectories have been dis-
cussed. The remaining transitions can sometimes be assigned in such a way as to identify
an unknown initial state. The question of process state identification is discussed later.

Before continuing with the relation of the results to iterated element theory, it is perhaps
- useful to consider some of the assumptions implicit in the construction above. From a control
h/theory point of view, we have the following results for sequential machine processes and con-
trollers.

11



(1) If a process is controllable to a given final state, then a controller exists to drive
it there.

(2) I optimal trajectories exist, then a controller exists that will drive the process along
them.

(3) The controller may have fewer states than the process it controls. %

(4) The existence at each process step of a number which is monotone decreasing only
along optimal trajectories implies that all terminal segments of all optimal trajec-
tories are optimal trajectories, and vice versa.

We have assumed that the process is noiseless, i.e., its transitions are determined
uniquely by the initial state and the signals from the controller. We have also assumed that the
initial state of the process is known and the corresponding initial state for the controller is
selected.

If the cost-to-the-desired state is equated formally to the concept of drive level in be-
havior theory, it follows that the drive-reduction hypothesis requires that each terminal seg-
ment of an optimal response chain be an optimal response chain. To the writers knowledge,.
the best evidence that this is so is the phenomenon of chaining itself, in that creature "trajec-
tories' are often acquired backwards. Several facets of the system theoretical problem that
are pertinent to creature behavior have not been considered, however.

The assertion is that a creature-environment relation is modeled by a system which
devolves in state (Appendix I) in such a way that after a long time only optimal (or "near-
optimal") trajectories are traversed. The possible methods for it to devolve in state have not
been discussed; we have only considered terminal behavior.

4. Comparison of Algebraic and Linear Systems

Consider now the analogy between the abstract algebra formulation and the linear syste
which was discussed earlier. We have

General Specific
() ¢yt R X Z,—8 Y = AY + BM
(2) ty R X Z,— Z, Y = AY + BM
. (state and output are identical in this
case)

. p = -Atp -

(3) to: 8 X Zo—Z, P =-AlP-Y
(we can identify Z, and D)

(4 M: Z,—R -Btp = M

The parallelism of the construction shows that optimization of trajectories, in general,
leads to the generation of "intervening variables' - a term borrowed from behavior theory.
The next section shows how these intervening variables can be of use in the local computations
at the level of individual neurons or neuron-like elements.

ijii
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SECTION III

LOCAL RULES AND THEIR IMPLEMENTATION

This section discusses methods for generating the local rules for neuron adjustment.
The adjustment rules for each scheme that has been investigated are discussed. Detailed
implementations of the most recent concepts have not been completed. However, results of
some aspects of the implementation that have been examined are presented.

A, EARLY WORK

The earliest scheme that was investigated established only the algebraic sign of a par-
ticular synaptic weight. Each neuron adjusted each endbulb according to

W = -k Ry sgn {(R;),

where k was a positive constant and f was a function of Ry that strongly reflected the influence
of the first derivative.

Two concepts were considered that incorporated the adjustment rule. In Concept 1, the
neuron model adjusted the synaptic weights of its inputs. I a neuron model had 1000 inputs,
it would compute 1000 synaptic weights. In Concept 2, the neuron model adjusted the synaptic
weight associated with its own output. If the neuron model synapsed on 1000 other neuron
models or had 1000 inputs, it would compute only one synaptic weight. Previous research
sponsored by GAC used Concept 1. It was believed, however, that Concept 2 was more plaus-
ible physiologically. It seemed reasonable that a neuron could more readily adjust the effects
of its own endbulbs than the endbulbs of other neurons. Also research by Dale (Reference 6)
has indicated that all of the endbulbs of any particular neuron are either excitatory or inhibitory.
. The most recent work uses a combination of both concepts, together with considerably more
L complex rules for adjusting the weight. A more complete discussion of the physiological con-
siderations is given in Appendix II.

B. THE LINEAR SYSTEM

In the previous section it was pointed out that optimal control of a linear process with
quadratic cost functional defined over all time led to the following set of equations:

Y = AY + BM (8)
P =-Atp-Y (9)
P = KY (10)
M = -BBP (11)
Y(0) = Y (12)
P(w) = 0 (13)

Equations 8, 10, and 11 can be used to define a feedback optimal controller for the sys-
tem of Equation 8, assuming K and B are known. It is a linear system as is shown in Figure
3. However, the system has no adaptive ability, which can be introduced as follows:

Let the k;; be initially unknown. Instead, parameters x;;, which are the best estimates

. - available, are glserted into the network. For simplicity, assume temporarily that A is 0. ¢
&/ We have that :
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Figure 3. Feedback Controller for a Linear Process
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P =Xy, =[xy .

One obtains from Equation 14 for A = 0 that

“ XY+Y = €1

where €, is an error signal. The error signal can be used to revise the values of the xjj.

(14)

The rule used in the experimentation
o€ 1

sgnfe1]; = Yj sgn[‘el]l .

The rule is discussed in Appendix VII. Figure 4 illustrates the method. Note that each ele-
ment uses only information found in its own inputs to adjust its input weights.

K was assumed above that B was known. Assume now that, like K, B is only approxi-
mately known, and that estimates, Bij’ are originally inserted. The equation
Y-BM =D

becomes

Y-BM = €5 B = [8y4]

when the disturbance is zero.

INVERT i d
] dt
: < ADJUSTMENT
@ ji OF Kji SHOWN,
OTHERS ADJUSTED
Y; SIMILARLY
- Kji
+
e .
ALGEBRAIC 1j + d P;
SIGN g pX
y
2 ¥ K3
SGN
dat
MULTIPLY I.
y ‘
! LT

ADDITIONAL SIGNAL FROM OTHER
UNITS (AtP) REQUIRED IF A#0

Figure 4. Method of Adjusting the K Optimal Control Parameter
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The values Bij can be adjusted by a method similar to that used for adjusting X. Figure
5 shows the method. The output signals mj are multiplied by the same coefficients B;; that
have been computed as weights on the output of the element. The Bjj are altered by equations
of the form

éij =-mj sgn [e 2]]_ . Q
Again, each element uses for computation only signals which are directly accessible to it.

From the description of the simplified system it is now possible to see how an element
to handle a more general case would be constructed. A block diagram is shown in Figure 6.
The parameters @;; are adjusted in a method analogous to that already presented for the Bij,
using the equations of the system in their complete form (A # 0).

The above has described only one method for adjusting the parameters. Others, perhaps
perturbations or correlation computations, might be suitable for some sort of iterative com-
putation, depending on the exact system to be controlled and the statistics of the disturbances
expected. The system that was instrumented for experimentation assumed that disturbances
occurred rarely. Convergence conditions for the rule are discussed in Appendix IX.

The important point that has emerged from the investigation is that for this linear sys-
tem there are two separate error equations, both of which must be satisfied by the individual

elements. It seems intuitively likely that at least two analogous equations must be instrumented
in the general case.

y
k
Kjk
R ,
] = i - )
i z . Bik z ii
Y,
m ij |
Bi v
T0
CONTROLLED
PROCESS
Iy
y
DIFFERENTIATE pX Bii s
ADJUST
€, '.Bji
ADJYSTMENT
OF Sji SHOWN,
OTHERS ADJUSTED
ADJUST SIMILARLY
X SoN
ALG_E,FG?IC 2 MU'-T!P'-YI'
Figure 5. Method of Adjusting the g8 Parameter i%
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Figure 6. Block Diagram of Adjustment Mechanism of a Single Neuron Model

The equations have a physical interpretation. The first equation (€1) detects errors in
the transformation of environment states, Y, to equivalent controller states, P. The second,
€9, detects errors in the controller's internal model of the environment.

As is discussed in the next section, more generalized linear systems than the one that
has been investigated lead to additional requirements on the €1, €9 equations. We defer this
question for the moment, however, and consider a method that has been developed for imple-
mentation of appropriate mappings in the sequential machine case.

C. HIERARCHY OF THRESHOLD ELEMENTS

In the linear case, one obtains that

P = KY,

M = -B'P
two linear transformations. In the more general case, one would have

P = K(Y) and M = -B(P),

;1. e., the matrices would go over to generalized functions. A method has been developed for
generating components of P and M. This method, which assumes the problem variables are
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Boolean variables, appears to be amenable to adjustment by an error equation. The imple-
mentation needs only to be presented with information as to whether its output is right or
wrong, and it will approach the correct behavior. Convergence in all cases has not yet been
proved, but seems intuitively likely.

Consider an element which receives Boolean inputs from n sources. Define a vector
A =col(aj, ag, . . . , ay), Where a; takes on the values 1 or 0 according to whether the
corresponding input is energized or deenergized, respectively. Associated with the element
are n weights, wy, w3, . . . , W,, and a threshold, T. The element produces an output iff

W,A> 2T

where W is the vector col (w1, Wy, . . . , Wy), and the notation {W,A) represents the inner
product of W and A. The equation above with the equality holding and continuous A defines a
plane in an n-dimensional (Euclidean) space. R is immediate that all points A which satisfy it
must lie in the closed half-space "beyond" the separating plane. The set I = A of admissible
vectors is such that the vectors A have components equal to either 1 or 0, and form the
vertices of an n-cube in the space, with one vertex at the origin. R follows that only those
functions can be generated by a threshold logic element in which the minterms of the function,
consgidered as vertices of an n-cube, can be separated from the minterms of the function com-
plement by a single plane passed through the cube. We define a linearly separable logic func-
tion as one which meets this criterion.

In the following, we restrict our attention to logic functions that are zero for the zero
input vector. R is easily shown that this restriction introduces no loss in generality, since
it can always be met by replacing one or more input variables with their complements. The
restriction is equivalent to restricting the threshold to positive values.

A slightly different geometrical interpretation of the problem lends some insight into
the algorithm to be presented. Consider the space 2., of all possible vectors W. Each ad-
missible vector A, (except the zero vector) together with the threshold T, defines a plane in
the solution space, 2y, i.e., given any

Bge (A}, 29 # 0,

the set of

{w|<w, 89> = T}

is a plane in Q. Each possible non-zero input vector, A, defines a plane in the solution
space which is perpendicular to the vector from the origin to the point Aj. The distance from
the origin to the plane is determined by the threshold. No two of the planes are parallel.
Selection of a particular logic function for the instrumentation corresponds to selecting a set
R=Bjcl i=1, 2,..., m, of vertices of the n-cube for which the threshold is to be
reached or exceeded. The selection defines a set of inequalities

{(W,B1> 2 T
(W,Bg} 2 T (15)

<W:Bm) 2 T

and also the set of opposite inequalities
{W,C1> <T
W, Cz> < T

(16) @

{W,Cppmg> < T
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where C is I-R. These 2-1 inequalities can be interpreted geometrically as dictating that W
must lie in a particular one of the two half-spaces defined by each of the 2"-1 non-zero input
vectors. A logic function which is not linearly separable arises when the 21-1 constraints are
not consistent. As an example, consider the function

f = (avh) A @ AD),
- "exclusive-or" function.

The three corresponding inequalities, defining three planes in the solution space (Figure
7) are (letting T = 1)

<w, (1,0)> 2 1

<w, 0,1)> > 1

<w, (L,1)D < 1

The inconsistency can be seen from the figure, and also from the fact that the left-hand mem-
ber of the third inequality is the sum of the left-hand members of the first two.

ERERERERR
'2 MUST LIE IN THIS
REGION (Wp2T)

LY

T FH ’—l’_T_

"

— w, MUST LIE IN THIS —
— ReciON (w2T)

[ TITITET

Figure 7. Three Planes in the Solution Space

D. HIERARCHICAL NETWORKS

The intuitive notion which is instrumented by a hierarchy of threshold elements (Figure
éis as follows. Weights for the lowest element (labeled No. 1 in the figure) are first chosen
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so that the lowest element, if it were operating by itself, would fire on all inputs that are
supposed to produce an output, even though it may also fire on some inputs that are not sup-
posed to produce outputs. The next higher element in the hierarchy is then adjusted to correct
all the lowest element's mistakes, in that it prevents the lowest one from firing when no output
is supposed to be produced. Its input to the lowest element is inhibitory, i.e., the weight,
W91, associated with it is negative. The second level element may also make mistakes, in v@
that if it were operating without inputs from the next higher element it might prevent the lo
element from firing when the network should produce an output. The third-level element is
adjusted to correct all the second-level element's mistakes, and so on. The following para-
graphs prove that a hierarchy with a finite number of levels can always be found to produce
any given logic function of n variables.

Given a logic function, a?’ , defining two sets, R and I-R, where R does not contain the
zero vector, we consider the inequalities of Equations 15 and 16 above. Select a vector W
which satisfies all the inequalities of Equation 15. We note in passing that if all inequalities of
Equation 16 are also satisfied, the function would be linearly separable.

NO. N+1, N+1ST LEVEL

NO.N, NTH LEVEL

EACH
SUCCEEDING
t 1 ] LEVEL IS
[ R | @ INHIBITORY
[ | ! ON NEXT
LOWER
LEVEL

NO.2, 2ND LEVEL

NO. 1, LOWEST LEVEL

INPUTS

Figure 8. Hierarchy of Threshold Elements
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The vector W clearly can be chosen so that equality holds in at least one of the Equation
16 set. Let an input vector for which equality holds be labeled Ba. Assume some collection of
Equation16 are not satisfied, in that vectors Ea, Ep, . . which are supposed not to
produce outputs, cause the threshold to be reached or exceedeg when their inner product is
taken with W1. It will be shown that a vector W9 can be chosen which causes the second level
. threshold to be exceeded for all vectors E,, Ep, . . . , Ep, and for which at least the vector
q Will be below the threshold. We consider two cases

Case I - The inner products of the vectors E, E, . . . , Ep, with W all exceed the
threshold by at least an amount §. Select Wq to be

Wi-col(4/n+1), é/n+1, 8/n+1, . . ., &/n+l).

Since the components of any input are 0 or 1, it is seen that for any non-zero Aj

n+1 < <A1’ c°1(n+1 ¢ n+1 ’ n+1’ v ’ﬁ)> 2 %11:_1

and the necessary conditions are satisfied.

Case II - The inner products of some subset of the vectors Eg, Ep, . . ., Ep, are
exactly equal to the threshold. Since no two input vectors are parallel, all of the vectors,
Ey Epy « ¢ 4y Ep, have components orthogonal to B;. Form Wy by first subtracting some

6;By, 6 > 0,
from W, and then adding some
9Py, 83°Py,

etc, where Py, P9, . . . are orthogonal to By. Clearly, d1, ég, . . . , 6p;1 can be chosen
to satisfy the requirement.

h By an identical argument, the third-level vector can be chosen to allow the second-level
element to fire on at least one of the inputs E5, By, . . ., Ep. The fourth-level can allow
the third-level to fire on By, etc.

At each level the threshold element corrects all the mistakes of the previous level while
allowing the previous level to fire on at least one input for which it operates correctly. We
have

fi =(BaVBy,V... VBy VE; V... VEp) (lowest level)

V P1)B, (second level)

fo (Ea VE,V ... VE,
where Py is some proper subset of the By

f3 = (P; V Q)E, (third level)
where Q; is some proper subset of the Ey

f4 = (Q V PyBy (fourth level)
where P2 is some proper subset of Py and By, € P4, and so on.

The output -of the network is given by

e f=1 ~{g~@z~. ..Uy ...),
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which simplifies to
f185 V f1fsfy V fyfsfsfe V ... V fifsfs. . . Ty -
Substitution yields
fyjfg = B, V R -Py)
fyfgfy = (Ba VBp V ... VB, VERV ... VEp
(Py V Q)Ea - (P2Q V By .
SincePfSRand QS E; V... VE

N

P’
fifgfy = (P V QJE, (Pg @ V By).
We note that By, € Py, which yields
fitsfy = (Py - Py) QgFa,
and that P71 and Q; are disjunct, yielding finally
fif3fy = (Py - Py .
Similarly
fyiafsfg = (Pg - Pg),
and so on, yielding that
= (R-Py) V (Py-Py) V (Pg-Pg).

Since R is finite, and Py, is a proper subset of Pj, the construction must terminate in a fini
number of steps.

E. PROCEDURE FOR ITERATIVE WEIGHT ADJUSTMENT

To aid in the understanding of the weight adjustment procedure for hierarchies, we first
consider a geometric interpretation of weight adjustment for a single element to generate a
linearly separable logic function. As.-was argued previously, any one of the inequalities listed
in Equations 15 and 16 corresponds to requiring that the point W in Qv lie on one or the other
particular side of a plane in Qy. Consider the following procedure. All possible input
vectors are presented repeatedly in some convenient order to the element. Each time the
element "makes a mistake, ' the vector W is to be adjusted. Let the set of values of W which
satisfy the logic function to be represented by Qq, Qg € Qw. Testing whether the logic
function is satisfied for a particular input corresponds to testing whether the present value of
W les on the same side of the plane defined by the input as does the solution space. An error
is detected when W and 2 lie on the opposite side of the plane in question (Figure 9). The
shortest distance to a point in the solution space from the present value of W can be expressed
in two components: a component that is perpendicular to the plane being tested and a compo-
nent that is parallel. Each time an error is detected, let the point W be moved exactly to the
plane being tested along the path perpendicular to the plane. This procedure clearly reduces
at each step the distance from the point W to the solution space. Since at each iteration this
distance is reduced, the process converges, although not necessarily in a finite number of
steps, as is illustrated schematically in Figure 10a.

Convergence in a finite number of steps can be produced by the following additional con-
struction. Note that Qg is bounded by a set of planes. Define .Qoto be a subset of Q, that
lies a distance 4 from each of the boundary planes of Q. ¢ is chosen sufficiently small so
that 90 is not empty.




SOLUTION SPACE

SEPARATING PLANE

MOTION
OF W

INITIAL
POSITION
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@ Figure 9. Convergence of W along Perpendicular to a Separating
Plane in Solution Space

At each iteration the point W .is moved perpendicular to the plane being tested to a posi-
tion a distance from the plane on the same side as the solution space (Figure 10b). By the
identical argument presented previously, the point W converges to Qg From elementary
theory of infinite series, there exists a finite M for which the distance to Q(' is less than or
equal to 8.

To produce the motion of W along the perpendicular to the plane being tested, we note
that each input vector is exactly the perpendicular to the plane it defines. At each step where
an error is detected one can write that the successor of W, W', is given by

W' = W+kA
where k is chosen to make
W,AY =T=+8é.

The plus sign is chosen when (W', A) is supposed to be greater than or equal to T, the
minus sign when (W', A) is supposed to be less than T.

It should be noted here that the usual form of the algorithm to select W is to increment
W according to the rule

. é
“ W' = Wt-——ml A, ¢ fixed,
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Figure 10. Convergence of W in Solution Space

with the positive or negative sign chosen by the rule given above. A moment's reflection
shows that this rule is analogous to the one given, but in general might converge somewhat
more slowly.

For adjusting the weights in a hierarchy, the procedure presented below will sometimes
move the weights for a particular element in the "wrong'" direction, i.e., away from its solu-
tion space. It will be shown, however, that at each step of the algorithm, a number tends to
decrease which is the sum of the projections of the distances to the separate solution spaces
onto the input vector for each of the elements in the hierarchy. Since these distances are
non-negative, they tend individually to go to zero.

The first case to be considered is the case in which exactly two levels are needed for
synthesis of the function. Let each test of the network be characterized by (1) the value of the
function, X , for A; and (2) the output of the network for A.

From these data a signal can be derived which informs the network when it makes a
mistake. The rule that the elements will follow in their changing weights will be one in which
an element's weights change when it could be "at fault" for the error. If either element could @
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be culpable, they will both change by equal increments (although, it so happens, with opposite
signs). The rules of adjustment are as follows:

Case I - The network fails to produce an output when it should.

(1) Case Ia - The second level is inhibiting the first level.
Rule: Reduce weights of second level along the direction of input vector until second
level sum is reducedto T - 6 .

(2) Case Ib - The second level is not inhibiting the first level.
Rule: Increase weights of first level until sumis T + § .

Case II - The network produces an output level when it should not.

(1) Case Ila - The second level is inhibiting the lowest level.
Rule: The second level weights are unchanged. Weights of first level - including
inhibitory connection from the second level - are decreased along the vector
input to the first leveluntil sumis T - § .

(2) Case IIb - The second level is not inhibitory to the first level.
Rule: The lowest level weights are decreased and second level weights are increased
simultaneously in equal amounts until either the first level reaches T - § or
the second level reaches T + 6.

Note that Case Ia can go over to Case Ib if first level weights are too low. Similarly,
Case Ib can go over to Case IIa if the second level is not sufficiently inhibitory on the first
level to inhibit outputs from the first level.

To examine whether these rules converge to the solution space, one can list 18 possible
conditions that are the result of taking all possible combinations of:

@ (1) Projections of first level weights on input vector are too high, within solution range,

too low

(2) Projections of second level weight on input vector are too high, within solution range,
too low

(3) Network is firing when it should not, and not firing when it should

These possible conditions (Table I) together with the rules above, define the motions of
a point in a Py, Py plane, where Py and Py are the projections on the input vector of the re-
spective distance of the weight vectors W1 and W9 from their solution spaces. Note that W
has one more component than W9, since it includes the inhibitory weight of the second level
element on the lowest level element. Figure 11 illustrates graphically that for every possible
weight condition, and for £ =1 and f = 0, the sum of P; and P9 either reduces or remains
constant, as can be seen from the direction of motion of the vector in the Py, P9 plane for
every possible condition.

Consider now the case where three levels are needed for synthesis. Partition the net-
work into upper and lower sections, the lower section containing two elements, the upper sec-
tion containing one. Let P; be the sum of the projections onto the input vector of the distances
from their respective solution spaces of the lower two elements, and let P9 be the projection
onto the input vector of the distance for the upper weights. The same argument intuitively
applies as was used previously. There is, however, at least one factor omitted from the in-
formal discussion above. For many logic functions, several distinct syntheses exist, depending
on exactly which minterms are chosen for each level to control. There are not unique solution

. spaces corresponding to P; - P9 = 0, but perhaps numerous disjunct regions in the Wy X W2
space that are allowable solutions. = Intuitively it seems likely that convergence would continue
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Table I. Eighteen Possible Conditions of the Weight

Vectors of a Two-Level Hierarchy
Conditions® Change Remarks
f f f2. | vn w2
0 - - - -
0 -- 0 - -~ No possibility of error
0 -- + - --
0 0 S TR A Changes if f, is supposed to inhibit
0 0 0 - -
] No possibility of error
0 0 + - -
0 + -- l f
0 + 0 l T
0 + + l --
1 -- -- T -- Steady if f = 0, decreases if fg = 1
S I I B
1 - + -- l
1 0 - - -
No possibility of error
1 0 0 -- --
1 0 + - l
1 + -- -- --
1 + 0 - -
1 + + -- l

®In columns f, and f9, + indicates that weights are too high, - indicates they are too
low, and 0 indicates they are acceptable.

when one of these solution regions is approached, but it is not certain at this time. In view of
the potential applicability of such methods to adaptive control problems, the question should
undoubtedly be pursued.
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SECTION IV

THE STATE IDENTIFICATION PROBLEM AND
AN ALGEBRAIC STRUCTURE OF LEARNING

One factor that has been ignored in the work presented to this point is that the output
from the environment at any instant may not define its internal state. As an example, consider
a linear process which satisfies

X

AX + BM
Y = CX

and in which only variable Y can be observed by the controller. Such problems are standard
in the literature. Such systems are said to be observable if the state vector Y can be deter-
mined by observation of the vector X over finite time. 1 is readily shown that a linear system
is observable if, and only if, the columns of

F = [ct, atct, (ab2 ct, ..., (ahlct]
span the state space.

Similar remarks apply to controllability. A system is controllable if it can be transferred
from the initial state to the zero state in finite time. Again, for the linear case, the require-
ment yields a relationship on the system variables; i.e.,

G = [B, AB, A2B, . . . Ar-1B]
must span the state space.

From the standpoint of networks of iterated elements, the implications are that any com-
ponent of the intervening variables P cannot be computed using only the present values of the
components of Y, but must also consider the past history of Y.

For adaptive control by iterated elements, a further complication is introduced. One is
led to question whether a process can indeed be identified by an adaptive controller. The prob-
lem has been investigated for sequential machines, with affirmative results. Assume first
that a given finite state process with finite input set has two properties:

(1) Every state is accessible from every other state (strongly connected)

(2) The process is a Moore machine with the property that the output mapping y: Z — V
is one-to-one.

A state-transition function for the machine can obviously be discovered in finite time by
exhaustive testing. By the same argument, a state-transition function for the equivalent Mealy
machine can also be discovered.

Consider now a process, L, like that above except that y: Z — V is not one-to-one.
We define such a process to be observable if, knowing the state transition function and the
function, it is always possible to determine the present state of the machine from a finite num-
ber, r, of immediate past observations. The state-transition and output function of such a
machine can also be discovered in finite time by the following proof.

Define a new machine, £', such that its input alphabet is all sequences of length r or &
less of symbols from n, its set of initial states is the set of states of X, and its output alph
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is all sequences of symbols of length r or less from v. For each point in time, define the in-
put to Z' to be that element from its alphabet that corresponds to the last r inputs to £, and
its output symbol to be the one corresponding to the last r outputs from Z. Clearly the map-
ping X' is one-to-one for this new machine, and the preceding argument applies.

-3 Thus it is possible to discover the state transition and output functions of any finite state

uential machine that is observable and strongly connected. Note, however, that the deter-
mination, in general, can only be made by an exhaustive process. If outputs from the machine
are from the set S, we have a mapping

Ip: ST — Zp .

Consider, however, the fact that the optimal controller may have fewer states than the
process. The controller states then represent a set of equivalence classes of process states
suitable for optimal control. For control purposes it is adequate to identify only the equivalence
class of the process state. We have then the mapping

L. ¥ — Z.,
where Z, = {Zp} and {Zp} is the set of equivalence classes of Zp.

It has been previously established that for each process state there is an optimal input
symbol the controller should emit, i.e., there is an optimal control function C:

C:. Z, —N.

This can be combined with the state identification map to yield a "feedback law, "

F: St — N,
so that it is possible to control a process optimally with a controller consisting of a mapping,

L _iof stimuli into responses, if the cost of state equivalence class identification is ignored,
if identification is possible in a finite (and bounded) number of steps.

Let us consider now the various mappings that have been ascribed to the controller, or
to the computation of optimal trajectories, at various points in the discussion above. First
there are the transitions of the controller itself:

Ye: Zo X S—R
which yields the pair (b, ¢), where c is cost to the desired state along the optimal trajectory
and b is the response that should be emitted to follow the optimal trajectory. Combining t,
and C can yield a prediction of the next cost to desired state, which can be denoted by the
second mapping

C':8X Z,—D'
where D' is defined as the change in cost-to-go which should be observed. In addition,

M: D — R gives the output of the controller,

L. 8T — Z, identifies the process state,

R: Zp — Z establishes equivalence classes of process states, and

F: S' — R is the overall feedback law obtained by combining I and ¥ .
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We are now in a position to point out that intuitive ideas of "learning" include two
algorithms: (1) a procedure for process identification, which reconciles the results of the
functions I and te, and (2) a procedure for establishing optimal trajectories, which reconciles
Cand C'.

If the steps taken in arriving at this point are indeed justified, we are led to an interegt:
ing conclusion. An iterative element synthesis of any required adaptive controller is possi
provided only that all terminal segments of optimal trajectories of the process are themselves
optimal trajectories, and that the process is controllable and observable.
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SECTION V

SUMMARY AND CONCLUSIONS

The major algebraic results presented in this report are as follows:

A model of creature behavior and of neuron function is presented in which both the
creature and its environment are assumed to be sequential machines, and the neurons
implement the transitions of the "'creature' machine.

It is shown that if costs are assigned to the transitions of the environment and one
environment state is selected as a desired state, one can define and find the optimal
trajectories of the environment from each possible initial state.

The number of states in an optimal controller for the environment above is less than
or equal to the number of states in the environment.

If the environment is observable and connected with respect to the desired state, the
optimal trajectories can be discovered by an orderly testing procedure, which estab-
lishes the trajectories "backward, " in a pattern analogous both to dynamic program-
ming and to chaining.

An auxiliary variable can be defined in such a way that its value is monotone, de-
creasing along any optimal trajectory, and can be identified with "drive level."

Six mappings for the controller can be defined, two of which are '""predictions' and
two "confirmations, "' which can be implemented with neuron-like elements.

In the linear case and in at least some selected discrete cases, algorithms are
exhibited for comparing the predictions with the confirmations and correcting the
operation of the controller so as to cause it to traverse optimal trajectories, using
neuron-like elements.

These results show that insofar as the formal assumptions hold for creature behavior
experiments, a drive-reduction hypothesis for creature behavior is a purely theoretical con-
sequence of the assumptions, whether it has any physiological validity or not.

Although the result most easily exhibited is the validity of the drive-reduction hypothesis,
other consequences of the analysis pertinent to behavior theory have been exhibited.

(1)

The analysis tends to support the view that stimuli do not become indicators of re-
sponses directly, but indicators of environment state equivalence classes, which in
turn become connected to responses. That is, the mapping

S XZs—R
is the result of two mappings

S X Z, —D'

D'—R .
Although these two mappings can be combined formally into a single mapping, the
introduction of the intervening variable offers computational advantages and also

offers an explanation of some creature behavior and of neuron interconnections. The
construction resembles Tolman's sign learning.
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(2) The various mappings exhibited form categories for classifying behavior and
physiological experiments and can define meaningful experiments for future research.
One example animal experiment was actually performed.

The research makes some minor contributions to optimal control theory and to algebraic
systems theory, in that :

i

(1) An algorithm is presented for discovering optimal trajectories on a sequential
machine.

(2) An adaptive system for minimizing a quadratic cost functional on a linear system is
exhibited.

(3) A method is given for generating logic functions that are not linearly separable by
- use of threshold elements.

Any conclusions advanced as coming out of the research described in this report are of
necessity tentative. The neuron has not been modeled in sufficient detail and with sufficient
proved accuracy for one to say with any degree of assurance that the conclusions are firm.
Nevertheless, the research results point strongly to the view that neurons could operate in-
dependently, forming their own connections to other neurons and adjusting their own synapses.
By these actions they could produce overall organism behavior that would optimize some
global performance criterion. No evidence has yet been discovered to refute the view. The
concepts of synthetic intervening variables, hierarchies of decision making, equivalence classes
of stimuli, and optimal trajectories seem to have cogent relations to the results of both
physiological and behavioral experimentation, and to the introspective views of cognition and
thought.

Whether these relations will continue to hold must be revealed by future research - the
problems are not close to being solved.

The concepts advanced so far do appear to have applications in the field of adaptive op-
timal control. If the present promise is fulfilled, complex adaptive systems could be built
entirely of iterative building blocks like those described in preceding sections.

It is the view of the authors that the research shows at least as much promise for the
future as it did when the task was undertaken, and that the interim results could, with addition-
al study, become ''spin-offs' of value in the control field.
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APPENDIX I

ALGEBRAIC SYSTEMS, SEQUENTIAL
‘ MACHINES, DEVOLVING SYSTEMS

A, ALGEBRAIC SYSTEMS

The following discussion presents a formal algebraic construction that relates sequential
machine theory to systems that show more variability of behavior initially than they do later
in time. A number of properties of sequential machines are reviewed.

We define a system, £, to be a relation, £ &N X V. For reasons that will be apparent
later, we will call N the disturbance space and V the parameter space. N and V are arbitrary
sets.

We use the conventional definitions of such terms as function, relation, linearly ordered,
semigroup, etc. See, for example, Goffman (Reference 7) or Nelson (Reference 5).

We will say that £ has a state representation if there exists a set Zy and a mapping
t: Zy X N —V such that

£={v) [ (z,n) € (Zg x N) —t(z,n) = v}

Windeknicht (Reference 8) has shown that every system has a state representation. We will
call Z; a set of states for the system.

Let us now let X be a partial groupoid. We will call the system £ a normal system if
_re exists a set Z and a mapping Y and t such that

Y: Z X N—V
t: Z X N—Z

where

(vz) (vn) [nZy(z,n)]

(vz) (vn) (vn") [(p(z,nn") = ¥(z,n)y(t(z,n),n"))Al(z,nn') = t(t(z,n),n")]
and where nn' represents the groupoid product of n and n' if /it exists. We say that

Z is a set of states of the system,

Y is a state representation of the system,

t is a state transition function of the system.

As has been pointed out by Windeknicht, the set Zg and the set Z must satisfy

Zg € 2.

We must therefore distinguish between a set of states for a normal system and a set of

initial states for that system. We call the set of pairs [(n,Vv)|(n,v) ¢ £] the "disturbance-
response' pairs of the system I .
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B. CONCEPTS FROM THEORY OF SEQUENTIAL MACHINES

Let N be a semigroup on a set of generators, A, and let the semigroup be a product of
the system concatenation. Such a system can be identified with a ""sequential machine." A
conventional definition of a sequential machine, or a semi-Thue system, has been defined by
Nelson (Reference 5) to be a quadruple F = A, B, 2,7°) where A is an alphabet, B is the@
set of words on A, @ is an axiom or axiom scheme (2 € B), and 7 is a (finite) set of rules
of inference (productions) of the form:

PgQ —Pg'Q

where g, g € B and P, Q are syntaptic variables on B.

A finite transducer (or sequential machine) is defined by Nelson to be a semi-Thue sys-
tem, T= <A, B, a,7”) where A consists of two not necessarily disjunct subalphabets S and
R and a subset of auxiliaries Z disjunct from S and R. The axiom is of the form Z;x#, where
z;€Z, x € B.

% is a set of rules of the following type:

Pzi# P (#, # € A, is a special symbol to denote the end of a word in B).

(2) There is exactly one production of type a for each pair (z;, sj) c Z X S and exactly
one of type b for each z; € Z.

(3) Nothing is a production unless its being so follows from 1 and 2 above.

In the formal system theoretical context above, let N be a free semigroup on a set of
generators S, and V be a free semigroup on generators R. We can make the following identifi-
cation with Nelson's definition. -

The alphabet of Nelson's system is identified with SURUZ where Z is the state set.

Let zi be in Z, and let sz be a word on B. P is empty, Q may or may not be. The
production

Pzis;Q—>Pryz,Q
is defined by

z, = t(zy,8)
¥ (24, s)

Tk

Clearly, sincey, t are functions, there is exactly one such production for each pair (z;, sj).
We can further require that

(vz € Z) [Y(z,A) = t(z,A) =A]

where A is the empty string. This satisfies the requirement that for all z in Z, there exists a
production of type b, where the special symbol # stands for the empty string.

The transition diagram of a sequential machine with finite number of states, Z, is a
directed linear graph in which there is a node for each state, z, and for each elemental map-
ping of t(z,s8) = z' there is a directed branch from the node z to the node z'. Each such
branch is labeled either with the symbol s or with a pair [s, ¥ (z,s)] , depending on the form@
of , as is discussed below.
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Two states, z; and z,, are equivalent (written 21 = zz) if
(vx) [tz1 (x) = tya (x)]

where x is any string of symbols from N.

A sequential machine is reduced if
(Vzy) (vzy) [(z = )+ (2 = )}
otherwise it is redundant.

Two machines, ZA and rpg, with common input and output alphabets S and R, are
homomorphic if there is a function, f, on Z, into Zy, such that

f(ta(z, 8)) = ty(f(2), s)
and
Va(z,8) = yp(f(z),s) .
The machines are isomorphic if -1 exists.

The following differs slightly from the usual definition. A sequential machine is "connect-
ed with respect to initial state zy" (20. € Zo) if for each z € Z there is an n ¢ N such that
t(zg,n) = z. I the machine is connected with respect to each state in Z, it is "strongly con-
nected.' A strongly connected system does not devolve in state, a concept which is discussed
later.

A sequential machine is minimal if it is reduced and connected A submachme, or sub-
em of 2 machine £ = {S,R,Z,y,t, Z0> isamachme {s',R',Z"y,t, Z ) such that

Z, S=8',R'GR, Z; c Zo, and for which t' and ¢’ are the restrxctions of t and y to
S

Two machines are indistinguishable if for every 2, € Z; and 8 =818 . . . 8 € S there
is a 2}, € Z;, such that the sequence of outputs lﬁa (za, 51): ¥a t(za, sl), 82) .

Va (t(. . (H(zg,89)- - .), S_n) is equal toyyp, (zb, sl) » ¥p ((t(zb, 51), sz), e e ey
p (- . - (tzp,8). . ), sn), and vice versa.

Two forms of the function ¥ have been studied in the literature. The first is such that
(389) (389) (32) [¥(z,81) # ¥(z,89)]

and the other is
(vs1) (vsg) (vz) [¥(z,81) = (2,85)]

The first formulation has been called Mealey's machine. The second is equivalent to the
formulation called Moore's machine in which

¢: Z—R
is the form of the output function.
That these are equivalent is shown, for example, in Nelson (Reference 5). The assump-

. tion of one or the other form does lead, however, to differences in the instrumentation of
L_pquivalent machines. The implications of this fact to the present discussion is examined later.
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In presenting a formal model of a creature-environment system, a slight change is made
in semantic identifications. Consider three free semigroups, S, R, and N, on sets of genera-
tors A, B, and C, with concatenation as the semigroup operation. We will call them, respec-
tively, the stimulus, response, and disturbance semigroups.

Elements of the various semigroups and sets will be denoted by corresponding lower case, .
letters. Let the system X be such that ‘

ZENXR XS
We now require that the system display the following partitioning properties.
There exist two sets, Z; and Z,, and mappings such that
V! S XZ,—R
Yo' (R XN) X Zg —S
te: 8 X 2o —72,
te: R X N) X Zg —>Z,

and further that the transition conditions on y and t given in the definition of a normal system
are satisfied for each of the subsystems.

The parentheses are inserted above to clarify the notion that the "input" to the environ-
ment is the Cartesian product of creature responses and disturbances (perhaps random effects
or perhaps effects introduced by the experimenter).

This partitioning is a special case of system interaction, studied by Birta (Reference 9).
It is readily shown that ¥ is a normal system by eliminating S between the four defining map-

pings, yielding @
Ve: RXNXZ, X Z,—R
te: R X N X Zg X Zo —>Z,
te: R XN X Zg —> Z¢

Let the state set of the overall systembe ZSE R X Zg X Z., and let its output be R. Re-
arranging the above yields

Y: NXZ—R
t: NX Z —2

Note that Z may be a proper s(ubset of R X Zg X Z,. The point is examined further below;
not all elements of R X Zg X Z, are reachable.

To define reachable states, consider a normal system on free semigroups N and V (as
defined earlier) with set of initial states Zg. Form a sequence of sets Zg, Zy, . . - , as fol-
lows:

= Zg (The set of initial states)

N
-
I

t(Zg X A) (The set of all possible successor states to Zy. A is the set of
generators of N)

N
=
n
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N
[ 0]
n

t(t(Zg X A) X A) (Possible successors of Zj)

N
=]
I

= tit(. . .t(Zg X A). . .) X A) (Z,, is the set of states reachable after n steps)

- <. EXTENDED AND DEVOLVING SYSTEMS

The following discussion defines two terms, an extended system and a devolving system,
and formalizes the intuitive concept of a system that shows more variability of behavior initially
than it does later. The motivation is to formalize the experimental situation in which living
creatures are observed to alter their behavior from time to time, tending toward stereotyping
or habit for mation.

We construct formally the following new system, X® € N X V, which we will call the
extension of the system XS N X V.

o0
Let the state set Wg of £®be U Z;  (the set of potential states of X at t = 0).
i=0
Letty = t, andyy = ¥y
It is immediate that
o0
W] = U Z.
i=]

Physically, this construction corresponds to the union of all possible right translations
of the time origin of the original system; i. e., any point on the trajectories of the original sys-
tem can be considered as occurring at t = 0.

The definition for a system that devolves in state is for all i, 0 < i, for which trajectories
e defined,

(1) Wi 2W;

(2) There exists at least one i for which Wi.12Wj.
We consider a normal system SN X V, where N is a free semigroup with set of generators
A. We require that the set of initial states Zg be equal to the initial set of potential states,
Wg. We note that a free semigroup with identity is closed under left cancellation. (We include
the empty string as a member of the semigroup.) Consider any arbitrary pair (n,v) € £,
where n =njng. The following theorem examines the relation of the extended system to the
original system.

Given a system X and its extension X ® as defined above,

(v(n,v)) (Vvy) [((n, V) e E)A(n = nyng)—>(v = vlvz)A((nz,vz) € E”)]

A proof of the theorem can be supplied by contradiction. Suppose there exists an (n, v)
€ X such that no appropriate (n2, vg) can be found. From the definitions above, the initial
segment of (n,v) (we write (ny,vy)) isin . We can write that

“ ((n, V) € E)—> 1(3 2) [(z € Zg) A Wz,n9) = vz)]
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From the definition of normality, however

((nlnz» vVy) € z)—’(azo) [¥(z, ning) = (2, ny)&(tz gy nyng) A

(t(209 nan) = t(t(z(), nl)o nz)] @

or

z € Z,
where

z = t(zg,ng) .

From the definition of t

t(zg,ny) € Z,
which implies, from the definition of Wy, that

t(zg,ny) € Wp,
and our assumption that Zg = Wy is violated.

The above demonstrates that any terminal segment (n¢, v¢) of any pair (n,v) € Z is also
in £. It does not follow, however, that the converse is true, i.e., (n,v) € Zdoes not imply
the existence of an (n',v') € X such that (n,v) is a terminal segment of (n',v'). In fact, we have
chosen in the main text to examine the case in which there exists at least one pair (n, v) which

is not a terminal segment of any (n',v') ¢ £. Such a system devolves in state, since the
initial state zy such that v =y(zq, n) never recurs.

The above has formalized the concept of initial variability of behavior which disappears
with experience, as typified by a system that devolves in state. Although the concept of a
devolving system allows for variability, it does not account for the fact that creature behavior
is goal-directed. To include this idea, we earlier considered certain concepts of optimal
control of a sequential machine.
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APPENDIX IT
PHYSIOLOGICAL CONSIDERATIONS

@ Physiologists have apparently spent little effort on the theory of learning as related to
known characteristics of the nervous system. Hebb has postulated that if a neuron A repeatedly
or persistently aids in the firing of neuron B, A will become excitatory on B (Reference 10).
Milner extended this postulate to include inhibitory connections (Reference 11). The rule bears
at least some resemblence to Thorndike's more or less discredited "law of exercise' (Reference
12). It has been repeatedly shown in behavior experimentation that practice without reinforce-
ment leads to little or no strengthening of response tendency. One is tempted to question Hebb's
statement, in view of modern behavior theory. In justice to Hebb and Milner, it must be pointed
out that their statements were tentative, and not central to their principal studies of the nervous
system.

However, since the origin of behavior is the nervous system, it is helpful to review some
of the known facts of neural behavior. The brain is made mostly of two kinds of cells, neurons
and glial cells. The neurons generate electrical activity and are the primary source of be-
havior. The glia (from the Greek word meaning ""slimy'") were up until recently considered
only as something to fill up the spaces between neurons. Some recent research shows that
they play a more complicated role. There are about 1010 neurons in the human brain, and
perhaps 100 to 1000 times as many glial cells.

A neuron cell body is a few microns in diameter and its input and output extensions, which
are part of it, are of the order of one to three microns in diameter. The extensions (processes)
go surprising distances, often several inches or a foot. Glial cells are of the same order of
magnitude in size as neurons and also take on all sorts of odd shapes.

Most of a neuron's processes are inputs (dendrites). A neuron usually has only one out-
4 (axon), which branches profusely. Each branch ordinarily is terminated with an endbulb,
which usually lies very close to some part of another neuron. The place where one neuron af-
fects another, i.e., the place where an endbulb touches or almost touches another neuron, is
called a synapse.

Each neuron (except sensors) receives pulse train inputs from many other neurons. Es-
timates on the number of inputs to a neuron range from hundreds to hundreds of thousands. A
neuron emits pulse trains that may affect several hundred other neurons. When a neuron gen-
erates a signal, an electrical pulse is transmitted down its output lead to its endbulbs. The
endbulbs emit a chemical agent under the electrical stimulation. This transmitter agent affects
the following neuron on which the endbulb terminates. Some chemical agents tend to cause the
following neurons to emit a pulse, some tend to inhibit pulse emission. Whether a neuron emits
a pulse at any instant is determined by the consensus of its inputs and by the time histories of
its inputs and output over the immediate past. As far as the gross anatomy is concerned, the
nervous system both inside and outside the brain is highly organized. There are thousands of
interrelated regulatory and control loops.

There are about 106 inputs to the brain from the eyes, and perhaps 104 from the rest of
the body. There are perhaps 104 output leads going ultimately to muscles. Presumably, any
number of these inputs and outputs can be activated at the same time. There is evidence that
the inputs to the brain are not raw data, but are extensively preprocessed by peripheral neuron
assemblies before reaching the brain, and that outputs are postprocessed before reaching
muscles. Some quite sophisticated reflexes operate directly on the spinal or medullar level,
requiring no intervention from the higher centers at all.
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To the writers' knowledge, no direct evidence exists to bolster the view that synaptic
connections change in any way as the result of experience. Neither, however, is there any
direct evidence to refute the view. As is discussed later, various writers have presented
models based on neuron assemblies in which "learning" is the behavior change due to changed
physical connections. The view dates back in essence to Thorndike (Reference 12), who used
the then known properties of neurons in his theory, although not in any way so as to make tlﬁ
properties essential to his theory.
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APPENDIX I

CONCEPTS FROM BEHAVIOR THEORY

The presentation below follows generally the format of Hilgard (Reference 13), with
some interpolations from Dollard and Miller (Reference 14) and from Spence (Reference 15).
Paraphrases and direct quotations fr om these sources are frequent.

Most behavioral data is derived from conditioning experiments in which the subjects are
often lower animals. Such experiments are usually divided into two categories, classical con-
ditioning and instrumental (or operant) conditioning. Although the two types of conditioning
differ in external form, one can argue that each contains at least some elements of the other.
In all such experiments the subjects are presented with stimuli, some of which are controlled
by the experimenter, and the responses are observed, usually over numerous trials.

Some problems of definition immediately arise in describing such experiments. By the
word "'stimuli'’ one can mean either the attributes of the environment the subject is sensing at ]
a particular instant (often called effective stimuli), or all the attributes of the environment that ]
could be sensed (potential stimuli); or the meaning can be expanded to include proprioceptive %
stimuli, which are not usually amenable to observation by the experimenter. Similar difficult-
ies attend the definition of "'response. "

Despite these semantic and observational difficulties, one can confirm some intuitive
notions by such experimentation, and can examine whether certain widely held beliefs about
behavior that appear to be ""common sense'" notions are really valid. Some of the notions of
this type, which are accepted by most experimentalists without serious objection, are listed
below.

e (1) Creature behavior changes from time to time, as a result of prior experience.

(2) Under more or less identical circumstances, the behavior of two or more subjects
will often be significantly different. Further, the actual observed behavior of a
single subject will vary from time to time, regardless of the effort expended to
duplicate the previous experimental situation.

(3) Each time a particular behavior pattern is reinforced in a given experimental situa-
tion, the probability that the same or a similar pattern will recur in similar future
situations is increased (Thorndike's law of effect).

(4) A stimulus and a causally unrelated response that occur contiguously can become
associated, in that the stimulus tends to elicit the response (classical conditioning).

i (5) The presentation or withholding of certain stimuli, contingent on the subject's prior
behavior, serves to reinforce or extinguish response patterns (operant conditioning).

(6) Complex acquired behavior patterns are often acquired by concatenating simple ac-
tivities backwards in time (chaining).

To explain these phenomena, certain constructs, which may or may not have a physiolog-
ical basis, have been introduced.

(1) Intervening variables are those constructs that are introduced formally with no direct
physiological correlation that determine which particular one of the possible responses
° to a stimulus will occur in a particular experimental trial (Reference 13).
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(2) Drives are those factors that motivate behavior. Drives must be carefully distin-
guished from stimuli, although they have stimulus properties. According to Dollard
and Miller, all drives are stimuli but not all stimuli are drives. Drives are often
categorized as basic or acquired. Early writers often wrote lists of basic drives,
with such categories as hunger, thirst, sex, and self-preservation. The modern
tendency is to avoid such lists.

(3) The drive-reduction hypothesis can be summarized by saying that in a given stimulus
situation those responses are strengthened that lead to reduction of the intensity of
the drives contiguously with the occurrence of the response. For any stimulus-drive
situation the subject tends to make that response that in the past has led to the great-
est net reduction in drives. An element of prediction can be included; drives may
not be reduced as an immediate consequence of the response, but may be reduced
ultimately by response activity of the present.

B. LEARNING THEORY

Freud did not present an explicit theory of learning. He did state a pleasure principle,
i.e., that people and lower creatures seek 'pleasure’ and avoid "pain. " In this he was voicing
an idea that dates at least to Aristotle (Reference 16). He also introduced the idea of reduction
of tension as a motivation, anticipating Hull's more formal drive reduction. The earliest formal
theories that gained wide acceptance are those of Thorndike, Ebbinghaus, Bryan and Harting,
and Pavlov, circa 1900. Since that time, some major divisions have sprung up among theorists.

Some theories still current are Guthrie's contiguity theory, Hull's systematic theory,
Skinner's operant conditioning theory, the Gestalt theory (typified by Lashley), Lewin's field
theory, and Tolman's sign learning. The functionalism of Dewey and others, originally sepa-
rate schools, has been more or less absorbed into current reinforcement theory. The various
theories differ in the importance they place on cognition, the role of reinforcements in con-
ditioning, and the importance of responses themselves in the conditioning process. As is
pointed out by Hilgard, ''all the theorists accept all the facts . . . the differences between two
theorists are primarily differences in interpretation" (Reference 13). Expressed in another g
way, the theories differ in the constructs they use to explain observed facts, rather than dif-
fering in the facts they explain.

On the roles of ideation and cognition in learning, the theories can be divided roughly
into (1) connectionists, who ascribe changes in behavior to formation of abstract (or physiolog-
ical) connections between stimuli and responses (or between successive responses), and (2)
cognitivists, who ascribe changes in behavior to ideation and the formation of cognitive struc-
tures. Most of the work presented in this report is of a strictly connectionist point of view.

The connectionist philosophy is more easily modeled by the methods of this report, and
for that matter has been more often modeled by others than has the cognitive approach. Rk is
therefore proper to mention briefly some of the observed phenomena with which the strict
connectivist view can be challenged. Three such phenomena are place learning, latent learning,
and reward expectancy.

(1) Place Learning - Experiments can easily be designed to show that the learner does
not move from starting box to goal box by a fixed system of movements, but varies
his behavior with changed conditions to reach the goal.

(2) Latent Learning - An animal can learn by exploring a maze, without food being pre-
sented, as evidenced by the fact that it performs better than a naive animal when
food is later placed in the maze.

(3) Reward Expectancy - The pertinent behavior was first observed by Tinklepaugh
(Reference 17). A monkey was allowed to observe a banana being concealed under a..
cup. The monkey was then removed from the location and a lettuce leaf was ?
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substituted for the banana. Later, the monkey showed skill in choosing the correct

cup, but rejected the lettuce leaf and searched for the banana. Similar experiments
are numerous.

The above phenomena lend credence to, for example, Tolman's sign-learning theory,

. ‘'n which stimuli are signs and the animal learns relations between signs and their significance.
Pn the other hand, numerous results can be cited which bolster the view that movements are
learned. Guthrie observed that cats escaping from a puzzle box frequently exhibited exactly
the same behavior as was successful in their first escape from the box. This stereotyping
argues against the ideationists.

C. CONNECTIONISM

The basic tenet of the connectionist view is that learning results from sense impressions
becoming associated with impulses to action. The view as to how these ""bonds, " ""associations, "
or "connections' are formed is the basic differentiating factor among the theorists. The con-
tiguity theorists (Guthrie was probably the leading proponent of this view) hold that 'a combina-
tion of stimuli which has accompanied a movement will on its recurrence tend to be followed
by that movement" (Reference 18). The bond is assumed to reach full strength on its first
occurrence, Variability of behavior is explained by variations in the stimulus patterns present
from occasion to occasion. The 'principle of postremity' and associated concepts have been
put in postulational form by Voeks (Reference 19).

Reinforcement theorists hold to some form of Thorndike's law of effect. Quoting Hilgard,
(Reference 13) "when a modifiable connection is made and is accompanied by or followed by a
satisfying state of affairs, the strength of the connection is increased; if the connection is made
and followed by an annoying state of affairs, its strength is decreased. "

Hull and Skinner are two major reinforcement theorists. Hull's view differs from that
of Guthrie in one essential way. For Guthrie, stimuli and responses occurring contiguously
~are always strengthened. For Hull, an association is strengthened only if the response occurs
. n company with positive reinforcement. In Hull's view, reinforcement is brought about by a

ecrease in the stimuli produced by a drive, or by a decrease of stimuli associated with the
anticipation (i. e., prediction) of a decrease in these stimuli.

A similar point of view is taken by Skinner. However, Skinner emphasizes the predictive
nature of conditioned behavior by his distinction between respondent and operant behavior.
Classical theory considers only responses elicited by stimuli. Skinner contends that some
activities are emitted that are not necessarily correlated with stimuli, but simply tend to occur
as a result of having been reinforced on prior occasions. Stimuli may serve as descriminants,
so that one or another response may be emitted depending on the stimuli present, but they do
not elicit the response. Responses occur because they are reinforced.

Skinner and his followers have displayed quite striking success in animal training through
use of his methods. He has, however, studiously avoided postulating any intermediary con-
cepts to explain observed phenomena without themselves being observable. He uses the con-
cept of drive as a mediator of conditioning but states (Reference 20) that a drive is not a2
stimulus, nor a physiological state, nor a phychic state, nor simply a state of strength. For
his purposes, a drive results from certain operations he may perform (such as food depriva-
tion) and affects the outcome of his experiments in a different way from these things that are
reinforcements.
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APPENDIX IV

BEHAVIOR MODELING

Numerous investigators have attempted to model creature behavior mathematically. The @
earliest such attempt reported by Hilgard (Reference 13) is due to Ebbinghaus, who fitted an
equation of the form

100k
(log )¢ + k

b =

to an experimentally obtained retention curve. In this equation b is percent of retained learn-
ing, t is elapsed time and ¢ and k are arbitrary constants. As Hilgard points out, in contrast-
ing such empirical curve fitting with rational curve fitting, ". . . in empirical curve fitting

. we select the curve family solely on the basis of fit, and not on the basis of any theory.
. . . the word "rational' implies that the family of curves is chosen according to some theory
or theoretical deduction. . . ."

Empirical curve fits can be useful to the experimenter, but yield little insight into the
underlying mechanisms. Rational curve fitting is the approach that has been used in most
succeeding models.

Mathematical theories of learning are classified by Hilgard as based on the following:

(1) Information theory
(2) Theory of feedback mechanisms
(3) Game theory

tial equations with constant coefficients)
(5) Stochastic models

(4) Differential calculus (a misleading name - the models are based on theory of differenﬁ

Each of these fields of study promises to relate intuitively to creature behavior. It is
not surprising that various investigators have studied their applicability, with greater or lesser
success.

The feedback theory approach was investigated extensively by Wiener (Reference 21),
but thus far has been little used in learning theory. The Game theory of von Neuman and
Morgenstern (Reference 22) has been particularly useful in economic theory. Its applicability
to learning theory was tested by Flood (Reference 23). Since Game theory is one possible
basis for an optimal control theory, it also enters into the research presented here. Theoret-
ical aspects of behavior have been studied by Hovland (Reference 24).

Models based on probability theory and differential equations of probabilities are numer-
ous. Examples are the work of Estes and of Bush and Mosteller, reported in Hilgard (Refer-
ence 13).

The models of Hull (Reference 25) and Spence (Reference 15) do not fit readily into any
of Hilgard's classifications. To the writers they appear to be algebraic theories, based on
the algebraic properties of the real number system. We present a simple example from Hull's
formulation.

We define gHp to be the ""associative strength” of a particular stimulus onto a particular
response. SHR is variable with time, and its value depends on reinforcement history. We i
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define gEq to be the observed tendency to respond to the stimulus with the particular response
in question. Hull postulates that

SER =V - D - K - gHp ,

kgvhere V is stimulus intensity, D is drive level, and K is "incentive motivation, " i.e., a
measure of how ''desirable'" the results of activity will be. These various factors are said to
be multiplicative, since if any one is zero, gEp is zero. Other factors in Hull's complete
theory become additive or subtractive. He thus uses the algebraic properties of the real
number system to model behavior. In at least one case he defines a novel binary operation in
terms of elementary arithmetic operations. If gHy, is the habit strength due to reinforced
practice, and sﬁ is habit strength due to transfer of other learning, Hull states that the
combined streng&, denoted by gHp + gHR, is given by

sHr + gHR = sHr + gl - sHR ' sPR

This last equation is of a form which occurs in adding probabilities. It can be interpreted in
terms of the disjunction of two independent measurable sets.

Spence's approach is in some ways similar. He uses the algebraic properties of multi-
plication, addition, etc, on the real line, and also defines what are effectively mappings from
one linearly ordered set into another.

Sudden impetus was given to biological modeling by Pitts and McCulloch, who pointed out
in 1943 (Reference 26) that the behavior of a neuron can be partly described by appropriate
Boolean algebra. This concept was instrumented by Rosenblatt in his '"Perceptron" (Reference
27), which presumably modeled contingent reinforcement conditioning.

More recently, a number of researchers have investigated electromechanical systems
< that instrument some of these concepts. Examples are the work of Widrow (Reference 28) and
@Lee and Gilstrap (Reference 29). The investigators make some case for the notion that learn-
ing in living creatures is in some way directed by signals from the environment which change
the strength of neural connections and which "reward" the creature for doing the '"right' things
and punish it for doingthe "wrong'" things. The idea is clearly borrowed from contingency re-
inforcement experiments, and there is no doubt that such an electromechanical system re-
sembles, at least superficially, a reinforcement conditioning experiment. Louis Fein (Refer-
ence 30) has pointed out that to his knowledge (and to the writers') none of the research into
these models has resulted in "a particular experimentally verifiable piece of knowledge of how
the brain works." But from a purely theoretical point of view, networks of threshold logic
elements pose some interesting problems in analysis. Investigation of such networks and other
bionic research have certainly contributed to technology in a number of ways, both by posing
problems which had not previously been considered in technology and by suggesting novel
"lifelike" solutions to long-standing problems from other fields.

Most behavior theorists today subscribe to some form of drive-reduction hypothesis.
The research presented above has attempted to incorporate such a concept into the framework
of present theory, thus making the theory more "lifelike, " and thus by definition more bionic.

From a drive-reduction point of view, any stimulus becomes a positive or negative re-
inforcement only if it serves to reduce or increase the drive state of the subject at the time of
reinforcement. The following paragraphs describe the Pitts-McCulloch model and point out
how this model and experiments based on it fail to include certain known characteristics of
both individual neuron behavior and those characteristics of gross creature behavior that lead
to the drive-reduction concepts. Some of these lacks have been remedied by the research pre-
sented above. The attempt is certainly not to denigrate the significant contributions of Pitts,
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McCulloch, and others, but rather to point out that, like all first steps into a new field, their

contributions must be refined, expanded, and ultimately integrated into the main body of scien-

tific knowledge.

Although Pitts and McCulloch showed that certain aspects of neuron behavior could be
modeled with Boolean algebra, their model ignored the observed time dependence of neuron

behavior, usually referred to as temporal integration, and took little note of the fact that the g

rate of production of action potentials in sensory neurons is a function of the intensity of the
stimulus applied.

Their model assumes that a neuron receives inputs that are either present or absent at
any instant, and can be represented by a 1 when present and 0 when absent. Some endbulbs
are excitatory and receive a weight of +1 when a signal is present; others are inhibitory and
receive a weight of -1 when a signal is present. The neuron produces an output whenever the
weighted sum of the instantaneous inputs exceeds its threshold. If 0 represents production of
an output, T is the threshold, aj, . . . , ag are variables which are 1 respectively when the

separate excitatory endbulbs are energized, and by, . . ., b; take similar roles for inhibitory

inputs, one can write

as a description of the model. Since one afferent can have numerous endbulbs synapsing on
one internuncial, the above can be modified to

n
i=1

where w; are weights associated with the separate afferents and a; now represent afferents,
rather than endbulbs. In the Pitts-McCulloch model the w;'s take on integral values. Later
workers have allowed the w; to be contimuous. The difference is only of minor interest, since
the analytical results are so far the same.

Note that the equation

n
Z wia; = T
i=1

is the equation of a plane in an n-dimensional Euclidean space and that

n
Z wiay > T
i=1
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is the equation of the half-space lying above the plane. Since each possible input configuration
(minterm) can be represented by a vector of 1's and 0's, representing the a; in order, the
model is a mapping of all such vectors into the space Ei Further, the sets of vectors mapped
to 0 and to 1 must be such that they can be separated from each other in n-space by a plane
passed through the n-cube of which they are the vertices.

Needless to say, many logic functions do not meet this linear separability requirement.
In fact, a majority of them do not. A simple logic function that cannot be instrumented by the
model is to distinguish, for any fixed number of inputs greater than 2, between an odd number
of inputs excited versus an even number.

Rosenblatt was the first to attempt to instrument the Pitts-McCulloch model physically
and to introduce a notion of plasticity of neural connections. His ""Perceptron' was modeled
generally after a contingent reinforcement experiment. There are, however, several differ-
ences between the operation of his machine and contingent reinforcement conditioning.

The following describes generally the organization of most recent '"learning' machines,
such as Widrow's '"Madeline'" and Rosenblatt's "Perceptron. " Consider a collection of
threshold elements like those described above. Figure 12 shows three elements, which are
enough for descriptive purposes. Each input to each threshold element is equipped with an
adjustable weight, which can range continuously from, say, +1 to -1. The thresholds are
fixed at some arbitrary value, say 0.5. R is established a priori by the experimenter that he
desires that the presentation of one subset of the possible input patterns should produce output
No. 1, another subset should produce output No. 2, and a third should produce output No. 3.
Further, no input patterns other than those selected should produce the outputs. Weights are
set at any arbitrary initial values and then adjusted from time to time by the following orderly
scheme:

(1) A pattern is presented on the inputs.

b (2) If the output is what has previously been selected as "correct, " no adjustments are
- made.

(3) K an output appears erroneously, the weights to the threshold element producing the
erroneous output and associated with those inputs that are presently excited are re-
duced in value by some small increment. This has often been referred to in the
literature as "punishing' the output.

(4) ¥ the correct output fails to appear, those weights to the appropriate threshold ele-
ment corresponding to inputs presently energized are increased ("'rewarded") by a
small increment.

(5) The procedure is repeated until the outputs are '"correct" for all possible inputs or
the experiment terminates.

On the surface, such experimentation appears to contain the elements of contingent rein-
forcement conditioning. There are, however, several criticisms that can be leveled at the
model. Consider steps 1 and 4 of the adjustment procedure. The machine receives no
"reinforcement" when it does the right thing (step 1) and receives a positive "reinforcement"
when it does the wrong thing (step 4). To the writer, the scheme resembles classical condition-
ing more than it does instrumental conditioning, since the procedure consists of presenting a
stimulus and contiguously forcing (or inhibiting) a response until the stimulus and response
become associated. It is an axiom of instrumental conditioning that the first requirement is a
motivated subject. The "motivation" of the Perceptron is nonexistent.

A second point of the model that can be criticized is its failure to handle "decisions' that
~—are not linearly separable. One can readily show that a two-layer cascade arrangement of
whreshold elements can produce any desired logic function. To the writers' knowledge, however,
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Figure 12. A Three-Element Threshold Logic Network

no one has yet exhibited an effective algorithm for adjusting the weights in such a configuration
without access to the responses of the first layer. Appendix X presents the results of a con-
ditioning experiment on rats involving a decision which is not a linearly separable logic func-
tion. The learning curves show the interference phenomenon that was predicted by the model
of this report.
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APPENDIX V
PREDICTION THEORY
& The usual approach to the problem of prediction of stationary time series is the Wiener
approach. One assumes a weakly stationary random process, x(t) such that the set of possible

inputs to the predictor are elements of the process. One then tries to find a weighting function
w(t) such that

t
) = [ wr, o)x(t -7)dr

is the best least squares prediction of x(t + o); i.e.,

E[x*t)-x(t+o)] 2 is minimized.

An alternate approach to the prediction problem was formulated by Kolmogorov almost
simultaneously with Wiener's work. The Kolmogorov approach, in contrast to Wiener's, does
not assume that the entire past history of the signal is available. When expressed in sampled
form, the Komogorov formulation seems more suitable for application to the neuromime net-
works under study. Following is a discussion of this application of the Komogorov theory.

Suppose a function f(x), where both x and f(x) are real variables, is given in terms of
equally spaced samples,

f(-n), . . . £(-2), 1(-1), F(0), (17)

. and its next value f(1) is to be predicted. Further, suppose f(x) is weakly stationary, and
@herefore

(1) Tt has a finite second moment,
E {[fx)]} < , (18)

where E stands for "expected value."

(2) The joint probability of any two of its values is a function of their separation only,
E [f(x)f(x-7)] = og(r). (19)

(3) It has a continuous covariance function, ¢ff( T).

Assuming the prediction should be based only on the known samples of Equation 17, the
simplest process of finding f(1) will be to consider it a linear combination of these samples:

£(1) = agf(0) + af(-1) + . .. + apf(-n). (20)
The problem is to find the appropriate values of the weights a;.

Multiplying Equation 20 successively by the right-hand members of Equation 17, we get
,-gthe following set of equations:
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£(0)i(1) = aOf(O)f(O) + agf(0)f(-1) + . . . + a,f(0)f(-n) A
f(-11(1) = apf(-1)£(0) + ayf(-1)£(-1) + . . . + a f(-1)f(-n) a1
: | (21
f(-1(1) = agf(-n)f(0) + agf(-n)f(-1) + . . . + apf(-n)f(-n) y

The expected values of the left-hand members of each equation in Equation Set 21 will be the
following set:

E [f0(1)] = apE [£(0)(0)] +a,E [#(0)(-1)] +. .. +aE [£(0)f(-n)] Y
E[(-Di()] = aE [H-DH0)] +2E [f(-DH-D] +. .. +aE [K(-1)f(-n)]

(22)

E [#(-n)(1)]

3gE [H(-n)f(0)] +aE [-n)f(-1)] +. .. +aE [f(-n)i(-n)]J

However, due to the weak stationarity conditions given by Equations 18 and 19, the expected
value E [f(i)f(i + ¢ )] , exists and has the value

E [f(i)(i+ £)] = E [f(x)f(x+ ¢)] (23)

Then, by making i successively equal to 0, -1, . . ., -n, and £ equalto 1, O, -1, . . ., -n,
we get from Equation Set 22

~

E [{(x)i(x + 1)]

agE [fx)}f(x)] + qE [f(x)f(x - 1)] +. ..
+ apE [f(x)f(x - n)]

E [fx)i(x + 2)] agE [f®)i(x + 1)] + a1E [f(x)fx)] +. . .

+apE {f[x] f[x - (n-1)]} (24)

E{f[x] f [x+(n+ 1]} = agE [{x)f(x +n)] + ajE {f[x] f[x + (n - ]}
+. .. +a,E [{(x)i(x)]

By the condition of Equation 19,
E [fx)f(x + £)] = og(x ¢)
where ¢y is the autocorrelation function of f(x). Consequently, (zs)a
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dgr(-1)
bse(-2)

agoee(0) + agoep(1) + . .
aoq)ﬁ(-l) + a1056(0) + . .

pgr [-(m+ 1] = agpee(-n) + 239y [-(0-1)] +. .

. + andse(n)
. + a.nq)ff(n- 1)

. + angge(0)

Since f(x) was assumed to be a real variable, its autocorrelation is an even function, i.e.

bee(- &) = oge( ¢).

Therefore,
dgr(1) = agdge(0) + agde(1) + . . . + appee(n)
bep(2) = agpep(1) + agee(0) + . . . + apdeen - 1)

This is a system of (n + 1) equations in the (n + 1) unknowns a,, aj, .

Pge(n + 1) = agpe(n) + ajpge(n - 1) +. .

a matrix form suitable for a computer solution:

[ 0:40)  0gg(1)  0ge(2) . . . ggln)
$ee(1)  pp(0) (1) . . . Ppe(n - 1)

¢ge(n)  ¢gp(n-1) ’¢ff(n-2) . o ¢ﬁ(0)

It can be shown that the values of the weights

. + an¢ﬁ(0) .

39

4

“n |

[ 9er(1)
b(2)

¢ﬁ(n +1)

3
| (26)
)
(27
]
(28)

.. a, and can be put in

(29)

a4 found from Equation Set 29 minimize the
square error between the left- and right-hand members of each equation in Equation Set 22,

If instead of the sample f(1) a more distant sample f(k) is desired, then replace (1) by
f(k) in Equation 20. It is easy to see that in this case Equation Set 29 becomes

[ ¢ff(0) ¢ff(1) ¢ff(2) o o s ¢ff(n)
b)) B0 Sl . .. dggln- 1)
| b0 b= D Ggln-D . . . 4g(0)]
kz 1.
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In a similar fashion, a missing sample £(0) from a set of equally spaced samples of the
function f(x),

f(-n), f [-n- 1], ... £(-1), £0), £(1), . . ., f(m - 1), f(m), (31)
can be reconstituted. @
Similar to the previous analysis, we express f(0) as

£0) = a_pf(-n) +. .. +a_yf(-1) + ayf(1) +. . . + apf(m). (32)

After multiplying Equation 32 successively by the members of Equation 31, the expected
values will be

E [f(-n)f(0)] = a_,E [f-n)i(-n)] +...+a_4E [f(-n)(-1)] ]

a,E [£(-n)f(1)]+ . . . + aE [£(-n)f(m)]

+

E [£(-1)£(0)]

a_E [#(-1)f(-n)] +. ..+ a_sE [£(-1)£(-1)]
aE [{-DHD] +. .. +apE [#-1)i(m)] (33)

+

E [£1)£(0)] = a_ E [#(1)f(-n)] +. .. +a_yE [#(1)i(-1)]

+ 4E (1)) +. .. +a E [£(1)i(m)]

E [fm)(0)] = a_E [Hm)(-n)] +...+a_qE [H(m)(-1)]

+ qE [f(m)f(1)] +. .. +ayE [f(m)f(m)] J

Using the conditions of Equations 19, 23, and 27 as before, Equation Set 33 becomes the set

0grn) = a_9:(0) +a_(;_1yge(1) +. . . +a_1pgun - 1) )
+ alqbﬁ-(n +1) +. . . +apy_164(n + m-1) + apée(n + m)
éff(l) = a_n¢ff(n - 1) + a_(n_1)¢ff(n - 2) +...+ a_1¢ff(0)

+

810¢(2) + . « . +ap,_10g(m) + 3y de(m + 1)

[ (39
055(1) = a_pdeen+ 1) +a_(, q)0pln) +. . . + a_10¢¢(2)

+

a10e(0) +. . . +ap 19e(m - 2) + apdee(m - 1)

q.)ff(m) = apbpn+m)+a g (pn+m-1)+. .. +a jpe(m+1)

+ agpe(m - 1) +. .. +ay 16:(1) + ame(0)
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In matrix form, Equation Set 34 is

(050 B(1) . . .. beln-1)  dgntl) . . . fpe(men-1)  Pplmen) |
[a] - ¢¢¢(n-1) ¢ﬂ.(n-2). ... ¢ff(0) ¢ff(2) . e e ¢ﬁ(m) ¢ff(m+1)
¢ff(n+l) ¢ff(n) ..... ¢ff(2) ¢ff(o) o e o o ¢ff(m-2) ¢ff(m-1)
pre(n+m) ¢gp(n+m-1) . . $gp(m+1)  Gp(m-1) . . gi(1) $5¢(0) |
therefore
—a_n ] I ¢ff(‘n) ]
a. 8ecl)
] =| 1| - “ (35)
ay dge(1)
| a.-m i I ¢f-f(m)J

Finally, suppose a second function g(x) is known to be the result of the function f(x) being
modified by a linear operator whose response is to be determined. This is the case of plant
identification. In the general case, the present state of the response depends on all past values
of the input function f(x). We may write

g(0) = aof(O) + alf(-l) +. . . +agf(-n) (36)

Successive multiplication of the terms of Equation 36 by the terms of Equation 17 yields
E [10)g(0)] = agE [£(0)(0)] +a4E [HOM(-1)] +. . . )

+a E [£(0)f(-n)] '
agE [£(-1)I(0)] + a;E [£(-DE(-1)] +. .. (37
+ ayE [H(-1t(-)]

E [#(-1)g(0)]

E [f(-n)g(0)] agE [f(-n)£(0)] + yE [f(-n)f(-1)] +. ..

+aFE [£(-n)f(-n)] . J %
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Therefore,

9g(0) = agPer(0) + 219g(1) + . . . + anPey(n)
¢fg(-1) = agher(-1) + a16(0) + . . . + apdy(n-1)
¢fg(“n) = a0¢ff(-n) + a-1¢ff ['(n"l)] +.o .04 an¢ff(o),
where
9gg( ¢) = E [fx)g(x-¢)]
dee(t) = E [f(x)(x- ¢)]
Here again, because of Equation 217,
01g(0) = 2gP(0) + aydge(1) + . . . + andg(n)
$rg(-1) = agher(1) + a19gr(0) + . . . + anper(n-1)
¢fg(-n) = agheln) + ag0ge(n-1) + . . . + a;044(0);
and in matrix form,
[~ b B 9
0e(0)  der(1)  0gp(2) . . . . ¢ge(n) ag
oe(1)  0pr(0)  @ge(1) . . . . pg(n-1) ay

¢ff(n-1) ¢ff(n-2) o o o ¢ff(0) ] a,

L -

Prg(n)

[ 40 |
begl-D)

¢fg("n)

(39)

(40)

4

(41)

The negative sign in the argument of the cross-correlation function ¢¢, means that the
physical significance of the weights a; may be deduced from the output g(x) of a linear device

being caused by an input f(x);

X

gx) = /(; f(x - T)w(T)dT

where w(7) is the unit input response or weighting function of the device.
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is given in terms of equally spaced samples, Equation42 has the counterpart

hence

Since this equation is true for any value of x 2 0, it will hold for x =0, i.e.,

For the case of a discrete, instead of continuous, system where f(x), and therefore g(x),

gx) = Zw(n)x-T)
=0,1,2, ...

g(x) = wO)f(x) + w()i(x - 1) +. . .

g(0) = w(0)£(0) + w(1)f(-1) + . .

+ w(n)f(x - n).

. + w(n)f(-n).

It can be seen from Equations 36 and 45 that

Therefore, a; is the value of the system input response at the point x = i.

a(i) = w(i)

i=0,12,...
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APPENDIX VI

EQUIPMENT DEVELOPMENT

A. TRANSISTOR CIRCUIT DEVELOPMENT

Figure 13 shows the transistor threshold circuit of the modified neuromime at the begin-
ning of the program. Tests run on neuromime networks during the contract period indicated
certain circuit changes and additions. The threshold circuit shown in Figure 1 of this report
evolved from these changes and additions.

Figure 14 is a block diagram showing the threshold circuit operation. The threshold cir-
cuit has two inputs and one output. The two inputs are the sums of weighted and unweighted
neuromime pulses. The neuromime's output is a burst of pulses whose repetition rate is
roughly a concensus of the neuromime's input activity. A separate circuit accepts the first
negative-weighted input in a series of inputs and injects a short pulse into the summation point
of the threshold integrator. The neuromime output is fed back with a reversed sign and inte-
grated with the two input summations and the short injected pulse. This integral is then
summed with the rest threshold potential and the neuromime's output. The threshold equation
is then

t
-nt
T = Ty - KR - [ZR; +g(t) ZW;R; - h(t) Wie - AR,] dt.
0
-12v
100 K OHM
=
3 < 2.2 K OHM
x $ 2.2K OHM 3 3.3 K OHM $ 22K oHM 3.3 KOHM
“Ry 100Kk OHM § < b4
6 K OHM
O—————AW
waR ouT
22 . 100K Qrm 22 MEG 100 K OHM
.t pF AN VVVT
OQOLnF
= 25pF | 470 K OHM I » ﬁ
: ,
¥ 39 K OHM S 330 K OHM
HE ’ '
> o > x
< X
87470 K OHM {ﬁ
O +12V

NOTE:
ALL TRANSISTORS ARE 2N404 {RCA)

Figure 13. Original Neuromime Transistor Circuit
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where
threshold
o = rest threshold

'-]'-i
noa

R; = ith input to neuromime
W; = ith weight associated with ith input
Ry = neuromime output
g(t) = 0 when W;R; < 0

= 1 when WjRj >0
h(t) = 0 when all W; <0

= 1 when at least one Wi, say Wi, <0

K,A,n = constants
t = time variable.

When the neuromime firing threshold was exceeded, the trigger circuit shown in the
diagram triggered the gate, and the neuromime fired a burst of pulses. The threshold circuit
determined the length of the burst of pulses, and also how long the neuromime waited before
producing another burst of pulses. Without inputs, the threshold circuit returned to its quies-
cent state.

Tests were run on the threshold circuit to determine its response to inputs, weighted and
unweighted. The response curves are shown in Figures 15, 16, 17, and 18.

Unweighted
Input
From Other
Neuromimes
O ZR; ’ GATE HARMON
R: >
| O——— > —>
o > N.C. NEUROMIME
A
To
Weighted
Input
From Other
Neuromimes Y
o ZwiRi
W;R; o Z > f > 3 »! TRIGGER
1 I__
e GATE P
ULSE A
| -
“-Il > No [T sTReTCHER K K f[«——¢
Y
Ro
Neuromime
Output

Figure 14. Block Diagram of Threshold Circuit
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Figure 19. Transistor Gating Circuit

In addition to the circuitry developed for the neuromime model, a transistor circuit was
developed as support for the neuromime hardware. This circuit was designed and built to §
combine a neuromime's output pulse rate and synaptic weight. The circuit turned the synap
weight (d-c voltage) on and off at the same rate as that of the neuromime. The result was a
voltage porportional to the synaptic weight, with a pulse rate equal to that of the neuromime.
The circuit is shown in Figure 19.

B. ANALOG CIRCUIT DEVELOPMENT

The analog computer has played two roles in the development of the neuron model. The
first role was that of the synaptic weight computer used as support for the transistor hardware.
The second role was that of the total neuron model simulation.

Figure 20 shows the analog computer simulation of the synaptic weight computer at the
beginning of the program. Tests on the neuromime networks led to several revisions of the
analog weight computer circuit. Figure 21 shows the resultant analog computer circuit.

The block diagram of the synaptic weight computer simulation is shown in Figure 22.

The weight computer has three inputs and one output. The summation of the neuromime’s
inputs is the first of the three inputs to the weight computer. It goes through a §(S) circuit,
which yields, roughly, the time changes of the summation. The changes enter a gate circuit,
which is controlled by a gating function, g(S). The gate circuit passes the summation changes

unimpeded if it is "open.'" When closed, no changes pass through the gate circuit. The two
remaining inputs to the weight computer the neuromime's own firing rate and a function, h;j,
are used to trigger the gating function.

The gating function, g(S) in the block diagram, controlled the inputs to the weight inte- .
grator by operating a gate. As long as the gating function received an input, the gate was
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Figure 22. Block Diagram of Synaptic Weight Computer

"open'' and the weight integrator received inputs. If the input to the gating function disappeared,
the gating function gradually ''closed’ the gate so that the weight integrator received smaller
and smaller inputs until the gate "closed.’’

The gating function was the most critical circuit of the weight computer simulation, and
subject to more changes than any other weight computer circuit. It controlled the times that
the weight integrator could compute. Figure 23A shows the weight integrator gate circuit at
the beginning of the contract. The neuromime's gating circuit let the weight integrator inte-
grate the inputs during the neuromime's firing period.

When the distal neuromimes stopped firing, the gating circuit changed the algebraic
signs of the weight integrator inputs and let the synaptic weight integration continue. The
gating circuit was changed as shown on Figure 23B to let the weight integrator work only durg..
ing the distal neuromimes' firing cycle.

Further neural net tests showed that the gating circuit should allow some weight computa-
tion after a neuromime stops firing. The gating circuit was changed to let the weight inte-
grator integrate during a neuromime's firing time and shortly after (see Figure 23C).

Further tests pointed out another fault with the synaptic weight computer. The gating
function cireuit allowed some neuromimes to compute synaptic weights without ever firing.
Figure 23D shows a gating function circuit that corrected this fault. In this circuit, no synap-
tic weight could be computed unless the neuromime was firing.

Other tests showed that the gating function was adequate when a neuromime had a single
input, but was inadequate when the neuromime had more than one input. A neuromime was not
getting enough information from its distal neuromimes to discover whether or not it was caus-
ing the distal neuromimes to fire. The gating circuit shown in Figure 24 allows a neuromime
to compute a synaptic weight only if it is firing, or has recently fired, and at least one of the
distal neuromimes is firing against the orders of its weighted inputs.

The second role played by the analog computer was that of the complete simulation of the
neuron model. This neuron model development was inspired by the application of optimal con-
trol theory to neuromime networks. Two basic models were tested, each using a different
method to compute its synaptic weights.

Figure 25 shows the first neuron model using the optimal control concept. In this model,
the synaptic weight computer computed the weights by comparing a "predicted” trajectory with
the actual trajectory of the input signal. Any difference between the "'predicted’ trajectory a&
the actual trajectory was used to correct the synaptic weights.
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The method used to compute the synaptic weights was based on the optimal control equa-
tions given in the text. However, preliminary tests showed that this computing method was
too difficult to instrument for neur on models having several inputs.

Figure 26 shows the second basic neuron model using the optimal control concept. The
- maptic weight computing method for this model was based on a modification of the optimal
gitrol equations. The modification is an assumption. To compute the synaptic weights, the
neuron model assumes that the optimal control output is a linear combination of the environ-
ment outputs. The neuron model computes the entries for a transformation matrix. This
matrix maps the environment output vector into the optimal control vector.

The development of the second basic neuron model was pursued in lieu of the first. The
second neuron model showed the ability to compute optimum synaptic weights as well as the
ability to accept large numbers of inputs.

Figure 27 shows the results of the neuron model development. Comparison with the
neuron model in Figure 26 shows the various changes. Briefly, the significant changes are
the addition of a sign-taking circuit and a circuit that indicates when an input variable and its
time derivative have opposite signs. The sign-taking circuit enables the neuron model to use
a single error signal to compute many parameters. The technique for computing the synaptic
weights using the sign-taking circuit is a form of hill-climbing, and is also known as the
gradient method of steepest descent. The second additional circuit evolved from certain test
results which revealed that the optimal control equations developed were not valid when an
environmental disturbance was present. To obviate this invalidity, it was postulated that a
disturbance was present when an input variable and its time derivative had the same sign.
(This postulate is not true for all cases, but the approximation is good for transient conditions.)
This circuit, then, was designed to stop synaptic weight computations during disturbances.
Tests on the neuron model using these additional circuits have proved their usefulness.

Two additional circuits, shown in Figures 28 and 29, were developed for use in the simu-
lation of an adaptive autopilot using neuron model networks to control a two-channel aircraft.
. 2ge transistor circuits were designed for three purposes:

(1) The circuits supported the extension of the previous simulation to the more complex
two~channel aircraft adaptive autopilot.

(2) The circuits provided a more reliable switching response than could be obtained
from the analog switching simulation.

(3) These transistor circuits represented the beginning of the reduction of the analog
computer simulation to hardware.

The first transistor circuit yields the algebraic sign of its input signal as its output.
The equations relating the circuit's input and output are

if: y >0 Xx=+1

y <0 x=-1

y=20 x=0

where y is the input signal and x is the output. This circuit replaced two operational amplifiers
in the analog computer simulation of the neuron model.

The second circuit was a gate circuit which was triggered by the output of the first tran-
sistor circuit discussed above. The specific task of this circuit was to accept an analog volt-
age and, depending on the sign of the trigger signal, yield either an inverted or non-inverted
" -nal proportional to the input voltage. If the trigger signal is zero, this circuit has no output

age. The two circuits, the aircraft simulation unit,and a unit of five neuromimes are shown
in Figure 30.
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APPENDIX VII

NETWORK EXPERIMENTS

A. GENERAL

The tests described in this appendix represent the form and the results of the experi-
mental work on the contract to date. Following is an outline of the experimental work:

(1) Tests using the transistor neuromime hardware
(@) Networks with contralateral connections
(b) Networks with internal feedback
(c) Network with paralleled neuromime output
(d) Approximation to an aircraft pitch channel

(2) Tests using the new optimal control concept
(a) Preliminary test circuits
(b) Tests on more complex systems
(e) Tests on the convergence of the neuron model's parameters to optimum values
(d) Tests on redundant networks

u (e) Tests on a roll-yaw coupled aircraft

Although most of the tests were designedtoparallel the analytical work, some tests were
performed to aid the instrumentation development. The former tests are emphasized, because
their results hold more significance for the contract work. Diagrams of the test circuits,
accompanied by brief explanations of the tests, results, and evaluations, are presented in this
appendix.

B. TESTS USING THE TRANSISTOR NEUROMIME HARDWARE
1. Networks with Contralateral Connections

Two environment transfe r functions were tested with the net - a gain and an integrator

(see Figure 31). The purpose of the test was to determine the net's capability to r educe an
error gignal to zero. The weight computation rates observed were judged to be slower than
expected. The time taken for a weight computation generally exceeded five munutes, com-
pared to an expected value of one or possibly two minutes. However, the weights computed
for the various synapses usually had the correct algebraic signs. In several cases the wrong
sign was computed for a synaptic weight. The reason for the wrong synaptic weight signs was
discovered to be a faulty computing method. The synaptic weight was computed continuously.
The synaptic weight integrator integrated the input changes occurring during the firing cycle
and subtracted the integral of the input changes occurring after firing stopped. The computed
synaptic weight was correct only at the end of a firing cycle. If the synaptic weight computa-

tion was started or stopped at some time within the cycle, the computed synaptic weight had
~a wrong sign.
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A second order environment was used to test the network (see Figure 32). The net was
tested to determine its ability to reduce the error signal to zero and to note its response to a
second order environment. The environment used has the following transfer function:

w2
G(S) =
s2 4 2w ES + w2
where
G(S) = environment transfer function
w? = environment gain
¢ = damping variable
§ = Laplace transform variable

The value for w was varied from 0.3 to 10 and the value for ¢ varied from 0.03 to 0.8. The
results of the test are plotted as a stability curve in Figure 33. The network would not com-
pute synaptic weights with w's over 5, which limited the test results somewhat. The network
made small synaptic weight computations when 1/w was below the network response time of
one second. Some difficulty was experienced when testing the system for the stability points
plotted in Figure 33.

(|




w?
s?+2wf S+u?

3 1

% Indicotes Weighted Neuron

Figure 32. Test Network with Second Order Environment

1.0

0.8

0.6

Figure 33. Stability Curve
of Second Order Environ-

DAMPING TERM, ¢

04
ment Test

Unstable Region

Y&\}Q\\ NIRRT

0.2

S
\

71



0 e © &

EXTERNAL
% SIGNAL
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For the next test, the network was connected to a gain, or "environment'' transfer func-
tion (see Figure 34) and tested to determine its ability to stabilize the system after an'’envi-
ronment" input control reversal. The computation of weights following the input control re-
versal was sluggish. Preliminary tests showed that several changes should be made on the
neuromime model. These changes were made and the new network was tested as outlined later.

2. Networks with Internal Feedback

Environments of a gain and an integrator were used to test four networks (see Figures
35, 36, 37, and 38). These four networks were connected to study the effects of internal feed-
back. The network was tested with and without internal feedback connections. Further, the
network's control connections to the environment were severed to test the ability of internal
feedback to assist the network to revise the synaptic weight computations when the network's
output no longer affected the environment.

In the network shown in Figure 35, neuromime G2 has an environment change input and
a feedback change input. The feedback change input has an opposite effect on neuromime G2
from the environment change input; i.e., neuromime G2 computes a negative synaptic weight
with only feedback changes, and a positive synaptic weight with only environment changes.
The ratio of the magnitudes of the environment changes to the feedback changes was defined to
be A. Three values of A wereused: A<1;A = 1;and A > 1.

The network without internal feedback computed positive synaptic weights and stabilized
the system, i.e., reduced the injected error signal to zero. Then, when the network outputsa
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were disconnected from the environment. input, the synaptic weight values stayed constant.
The network could not and did not revise its computation. The network with internal feedback,
when connected to the environment, also computed positive synaptic weights and stabilized the
system. When the network outputs were disconnected from the environment input, the synap-
~ tic weight computations slowly computed negative values. I neuromime G2's weighted rate and
L_inweighted rate output were equal but opposite in sign, G2's synaptic weight computation
topped. Neuromime F4's input is the sum of the weighted and unweighted rate outputs of
neuromime G2. If the weighted and unweighted rate outputs are equal but opposite in sign,
their sum is zero. Neuromime F4 can never fire with a zero input. If F4 can never fire, the
feedback loop to G2 is broken and all feedback changes seen by G2 stop.

Since neuromime G2 needs input changes to compute a synaptic weight, the broken feed-
back loop stops G2's input changes and synaptic weight computation.

With A <1, neuromime G2 computed a negative synaptic weight. With A = 1, neuromime
G2 computed a zero synaptic weight. With A >1, neuromime G2 computed a positive synaptic
weight.

In the network shown in Figure 36, neuromime G4 replaced the direct feedback connec-
tion from the output of F4 to the input of G2 (as shown in Figure 35). The extra delay time of
neuromime G4 was the only difference between that network and the previous one. The test
results were the same as the previous one.

In the next network (Figure 37), the feedback neuromime G4 had a computed synaptic
weight, in contrast to the previous network. Neuromime G4's synaptic weight became nega-
tive in all tests. The other test results were much the same as those reported for the prev-
ious network.

The networks shown in Figures 35, 36, and 37 had two separate feedback loops. In the
next network, shown in Figure 38, neuromime G3 replaced the two feedback loops. The test
results were the same as those reported for the previous networks. Although some interplay
. between the two separate network channels due to the common feedback loop was expected,
bgdone was seen.

In the next network to be tested, a gain and an integrator were used as environments
(see Figure 39). The environment control connections could be reversed. The two aims for
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the series of tests were to determine the ability of a network to adjust to an "environment"

input control reversal and to determine the difference in network action made by internal feed-
back. The test results shown in Figures 40 and 41 are typical analog computer test runs.

Since this network used internal feedback, the testing procedure was similar to that of the
previous four networks using internal feedback. The ability of the network to adjust to an
environment input control reversal is shown on these analog computer test runs. The network
did adjust to the control reversal. A careful study of the two test runs, one for the network ‘
with feedback and the other for the network without feedback, showed no significant difference.
Notice that the neuromime revised its synaptic weight computation to adjust to the new situa-
tion.

The analog computer runs show a heterodyne mttern in the environment output error
signal caused by the network input to the environment. The interference of one network output
with the other produces this heterodyne pattern.

3. Networks with Paralleled Neuromime Output
A gain and an integrator were the environments used in the next network tests (see Fig-

ure 42). The purpose of the tests was to study the effects that many neuromimes firing at
once had on the environment. Two to four neuromimes were connected to the same stimuli
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Figure 42. Test Network with an Output of Two Paralleled Neuromimes

78




and their outputs added together. This sum was the network output and produced a heterodyne
pattern like that observed in the previous network.

The network reduced an error signal to zero, but took a longer time to do this task than
a similar network with one output neuromime. The synaptic weights were computed correctly,
- put slowly. When three and four neuromimes were paralleled, the network took langer to per-
iorm the control task than the network with two neuromimes paralleled. Of course, the
synaptic weight computations for the networks with three and four neuromimes paralleled were
also slower than those of the network with only two neuromimes paralleled. The tests showed
that the approximation to many neuromimes firing by paralleling two to four neuromimes was
too crude.

An attempt was made to test the network with a second-order environment. The environ-
ment was designed to allow a control reversal. The purpose of the test was to study the net-
work interconnections necessary to control a second-order environment after a control rever-
sal. However, preliminary tests on the system showed a lack of knowledge of the network
interconnections that would be required to control a second-order environment without a con-
trol reversal. The network was revised to study the control of a second- and third-order en-
vironment.

4., Approximation to an Aircraft Pitch Channel

A third-order environment was used to simulate, rather crudely, an aircraft pitch
channel (see Figure 43). The parameters used in the simulation were not designed for any
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@ Figure 43. Test Network with Rate Feedback
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specific aircraft. The basic study was that of controlling a third-order system. The premise
for the tests was that a neuromime network that controls a third-order system could control a
third-order pitch channel with specific aircraft pitch parameters. The network was tested
both with and without pitch-rate feedback. The results of the pitch-rate feedback tests were
evaluated to aid the instrumentation development.

The analog computer recordings (Figures 44 and 45) show that the network reduced pitcl'@
error to zero regardless of the presence of rate feedback. Further, all synaptic weights had
the proper algebraic sign. However, the synaptic weight computations did not perform as
expected. Some synaptic weights were small and had little effect on the control. The overall
system response was improved when pitch-rate information was supplied to the neuromime
network.

The network without pitch-rate feedback did not reduce the transient 'wiggling' response
of the pitch-error signal to a step input. Further, this network did not reduce the overshoot
which occurs as the pitch-error signal swings through zero. The network with pitch-rate
feedback improved the system response in both these conditions.

C. TESTS USING THE NEW OPTIMAL CONTROL CONCEPT

Networks were designed to study the application of optimal control theory to neuron
model networks. The networks tested for this phase of the neuron model development used no
external hardware. All simulations were done on the analog computer. The equations instru-
mented for the tests are discussed more fully in the text of this report. In this appendix, the
networks tested are described and significant results are summarized to illustrate the develop-
ment of the neuron model through the application of optimal control theory. In general, the
equations used to describe the tests in this section are as follows:

Y = AY +BM +D (41)
M = -Bip (48)
P =alp+y (49)

where Y is the environment output matrix, M is the neuromime network output matrix, D is
the environment disturbance matrix, and A and B are environment coefficient matrices. The
matrix P entered into the equations from Pontryagin's maximum principle.

The optimal criterion was to minimize a system "cost' function, which closely resem-
bles a minimum energy criterion. The equation is

1 o0
C= = (YtY + MtMm)dt.
!

1. Preliminary Test Circuits

The preliminary tests presented here were designed with two immediate goals in mind:
first, to develop instrumentation methods for use with the optimal control theory; and second,
to illustrate certain parts of the theory.

Figure 46 shows the first circuit using the new optimal control concept. To control the
system optimally, initial conditions on the integrators within the neuromime network were set
at optimum values. These initial conditions for the parameters of the test network were com-
puted by hand to yield an optimum path. These parameter values were then set on the analog
computer and tests were run on the network. The network converged to zero following the
computed optimum path. If one of the network parameters was varied away from the com- @
puted optimum value, the system diverged.
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NEURON MODEL NETWORK

COMPUTED VALUES

© ¢ aEETTEEEEEEEE—S ¢ © GEEEEETEEEREEEIE— ©

ENVIRONMENT

Figure 46. First Test Network for New Concept

The neuron model network used for this test was then extended, and an adjustment rule
__stulated so that the neuron model computed the optimum parameters automatically. In this

stment rule a neuron model considered the reaction of its inputs to its output and com-
pared the actual input reaction to the predicted input reaction. Any deviation of the predicted
reaction from the actual reaction was integrated, and the deviation integral was used to adjust
the predicted reaction. When adjusting the predicted reaction, the neuron model subsequently
adjusted its synaptic weight. The result of the adjustments was a predicted input reaction that
matched the actual input reaction. At the same time, the optimum synaptic weight was com-
puted. The major problem with the simulation was the difficulty encountered when the size of
the system was increased to three or more neurons. The instrumentation problems arising
from this attempt were too restrictive.

To further the instrumentation development, six networks were set up and tested to
determine the effect of feedback on the computation of synaptic weights. Figure 47 shows block
diagrams of five of the networks tested (the sixth will be shown in Figure 49). The net-
works used either one or two neuron models and two environments, an integrator and an
exponential decay. To test the networks, the optimum system response and the corresponding
synaptic weights were computed. The networks were then tested and the synaptic weights
and system responses recorded. These recorded values were compared with the ideal com-
puted values.

Figure 48 shows a set of typical responses. The responses shown in Figure 48A and
48B were obtained from the test networks shown in Figure 47A and 47B, respectively. Note
that in Figure 48A, the predicted value of the input is updated until it matches the actual value.
The updating is a result of the synaptic weight adjustment. The neuron models at first computed
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Figure 47. Five Preliminary Test Networks

synaptic weights that overshot the optimum synaptic weight, and then approached the optimum
value asymptotically. The environment used for this test was an integrator. One control
input, that of the neuron model, was used. In this case, the information fed back to the
neuron model was the neuron model's own output.

When another control input was added, as in the system shown in Figure 47B, the neuron
model computed a non-optimum synaptic weight. The extra control input was viewed as
another neuron model or, possibly, many other neuron models. In this case also, the feed-
back information was the neuron model's own output. Figure 48B shows a typical response to
disturbances injected periodically into the system. Notice that the predicted path and the ac-
tual path of the input trajectory are different. This difference is caused by the non-optimum
synaptic weight computation. The synaptic weight computed was such that the integral of the
error between the predicted path and the actual path of the input trajectory was zero.

One general conclusion resulting from analysis of this test series is that the neuron
models seem to require feedback information about the activity beyond the synaptic junction,
rather than activity at the junction.

A block diagram of the last test in the preliminary test series is shown in Figure 49.

This test examined one particular adjustment rule for computing synaptic weights. The en-
vironment used for the tests was an integrator. The equations derived for the system in Figure

o
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B. Second Test Network (Figure 47B)
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49, using Pontryagin's maximum principle,

trolled by the neuron model, and b the fixed
environment parameter. The adjustment
rule used for this system was

e NEURON
' MODEL
y-= bx (50)
P=y (51)
m = -gP (52)
where y was the environment output, m the ENVIRONMENT
network output, 8 and P parameters con- <| | -

y = Ky (53) Figure 49. Last Preliminary

Network Tested
where K is a parameter controlled by the

neuron model. By comparing y with its time
derivative y, the neuron model computed the value of K. Proper manipulation of Equations
50, 51, 52, and 53 yielded the equation

P = -Ky, (54)

which gave the value for P when the value for K is given. Combining Equations 50 and 52
yielded the equation

j = 'BzP, (55)

which the neuron model used to compute B given the value for P. Notice that Equations 53, 54
and 55 are interdependent. The three equations reacted in a "bootstrapping’ fashion to com- _
pute simultaneously all three parameters, K, P, and 8. The analog computer circuit of the g
neuron model used for this test is shown in Appendix VI, Section B. There were two parts t
the test. The first part showed that the hand-calculated optimum parameters were optimum.
The second part showed that the neuron models actually computed these optimum parameters.

For the first part of the test, the system equations and the criterion used by the neuron
model were used to calculate optimum values of K, P, and B8 for various values of the environ-
ment's parameter, b. The calculated optimum values for K, P, and 8 were tested to be cer-
tain they were indeed optimum. The criterion used to determine optimality was that used in
the development of the optimum system (Equations 50, 51, and 52). This criterion is

T.

C = j(; (y2 + m2) dt

where C (cost) is to be minimized, and y and m are the neuron model's input and output, re-
spectively. To test the calculated optimum values, the values were set up on the analog com-
puter and the values of C were measured. The values of C for corresponding values of K, P,
and B around the optimum values were also measured. The tests were conclusive, proving
that the calculated optimum values were indeed optimum. A typical result is plotted on the
graph in Figure 50.

For the second part of the test, the system was tested with five values of the environment
parameter b. The environment parameter b had a range of 0.5 to 2.0. A step voltage was
used as an output from the environment. The neuron model computed the optimum values for
K, P, and B as verified by the previous test on optimum values. A set of ideal values for thg.
parameters K and b was plotted on the graph in Figure 51 and compared to the set of values
computed by the neuron model.
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2. Tests on More Complex Systems

Two tests were performed in this test series. In both tests the environment was second
order.

a. First System Tests. The environment for the first test system, shown in Figure 52, .
was quite simple, having only two parameters. An additional equation was used for the simu-@
lation. The equation was

P = KY (56)

The specific parameter and state variable matrices for this test were as follows:

v1 0 a

Y = , A = , (57)

| v2 L 0 0 |

0 0] - Py
B = ’ P = ) (58)

0 b Py

[0 ] (K11 Kjp] (59)
M = , K = .

| m | K21 Ka2

NEURON NEURON
MODEL NO. 1 MODEL NO, 2

<< o

)
-5 s

ENVIRONMENT

Figure 52. First Complex Test System
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Further, the matrix K had thefollowing form in terms of the parameters a and b:

F 2a 1
Vit 0
a
K = (60)
2a ?

£/ 1+

1 "o
b b

where Y is the environment output matrix, M is the neuromime network output matrix, and

A and B are environment coefficient matrices. The matrix P entered into the equations from
Pontryagin's maximum principle. The matrix K enters into the equations from an assumption
described in detail in the main text of this report. The criterion used to evaluate the tests was
the same as that described at the beginning of this appendix.

The first part was performed to show that the
optimal controller did yield a minimum value for the system cost function. Various param-
eter value sets were tested by holding all parameters in a set constant except one. This one
parameter was varied and the cost function measured. Each parameter value in a set was
tested in like manner. During these tests, neuron models made no parameter computations.

There were three parts to the test.

The second part of the test was performed to show that the neuron models did compute
the optimum parameters. The neuron models tested used a hill-climbing technique to com-
pute their parameters. Various parameter value gsets were programmed into the environment
and initial conditions set for the neuron model parameters. Then environment disturbances
were injected and the neuron models were allowed to compute.

The objective of the third part of the test was related to the second. Tests were per-
gformed to observe the reaction of the neuron models to two simultaneous disturbances of the
same (and opposite) polarity. The two simultaneous disturbances, which formed the complete
disturbance vector, took the form

di
D = .
da

Note that in the second part of the test, either dj or d3 of the disturbance vector was zero.

In general, all of the test objectives were achieved. Figure 53 is a graph of normalized
cost versus a. The parameter a corresponds to the entry 'a' in the environment coefficient
matrix A in Equation 40, and was computed by the neuron model. The zero point on the cost
axis is the theoretical point at which the cost is a minimum. The graph shows a 2 percent
deviation from the theoretical point. Figure 54 is a comparison of various theoretical values
of a and the actual values computed by the neuron models. The straight line is the locus of
all points where the theoretical and actual values of @ were equal. The graph shows minor
deviations of the points tested. No point has more than a 5 percent deviation.

The curves in Figures 55 and 56 are similar to Figures 53 and 54, respectively, but
represent typical results of the neuron model computations of the K matrix parameters in
Equations 56, 59, and 60. The graphs show accuracies similar to those obtained with the a
parameter computations.

Figure 57 is an analog computer recording. It shows the system reaction to a distur-
joance in the environment. Starting at the top of the chart, the first two channels make up the
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environment output matrix, Y, as in Equation 57. The next two channels, labeled Py and Pg,
make up the matrix P, as in Equation 58. The last two channels are the neuron model output,
M, and the cost function. The system was given ample time to settle down after a disturbance
before another disturbance appeared. Note how the value of the cost function decreased as the
system adjusted to the optimum parameters. After the third disturbance, the cost function
remained fairly constant, indicating completion of the optimum parameter computation. ﬁ

When one of the neuron model's parameters was held fixed, the neuron model computed
parameter values that were not optimum for the total system. However, the parameter values
computed still caused the cost function to be reduced. This indicated that the neuron models
did the best they could under other than optimum conditions. When part or whole of a neuron
model was "damaged, ' the remaining neuron models readjusted their parameters to allow for
the "damage." The result of the readjustment did not yield the optimum system response, but
the response was near optimum. Of course, any damage that might disconnect the neuromime
network from the environment would stop system control.

In the third part of the test, the correlation between the two disturbances seemed to con-
fuse the neuron model computations. Improvements were made on some of the analog circuits
to lessen the confusion. Although the parameters computed by the neuron models were not
optimum, the value of the cost function was decreased.

In all tests the system was stable. An exception to this statement occurred when the
neuromime network's control output had a reversed sign. In this case the system diverged.

b. Second System Test. The environment used for the second test was more complex than
that used for the first test. The second-order environment was changed to admit all entries
in the environment coefficient matrix, A, as follows:

aj1 212
A= . (61)

a1 222

45
peis

A comparison of Equation 61 with Equation 57 illustrates the increased complexity.

The test on this system was composed of three parts. The first part showed whether or
not the system parameters, computed by hand, minimized total system cost. Each parameter
affecting the system cost was varied separately, while other system parameters were held
constant at the optimum values computed by hand. The resulf of the test series was a set of
cost versus parameter variation curves. The second part showed whether or not the neuron
model computed the optimum parameter values. The test was made by simply allowing the
neuron models to react to environment disturbances. The result of the tests was a set of
analog computer recordings showing a time history of the total system cost as affected by the
neuron model parameter adjustments. The third part demonstrated the ability of the neuron
model to adapt to external damage. The external damage was an environment parameter
change.

Figure 58 shows the results of the first part of the test. A glanée at the shape and loca-
tion of the curves is enough to see that the objective was accomplished. The method used to
compute the optimum parameters by hand was shown to be correct. Further, the method can
easily be set up for digital computers.

Figure 59 shows the results of the second part. Note the change in the system response
as the parameter values approach optimum. The response went from a damped oscillation to
an exponential decay, which was the expected result. Note also the reduction in total system
cost as the neuron models adjusted their parameters.

Once the optimum parameters were reached, the total system cost tended to oscillate
slightly about a minimum value. This slight oscillation was caused by small variations in th!
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Figure 58. Cost versus Parameter Variation (Second Test Series)

parameters about their optimum values. The total system cost curve was flat around the
minimum cost; thus cost variations about the minimum cost were expected to be small.

The results of the third part of the test were as expected. The neuron models adjusted
their parameters within their adjustment range to accompany changes in the environment's
parameters. Actually, adjusting to a new set of parameters after a parameter change was no
different to the neuron models than initially adjusting to the original parameters. The worst
case for an environment parameter change was a change to some value outside the neuron

@odel's adjustment range. The neuron models in this case did not compute the optimum
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parameters. Rather, the maximum (or minimum) values for the neuron model's parameters
were computed. Even though in this case total system cost was not minimum, it was reduced.

3. Tests on the Convergence of the Neuron Model Parameters to Optimum Values

Q Tests were designed and set up to examine the convergence of the optimum control

rameters of a simple, first-order system. Basically, the tests performed were quite
simple. A first order system was set up on the analog computer. At the beginning of the
tests the controller was not the optimal controller. The task of the controller (a neuron model
network) was to adjust its parameters and become the optimal controller of the plant.

The analytical basis for the convergence tests comes from the system equations listed
at the beginning of this appendix. A formal derivation is given in Appendix IX. One obtains
that

@-A) - (8-B)BK = ¢.

If A and B are given, a complete zero-error trajectory in the @, B plane is defined for each
value of K. It was postulated that perturbations in the value of K allowed the @ and 8 param-
eters to converge to the optimal parameters. In the tests two values of K were switched back
and forth to demonstrate the theory. The two values were chosen far enough apart to exag-
gerate the convergence trajectory. Figure 60 shoes the zero-error trajectories in the @, 8
plane for two values of K.

+a
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Figure 60. Zero-Error Trajectories for Two K Values
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Figures 61, 62, and 63 show the results of the tests. Each figure is a section of the
curve shown in Figure 60. Note the zigzag convergence path in all the figures. This path
explains, at least in part, why the parameters in other experiments have taken so long to
converge to the optimum values. The error equation and also the curve of Figure 60 show
that with @ = A, B can have two values 8 = B and 8 = 0, regardless of the value of K. Whenever
the starting point (€, 8) was on an error trajectory between those two points, the parameters
moved to the right as shown in Figure 62 until they arrived at the 8 = B, 2 = A point. Figure
63 also shows the change in direction of movement for the initial starting point (@, B) as this
initial starting point was moved from the left half of the plane to the right half of the plane.

Notice in Figure 63 that when the initial starting point was in the left half of the plane,
the parameters did not converge to the optimum values. There were two cases:

(1) As the parameters, which were zigzagging between the two zero-error curves,
approached the g = 0 axis, progress toward the axis stopped.

- (2) When the initial starting point for the neuron model's parameters were on the 8 =0
“ axis, the parameters went straight to the (@ = A, B = 0) point and stopped.
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In the first case, the noise level interfered with the parameter computation and stopped
the progress toward the 8 = 0 axis. In the second case, the 8 computation was dormant be-
cause B8 = 0 initially. The adjustment drive for the neuron model's 8 parameter was propor-
tional to the initial 8, and in this case was zero. With no signal to adjust its 8 parameter, the
neuron model made no 8 adjustments.

& Generalizing the above result, the 8 = 0 point must be excluded as a possible value of
to ensure that the neuron model's 8 parameter will converge to the optimum value.

4. Tests on Redundant Networks

Three tests were performed on redundant networks using the optimal control concept.
One of the tests used the transistor hardware previouslydeveloped for the neuron model. The
other two tests used the analog computer exclusively for the simulation of redundant networks.
So far, small-scale networks have been tested. The lessons learned from these small-scale
networks will be used as guidelines for the larger networks.

a. Redundant Network Test using Transistor Hardware. The first test used the Harmon
neuromime (Reference 2) and other transistor hardware developed for the neuron models.
This test was broken into two parts. The first part tested the reaction of the Harmon neuro-
mime to weighted inputs. The second part tested the adjustment properties of a redundant
network of neuromime elements.

The test for the first part was straightforward. A Harmon neuromime was set up having
a weighted input. The weighted input had a constant pulse rate. The object of the test was to
discover the weight required to force the Harmon neuromime to exactly follow the input pulse
rate. Three different input pulse rates were used. Figure 64 shows the result of the test.
Note that as the input pulse rate increases, the weight required to force the Harmon neuro-
mime to follow also increases. Also, notice the plateau effect of the Harmon neuromime's
output. The plateau occurs at a submultiple of the input pulse rate.

& The test for the second part was set up as shown in Figure 65. The Harmon neuromimes
were not directly in parallel. The inputs to all of the neuromimes were the same. All out-
puts were weighted and fed to another Harmon neuromime. This neuromime produced the
network's output. Synaptic weight computers were set up on the analog computer. The task
set for the redundant network was to maintain a constant input-output network relation, re-
gardless of internal failure.

Figure 66 shows the synaptic weight values computed by the neuromimes as failures g
occurred. The failures were in the form of total neuromime function loss. Note that the i
synaptic weights computed by each of the surviving neuromimes increase to absorb the failures.

b. Redundant Network Tests using Analog Computer. The second test, shown in Figure
67, used the analog computer exclusively for the simulation. The environment used for this E
test was second order. For this test two neuron models were simulated in parallel, each
contributing its share to the total system control. One of the neuron models had its param-
eters fixed at optimum values; the remaining neuron model had to compute its own optimum f‘
values. The first two columns of Figure 68 show the results of the computations.

After the two neuron models were controlling the system optimally, one of the neuron
models was "'destroyed. ' The last two columns of Figure 68 show the results of the one
neuron model adapting to the severe internal damage. Even with only two neuron models in
parallel, the loss of one did not affect the total system cost too drastically. Neither was the
amount of adjustment required of the surviving neuron model drastic.

Thisresultcan be extended to networks with 10 or more neuron models. The effect of
ﬁ ~5losing one, two, or three neuron models simultaneously in a network would not appreciably
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affect the total network response. Further, the larger the number of neuron models in a net-
work, the smaller the dynamic range of an individual neuron model need be.

The third test, similar to the one in Figure 67, also used the analog computer exclus-
ively for the neuron model simulation. Two neuron models were simulated in parallel. Each
model contributed to the total system control. This test differed from the second test in that
both neuron models were free to compute their optimum parameters. To simplify the instru-
mentation, a first-order environment was used for this test. Interest was focused on the ability
of the two neuron models to begin at some initial state and adjust to the optimum state, with both
sharing the control load equally. The optimum state for the two parallel neuron models occurred
when the parameters of both were equal, and when these parameters were the optimum values.

Figure 69 shows a plot of parameter differences. The optimum point on the graph is at
the origin. The graph shows that the parameters of the two parallel neuron models converged
to the optimum values simultaneously. The graph shows only that the parameters of both
neuron models adjusted until the neuron models shared equally the control load; it does not
show that the final adjusted parameters were optimum. However, the parameters checked
well with the optimum parameters when they were checked at the end of each run.

Note the zigzag convergence pattern in Figure 69. This pattern resembles the conver-
gence patterns obtained for the convergence test of the previous section of this appendix. The
convergence pattern observed in this test was also due to perturbations in the K parameter.
The pattern was obtained by holding the K parameter of one neuron model fixed at a value dif-

Werent from that of the other neuron model.
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5. Tests on a Roll-Yaw Coupled Aircraft

A fifth-order environment was constructed to simulate an aircraft obeying the following
aerodynamic equations:

. Y . ¥ ]

Bri-o E-vop £ o B il

¥ - Pizx = £p8 + Ly + Lo + £y, 83 ’ (62)
'ﬁ'&%x' ngB + 17,3/3 + n¢¢ + NgpOr )

where B is the sideslip angle, ¥the yaw angle, ¢ the roll angle, 6 is a fixed pitch angle, dg
the aileron defection, ér the rudder deflection, and all other parameters are constants deter-
mined experimentally. All angles are measured with respect to the body axes of the aircraft.

Using standard state variable techniques, routine manipulation yields:

Y = Quéz + Qa¥z + Q3B + Quv1 + Qsby - Qgdr - Qda ]
62 = Ryga + Rawa + RgBy + Ra¥y +R5é1 - Rgdr - Ryda | (63)
B1 = G142 - Ga¥z + G5By + G4¥1 + Gsds
where g1 =y, Yo =y =, 0y =6, ¢y = ¢y = ¢, and By = B. )
Converting to matrix form yields:
[ $1] 1 0 0 0 o] [wn] [0 o 0o 0o o] [o]
2 U R B Q W[ [v2 0 0 0 -Q -Q 0
1] =|{0 o o 1 o |¢]+]0 0 0 0 o 0
é2 Ry Rz R5 R1 Rg| |¢2 0 0 0 -Rg -Ry| | &
_5” |Gy -G Gs G1 G3| |[A1 | [0 0 0 0 0 [ |4,]

The above form corresponds to the linear matrix equation discussed in the text of the
report.

Y = AY + BM ' (64)

where Y is the environment output matrix, M is the control matrix, and A and B are environ-
ment coefficient matrices.

The aircraft equations (in state variable form) were then programmed on an analog com-
puter as shown in Figure 70. The aircraft simulation was first tested without a controller to
ensure that its response was equivalent to that of the aircraft being simulated. A digital com-
puter program was used to determine the optimal control parameter matrix, K, necessary to
control the aircraft simulation. A more thorough discussion of the digital program is presented
in Appendix VIII. A nonadaptive optimal controller was then programmed on an analog com-
puter and connected to the aircraft simulation.

Figure 71 shows the optimal controller simulation. Cost curves were run on the optlmalw

control parameters in much the same manner as in previous experiments on optimal control
gsystems. Two of the cost curves obtained are shown in Figure 72. Their quadratic shapes

104




A A A

-8 l |> 108

B

-108 108

Figure 70. Aircraft Simulation

105

Y —WvWA— —vW— —AN—
-y S |
')’2 AAA -P2 '\ + P2 ~AAA l\\ -M4
3 A A A s VvV~
Y MWN—¢ L l/
+10 ys——Nw— ~AAN—
+ yl 4A'A'Af “v‘v’\f—— —J\AA'._.__
+Y2— VW +p ‘\ -p, N M 5,
_’, 73 A'AVAT —l/ VVT l/
+y 4 —-‘\NV-—11
— 10y, —MWV—
- — ENVIRONMENT
Y VECTOR (AIRCRAFT)
D
Figure 71. Nonadaptive Controller Simulation




19.0

18.0 | ya

COSsT

17.0

CALCULATED OPIMAL VALUE

16.0
0

21.0

19.0 /

COsT

18.0

N e

17.0
CALCULATED OPTIMAL VALUE

16.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Kog

Figure 72. Typical Cost Curves Derived from Nonadaptive System

106




are similar to those of previous experiments and illustrate that the parameters computed by
the digital computer are indeed optimum.

Following the successful checkout of the aircraft dynamics and the nonadaptive optimal
controller, the adaptive capabilities were instrumented into the system and preliminary tests
. begun. Two basic equations were used to provide the adaptive capabilities. The error equation
Qerived from the system equations and the parameter adjustment equation derived from the
radient method of steepest descent are shown in matrix form:

KY+AtP+Y = ¢ (65)
K = - % Sgn ¢ (66)

where K is the optimal control matrix, ¢ is a generalized error vector, and Sgn ¢ is the signum
function with the following properties:

Seng = i
(67)
0 iff¢p =0

Sgn ¢

Figure 73 shows the instrumentation of the above equations using the analog computer and
the transistor gating circuits. Only three of these parameters were made adjustable, because
of the demand on the analog computer nonlinear equipment.
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Figure 73. Instrumentation of Equations Providing Adaptive Characteristics
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The first series of preliminary tests on the adaptive controller uncovered several prob-
lem areas. For these first tests no disturbances were used. Initial conditions were set on
the aircraft dynamics and the system was allowed to return to normal. These tests showed
that some of the parameters adjusted to values close to the predicted optimum, while others
adjusted to values that differed drastically from their predicted values. In the second series
of tests, in which disturbances were injected into the aircraft, some of the parameters di-
verged.

Most of the tests on the parameter adjustment were run using a disturbance vector with
a single entry. To provide enough infor mation for the parameters to adjust correctly, the
fifth-order space (the total system) must be spanned by the disturbance vector. Analysis
showed that the aircraft simulation required a disturbance with two entries to span the space.
A transistorized pulse generator was developed to provide a periodic disturbance vector with
two entries. Tests on the aircraft simulation using the new disturbance vector showed little
improvement over previous results. Although the underlying problems were not completely
defined, it is evident that hardware problems such as noisy gating circuits, circuit sensitivity,
and transistor amplifier asymmetry significantly degraded system performance.

As in previous experiments, the adaptive controller instrumentation was plagued with
noisy error detection circuits. A close analysis of the instrumentation revealed that to in-
crease the signal-to-noise ratio in one section of the instrumentation would mean decreasing
it somewhere else. Although the overall signal-to-noise ratio could be improved, different
error detection techniques, such as correlation and prediction techniques, would probably
have to be incorporated in the model to significantly improve the present error detection.
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APPENDIX VIII

SOLUTION OF THE MATRIX RICCATI EQUATION

The set of linear system equations for the optimal control approach discussed in Section
II led to the equation

KA + AKX - KBBK + R = ¢,

which gives the relationship of the optimal control parameter matrix K to the process para-
meter matrices A and B. R is a diagonal matrix (in most cases, R = I, the identity matrix)
and ¢ is an error matrix. This equation is clearly a matrix Riccati equation.

In general, an explicit solution to this matrix equation does not exist, and iterative tech-
niques using the digital computer must be used to obtain an approximation.

A digital computer program was written which iterated the K matrix until ¢ = €, where
€ was a preselected tolerance. The adjustment of the K matrix was effected by letting ¢ = K.

. . AK
K = At

AK = KAt = ¢At.
After each iteration, the new K matrix would then be
Knew = Koig + 4K
. .The new K matrix was then plugged into the Riccati equation and computation resumed. The
ime increment, At, chosen at the beginning of the program must be small enough to ensure
convergence of the iteration process. Choosing At small enough for a given problem was the

major drawback of the computer program. Before very large matrices (10 x 10) can be handled
efficiently, some method of accelerating the convergence process is needed.

Following is a list of the program's Fortran statements. This program was written for
the IBM 360 computer.

4/ EXEC _FORTRAN
" DIMENSION D(10,10) yA(100) 4B(100),Q(100) y1D(20)sAT(1CO),
 LTEMP(100),R(10),AK{100), TEMP1(100)s TEMP2{ 100} yAKD{100) 4BT(100),y _
_2SAVE(100)«TI100) _
DOUBLE PRECISIGON DyAgByATsQeBT,TEMP 4R JAKsDELT yTEMPL4TEMP2,5 4 AKD,

 1AK22,0AK224ALAST 4 DUMy SAVE, T -
~ COMMGN MoN, NIT o NNL,NNP,LINEyDELT,4S,1I0
FORMAT (7F10.0)

_d )
2" T FURMAT (2044)

T FORMAT(A4,10A1) - =
FORMAT(914)

FORMAT(1HO,"MAX ITERATICNS REACHED',15)

~ FORMAT(6F20.5)
ALAST = 1.D0-5

U CALL_MASKkt(OY
c MASK(0) STOPS JUB TERMINATION ON UNDERFLOW

7ML =10
TREAD{(1,3)IBLANK,IA,IB,IR,1K,1Q
NNT =10

| 10 READ(1,2) ID

TIFUIDU1)-IBLANK)2G, 160,20

3
A
S
6
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T20 T TREACULy4) MyNoNIT,NNLyNNP, [GPT 4 INs INLAST

IF{M-M1)30,16C,16C

'f}g “READ(141) DELT,S

“CALL LCC (242,1JyMyM,0)

"7 CALL READ(D,M)
€ T REAC_THE A _MATRIX, PRINT, AND COMPACT
CALL ARRAY (2,MsMyM1,M1,A,D)

CALL'PRINT(D,M,IA)

C READ THE B MATRIX, PRINT, AND COMPACT
M2 = NEM

"7 CALL READ(D, M)

T CALL ARRAY (2,MyMyM1,4148,D)

"7 CALL PRINT(DyM,18B)

C REAC DIAGONAL MATRIX

READ(Ls1) (RUI)yi=14M)

CALL PRINT(R4M,4IR)

€ _CLEAR THE K MATRIX
D0 40 I=1,M2
"T(1)=C.DO_

40 AK(I) = 0.00
T UULE(IUPT 4L 44241
"%l CALL READ(D M) -
" CALL PRINT (DyMy 0K}~
TTUTTUCALL ARRAY (2, M 9N oMLy ML o AR, DD
42 CONTINUE -
T TRANSPCSE THE A MATRIX
77T UCALL MTRAUA,AT,MgM,0)
T TRANSPGSE THE 8 MATRIX _
CALL MTRA(ByBTMyMp0)
_ COMPUTE Q@ . B
CALL MATA(BTQQ M MIO) o L
NP =0 SR e
Isw = 0 S ,
UAKZ2 = 1leD1C
Nl = O
 NLAST = 0
C COMPUTE K- DOT
45 CALL MPRDIUAT,AKyTEMP My 440, O'M)
CALL MPRDUAKyAoTEMPL oMoMy0y0yM)
CALL MPRDUAKyQyTEMP2yMoMyOyLoM)
CALL MPRG(TEMP2yAKyByMeMy0,0pM)
CALL MADD(TEMP,TEMPL gAKDgMyM, O(O,
CALL MADCUAKD,RyAKD,MoMo0921
CALL MSUB (AKDy By AKDyMyMy0,00
DO 80 I=1yM2
50 AKCUI)=AKD( L )*DELT
CALL MADD(AK yAKDyAK My Me040)
) IF(ISW)14046C4140
60 IF(NP-N1)80C, 70, B0
70 CALL ARRAY (1 ¢MyM,ML,M]l 4 AKy D)
CALL PRINT(D o4M41K)
NP = NP + NNP
80 CONTINUE
100  IF(NI-NIT)11¢C,12C,120
116 N1 = N1+l
6L T4 45
120 WRITE(3,5)N1
130 1Sw =1
GU TU 45 |
140 CALL ARRAY{1,)MyMyMLleML1yAK,yl))
CALL PRINT(D¢MyIK)
IFINLAST-NNL)15C,1Cy 10
150 NLAST = NLAST + 1
GU TG 45
160 CALL PUNCH(D M)
CALL EXIT
END
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{/ EXEC “FORTRAN

_ SUBROUTINE PRINT (A,M,I1C) ] - EA23C
_____DIMENSION A(1G,10),1D(29) . e
 DOUBLE PRECISICN A, DELT.S ___ T  FA23

COMMON JyNoNIT¢NNL 4NNP yLINE JDELT4S,10

1 FORMAT(//3Xy1HK ¢8X96( Als12417X)) . ] T kA23D

‘ 2 FURHATHX.I?}'ZX.FIZ 6)

¥ 3 FORMAT(1X,I1342XyF12.6y F20.6) o B )
4 FORMAT (1X, 13,2X, F124642F20.60 I
5 FORMAT(1X¢13,2XF12+693F20.6) ) .
6 FORMAT(1X¢ 134 2X4F12.6,4F 20, 6) o - o
T FORMAT(1X»13,2X,F12.695F20.6)

8 FORMAT(1HL,52X,'J0B EA230-//1ox,20A4//1ox.-uE[T;f?;g;gg5;1§g}‘$f;j;””""

__1F10. 3,10X,'ITERATIDNS BETWEEN PRINTS®*,15)

=M ~ e
e K = L ¥ S —. I

D0 90 L1 = l,Ls6 e .
T IF(LINE-1K)99,99,9 - o
99 WRITE(3,8) ID,DELT,SyNNP e -
. LINE =40 S
6§ 12 = L1+5 e ca73n

TIFIL=L2110420,2C

1o~ g S tA23‘
7200 WRITE(3,1) (IC,N,N = L1,L2)

__ _JFORK = L2-L1+1

TG0 TO (3094045C 4604704800 ¢ JFORK -

T30 TWRITE(392) U12(AUT4K) yK=L1oL2) 41=1,M)

.. .GU_TO 90 _ _ o
C 40 WRITE(3,3) (1, (AU1,K)4K=L1,L2)yI=1,M) . .
G TO SO _, e i
50 WRITE(3,4) (I, (ACI,K),K=L1,L2),0=1,M)
. .6c10s50 e
60 WRITE(2:5) (I (AT K)oK=L14L2),01=1,M) o
..6C_ 10 90 e R —
CWRITE(346) (1 (AUL oK) gK=L14L2) 4 1=14M) L )
60 T0 90 - R
CWRITE(3,7) (1, (AU KY oK=L1,02)y [=14M)_ o
90 LINE = LINE-LK L o
o ____RETURN - , e _EA230

TEND o o T EA230

A EXEC FORTRAN
B SUBRUUTINE PUNCH(DyM) o :
OIMENSION D(1G,10) B )
... DOUBLE PRECISICN D - _ e
1 FGRMAT(5F10.6) i

9 FURMAT(//)
DG 10 I=1,M .

10 WRITE(241) (D{Ieddy J=lyM)
WRITE(2,9)
T RETULRN.

END

EXEC FORTRAN ) S
SUBROUT INE MADD , , , - MADD 04
e MADD CC5
PURPQSE B . MADD 205
ADD TWO MATRICES ELEMENT BY ELEMENT TU FORM RESULTANT MADD OCT
MATRIX - o MAND 0038
T MADD 0C9
USAGE S _ MADD €13
CALL MADDZA,BsRyN,MyMSA, MSBS = o MADD 011
o ... _.MADD 012
"DESCRIPTICN OF PARAMETERS 77 - ~ MADD C13
A - NAME OF INPUT MATRIX MADD 014
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STRUCTURE OF QUTPUT MATRIX IS FIRST DETERMINED., SUBTRACTION MSuB 032
OF MATRIX B ELEMENTS FROM CORRESPONDING MATRIX A ELEMENTS MsSuB 033g.
MSUR 034

c B — NAME OF INPUT MATRIX - __ MAUD 015
C R — NAME OF OUTPUT MATRIX MADD 0lo
c N — NUMBER OF ROWS IN A,B,R B ~_MADD G17
[ M - NUMBER OF COLUMNS IN A,B,R e e MADD Q18
c MSA - ONE DIGIT NUMBER FOR STORAGE MODE OF MATRIX A MADD 019
[ B 0 - GENERAL - __MADD 120
c 1 - SYMMETRIC MADD 021
C 2 - DIAGONAL MADD 02
c MSB - SAME AS MSA EXCEPT FOR MATRIX B _ MADD 023
C o _MADD 024
c REMARKS MADD 025
C NONE MADD 025
[ MADD 027
c SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED MADD (28
C LOC MADD 029
[ MADD_030
C_ METHDD MADD 031
C STORAGE MODE UF OUTPUT MATRIX IS FIRST DETERMINED. ADDITIGN MADD 032
C CF_CORRESPONDING ELEMENTS IS THEN PERFORMED, MADD 033
C THE FOLLOWING TABLE SHOWS THE STORAGE MODE OF THE QUTPUT MADD 034
C MATRIX FGR ALL COMBINATIONS OF INPUT MATRICES MADD €35
c - A 8 R MADD C36
C GENERAL GENERAL GENERAL MADD 037
[ GENERAL SYMMETRIC GENERAL MADD 038
C GENERAL DIAGONAL GENERAL MADD 039
c SYMMETRIC GENERAL GENERAL MADD 040
C SYMMETRIC SYMMETRIC SYMMETRIC MADD 041
C SYMMETRIC DIAGONAL SYMMETRIC MADD 042
c DIAGONAL GENERAL GENERAL MADD 043
c DIAGONAL SYMMETRIC SYMMETRIC MADD 044
[ DIAGONAL DIAGONAL DIAGONAL MADD 045
C MADD_ 046
c .0.00......."....Q.0.0.'...."..Q'...0.00....I.CQQCOQOCQOOOQOOQQOMADD 047-
// EXEC __FORTRAN I "
C SUBROUTINE MSuB MSUB 004
C B} MSUB_0C5
C PURPOSE e _.MSUB 0CSH
C SUBTRACT TWO MATRICES ELEMENT BY ELEMENT TO FORM RESULTANT MSUB 007
c MATRIX . MSUB 008
C MSUB_0€9
C USAGE MsuB Q10
C CALL MSUBZA,ByRyN,MyMSA,MSB< MSUB 011
c MSUB N12
C DESCRIPTION OF PARAMETERS MSUB 013
[ A — NAME OF INPUT MATRIX MSUB Ol4
C B — NAME OF INPUT MATRIX MSUB 015
C R - NAME OF QUTPUT MATRIX MSUB 016
C N — NUMBER OF ROWS IN A,B4R MSUB 017
3 M — NUMBER OF COLUMNS IN A,B,R MSUB 018
C MSA — ONE DIGIT NUMBER FOR STORAGE MODE UF MATRIX A MSUB 019
c 0 - GENERAL MSUB 029
C 1 — SYMMETRIC MsSUB 021
[ 2 - DIAGONAL MSUB 022
C MSB — SAME AS MSA EXCEPT FOR MATRIX B MSUB 023
[ MSUB 024
c REMARKS MSUB 025
[d NONE MSUB 026
c MSUB 027
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED MSUB 028
C LoC MSUB 029
C MSUB 030
[ METHOD MSUB 031
C

C

C

IS THEN PERFORMED.
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Cc _ THE FOLLUWING TABLE SHOWS THE STORAGE AODE OF THE GUTPUT MSUB 035
c  MATRIX FOR ALL COMBINATIGNS OF INPUT MATRICES MSUB 036
C . - A B ] MSUB 037
c R _GENERAL GENERAL GENERAL MSUB 038
c._ _ GENERAL SYMMETRIC GENERAL MSUB 039
c e thERAL DIAGONAL GENERAL MSUB 040
. C T U SYMMETRIC GENECRAL GENERAL MSUB 041
‘Eﬁtuu ) ~ SYMMETRIC SYMMETRIC SYMMETRIC MSUB 042
< i __SYMMETRIC DIAGONAL SYMMETRIC MSUB 043
[ ) DIAGONAL GENERAL GENERAL MSUB 044
L . ~  DIAGONAL SYMMETRIC SYMMETRIC MSUB 045
[ _ DIAGONAL DI AGONAL DIAGONAL  MSUB 046
c__ e MSUB 047
C ‘.......Q.'.'.....'...'..O.'......‘....IO......CCO..'.Q...OOQQOCQQMSUB 048.
/1 " EXEC FORTRAN_ .
T SUBROUTINE MPRD ~__MPRD 0C4
£ e e ____MPRD 005
c . CMULTIPLY TwU MATRICES YO FORM A RESULTANT MATRIX _.MPRD_00T
c_ . e e MPRD 008
C__  _USAGE B MPRD 009
C ~ CALL MPRDZA;ByRyNyMyMSA,MSB,L< MPRD 010
c . ) MPRD 011
€ DESCRIPTION OF PARAMETERS . MPRD 012
c_ - NAME Of FIRST INPUT MATRIX - MPRD 013
c - NAME OF SECOND INPUT MATRIX MPRD 014
L - NAME OF QUTPUT MATRIX MPRD 015
C  NUMBER GF ROWS IN A AND R MPRD 016
C 'NUMBER OF COLUMNS IN A AND ROWS IN B MPRD 017
< - ONE Dl§lj NUMBER FOR STORAGE MODE OF MATRIX A MPRD 0138
Lo B, 0. = _GENERAL MPRD 019
¢ 1S SYMMETRIC MPRD 020
Cc B 2 - DIAGONAL MPRD 021
c MSB - SAME AS MSA EXCEPT FOR MATRIX B MPRD 022
- Cc L - NUMBER OF COLUMNS IN 8 AND R MPRD 023
w9 O MPRD 024
< . _ REMARKS MPRD 025
€ MATRIX R _CANNOT BE IN THE SAME LUCATION AS MATRICES A OR MPRD 026
c NUMBER CF COLUMNS UF MATRIX A MUST BE EQUAL TO NUMBER OF ROWMPRD 027
[ UF MATRIX B MPRD 028
R MPRD 029
< SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED MPRD 030
c. . Lac MPRD 031
C_ o MPRD 032
C  _ __METHOD MPRD 033
c_ THE M 8Y L MATRIX B8 IS PREMULTIPLIED BY THE N BY M MATRIX A MPRD 034
C _ ANDC THE RESULT IS STORED IN THE N BY L MATRIX R. THIS IS A MPRD 035
C ROW INTG COLUMN PRODUCT. MPRD 036
C " "THE FOLLOWING TABLE SHOWS THE STORAGE MODE OF THE QUTPUT MPRD 037
c __MATRIX FOR_ALL COMBINATIONS OF INPUY MATRICES MPRD 038
G A B R MPRD 039
L GENERAL GENERAL GENERAL MPRD 040
c i _ GENERAL SYMMETRIC GENERAL MPRD 041
C GENERAL DIAGONAL GENERAL MPRD 042
C L SYMMETRIC GENERAL GENERAL MPRD 043
[o SYMMETRIC SYMMETRIC GENERAL MPRD 044
C SYMMETRIC DI AGONAL GENERAL MPRD 045
c - DIAGONAL GENERAL GENERAL MPRD 046
C DIAGONAL SYMMETRIC GENERAL MPRD 047
C DIAGONAL DIAGONAL DIAGONAL MPRD 048
C MPRD 049
C - MPRD 051
SUBROUTINE MPRDZA,BsR4N,MyMSA,MSB4L< MPRD 052
o DIMENSION A1<,BE1<yRE1IL MPRD 053
e DOUBLE PRECISION A,B,R
yC MPRD 054
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c SPECIAL CASE FOR DIAGONAL BY DIAGONAL MPRD

C MPRD
MS #MS A* 1OEMS B ' MPRD

o IFEMS—-22< 30,10,30 _MPRD
10 DO 20 1#1,N MPRD

20 RII<K#ARI<C*¥BRIC MPRD
RETURN MPRD

3 ‘ MPRD
C ALL GTHER CASES MPRD
C MPRD
30 IR#1} MPRD

DO 90 K#l.l MPRD

DO SO J#1,N MPRD
RIIRCHO MPRD

DO 80 I#l,M MPRD
IFEMS< 40,460,440 MPRD

40 CALL LOCRJsIs1AWNsMyMSAL MPRD
CALL LOCRXIKoIByMyLyMSBL MPRD

— . IF3IAC 50,480+5C MPROD
50 IF18< 70,80,70 MPRD

60 TASN*ZI-1<8J MPRD
IB#M*IK~1<E1 MPRD

70 RIIRCHRIIRKEATIA<*BEIBL MPRD

80 CONTINUE MPRD
.90 IR#IRL] MPRD

RETURN MPRD
END MPRD

/7 EXEC _FORTRAN

C SUBROUT INE MTRA MTRA 004
c i MTRA 005
C PURPQOSE. i MTRA 006
C TRANSPOSE A MATRIX MTRA 007
C MTRA 008
< USAGE MTRA 009 .
c CALL MTRAZAsRsNsMsMS< MTRA moﬂ
c MTRA O11
c DESCRIPTION OF PARAMETERS MIRA 012
3 A - NAME OF MATRIX TO BE TRANSPOSED MTRA 013
C R = NAME OF OUTPUT MATRIX MTRA 014
C N = NUMBER OF ROWS OF A AND COLUMNS OF R MTRA 015
C M -~ NUMBER OF COLUMNS OF A AND ROWS OF R MTRA 016
¢ MS - ONE DIGIT NUMBER FOR STORAGE MODE OF MATRIX A ZAND R< MTRA 017
C 0 = GENERAL MTRA 018
C 1 = SYMMETRIC MTRA 019
¢ 7 = DIAGONAL MTRA 020
C MTRA 021
C REMARKS MTRA 022
C MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX A MTRA 023
c MTRA 024
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED MTRA 025
C MCPY MTRA 026
c MTRA 027
C METHOD MTRA 028
C TRANSPOSE N BY M MATRIX A 7O FORM M BY N MATRIX R BY MOVING MTKA 029
C EACH ROW OF A INTO THE CORRESPONDING COLUMN OF R. IF MATRIX MIRA 030
C A IS SYMMETRIC OR DIAGONAL, MATRIX R IS THE SAME AS A. MTRA 031
C MTRA 032
c ...‘....'......"....'....'...'..‘........'..‘.‘..."..'.......‘..MTRA 033

114




115

1/ EXEC_ FORTRAN o
c SUBROUT INE MCPY MCPY_0C4
¢ ____MCPY 005
C PURPQSE ...MCPY_QQC6
[ COPY ENTIRE MATRIX MCPY 007
C MCPY 008
- USAGE MCPY 009
CALL MCPY ZAZRyN,MyMS< MCPY G10
“MCPY 011
[ CESCRIPTICN OF PARAMETERS MCPY 012
C A - NAME OF INPUT MATRIX MCPY 013
[ R ~ NAME OF QUTPUT MATRIX MCPY 014
C N — NUMBER OF ROWS IN A OR R MCPY 015
[ M - NUMBER OF COLUMNS IN A OR R MCPY 016
C MS - ONE DIGIT NUMBER FOR STORAGE MODE OF MATRIX A %AND R< MCPY 017
c 0 — GENERAL MCPY 018
C 1 — SYMMETRIC MCPY 019
C 2 - DIAGONAL MCPY 020
[ MCPY 021
[ REMARKS MCPY 022
C NONE MCPY 023
[ ‘ MCPY 024
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED MCPY 025
C LOC MCPY 026
C MCPY 627
C MET HOD MCPY D28
C EACH ELEMENT OF MATRIX A IS MOVED TO THE CORRESPONDING MCPY 029
[ ELEMENT OF MATRIX R MCPY 030
C MCPY 033
SUBROUTINE MCPYZA o RyNyMyMS< MCPY 034
- DIMENSION A%1<,R%1< MCPY 035

DOUBLE PRECISIGN A,R

COMPUTE VECTOR LENGTH, [T MCPY 037
MCPY 038
CALL LOCIN M, IT,NyM,MS< MCPY 039
MCPY 040
COPY MATRIX MCPY 041
MCPY 042
DO 1 I¥I,LIT MCPY 043
RII<HAZIL MCPY 044
RE TURN MCPY 045
END MCPY 045
// EXEC FGRTRAN -
C SUBROUTINE MATA  MATA 0°4
C ] T MATA 005
C PURPOSE _.MATA 006
[d PREMULTIPLY A MATRIX BY ITS TRANSPOSE TO FORM A B ~ MATA 0C7
C SYMMETRIC MATRIX . _ MATA 0C8
[ MATA 009
C USAGE MATA 010
C CALL MATAZA,RyNyM,MS< MATA. O11
[ MATA 012
[ DESCRIPT IGN OF PARAMETERS B MATA 013
[ A - NAME OF INPUT MATRIX MATA Ol4
[ R - NAME OF OUTPUT MATRIX MATA 015
[ N - NUMBER OF ROWS IN A MATA 016
C M - NUMBER OF COLUMNS IN A, ALSO NUMBER OF ROWS AND MATA 017
C NUMBER OF COLUMNS OF R. MATA 018
c MS - ONE DIGIT NUMBER FOR STORAGE MODE OF MATRIX A MATA 019
C 0 - GENERAL MATA 020
C L - SYMMETRIC MATA 021
c 2 - DLAGONAL MATA 022
MATA 023




£ REMARKS MATA 024
c MATRIX R CANNOT BE [N THE SAME LOCATION AS MATRIX A MATA 025
C MATRIX R IS ALWAYS A SYMMETRIC MATRIX WITH A STORAGE MODE#1 MATA 026
c MATA 027 |
c SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED MATA 028
C Loc MATA 02,
c MATA@
C METHQOD MATA O
[ CALCULATION OF ZA TRANSPOSE A< RESULTS IN A SYMMETRIC MATRIXMATA 032
c REGARDLESS OF THE STORAGE MODE OF THE INPUT MATRIX. THE MATA 033
c ELEMENTS OF MATRIX A ARE NOT CHANGED. MATA 034
[ MATA 035
Cv-- ...Q..‘.....'.............O..QO....0.0,0."OO..I.....-...'.......Q.MATA 036
/ EXEC FORTRAN
SUBROUTINE ARRAY ARRAY004
ARRAY(Q05
PURPOSE ARRAY006

CONVERT DATA ARRAY FROM SINGLE TO DOUBLE DIMENSION OR VICE ARRAY0G7Y
VERSA. THIS SUBROUTINE IS USED TO LINK THE USER PROGRAM ARRAY008
WHICH HAS DOUBLE DIMENSION ARRAYS AND THE SSP SUBROUTINES ARRAYQ09

/
C
c
[+
[
C
C
C WHICH OPERATE ON ARRAYS OF DATA IN A VECTOR FASHION. ARRAYO10
C ARRAYO11
C USAGE ARRAYO012
C CALL ARRAY ZMODE oI yJoNsMyS,0< ARRAYO13
[+ ARRAYOl 4
C DESCRIPTICN OF PARAMETERS ARRAYO15
C MODE — CODE INDICATING TYPE OF CONVERSION ARRAY016
C 1 - FROM SINGLE TO DOUBLE DIMENSION ARRAYOL17
c 2 — FROM DOUBLE _TO SINGLE DIMENSION ARRAYO18
[ 1 — NUMBER OF ROWS IN ACTUAL DATA MATRIX ARRAYO19
C J ~ NUMBER OF COLUMNS IN ACTUAL DATA MATRIX ARRAY020
C N — NUMBER OF ROWS SPECIFIED FOR THE MATRIX D IN ARRAYO021
C DIMENSION STATEMENT ] ARRAY022
c M ~ NUMBER OF COLUMNS SPECIFIED FOR THE MATRIX D IN ARRAYOS
C DIMENSION STATEMENT ARRAY
C S — IF MODE#1, THIS VECTOR CONTAINS, AS INPUT, A DATA ARRAY025
c MATRIX OF SIZE 1 BY J4 IN CONSECUTIVE LOCATIONS ARRAY026
[4 COLUMN-WISE. [IF MODE#2, IT CONTAINS A DATA MATRIX ARRAY027
[ OF THE SAME SIZE AS OUTPUT. THE LENGTH OF VECTOR S ARRAY028
c IS 1J, WHERE IJ#I%J. ARRAY029
C D — IF MODE#1, THIS MATRIX ¥N BY M CONTAINS, AS OUTPUT, ARRAY030
C A DATA MATRIX OF SIZE 1 BY J IN FIRST I ROWS AND ARRAYO31
C J COLUMNS. IF MODE#2, IT CONTAINS A DATA MATRIX OF ARRAY032
[ THE SAME SIZE AS INPUT,. ARRAY033
[ ‘ ARRAY034
[4 REMARKS ARRAY035
C VECTOR S CAN BE IN THE SAME LOCATION AS MATRIX D. VECTOR S ARRAY036
C IS REFERRED AS A MATRIX IN OTHER SSP ROUTINES, SINCE IT ARRAY037
C CONTAINS A DATA MATRIX. ARRAY03 8
c THIS SUBROUTINE CONVERTS ONLY GENERAL DATA MATRICES ISTORAGEARRAY039
C MODE OF 0<. ARRAY040
C ARRAY041
C SUBROUTINES AND FUNCTION SUBROUTINES REQUIRED ARRAY042
C NONE ‘ ' ARRAY043
C . ARRAY044
C METHOD ARRAY045
[ REFER TO THE DISCUSSION ON VARIABLE DATA SIZE IN THE SECTIONARRAY046
C DESCRIBING OVERALL RULES FOR USAGE IN THIS MANUAL,. ARRAYO047
€ ARRAY048
[+ ‘ ARRAY050
SUBROUTINE ARRAY ZMODE.I.JyNgMyS,D< ARRAYO0S1
DIMENSION S$%21<,DZ%21< ARRAY052

DOUBLE PRECISIGN S4D

NISN-1 Anamﬁ
C ARRAYO
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g TEST TYPE CF CCNVERSIGN ARRAYO056
_ IFIMODE-1< 100, 100, 120 233::825
C ARRAY059
C CONVERT _FROM SINGLE TO DOUBLE DIMENS ION ARRAY060
c .. ARRAY061
-, 100 IJ#l*JE1 ARRAY0D62
& NM#NEJE L ARRAY06 3
DU 110 K#l1,J ARRAY06%
NMENM-NI ARRAY065
DO 110 L#1,I ARRAY066
IJ#lJ-1 ARRAY067
NM#NM-1 ARRAY068
110 DINM<#SZTIJL ARRAY069
GG TO 140 ARRAYO70
¢ ARRAYO71
[ CONVERT FROM DOUBLE TO SINGLE DIMENSION ARRAY072
C ARRAYO073
120 1J4G ARRAYO74
NM#0 ARRAYOT5
DO 130 K#l,J ARRAYO76
DO 125 L#1,I ARRAYO77
1J#1JEl ARRAYO78
NM#NME 1 ARRAYO79
125 SZIJ<#DINMS ARRAY080
130 NM#NMENI ARRAYO081
C ARRAY082
140 RETURN ARRAYO83
END ARRAY084
/7 EXEC FORTRAN
[ SUBROUTINE LOC LOC 004
c LOC_ 005 -
c PURPOSE LOC 006
[ COMPUTE A VECTOR SUBSCRIPT FOR AN ELEMENT IN A MATRIX OF LOC 007
& SPECIFIED STORAGE MODE LOC 008
LOC _ 0C9
C USAGE LOC 010
c CALL LOC ZI1sJy IRyNyM,MS< LOC 011
[ _10C_ 0312 .
[ DESCRIPTION OF PARAMETERS LOC 013
C I ROW NUMBER OF ELEMENT LOC 014
[ J - COLUMN NUMBER_GF ELEMENT LoC 015
3 IR - RESULTANT VECTOR SUBSCRIPT LOC 016
[ N - NUMBER OF ROWS IN MATRIX LaC_ 017
c M~ NUMBER OF COLUMNS IN MATRIX _10Cc 018
[ MS - ONE DIGIT NUMBER FOR STORAGE MODE OF MATRIX Loc 019
c 0 — GENERAL LOC 020
C 1 — SYMMETRIC LOC o021,
[ 2 — DIAGONAL LOC 022 -
[ LOC 023
C REMARKS LOC 024
c NONE LOC 025
[ , LOC 026
C SUBROUT INES AND FUNCTION SUBPROGRAMS REQUIRED LOC 027
C ~ NONE LOC 028
[ . LoC 029’
[ METHOD L0C 030 ;
c MS#0  SUBSCRIPT IS COMPUTED FOR A MATRIX WITH N*M ELEMENTS LOC 031 3
C IN STORAGE IGENERAL MATRIXZ LOC_ 032 A
[ MS#1  SUBSCRIPT IS COMPUTED FOR A MATRIX WITH N*IN&1</2 IN LOC 033 ]
[ STORAGE SUPPER TRIANGLE OF SYMMETRIC MATRIX<. IF L0C 034 :
C ELEMENT IS IN LOWER TRIANGULAR PORTION, SUBSCRIPT IS LOC 035 i
[4 . CORRESPONDING ELEMENT IN UPPER TRIANGLE. _LOC 036 :
» MS#2  SUBSCRIPT IS COMPUTED FOR A MATRIX WITH N ELEMENTS  LOC 037! .
‘hﬁ IN STORAGE YIDIAGONAL ELEMENTS OF DIAGONAL MATRIX<. LOC 038] 3
4
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¢ ""T7IF ELEMENT LS NOT ON DIAGONAL %AND THEREFORE NOT_IN _LOC

c " STORAGE<y IR IS SET TGO ZERO. LOC

c - LacC

C ....Q...0.00‘..O.....O..‘Q..I‘...‘..Q.....l..‘l"..‘........O..I..LDC

/7 EXEC__ FORTRAN -

~_SUBROUTINE READ (AsM)

___ _DOUBLE PRECISION A

DIMENSION A(10,10) . ___EA230

1 FGRMAT (4F18.12)

DG 10 I=1.M

107 READ(iy 1) (ALI, 31, J=T;H)

C "READ A MATRIX WITH M _ROWS AND M _COLS BY ROWS

RETURN

END




APPENDIX X

CONVERGENCE OF THE LINEAR SYSTEM

We are given a linear system described by equation
Y = AY + AM

and cost functional

C = f m(YtY + MtM)dt,
0

with optimal controller described by
P = KY
M =-BtP,

where it is known that the auxiliary variables P must satisfy

p =-Alp - v, P(x) = 0.

It is desired to investigate the convergence of the rule set forth in Section II for adjusting
the computed values of &, B, and 2(, which are estimates of A, B, and K.
The adjustment rules are as follows.
et

Y- ay - fM = &

and .
XY + atP + Y = &,
We note that
a|&i] say
dajj day sgn [eli] = Y¥j sen [811]

and that similar results obtain for the other variables.

It appears that an appropriate gradient method might be to set
éij = -ry; sgn &, r >0,

since such a form would seem to tend to drive each of the entries in the matrices &, 8, and X~
toward their respective values in A, B, and K. To investigate whether such is actually the
case, let us state formally the following expression.

Y-QY-BM-'Y+AY+AM=£1
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Rearrangement yields that

A-a)Y+B-/AM= &.

From the fact that M = -Bt7<Y in the operating system, one can obtain that
(A-a)+ (- pfXY = & o

It is going to be shown that the magnitude of £1 as given by the above equation almost
satisfies the requirements for a Liapunov function for the parameter adjustment system, and
that some additional peculiarities tend to produce convergence along somewhat unusual tra-
jectories. Note first that various values of Y are presented to the system from time to time,
and presumably span the Qy. Note then that 81 is continuous and has continuous derivatives
everywhere except where & is zero. The discontinuity in the derivatives can be removed by
postulating that in every region close to é'l = 0 the function & 1 is replaced by an appropriate
"rounded" function that satisfies the necessary continuity conditions ¢&; on the boundaries of
the region. This rounded region can be arbitrarily small, and in the limit clearly goes to 81.
Thus £, satisfies the continuity requirement of a Liapunov function in the limit. & does not
satisfy the requirement that &; = 0 only at the point A=, B=p8. Instead we see that

(A-a)+®B-pstx=0
dictates only that

Q= A+ (B - B AX (68)
i.e., for each X{; A and B, Qis a quadratic function of 8.

Suppose, however, that X takes on various values from time to time. For a sufficiently
wide range of values X', A= & and B = B are clearly the only values of & and B that will
always satisfy Equation 68. Examination of the one-to-one case (see Figure 60 in Appendix
VII) yields some insight into the situation. One sees in this figure that two values of 3 give
two é’l = 0 curves, having common points at a=2a, B=b, and 8=0. If the values of «a and
B are driven along a trajectory that uses the gradient method previously discussed and that
alternates between the two values of 5, the system will converge for all initial values of a
and B in the right-half plane, excluding the B-axis. This follows from the fact that for X' # 0,
the terms (A - @) and (B - PB) in Equation 68 ensure that a component of the motions of o
and B will be in the directions of a and b at each step in the alternation procedure. The fact
can also be confirmed readily by systematically plotting vectors corresponding to

-ky sgn &4
-kbky sgn &4

a

b

in the various regions of the figure. If the above two-dimensional argument holds for larger
systems, they too will converge. Although of considerable interest, this problem was not
pursued, since it was not directly pertinent to the main argument. The various systems that
were simulated did converge, which was considered adequate for the present purpose.
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APPENDIX X

LEARNING OF THE EXCLUSIVE-OR FUNCTION IN RATS

The hierarchy implementation discussed in Section III offers an explanation of interference
phenomena that are observed in psychological experimentation.

An experiment was performed at Goodyear Aerospace with company funds to test whether
observed behavior would match behavior predicted from a hierarchy method for generating the
state identification function. The results wére quite satisfactory. They are included here to
demonstrate the agreement of the algebrai® structure with experimental results.

The theoretical conclusions concerning adjustment of hierarchies of threshold elements
discussed in the text were tested by an animal experiment. | The authors were assisted in con-
ducting the experiment by Messrs. R. H. Kause and J. R. Davis (Reference 31).

The subjects (Ss), 12 albino rats from three to five months of age, had not been used in
any previous experiments. The apparatus used was a single choice-point Y-maze (Figure 74).
Guillotine doors, which are visible on the figure, separated the various sections of the maze.
Dimensions of the maze are shown on the photograph. Various portions of the maze were
painted white, gray, and black. Two 3v flashlight bulbs at the choice-point were operated by
toggle switches beside the start box.

Prior to experimentation, Ss were reduced to 80 percent ad libitum body weight by 48-
hour food deprivation followed by limited daily feedings for 10 days (Purina lab chow). After
weight reduction the Ss ranged from 256 to 326 grams. Weights were held to within +1 to 3
grams of the calculated 20 percent weight reduction during the experiment.

‘ Ss were familiarized with the maze situation for 15 minutes each on each of two succes-
ﬁve days before training. On the first day, all guillotine doors were removed, and Ss were
aced in the start box. Since most Ss went to the black arm of the maze, on the second day
they were placed in the white goal box.

The Ss were divided into two squads of six animals each. All received 15 training trials

per day for twenty days. Rewards were four food pellets. To counterbalance the inherent
side preference, the reward locations were reversed between the two squads; as shown later:

Reward Locations

Squad 1 Squad 2
One Light L R
0, Two Lights R L

During each trial, subjects were kept in the starting box for 15 seconds and allowed to
remain in the goal box for 30 seconds or until food was consumed, whichever was longer. Upon
completion of each trial Ss were returned to their cages, where water was available. Approxi-
mately 25 to 30 minutes separated the trials for each S, After the 20-day training period, Ss
were randomly divided into two groups. Both groups were run an additional eight days. Group
1 received 50 percent reinforcement of correct responses; Group 2 received no reinforcements.
After the eight-day interval, Group 1 was run an additional eight days with no reinforcement.

The histories of percentages of correct responses to each discriminable light condition
e shown in Figure 75, together with theoretical curve fits. The interference phenomenon pre-
t_rted in Section III for a hierarchy is clearly seen on the figure.
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Figure 74. Single-Choice Point Y-Maze for Testing Learning of the Exclusive-Or Function

If one assumes that the strength of an S-R connection is proportional to the probability
of the response, and that the rate of change of the strength is proportional to the percentage
of responses that are mistakes, one obtains an exponential described by

p = ky (p-p). p0) = 0.5

where p is the asymptote, p is the instantaneous probability of correct response on the one-
light case, and k; is the inverse time constant. For the 0, two-light case one can write that

q = kg(a-q - fky(p-p). q0) = 0.5

where kg is the inverse time constant, f is a positive constant, and q is the asymptote. The
second term of the right-hand member expresses the intuitive notion that changes in the one-
light probability are reflected as interference with the 0, two-light probability. One would
predict intuitively that the value of f might be 2, since twice as many inputs are present for
the two-light case, and that ko might be about the same as ky.

A standard non-linear regression computer program was used for curve fitting. Value )
obtained were
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Figure 75. History of Percentages of Correct Responses
versus Theoretical Curves

p = 0.88
k1= 0.35/day
q = 1.009
kg= 0.205

f = 2,18

The asymptote q is clearly slightly in error, since 1.0 is its maximum possible value.
However, if the data had been extended beyond 20 days with no change in reinforcement sched-
ule, the computed value of q would have been more realistic.

The experimental results support the hypothesis that a decision-making hierarchy of at
least two levels models the discrimination learning task of the experiment. Further experi-
.~ mentation with logic functions requiring three or more separating planes could determine
Wwhether the hierarchy instrumentation scheme is a satisfactory model for more sophisticated
tasks.
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APPENDIX XI

MARKOV PROCESSES

The discussion presented here shows ways in which a cost functional can be defined as
an expectation for Markov processes. Although the implications of the derivation have not
been completely investigated, a hand-computed example indicates that further research along
these lines might be fruitful.

Consider a system that has a finite number of states, 24,29 . . . , z;. At any instant
in time it occupies one (and only one) state. There exists a vector for each z;, the components
of which are in order the conditional probabilities that at the next instant of time the system
will occupy any particular state of the n possible states. The system is described by annx n
matrix, P Pij where bij is the conditional probability that the system will occupy state z;
at time t + 1 given the fact that the system is in state z; at time t (Reference 32).

From the above description the following formulation can be written. Assume that the

respective probabilities that the system is in one or another of its possible states at time t be
represented by a vector

Z = col(p(z1), p(z3), . . ., p(zp)).
From Bayes theorem,

#Z(b) = 2 (blag) + Z (b ag) + ... +70(b|an) ,
one can write that

Z(t+1) = P-Z(t) .

Such systems have been extensively studied. The above system is free, i.e., it receive
no interference from an outside source, vq, Vg, « + 5y Vi which alter the probabilities that
various transitions will occur, i.e., Py, i’z, .+« «y Pp, such that

(Pk)ij = (state i follows state j | input k is present),

If the probabilities of the various inputs occurring are known, such a system can be re-
duced to a free Markov process by the fact that

pjj = (Pl)ij (vllzj) + (Pz)ij (valz) + . ..+ (Pm)ij (vm|z]-) .
We wish to show that if costs are associated with the various transitions or with occupying

certain states, then optimal input sequences are defined under some circumstances.

We consider first a free Markov process. It is well-known that the probability that the
process will occupy a certain given state after a very long time is given by the solution to
setting P(t + 1) = P(t), yielding,

ZI(I-P) =

where (Zj1,Z1) is normalized to 1. This eigenvector for the unity eigenvalue of P gives, if
unique, the probabilities of occupying any state after a long time, starting from any state. I
the eigenvector is not unique, the probabilities after a long time are dependent on the starting
state.
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Assume now there is a cost,
D = COl(dll,dlz, o e ey dln’dzl’ o e ey dnn) ,

J associated with each transition between states. Then the expected cost at each instant of time

es m n n
Z Z Z dij(Pyyy Py 2j) Plzy) .
k=1

i=1 j=1

$1

Minimization of ¢ yields a schedule of probabilities P(yj z;) which will produce the lowest ex-
pected cost at each instant in time. To the authors' knowledge, no general computational rule
exists for minimization of such an expression, other than exhaustive computation.

By analogy with some results of Game theory, it seems likely that the probabilities
P(yklzi) would tend to become selections, in that for each state zj, some certain y; would
usually be the ""best' response and its probability should be maximized. As an alternative to
the above formulation, one can assume that costs C = col(cy,¢2, . . . , ¢,) , are associated
with occupying respectively each of the states, and that transitions do not contribute to costs.
The expected cost at each instant is then

92 = <C,Zp>

and symbol probabilities can be chosen to minimize ¢. Both these formulations lead naturally
to the concept that the "desired' state is simply the one that has the highest probability of
occupancy when ¢ is minimized.

In a third possible formulation, costs could be assigned both to state occupancy and to
transitions. It is immediately apparent that one should minimize

¢ = ¢1+¢g
by appropriate selection of the input symbol probabilities,

None of these formulations has been studied in any detail in this research. Some relative-
ly crude hand-computed examples, which are discussed next,indicate that the general results
obtained for the deterministic case are still applicable.

In the discussion of specific methods of instrumenting ''learning'' procedures presented in
Section III, one idea that is used is that the controller can "explore' the environmental be-
havior more or less randomly, and '"learn" by changing the conditional probabilities of its
responses.

The major result of the linear investigations presented earlier was to illustrate the
necessity for the mappings

V: SXD—R

I1:s8t—D
to be non-trivial in D. The usual picture given in behavior theory texts is one of stimuli mapping
directly to responses. Although motivation is mentioned, its role is not clear. The following
paragraphs outline how the concepts might be extended to Markov processes.

We assume that a process to be controlled is a finite state Markov process described by
a matrix B. The elements bjj are respectively the probabilities that state 1 will follow state j.
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Figure 76. Example of Markov Processes

The controller is able to alter certain of the elements bjj. Rt is desired to find those
values of the bjj that cause the process to spend the maximum “percentage of the time in one
particular state, selected a priori. The specific example discussed below illustrates why the
empirical rules that were first tested failed, and why an approach based on the methods of the
present analytical model promise utility. A process (Figure 76) is described by the matrix:

[ X{ ag 0 by o ]
by Xgt+e bg 0 ag
B = e 0 X3 0 0
aq 0 ag e+Xy bg

i 0 by e ay e+x5J

where a4 and b; are the probabilities that inputs a and b will occur in state i, and e is the prob-
ability that the environment will make a ""spontaneous' transition. The Xi's are chosen so as
to make each column add to 1.
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Assuming that the probabilities of each of the transitions between states on the figure
are 0.1, we obtain that

[ 0.7 0.1 0 0.0 0
. 0.1 0.8 0.1 0 0.1
@v B = 0.1 0 0.7 0.1 0

0.1 0 0.1 0.8 0.1

K 0.1 0.1 0.1 0.8 |

The eigenvector corresponding to the unity eigenvalue is computed to be

1/6 0.19
1/4 0.25 |
S = 1/18 = 0.05
1/4 0.25 %
| 5/18 | 0.28 | |

It was shown previously that this eigenvector (normalized) is the vector of the probabilities
that after a long time the process will be in each of the states.

In the empirical model discussed previously, the weights associated with the various
input to an element and its particular output were to become more positive if past history in-
dicated that production of that output tended to remove the inputs. If,on the other hand, produc-
tion of an output tends to increase the input, the input weight would tend to become negatlve
Let a, B, and y be the signals from the process that are inputs to the controller. One can list
~vhat effect each of the two controller outputs will have on each of the three process signals,
kgarting in each of the five states, in tabular form (Table II.) A + 1 corresponds to increasing
e signal, a -1corresponds to decreasing it.

Table II. Changes in Inputs Caused by Various Control Signals in Various
States of the Markov Process in Figure 76.

State Control a B y
0 a 0 1 0
b 1 0 0
b 0 1 1
a 0 1 -1
2 b 1 0 -1
3 a 1 0 1
b 0 -1 0
a 0 -1 -1
4 b -1 0 -1

- If each of these changes is multiplied by the probability of occupying the particular state
. which it occurs and the values are summed, we obtain
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Control a B y

a 0 -1/18 ~1/12
b -1/18 0 1/12

This last matrix is clearly proportional to the long-term determination as to whether a weight
should be increased or decreased from its initial value by the empirical rule.

An illustration of the flaw in this empirical rule is given by the following crude example
of such a rule. Assume that as a result of such observations over a period of time, some
mechanisms alter the probabilities of occurrences of the various transitions so as to increase
the probabilities of those transitions that usually lead to a reduction in the input signals (and
also to decrease the probabilities of those transitions that cause increases in the input signals).
We assume as a crude approximation that those transitions that show correlations of -1/18
have their probabilities increased by 0.2 (from 0.1 to 0. 3), and that those showing the correla-
tions of -1/12 have their probabilities increased by 0.3 to 0.4. If multiple correlations are
present, the transition probability is increased by the sum of all the indicated transition prob-
ability changes. The new matrix of the Markov process becomes

0.7 0.1 0 0.1 o |
0.1 0.6 0.4 0 0.5
B' = 0.1 0 0.1 0 0
0.1 0 0.4 0.6 0.5
0 0.3 0.1 0.3 0 i
with eigenvector @
180
1 270
S' = 20
904 270
164

We note that the probability of occupying the 3-state is considerably reduced, but that
the probability of occupying the 0-state is not significantly increased. Further, the changes
in transition probabilities that might result from the new correlation matrix will not significant-
ly alter this qualitative result.

Simple computation of weights of stimuli on responses does not appear from this example
to be an effective method for generating appropriate trajectories.

Consider now a scheme which includes the idea of a '"drive reduction, ' where the drive
level in any process state is the number of 1's in the output of the process when in that state.
Table II lists the "'drive reduction' produced by each of the possible outputs when in each of the
possible states, and whether any particular input is present in that state.
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Table III. Drive Reduction

State Control Drive Change Sigi:llatl:atp Iéf:tint
0 a Ii 000
. a ;; 100
9 2 8 001
9 a ff 010
4 a :3 111

One can first multiply each of these possible ''drive changes' by the probability of that
state occurring, and can then sum the drive changes which will be seen when each input is
present, yielding

& Control a B ' Y

a -29/36 -1/18 -5/9
b - 1/18 | -29/36 -5/9

Note the drastic change produced in the 11 and 22 terms by this method of computation. Ex-
amination of the sequential machine shows that an acceptable logic function for generating
optimal trajectories is

a aV vy

b=8 Vy

where the ambiguity (both a and b should appear) in state 4 is resolved either way.
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