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IMPROVED LINEAR AXISYMMETRIC SHELL-FLUID MODEL
FOR LAUNCH VEHICLE LONGITUDINAL

RESPONSE ANALYSIS*

J. 5., Archer**
C. P. Rubipk**

TRW Systems
Redondo Beach, California

An improved linear analytical model is developed for the calculation of
axisymmetric launch vehicle longitudinal vibration modes and steady-
state response to applied axisymmetric harmonic loads, This approach
utilizes a finite element technique to construct the total vehicle stiffness
and mass matrices by subdividing the structureinto a set of (1) axisym-
metrie shell components (2) fluid components and (3) spring-mass
components, The total vehicle characteristics are obtained by super-

position of the stiffness and mass matric2s of the individual shell, fluid
and spring-mass components, General expressions for the stiffness and

mass matrices of conical and ellipsoidal shells of revolution are derived
taking into account the initial stresses.The fluid mass matrix is derived
using fluid motions which are consistent with the shell component
distortions. The natural frequency solution of a typical launch vehicle
configuration is presented for illustration and contrasted with the results
obtained from a lumped spring-mass model,

NOTATION****

gl , a2 ,a3 Identification numbers for the shell components which enclose a
fluid component

[A] (Uxt = [ok n] Polynomial matrix associated with u{¢)

[B] (Vxih) [bﬂ,n]_ Polynomial matrix associated with vy(£)
Cin 2 Cop Orthotropic stress-strain coefficients

Cxa Cqgr Caa Orthotropic moment-curvature coefficients

[D I] (2x 147 [D?_] (2x11) Matrices used in the definition of the rotation vector {, }

e General identification number for vehicle components which may
stand for aor b

H  Total fluld level measured positive upward from the base of a2

[K](N xN )
c ¢ Total launch vehicle stiffness matrix

*This work was performed under NASA Contract NAS-1-4351.
+*Manager, Dynamics Department
*xMember of Technical Staff
*kkxOnly quantities which appear more than once or are undefined in the text are included in

the Notation Section,
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Stiffness matrix for shell component a associated with the system
coordinates

Stiffness matrix fcr shell component a associated with the local
coordinates ’

Stiffness matrix of spring-mass component ¢ associated with the
system coordinates

Shell meridional and hoop curvatures, respectively
Length of conical shell

Height of shell a3

Total mass matrix for the launch vehicle

Mass matrix for shell component a associated with the system
coordinates

Mass mairix for shell component a associated with the local
coordinates

Mass matrix for fluid component b associated with the system
coordinates

Mass matrix for fluid component b associated with the local
coordinates

Mass matrix for spring-mass component ¢ associated with the
system coordinates

Total number of system coordinates used in the vehicle model
Initial meridional stress

Circular frequency of the vehicle

Applied load vector

Radial distance from the vehicle longitudinal axis to each point on
the shell

Radial distance from the vehicle longitudinal axisto each point in
the fluid

Meridional radius of curvature of the shell
Time

Transformation matrix which relates local to system coordinates
in shell component a

Transformation matrix which relates local to system coordinates
in fluld component b

Longitudinal and radial displacement vectors, respectively, for
shell components

Generalized longitudinal and radial displacements, respectively,
for shell components

Longitudinal and radial fluid displacements, respectively where
1SmsW
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U,V Total number of longitudinal and radial system coordirates,
respectively, associated with each shell component

T,V Total number of longitudinal and radial local coordinates,
respectively, associated with each shell component

[U] wxt i [V]( vx 1) Constant matrices used in the definition of the system coordinates

#w The sum of U +V for the three shells surrounding a fluid com-
ponent

X Longitudinal axis of the launch vehicle

{ﬂq} - — Modal vector whose components are the longitudinal, radial and
_ ((U +Vix ') rotational system coordinate displacements for shell component a
{na}(m- +VIx |) Consolidated vector of local coordinates

{ak}m‘, 1y {B.-Q}(V'x ;) Generalized coordinates in the longitudinal and radial directions,
respectively

2’ ‘b Mass densities for shell and fluid components respectively

Ae Transformation matrix relating total system displacements to
component system displacementis

€ ¢ € Meridional and hoop strains, respectively, ror the shell com-
ponents

£ Nondimensional variable desecribing location on each shell com-~
ponent

p Meridional rotation of the shell components

¢ Meridional angle
1.0 INTRODUCTION

This paper describes an improved linear analytical model developed for the calculation of
axisymmetric launch vehicle longitudinal vibratioa modes and steady=-state response to applied
axisymmetric harmonic loads. The detailed equations which have been coded in Fortran 1V for
digital computer solution are contained in Reference 1, Reference 2 is the detailed computer
programming manual for the digital program. The work discussed here was accomplished
under contract to the NASA Langley Research Center.

In the evaluation of launch vehicle behavior, it is necessary to study the response of the
entire vehicle to a wide variety of dynamic loadings to insure the structural integrity and
stability of the system, As a result, much effort has gone into the development of techniques
to caloulate the vehicle response to lateral and longitudinal loadings using distributed and
lumped spring-mass models and techniques for the theoretical and empirical modeling of the
vehicle behavior. Reference 3, for example, discusses the technique of generating a lumped
mass=-spring model for representing the longitudinal dynamic characteristics of liquid propel-
lant boosters with particular emphasis on the method of handling the fluid masses. The tech-
nique is applicable to cylindrical tanks with flexible lower bulkheads and to semimonocoque
cylinders with partially buckled skins. Experimental data, however, indicates that lumped
mass-spring models, including the one discussedin Reference 3, are unsatisfactory in several
respects, Among other things, accurate representation of important structural shell character-
istics and realistic coupling of the fluids with the detailed structural behavior of tank walls and
bulkheads are omitted.
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The approach described herein overcomes to a large extent the above noted deficiencies.
A finite element technique is utilized to constrt ct the total launch vehicle stiffness matrix K
and mass matrix M by subdividing the prototype : tructure into a set of (1) axisymmetric shell
components, (2) fluid components, and (3) spring-mass components, In this way, it is possible
to represent as separate shell units the fairing, interstage structure, bulkheads, tank walls and
engine thrust structure, and to conveniently provide for the inertial and stiffness character-
istics of equipment, engines and vehicle supporting structure, Fluid motions are accounted for
in a manner consistent with the shell component distortions, neglecting free surface effects,

The stiffness and mass matrices for the complete launch vehicle are obtained by super-
position of the stiffness and mass matrices of the individual shell, fluid and spring-mass
components which are computed using a Rayleigh~Ritz approach, The superposition technique
assures displacement compatibility and force ecuilibrium at the interfaces between com-
ponents, After the complete system stiffness and mass matrices have been formulated, dis-
placement boundary conditions are introduced by removing appropriate rows and columns
corresponding to points on the vehicle and its supports which are rigidly restrained from
motion,

The coupled system’s natural frequencies and mode shapes are obtained from the eigenvalue
equation constructed with the total stiffness and mass matrices

[Kl{e}- o*[w] e} o

in which p is the circular frequency of the system and {@}is the modal vector whose compon-
ents are the longitudinal, radial and rotational displacements at discrete points on the vehicle,
The steady-state response due to simple harmonic loads is determined using a standard modal
response procedure which expresses the total displacement, velocity, acceleration and force
responses as the linear superposition of the individual modal responses hased on an assumed
modal damping,

The procedure will handle shell components with a wide range of geometries. It includes
shell effects in the tank andbulkhead structure, but avoids the need for including detailed local
deformation, such as at shell discontinuities, which are unimportant in determining the total
dynamic behavior of the vehicle. The approach has the capability of representing the tank or
stage of most interest in great detail and those of least interest with minimum detail, as
desired, thereby minimizing the computation time required and remaining within the maximum
limitations of standard eigenvalue routines. The formulation of the problem is subdivided into
well-defined portions, leading to efficient coding and easy modification for later incorporation
of asymmetric shell behavior and even more detailed treatment of the fluid behavior.

2.0 ANALYTICAL MODEL

As illustrated in Figure 1, the launch vehicle structure is subdivided into a consistent set
of shell components, fluid components and multicoordinate spring-mass components, In the
present approach the stiffness and mass characteristics of each of the shell components is
then computed using the Rayleigh-Ritz technique. This calculation is based on an assumed
displacement pattern having a polynomial representation. These displacement functions,
associated with the individual shell components, are designated as local coordinate displace-
ments, ' '

The mass matrix for each fluid component is also computed by a Rayleigh-Ritz approach
but in this case the fluid motions are not arbitrarily specified but are derived assuming
transverse plane surfaces remain plane and by satisfying continuity and the conditions of
compatibility at the tank wall interface, The fluid motions therefore take into account the
geometric coupling of the fluid to the shell components,
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In order to have a convenient method of combining the individual stiffness and mass matrices
to ohtain the total system matrices, a coordinate system common to all components is intro=-
duced and is designated as system coordinates. These coordinates represent longitudinal
and radial translations and the rotation about specific parallels on the axisymmetric vehicle
structure. The controlling parallels or stations whose motion is represented by the system
goordinates are located at the intersections between shell components, at equally spaced
intermediate parallels on a shell component, at intersections-of the longitudinal axis with a
shell component and on lumped masses as illustrated in Figure 1b.

By a suitable transformation the stiffness and mass matrices in terms of local coordinates
are transformed into matrices which are related to the system coordinates, These matrices
are superimposed to form the total system stiffness and mass characteristics.

Due to limitations on the storage capacity of the IBM 7094 digital computer, a number of
resirictions were placed on the present analysis, The total vehicle which may be represented
is limited to one with not morethansix fiuid components, The total number of shell components
may ..ot exceed forty. The characteristics of the spring-mass components representing such
equipment as engines and mass-elastic supports are provided directly by low order (< 10}
stiffrness and mass matrices. The total number of spring-mass compenents may not exceed
thirty. The number of non-fixed degrees-of-freedom by which the behavior of the system is
described may not exceed eighty.

The specific shell components to be used are conical {rustums (which include cylindrical
shells as a special case) and ellipsoidal bulkheads (which include hemispherical shells as a
special case). Within the domain of thin shell theory, the shell components may have ortho~
tropic properties and a linear thickness variationinthe meridional direction, Local thickening
of a shell at a bulkheador wall joint may be handled by using an equivalert local hoop stiffener
which is provided as input in the form of an additional spring-mass component., Initial static
stresses based on membrane theory are accounted for in determining the stiffness matrix for
the shell components,

The most general fluid component may be in contact with an ellipsoidal upper bulkhead, a
conical tank wall, and a conical or ellipsoidal lower bulkhead. The bulkhead shell elements may
be convex down or up with fluid at any desired depth on either side, both sides or neither side.

3.0 SHELL STIFFNESS AND MASS MATRICES

As described in the previous section, the governing equations for the individual shell and
fluid components are first derived in terms of generalized coordinate displacements (local
coordinates), Since each shell of revolution is subjected to only axisymmetric loads, its
behavior may be expressed in terms of two displacement components, u and v (see Figure 2),
In the usual Rayleigh~Ritz manner these displacements will be represented by a finite series
having the form

uté) = fa“ulfi, U<t

(2)

vi€)

n
M<|
o
<
©
oy
<|
A

in which £ is a dimensionless variable and 0< £ <1,
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For the shell configurations considered in this analysis £ is defined by

¢

sin ¢° for conical frustums (Figure 3)

8

T

f for convex upward ellipsoids (Figure 4} (3)
]

- ¢

T - ¢

for convex downward ellipsoids

The assumed mode shapes u, () and vk(El consist of polynomial terms sufficient to
represent all modes of shell distortion, including longitudinal stretching, radial dilation and
rigid body displacements, The specific shape of the assumed modes is determined within the
limitations of a tenth order polynomial, as follows:

©
a, &
n=0 kn

ukifl

(4)

n
vL(fJ b, &

n=0

in which [°kn]= [A]ﬁjxu) __a.nd[b “]=. [B] (Vx11) define the polynomial functions associated
with the local coordinates @y and 3, , respectively, The matrices A and B are prescribedthus
permitting maximum flexibility in the selection of the assumed coordinate functions.

An energy approach is used to derive the shell stiffness and mass matrices. The additional
potential energy of a shell of revolution due to distortion under axisymmetric loadings is
given in the form (Reference 4)

. J 2
v --é-favr(N¢e¢+Neea+M K, + MK +N£p )r|d9 (5)

¢¢ 098

in which the last term represents the work done by the initial meridional stress, N% . The
initial hoop stress does not make a similar contribution to the potential energy since there is
zero rotation in the hoop direction. In the  notation of Fliigge (Reference 5), the strains
(¢, €g), curvatures (K¢, Kg) and the meridional rotation pare expressed in terms of the
displacements v and W (see Figure 2) as follows:

. —-(—-——+W) (6)
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Ky ___°‘:* 4’[_;‘_ (%% - v)_l | (9)
p =+ (-‘-’:‘-’Z -v) | (10)

where r, and r, are the radii of curvature o’ the shell in the meridional and hoop directions,
respectively, Hooke’s law for an orthotropic shell with the principal directions in the hoop and
meridional directions takes the form: (Reference 6)

N¢ = C”e¢+clzee
g * C.z‘qb ¥ 02256 (i
Mcb = C33K¢+ C.."g
Mg © C34K¢+C44K9

The displacements u and v which are used throughout this analysis are related to Fliigge’s
displacements by

V= -using +v cos ¢

W zucos¢+vsing
Substitution of this transformation into the strains, curvature, and rotation yields

t du . dv :
e¢=—r-(-dj$sm¢ +—d—$cos¢) {12)

€ =¥ (13)
r

8

“: -r-'; d—d&-’[—}-(%icos $+ %sin ¢)] (14)

K8= °°:¢[_;I_(£~$;cos ¢+:—-;SH‘I¢)] (15}

p: -‘_(%ubcos¢+ g—ésin¢) (i)
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The stiffness matrix of each shell component isobtained by substituting the series approxi-
mation for the displacements Equations 2 to 4 into Equation 5 using Equations 11 to 16
and then performing the following differentiations:

v v 3%y sy i
dal.aa' da I_d ag da !.aBl da I_aBV
2v 2y a2y a2y

daUda| daUdaU '

X B
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which is consistent with the Rayleigh-Ritz procedure. Performing these operations, one obtains
Equation 17 in the following expanded form: '

K] = 2rfefcr ) G} ewefi} 6] + s} 0 + 5} (u}7]
exal{vh {7+ {i}- o} ]v s {o}- {7 o wols}- G}
exr{i} (7} e e[ {i}- {9} + (v} - (] ] .
txof{v}- {a}T + {a} - (W T+ wrof{e}- {a}"+{a} {s}7]
sk [{v}{a}T +{o}- o} e e [{v}- fa} T+ fi} - 5)7]
siosl{v}- {6} +{i}- (1T ]) e 00
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in which _ _
u|(E)T 0 —|
uﬁ'(El o5
(| ) ]
0| vltel
| o¢ | g1
and

(1= 50

The form of the coefficients K1 through K13 may be found in Reference 1.

. To make the above equation convenient for digital cc ding two approximations were introduced.
The quantities t, C,, , C, and C,, were assuned to be linear functions of £, and C,, ,
C,, and C,, were assumed cubie funciions of €. In addition only the membrane component‘ of

the initial meridional stress N% was considered, This is a reasonable first order approxima-

tion except in very localized areas where bending stresses predominate, The computation

of Ng, therefore simply involves the following integration

Ngzr—t;’iﬁ[ﬁrdr+c]

where C is a constant and p represents the pressure distribution acting on the shell structure,

The shell mass matrix associated with the generalized coordinates Ek! —BTE is derived by
operating on the expression for the kinetic energy T, For each shell component, the mass
matrix is defined by

et —

#r %1 :
05,05, 0@ dd; |
: ; : 0
e ot
05508, dayody |
2r= e eeeaaan
’ [M°]((U+V:x(u+V|)= -------------------- \2r 520 "

- vy wh i o p  Em o Em E W
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After substitution of Equations 2 to 4 into the kinetic energy expression in Equation 19, the
mass matrix assumes the form (Reference 7)

2y S (b LT o P s

where Yy, is the shell mass density, Consistent with the matrix formulation, the integration
of Equations 18 and 19 is performed using a sixteen point Gaussian (Reference 8) weighted
matrix integration scheme.

4.0 FLUID COMPONENT MASS MATRIX

In addition to the mass and stiffness matrices for the shell components, the inertial effects
due to the presence of liquid propellants in the vehicle fuel tanks must be considered, The
linear analytical model does not include, however, the effective fluid stiffness caused by
changes in the fluid head during shell distortions as this is a higher order nonlinear effect,

The general fluid component b is enclosed by three sheil components, consisting of conical
and ellipsoidal shells of revolution, For a typical fluid component, as shown in Figure 5, the
tank is divided into three shells in which the upper bulkhead is referred to as shell al, the
tank wall as shell a2, and the lower bulkhead as shell a3,

The fluid motions are a efunction of the generalized displacements for shell components, al,
a2 and a3, For the u/({) or vg (3) of each shell element defined by Equation 4 there is an
associated fluid motion Qi {x) and ¥, (x, #), where 1S mSW and W= (T + V)g, + (U + Vaz +
(U + V)g,. ﬁm (x) is the fluid displacement pa:allel to the x-axis (longitudinal axis of the
vehicle) associated with the tank shell generalized displacement m. m X % is the fluid
displacement parallel to the r-axis (radial axis of the vehicle) associated with the tank shell
generalized displacement m,

The general form of the fluid mass matrix consistent with the fluid displacements may be
expressed as (Reference 7) :

[—ﬁb](T‘V_xWJ = 2my, [:3 for ?({3(!)}{3(:}}1. + {0{:, ’r\l}{cu,?)}T)d? dx (21}
where
U (x) it
Gix)} = : vixh} = : (22)
u:} = GW(” , { xr} cw(x'p,

%, is the fluid mass density and matrix ﬁb is of order W,
"The fluid motion {i_. (x) is assumed independent of location * and is obtained by treating the

fluid as incomp ressilﬁ'e and inviscid. Frorm these assumptions, ﬁm (x) is equal to the changein
volume below a given location x divided by the corresponding tank cross-sectional area. Thus

(see Tigure 5) X L
{G(n)}: __?_2 fL r(cottﬁ{a—{!}b +{v(€i}b)dn (23)
' "ta3
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where
{EEE’"]}T: P (Ereus (£1,00-,u tE)u- 1€),0 05 ,ul&)-u-1£1,0 0. |
b [N VA e Bt VA TS BT VA A Y,
! | 2 2 3 3
. 10
and T .
{vt&}bz 04" 0. {&---vvtfl.ol"-oﬁ,v ‘E"""V (6).0(-‘05 v (€ vy (&) (24)
t I 2 2 3 3 W)

Fluid sloshing motions which disturb the planar character of the assumed longitudinal motion
are beyond the scope of this treatment, but may be superimposed as generalized sloshing
modes independent of the shell distortions, '

Consistent with the assumed longitudinal fluid motion { {x) and the axisymmetric nature of
the linear model, the radial fluid motion vk (x, ) varies linearly with space coordinate £, Ata

particular longitudinal location x, the radial fluid motion is a function of the radial motion of
the adjacent tank shell boundary and of the longitudinal fluid motion, Thus

{fu, 0} - ? (cor ¢ {utr}, +{w&}, - cor p{dn}) (25)

Upon substituting Equations 23 and 25 into Equation 21 and integrating with respect to r, one

obtains .
H
M Trybf (-ﬁz-[-izf 3(;)}{-‘5; G(n;} +é'-{re(x,r)}{r°(n,rl}T)dx (26)
‘ -Laa r

where

{r—: 3(:)} = - f‘ r(cotcja{m}b + {Tfl}b)dn

a3

and

{rstx,r}} = coicﬁ{m}}b + r{\T(?)}b -r coiqb{cll. )} (27)

The detailed expressions developed for evaluating Equation 26 for the typical cases are
given in Reference 1, Unlike the formulation for the shell stiffness and mass matrices,
Eguation 26 for the fluid mass matrix involves a double integration. For this computation, a
double Lagrangian (Reference 9) weighted matrix integration scheme was found most suitable.
This technique employs two eleven-point Lagrangian weighting matrices in sequence to provide
2 twenty-two point epproximation,

5.0 LAUNCH VEHICLE COORDINATE SYSTEMS

The matrices tor the shell and fluid components are derived in Sections 3,0 and 4.0
respeciively, using a system of generalized coordinate displacements (local coordinates), as
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given by Equations 2 to 4 to describe the shell distortion, These equations may be written in
matrix notation in the following form:

u(€) = Ek A £ = ¢ a Ek (28)
and
-y . T
vi€) = ﬁﬁ. B & = & B ﬁ!; (29)
where

EE '-'{B-| I B-V} (30)
¢ ={now?. . . (')}

In order to work with reference to aspace frame, however, it is necessary to transform the
generalized coordinates to space coordinates designated as system coordinates. The system
coordinates represent displacement and rotations at specific points on each shell component
and thus facilitate representing attachments of adjacent shell components, connections of
spring-mass components, and applications of force inputs at arbitrary stations along the
vehicle,

For each shell component, system coordinates are provided to represent displacements in
the longitudinal and radial directions at equally spacedintervals along the shell meridian, and
tangential rotations af the edges of the shell. Longitudinal displacements | wt&. ) }at locations
’Ei =(U=-1)/(U-1),wherei=1,2, ... Uare expressed (using Equation 28)as

- T —
{utflb}wm- U A a (3

where

- -t€|1'°

[u] - : : (32)

*

r 110
Iy GU...tEUI

Longitudinal displacements {v(fj) }‘at locations fj= (V-j)/(V~i),wherej=1,2,... V, are
similarly expressed (using Equation 29)as

L
1w : v B' B (33)
{ ]}(Vxli L
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where

(34)

10
_IV EV e (fvi |
The scalar quantities U and V are prescribed constants which define the number of system
coordinate point displacements to be provided in the longitudinal and radial directions, re-
spectively, for a given shell component, These are related to U and V, as discussed in the end
of this section. The shell rotations, p1 and p2, are evaluated at E = 1 and 0, respectively, and
can be shown to have the following form:

[P']- o, A" @ + o0, 8' {B} (35)

p2] !
h )
where 0 i 2 . 9 10
o, =D,
0 v 0.0 Uy,
(36)
o 1 2...9 10
D, =0,
| C e .
-0 © Ooein

and D, and D, are consiants which depend on the geometry of the shell (see Reference 1),

The total vector of system coordinate displacements for shell component ‘‘a’’ is defined
from Equations 31, 33 and 35 as
[y (€ i’ i

vi€)
{a,}_ _ - i (37)
@ (U +Vixt pl |

_p2

The local coordinate displacements for shell component ‘‘a’ are related to the system
coordinate displacements by the transformation [ Ty]as follows:

Consolidating the arrangement of local coordinate displacements, as defined in Equations 28
to 30, let

{a .| %k (38)

o) T EL
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Consistent with the system coordinate displacement vector {aa}given by Equations 31, 33
and 35, the transformation matrix [ T,] which relates local to system coordinates, is defined by
the equation

@, * Tu a, {39)
where, in general,
— . _
U : 0 ;|
TN R d B AV S
[T.,] |0 iV A (40)
: b 0O | B
DI : 5 i
n { _
Thus
a, -~ T‘l a, {41)

It is apparent that computationofthematrix T requiresinversion of the matrix T ' » which
must therefore be nonsingular, square, and of order (U + V), This will require for some
components modification of the general Equation 40, as discussed in Reference 1, Special
attention must be given the scalar quantities U, V, U, V and the matrices A,B, D,D, to
satisfy the above conditions consistent with the shell component boundary conditions, The
matrix T; ! may also be poorly conditioned and difficult to invert accurately if U and/or V are
equal to or greater than six. For these cases it is recommended that Shifted Chebyshev
Polynomial Coefficients (Reference 10) be used for the A and B matrices to improve the
accuracy of the matrix T, calculation,

As illustratedin Figure 5, and discussedin Section 4.0, the distortion of each fluid component
““b” is a function of the distortion of the three enclosing shell components al, a2 and a3, The
local to system coordinate transformation matrix Ty, for the fluid component is thus obtained
as a combination of the shell component transformations T3 for a = al, a2 and a3, as follows:

Consolidating the arrangement of local coordinate displacements, as defined by Equations 24
and 38, let

e —
—

a, = a, ., (42)

au3

Consistent with Equation 37, let the consolidated vector of system coordinate displacements be

a, = a . (43)
a3
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Corresponding to Equations 41, 42, and 43, the transformation matrix T, is defined hy

Eb = Tb ab {44)
where
(T, ! o I o ]
} ]
R RREett SESPEEET TRPLES
LI L 0 (45}
1 L]
[] )
A A BT T
{Wxw)

6.0 LAUNCH VEHCILE STIFFNESS AND MASS MATRIX SYNTHESIS

In order to construct the total vehicle stiffneas and mass matrices referenced to a common
coordinate system, the individual component stiffness and mass matrices are expressed in
terms of the system coordinates using transformations developedin the previous section, For
cach shell and fluid component e, the matrices, transformed (Reference 4) to system co-~
ordinates, become

. T t— A—
Ke z Te Ke Te Note: I(e Z 0 for fluid
com ponents, i.e. {46)
and r = fore=b. '
Mg = Ty Mg Te

where T, is the transformation matrix defined in Equation 41 for shell components and in
Equation 44 for fluid components, Ky and M, are the stiffness and mass matrices related to
the local coordinate system, The stiffness and mass matrices for the spring-mass components
do not undergo the transformation Equation 46, since they can be provided initially in terms of
the system coordinate displacements,

The total system stiffness and mass matrices are synthesized by first expanding eachofthe
component matrices (Equation 46) into an enlarged matrix which is of the same order as the
total system matrix and which is related to the set of system coordinates for the total vehicle,
as shown in Figure 1b. These matrices are then superimposed to arrive at the total system
characteristics,

These operations can be readily accomplished by introducing the transformation matrix

Ao relating the total system displacements @ to the component e system displacements Qe
(contained in{@}) as defined by

a = A a (a7}

in which the elements of Ae are either unity or zero (see Reference 1).
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The total system stiffness and mass matrices can then be formed ag follows:

N N

[K] Al k. A ZM A k. A
z + (48)
(Nxch' az| a a o c=l c c c
and
N
. s T e o o1
M -
(chNC) az | Au M, Aa +b§| Ab M, Ab 49)
NM T
+c§{ A, M. AL

in which N , Ng, Ng and Ny are the total number of system coordinates, shell components,
fluid components and spring-mass components, respectively. The matrices Ky, Mg and M,
are, respectively, the stiffness and mass matrices for the shell components and the mass
matrix for the fluid components, as defined by Equation 46,

The superposition technique asgures displacement compatinlity and force equilibrium at the
joints between components. Displacement boundary conditions are imposedon the total stiffness
and mass matrix by removing appropriate rows and columns of coefficients corresponding to
points on the vehicle and its support which are rigidly restrained from motion,

7.0 DYNAMIC RESPONSE EQUATIONS

The total stiffness and mass matrices are used for computation of the natural frequencies
and mode shapes from the eigenvalue equation

K a -p°2 M a =0 {50)

in which p is the circular frequency of the launch vehicle and @ is the modal vector whose
elements are the longitudinal, radial and rotational system coordinate displacements, This
equation is solved to obtain the natural frequencies p, and the mode shapes for all modes, t,
which are arranged in a square modal matrix A, Each columin, Ay,(of A))is the mode t dis-
placement vector with system coordinate elements, whereas eachrow, Ag, of A, is the system
coordinate s displacement vector with natural mode elements,

The steady-state response due to simple harmonic loads of frequency w is determined using
a standard modal technique. The elements of the load vector P represent axisymmetric forces
{longitudinal and radial) or moments, depending on whether the associated coordinate is a
displacement or a rotation. The displacement response vector R is expressed as the linear
superposition of the individual model responses based on an assumed modal damping factor
7, which is the ratio of the actual damping to the critical damping for each mode and has the

form: (Reference 4)
{R} = {ﬁ sin (w! .:S' l}
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where ) 2
{Ez} £a Qf'_ins' + | A 9yc0r 3 | (51)
{ "‘t("tz‘t) "‘t("tz‘t) }
N {Q' si; 3; 7
@ o L
A, 5
{'“t("i Zt)}
Yo -
q, ¢ A, P
m,o= A M A (53)
> > 2 2 > /2
Pyay = [(p, -w ) +4py W ]
" 8 = tun_lzn—'(z%—)

In these equations, 4= 7 when p;= 0, and 31= 0 when py# 0, w=0. {ﬁ}and{_s} represent,
respectively, the vectors of steady-state displacement amplitude andthe phase angle by which
the forcing function leads (+) or lags (=) the response.

The internal forces (or moments) Sg acting at each point along the vehicle on each shell
component a are obtained from the equation:

{SO}((U-F\T;“) ={§ sin(wi—S)} (54)

where

5 a5 2 o (6 8, R B}

(55}

]
—
Q
2

{S}(IU+V):( o K A
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{8} and {8 }represent, respectively, the amplitude and phase angle of the internal forces, K

is row s8(8 = 1, 2, .., (U+ V)q) of the shell element stiffness matr:x K,. {R and{ §} are
obtained from Equation 52. In the solution of Equation 50, the storage capacity of the computer
limits the size of the matrices K and M, This restriction may be relaxed, in an approximate
fashion, by utilizing a reduction technique described in Reference 11, In this approach the
inertia force at coordinates which exhibit a high frequency are carried as structurally
equivalent forces (Reference 12) at the other coordinate points. This assum tion, which has
only a small effect on the significant low frequency modes, enables the matrices to be re-
duced to a size for which the computer can obtain the eigenvalue solution.

8.0 NUMERICAL EXAMPLE

The natural frequency solution for a typical one-stage launch vehicle (see Figure 6} is
.presented for illustration and also to contrast the solution with results obtained from & lumped
spring-mass model,

For simplicity it is assumed that all structural components are constructed of aluminum.
Two of the shell sections have been given orthstropic properties as noted in Figure 6, The
physical model is subdivided into a consistent set of shell, fluid and spring-mass components
as shown in Figure 7a, The vehicle is represented by eleven shell components, two fluid
components, and four spring-mass components to account for the payload, engine and equip-
ment. Thirty-three displacement coordinate locations are then selected and given identification
numbers. The vehicle is assumed to be unsupported.

The contrasting lumped spring-mass model is illustratedin Figure 7b, The vehicle behavior
is described by 16 masses connected by simple springs representing tank, bulkhead and inter-
stage flexibilities in the manner discussed in Reference 3,

Solutions for the lowest natural frequency modes are tabulated in Table 1. It iz noted that
several significant modes which result from the shell model could not have been simulated by
the spring-mass model. These modes represent large tank distortions which do not cause
significant changes in the center of gravity of the contained fiuid. The frequencies which do
correspond are in general lower in the shell model due to the presence of more degrees of
freedom which provide more flexibility.

Table 1. Natural Frequency Solutions

Frequency (cps)

Mode Description Shell Model Spring-Mass Model
1 Rigid-Body . 0 0 u
2 Pogo-Mode 37.7 37.1
3 Payload Mode 60.0 59.7
4 Payload Upper-Tank Mode 83.1 ——

5 Engine Mode 114.8 138.3
6 Engine Lower-Tank Mode 177.2 ——
7 Engine Upper-Tank Mode 225.5 251.4
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