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FOREWORD 

This report documents the first of a series of 

Familiarization Courses sponsored by the Applied 

Physics Laboratory Committee on Education. 

The aim of the series is the instruction of 

staff members in operations and techniques outside 

their own areas o! specialization leading to a ready 

integration of ideas between fields and to the estab

lishment of sound bases for further inquiry. 

The four lectures included herein were desi gned 
d 

to provide tools basic to an understanding of servo-

mechanisms theory. A clas.s numbering 36 was in -

~ttendance at the talks given by members of the 

Laboratory's Bumblebee Controls Group during July 

and August of 1957. 
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Lecture 1 

.EllMBLEBEE MISSILE CONTROL SYST.l!NS 

W. A., Good 
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Bwru:)lebee Missile Control Systems 

by W. Ao Good 

The control system of a missile is usually defined as that portion of 
'the system which accepts signals from the intelligence section, such as the 
receiver, and converts this information into proper wing deflections to steer 
the missile in the desired manner. See Figure lo 

A natural division exists within the control system which divides it 
into two sections, the computer and the autopiloto 1he computer must modify 
the intelligence signals into suitable lateral acceleration commands. The 
autopilot accepts the accelera~ion commands and alters them into appropriat e 
wing deflections such that the airfr ame will provide the called-for accelerations o 
Thus, it is seen that the properties of the computer are related to the overall 
guidance loop whereas the autopilot characteristics are involved with the 
aerodynamics features of the airframe. 

The roll stabiltzation system is usually considered as a part of the 
missile control system but will not be considered in this papero 

Let us first turn to the computer section and examine its duties in a 
beamrider guidance systemo Figure 2 presents the basic elements of the beamrider 
path and shows that the input to the computer is a voltage whose amplitud is a 
measure of the off-beam angular erroro The computer must modify this angular 
error and produce a lateral acceleration command. First , the angular error is 
translated to a distance off--beam err or by multiplying by range or actually bya 
function of time since the expected missile velocity is reasonably well known. 
This would be the only role of the computer if the problem of path stability did 
not arise. However, since we have an acceleration proportional to off-beam 
distance and the distance , in turn, is equal to the second integral of the accel
eration, the result will be an undamped oscilla tion about the beam, analogolli? to 
a mass and spring without dampingo This is undesirable and the necessary path 
damping may be supplied by a shaping network with a derivative Cl aracteristic 
shown in Figure 2. Unfortunately _, the derivative is accompanied by low gain 
at low frequencie s . and high gain at high frequ encies. This condition is just the 
reverse of what is desired since noise signals at high freq uencies should be 
attenuated and the gain at low f requencies shoQld be high to minindze biases due 
to gravity and other misalignments. This situation is corrected to sor.1e extent 
by filter networks. The noise filter in this case is a simple network operating 
at frequencies above the derivative region and the low f requency gain is provided 
by an integral network reaching back to as low as l / 50 rad/sec. Typical overall 
gain values i n g's per 100 feet vary from 1/2 to perhaps 5 in some cases o 

Next l et us look at the type of computer used in a homing missileo 
Figure 3 shows the essential parameters of the horning process. 'I'he quantity 
sigma represents t he angle between the missile-target line-of-sight and a i'ixsd 
reference. An ideal homing intelligence sys tem is capable of prouucing a 
measure of the rate of change of sigma with respect to time. If the n:issile an 
be made to align its velocity vector such that sigma - ot is always zeroj a 
perfect intercept course will result. Ideally, the computer needs ~nly to 
produce an acceleration command proportional to s igma-dote However. in actual 
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pract i ce two modifications to this simple requirement are usually employe. Since 
the sigma-dot signal contains unwanted noise signals, a filter of about one-half 
second time constant is used. If this f ilter is too large, path instability or 
inaccurate homing will result; i.f too small, excessive noise will reach the auto
pilot. The other modificat ion is to vary the proportionality between sigma-dot 
and acceleration command as a function of the range-rate between the zrussile and 
target. Thus, fo r a rapidly closing attack, the homing gain will be hie?11er and 
the missile will be more respqns ive since it has less time to cope with the target . 

In many ways the autopilot has a much tougher task to perform than 
the computer. Regardless of altitude, speed, center of gravity shift or type of 
ai rframe the autopilot mus t properly direct the control surfaces to produce the 
called-for acceleration in a rapid and stable manner. 

Several types of autopilots are in common usage and three of these 
will be described. They are the wing position t ype , the acceleration feedback 
type (AFB) and the sensitivity feedback type (SFB). 

The wing position method is the simplest of the three systems, but 
requires a great deal of foreknowledge of the aerodynamic characteristics of the 
missile and of the f light condi tionso One must be able m predict under all flight 
conditions exactly what wing deflection will provide the desired acceleration or 
aerodynamic gain. For example, a one degree wing deflection produces a certain 
11 g11 turn at sea level, whereas a ten degree wing angle is needed to cause the 
same "g" turn at 60,000 feet altitude. Figure 4 shows this autopilot where a 
gain adjustment is made to compensate for tbe altitude effect. Pressure gauge 
may be used to effect this change. Another variation in aerodynamic gain (g's 
per degree of wing) is due to center of gravity (cg) shift as a result of fuel 
consumption. A missile may start its flight in a tail heavy condition a.r!d end 
with a nose heavy distribution due to the burning of the solid roc1<et. Thus, 
it becomes less maneuverable at the end of flight and a gain change must be made 
to compensate. In this case the cg shift as a function of time is well known and 
hence a corresponding gain change as a function of time will suffice. Althougn 
t he missile speed also influences the aerodynamic gatn, it is more difficult t? 
measure and will not be included in this discussion. 

Another important function of the autopilot is not only to produce 
the called-for acceleration but to preserve the integrity of the airframe in 
the process. Ag-limiter is added to the front of the autopilot to clip any 
excessive commands which might otherwise cause unusual wing deflections and sub
sequent structural damage. 

The brief review of the wing position autopilot should infer that 
it is most effective when used with an airframe with linear aerodynamic characteris
tics such as a wing controlled missile with small body angle of attack and ove' 
restricted speed range. Outside of these conditions, it becomes more difficult 
to closely match the output acceleration to the command. 

An autopilot in which the actual acceleration of the missile 
maneuver is fed back and matched against the command would seem to be the most 
lo gical system. This is the acceleration feedback (AFB) autopilot and is very 
effective, but not without limitations. In the simplest form shown _in r~gure , 
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the wing servo should be of the rate type such that for low frequencies the loop 
gain through the servo is very high. Under these conditions the AFB sys tern will 
act like a negative feedback amplifier and the output accelerat i on will closely 
l'llc}-tch the command since the wing angle will be driven to an angle which will 
cause the mismatch to be small. There are a number of stability problems which 
now appear. The first is the inclination of the system to oscillate at t he 
weathercock frequency of the missile. The uncontrolled missile behaves like a 
large arrow with a natural frequency of several cycles per second and a damping 
of less than one-tenth of critical. Now since part of the missile lift comes 
from the oscillating oody, it is quite easy for the ph~se lags through the servo, 
weathercock mode, and accelerometer to become excessive near the sharply resonant 
weathercock frequency and cause sustained oscillations in the AFB loop . The 
standard cure is to include a yaw rate gyro in the loop to provide deliberate 
synthetic damping of the weathercock mode. Now a step command will produce a 
rapidly damped acceleration response in the missile. A rise tire of about Ool 
second can be obtained at sea level and about 0.3 second at 60,000 feet altitude 
with a well-adjusted system. 

Into this autopilot, we have introduced two instru.~ents which are 
sensitive to their mounting positions within the airframe structure o Since the 
airframe acts like a free-free bending beam at frequencies which the system c5n 
pass, the instruments ; can pick up and introduce the extraneous vibration into 
the AFB loop. In fact certain steps must be taken to prevent the whole system 
from oscillating at the body frequency. In a typical case this could be about 
30 cps. The ideal remedy is to mount the instruments at body stations where the 
pick-up is a minimum. Thus, the accelerometer should be attached at the 
positional node am. the rate gyro at an angular node. When other requirements 
deny these positions, a second best palliative is the insertion of electrical 
notch filters following the instrument to reject the vibrat ion frequency. Of 
course, the low frequency phase lag of the filter gets into the low frequency AFB 
loop and eats up valuable phase margin. This is the penalty paid for the notch 
filter. 

It should be pointed out that t he AFB autopilot must also work 
properly for the same I altitude and cg variations. discussed for the first auto
pilot. This calls for the addition of a t least an altitude-gain device, but 
it need not be as precise as before since the closed loop effect helps minindze 
the internal gain variations. Nevertheless the altitude-gain device cannot 
be omitted. 

If the wing servo cannot be a pure r ate servo , then the low fre
quency match between the command and the output may be poor and more sensitive. 
to internal loop gain variations. In practice this effect may be produced 
due to the necessity of using position type wing servos. The position type 
servo was required to eliminate a possible ambiguity of the four wing positions 
when steering am. roll commands were zero. There would exist a number of 
wing position combinations which. would not be zero and still give zero roll and 
zero steering. 

I I 
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A nonlinear aspect of the AFB loop is the maximum rate of t he win~ 
servo. If this is too high the servo power consumption is excessive; if it is 
too low, the AFB loop may participate in a destructive limit-cycle type of 
oscillation. The choice of wing rate is pressed between these two conditions. 
Typical values might be 100 - 200°/sec. as an adequate compromise. 

The third autopilot to be discussed is the Sensitivity Feedback (SFB) 
type. It retains some of the features of the other two. The wing position servo 
is retained along with a single gain change device which is the heart of the 
system. The rate gyro s til l provides weathercock damping but is less critical · 
than before because the accelerometer signal is fed into a different place ani 
does not destabilize as much as be¾oreo Note t hat the accelerometer signal (OM) 
is now compared with the command (oc)• The smoo~hed differ ence signal causes 
the rate motor to run in one direction or the other depending on whether the 
accelerometer is reading larger or smaller than the command. Aerodynamic varia
tion may demand a 20:l gain change which compensates for the altitude and other 
variations in the aerodynamic gain. Ideally the SFB adapts its position to 
always provide the correct gain to match the output acceleration with the command. 
In practice the absence of a command allows no information to the rate motor 
and it tends to remain at its last position until sufficient commands do ariseo 
Also the gain may seek an improper value if biases of an aerodynamic nature exist 
in the loop. (See Fig. 6.) 

An attempt has been made in this discussion to isolate t he autopilot 
from the overall guidance loops. In the main this is possible for beamriding 
but not completely so in the homer. In the latter case certain receiver signals 
come through the computer and into the autopilot and tend to interfere with the 
rate gyro contribution such that the weathercock damping is disturbed. Normally 
additional overall system design studies are required to resolve this type of 
problem. 

In summary a missile control system has been broken into its computer 
and autopilot sections. The computer has been r elated t o the overall guidance 
loop problem, whereas the autopilot has been confined to the job of providing 
accurate and r apid acceleration response in spite of t he variations in aero
dynamic gain. The three autopilots have been compared on functional and con
ceptual bases and their relative merits have been described. 
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Lecture 2 

:rHE IAPLACE AND FOURIER TRANSFORMS AND THEIR USES 

by 

John M. LeGare' 
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THE LAPLACE AND FOURI!ili TRANSFORMS AND THEIR USES 
. ,. 

by John N. LeGare 

The Laplace and Fourier transforms are no more than mathematical 
tools whose inherent characteristics facilitate operations involving differen
tial equations, but as such they have become indispensible to the servo 
mechanisms engineer. The principal advantages of these transforms are that 
first, by transforming functions of a r eal variable ( usually time) into 
functions of a complex variabl e , mathematic al manipulation beco1nes considerably 
simplified and, secondly, there are certain incidental but highly useful parallels 
between these resulting functions of a complex variable and certain more con
ventional concepts. This pres en ta tio n will for the most part restrict its elf 
to the Laplace transform with a concluding portion summarizing the essential 

differences between the two transform types. 

In order to more clearl y depict the role ol' the LaPlace transform, a 
brief review of the linear dif i'er ential equation is a ppropriate . The study of 
dynamic systems including closed-loop servo mechanisms is basically the study 
of differential equations oi' t i me variables. For the purpose of using the 
Laplace transform in the stud.y of such systems , we shall r estr ict our:.;elves to 
tho se characterized by linear differential equations with constant coefficient~ . 
The general form of equation representing such a system is as follows : 

d "-' X 

dt"'-' 
+ ·--- + artt. = ~+bl 

dt"" 
d

..,_, 
y + -- + bm Y, 

where x may be the output of some dynamic device and x its input fu,.,ction of . 
time. 

It will be recal led that the differential obeys the uistri butive and 
associative laws of algebra, so that the equation may be written in the form 

( 
d" __ + 
at" 

,.,- I 
a1 d d...,..,...t..,..,-_...,,r--- + --- + an) x =(~ + b1 d""' - ' + --- + bm) 

at"' dt""- 1 y 

or, in symbolic notation, 

+ --- +an) + --- + bm) y 

( 1) 

(2) 

(3) 

Also recall tlw. t, t.he solution ot such a dii'lerentL1.l equation consis ts 
of two parts , a so-called transient or complimentary solution plus the particu.:.. 
lar integral. 'l'he transient solution, furthermore, always bas tie form . 

This may be shown by substituting x = est into tue l eft-half of the 
differenti.:.1.l eqllation, and remembering thclt the n - th derivative of est is sn est, 
we find 

s" est + a,s 
,.-, est + a2 S n-l. est + --- an e st = 0 or, 

( s 11 + a1 
s ,.,_, 

+ a2 S n-Z. + --- an) est = o, anu since 

est is not identically zero, we may divide both sides by it, leaving 
s.., + a1 s11-1 + a2 s 1'1-l. + --- + an"' 0 (5 ) 
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Now we have a polynomial in s for wh:i.ch the roots s1, s2, --- Sn may be found , 
giving the values in the compli.mentar,y solution (4) a bove. The solution of the 
particular integral may be found by- classical means such as the method of unde
termined coefficients. 

As an example of this process, consider a simple sprin2;, mass , and 
damper to whi ch a force, y( t), is applied. 'Lhen the 1;10tion of t.he mass , x 1.t), i::: 
expressed in the following manner: 

M d2x + C dx + Kx = y (t) 
dt2 dt 

~i,here Ma mass 

C = damping coefficient. 

K = spring constant 

Then the transient solution is 

(M D2 +CD+ K) x = 0 

D • -C :t r G2 - l.ihK 
2H 

t_ £_ +J/c'i. - .R)+ 
\- ~ ,,.~~ "' 

X = A1 e - . -

(6) 

Figure l 

( 7) 

/~ tM -_r~~ .. -~)t ( 8) 

If the discriminant is iX>Si tivz ti1un t :1e exponent will be real, and the 
solution of the form 

tS"jt e , ()') 

and if t ne dis criminant is negative, then the exponents are complex, a:; below: 

X A 
'o.-dw,)t 

= 1 el:. (10) 

This equation may be interpreted to say that i f the :..iprint-mas::;-u.amper ::;y:.:,tem 
above is ,~i ve n any set o _;_· initial conu.i t ions, such as an ini tiul p:i:;i tion and 
velocity, th e transient behavior without any forcing function will behave as in 
equat,ion ,8) with i.l ppropriate constants 1~1 and A2. Also recall the Euler 
relation ,midi allows us to interpr·et t.ne exponents as h...1.vint,; Lhe 101.lowing sig
nifi cance. 

ej w,t • A.J. er,t (cos w, t t-JSin w, t) 

Thus the transient soll~tion, equation 10, represents a damped sinusoid \ if the 
value of6'1 is negative) whose decrement factor 6")_ and freyuency Wl are 
functions of the system constants M, C and K as in equation (8), and wl1ose 
phase and amplitudt: are functions of ti1e initial conditions. 
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The forced solution or particular integral will be linearity added to this 

transient solution, and will be of the same form as the input time f unction andi i~s 
derivatives. ' 

~irnilarly, if one examines the differential equation of the siniple elec
trical circuit consistin~ of an inductance, resistance and capacitance, the dif
ferential equation of the output voltage resulting from an input voltaze is determine 
as follows: 

L d2Q + R d Q + 
dt2 dt 

9, "' e-C I 

(11) 

e• • 

L 

Figure 2 

We notice immedi atel y tl1a t the dif ferential equa t ion (11 ) of t his 
system is identical in form to that of the spring-mass - clamper sy::;tem equation (, ) 
and that thus the _solution would be o f the same form, with only the various con
stants involved taking on a Jifferent significance. A sli::;htly different result 
exists when L = o. Under the~e conlitions , t he transient solution becomes 

t 
e 0 .. Al ;~ xl2) 

voltage 
voltage 

Also under these conditions, if' o ne were to impress 
in to this network , then by classical a. c. the or .i the 
t o input voltage would be, in vector form, 

e. 
' 

::I 

1 1 
jwc- · · ltC · =-=----. R + 1 jw 

jwc 
l 

RC 

I 

sinusoidal driving 
ratio of output 

(13) 

Let us keep the results (1 2) and (13) in mind to observe their r elation to the 
Laplace transform method . 

Now what is the Laplace transform a nd what relation has it to these dif-, 
ferential equations? The mathematical def i nition of the dire ct .la.place trans form 
is s tated mathemat ically as - _ 

(14) 

where s is the complex variable o + jw. 

Similarly the inverse transformation j_s 

t -1 fc+j.o st 
[Fl~>](=) ;.;fj F (}) e ~s 

c-j• 

(l:i) 

where s is the comµl ex variable ~ + jw and c in t11is integration is the 
abscissa of convergence whose si6nificance will be uiscussed later . 
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By means of the above relations, one may tabulate Laplace transforms 
corresponding to various useful time f unctions, some of which a.re given in the 
appendix. In order to observe one relation between the 1aplcice transform and t.he 
differential equation solutions considered before, let us take the Laplace 
transform of the simple decaying exponential term 

f( t) = 11.e-._t \16) 
the transform becomes "° o,/) 

--I'[ -4.t ( -o.t -st ( 
c1.- Ae J=;Ae e J...t=;A 

0 O 

-(s+o..)t-
e, dt-

-A 
= -- e (5+~)t- I A 

s + a. 
(17) 

0 

Note that t he ti 111e function (16) is similar to that of t h e tran5i ent solution (12) 
if a = 1/RC and the Laplace transform (17) bears a similar r e l ati on to the steady 
state ::;inusoidal response (13) if s = jw. 'lhis similarity will be exarr;ined 
further after one observes ano t her fortunate relation bet11ee;! the Laplace trans
form and the differential equat ion. In orc.ler to point ot.:.t this r E:la t i on, let 
us take the Laplace transform o f three hit11lY useful time functi ons, the unit 
ramp, the unit step, anu t he unit impulse function. 

The unit ramp is a time function which may be de f ined t hus : 

r (t-'l) "'fo, t< T lt - 'i' , t>T 

a,o 

j[rlt-T)] =ofr(r-T)e-s~t 

,,,c 

::: fct-T) 
T 

-St 
e dt 

This integration ,r!ay b e accomplished by mea;:is of i nt egrJ.tion by pcl.rts , 
using the formula 

ju dv = uv - jv du. 

Let u = t - T, t her, du = dt 

dv = e-st dt , V = - _! e-5t • 
s 

X[r(t-T)] I- t-T -st-
= e 

5 

::; 

= 

I- ±;T -.s"t-
e 

-ST e. 

OC) 

+I~ e.-'td t I 
,-.., 

I e -st I 
5'A. 

r 

{ l A) I 
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We a1e usually i nterested i n the s pecial case where 'l' • o. 

't. [r (t)) = (lY) 

Next, f inding the Laplace 
mathenati cally as 

transform of the unit step f unction, defined 

{ 
t< T 

u( t-T) = ~: t ;> T • 

.0 00 

f[,u (t-T)] = fu tr-r)e-!>~t =- f1 e-st-d.t 
o T 

oQ 

~ -f e-st I 
T 

- _I e-sr 
s 

again , we are usually interested i n the case where T = o, 

't. [u( t)] 
1 

= -s 

Las tly, le t us find the Laplac e t r ansfor m of the Dir ac delta- function 
or unit impulse function . -

~ ( t - T) = r !
0 

: : '\ J 
\_: t :> T 

and fa ( t - T) dt = 1 
- oD 

ao 

:f [ j (t--T)J - fa (-t-T) e-s t dt 
0 

(20 ) 

(21) 

Here , because of the extremely narrow r ange over which the ~ f unc tion , 
is non-zero, we may write 

j [ ~ (t-T)] 

T+E \~ 

e-5rjJ (t -T) J.t "' 'i' e - sT 

T-E 
(2 2) 

And a gain, when T = 0, j fj( tLJ , = 1 . (23) 

Now, one notices a relation bet ween the last three t:i.rne f unction and 
between their Laplace transforms; i . e ., the successive f unctions are each the 
derivati ve of the preceding or integral 0 1' the su cceeding function, and the suc
cessive transforms are each s times the preceding o r 1/S times the succeeding . 

I 
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Hence, one is inclined to conclude an equivalence between differentiation and 
multiplication by s and between integration and multiplication by 1/s. Let 
us see what the precise relation is. 

Here we denote the Laplace transform of f( t) by 1"(s) .., 
F(s) .. / :ftt) e-st dt 

0 

Now let us accomplish the integration by parts, letting u = f( t) ancl dv = e-st dt 

r/0 oO 

Ft<):: -"t f/0 ti"'t / +-f- f [ 1'i0J e-'
t
,H 

0 o,6 O 

s F( ~) = f ( 0 -t-) + f [ 1 fl J est J f 
0 

or 
I 

,i' [ ~~tt)] ~ s Ft~) - f (ot) 

T'ni s pro cess may be extended to higher order derivatives yielding the 
general form 

Simila rly, one may arrive at the relation between Laplace transfonn and 
the process of integration in the time domain 

X[ /5tt) Jr] - F'()) 
+-

f(-1) ) 

- - (0+-
s s ' 

or in its general form, 

f (-11) _f_jJ n fl• lrJ 

X [ ctJ] = + z_ ( o+-) 
511 s 

/f..: I 

' These two important theorems, that of real differentiation and real 
integration, toge ther with the fact that the Laplace transform is a linear 

·operator 

( X[ k J(t)] = k F(~) a.,J. 

J [ t, l t) + J;J1)] = F, ls) t- F 'l.. ( s ) ) 

(24) 

(25 ) 

( 26) 

( 27) 
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makes the Laplace trans form a useful tool in the solution and interpretation 
of linear diff erential equations. 

Let us a gain examine the general linear differential equation with 
constant coefficients. 

+ --- + a) x( t) = (ct~= + bl 

Now for t he particular co.ndi t i on where the initial conditions of the dependent var
iable, x, and i t s suc ces sj_ve derivatives are zero, a particular disturbance y 
whose initial conditions are also zero is applied , then the Laplace transfor m of 
the equati on becomes simply 

/ 11 ,s + a1 s 
11-1 

+ -- - + 

or X(s ) = 
SM + b1s "'-' + 
S" + a1s"'· 1 + 

an) X (s) = 

--- + bm 
--- + an 

(s'" + 

Y(s). 

b1s 
w.-1 

+ --- + bro) Y(s) 

(28) 

The rational fraction ins which operates upon Y (s) may be given t he 
notation H(s) = B(s) and i s called the system transfer function, indicating 

A(s ) 
t hat an input Y(s) is transferred j_nto an output X(s). The s ignificance of H(s ) 
is further clarified if the input y(t ) is the Uilac del ta-function l (t), in wr.ich 
case Y(s) = 1. Under t hese conditions 

X ( s ) = 
s 111 + b1 srn-l + --- bm 

s~ + a1 s"- 1 + --- an 
~ H(s). ( 2~) 

Thus H(s) is t he Laplace t ransform of t he sys t em r e sponse to a unit impulse, and 
its inverse transfo r m h(t) is the system impulse res ponse in the ti..-r1e domain • . 
The sys tem i mpulse response or its equivalent t ransfer function completely 
characterize any dynamic system which may be represented cl as sically by a linear 
differenLial equation with cons t ant coeffi cients. 

Further insight into t he significance of this t r ansfer function may be 
obtained by making a partial fraction expansion of this r ational function of s 
and taking the i nverse Laplace transform to obtain the i mpulse response , h(t ). 
'l'he partial fractio n expansion will consist of linear factors . of the c.ienominator., 
some of which possess complex r oots which will alwaJ s occur in conjugate pairs . 

H ( s ) • --.-•-'i_l_ 
, s - s1) 

+ A2 + ----
-, s- --s-2 .... )-

An 
(s-sn) 

Note that the roo ts s1~ s2, etc. are determined solely by the coefficients of 
the denominator of H(s J while the numerator contribu tes only to the a 1s. The 

(Jo) 

Ak' s may be determined for any term by multiplying both sides of the equation by 
(s-sk) and evaluation a t s =- Sk• 'lhus one may perform the inverse Lapl ace 
transform directly, or simply recognize each term of the expansion to be the 
Laplace trans form of Ak esK t, yielding a so l utio~ 

h(t) =Ales, t + A2 es,t + - - - An esnt (31) 
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Note that a root sk • 6°'k + jwk will, if the value of 6'k is negative, produce 
a decaying osci llatory time function; or if Wk .,. O, a simple decaying exponential. 
Conversely, if d"k is zero or positive, the time function will continue undiminished 
or grow without co unds as tiuie increases. ~uch a system is uei'ined as uns t able. 
A convenient an-1 frequently used concept is thc:1.t of t i'1e locations of tne complex 
roots of the numerator function of s, B(s), and denominator i'u:iction, .t1.(s), in t he 
complex s-plane. Here the roots of the numerator· are referrecl t o 
as the zeros of H(s ) ana denoted by o, while the roots of t he 
denominator are referred to as poles and denoted by x. 'l'he 
reason for this nomenclature is mo r e apparer.t if one thinks 
of an axis perpemiicular to the and jw axes, which is the 
coordinate of the :nodulus oi' H\s) as s is varied over its 
entire plane . The H( s ) re s'C! lting would be a three dimen-
sional surface which woul d touch t he ::,-plane at the zeros 
and which would project upwarJ to infinity at the poles. 
Again note t hdt ti1e growth or de cay rates of U1e h\ t) are 
determine d only by t he location of t he poles in the complex 
s-plane. 

0 

jw 
s-J,la.l'le 

I 
)( 

I( 

'(, 

Figure 3 

The behavior of H \S) as t he value of a traverses the jw axis from the 
origin to plus infinity is of partict..L:1.r interest, since from the e q uations (B) 
and (17) one mi@1t suspect a relation betweens= jw and the steauy-state ::,inu
soidal response of the system. 'I'his is indeed the case, and it n,a_y be shown 
that H(j,i ) is t he system steaoy-state response in complex fonn to a sinusoiual 
driving function of unity amplitude. 'lhis r el a tion may be proven by substitu-
tion of the Lapl dce trans form of a llllit sin usoid w for i(s) into 

equation (28). s 2 + w2 

s2 + w2 
.{(s) = H(s) w 

Then the partial fraction expansion of X(s) will contain two additional terms . 

--- + 
s - jw 

+ K-J~ 
s + jw (32 ) 

And since i n t he steatly state, all the transie nt t erms of the time ::;elution will 
diminish to zero for a stable system, the r enainint,; r esponse will ultimately be 
due only to t he two forcing terms a uove. 

where Kjw e (s-jw) rl(0) 

., H(jw) 
2j 

and K-jw = (s+jw) H(s) 

= H(-jw) 
-2j 

= K· e+jwt + K-J·w e-jwt JW 

/. w2 L. •jw 

w 
s2 + w2 

Sc-jW 
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Jwt- ,\ _jwt 
H(Jl,1/)e - H{-)1#/ e 

2.,j 
j(wt+ • ) ,. -

1..) 

Thus , the system transfer f unction H(s) is particularly useful for 
determining the sy::;tem transient t i me behavior f or various time i nputs , and r'or 
determining t he sinus oidal stea<.iy-state response of the bystem wi thout taking 
the inverse transform. In ca.s es where invers e transi'or rl1:ltion is de.siral>le in 
determining a time r espons e, the transf'orIT!ci.tion can usually be more easily 
obtained by application of the Cauchy residue theorem. 

Tne time function input most frequently u:-., ed, otner t han the ::i i nu:..oid, 
is the unit step function since t his f unction is one whose resultant re::,ponse 
in a dynamic system is mos t readily compatible with intuition. In Laplace 
notation, 

X(s) = Y(s) H(s) = 1 H(s) 
s 

From this x( t) may be determined by inverse transforma tion . But also recall 
that t ne function 1/s is conc0ptually r e l ateu to integrai:.ion in the time 
domain. Hence, if the initial cond i t ions of the system are zero, 

\33) 

(34) 

t 
1-1 [x( s)]= x(t ) =fh(t) dt 05) 

0 

So if one knows the sys tem i mpulse r espons e h( t) analytically, then a s imple 
integration of the s ystem impulse r e sponse yields t he sys t em re s ponse to a 
unit step input. 

Two othe r useful theo r ems allow certain interpretations of time 
response from the system trans fe r function without going ti1rough the details 
of inverse transform..i.t ion. These are the initi al and f ina l value t,1eorerns •. 

The initial value theorem may be stated as -

lim sF(s) = lim f(t ) 

t~O 
(36) 
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A particular simplication is achieved by use of t,he latter relation (37) to 
deterrrri.ne the steady-state response of a system to a unit step input. 

1 
X(s) = 8 H(s) 

lim x(t) = lim s.X.(s) 

t • "'° S .... 0 

.. lim H1.s ) 

S-+ 0 

lim s 
s 

S _. 0 

H(s) 

(37) 

In conclusion, a comparison oi' the Laplace and Fourier transforms is 
appropriate. Recall that we have placed no restrictions upon whether t he real 
part of the exponents of epsilon in the time functions are negative or positive 
(convergent or divergent ) a{l(l that time ±'unctions have been limited to positive 
time, in using the Laplace transform . The capability of the Laplace transform 
to handle divergent exponential time functions is permitted by the fact that the 
real part of s in the direct transformation must be greater than t(a; the 
abscissa of absolute convergence in order to insure that the integral converg£i. 
Divergent transient sys tem behavior corresponds to poles in the rii:;h t-half 
s-plane. Also, in the inverse transform, integrating fro m c-joo to c+joa where 
c is equal to or greater than the abscissa of absolute convergence, means that, 
traversing a line in the rie;ht-half s-plane parallel to the jw axis and to the 
right of all poles. In the Fourier inte~al, t i1e rn,n,hematicul defini tions may 

be stated as ~[i\til = F(w) = / i'( t) e-jw:,dt 

and ~-l [F(w)] = f(~ (=) J:.f F(w) ejwt Jw 
c.1T --Note that the tirne domain f or negative tL11e is inclu,lec.l in the transform, but 

that no provision exists for han.Jling c.ii vergent time functions. 'l'hus, the 
right-half jw-plane corres,:xrnc.i.::; inste,'.l.d to the descri::ition of time behavior 
prior to ta:o. 'lhese pro p.:. rties mu.ke the La :)lace trar,s form particularly appli
cable to time f unctions where stability is in question, and the Fourier trans 
form applicable to tii.,e iunctions where stability or convergence is assured, and 
is particularly useful in statistical noise theory. '!'he transfer function of a 
stable, physically realizable system is identical in both. 

I 
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Lecture 3 . 

GRAPHICAL REPRESENTATION OF TRANSFER FUNCTIONS 

by 

R. J. Martin 
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INTRODUCTION: 

GRAPHICAL REPRESENTATION OF TRANSFER FUNCTIONS 
by Ro J. Martin 

Today's discussion will deal with the yarious methods of graphically repre
senting transfer functions. These gra:Eilical pictures of system responses are the 
tools with which control systems engineers can design and analyze control circuits o 
'!hey are useful in showing the frequency response of a system, determining stability 
of systems from their open loop characteristics, analyzing systems in t he presence 
of nonlinearities, finding closed loop responses, and obtaining a feel for system 
response due to noise inputs. The three types of plotting in wide use are the Bode, 
Polar, and Nichols plots. Each of these will be discussed separately with appropri ate 
examples to demonstrate their useo 

OODE PLOTS 

The type of graphical plots used most often in control system work are 
the Bode I?lots. These are frequency response curves and consist of two curves ; a 
gain Ys. frequency curYe, and a phase Ys. frequency curYe. The gain axis is cali
brated in decibels acc9rding to the definition. 

Db • 20 log ~oltage Rati~ 0 (1) 

The frequency scale is logarithmic, whereas Db gain and phase are plotted on linear 
scales. 

Example #1: F(s) • K (2) 

The gain and phase of this transfer do not Yary with f requency. If K .., 2, 
the gain from equation (1) is +6 Db , making the gain plot a straight line at + 6 Db. 
The :Eilase curYe is a straight line at o0 

o 

Example #2: F(s) • 1 
Ts 

(3) 

If the simple substitution of jA) is made for s, as discussed in preYious 
lecture, the equation (3) becomes F(joo ) • ~T • :T / -'J0° o Thus, the phase · 

curve does not Yary with frequency and is a straight line at -90° o The gain term 
does Yary with frequency as l. At oo = i , the gain is unity, or from equation (1) , 
o Db. TOO T 

At one octaYe aboYe this, oo • ~ 3 and the gain equals½• This , from 
equation (1), corresponds to -6 Db. Likewise 3 at one octave below the original fre
quency, oo • 1 and the gain is 2, which gives +6 Dbo The gain curve is then a 

straight lin~ith a slope of -6 Db/octaYe, and intersecting O Db at ro • +• 
If the transfer had been F(s) "' Ts _, the gain and inase plots would be in

Tersed. That is, the phase would be constant at +90°9 and the gain slo~ would be 
+6 Db/octave. The point of intersection with O Db would remain at oo .. .l:..o 

T 

Example #3: F(s) a 
l 

Ts+ 1 " (4) 
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1 
Again making the j r;:i substitution9 equation (4) becomes F(j M) "" jroT + 1 o 

This has been evaluated for Tarious values of co in the table below g 

TABLE l 

F( j w ) ,., -~-~-+-l 

(1) GAIN RATIO Db Gain Fhase 

l/16T rado 1 0 - 3 5/16° 

l/8T 1 0 = 6 5/8° 

l/4T 0o98 1 =13 1/4° 1 
. 

l/2T 0e90 =l - 26 1/2° 

1/T 00707 =3 =4.50 

2/T 0o445 =7 =63 1/2° 

4/T 0o245 ~12¼ =76 3/4° 

8/T 0ol25 =18 -83 3/8° 

16/T 0oo625 =24 -86 11/16° 

Bode plots of this data are given in Figure 1. It an be seen that the gain 
curve approaches two assymptotes on either side of the corner frequencyo At low 
frequeocies, the curve approaches unity gain, whereas at high frequencies 9 it 
approaches _l_o Some rounding occurs in the region of the corner such that at the 

c.oT 
corner frequency, the gain is -3 Db. The phase curve also approaches two assymptotes 9 

o0 at low frsquencies, and =90° .for higher frequencies. At the corner frequency the · 
phase is -45 o One octave below the corner~ the phase is =26½0 o For each successiTe 
octave reduction in frequency, the phase shift is half the previous phase shifto 
That is, at ro = ~ .il the phase is m26½0 ,... -13¼0 :, and at :i 111 1_.ll the phase is 

1 0 4T 2 . UT 
-l~~ • -6 .5/8° , etco Also» one octave above the corner, the phase is =63½0

J or 

-(90° - 26½0 )0 At each successive octave increase in frequency.il the phase is half 
the amount of phase frgm ~o0 as for the preTious octaveo That is j) at oo '"' 4/T /l t~e 

phase is - (90° rn 
2f2") ,. =(90° = 13¼0

) ,.. =76 3/4°9 and a ro • 8/T ,9 the phase is 

-(90° - 1~¼0
) = - (90° - 6 5/8°) ~ =83 3/8° 9 etco Thus , keeping these relations 

in mindi the design engineer need not evaluate the transfer function at several 
frequencies , but merely has to draw the assympto es and round off in the Ticinity 
of the corner o 
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It should also be noted that if F(s) •Ts+ 1, the Bode plot s obtai ned are 
the inverse of those just discussed, in that the gain curTe approaches a +6 Db/oc
taYe slope at high frequencies, and the phase approaches +90°. 

Example #4: F(s) • 
T2s2 + 2 ~Ts + 1 

1 (5) 

This . is a second order lag term where T is the time cons tant, 
the damping factor. The Yalue of ~ lies between zero and unity. 

an:i ~ is 

Case Is ~ • 1 If~ • 1, the quadratic factors into two equal first 
order terms, and equation (5) becomes 

:1 
F(s) •Ts+ I 0 1 - ---1 ___ 

Ts+ I (Ts+ 1)2 

The Bode ploi is then the product of two first order lags as discussed i n 
Example #3. However, since the gain scale is in deci bels, the gain curves are 
merely added together. Also , remembering that when taking t he product of two vectors~ 
their Jiiases are added, the phase curves are also added together . Thus, the Bode 
plot of a second order equation with unii7damping i s merely double the gain and 
phase cunes which make up the first order factors . A plot of this is shown in 
Figure 2. The gain approaches a -12 Db/octave slope at high frequencies, and the 
phase curve approaches -1800. 

Case II: O <>;;: <l If ~ is substituted f or s, the transfer of 
equation (5) becomes 

1 
1 - T2c,o2 + j2erc,; • 

The fol lowing tables are eYaluations of this function for ~ • Oo5 , and 
~ • 0.1 at various frequenciess 

(I.) Gain Ratio 

1/8T rad. 1.0 
l/4T 1.0 
l/2T 1.12 
1/T 1.0 
2/T .28 
4/T .0625 
8/T .0167 

TABLE 2 

1 ~ 19 o.5. 

Gain in Db 

0 
0 

+1 
0 

-11 
- 24 
-36 

Phase 

-90 
-15° 
-35° 
-90° 

-145° 
-165° 
-171° 
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TABLE 3 

l 
(1 - T~ 2) + j2 ~(J) ~ • 0.1 

(I) Gain Ratio Gain in DB Phase 

1/BT rad. 1.0 0 -1 
l/4T 1.0 0 -3 
l/2T 1.32 +2.5 -7 
1/T 5.o +14 -90 
2/T .34 -9 .. 5 -173 
4/T .0625 -24 -177 
8/T .0167 -36 -179 

Bode plots of these functions are also shown in Figure 2. It can be s een 
that as tis decreased, a peak is deYeloped in the gain curve at the corner frequencyo 
Also, the phase plot crosses -90° at the corner with a steeper slope , thereby giving 
reduced phase lag prior to the corner, but increased lags after the corner. A ~ of 
0.707 is the magic number for which the gain curYe does not go positiYeo 

Case IIIs If t • o, equation (5) becomes l 
• 

Making t he jro s ubstitution for s , we obtain F(j c.o ) c,a 

1 
frequency, the gain value goes to infinity, and the i:nase 
This is the transfer function of an oscillator. Needless 
to construct such a function in control system work. 

l • At the corner 
_ T2c.o 2 

jumps from o0 to -180°. 
to say, one does not try 

Case IVg t > 1.0 If tis greater than one , the quadratic of 
equation (5) factors into two first order corners. Each can be plotted separRtely, 
and combined as mentioned under Case I above . 

FOLAR P:WTS 

Another form of representing a transfer function graphically is by means 
of the polar plot, or as is sometimes called, a Nyquist plot. This is a plot of 
gain ratio vs. i:nase angle of a network as frequency is aried. It is plotted OH 

polar coordinates. Although frequency is no t a coordinate of this type of graph, 
every point on the curYe does correspond to a particular frequency, and this infor
mation is often added to the plot. 

To familiarize ourselves with this form of plotting, let us aga • n r e.fer 
to our examples: 

Example #1: F(s) • K ( 2) 

Seeing as gain and phase are constant, the plot of t his function is 
merely a point at gain equals K, and zero phase angle. 

Example #2: F(s) "'_L 
Ts 

(3) 
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Here the gain Taries but the phase is constant at -90°. The polar plot 
consists of a line from origin to infinity along the -900 a.xis. The gain is 
infinite at zero frequency, and approaching zero at high frequencies. At ro "' 1/T, 
the gain is unity. 

Example #3: F(s) • 1 
Ts + 1· (4) 

At zero frequency, the value of this transfer is unity with zero µiase 
angle. As frequency is increased, the :Eiiase angle increases in a negatiTe direction 
and the gain decreases until at infinite frequency, the gain approaches zero along 
the -90° axis. As can be seen in Figure 3, the curTe is actually a semi-circle 
with a radius of 0.5, and whose center is o.5 Lse..,. 

Example #4: F(s) • l 
T2s2 +~Ts+ 1 (5) 

Case Ia ~ • 1.0 The quadratic factors into two first order 
terms. The plot is merely the product of two curTes as shown in Example #3. At 
zero frequency, the gain is unity, with zero phase, and at high frequencies, it 
approaches zero along the -1800 axis. The Polar plot of this function appears in 
Figure 4. ' 

in Figure 4. 
is increased. 

Case II: 0 <~ <l.0 
As can be seen, as~ 

The data from Tables 2 and 3 are plotted 
decreases, the gain in the region of c.o • 1/T 

Case III: , t • 0 This function would plot as a line along the 
o0 axis from 1.0 to infinity. At infinite gain, it rotates through ..;i.80°, and 
reappears along the -180° axis where it continues to zero gain. 

NICHOLS PIOTS 

The last method of plotting transfer function characteristics is the 
Nichols plot. It is a plot of gain in decibels versus phase shift of a network 
as frequency Taries. HoweTer, it is plotted on rectangular coordinates. 

Considering again the four examples discussed in the pretious sections, 
we shall discuss the Niqhols form of plotting. 

I 

Example #1: F(s) a K (2) 

Since neither gain nor :Eiiase vary wi th frequency, plot of this function 
is a point at zero phase shift, and gain in Db. corresponding to K. 

Example #2: F(s) • l Ts 
(3) 

The phas~ is constant at -90°, therefore, the plot appears as a straight 
line along the -90° axis from a decibel gain of plus infinity to minus infinity. 

Example 13: F(s) • 1 
Ts+ 1 (4) 

I 
, I 

I. 
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A plot of this function is shown in Figure 5. At low frequencies , the curTe 
starts at O Db 3 and no phase lago As frequency is increased 3 the gain decreases3 and 
the phase approaches =90°. 

Example #4g F(s) ,. 
1 (5) 

Case Ii t .. 1.0 This is merely the product of two first order 
terms as discussed in previous sections. A Nichols plot of this transfer is shown 
in Figure 5. 

Case IIg O< ~ < l As ~ is decreased9 the gain peak at the 
corner is also not,ica:i in the Nichols plotso This can be seen in Figure 5o 

Case IIIg ~ 0 A Nichols plot of this would be a line 
up the oo phase axis from O Db to infi nity, reappearing at ml80°9 where it goes 
from plus infinity to minus infinity in decibel gaino 

FURTHER EXAMPLE 

Now, copsider the more complicated transfer function 3 

F(s) .. K 

= 2 .o 
= o .. 5 
"" Ool 
"" Oo5 

·This function consists of a gain term3 K; an integral term, 1/s; a first 
order lead corner (T1s + l) j a first order lag corner9 l , and a second 

~T2s + 1) 
order lag term, 1 o The total transfer is the product of all these 

(T32s2 + 2r;T3s + 1) 

terms. Therefore, the complete Bode plot is the sum of all the gain and phase curves . 
The first step in plotting the function is to plot each individual curveo 

K - This gives a gain curve along the O Db axis o I t contributes no phas·_ 
shift so the phase plot is alcng the o0 axis o 

1/s - This is a constant -6 Db per octave s l ope intersecting the O Db axis 
at ro s 1.0 radiano The Jiiase shift is a constant at ~90°. 

(T1s + 1) - The assymptotic gain curve is O Db unt i l the corner frequency 
of ro 1 ~ l m o.5 radianso Here it approaches a +6 Db per octave slope. Proper 

Ti 
rounding in the region of the corner should be included. The phase curve starts at 
o0 , crosses +45° at 0.,5 radians , and approaches +90° a t hi gh frequencies., It 
follows the relations of phase shift per octave above and below the corner as de= 
scribed in the section on Bode pl.6tso 
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The gain curve is again 0 Db until the corner of ro 2 • 1 = 2 
~ 

radians. Here the gain curve approximates a ~6 Db per octave 
rounding in the vicinity of the corner should be considered. 
at o0 , crosses -45° at 2 radians , and approaches -90° at high 
to the octave relationships. 

slope. Again, proper 
The phase curve starts 
frequencies according 

1 
T32s2 + 2~3s + 1 

and at the corner, w3 - ~-
3 

The .phase curve starts at o0 , 

radians. At high frequencies 

- In this case also the gain curve starts at O Db :1 

10 radians, breaks into a -12 Db per octave slope . 

and referring to Figure 2, crosses 90° at ro = 10 
it approaches -180°. 

The above five curves are then added point by point to obtain the total 
transfer plot. 

A quicker method of obtaining the total transfer is to begin by drawing 
the low frequency gain and Jhase curves. For this example , it is K/s; a -6 Db per 
octave slope through 0 Db at ro • 1 3 with a constant -90° phase lag. Then, at the 
first corner, ro 1 • 0 .S radians , a 6 Db per octave gain slope is aided to the =6 Db 
per octave slope, giving a net O Db per octave sloge. The phase leads associated 
with the lead corner are added directly to the -90 curve so that at high frequencies , 
the phase curve approaches o0 • Next , at the first order lag corner, ro 2 = 2 .O radians j 

a -6 Db per octave slope is added to the gain curve, and the appropriate phase lags 
are .added to the phase curve. The gain slope is then -6 Db per octave, arrl the phase 
curve approaches -90°. Finally, at w • 10.0, the second order lag term offers a 
-12 Db per octave corner which must be added to the gain curve producing a net slope 
of -18 Db per octave. The proper second order phase lags are also added to the phas 
curve making it approach .-270°. Thus, the total gain and phase curves are obtained 
§5 3hown in Fig. 6. 

If one wishes to make a Polar or Nichols plot of this type transfer, he 
could make the j ro. substitution for s , and determine the value of the transfer at 
various frequencies. However, this is a very burdensome operation. Another method 
would be to sketch the plots for each factor and combine them appropriately. This 
is also somewhat laborious for anything but the Bode plot. The easiest method to 
obtain Polar and Nichols plots is to first sketch the Bode plots as discussed above, 
and then, from the gain and phase of the Bode plot 3 sketch the Polar and Nichols 
plots. Figure 7 and 8 show these plots for our example problem. 

CIDSED LOOP 

' All of our discussion to this point has pertained to open loop transfer 
functions. If, however, we close a loop around one of these open loop transfers j 
the net closed loop transfer is extremely differento Consider, for example, a 
transfer function G(s) whose output is subtracted from a reference signal to pro
duce an error signal which is then applied to the transfer function as an input. 
This is shown in the block diagram of Figure 9 where R is the reference signal , C 
is the controlled signal output, and~ is the error signal into the transfer. 
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R to C. 

+ 

R 

The following relations exist: 

R - C • E 

E G(s) .. C 

G (s) 

FIGURE 9 

C 

(6) 

(7) 

It is desired to find the closed loop transfer; that is, the transfer from 
Thus, eliminating E from the above equations, and solving for c, 

tr 
R - C • C 

rrrsr 
R • C [ 1 + 1 7 .. C [ G ( s) + lJ rrrsJJ G(s) 

C • 
R 

G(s~ 
1 + G s) 

. ( 8) 

This, then, is the closed loop transfer. If the open loop transfer, G(s), consists 
of two polynomials ins, such that 

In our previous example, 

a(s) = K (Tis+ 1) 

b(s) as (T2s + 1) (T32s2 + ~T3s + 1) 

Hence, the closed loop transfer of our example is 

i. K (T1s + 1) 
s(T2s + 1) (T32s2 + 2~T3s + 1) + K 

(9) 

- K (T1s + 1) (le 
T2T32s4 + (T32+ 2~3T2) s3 + (T2 + ~TJ) s2 + (KT1 + 1) s

1
+ K 

The denominator of equation (10) consists of a fourth order polynomial . This 
is somewhat laborious to factor into first and second order terms. Oftentimes, in 
closed loop analysis of this type, polynomials of a much higher order are found making 
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the task of factoring almost prohibitive. It is, therefore, desirable to obtain a 
faster method of obtaining closed loop system transfers. This is easily accompl,ished 
using grapiical methods. 

In the case of the Polar plot, this becomes a straightforward operationo We 
wish to obtain the closed loop expression G(s~ • (l)n the Polar plot., we a~..ready 

1 +Gs) 
have a plot of the function G(s). The (1 + G(s)) term can easily be obtained by 
adding 1~ to each point on the G(s) curve. Then the two curves may be divided, 
point by point, to obtain the closed loop response. 

However, every point Pon the polar coordinates has a corresponding P + l) 
point. By dividing these points, one obtains the closed loop gain and phase of 
the point P regardless of whether it lies on the curve of a transfer !'unction. Thus, 
a family of equal closed loop gain curves and equal closed loop phase curves could be 
constructed on the Polar plot. Then, one merely has to plot an open loop transfer 
on the Polar coordinates, and by referring to this closed loop gridwork, determine 
the closed loop system response. Figure 10 shows these closed loop overlays along 
with a plot of our example problem. From this we can see that the closed loop respcnse 
starts at approximately unity with small phase lags. As frequency is increased., the 
gain drops to about 0.7, levels off there for a short while, and eventually drops 
off to zero gain. The phase decreases gralually also, reaching -270° as the gain 
approaches zero. 

This same type
1
of closed loop overlay can be constructed for Nichols plotso 

Figure 11 shows the Nichols plot closed loop overlays along with our example prob
lem. Again, we see the gain starts at about O Db, with about o0 phase lag. As 
frequency is increased, the gain drops to about .-3 Db for a while, and then decreases 
rapidly in the Vicinity 1of -180°. 

These closed loop overlays can be used to find closed loop response when 
only experimental open loop data are available, and an analytical expression cannot 
be obtained. Likewise, 1if only closed loop experimental data are available for a 
system, the overlays can be used in reverse to obtain the systems open loop transfer. 

CONCLUSION 

In closing, we would do well to review some of the merits and draw-backs 
of the various methods of plotting transfer function characteris tics. The Bode 
plots are by far the qulickest and easiest to draw, but are poor for determining 
closed loop response. Closed loop overlays, which are available !or the Nichols 
and Polar plots, make the task of determining closed loop transfers relatively ' 
simple. Determina tion of system stability from open loop plots can be somewhat 
confusing when working with Bode and Nichols plots, whereas definite rules which 
can be applied to the Polar plot rerrove all doubt of stability. The area of 
great interest on open loop plots is the vicinity of unity gain when the phase is 
-180°. In the Polar plot, this portion of the graµi is somewhat compressedo The 
Nichols plot essentially takes the Polar plot, opens it up, plots gain in .Db, and 
thereby expands the scale in the region of interes to The Nichols plot also finds 
applications when working with nonlinearities. It should also be pointed out tha tj 
even though the :Ebde plot requires two curves, the frequency information contained 
in this form o!' plotting is more obvious than that offered with the Polar and 
Nichols plots. 
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Lecture 4 

STABILITY AND COMPENSATION 

by 

B. E. Amsler 
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STABILITY AND COMPENSATION 

by B. E. Amsler 

Thus far in this series the basic theory commonly employed in control 

system analysis work has been discussed and some of the 11tricks of the trade11 

have been given. In this final section, we will draw upon this previous work 

and show how it is applied in control system analysis work. In this section the 

main emphasis will be on the system stability analysis problemo However., the 

closed loop perfonnance obtained from a given system function will also be given 

some attention. 

Let us consider a simplified system as defined by the diagram of Figure lg 

Q. 
l. + y (s) 

FIGURE 1 

Q 
0 

where Y(s) is any linear transfer functiono Note that, in general, 

K bes~ Y(s) = s 

where a(s) and b(s) are polynomials in ttstt and 

n-1 n s 
¾B + anl1 - - - - - as • 1 

while K is a constant. ' I 

are of ,the fonn 

.I I. 
I I ' ' I 

(1) 
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In control system work "K" is normally defined as the system gain while 

a(s) defines the frequency variant portion of the system transfer function. Note 
b(s) 

that a(s) is always .factorable and can only be made up of tenns of the fonn 
b(s) · ' 

2 2 
(Ts+ l) and(T s • 2t'l's • 1). 

Thus the Bode plot of Y(s) can easily be constructed. The resultant closed loop 

transfer function for the system is given by: 

Q (s) = Y(s) 
Q~(s) l + Y(s) 

Substituting for Y(s) we obtain 

Qo(s) c Ka(s) 
Q i(s) _Ka_( __ s )-• -b-(s-) 

= a(s) 
a(s) • b(s) 

K 

(2) 

Thus the closed loop transfer function is also defined by the ratio of two poly= 

nomials in 11s 11 • It is evident that these polynomials are also factorable into a 

product of tenns (Ts+ 1) and (T2s2 + 2~s + 1). 

Now in Lecture 2 of this series, it was pointed out that a transfer 

£'unction defined by the ratio of two polynomials could be separated into a sum of 

independent terms by partial functions., the denominator of each term being one 

factor of the denominator of the transfer function. 

Thus 

Q0 (s) a(s) --=----Qi(s) a(s) + b(s) 
A1 . A2 B1s • C1 

= --~ • --~--· -...--.,------- +---
T1s • 1 T2s • 1 T18s2 + 2~10s • 1 

K 

(.) 
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are the factors of the denominator a(s) • bis) o 

The inverse transfonn of~ (s) is the impulse response of the system 
I Qi 

(see Lecture 2) o Thus the impulse response is the sum of the exponentials given 

by the inverse transforms of the individual parts of (3)o 

A closed loop system is unstable if the impulse response is divergent. 

Now 

-1[ A l A 
L Ts • ij ~ 

-l[Bs • C JA 
L T2s2 • 2~s + 1 = 

Me 

where Mand~ are also functions of Tj t, B, and Co 

Thus it is seen that the system is unstable if any of the first oruer 

denominator factors has a negative time constant Tor if aey quadratic factor tas 

a negative damping coefficient t since only this c,ould result in a positive ex

ponent of 11 e11 • Note also that a negative T in the' f irst order tenn gives simple 

divergence whereas negative damping in the quadratic gives divergent oscillaticno 

In short, instability of the closed loop can result only if the denominator of 

~(s) contains terms of the form (-Ts+. 1) or (T2s2 .,. ~s + l)a Thus the question 
Qi 

of system stability resolves itself to determining whether or not terms of this 

form exist in the denominator of the closed loop transfer functiono In most 

r 
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,: 

practical cases, the oscillatory type of instability is the troublesome one; simple 

divergence generally results from an incorrect feedback polarity. 

It should be noted also that the frequency of oscillation for the quad-
1 

ratic (oscillatory) type instability is defined by the value of c.o = T for the un-

stable quadratic factor. 

There exist: several methods of determining whether or not factors of this 

divergent type exist in the denominator. One method is Routh 1s criterion., This 

criterion relates the existence of these terms to the inter-relationship among the 

coefficients of the denominator polynomial. However, the usefulness of this method 

in control system work is limited since it does not define degree of stability., 

That is, we do not lmow whether one of the system parameters is considerably or onlzy" 

slightly out of line as regards stability requirements., Similarly, we are unable to 

tell by Routh 1s criterion whether a system is or is not "almost unstable"., For ex

ample, the effects of parameter variations cannot be considered directly by using 

Routh 1s criterion. 

Another obvi ous method of determining instability is simply to factor the 

denominator polynomial associated with any given system. If negative roots of the 

polynomial (that is, terms of the divergent form) exist, then the system is unstable., 

This straightforward method is in fact commonly applied in the case of basic system 

analysis work where the higher order tenns associated with the practical hardware 

are not considered. However, the labor involved in factoring the equation for more 

than third order makes this method also prohibitive for evaluation of practical 
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systems where the important denominator terms may run to tenth and higher order. 

The method should not, however, be ignored, and ability to quickly factor third 

am perhaps fourth order expressions is extremely useful. 

There does exist one method which is applicable to a system of any order 

and which defines not only the absolute stability of the system but also the degree 

of stability. This method is based on a criterion derived by Nyquist. The pr0of of 

this criterion is rather involved requiring the application of a complex variable 

theory and will not be covered here. However, a discussion can be found in almost 

aey good servo mechanism text such as Truxal or James, Nichols and Phillips. ~rhe 

Nyquist criterion is in fact a graphical type criterion and its application empl oys 

those graphical techniques outlined in the previous section. Specifi calzy, the 

Nyquist criterion in its complete form may be stated as followsz 

If the open loop response function .of a negative 

feedback type control system is plotted in polar 

form for all values of ro from - co to • • , the 

system will be stable if and only if the net num

ber of counterclockwise encirclements of the point 

(-1 + jO) is equal to the number of poles in the 

right half plane of the open loop transfer function. 

Here the words "negative feedback type system" mean that the system block 

diagram shows one inherent sign reversal as in Figure lo 

As outlined in Lecture 2, the poles of a transfer function are simpzy the 

roots of the denominator. Fors equal to a root of the denominator, the denominator 

vani~hes and thus the total expression approaches infinity. Pol es in t he right half 
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plane mean roots for positive values of s. Consider a tenn, Ts • 1. It has a 

root and thus a pole at s a: -1/T. This is on the negative real axis and is thus 

in the le.t't, half plane. But if T were itself negative, then the root is positive 

and we have a pole in the right half plane. Thus positive roots of a denominator 

mean unstable tenns in the expression. That is, if our open loop contains a tenn 

of the form ·1 
--- , then we must encircle the (-1 + jO) point one time counter-
-Ts • 1 

clockwise. If the denominator contains a tenn 
2 2 

1 we have a complex 
T s - 2~s • 1 

conjugate root am thus an oscillating type instability in the open loop for posi

tive s (in the right half plane). Thus we must make two counterclockwise encircle

ments. However, if our open loop transfer function is itself stable (the most 

connnon case) then the net number of encirclements of the point (-1 • jO) must be 

zero. 

In order to illustrate the use of the Nyquist criterion in this simple 

form, let us assume a specific open loop system which will allow direct f actoring 

of the closed loop denominator. We will then compare the results obtained by 

direct factoring with the corresponding results in:iicated by the ytrquist cri.teriono 

Specifically, let us assume a systen. of the form given in Figure 2: 

Q. 
Q 

... K 0 
J. - - --

s(Ts • 1)2 -

FIGURE 2 
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For this case we obtain 

~ (s) • 1 

-34-

Qi T2 s3 + 2T s2 + 1 s • l -K K K 

(4) 

In order to simplify the a.na.zysis, we will assume T = 1 second. The 

detailed polar plots for ro > 0 for three values of gain K are shown in Figure 3. 

Note that for K = 1 the plot passes inside (to the right) of the point -1 • j O; 

for K = 2 the plot passes directl:y thru the point -1 • jO; for K = 4 the plot 

passes to the left of the point. In order to detennine whether or not the -1 + jO 

point is actually encircled, we must complete the plot for all values of ro from - 00 

to + m. The form of this plot is shown in the inset of Figure 3. The portion for 

- • < c.o <.O is simpl:y the mirror image of the portion O < ro <+°'\. Since the transfer 

1 
function includes an integral term'§', the amplitude open loop response is inf:µiite 

at c.o • t(). Thus the plot is closed at infinite amplitude for c.o = o. In this ·t;ype 

of system, the plot closure at (I.)= 0 is alw~s clockwis~ with 180° of rotation at 

ro = 0 for every order of integration in the system. 

Thus we see ·that the -1 + jO point is not encircled for values of K < 2 oO 

but is encircled for values greater than this. Thus a value of K = 2 should define 

a boumary between stability and instability. Intuitively, we would expect the 

system to be neutrally stable for this value of K which would infer an oscillation 

that would be constant in amplitude. 

In order to check the point, we will set K = 21 T = l in Equation 4. We 

can then determine the factored fonn of the denominator. 



W= - 0; 

I 
I 

I 
"' ~Plot Closure . at w =O 

I Yts,I = oo 

W=+O 

w = +oo 

W:-(X) 

-
I 

/ 

Overall Form of Plot 
for-oo~w <+oo 

\ 

I 

0 



APPUEI ,ns1cs UIIH roa, 
TIil IOHS .. ,11.s ••1msm 
SILHI s,a1•1 IIAUUH 

-35-

STABILITY AND CCID'ENSATION 

Thus for K = 2 

Qo 
(s) l - -l s3 + s2 Q. + l s + l J. 

1 1 

- 1 

(½ s + 1) (s2 + 1) 
The term (sf+ 1) is :in fact a special case of the general form 

T2s2 + 2~s + 1 where t, the damping coefficient, is identically zeroo . In short, 

it represents a perfect sinusoidal oscillation term of constant amplitude. Thus 
1 

the system is just neut~ stable. The frequency of oscillation is ro0 = T = 

1· rad./sec. Referring to the polar plot, it is seen that this is just the frequency 

where Y(s): -1 + jO. 

Now let us substitute the other two values of gain into the Equation 4 

and determine the resultant fonns of~ (s). 
Qi 

For K = 1 we obtain 

= 1 

(.57 S + 1) (1.3252s 2 
• 2 X 0162 X 1.325 S • 1) 

Note that the second term is a quadratic of the form T2s2 
• 2~s + 1 where 

1 l / the natural resonant frequency is con = T = 1032> = .755 rad. sec. and the damping 

ratio tis 0.162. 
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RefeITing to Figure 2 of Lecture 3, we see that ~ = .162 infers a 

rather high peak in the quadratic frequency responseo We might, therefore, in

fer that for this value of gain K, the servo would be stable but would tend to 

ring badly at ro = .755 rado/sec. 

Similarly, for K = 4, we obtain 

~ (s) .,. ----,,---1-___ _ 
Qi 1 s3 + 1 s2 + 1 s • 1 

1i '2' 1i 

= 1 

For this case we find an unstable (divergent) response form since the 

damping coefficient associated with the quadratic is negative. The frequency of 

this divergent oscillation would be ro = 1/.785 = 1.275 rad ./secorrlo 

Thus, in swnma.ry, we see that the Nyquist criterion has indeed predictoo 

the stability condition of the closed loopo 

Referring again to the polar plot of Figure 3, it is seen that in order 

to prepare such a plot, we neooa:l to define the phase and gain of the open loqp 

transfer function at several frequencies so that the plot could be constructed. 

In the case considered, this is not difficult. However, in a higher order system, 

considerable labor is involved in computing the points by directly substituting 

jro for s, and then determining magnitude and phase. On the other hand, as shown 

in Lecture 3, the Bode type plots (db gain and phase angle vs. ~equency) are 

rather easily constructed. Thus if this form of plot can be used to determine 
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stability directlys, considerable time and effort might be saved. The answer i.s.!I 

of course, that the plots can be used in this way provided that the form of the 

overall Nyquist (polar plot ) is kept in mind o Referring to t he inse in Figure 39 

we see that this particular system is stable so long as t he plo~ for O < oo < ~ 

passes between the -1 + jO point and the origin., In short,!) stability for this 

cas e r equires only that the gain be less than unit y (zero db) at a phase angle of 

-180° . 

Corresponding Bode plots for the three values of gain are given in 

Figure 4o It i s seen that the gain is exactly uni y (zero db) at ~180° phase for 

K = 2, is greater than unity for he case K ""49 and less than unity f or the case 

K = lo Thus stability can be directly determined from he Bode plot., Note also 

t hat changing the loop gain K simply effects the plo by moving the amplitude plot 

up and down., In the case considered,!) the gains considered were in 6 db i ncrements., 

Thus the plots are each separated by 6 dbo 

In the case considered9 the criterion for stability is rather obvious by 

direct inspection of the Bode ploto However9 in. more ~omplex system problem~, this 

is often not the caseo A general rule is to plot the detailed open loop transfer 

function on a Bode ploto From this plot sketch (as per the inset o:f Figure 3) a 

polar plot to determine the form of t he phase and gain relationship neoessary'.for 

stabilityo The detailed evalua. ion is then performed on the Bode plot,., 

To illustrate this point9 consider the open loop transfer func ion Y(s) 

arrl resultant Bode and polar plots sketched in F.i.gure 5o In this case., the open 

loop transfer is rather complex, and direct factoring of the resul ant, fif'th order 

closed loop would be extranely dif.ficu.l.:t. o However.9 the Bode plot could be rat.her 
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quickly constructed using the techniques outlined in Lecture 3o But, is the 

system stable or unstable as shown? Clearzy there are regions where the gain 

is greater than unity (zero db) while the phase equals and even exceeds -180° . 

In order to decide this question, we will resort to the Nyquist criterion and 

sketch the polar plot for co > Oo With a little practice, these sketches can be 

very quickly made without precise plotting of aey pointo The plot for co < 0 

is then completed and suitable closure made a co = 0 following the previouszy 

outlined rule where requires closure clockwise with 180° rotation for each power 

of j in the open loop. In this case, we find that the system is stable as shown 

since we make one counterclockwise encirclement over the frequency range roughly 

between 003 and co 4 when both positive and negative values o:f co are considered. 

However, we also make one complete clockwise encirclement at co = 0 (infinite 

amplitude). Thus the net number of encirclements is zero, and since we have no 

poles in the positive half plane of Y(s), the system is stable as showno Referri ng 

back to the Bode plot, it is seen that, in order to be stable, the open loop gain 

must cross the unity gain value within the frequency range of the "phase bulge18 

where the phase angle is less than 180°. If the gain is either raised or lowered 

so that gain crossover (point where the loop gain is unity) occurs outside t his 

region, the system is unstable. This type of system is commonly referrErl to as a 

"conditionally stable" system. 

· In passing it might be noted that the open loop form just described is 

the type normalzy employed in the overall guidance loop of a typical beamri ding 

missile. The simpler type previouszy considered in some detail is rather typical 

of the type employed in the control surface servos of the missile. 
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Thus far we have considered in detail the criterion of absolute 

stability. However, .t'urther consideration is required in t hat we are concerned 

not onzy- with the question 11Is it stable? 11 but also with the questions relating 

to the nature of the input to output transfer function resulting from a given open 

loop characteristic. We must also detennine the allowable tolerances required 

within the system to insure maintenance of stability., 

Toward these ends we often employ two more or less arbitrarily selected 

measurements of "stability margin". Stability margin is generally specified in 

two parts, specifically, the gain margin and the phase margin, which are defined 

as follows: 

Gain margin is the amount of system gain increase 

that is required to just produce instability. 

Thus it is given by the negative of the db gain 

(or inverse of numerical gain) at the frequency 

where the phase angle is -180°. In our example, 

the gain margin is • 6 db for K = 1, 0 db for 

K = 21 and -6 db for K = 4. 

Phase Margin is the amount of additional phase 

lag that is required to just produce loop insta

bility at the frequency where loop gain is unity. 

It is given by 180 -<li (00
0

) where <P (000 ) is the 

loop phase lag in degrees at 000 , the frequency 

where loop gain is unity., In our previous example 

the phase margin was about +22° for K = 1, o0 for 

K =2, and -18° for K = 4. 
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These values are easily determined from a Bode ploto 

Clearly negative gain and/or phase margin infers an unstable system 

and vice versa. Zero phase margin condition and zero gain margin condition oc

cur simultaneouslyo Furthennore:, as might be expected.I) the higher the value of 

margin, the 1•more stablett the systemo Obviously D the value of the stability 

margin gives us some feel for system toleranceso It will also give us some in

sight into the expected closed loop perfonnance characteristics even though no 

direct comparative set of values can be assignedo 

A feel for the relationship between stability margin and closed loop 

perfonnance can best be gained by considering the open loop plot of Y(s) on the 

Nichols plot together with an overlay- of closed loop phase and gain contours 

outlined in Lecture 3o A Nichols pl ot of the previously used Y(s) is shown in 

Figure 6 for the K "'lo It is seen that changes inK borrespond to moving the 

plot directly up or down as in the Bode ploto The gain margin is seen to be 

6 db and the phase margin 22 degrees as defined by the intersections of the plot 

on the gain and phase coordinate axeso Note that for the case considered (K = l).ll 

the curve just touches the +9 db closed loop gain contour~ (s), the value of 
Qi 

closed loop gain falls off rather sharply on either side of this valueo This 

sharp peaking is simply the peak associated with the rather small value of damp

ing coefficient (~ = Ool8) previously determined by factoring the resultant cubic o 

An inspection of the closed loop gain contours shown in Figure 6 shows that in 
I 

order to have a closed loop response peak of less than 3 db .I) the phase margin mus 

be about 4o0
• A phase margin o:f less than this must surely result in a peak of' 

greater than 3 db since it would require that we cross inside of the 3 db conto 
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In order to reduce our peak for the case considered to less than 3 db 

we would require an additional loop gain reduction of 6 db which would give a 

phase margin of 43° and a gain margin of 12 db. It will be noted that for a sim

ple quadratic term a 6 db peak corresponds to t-;- .25, 3 db gives t r:: o.4, while a 

. -9 db peak infers ta 0.17. This infers that in order to obtain a reasonably well 

damped response characteristic Q0 /Q
1

(s), we must reduce the loop gain to approxi

mately K = ½. 

Substituting this reduced value of loop gain (K =½)into Equation h9 

we obtain 

~ ct ____ 1 ____ _ 
'½. 2s3 + 4s2 • 2s + 1 

-- 1 ----------------------
(0.635s + 1) (1.782s2 

• 2 x 0375 x lo78s • 1) 

It will be noted that~ a 0.375 defines a quadratic peak of approximatezy 3 db. 

Thus we find that the results predicted by the closed loop contour overlay on 

the Nichols plot are verified by the direct factoring of the closed loop ex

pression. 

The closed loop results obtained with all the various assumed values 

of gain, K, are tabulated below for the general resulting form 

Qo 1 
- (s) = ------
Qi 3 2 s • 2s • s • 1 

1 
= 

- -K K K 
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Gain Tl 
K 

4 .43 

2 .5 

1 .51 
l. .635 2 

T2 

.785 

1 

1.325 

1.78 

-42-

~ Hlas e Gain 
Margin Margin 

-.ll6 -18° -6 db 

0 0 0 

+.162 21° 6 db 

• -315 43° 12 db 

Note that, in general, as K is decreased, the damping coefficient is raised, and 

the values of T1 am T2 are increased indicating decreased closed loop bandwidtho 

The corresponding increase in phase and gain margin is also given. This particu

lar closed loop system was simulated on the analog computer am transient responses 

recorded for the assumed values of gain. A copy of the actual recorded run is 

given in Figure 7. Comparison of this Figure with the above table shows the cor

relation between transient (both impulse and step) response am the results 01.J

tained directly from the analysis. Note particularly the increase in damping and 

decrease in resonant frequency obtained as K is decreased. 

// 
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