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ABSTRACT

Time histories of the impact damped simple harmonic oscillator in free
decay are studied. The numerical technique of finite differences with central
difference approximations is used to integrate the equations of motion. The
impact process is modeled during finite time by an equivalent linear spring
and viscous damper representing, respectively, material deformation and energy
loss during primary and secondary mass impact. This work corroborates, by an
independent method, the results of G.V. Brown and C.M. North! who used closed
form solutions and modeled impact, in infinitesimal time, by a restitution
model.
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DEFINITION OF SYMBOLS

ENGLISH SYMBOLS
A =Dimensional primary mass wall thickness.
C =Dimensional viscous damping coefficient.
C. =Dimensional critical damping coefficient.
Cy = Dimensional equivalent primary mass damping coefficient.
d =Dimensional secondary mass width.
D = Dimensional cavity width.
e = Coefficient of restitution.
E -Dimensionless total system energy at any time t.
E, =Dimensionless initial total system energy.
F(T) =Dimensional forcing function.
F, =Dimensional forcing function amplitude constant.
f, =F,/Ke = Dimensionless forcing function amplitude constant.
K =Dimensional external elastic spring coefficient.
k =Ky/K = Dimensionless equivalent primary mass spring coefficient.
Ky = Dimensional equivalent primary mass spring coefficient.
M = Dimensional primary mass.
m = Dimensional secondary mass.
T = Current dimensional time.
t =QT = Current dimensionless time.
X =Dimensional primary mass displacement.
dX/dT = Dimensional priimary mass velocity. ,
d?X/dT? = Dimensional primary mass acceleration.
X =X/¢ = Dimensionless primary mass displacement.
X9 = Dimensionless primary mass initial displacement at t = O.

KBA-2

Confirmed public via DTIC Online 02/25/2015



From ADA309667 Downloaded from Digitized 02/25/2015

dx/dt = (dX/dT)/eQ, = Dimensionless primary mass velocity.
d?x/dt? = (d?X/dT?)/e(Q,)% = Dimensionless primary mass acceleration.
dx,/dt =Dimensionless primary mass initial velocity at time t = O.

Y =Dimensional secondary mass relative displacement.
dY/dT =Dimensional secondary mass relative velocity.
d?Y/dT? = Dimensional secondary mass relative acceleration.

y =Y/e¢ = Dimensionless secondary mass relative displacement.
dy/dt = (dY/dT)/eQ, = Dimensionless secondary mass relative velocity.

dy'/dt =Dimensionless secondary mass relative velocity immediately following
impact in the restitution equation. '

d?y/dt? = (d?X/dT?)/e(,)% = Dimensionless secondary mass relative acceleration.
dy,/dt = Dimensionless secondary mass initial relative velocity at time t = 0.
Z =Dimensional secondary mass absolute displacement.
dZ/dT = Dimensional secondary mass absolute velocity.
d?Z/dT? = Dimensional secondary mass absolute acceleration.
z =2/¢ = Dimensionless secondary mass absolute displacement.
dz/dt = (dZ/dT)/efl, = Dimensionless secondary mass absolute velocity.

dzz/dt:2 - (dZZ/de)/e (Q,,)2 = Dimensionless secondary mass absolute acceleration.
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GREEK SYMBOLS
6 = Logarithmic decrement.
€ =D - d = Dimensional maximum secondary mass undeformed cavity travel.
n = Loss factor.
v =m/M = Mass ratio.
Q; =Dimensional sinusoidal forcing function natural frequency.

Q, = (KyM)?® = Dimensional primary mass material natural circular
frequency.

0, = (K/M)°3 = Dimensional system natural circular frequency.
0, =[K/(M + m)]°5 = Dimensional stuck system natural circular frequency.

wg =/, = Dimensionless sinusoidal forcing function natural circular
frequency.

wp =0/@, = (k/v)?3 = Dimensionless natural circular frequency or the
primary mass material,.

w, =,/Q = 1 = Dimensionless harmonic oscillator natural circular
frequency.

wy =0,/ = [1/(1+v)]°3 = Dimensionless natural circular frequency of the
stuck primary and secondary masses.

¢ =C/C, = Damping ratio.
{m = Cy/C. = Hysteretic damping ratio.

§s =C/C, = Dimensionless stuck damping ratio.
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1. INTRODUCTION

DESCRIPTION OF THE IMPACT DAMPER

The impact damper, known also as an acceleration damper or rattle damper,
is a passive type mechanical damper. It consists of an oscillator containing
a secondary mass which is able to travel freely between two stops either
mounted directly to the oscillator (primary mass) or between opposite walls
inside a hollow cavity within the primary mass.

The system is excited either by a forcing function or a nonzero set of
initial conditions (displacement and velocity). Vibratory motion of the
system causes the secondary mass to strike the stops or cavity walls of the
primary mass introducing energy dissipation in the form of elastic waves, heat
and noise.

Practical use of impact damping includes any application where its
simplicity and reliability are required. One example is space station
vibrations. Impact damping is unaffected by the cold vacuum of space and
would require little maintenance. A second possible application is in
turbomachinery. Implementation of impact damping in turbine blades and for
rotor torsional vibration would not require external structural modification.

HISTORICAL DEVELOPMENT OF IMPACT DAMPING

Publications as early as 1833 exist in the literature. The first
comprehensive analysis seems to have been reported in 1945 by P. Lieber and
D.P. Jensen (see P.J. Soller’'s? chronology) using a forced plastic impact
model without external damping. Various studies were performed until S.F.
Masri in 1969 demonstrated both analytically and experimentally that two
equally spaced impacts per cycle did exist (see P.J. Soller?). After this,
analysis of the single degree of freedom system declined because coverage of
this system was thought to be adequate.

In 1982 C.M. North, while working as a Summer Faculty Fellow at NASA
Lewis Research Center, initiated the study of the transient motion of the
impact damped simple harmonic oscillator. In a later study he added Coulomb
friction between the primary and secondary masses. Under the direction of
C.M. North, S.E. Pyle* in 1983 modeled the transient motion of a simple
harmonic oscillator containing a viscous fluid as well as a secondary mass
inside the cavity. These studies showed that the energy removed from the
system by friction or by the presence of a viscous fluid was insignificant
compared to that removed by impact damping.

Under the direction of C.M. North, P.J. Soller? in 1985 did a transient
analysis of the externally forced and viscously damped harmonic oscillator
with a single impact damper. His work checked the results of previous studies
and reported the effect of mass ratio and coefficient of restitution on
amplitude of vibration and duration of transient response.

In 1987, G.V. Brown and C.M. North! reported the results of a transient
free decay time history solution of the impact damped simple harmonic
oscillator. Their work showed that all the important characteristics of
impact damping could be determined from a single transient free decay,
precluding the need of a long term forced motion study. They reported three
behavior ranges:
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1.) a low amplitude range with less than one
impact per cycle resulting in very low impact
damping;

2.) a useful middle amplitude range with a finite
number of impacts per cycle;

3.) a high amplitude range with an infinite number of
impacts per cycle and progressively decreasing
impact damping with increase in amplitude.

P.J. Torvik and W. Gibson®, in 1987, parametrically investigated the
impact damper analytically and experimentally. Their work compared analytical
predictions to experimental results.

In 1988, under the direction of C.M. North, T.A. Nale?® reported the study
of the transient free decay motion of the impact damped cantilever beam. This
model explored the influence of cavity location, secondary mass travel, and
the higher modes on the effects of impact damping. The results revealed that
cavity location and secondary mass travel can be used to optimize the damper
effects on vibration amplitude. Of significance was the fact that the first
mode proved to be predominant in influencing the vibratory motion of the beam,
and consequently, higher modes are not required to produce an accurate
assessment of the effects of the impact damper.

OBJECTIVE OF THIS STUDY

The primary objective of this study is to evaluate the effectiveness of
the Component Element Method® in modeling the transient free decay response of
the viscously damped, simple harmonic oscillator. The method models material
deformation during finite time of impact with the internal impact damper. The
evaluation is made by comparison of results obtained with the previous work of
G.V. Brown and C.M. North!.

COMPONENT ELEMENT METHOD DESCRIPTION

Springs, masses and dampers comprise an assemblage of elementary
components. The Component Element Method® uses a finite difference
step-by-step process of integrating the equations of motion of the assemblage.
Because of this feature, system complexity is not limited by the ability to
find closed form solutions as it is when using purely analytical methods.

The method chosen here for approximating derivatives by finite
differences is the central difference approximation. As long as the time
interval chosen is kept within 2(«x)/w,, where w, is the highest natural
frequency (rad/sec) in the system, the solutions will be accurate and converge
to the exact solution (see Levy et al.%), ’

2. SYSTEM MATHEMATICAL MODEL

PHYSICAL SYSTEM

The modeled system is a simple harmonic oscillator with one internal
impact damper with optional viscous damping and an optional sinusoidal forcing
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forcing function. The sliding contact surfaces between the primary and
secondary masses are assumed to be frictionless. The configuration shown in
Fig. A is the dimensional representation of the system. The absolute
displacement of the primary mass M is X. The relative and absolute displace-
ments of the secondary mass m are Y and Z, respectively. The corresponding
external spring and viscous damping coefficients are K and C, respectively.
The sinusoidal force F(T) is a function of real time T. The primary mass
cavity wall thickness is A. The cavity width is D and d is the width of the

secondary mass,
The free decay motion in this study begins at dimensionless time zero.

The primary mass is released from rest with an initial dimensionless

displacement of 6.0. All other initial values of relative displacement and

velocity are 0.0. The primary mass equivalent material components, Ky and Gy

represent, respectively, the material deformation and structural damping of
the primary mass as it undergoes impact with the secondary mass (see L.

and G.K. Hobbs®). Although the secondary mass also deforms and
registers energy loss due to hysteresis damping, these losses are lumped into
the equivalent spring and viscous damper shown schematically in Fig. A as a
part of the primary mass cavity wall.
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Figure A System Configuration in Free Motion

PRESENT MODEL DESCRIPTION

The model developed here uses the numerical method of finite difference
with central difference approximations to integrate, with respect to time, the
equations of motion of the primary and secondary masses.

Free motion is the condition where the two masses are experiencing
frictionless sliding contact, but without contact between the secondary mass
and the cavity wall of the primary mass.

The impact model at the cavity walls accounts for the deformation,
energy, displacement, velocity, and acceleration changes that occur during a
finite time of impact.

The elastic deformation of the primary mass during impact with the
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secondary mass is modeled by an equivalent linear spring whose material
elastic modulus is Ky. Assumptions are:

1.) the material is linearly elastic;

2.) no permanent deformation occurs;

3.) the secondary mass is small compared to the primary
mass;

4.) the deformations of the primary mass cavity walls
due to impact with the secondary mass are small
compared to the secondary mass travel ¢ within the
cavity.

Resultant hysteretic damping due to impact with the secondary mass is
modeled as an equivalent linear viscous damper whose damping coefficient is Cy
and whose damping ratio, {,, is determined iteratively by a subroutine
contained in a FORTRAN computer model. This subroutine models the deformation
and energy loss from a collision between the motionless primary mass and the
secondary mass by simulating the impact between a secondary mass m of unit
velocity and a spring damper pair like the one shown in Fig. B. The spring is
the equivalent linear spring whose elastic modulus is Ky and the damper is the
equivalent linear viscous damper whose damping coefficient is Cu.

Ky
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Figure B Iterative Impact Model

The subroutine uses the known values of the dimensionless spring elastic
modulus, k, coefficient of restitution, e, and initial unit impact velocity of
the mass m. Closed form solutions are used to step through the impact process
beginning with a small assumed value of the structural damping ratio Cme A
minimum of one hundred steps is used to assure accuracy of {, within an error
of 10"®, At the conclusion of impact the secondary mass m has returned to the
impact starting position and its relative velocity is checked against the
relative velocity provided by the restitution model. If the velocities do not
agree within the error of 10°8, ¢  is changed iteratively until the
restitution model is satisfied to within the required tolerance.

A phenomenon called "bounce-down" appears in a time study of a
sufficiently excited impact damped system. Bounce-down commences when the
secondary mass fails to acquire the velocity necessary to reach the opposite
cavity wall before colliding again with the previously impacted cavity wall.
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In free decay bounce-down will always terminate in the stuck regime
(definition to follow).

Bounce-down impact frequency rapidly increases while relative
displacement amplitude decreases. This motion continues until separation of
the two masses ceases to occur. Their motion, however, continues as minute
deformation induced oscillations without physical separation until hysteretic
damping dissipates the deformation induced oscillatory motion. This is
analogous to dropping a ball on a sidewalk and letting it bounce to a stop.

Bounce-down ends and the "stuck" condition begins when the secondary
mass relative velocity and relative acceleration become zero. The secondary
mass adheres to and moves with the primary mass until primary mass
acceleration changes sign reducing the normal reaction between the masses to
zero. At that point the secondary mass no longer adheres to the primary mass,
but is "slung" free, initiating a free motion regime.

In free decay when the primary mass dimensionless amplitude diminishes
from its initial value of 6.0 to an approximate value of 5.0, bounce-down and
the associated stuck condition cease to occur. Subsequently, the number of
impacts per half cycle decreases with decreasing dimensionless primary mass
peak amplitude until less than one impact per half cycle is recorded. This
point in the time history is called "Impact Failure" and designates the loss
of damping effectiveness of the impact damper.

DIMENSIONLESS EQUATIONS OF MOTION

To obtain results in a general form with the widest applicability the
equations of motion are made dimensionless as shown below. (See R.E. Jones®
for the complete derivation.)

Time is made dimensionless with respect to the reciprocal of the primary
mass undamped natural circular frequency (which is the period of the undamped
primary mass motion). The circular frequency {1, = (K/M)%-3. The corresponding
dimensionless time is

t = qT. (1)

Displacements are made dimensionless with respect to the secondary mass
free travel ¢ = D - d within the cavity. The dimensionless displacements x,
y, z are: x = X/e¢, y = ¥/e¢, z = Z/e. By letting we = 0./Q, and £, = F,/(Ke)
the Sinusoidal forcing function can be written in the dimensionless form

F(T)/(Ke) = f sin(wet). (2)
-FREE MOTION MODEL
Free motion is the resulting motion of the primary and secondary masses

vhen they are not impacting. The equations of free motion for the primary and
secondary masses are well known (see R.K. Vierck!?, or S.S. Raol!). The

~ dimensionless equations of free motion for the primary and secondary masses

are,
d%x/dt? + 2wt (dx/dt) + (w)?x = f,sin(wst) - (3)
d?y/dt? = -d?x/dt? (4)
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IMPACT MODEL

The primary mass experiences deformation of the cavity wall due to
secondary mass impact. The normal force between the two masses is non-zero.
The dimensionless equations of motion for impact at the left cavity wall are:

d%x/dt? + 2u.¢ (dx/dt) + (w,)%x =
v[20,05(dy/dt) + (w)?y] + £ sin(w,t) (5)
d?y/dt? + 2w, (dy/dt) + (uy)?y = -d?x/dt? (6)
The dimensionless equations of motion for impact at the right cavity wall are:

d®x/dt? + 2w ¢ (dx/dt) + (w,)%x =
v[2wp(dy/de) + (uh)z(y - )] + £ sin(wet) (7)

d?y/dt? + 2w,0n(dy/dt) + (w)3(y - 1) = -d%x/dt? (8)
STUCK MODEL

In the stuck regime the two masses are in contact but the normal force
between them is not zero. This condition results in the same equation of
motion when the secondary mass is stuck at either cavity wall. The equations
of motion for the stuck regime are:

d?x/dt? + 20,0,(dx/dt) + (w,)%x = £,sin(w,t) (9)

d?y/dt? = -d%x/dt2. (10)

SYSTEM ENERGY ANALYSIS

The total dimensionless energy of the system at any time is the sum of
the dimensionless kinetic and potential energy in the system.

E = 0.5((dx/dt)? + v[(dx/dt)? + (dy/dt)?] + x?)

The ongoing percent of system energy at any time is determined by
dividing the current system energy by the initial system energy,

Ey = 0.5((dxg/dt)? + v[(dxy/dt)? . (dyo/dt)?] + (x%4)?).

3. ANALYSIS OF COMPUTER RESULTS .
GENERAL COMMENTS

This work used the numerical technique of finite differences to integrate
the equations of motion (3) - (10) in a FORTRAN 77 computer program to
generate the transient time history of the viscously damped simple harmonic
oscillator with impact damping.

When the dimensionless primary mass displacement is greater than
approximately 5.0 (mass ratio v = 0.02, coefficient of restitution e = 0.6,
and viscous the damping ratio ¢ = 0.0) the secondary mass experiences the
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bounce-down phenomenon that in free decay always terminates in the stuck
condition. The greater the dimensionless primary mass peak amplitude the
shorter the time duration that the secondary mass spends in the bounce-down
condition and the greater the time duration it is stuck to a cavity wall of
the primary mass. To prevent a lengthy stay in the bounce-down and stuck
conditions (which occurred in G.V. Brown and C.M. North! where the initial-
dimensionless primary mass displacement was 10.0) the initial dimensionless
primary mass displacement was set here at 6.0. At the end of bounce-down and
the stuck regime, the number of impacts per half cycle that the secondary mass
experiences on one cavity wall before gaining sufficient relative velocity to
impact with the opposite cavity wall decreases with diminishing dimensionless
amplitude. This decline in number of impacts per half cycle continues until
impact failure ensues when less than one impact per half cycle occurs at an
approximate dimensionless amplitude between 0.1 and 0.05. The range of
greatest damping effectiveness for the impact damper lies between bounce-down
termination and impact failure. It is in this regime of primary mass
amplitude that the secondary mass acquires its greatest relative velocity due-
to impacts on the advancing cavity wall. Structural damping is represented
here by an equivalent viscous damper. Therefore, damping is a function of the
relative velocity between the primary and secondary masses. As the absolute
value of the dimensionless primary mass peak amplitude decreases,
dimensionless secondary mass relative velocity increases faster than the
dimensionless primary mass velocity decreases, resulting in an increase in the
relative velocity between the two masses. Thus the high relative velocity
between the two masses due to impacts on approaching cavity walls is
responsible for the high rate of impact damping effectiveness.

All the results discussed here were generated from the output files of a
computer program whose source code and executable file are stored on the
accompanying diskette of R.E. Jones®. Figures 1 - 6 were made directly from
these computer output files where the mass ratio v = 0.02, the coefficient of
restitution e = 0.6 and viscous damping ratio ¢ = 0.0. All "Dimensionless
Amplitude" data plotted on the ordinate of Fig. 7 and the abscissas of Figures
8 - 14 were generated from the absolute values of the dimensionless peak
primary mass displacement at each half cycle of the primary mass motion. In
Fig. 15 the "Dimensionless Amplitude" is the peak primary mass dimensionless
amplitude that occurs during the half cycle in which an impact or impacts may
also occur. Therefore one value of dimensionless amplitude may apply to
several impacts. This is not to be confused with the dimensionless amplitude
of the primary mass at the time of the impact.

SYSTEM MOTION

The secondary mass experiences several types of motion from bounce -down
to impact failure. Three of these motion geometries (relative to the cavity
walls) are shown in Figures 1 - 3 which occur at approximate primary mass
dimensionless amplitudes of 5.6, 2.6, 0.6, respectively. Fig. 1 illustrates
the bounce-down condition followed by the stuck regime. Later on, after
bounce-down ceases, the secondary mass in Fig. 2 is impacting a cavity wall- .
three times before gaining sufficient relative velocity to cross the cavity
travel width to the opposite cavity wall. Even later in the time history, in
Fig. 3, the secondary mass impacts a cavity wall twice before alternating with
a single impact on the opposite cavity wall.
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In Figures 4 - 6 the approximate primary mass dimensionless amplitudes
are 0.4, 0.2, 0.05, respectively. The dimensionless secondary mass absolute
displacement is represented by a dashed line and the absolute displacement of
the two cavity walls is represented by two solid lines. Two unequally spaced
impacts per cycle are shown in Fig 4. Later in the free decay, two equally
spaced impacts per cycle are shown in Fig. 5. Fig. 6 clearly exhibits the
point where the impact damper loses its effectiveness when impact failure
begins.

LOSS FACTOR

The loss factor is a measure of damping effectiveness, where the greater
the loss factor, the more effective the damper is at reducing the primary mass
vibratory motion. The loss factor is defined as the change in primary mass
energy that occurs between the two extreme absolute dimensionless primary mass
displacement peaks of a cycle divided by the primary mass energy at the
absolute dimensionless primary mass half cycle peak that lies midway between
the two full cycle peaks; i.e., the loss factor is

n = AE/E,

where E is the total system energy. When the simple harmonic oscillator is at
a peak amplitude, the kinetic energy vanishes and the total energy is:

E - kx?/2
Since AE = kxAx then the loss factor per cycle is:
n = 2Ax/x
AVERAGED LOSS FACTOR

To generate the "Averaged Loss Factor" each point of the data shown in
Figures 8 - 14 is the result of a least squares parabolic fit applied to the
absolute values of primary mass peak amplitudes for ten successive half cycles
(eleven data points). These data are used to determine the averaged loss
factor. This smoothing or averaging is necessary because of the variations in
peak amplitudes. Some data required the application of the least squares fit
to as many as 18 half cycles in order to present the data in acceptably smooth
form. The averaging process has the effect of broadening and reducing the
loss factor peaks.

In Figures 8 - 15 the primary mass dimensionless displacement amplitudes
are decreasing as the free decay time history progresses.

AMPLITUDE DECAY

Fig. 7 displays the decay curves of the absolute value of the
dimensionless peak half cycle amplitudes versus the time of the amplitude
occurrence. For this figure the external damping ratio { = 0.0, and mass
ratio is v = 1, 2, 4 percent, while all other parameters are held constant.
The efficiency of impact damping for a given set of parameters corresponds to
the slope of the curve. Clearly illustrated is the increase in loss factor
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with decrease in amplitude until impact failure commences at a dimensionless
amplitude of between approximately 0.05 - 0.1. Impact failure is easily
recognized here by the curve tails close to the horizontal axis. The
bounce-down and stuck regime is in the dimensionless primary mass amplitude
range above approximately 5.0.

EFFECTS OF THE MASS RATIO

In Fig. 8 the coefficient of restitution, e = 0.6, external damping ratio
¢ = 0.0, and three values of mass ratio, v = 1, 2, 4 percent are used to
demonstrate the increase in loss factor with a decrease in amplitude.
Comparing Fig. 8 with Figures 4 and 5 indicates that maximum damping
efficiency due to impact damping occurs when the secondary mass experiences
one impact per half cycle. The similarity between the curves depicted in
Fig. 8 suggests a factor may exist, when applied to each curve, that would
cause the three to converge on one common curve. The curves in Fig. 8 are
reduced nearly to a single curve as shown in Fig. 9 by dividing the averaged
loss factor by the mass ratio (also called the "Specific Total Loss Factor").
The specific total loss factor is a constant at any given amplitude for mass
ratios up to 4 percent. This demonstrates that the loss factor and the
dissipated energy due to impact (Fig. 8) are approximately proportional to the
mass ratio.

EFFECTS OF VISCOUS DAMPING

Fig. 10, with a single value of the coefficient of restitution e = 0.6
and mass ratio of v = 2 percent, compares the loss factors resulting from
viscous damping ratios of 0.0, 0.2, 0.4, 0.8 percent.

The "Specific Secondary Mass Loss Factor" is obtained when the damping
contribution made by twice the viscous damping ratio 2{ is subtracted from the
averaged loss factor in Fig. 10, and the result is divided by the mass ratio.
This contribution of viscous damping 2¢{ is obtained from the logarithmic
decrement, §, which is a measure of the rate of decay between any two
successive cycles (for detailed derivation, see R.E. Jones?) .

The simple additive nature of viscous and impact damping is illustrated
in Fig. 11. The nearly identical overlapping curves show that viscous damping
on the primary mass and impact damping are additive for very small viscous
damping ratios. This near coincidence of the curves provides a single curve
that closely describes the specific secondary mass loss factor as a function
of dimensionless amplitude. However, this curve is unique for the value of
the coefficient of restitution e = 0.6. Different curves can be generated for
other values of the coefficient of restitution. Over most of the length of
the curve, the specific secondary mass loss factor increases as the
dimensionless amplitude decreases.

Fig. 12 illustrates to what extent the apparent approximate
correspondence between amplitude and the specific secondary mass loss factor
exists in Fig. 11. To show this the specific secondary mass loss factor from
Fig. 11 is multiplied by the dimensionless amplitude. The resulting
overlapping of the curves justify the correspondence. In the dimensionless
amplitude range from 0.1 - 6.0 the curve has variations within *31 percent of
the average ordinate value 0.339. The approximate constant value of the
ordinate provides an easy estimate of impact damping over a wide amplitude
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range.
EFFECTS OF THE COEFFICIENT OF RESTITUTION

The general effect of changing the coefficient of restitution e is shown
in Fig. 13. The dimensionless amplitude multiplied by the specific secondary
mass loss factor is represented for values of e = 0.4, 0.6, 0.8 and mass ratio
v = 2 percent, and viscous. damping ratio ¢ = 0.0. The lower value of e = 0.4
results in increased loss factor in the middle dimensionless amplitude range
of 0.1 to bounce-down termination. Bounce-down ends at approximately 2.0 and
5.0 for coefficients of restitution e = 0.4 and 0.6, respectively. For
coefficient of restitution e = 0.8 bounce-down ends at an amplitude beyond
the scope of this study (greater than 6.0). For coefficients of restitution
values of e = 0.4, 0.6, 0.8, impact failure begins at approximately 0.15, 0.1
and 0.01, respectively. To summarize, for lower values of the coefficient of
restitution, e, bounce-down ends at lower dimensionless amplitudes and impact
failure begins at higher values of the dimensionless amplitude. Higher values
of the coefficient of restitution e have just the opposite effect.

Fig. 14 is obtained from Fig. 13 by dividing the ordinate values in Fig.
13 by (1 - e). The merging of the curves demonstrates that within impact
damping active range (implied by Fig. 13), the damping is approximately
proportional to (1 - e).

IMPACT PHASE ANGLE

Fig. 15 is a phase plot (without viscous damping) of the secondary mass
impacts that occur during a half cycle where the dimensionless primary mass
amplitude is the absolute value of the dimensionless primary mass peak
amplitude in a half cycle. The coefficient of restitution e = 0.6 and the
mass ratio v = 0.02. The phase angle in degrees is determined from the
secondary mass cavity wall impact point between primary mass crossings of the
zero dimensionless displacement axis. A half cycle of 180 degrees is defined
between the dimensionless primary mass displacement amplitude zero crossings.
The secondary mass impact phase in degrees is defined by the point in time at
which the impact of the secondary mass occurs during the dimensionless primary
mass displacement half cycle. This point is established when the
dimensionless secondary mass relative displacement is zero (impact at the left
cavity wall) or one (impact with the right cavity wall). The relationship is

Time from last zero crossing to impact
Phase = X 180°.
Time between zero crossings

The initial time for the data shown in Fig. 15 corresponds to the initial
dimensionless amplitude of 6.0 and the time history progresses as amplitude
decreases. Impact points are shown in the figure as small squares. The
darkened area in the upper right corner of the figure represents the stuck
regime where the secondary mass moves in temporary contact with the primary
mass until the dimensionless primary mass acceleration changes sign. The area
beneath the stuck region all the way down to the horizontal axis is the realm
of bounce-down. Notice that in the bounce-down region the impact phase (at a
given dimensionless amplitude) increases as the stuck regime is approached
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vertically from the horizontal axis until bounce-down terminates in the stuck
regime. At an approximate dimensionless amplitude of 5.0 bounce-down and the
stuck regime cease. At that point, as the dimensionless amplitude diminishes,
the number of impacts per half cycle also diminishes. Note that at
progressively decreasing amplitudes of approximately 4.4, 4.0, 3.3, 2.5, 1.3,
0.2 in Fig. 15, clear patterns of six, five, four, three, two, and one impacts
per half cycle, respectively, are indicated. The plot clearly shows that
regular impact regions per half cycle alternate with regions of chaotic
impact. Comparing Fig. 15 with the slopes of the curves in Fig. 7, impact
damping is seen to be most efficient (for coefficient of restitution e = 0.6
and mass ratio v = 0.02) in the region of single impacts per half cycle.

This corresponds to a dimensionless amplitude range from approximately 0.2 to
impact failure, which ensues at approximate dimensionless amplitudes of 0.05 -
0.1.

4. COMPARISON OF RESULTS TO THOSE OF G.V. BROWN AND C.M. NORTH!
SIMILARITIES AND DIFFERENCES

In comparing these results with those of the previous work of G.V. Brown
and C.M. North!, the observable differences can be attributed to:

1. the inherent difference between the two models;

2. initial conditions;

3. a variation in the least squares method used for
loss factor averaging.

Although all the results compare well, close scrutiny shows a very small
difference in data point to data point comparison. During one comparative run
of identical parameters the dimensionless time required for reducing vibratory
motion from initial primary mass displacement to impact failure was
approximately 5 - 10 percent less here than in G.V. Brown and C.M. North?.
However, more study should be performed to verify this observation. Also the
chaotic regions appear to be less chaotic in Fig. 15 than in G.V. Brown and
C.M. North’.

G.V. Brown and C.M. North! began the free decay time history at a
dimensionless primary mass displacement amplitude of 10.0. The present study
initiated free decay with a dimensionless primary mass displacement amplitude
of 6.0, The larger of these two amplitudes causes the primary and secondary
masses to remain in the bounce-down and stuck regime for a longer length of
time for all of the results presented. As a consequence, their time histories
will always require longer dimensionless times to reach impact failure since
more time was spent in the bounce-down and stuck regimes where small damping
occurs.

In each of the loss factor curves (Figures 8 - 12) a maximum value peak
in the region of impact failure 1is lower and broader here than in G.V. Brown
and C.M. North!. The peak in question is located at a dimensionless amplitude
of approximately 0.1 in Figures 8 - 12. 1In Figures 13 and 14 the peak
corresponding to each of the three curves in each figure occurs at dimen-
sionless amplitude of approximately 0.08, 0.1, 0,12, G.V. Brown and C.M,
North! used a variation of the loss factor averaging scheme in the vicinity of
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this peak causing the difference in appearance of the curve in the two works.
It is noted however, that the region of impact failure appears to contain
little meaningful information.

SUMMARY

The overall results given here are qualitatively identical to G.V. Brown
and C.M. North!. This similarity of results from the two studies supports the
assumptions of G.V. Brown and C.M. North! while lending credibility to the
model in the present work. The present work uses finite differences with
central difference approximations to integrate the equations of motion. The
actual impact process is modeled using discrete time intervals during impact
between the primary and secondary mass. The deformation and energy losses of
the impacting masses are assumed to be equivalent to a linear spring and
viscous damper, respectively, for the small deformations involved. G.V. Brown
and C.M. North! used closed form solutions and initiated free decay with a
dimensionless primary mass initial displacement of 10.0. The coefficient of
restitution was used to model across impact by assuming the time duration of
impact to be infinitesimally small compared to the time required for the
secondary mass to travel between impacts. The differences between these basic
models accounts for all of the deviations between the results obtained from
the two studies.

5. CONCLUSIONS

The accuracy of the numerical method is dependent directly on the size of
the time step used. The smaller the time step, the more accurate the
results. The spring and damper components used are all assumed to be linear
and subject to linear restrictions (e.g., small deformations). The
equivalent linear damper used to simulate structural damping is viscous and it
is therefore velocity dependent. Structural damping is typically nonlinear
and dependent upon the magnitude of deformation. For small secondary mass to
primary mass ratios, the justification for using the more convenient viscous
damping for a structural damping model comes from assuming small structural
deformations resulting from impacts between the primary and secondary masses.

The component element method with its utilization of the numerical finite
difference technique is shown to be a useful analysis tool for investigating
the impact damped simple harmonic oscillator in freely decaying motion. The
impact process is modeled as if the deformation and energy losses from the
impacting primary and secondary masses were replaced by an equivalent linear
spring and viscous damper. The results obtained have been shown to compare
favorably, for small mass ratios, to G.V. Brown and C.M. North! who used
closed form solutions to model the motion and a restitution model across
impact. The accuracy of the results make the component element method worth
consideration for future investigations of more complex systems of multiple
components and impact dampers where closed form solutions may prove difficult
or impossible to obtain. Although not utilized here, the component element
method has the flexibility of incorporating nonlinear expressions or even data
bases to represent component moduli.

The present computer model confirmed the following results obtained
earlier by G.V. Brown and C.M. North!:
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(1) A low amplitude and corresponding low effective impact
damping range occurs for impact damping for coefficients of
restitution e = 0.4, 0.6, 0.8. Impact failure is dominant
for the diminishing dimensionless amplitudes starting at
0.15, 0.1, 0.01, respectively, where less than one impact
per half cycle occurs.

(2) Between bounce-down and the stuck regime to the beginning of
impact failure a middle dimensionless amplitude range of
useful impact damping exists. The number of impacts per
half cycle in this range depends on the dimensionless
primary mass amplitude (i.e., the greater the amplitude the
more impacts per half cycle).

(3) In the bounce-down and stuck regime impact damping is
decreasingly effective. Dimensionless primary mass
amplitudes are above approximately 2.0 and 5.0 for
coefficients of restitutions e = 0.4, 0.6 respectively. The
number of impacts per half cycle is large and can increase
without bound as the coefficient of restitution approaches
one.

For additional light viscous damping the impact damping in the middle
dimensionless amplitude range from the bounce-down and stuck regime to impact
failure is shown to be:

(1) represented by one curve for a given coefficient of

restitution implying that impact damping is proportional
to the mass ratio;

(2) additive to proportional viscous damping;

(3) a unique function of vibration amplitude where the loss

factor increases as the dimensionless primary mass amplitude
decreases;

(4) proportional to (1 - e), where e is the coefficient of

restitution. .

For a coefficient of restitution e = 0.6 and mass ratio v = 0,02 impact
damping is most effective when the dimensionless amplitude is about 10 percent
of the secondary mass cavity travel (dimensionless value of one). The loss
factor has a maximum value of nearly 0.1 and over a wide range of
dimensionless amplitudes the loss factor is 0.0l. Impact damping is a strong
function of amplitude and produces substantial damping for small mass ratios.
Because of this, several impact dampers may be combined with different
secondary mass travel gaps to provide damping over wide ranges of amplitude.
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7. FIGURES
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Figure 1 Large Number of Impacts in Each Half Cycle.
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Figure 2 Three Impacts in Each half Cycle.
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Figure 3 One Impact in Each Half Cycle Alternating with Two.
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Figure 4 Two Unequally Spaced Impacts in Each Cycle.
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Figure 5 Two Equally Spaced Impacts in Each Cycle.
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Figure 6 Beginning of Impact Failure.
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Figure 7 Amplitude Decay Curves. e = 0.6
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Figure 8 Averaged Total Loss Factor as a Function of Amplitude for Three
Values of the Impactor Mass Ratio. e = 0.6; v =1, 2, 4 percent.
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Figure 11 Specific Secondary Mass Loss Factor as a Function of Amplitude for
Four Values of Viscous Damping Ratios. v = 0.02; e = 0.6;
= 0.0, 0.2, 0.4, 0.8 percent.
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Figure 12 Amplitude Multiplied by the Specific Secondary Mass Loss Factor as
a 'Function of Amplitude for Four Values of Viscous Damping Ratios.
v =002; e=0.6; { = 0.0, 0.2, 0.4, 0.8 percent.
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Figure 13 Amplitude Multiplied by Specific Secondary Mass Loss Factor for
Three Values of the Coefficient of Restitution.
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Figure 14 Amplitude Multiplied by the Specific Secondary Mass Loss Factor
Divided by (1 - e) for Three Values of the Coefficient of
Restitution. v = 0.02; e = 0.4, 0.6, 0.8
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Figure 15 Impact Phase as a Function of Amplitude. v = 0.02; e = 0.6
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