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ABSTRACT

In this volume, Ashley's approach to mutual interference theory by
source superposition methods has been applied to the prediction of super-
sonic air loads on intersecting thin lifting surfaces in steady or oscillatory
motion, Steady loading is regarded as the special case of zero frequency of
oscillation. Each surface may be oscillating in a mode of rigid or elastic
vibration or linear combinations thereof, Evvard's diaphragm concept has
been extended to treat the out-of-plane interference problem, As a result,
any leading or side edge on any of the intersecting surfaces may be sub-
sonic, The study reported herein has lead to the formulation of a method
by which diaphragm regions can be selected that eliminate the need for cal-
culating out-of-plane velocity potentials, Based on mutual interference
theory, the method requires only the calculation of out-of-plane velocities
so that tangential flow conditions may be met.

The Mach-box method has been used to obtain an approximate solution
to the problem. In following the aerodynamic influence coefficient proce-
dure of Zartarian and Hsu, each surface and diaphragm is overlaid with a
grid of rectangular Mach boxes, the diagonals of which are parallel to the
Mach lines, For purposes of calculating induced velocities and velocity
potentials, the source strength over the area of each box is assumed to be
constant, Out-of-plane velocity influence coefficients are calculated for the
center of each box in the interference region, and the tangential flow condi-
tion is satisfied there. For purposes of calculating generalized forces, the
resulting velocity potential over the area of each box is also assumed to be
constant and equal to the value at the center of the box,

A computer program that calculates a matrix of generalized forces for
the special case of 2 wing with symmetrically folded tips is also presented.
The generalized forces are those due to motion of the surface which may
consist of a linear combination of as many as ten modes of motion., By
proper specification of the modes and frequencies, the user may obtain lift
coefficients, longitudinal stability derivatives, loads due to symmetric
sinusoidal gusts, drag due to surface warpage, or an array of generalized
forces which may be used to calculate flutter speeds., If the surface is {free
from flutter, the same arrays may be used in a Fourier series approach to
calculate the responses to random or discrete gusts,

Favorable comparisons of the results have been obtained for delta wings

with folded tips and without folded tips., Results for rectangular and delta
wings in both steady and oscillatory motion are presented and compare
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favorably with theoretical forces calculated from both exact and other approx-
imate numerical methods, A smooth decrease in the steady state lift and
moment on a delta wing is calculated when the tips are folded down to the

vertical position, These results agree with the trends that have been observed
in recent experiments.
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SYMBOLS

Symbol Definition

ag Free-stream speed of sound

b Box length

b/ﬁ Box width

Cp Surface pressure coefficient

D

Dt Linearized substantial derivative

£; Nondimensional displacement mode of lifting surface
G Strength of unit source

H Source strength per unit area

k Reduced frequency based on box length,wb/U,
k Modified reduced frequency,k Mi/ﬁ 2

kp Reduced frequency based on root chord, we/Ug
Mg Free-stream Mach number,U_/a_

N Normal velocity influence coefficient

n, m,# Location of receiving box center in x), y], 2|

coordinate system

p Local pressure at the airfoil surface
Py Free-stream pressure

Q3 Generalized force

q Unsteady perturbation velocity

R Vix-£)2 - (y-m2 - (z-1)?

R) Elz‘Tﬁ‘ Ej

List of Symbols continued on next page.
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Symbol Definition

5 Reference area

Us . Free-stream velocity

U, L Superscripts referring to upper or lower source sheet,
respectively

u,v,w Components of q in the x,y, z directions, respectively

u,v,w Time-independent factors of u,v, w

v Horizontal velocity influence coefficient

w Vertical velocity influence coefficient

X,Y,Z

£, -ﬁ, Z Cartesian coordinate system (applicable in Section 2 only)

X, ¥, Z

E,n. L Cartesian coordinate system transformed to M =\/.5.—

X1 Ve 21

Exr N &1 Cartesian coordinate systermn transformed to M = \/2_
and nondimensionalized by box length

Z Dimensional deflection mode of lifting surface

B \MZ -1

SCy Incremental virtual work coefficient

br Nondimensional virtual displacement

693 Virtual displacement in the generalized coordinate, q;

Py Free-stream density

w Oscillatory frequency - 2nf

@ Unsteady perturbation velocity potential
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Symbol Definition

s Time-independent factor of ¢

o Velocity potential influence coefficient

v,u, t Location of sending box center in xy, yy, 2z
coordinate system

v.u, 1 Fixed values of £ , r;,-": respectively

glv T-\l, Zl Relative position coordinates
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. INTRODUCTION

Garrick and Rubinow (Reference 1) have shown that every solution of
the boundary-value problem describing small disturbances in a parallel
supersonic flow can be built up by superposing elementary solutions. One
of these elementary solutions is that of a pulsating sound source fixed in the
flow; however, exact numerical evaluations of the integral equations resulting
from the source superposition method are laborious, if not impossible, to
obtain,

Pines, Dugundji, and Neuringer {Reference 2) published the first
source superposition method to successfully approximate the aerodynamic
forces on an oscillating thin planar surface in supersonic flow, They
employed Evvard's diaphragm concept (Reference 3) to handle subsonic
leading edges and overlaid the surface and diaphragm with a grid of square
boxes, For purposes of calculating pressures, they assumed that the source
strength over the area of each box is a constant value which satisfies the
condition of tangential flow at the center of the box, Thus, they established
a method for calculating aerodynamic influence coefficients similar to
structural stiffness influence coefficients,

Li (Reference 4) then published the Mach-box formulation, that
greatly simplified calculation of the aerodynamic influence coefficients,
Li's formulation was fully developed for planar surfaces by Zartarian and
Hsu (Reference 5), The Mach-box procedure is basically the same as
Pines' method, differing only in that the surface and diaphragm is overlaid
with a grid of rectangular boxes the diagonals of which are parallel to the
Mach lines, ’

Zartarian and Hsu were the first to establish the minimum number of
boxes on a swept, low-aspect-ratio lifting surface that can be expected to
yield reasonable results when the leading edge of the surface is represented
by the jagged pattern of box leading edges. They were also the first to use
velocity potential influence coefficients (VPIC's), Because the velocity
potential is a better behaved function, near the leading edge, than the pres-
sure, the VPIC's yield more accurate generalized forces than pressure
influence coefficients for the same grid, The Mach-box approach, using
VPIC's, evolved as the most efficient way to calculate generalized forces on
planar lifting surfaces in supersonic flow,

The Mach-box approach to the source superposition method is cur-
rently accepted as a standard procedure for determining the generalized

Manuscript released by authors February 1864 for publication as an RTD technical documentary report,
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forces on planar lifting surfaces in either steady or oscillatory motion at
supersonic speeds, Ashley (Reference 6) has shown how the source super-
position method may be applied to two or more planar surfaces flying in the
disturbance field of each other, He also outlined application of the method
to two intersecting planar surfaces when the line of intersection is parallel
to the free-stream, The development contained in this report is the out-
growth of several iterations on the procedure and several consultations with
Professor Ashley,

The extension of the source superposition method to intersecting lifting
surfaces creates some difficulty in understanding the phyeics as well as the
mathematics of the problem, This is primarily due to the artificiality of
the method of using sheets of symmetric disturbances to obtain antisymmet-
ric air loads.

An attempt was made to reduce the diaphragm area to a minimum in the
expectation that the number of numerical operations would thereby be reduced
to a minimum, Another desirable property of this arrangement of disturb-
ance sheets is that the flow region is separated into a single upper and a
single lower region, Further study revealed that this arrangement does not
lead to a minimum number of operations because of the more compiicated
geometry,

A simpler geometric arrangement can be achieved by constructing the
Mach envelopes of each of the separate components of the lifting surface and
then removing redundant diaphragm regions, By this means the flow region
is separated into a minimum of three regions. Removal of the redundant
diaphragms results. in the necessity to define separate sending regions for
upper and lower parts of each sheet of disturbances in the interference
region, The computer program contained in this report is based on this
geometric arrangement,

The Mach-box method is used in the computer program to obtain aero-~
dynamic forces on a wing with non-coplanar tips. In the computer program,
discussed in Section 4, the velocity potential distribution over all surfaces is
calculated and then integrated to obtain generalized forces. These quantities
may be used to obtain (1) steady-state air loads on each surface for any small
angle of attack and camber distribution, (2) stability derivatives for 20 differ-
ent frequencies of rigid pitch or plunge motion, or {3) matrices of generalized
forces for up to 10 modes of rigid or elastic vibration. For each mode, the
distribution of velocity potentials, containing all the interference effects,
may then be smoothed by fitting to the point values a polynomial that has the
proper edge conditions. Operating on the resulting polynomial with the
linearized substantial derivative provides an expression for the distribution
of lifting pressure over the entire surface.



After the computer program was written it was discovered that a more
elegant approach is one in which the redundant diaphragms are retained. In
this approach (1) the definition of sending surfaces is general and simple,

{Z) satisfaction of tangential flow conditions on each of the surfaces and the
continuity conditions on diaphragms is a straightforward sequential process,
(3} the necessity for calculating out-of-plane velocity potentials disappears
(thus reducing the number of numerical operations), and (4) insight is pro-
vided for further extension. A discussion of this approach is contained in
Section 6 of this report,



Esptnadls

Approved for Public Release



2. THIN AIRFOIL THEORY IN SUPERSONIC FLOW

LINEARIZED EQUATIONS

Thin airfoil or small perturbation theory is applied to describe the flow
patterns that result when small disturbances are superposed on parallel uni-
form flow. The small perturbation methods used to linearize the second-
order partial differential equation that characterizes compressible fluid flow
are completely described for steady flow by Sears (Reference 7} and for
unsteady flow by Ashley (Reference 8)., These methods are summarized in
Part] of this report andpresented in a form consistent with the following
application to a slightly perturbed, uniform, parallel, supersonic flow.

Consider such a perturbed supersonic flow in the direction of the posi-
tive X-axis of a Cartesian coordinate system (Figure 1}. The linearized
partial differential equation describing this flow may be expressed in the
form

1.2
Pxx t Pyy " P2z 7 ?(Uﬂxx v fxrt ¢TT) (1)
@

where ¢ is the perturbation velocity potential, a, is the fixed acoustic speed
far upstream, and U, is the uniform flow velocity. By collecting terms and
introducing the free-stream Mach number

Mo = Un/ax

Equation 1 can be cast in the form of a hyperbolic differential equation

2 1

- - - = o | i 2

(M2 - 1)y - Pyy " 922 — (¢Uq ¥x1 * ¢17) (2]
am

which, for the supersonic case, is satisfied only within a characteristic

region. This region is the downstrearmn Mach cone; its semivertex angle is
equal to the Mach angle and its axis is parallel to the X-axis,



Figure 1. Lifting Surface in Z = 0 Plane in Parallel Supersonic Flow

The small disturbance (Figure 2) has a velocity given by the expression

a4 =ui+vj+wk (3)
where,
_ 3¢ _ 9% _9¢
Ve Y TeYyr YT ez

and is placed in a uniform parallel flow at the point (E, s Z") The signals
from the disturbance can only be received at the points (X, Y, Z) within the
downstream Mach cone which has its vertex at the sending point ('g"', ;T. E).
Conversely, a given receiving point feels only those signals transmitted by
sending points in the upstream Mach cone which has its vertex at the receiving

point.
BOUNDARY CONDITIONS

Because the fluid is unbounded, the solution to Equation 2 must satisfy
boundary conditions at infinity as well as at the surface of the immersed
airfoil, The conditions at infinity specify: (1) the fluid must be in uniform
motion with no disturbances ahead of the downstream Mach lines from the



Figure 2, Small Disturbance and its Zone of Influence

leading edge of the surface, and (2) the disturbances behind these downstream
Mach lines must he directed outwardly from their sources, The conditions
at the surface of the thin airfoil require the flow to be tangent at all points on
the surface, Setting the fluid velocity component normal to the surface equal
to the normal velocity of the surface ensures this condition. The linearized
expression of this condition for an airfoil lying close to the XY plane is

- ., 32
wiX, Y, 2, T)= |U_ o+ 5| 2(X ¥, T) (4)

where Z(X, Y, T) represents the instantaneous position of the mean surface
moving normal to the XY plane, The condition in Equation 4 is applicable
only when the slopes over the airfoil surface are small.

THE PRESSURE RELATION

The pressure relation, applicable to this problem and consistent with
the assumptions of small perturbation theory, is given by Ashley (Reference 8)
in the form

® 2
C = T o - ——¢ (5)
p L, 2 u_fx " 2fT
@ o



where the pressure coefficient, C_, is the ratio of the difference between

the free-stream pressure and the foca.l pressure, (p-p,), to the free-stream
dynamic pressure, (é P Uozo) The difference between the pressure coefficient
on the upper side and the lower side of the surface is obtained by replacing the
velocity potential in Equation 5 with the change in the potential across the
surface.

U
_P -p 2 2
ACp = ——== = - —A(¢,,) - = Alp.) (6)
%PmUczo U°° X U&: T

This pressure difference coefficient is zero everywhere except at the airfoil
surface,

GENERALIZED FORCES

If a point on the airfoil surface undergoes a small virtual displacement
{6} in the direction of the pressure difference across the surface, virtual
work will be done on the system,

6Cy = AC_ b1 (7)

The nondimensional displacement &6r, can be expressed in terms of the
N independent generalized coordinates, q, as

br = Y, — &q, (8)

For the case of the airfoil surface

where f; is the displacement normal to the surface in the ith vibration mode,
(See Section 1.4 of Reference 9 for a complete discussion of generalized
coordinates and generalized forces.) The total virtual work done by all the
applied pressures on the airfoil surface is then

6CW=

éjér ACp&r dX ay (9)



which becomes, upon substitution of Equation 8 and 8a for or

5C,, = 121 Q, sa, (10)

The symbol Qj refers to the generalized force which results from integrating
the pressure times the displacements in the ith vibration mode.

1
Q = gj‘éf Acpfidx dy (11)

where S is the area of the airfoil surface.
SIMPLE HARMONIC MOTION

The time dependence of the motion, if small in amplitude, can be
completely arbitrary, since the solutions to Equation 2 are valid for any
small motion; however, simple harmonic motion is assumed because of the
wide applicability of the results. These results may be used in flutter
analyses and in determination of transient response to externally applied
loads such as gusts where the response can be expressed as a Fourier series
consisting of simple harmonic terms.

Simple harmonic motion of the airfoil is expressible as

Z(X, ¥, T) = Z(X, ¥)e*T (12)
or in terms of generalized coordinates,
Z(X, Y, T) = & £ q.ev7T (12a)
SR DR IS

where i =,/-1 and w is the frequency of motion. Since the boundary condi-
tions relate the disturbance velocity to the airfoil motion, substitution of
Equation 12 into Equation 4 gives the following relation for the perturbation
velocity

w(x, v) T - [Um 2 iu]E(x, vy T (13)

where the operator

Uod -« jw =

D
X DT



is the linearized substantial derivative for simple harmonic motion and,
therefore, W (X, Y) is complex.

The velocity potential at a receiving point is solely determined by the
free-stream velocity and the disturbances within the fore Mach cone from that
point. Since the only disturbances are those resulting from the harmonically
oscillating airfoil, the variation of the linearized perturbation velocity poten-
tial is also simple harmonic and may be written in the form:

$(X, Y, T) = BIX, V)T (15)

Substitution of this expression for the velocity potential into Equation 2
results in

- L (2iwUod, - 8) (16)

where

The equation is now expressed in terms of the complex velocity potential,
3 (X, Y).

Substituting Equation 15 into the pressure-difference velocity-potential

relation, Equation 6, reduces the expression for the change in pressure
coefficient across the surface to;

= 2 = 2iw , 7
aC_ = - Aldx) - =3 a® (17)

where AEP is the complex pressure difference coefficient,
THE EQUIVALENT PROBLEM AT MACH NO. /2

As the final step in the development, a transformation of the Cartesian
coordinates is introduced

x=X, y=8Y, z=pZ2,t="T (18}

10



This step transforms all supersonic flow problems to equivalent problems
at M_ = ,/2. Upon substitution of Equation 18, Equation 16 becomes

1

- . - ,23)
Fax " Pyy T P22 plal (leumd’x' ¢ (19

Equation 19 is satisfied within a 45-degree Mach cone downstream from the
point disturbance., Substitution of Equations 18 and 17 into the expression for
the generalized force in Equation 11 gives an expression in terms of the,
frequency of motion (w)

- =2 3.) 2 A3 £ 20
Q = FUS fsf[a(¢x)+umat¢») f; dx dy (20)

Now that the linearized equations describing the fluid motion are com-
plete, there remains the problem of obtaining solutions to Equation 19 which
satisfy the boundary conditions at infinity and at the surface of planar air-
foils in supersonic flow. All equations and expressions in the ensuing
development will be functions of the transformed coordinates (x, y, 2), (£ ,n,¢)
unless otherwise noted.

il
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3. SOURCE SUPERPOSITION METHOD

Consider a pulsating sound source to be fixed in an otherwise undis-
turbed supersonic flow that has been transformed to M, = ~N2, Each
spherical pulse is emitted t = t; and expands with radius, a_, (t - tj}, while
its center moves downstream at the free-stream velocity, Uy. The boundary
of the positions of the sphere is the familiar downstream Mach cone.

The basic solution for spherical waves emitted from a stationary
sound source is

H (g- L)
R

¢s (%, y» 2, t) = g(t)

where

2 2 2
R = '\AX-E) -ly-m -{z-¢t)

Superposition of a parallel supersonic flow on the sound source transforms
the time coordinate, and the solution becomes

¢S(x,y.2.t)=H—%L;—)[g(t-%)+g(t"";%)] (21)

The source is fixed at the point (£, n, f) with strength H (¢, n, ) g(t). The
two time functions, g (t - R/a_ ) and g (t + R/a,}, represent the receding and
advancing portions of the waves, respectively. The explicit form of the
fundamental solution at (%, y, z) corresponding to the amplitude of a har-
monically pulsating source at (£, M, {) in a parallel supersonic stream is
given by Stewart (Reference 10) as,

6 (% v, 2z, £ M O =HI{, n, LYG(x=-£, vy =1, 2 =-10) (22)

1 ~iw U:n “
G = - ~— exp {(x -£}} cos R
TR [ai ﬁz ] (am p’2 )

which is parametrically dependent upon the free-stream conditions and the
frequency of oscillation.

where

13



H is the space variation of the source strength; }; is assigned the value
zero everywhere outside the downstream Mach cone from (§, n, {) and is sin-
gular all over the conical surface because the signals from a concentrated
source reinforce one another there to an infinite degree. The elementary
source, Equation 22, may be integrated with respect to any of the variables
£, 1, ¢ to give extended solutions to the transformed linearized equation of
fluid motion, Equation 19,

SINGLE PLANAR SURFACES

For the purpose of solving the thin planar lifting surface problem in
supersonic flow, the mean surface of the airfoil is considered to lie nearly
in the { = 0 plane, It can then be replaced by two sheets of the discontinu-
ities given by Equation 22. Oné of the two sheets is placed on the upper
surface of the airfoil and the other on the lower surface. The strength
distributions of the source sheets are determined by the boundary conditions
at the upper and lower sides of the surface, respectively,

The condition of tangential flow to the harmonically oacillating surface
suggests that the strength of each source sheet is proportional to the normal
velacity of the surface, Stewart (Reference 10) has shown that for a single
planar surface lying in the § = 0 plane, the value of the strength of the upper
source sheet is

HY (¢, 1) = W, n) (23)

where W (§, n) is the local normal component of the perturbation velocity. The
antisymmetry of the normal velocity at any instant in time, with respecttothe
outward pointing normal on the upper and lower sides of the surface, implies
that the lower source sheet is of opposite strength to the upper sheet, i.e,,

HE (£, 1) = -w(E, n) (24)

Keep in mind that a single source sheet causes disturbances in the flow
which are symmetric relative to the plane of the source sheet, Therefore,
it is essential to the source solution of the problem that we consider only
those disturbances in the upper half space due to the upper source sheet
and only those disturbances in the lower half space due to the lower source
sheet. By placing two antisymmetric sheets of sources on the { = 0 plane,
it is possible to obtain the proper lifting antisymmetry of the disturbance
due to a thin airfoil oscillating in a supersonic main stream. It focllows that
the velocity potentials will also be antisymmetric.

If any portion of the edges of the airfoil is subsonic (i.e., the compo-
nent of the free-stream velocity normal to some point on the edge is less than
the acoustic velocity) the source superposition method seems to be inadequate.
The underlying assumption that the upper and lower source sheets be isolated
or not feel each other is violated in the region near a subsonic edge.

To apply the source sheet simulation to airfoils at all supersonic
speeds Evvard (Reference 3) suggested extending the source sheets to

14



‘completely cover that portion of the f = 0 plane within the Mach envelope
from the leading and trailing edges of the surface. The edges of the source
sheets then become either sonic or supersonic, and disturbances from the
upper and lower sheets are confined to the upper and lower half spaces,
respectively, of the Mach envelope. The regions of the source sheet
between a subsonic edge of the lifting surface and the Mach envelope are
referred to as diaphragms and are placedthereto satisfy conditions of
continuity of pressure and velocity and to prevent signals from being
propagated from one half space to the other.

Since there is no surface motion in the diaphragm region, the
perturbation velocity must be determined from other boundary conditions.
These conditions are that the diaphragm causes no discontinuities in either
the pressure,

AP =P (& ns O4) -p (g, m, 0-) =0 (25)
or the normal component of perturbation velocity
Aw =w (¢, n, 0+) - w (g n, 0-} =0 (26)

The diaphragm normal velocity distribution must preserve the slopes
which the streamlines would have if flow passed through the diaphragm
regions., This condition is satisfied by making the source strength
distribution proportional to the normal velocity distribution.

On the part of the diaphragm that is neither in the wake of its
associated lifting surface nor in the wake of another body or surface
upstream, an even stronger condition than that in Equation 25 has been
formulated by Evvard (Reference 3). This stronger condition, which
then replaces Equation 25, specifies that there can be no jump in velocity
potential

Aaza(g: s 0+)"5(€: 4t 0-)20 (27)
at any point in a diaphragm not in a wake region,

With the ¢ = 0 plane of discontinuities dividing the Mach envelope
into two half spaces, it is now possible to write the complete solution
to Equation 19 for the velocity potential at a point (x, y, z) due to the
presence of an oscillating lifting surface in a supersonic flow. The solution
at any receiving point may be obtained by integrating both sides of
Equation 22 over those portions of the airfoil and associated diaphragms that
are within the zone of influence for that point. The velocity potential is given
by

Ty 1 N _— = —
R I w® e, wE 7 D anae (28)
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where G is given in Equation 22 with E=x-£, 0= VAR Z = z=-t. The
sending area, A, is the region of the { = 0 plane bounded by the Mach
envelope and the hyperhola E2 - 7 - = 0. Figure 3 shows a typical
area on the upper side of the { = 0 plane that influences the point {x, y, 2)
in the upper half space. It is emphasized that the upper source sheet
{with strength = w (£, n)) defines the velocity potential in the upper half
space (¢ ~) and the lower source sheet (with strength = -W (£, n)) defines
the potential in the lower half space (EL).

MACH CONE
INTERSECTION

Figure 3. Source Sheet and Area of Influence for (x,vy, z)

Before the velocity potential can be calculated, using Equation 28,
a complete description of the strength distribution over the source sheet
will be necessary, The source strengths in the region that replaces the
lifting surface result from substituting the tangential flow boundary
condition {Equation 13) into Equation 23 for the upper surface
D

HY €, m == Z (6 ) (29)

and into Equation 24 for the lower surface

HY (6 = - 5 Z (e (30)
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The source-sheet strength distribution in the diaphragm regions can be
obtained by applying to the pressure difference coefficient the general
condition of no pressure jump across the region. However, if we allow

only subsonic leading and side edges, Equation 28 can be substituted directly
into Equation 27, For a receiving point (x, y, 0) ahead of or beside the
airfoil surface, but within the Mach envelope, Equation 27 becomes

0= fanH(g.n)G(E. m [) dn 4t (31)

where the area of integration, A, includes portions of both the airfoil
surface and its associated diaphragms within the fore-Mach triangle from
the point {x, y, 0). Separation of the integral into a sum of integrals over
the airfoil and diaphragms, respectively, and substitution of the strength-
per-unit area in the region representing the airfoil, produces an integral
equation,

ff AH (£, n) G (E, m, ¢) dn d¢
Ap

(32)

=-2 jIL [% Z I, N G(E M, t)dndE
S

for the source-sheet strength per unit area in the diaphragm region. Areas
of integration, Ap and Ag, for a typical lifting surface are shown in Fig-
ure 4. For the single-planar lifting surface, separate integral equations
for the upper and lower diaphragm strength distributions can be obtained.
Applying the condition of antisymmetry to the normal component of
perturbation velocity, Equation 32 becomes

U, L _
ﬂ' H{E, 1) G(E n g) dndE
AD

(33)

Dt

= F f "'];')" E(E,, n) G(gs ﬁ-l E) dl] ag
AS

where the plus sign (+) goes with the lower source sheet and the minus sign
{-) goes with the upper source sheet,

17



Figure 4. Source Sheet and Area of Influence for (x,y, 0)

It is emphasized that the foregoing development of the source-sheet
solution to Equation 19 for a single-planar lifting surface at any supersonic
speed provides the proper lifting antisymmetry only through proper use
of the diaphragm in the ¢ = 0 plane between a subsonic edge and the Mach
envelope, The diaphragm must isolate the upper and lower airfoil surface
source sheets while ensuring that no pressure loading acts on regions that
are incapable of sustaining it.

The following review of the Mach-box scheme outlines the method for
determining planar aerodynamic influence coefficients for velocity potentials
and applying them to obtain lifting pressures and generalized forces.

If we let the wing and diaphragm in the [ = 0 plane (Figure 4) be
covered with a grid of boxes of length b in the flow direction and width b/g,
their diagonals are then parallel to the Mach lines (Figure 5). The coordi-
nate system has been nondimensionalized by the box length b so that the
integral equation for the perturbation potential, Equation 28, at the point
(xy, ¥1+ 2;) becomes

EU' L(xl’ Yll 2‘1) = %ffHU’ L ‘glv nL)G(Elv TTII Zl) dnln dg]_ (34)
A

18



where

- = = -1 l = K
G(gl, My t"l) —"Rl exp -1k€,l cos (Mm RI)
JZ =z
Ry =VE - -t
- _wh Me?
U, 52
and the new coordinates are
_x6 _Yan TR
xp by =T Y M % 210 523
§p =% M= 5%

Now, assume that the strength distribution over each rectangular
portion of the superposed source sheets is constant and equal to the value
at the box center, and consider a sending area or Mach box to be centered at

Y]i ﬂ‘

Figure 5. Boxes on Figure 4
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the point &1 SV, My = ;1 = 0, while a receiving point is located at the
position x; = n, y; = m, z; = 0. When the source strength, HU: Ly, m)e is
constant, the velocity potential at the receiving point is

7 M m, 0= 2 ) M, we R 0) (35)

where ¢ (¥, B, 0) is the planar velocity potential influence coefficient { VPIC)
at the receiving point, due to a source box of unit strength with the center
located V= n - v box lengths ahead and @ = m -p box widths to the left. The
VPIC is dependent only on the relative distances vV and [, and the

Mach number and reduced frequency parameters. The summation in
Equation 35 is extended over all boxes wholly or partially within the fore
Mach cone (Figure 5). This then divides the area of integration in

Equation 34 into several subareas over which the planar VPIC may be
evaluated using the equation

2 (¢, 4} = f&c (€. A). 4) dny B, (36)
box

where £ = 0 and where §l= n-§1 and ﬁl = m-n When a point lies just above

1
When a point lies just above a source sheet, the only perturbationvelocity
there is due tothe outwardly directed strength at the adjacent point onthe sheet,

1%n, m) - B[% Z (n, m) (37)
and
H™n, m) = - E)DT Z {(n, m) (38)

On the other hand, the strength distribution over a diaphragm box not
in a wake must be determined by application of the condition that the velocity
potential is continuous across the diaphragm. This condition is satisfied by
summing Equation 35 over all upper and lower boxes with known source
strengths in the fore cone of the receiving point and over the upper and lower
sides of the box of unknown source strength at the receiving point and setting
the total equal to zero. Solution for the unknown source strength gives:

AH(n, m)= -Z AH{v, p) & (v, & 0)/® (0, 0, 0) {39)

because continuity of velocity through the diaphragm means that the upper
and lower source strengths are equal in magnitude and opposite in sign,
Equation 39 can be written

H Yo, my=F3 8V M, we (v, m 0)/2 (0, 0, 0) (40)
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where the minus or plus signs of Equation 40 are to be used with the
superscripts U or L, respectively.

Calculation of the velocity potential discontinuity across the airfoil
surface may now be performed by applying to the appropriate boxes the
relationships given in Equations 35, 37, 38, and 40. To eliminate the need
for solving sets of simultaneous equations for the unknown strength distribu-
tion over the diaphragm, the following rules for calculation are followed:

1. Starting at the foremost centerline box, calculate the change in
velocity potential across the surface at all box centers in the
first row

2, Return to the centerline box in the next row; calculate the velocity
potential change at all surface box centers in that row and then
the source strengths at box centers on the diaphragm

3, Repeat procedure 2 for each subsequent row of boxes

The resulting velocity potential distribution over the surface can then be
substituted into Equation 17 to obtain the pressure difference coefficient,
or into Equation 20 to obtain the generalized force.

INTERSECTING PLANAR SURFACES

The following development parallels that of Ashley ‘s {References 6,
11, and 12) and presents the results in a form amenable to high-speed
computational techniques.

The success of the extension of the source superposition method to
intersecting surfaces depends heavily on careful application of the diaphragm
concept to regions between subsonic edges and Mach envelopes., Before
developing the mathematical expressions for the necessary source strength
distributions and resulting velocity potentials over these surfaces, the
following general statements are made concerning the construction of
diaphragm regions:

1. A diaphragm is a device used to ensure continuity of pressure
and velocity between every pair of adjacent points in the flow
field except those on opposite sides of lifting surfaces. When
adjacent points are not on opposite sides of a surface, or the
wake of a surface, the stronger condition of continuity of velocity
potential replaces the condition of continuity of pressure. In
particular, the diaphragm is placed between all pairs of adjacent
points that receive signals from some pair of opposite
half-envelopes.
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2. There is no unique set of diaphragms for a particular configura-
tion and Mach number. Any set which provides the required
continuity of pressure and stream lines is acceptable, Diaphragms
do not necessarily have to be coplanar with any lifting surface to
meet this requirement; furthermore, diaphragms do not even
have to be planar surfaces.

3. The concept is easiest to envision and much easier to apply if
diaphragms are parallel to the free-stream direction.

Also, the following general statements and definitions are made concerning
interference regions:

1. A portion of a surface is in an interference region when it is
within the Mach envelope of another surface.

2. Mutual interference exists between two surfaces when a portion
of each surface lies within the Mach envelope of the other surface.

The basic difference between application of the source superposition
method to isclated planar lifting surfaces and to a collection of intersecting
lifting surfaces lies in the way in which the strength distribution of the
various superposed source sheets is determined. In both cases, the strength
is determined from either the tangential flow or continuous flow boundary
conditions.

When a point that lies just above a source sheet is not in a region of
interference, the only perturbation velocity there is due to the outwardly
directed strength at the adjacent point in the sheet; however, if the point
is in an interference region it wili not only be within the half-envelope
associated with its source sheet, but also within the upper or lower half-
envelopes associated with one or more of the other surfaces. In addition
to-the velocity due to the point source, velocities are induced there by
outwardly directed disturbances on portions of the other source sheets. The
portions of these source sheets referred to will be those areas within the
Mach hyperbola formed on each sheet by its intersection with the fore Mach
cone from the receiving point.

The strength of the local source sheet is still unknown and is desig-
nated HU(x, y). On the other hand, the strengths of the other source sheets
are presumed to be known and, therefore, the induced normal velocity at
the receiving point, 84/8z, may be determined. The induced velocity poten-
tial is ¥. The sum of all the perturbation velocities in the direction of the
outwardly directed normal to the upper surface may be written as

- 3]
2V, y1 = 1%, v +(Z2) (41)
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The outwardly directed normal on the lower side of the surface is
opposite in sense to that on the upper side. Since the two sides move
together the velocity of the lower side, in the direction of the outwardly
directed normal on that side, is the negative of its upper counterpart. Thus,
whix, y) = -wU(x, y}). The source strength at the lower point is still unknown
and not necessarily proportional to its upper counterpart. To complete the
description of the normal velocity at the lower point, the induced velocities
in the direction of the lower normal are 9gL/8nL =-3¢L/8z, Thus, the
expression for the sum of all the perturbation velocities normal to the lower
surface becomes, after multiplying both sides by -1.0,

@ (x y) = H(x, y) + D (42)

The superscripts on w in Equations 41 and 42 may now be dropped and the
unknown local source strengths on the upper and lower parts of the surface
may be determined separately.

All portions of each surface, whether or not they are in the interference
region, will have flow tangent to both upper and lower sides if the perturba-
tion velocity at the surface in the positive Zj direction is set equal to the
velocity of the mean surface in that direction,

— D —
W(xi» Yi) = Dt Zi(xi- v, {43)

where the coordinates x;, Yoo 2 * are placed so that the ith surface lies
near the Z_ = 0 plane and Z; represents its variation from that plane. For
the region 1covering the ith intersecting lifting surface, the ith upper source-
sheet strength is given by substitution of Equation 41 into Equation 43,

D - u 8¢ U
S Z(x, y) R H O (x y) + (g*:ii) (44)

and the ith lower source-sheet strength is given by substitution of Equation 44
into Equation 43

D > L 83 L
= - 45
The velocity potential, -9;, at any point may be determined by adding
contributions induced there by the various source sheets associated with the
Mach half-envelopes within which the point lies. For a point on the ith upper

® The subscripts i, j ate a convenient way to distinguish the ith receiving point or plane from the j th sending
point or plane and are not to be confused with the subscripts used for normalization of coordinates.
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surface, the velocity potential is due to all the disturbances on the ith upper
source sheet within the fore Mach triangle as well as those disturbances
from upstream out-of-plane source sheets, i.e.,

Flog v =g ff B )6 € T T e, ag
A
1

U
1 U,L - = -
J

where HU' L(ﬁ.. n,) is the jth upper or lower source sheet strength distribu-
tion within the“area, Aj, that affects the point {x;, y;). G is the velocity
potential at the point {xj, yi) due to a source of unit strength located at a
sending point {§;, mj, {i) upstream. In addition to its parametric dependence
upon the free-stream Mach number and frequency of oscillation, G is
dependent only on the relative positions of the receiving and sending points.
The velocity potential at the point (x{, yj) on the ith lower source sheet is
given by

EL(Xi. ¥i) =% ff Hl‘(ﬁi, n,) G (Ei. n_‘.l. E.l) dn.dE,

A,
i

— - = L
5 A SR S U MRS U IS
J

where the area, A;, is the Mach triangle on the ith lower source sheet.
The second term on the right side of Equations 46 and 47 represents the
velocity potential induced at the point by the upstream disturbances.

For points on diaphragms that are not in the wake of any upstream
disturbances, the condition for continuous velocity across the diaphragm
is given by Equation 26 which, upon substitution of Equations 41 and 42,
hecomes
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0= HU(Xi, yi) + HL(X.I. v;) +[( —ﬁ L] (48)

An additional equation is necessary to solve the unknown upper and lower
source strengths at a point on the diaphragm. The condition of continuity
of velocity potential across the diaphragm is obtained by substitution of
Equations 47 and 46 into Equation 27 to get

ff AH(E, n) G (E, n,)dndf =
A

i

U L — — -
= ..z A ! :
]

Once the velocity potential distribution over the surface is obtained,
the pressure loading and generalized forces may be obtained by substituting
the discontinuity in velocity potential A¢ ¢U ¢L, across the surface
into Equations 17 and 20, respectively.

A Discussion of Possible Approaches

The previous discussion implies that a single diaphragm may be
associated with two or more lifting surfaces. As an example, consider a
thin wing with foldable tips and subsonic leading edges (Figure 6). As the
tips fold from 0 to 90 degrees, the diaphragm might also be folded and then
extended to a hyperbolic intersection with the Mach envelope of the wing
(Figure 7). The diaphragms that are coplanar with the folded tips actually
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Figure 6. Planar Wing With Tips at 0-Degree Fold

——

Figure 7. Planar Wing With Tips at 90-Degree Fold
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serve to complete isolation of the upper and lower sides of the wing as well as
both sides of the tip. The flow is divided into two regions, and points in one
region are not influenced by disturbances in the other region except through
the diaphragm regions which are now nonplanar and will require three-
dimensional calculations. Extending diaphragms until they intersect with the
largest Mach envelope not only causes an unnecessarily large interference
region between source sheets but also makes the area of the diaphragm
dependent upon the angle of intersection between the surfaces,

Another approach is one in which the diaphragm remains fixed in the
plane of the wing as the tip folds from zero degrees, To complete the iscla-
tion of the upper surface from the lower surface with a small amount of
out-of-plane diaphragm, a diaphragm is placed between the leading edge of
the tip and the wing diaphragm (Figure 8). This diaphragm is not parallel
with the free-stream direction which is permissible as long as the replace-
ment source sheets do not alter the steady-state direction of the free stream,
The nonparallel-to-flow diaphragm does complicate the three-dimensional
calculations required for out-of-plane source sheet interference, While this
diaphragm construction represents an apparent minimum in out-of-plane
calculations, its area and angle with the flow are both dependent upon the
angle of intersection of the two surfaces. These problems together with the
numerical difficulties associated with the three-dimensional construction
offset any advantages obtained by this approach.

Figure 8. Alternate Diaphragm Construction
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Another approach which is also the result of trying to reduce the
diaphragm area to a practical minimum is one step removed from the
approach suggested for future development. In this approach the several
intersecting surfaces are separated into isolated planar regions and a
Mach envelope is constructed for each surface, After superposing source
sheets on the upper and lower sides of the surface, each sheet is extended
to intersect the associated Mach envelope. If the surfaces are actually
isclated, the disturbances from each upper or lower source sheet will be
confined to the respective half-envelope (Figure 9). The configuration is
then reassembled and the relationship between each surface and its Mach
envelope is retained, (Figure 10)

At this point a step is performed which is shown later to increase
rather than decrease the number of required numerical operations, Since
one region may serve to isolate the upper and lower sides of more than cne
surface, it may be that some of the diaphragms are unnecessary when the
surfaces are rejoined., They will be unnecessary and may be removed if
continuity of pressure and velocity can be ensured without them.

To demonstrate this approach consider the wing with folded tips to be
separated into three isclated surfaces. Figure 9shows the three surfaces,
their Mach envelopes, and their diaphragm regions for a particular Mach
number. When the two tips are reattached to the wing, the tip diaphragms
in the lower half-envelope of the wing may be folded into the wing dia-
phragm. This particular set of diaphragms is shown in Figure 11, where
the tips are folded to 90 degrees.

With this set of boundaries, a point on the upper surface of the wing
receives from the upper parts of the tip source sheets as well as from the
upper part of the wing source sheetas, The adjacent point on the lower
surface of the wing receives only from the lower parts of the wing source
sheet. The boundary condition applied on each side of the wing surface is
that of tangential flow.

A point on either side of the tip surface receives from the upper part
of the wing source sheets as well as from the tip source sheets on its side.
Finally, a point on that portion of the upper surface of the wing diaphragm
which is in the interference region receives from the lower parts of the tip
source sheets as well as from the upper parts of the wing source sheets.
Table 1 shows the sending and receiving relationships described above and
shown in Figure 12,

This approach, described previously, is used in the computer program.

Subsequent development has shown that it is not the most efficient approach
but it does serve to demonstrate one of the options.
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Figure 10, Wing and Tips Reattached
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L

Wing and Tips Reattached - Lower Diaphragm Removed

Figure 11.

Zones on Figure 11

Figure 12.
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Table 1. Legend to Determine the Sending and Receiving
Relationship Between Regions of the Configuration Shown in Figure 11

j UPPER LOWER
SW STI SW STI
i & SWD|SWI [swDI |& STDIL | & SWD |SWI | SWDI |& STDI

U |SW & SWD 0 0 0 0 0
- 0
P |SWI & SWDI 0 0 0
E
R |STI & STDI 0 0
L |SW & SWD 0 0 0
)
W |SWI & SWDI 0 0
- 0
R |ST! & STDI 0

The Aerodynamic Influence Coefficient Method

The wing with symmetrically folded tips is analyzed and presented as
an example of one of the more efficient of the possible approaches to the
problem of intersecting lifting surfaces., The discussion concerns only
one-half of the wing because the configuration has a plane of symmetry
through the centerline,

We now overlay a grid of Mach boxes on the wing, tips, and associated
diaphragms of the surfaces shown in Figure 12, The result is shown in
Figure 13. Note that the grid is arranged so that box centers lie along the
centerline and box edges coincide with the line of intersection of the wing and
tip.

Figure 13. Boxes on Figure 12 and Area of Inflr 2nce for (v, p)
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The wing coordinate system (x], y},2z}) and the tip coordinate system (x2, y2,
z,) enable relative distances between sending and receiving boxes to be set
up as follows:

Wing boxes (nl. ml) receiving from wing boxes (v,, pl)

Vll = nl - Vl (50)

(-

—
1l
o

Wing boxes (nl, ml) receiving from tip boxes ("2.' pz)

Viz = n, - vy (51)
Fiz = - (ygy - mj)cos y- i
112 = -(yﬂ - my) siny

Tip boxes {np, m;) receiving from wing boxes (v, p)

V21 T Nz -wvy (52)
P2y = mp cos v+ {ygy - ¥p)

my sin vy

o
ot
|

Tip boxes {n;, mz) receiving from tip boxes (v,, 1)

M2z = ™My -~ ¥,

[3%]

[ 4]
1h
o}
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The fold angle, y, is measured positive when the tips fold up from the wing
plane and ygy is the y; distance to the fold line or xj axis,

The continuous strength distribution over the upper and lower source
sheets on both tips and the wing is replaced by the discontinuous distribu-
tion that results when the source sheet on each box is assumed to have a
constant strength equal to the value computed for its center. With this
approximation and the information contained in Table 1, Equations (28},
(46), and (47) are written for the upper and lower sides of the wing and tip
surfaces as follows:

U b »

Swi: F npmy) = 5 T H vy, k)@ (5, By, 0) (54)
L b _

Sw: ¢ (np,my) = = ) HL(Vlnpl)d? (11, K11, O) (55)
u b U -

Swyip ¥ (ap.mp) = g 2. Ho(vy, ) @ (5 mye 0) (56)

U — =

+
o
™

T | m 0 (57)

»|o
™

L _
1) Hovy w) @ vy 5y

U - -

T

U
STI' ¢ (nz,mz) =
b U — .

T H v, b)) @ (5,5 Bype 00 (59)

W[

Fny.m,) =

b 8] — -
+ E E H (vll P‘l) (D‘(VZl’ Mle 121)

The sums are over all boxes that influence the receiving point. An example
of the sending areas for a typical receiving point on the tip i8 shown in
Figure 13.
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The source strengths on those boxes outside the interference region
are determined by the relationships given in the preceding section, However,
when a box is within the interference region, the strength distribution is
modified to account for the interaction with other boxes, In this way, the
mutual interaction effects will be properly represented in the evaluation of
the velocity potentials.

In anticipation of the need to calculate velocities induced at points above
or below the sending plane, we derive here the formulas for velocity com-
ponents normal and parallel to the plane of disturbances. When the source
strengths over the areas of sending boxes are constant, these induced
velocities are

%o, m, ) =TH M, 0) W 3, B 0 (60)
induced

and
¥, m, ) =S H N0, vV E R Y (61)
induced

The Wand V are derived in Appendix I, The sum is over all the boxes
partially or wholly within the forward Mach hyperbola associated with the
receiving point {n, m, #) and the strength is on the upper or lower sheet
depending on the sign of £,

The source strengths at the box centers on the tip and on the portion of
the wing within the interference region are corrected using Equations 44
and 45 in the following forms;

D - U U I
Sr Bt 21 (npemy) = HOnpmy) + 30 Hovge ) N (V0 Braw £7) (62)

S‘FI:-BDT Z, (nz’mz)zHU(nZ’mz’ + 2 HU("'l' b N (Vg tyy) (63)
= L U o
2 Z, nyymy) = - HY (ny,my) + T H (v w )Ny By ) (64)

where the velocity influence coefficient (VIC) is written

N (v,F,t) = W (7,5, t) cos v + V (V,[5,1) siny (65)
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The VIC gives the component of velocity normal to a source sheet at a
Mach box center. The magnitude of the velocity is that which is induced
there by an out-of-plane Mach box v box lengths ahead, h box widths to the
port side, and I box widths down., The source strength at the sending box
is unity and the dihedral angle between the two planes is Y.

The source strengths on boxes on the wing and tip diaphragms that
are within the interference region must also be adjusted for interaction
effects. This correction has to be done in such a way as to preserve the
continuity of the normal velocity at the diaphragm centers. The perturbation
velocity at the center of the diaphragm boxes is given by

- _ 1Y L - _

— u (9] - -
Srpp; W (B ™) = Ho(nyymy) + H vy, i) N(T, b0 L)) (67)

- L U - —
w(ny,m,) = - H (n,,m,) + 30H (vi,p ) N (5,,,F,,,0,,)  (68)

To ensure continuity of the normal velocity across those diaphragm boxes
that are in the interference region, substitute Equations 66 and 24 into
Equation 26 to get

0 = Hu(nl,ml) + HL(nl,ml) LZHL(VZ*“?_) Nfulz, 123 112) {(69)

for the wing diaphragm and substitute Equations 67 and 68 into Equation 26
to get

0 = HY(ny, mp) + HlYny, my) {70)

for the tip diaphragm. There is no net interference effect across the tip
diaphragm because it is completely within the wing Mach envelope, and is,
therefore, exposed on both sides to the same portions of the wing and wing
diaphragm,

The condition of zero jump in velocity potential across the wing and tip
diaphragms can be applied to the portions in the interference region because
neither is in the wake of the other, This condition can be easily written by
applying the approximation of constant strength at box centers on the wing
diaphragm to Equation 49, After separating out the n}, m)] terms we get
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AH(nl'ml) ="EAH(V11|'11) 2 (611'}111)/ ¢ (0,0)

L (1)
-2 H (v, 15) @ (T 50 150050/ (0, 0)

A similar relationship can be obtained for the tip diaphragm by approximat-
ing Equation 49 and isolating the n,,m, terms,

AH(n,,m,) = -3 AH(v,, 1,) @ (¥,,.5,,)/ £(0,0) (72)

Here again, there is no net interference effect across the tip diaphragm,
This result is consistent with the result observed in Equation 70,
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4., COMPUTER PROGRAM

USE AND LIMITATIONS

An IBM 7094 Fortran IV language computer program is presented
which calculates supersonic unsteady aerodynamic forces on a wide variety
of wings with symmetrical folded tips, The calculation procedure is based
on the source superposition method that has been extended to account for the
interference effects between intersecting lifting surfaces. The Mach box
approximation is employed to reduce the integral equations to sums of
constant values of source strength at box centers times certain integrals
dependent upon relative position, Mach number, and reduced frequency.
These integrals are the aerodynamic influence coefficients which express the
velocity potential influence coefficient (VPIC) or velocity influence coefficient
(VIC) induced at a receiving box center by a unit strength source sheet cover-
ing the area of influence of a sending box. The VPIC's and VIC's are
developed and presented in the form used for programming in Appendix I,

The configuration to be analyzed must have a plane of symmetry, wing
and tip leading edges that are not swept forward, and supersonic trailing
edges. The surfaces may have any small angle of attack or camber distri-
bution or may be oscillating in an arbitrary mode of rigid or elastic vibration,
Each tip may have a side edge, subsonic leading edge, and fore or aft swept
trailing edge. The wing may also have a subsonic leading edge and fore or
aft swept trailing edge.

The program has been specifically designed to calculate generalized
forces to be used in determination of steady-state lift and moment coefficients,
oscillatory stability derivatives, gust loads and aeroelastic stability. Also
computed are source strength distributions corrected for interference effects
and velocity potential distributions over the entire surface. The velocity
potential values are used to determine the generalized forces and mayalso be
employed to calculate surface pressure or pressure difference distributions
over the configuration. For one run, these quantities are calculated for one
supersonic Mach number, up to 20 reduced frequencies (steady-state
loadings result when the oscillatory frequency is zero for a nonzero mode
shape) and up to 10 modes of deflection,

The Mach box approximation 15 achieved by overlaying the surfaces

and diaphragms with a grid of rectangular boxes with chordwise length b
and spanwise width, b/B, which makes the diagonals parallel to Mach lines,
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The program will subdivide the source sheets into as many as 20 chordwise
and 30 spanwise boxes with the condition that box edges lie along the fold
line, Past experience indicates that 12 chordwise boxes adequately defines
the motion at low Mach numbers and as few as 8 boxes along the chord will
in some cases describe an arbitrary vibration mode.

The method of isolating the upper and lower sides with diaphragms
used in the computer program is shown in Figure 11, Theprogramwas
written for a set of diaphragms that are a practical minimum in area and it
was not discovered until after completion that the more general diaphragm
construction shown in Figurel0greatly simplifies the algebra and logic at
only a slight increase in diaphragm area. Consequently, the equations used
in the program are more complicated and will be listed here for complete-
ness along with the pictures of the actual diaphragm regions used.

The folded tips wing and diaphragms actually used in the program are
shown in Figure 14 with the zones of influence identified. The portions of the
wing diaphragms outboard of the tips in the zero-degree fold position do not
affect any portion of the surfaces and are, therefore, eliminated. The Mach
box overlay for this configuration is shown in Figure 15, The following
relative position coordinates will be used in the influence coefficients

Vig S0 C Vi By ey sk by =0

Vig =hy T vpi By = (my mypcosy s pyi by, = {my -y )einy
Vor=m, tovy HZl =m, cosy -{}.L1 - yﬂ); 221 = - m, siny
Vop =My mvpi My mmy s kpidy, =0

where vy is the fold angle positive tips up and yyg) is the distance from the
wing centerline to the tip foldline.

The equations for velocity potential difference are

b -
Syt Aé(n,m) =5 ZAH(vl,pl) ® (V) i) (73)
b - -
Syr Adng,m)) = 5 3 AH(v ,py) @ (50 5y)) (74)

b U - .
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Figure 14. Zones on General Case In Program

Figure 15 Boxes on General Case In Program
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b _
Sr1f8ingmy) =5 L AHlvy 1)) @ (750 855) (75)

The source strengths at the surface box centers are given by

D U

Sw' Bt Z (nl,ml) = H (nl,ml) (76)
D L
— = - 77
DtZ(nl,ml) H (nl,ml) (77)

D 14} U _ _
S.i' bt 2nsm ) =H (n,m,) +3, H (v, py) N (Viae B2 1)2) (78)

L
DEt Z(nl,rnl) =-H (nl,ml) {79)
D U U -

Str, pt 2 (Rgrmy) = Holny,my) + P HTW b ) NP, 100y 08 (80)

D L u = _

where N{V,[1,8) = W (V,5,f) cos Y+ V (V,i,4) sin v and the VIC's W and V are
given in Appendix I,

The diaphragm source strength differences are calculated from

st: AH(n,,m,) = -3 AH(vl,p.l) & (Ell,ﬁll)ltp (0,0) (82)
SwDL AH{n ,m,) = -3 AH(v ,p) @ ‘;11' ’_*11”‘1’ (0, 0)

-3, HL(vz,HZ) ® (v, By, t,) /¢ (0,0) (83)
Srpp AH(n,,m,) = -3, AH(v,,1,) @ (V551 8,,) /e (0,0) (84)

These equations reflect the slight differences between the program and the
general method. The outline presented below details the logical and compu-
tative operations of the program. Also provided is a flow chart and list of
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sequential operations that parallel the isolated surface Mach box technique.
The rules for computation given in Section 2 are for the general case,
whereas the outline given below is for the special case of a wing with sym-
metrical folded tips.

THE LOGICAL FLOW

The computer program, MBX, consists of an executive or main pro-
gram with several subroutine subprograms, The purpose of some of the
subprograms is purely logical or decision making while other subprograms
are developed for the many repetitive calculations necessary in this type of
program, A flow chart with descriptive statements is shown in Figure 16 anc
will be used as reference in this outline. A complete set of program listings
in Fortran IV language is presented in Appendix IV,

The main program contains all the input and output statements with
their associated format statements, Tape 5 is used for input and Tape 6
is used for output in the version of the program included in the listings,

After the data arrays are initialized, the main program, MBX, reads
the data describing the flight conditions, the configuration geometry, the
number of frequencies and modes, and the number of boxes to be fitted in
the chordwise direction, Also determined, at this point, is whether the wing
and tip mode shapes are represented by polynomial coefficients or deflection
patterns and the various printing options,

The geometry is converted by B@QUNDS to the transformed coordinate
system, x =X/b, y = BY/b, z = BZ/b, and the surfaces and diaphragms are
approximated with a grid of boxes based on the input maximum number in
the chordwise direction., The number of boxes is adjusted so that box edges
will coincide with the fold line, The subroutine then defines the inner and
outer wing, tip and outer diaphragm boxes as those boxes with centers just
inside the actual planform and diaphragm limits (Figure 15), If either
trailing edge is not subsonic, BAOUNDS then calculates the exact streamwise
location of the trailing edge for each row of box centers,

MBX then writes the heading, flight conditions, and geometry as well
as the outer box limits of the wing, tip, and their associated diaphragms.
After the x|, y| locations of the wing and tip trailing edges are printed, the
list of frequencies and number of fold angle changes for each frequency are
read. MBX begins the frequency loop by converting the input frequency to
reduced frequencies based on the box length {(k = bu/Ux and k = k Mm‘z/ﬁ‘?')
and based on the root chord (k. = cw/Ua).

After MBX sets the value of reduced frequency the in-plane, VPIC's
are computed by CAPHI and stored in a table., These coefficients depend
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BOUNDS

CAPHI

LSSUR

SOURCE

S5N

Figure 16,

Enter and zero orrays for each new Mach number, read dota for
plonfarm geometry and for flight conditiors and calf. . . . .

BOUNDS which tronsforms the coordinates and colculeates the
boundaries of the surfoces and diaphrogms.

Print heading, flight conditions, geometry, boundory
boxes, ond trailing edge coordinates.

MBX begins indexing through frequencies,

CAPHI computes the in-plone velocity ﬁohmiul influance
coefficionts.

MBX reods fold angle and mode shapes.

LS5UR converts deflections to coefficients, if necessary.

MBX begins indexing through modas.

S@URCE computes the initiol source strength ot the centerns
of all surfoce boxes,

Control is tronsferrad to CODE which identifies
regicns for computational control ond Indexes over

all boxes.

SSPHI transfers control for_gach box to if the
bex is on a surfoce or to if the bax i on @
diophragm.

SSM corrects the initial source strength at @ box
center for intarference effects, if necessary.

Flow Chart



Fed c b a o

PHIP PHIP calculates the increment of 4 ¢ on a surface bax due to
in-plane disturbonces using coefficients from CAPHI.

PHIN calculates the out-of-plone velocity potential
@ PHIN influence coeHficents and uses them to compute

the increment of 4 ¢ on a surface box due to cur-of-
plone disturbances, if necessary.

GEMNFOR computes the increment to the | terms in the
@ GENFZR ith row of the generalized force matrix contributed by
a surfoce box,

— @ Return to @ ; if there are no more boxes go fo

PHIP computes the increment of A¢ on o diophragm box
16 PHIP d . .
ue to in-plane disturbances.
17 PHIN PHIN computes the increment of A ¢ on a diaphrogm box
due to out-of-plane disturbances, if necessary.
18 SSN S5N computes the source strength at the center of a
diaphragm box required to moke A b squal zero,

19 Return to ® ; if there ore no more boxes go to

. 20 Return to @; if there ors no more modes go fo @

3 Print frequency, reduced frequency, and generolized
force matrix.

L? 22 Retum to @ ; if there are no more fold.angles go to @
ot 23 Raturn to @ ; if there are no more frequencies goto @

L: 24 Retum 1o @

Figure 16, Flow Chart (Cont)

43



only upon relative position and may be computed for each Mach number-
reduced frequency combination and used with all modes. These coefficients
are optionally printed out by MBX.

The fold angle (0° to 90°) and up to ten sets of mode shape coefficients
or deflections are read into the program by MBX, Previously read indica-
tors for both the wing and tip are used to read the mode shapes before the
deflections at the box centers can be determined, If the mode shapes are to
be determined from the input deflection coordinates, a smoothing process
is used. The input deflection data for all modes is supplied to a least
squares polynomial fit subroutine {(LSSUR) where the coefficients,

A¢, t = (r2 + r +2s+ 2)/2, for a prespecified degree polynomial are deter-
mined. The coefficients for the deflection polynomials are

R r
= r-s .8 ,
Z,(5,m)) = rZ—:O SZ_:O A £ "M i=1,... ,MODES (85)

where 0 =R < s is the input value, for the degree of the wing polynomials or
of the tip polynomials. The polynomial coefficients, either input or calcu-
lated are then optionally printed by MBX,

MBX sets the mode number and if the velocity potential is to be
determined for this mode transfers control to SOURCE. This subroutine
calculates the initial source strength values on the upper and lower sides of
the surface boxes for the particular mode. This is accomplished by evalu-
ating the polynomials and their derivatives at box centers from the coefficients,

The task of passing over all the boxes from centerline outboard and
front to aft is carried out by CQDE. This subroutine assigns a KODE
nurnber to each box which indicates the equations that will be used to deter-
mine the quantities at its center. With the K@DE value and location of the
box, SSPHI selects the proper computation subroutines depending on whether
the box is on a surface or a diaphragm. The surface boxes have the source
strength corrected by SSN, if necessary. The in-plane velocity potential is
calculated by PHIP and, if necessary the out-of-plane velocity potential is
calculated by PHIN. The increment to the mode row in the generalized force
matrix due to the change in velocity potential across the box is then calcu-
lated by GENFQR.

GENFQ@R calculates the contribution to the generalized force integral
by each box. This is accomplished by forming a separate integral for each
of the deflection polynomial coefficients that consists of the potential times
the appropriate powers of x and y, (Part Il of this report details this method
for obtaining generalized forces.) To calculate the generalized forces using
the velocity potential and the displacements the trailing edge values must be
determined, Since the trailing edge is generally not located along box
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centers a second order interpolation procedure is employed to calculate the
velocity potential at the trailing edge of each column of boxes, These values
along with the previously determined x and y coordinates of the trailing edge
are added to the integrals. GENFQ®R also weights the centerline and trailing
edge box contributions to the generalized forces by the partial area of the box
on the planform.

If the box is a diaphragm box, SSPHI calls PHIP and, if necessary,
PHIN to calculate the velocity potential increment due to all boxes upstream
that influence the box center., SSN then divides this value by &(0, 0) to
calculate the source strength at the diaphragm box.

When the pass over the wing is completed, there will be a set of velocity
potential differences and corrected source strengths available for optional
printout. Also in common is the completed jth row in the generalized force
matrix,

If there are more modes the next pass over the wing will be with the
same frequency but with a new mode to obtain the next row in the matrix of
generalized forces, When the mode loop is complete the matrix is printed
with the reduced frequency based on the root chord.

A new fold angle and modes may be read in at this point, if not, the
next frequency is set by MBX and the mode loop restarted so that a new
matrix may be computed from the same coefficients still in storage,

The operator must be warned that the maximum number of boxes,
modes, and frequencies will take a considerable length of time to run. The
surest way to save time is to cut down the number of boxes since the compu-
tational time varies with the fourth power of the number of boxes, The large
number of boxes is provided so that a single critical mode and frequency may
be evaluated with a very dense grid,

Input data sheets with a short explanation of each item are provided in
the following text,

INPUT AND OUTPUT

A standard input format of six 12-column fields per card is used in this
program, The floating point numbers are to be to the left of the field starting
in the second column and the fixed point numbers are to be to the right of the
field ending in the twelfth column., Sample standard input sheets are provided
in Appendix II.

The first two cards will provide the flight conditions, and planform

geometry that is to remain fixed throughout the complete run, The Mach
number {EMACH) and speed of sound (AS) are the free stream conditions
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while the root chord (CR@OT), leading edge sweep angle (SLEW), trailing
edge sweep angle (STEW), and distance from centerline to fold line (YFL)
determine the wing planform. The tip geometry constants are leading edge
sweep angle (SLET), trailing edge sweep angle (STET) and YFL plus the
distance from the fold line to the tip line {(YTIP). The length units on the
speed of sound should agree with those on the chord and span distances.

The next card contains integer constants that specify the number of
boxes to be fitted in the chordwise direction (NB®X), the number of
frequencies (NFREQ), the number of deflection mode shapes (M@DES), and
the print option indicators. The velocity potential influence coefficients
(LVPIC), the initial upper and lower source strengths (LSSUL), and the final
velocity potential differences with the corrected source strength (LDPHI) can
be printed out by simply setting each indicator to a non zero number.

The fourth and fifth cards contain the integers that determine the mode
shape input. The indicator for the method of determining the mode shapes
for the wing (MDEW) and tip (MDET) is a negative integer for supplying a
set of deflection points that will be smoothly fit with the specified degree
polynomial or a positive integer for directly supplying the polynomial coeffi-
cients in accordance with Equation 85. The degree of the polynomial for the
wing (NP@QLW) and for the tip (NPOLT) need not be equal but each applies
to all modes for the respective surface, MBX either reads in the correct
number of coefficients computed from the degree of the polynomial or calcu-
lates the coefficients for a polynomial of that degree for each mode. If
coefficients are input all modes must have enough coefficients or zeros to
satisfy this requirement. If the mode shape polynomial coefficients are to be
computed by the program from deflection points the number of points for the
wing (NP@W) and for the tip (NPQT) is specified. Finally the coefficients,
either input or calculated, can be printed out by setting the indicator for the
wing (LC@W) or for the tip (LCQT) to a non zero number,

The program can be used to calculate forces for a single surface with
only one leading edge and one trailing edge sweep angle by simply setting the
tip indicator (MDET} equal to zero and leaving out all subsequent tip data.
The tip line is then coincident with the fold line and the surface has the
geometric characteristics described by the wing input data.

The next card or cards contain the lists of frequencies (QMEGA(I})
and number of fold angles or sets of modes per frequency (ANGS(I})). There
are to be two times NFREQ numbers on these cards for MBX to read a pair
of numbers for each of NFREQ values. A generalized force matrix will be
calculated for each ANGS(I) at the ith frequency (QMEGA(I)) and it will contain
M@DES by M@DES terms, This provision enables the user to repeat the

modes or put in new modes at different frequencies without calculating all the
meaningless off diagonal terms obtained when all the modes are included in
one set. Also the fold angle can be varied at different frequencies and a
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complete set of reduced frequency, fold angle, and mode shape variations can
be performed at the same Mach number during the same run .

The ensuing data cards must be carefully provided to assure successful
operation of the program. There is to be one set of fold angle and mode shape
data for each of the ANGS(I) and PMEGA (I) combinations. Each of these sets
must have the current value of the fold angle on the first card even if there
are no tips to be folded.

Special care is necessary to be sure that the thickness indicator is
correctly specified for both wing and tip portions of each mode shape. These
numbers tell whether the coefficients are to be used to calculate the velocity
potential due to a thickness distribution or due to a deflection distribution.

If any of the thickness indicators is a negative number the program will use
the input as a symmetric thickness distribution and calculate the potential
and generalized forces accordingly.

If any of the wing thickness indicators has a zero value there will be
no velocity potential calculate for either the wing or tip but the mode will be
used to obtain generalized forces due to velocity potentials in other modes,

The thickness indicators for the wing and tip must be either zero or
positive for all vibratory mode shapes, However, if the input frequency is
zero the wing or tip may have thickness to determine the various steady
state thickness effects,

If the mode shapes are to be given as a set of deflection. «ue card or
cards after the fold angle card will contain the x-y coordinates of the deflec-
tions on the wing, 3 points or 6 numbers per card until NP@W points have
been entered, which will apply to all modes, The dimensions of the coordi-
nates should be compatible with those of the chord and span distances input
earlier.

The next cards will contain the values of the deflections at the several
x-y points on the wing for all the modes, one mode at a time. FEach mode
should start on a new card with the thickness indicator, THW(I), as the first
number and the deflections in all the following consecutive locations until
NPOW numbers have been listed,

If there is a tip (MDET#0) the x-y coordinates, measured from the
wing axis system, of the tip deflections will be on the cards immediately
following the last of the wing deflection data, There should be 2 NP@T
numbers entered with 6 on each card and 6 or less on the last card,

The tip deflections are to be listed on the next cards with each mode

starting on a new card, The first card of the mode will have the thickness
indicator, THT{(I), as its first number and the first 5 deflection points in the
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remaining locations. The rest of the deflections will follow, 6 points per
card until NP@T points are entered.

If the mode shape coefficients are to be input rather than computed the
first cards after the fold angle card will contain the wing coefficients for all
the modes, one mode at a time. Each mode should begin on a new card with
the first number the wing thickness indicator for that mode. The wing
coefficients for each mode are entered into the next 1/2(NP@LW+2)
{(NP@LW+1) consecutive locations.

The tip coefficients, if applicable are placed on the cards immediately
following the wing coefficients for the same number of modes. As before,
each mode should begin on a new card with the tip thickness indicator as the
first number, There are 1/2(NPQLT+2) (NP@LT+1) coefficients for each
mode that are to be entered,

The cards must then be placed in the order presented in this discussion
at the back of the program cards. Appendix II provides further explanation of
the input data as well as demonstrates the use of the coefficient input opticn.

The output from the sample data sheets is shown in Appendix III. The
first page of the output will always contain the program title, the input flight
conditions and geometry, calculated fold-line and tip-line chords and reference
area, number of boxes in the chordwise and spanwise directions, and the box
length and width,

The next page always depicts the placement of the boxes over the wing,
tip, and associated diaphragms. The box number for each row that its center
inboard of the wing, tip, tip diaphragm and wing diaphragm outer edge appears
as MPBW, MOBT, MOBTD, and M@BWD, respectively. The box number for
each row that has its center outboard of the wing and tip inner edge appears as
MIBW and MIBT, respectively.

The nondimensionalized x and y coordinates of the wing and tip trailing
edge will always be on the page following the box boundaries,

If there is none of the optional printout the ensuing pages will contain
the generalized forces as well as the reduced frequency, fold angle, Mach
number, and chordwise boxes information,

There will be one set of generalized forces for each frequency-fold
angle combination that contains the real and imgainary components as well as
the magnitude and phase angle of each generalized force, FEach generalized
force is the pressure due to displacement in the DPHI mode weighted by the
displacement in the DEFL mode.
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The optional output, which will precede each table of generalized force,
includes any of the following information. The input or calculated polynomial
coefficients will be printed out for all modes for the wing if LC@W#O and then
for the tip if LCQST#O. The initial upper and lower source strengths at all
box centers will then be printed for all modes except those that have
THW(I)=0 if LSSUL#0O. Finally the velocity potential difference distribution
and the source strengths with interference included will be printed for each
mode with THW(I)£#0O if LDPHI#O, The source strengths and velocity poten-
tial differences are printed for each box with row (N) and column (M) locations
starting with (1, l}as the foremost centerline box and proceeding outward and
aft. The boxes in the plane of the wing and its diaphragm are numbered
{N, M) while the boxes in the intersecting plane of the tip and its diaphragm
are numbered (N, M+tMMAX) where MMAYX equals the most outboard box on
the wing or wing diaphragm. When the tip is folded into the plane of the
wing the tip surface then replaces a portion of the wing diaphragm and the tip
boxes then assume the numbers of the replaced wing diaphragm boxes.

Complete listings for the program and all non-systems subroutines are
presented in Appendix IV,
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5. RESULTS

SINGLE PLANAR SURFACES

The extension of the source superposition method with Mach box
approximations to intersecting surfaces is verified on the basis of results
for a single planar surface. The computer program calculates potential
distributions and generalized forces that compare well with exact theoreti-
cal results, other analytical methods, and experimental results. Figure
17 compares the theoretical lift and moment slopes using the exact
expression with the lift curve slope calculated from the MBX program.
These data are for a 65-degree delta at Mach numbers from 1. 05 to 2. 37,
Figure 18 shows the effect of reduced frequency on the stability derivatives
for a 65-degree delta at M = 2.0,

Data for a rectangular wing calculated by the characteristic box
method (Reference 13) are shown in Figure 19 compared with results from
the MBX program for pitch and plunge stability derivative variations with
Mach number. These data are at a reduced frequency of 0, 3 based on a
unit root chord.

It is well known that the pressure distribution along the centerline
of a delta wing at angle of attack is.constant thereby implying that the
velocity potential is linear., Figure 20 shows the centerline potential
distribution on a 65-degree delta at M = 2, 0 as calculated by exact theory
compared with the box center values calculated by the MBX program. The
computed values oscillate around the exact line due to the jagged leading
effects but the lift curve slope, obtained by integrating the velocity potential
is seen to agree very well with exact theory. To obtain pressures using the
MBX program one would have to fit a curve through the potential distribution
by the methods described in Part II of this report, This representative
function could then be differentiated to obtain the pressure distribution.
Generalized forces are obtained by the MBX program by direct integration
of the potential (Equation 20) which cancels the leading-edge induced
oscillations.

INTERSECTING PLANAR SURFACES

To demonstrate the effect of wing droop or fold on the stability
derivatives, the tips of a 65-degree delta were folded at the 60 percent
semispan line. These results are plotted in Figure 21 and 22 for Cp,, and
CMa at various supersonic Mach numbers, The coefficients shown are based
on a unit root chord and the reference area remains that of the unfolded
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GENERALIZED FORCES
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Figure 20. Potential Distribution on G, of a 65° Delta at o

65-degree delta when the tips are taken off. Note that even without thickness
the configuration has greater lift and pitching moment when the tips are
folded to 90 degrees than when they are removed. These trends in lift and
moment variation with fold angle are similar to the trends observed experi-
mentally in tests on configurations that use the drooped tips in increase lift
to drag ratios.

Figure 23 depicts the variation of lift and moment curve slopes, C[, 4
and C)\q4» respectively, with tip fold angle, Y. The curve was produced by
connecting the computed values at 5 degrees and above (up to 90 degrees},
with the 0 degree point. The value for zero fold angle agrees with supersonic
theory for planar surfaces (c.f, Figure 17), The coefficient values, which
are based on the unfolded planar area, increase smoothly as the fold angle
decreases from 90 to 0 degrees,

In order to obtain the smooth variation of aerodynamic force coefficients
with fold angle using only a moderately dense grid of Mach boxes (up to 20
boxes chordwise), the wing diaphragm source strengths were computed using
an equivalent but more accurate form of Equation 83, The expression more
accurately accounts for the increasing lag in signals between the wing dia-
phragm and the lower side of the tip as the fold angle approaches 0 degrees,
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The effect of the grid size is apparent if coefficients are computed for
fold angles below 5 degrees, Fortunately, one can take advantage of the fact
that in the steady state case the values below 5 degrees are within 1 per cent
of those for planar surfaces. Because this accuracy is not expected to be
significantly different in the unsteady case, a slight modification was made
to the computer program to ensure the accuracy of calculations at all values
of fold angle. When the fold angle is less than 5 degrees in absolute value
the program treats the configuration as if it were planar. The more compli-
cated non-planar logic is used only if the fold angle is 5 degrees or greater
in absolute value.

The program listings, Appendix IV, note the above changes at the
appropriate places.
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6. CONCLUSIONS AND RECOMMENDATIONS

As a result of this study, the practical technique for solving supersonic
aerodynamic interference problems of intersecting planar surfaces using
the source superposition method is now clear. Mach envelopes should be
constructed for each of the separate components of the system as though
the other components were nonexistent. Diaphragms should be constructed
in the planes of the components to separate the upper and lower half-
envelopes (Figure 10). Overlapping Mach envelopes should then be defined
as interference regions. A grid of Mach boxes all of the same dimensions
may then be overlaid on each of the surfaces and its diaphragm. Starting
with the foremost row of boxes (rows of boxes if two or more leading edges
intersect at the foremost point), the source sheets should be computed that
satisfy the pertinent boundary conditions at the center of the boxes in that
row, This process should then be repeated for each successive row {or rows)
of boxes until the source strengths on the aftmost boxes on the surfaces have
been determined,

This technique has several advantages:

1. It entirely eliminates the need for calculating source strengths
on both sides of the surfaces that are in the interference region.
Source strengths on one side are equal in magnitude and opposite
in sense to those on the other.

2,  When only the difference between upper and lower pressures on
the surfaces is of concern, it eliminates the need for calculating
out-of-plane velocity potentials. In most aeroelastic problems,
the upper surface of an airfoil does not move relative to the
lower surface, therefore, only the differences bhetween pressures
are needed,

3. The concept is simple and, therefore, provides insight which
makes the technique more readily extendable. For instance,
the extension that would be required to handle T-tails, V-tails,
and top-mounted vertical tails is immediately apparent., Also,
the extension to handle the wing-body interference problem should
be a fairly simple one.

The following recommendations are made:

1, Perform an experimental study to verify the theoretical results
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Modify the computer program to incorporate the pressure
smoothing technique used in the transonic box method
described in Volume II of this report

Modify the computer program to handle T-tails, V-tails, and
top-mounted vertical tails as well as symmetrically folded tips;
a single efficient computer program could probably handle all
these configurations.

Modify the computer program to handle trailing edge control
surfaces. This would involve only subdividing the boxes at the
edges of the control surfaces and providing separate modal
displacement functions to be used for the tangential flow
conditions of those boxes on the control surfaces.

Apply the technique to other aerodynamic interference problems
such as wing-body interference and wing-empennage interference

problems

Apply the technique to very thick lifting surfaces
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APPENDIX |. AERODYNAMIC INFLUENCE COEFFICIENTS

The velocity potential influence coefficient {VPIC)} defines the velocity
potential at a point in space due to that portion of a rectangular unit strength
source sheet that lies within the upstream zone of influence from the point.
The velocity induced at the point, by the rectangular sheet, is determined
by differentiating the VPIC, with respect to the direction of the velocity, to
obtain the velocity influence coefficient {VIC). The rectangular source sheet
or box can always be positioned in the { = 0 plane with its length, b, parallel
to the flow direction. The width of the box, b/B, is set so that its diagonals
are parallel to Mach lines in the flow. The VPIC's and VIC's are dependent
only upon the relative position of the sending area and the receiving point
and the Mach number and reduced frequency parameters.

Consider a point {n, m, t) placed above a unit strength source sheet
located in the § = 0 plane (Figure 25). The source sheet has been divided
into Mach boxes whose centers lie at the points (v, p). For a typical Mach
number (M > 1), the portion of the source sheet within the Mach hyperbola
will influence the point (n, m, t). This results in VPIC's and VIC's for
both full and partial box areas sending to the point.

¢

(ﬂ' m, ”

3

Figure 25, Boxes That Influence an Out-of-Plane Point
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The expression for the VPIC is

. LUy e s (B VR 2)
ety =-of [ 7 et @
ELT L, e
where
2
~ wb Mo 2 2
k =

o, Bz 0 T Me ot

The limits of integration correspond to the area of the box that is
within the Mach hyperbola,

Since the integrand is singular along the Mach hyperbola, & = ¥ 71-2 + e
the integrationof Equation 86 for the three types of intersected boxes
{(Figure 25) must be performed after the singularity has been removed.

This may be accomplished by using the following identity

cos (EVE2 7. 2) - (87)
J#-7-£ o (55 )
where
sy (Ea) e (3)- 55 S5, )
wa = VEAT -

Upon substitution of Equation 87 into the VPIC expression the inner integra-
tion may be performed to obtain

|1

Q) sin (Zr sin-l(

Z | =1

[
? = - ?ﬁ_ue'ikg [ (0.7 - w10, 7)) a8 (88)

The integral is now in a form suitable for numerical evaluation and
the values of the function, v, will correspond to the area within the Mach
hyperbola on cut boxes if the following interpretation is adhered to,
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sin%=% nzq (89)
am%:-% ; s =8

R e_iK-Ecos (-l-{— EZ HZ !2)
Ur'u -n - - —
w=_.1__3_f M dndg  (90)
Tt J J ng =2 _ 2
G L

Substitution of the identity (Equation 87), performing the inner integra-
tion, and interchanging the differentiation with the outer integration results

in

Ey TE _ 1=
weeg [T 4@ T - @ 1) (91)

[ - 2
Since f only appears in the parameter 3 = gz - ¢ , the differentia-
tion variable may be changed, i.e.,

iQ:_

8
= 9
Y 1

wrr)| =

The expression for the { direction VIC may be integrated by parts
after the variable change with the following relationships

u=TI- e-lkg du,—_.l_%i_k_g'_ e-lkédg
dv = 2 dE v= Y
oF
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to obtain:

__ £y
W= 2 -i—e'lkﬁqu (2, n) - il ?fL)]
3

‘L (92)

-2

+IEU 1+iEk e-iﬁ“
I

(2, ) -y le )| dE

The relationships in Equation 89 also apply to the function, §, in the
L-direction VIC.

The unsteady VIC in the n-direction is given by

- -ikg (_E_ =2 — 2 2)
v- laf%jﬂUe cosM E -n -1 _
Ton L oL

dn dZ (93)
B My JEZ WL P

where the integral becomes singular when E =N ﬁz + !2 and,

F{Epﬁ:!)'_— —_—
-2 =2 2
£ ~n -t
vk [ rg e
__;T.E__ﬁ—f_e (E, M, t) dn df
gI_. 11L

(94)
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The limits are not functions of n therefore the differentiation can be
performed inside the integral and then the inner integration performed to
obtain

Ve-a fzﬁ e-iEE[F (g Myt ) - Fg,  , ! )]d‘g

39
(95}

Integration by parts may be performed with the following relationships

-ik § jp— Jp—
u:e_ du:-———g—l_-I-Z1 k e-lkg dE
£ 3
- k -2 =2 2
E_.cos(ﬁ \/& -7 -!) _ M EJ_Z -2 2
dv = dg v =— Sin(_ g - -1
2 -2 .2 K M
Je2 . 7.
_M -
vy E ()
to obtain for the VIC,
__ 3
" KE U
38
(96)
3 + ik -ik - -
+S gU ljili_g_e ikE [E(ﬂu) - E(WL)] ag
£
£
To ensure proper values for cut boxes adopt the interpretation
sin (a) = 0, if a is imaginary.
For steady flow the ﬁ-direction VIC is given by
VS = zij“i"[“‘l anaf (
- = — = 97)
am J_ £ - qz .22



Interchanging the order of differentiation and integration yields

Eu
1 1 1 -
VSLF.[ Fz . n2..2 _[2.72..2 % %)
= - Ny - £ - -2
EL 3 u & nr,
which may be further integrated to obtain
3 £
VS = -% cosh ~! U - cosh~! LZ
2
=1 2 (— b 2
(p+2) + 2 mts] +2
3 3 (99)
-c:c:vsh'}‘-----—--gz——--—-4-cosh'1 LZ
=_1 2 \[(- 1) 2
-= -=) +
("’L 2) i poz) t4

The proper values can be obtained from Equation 99 for the steady-state VIC
for cut boxes if the following interpretation is adopted.

1

cosh ™ =0for|%|$l.0

2
b

In summary, the influence coefficients are written in their final form

N

|
e T

for an uncut box,

*|
1
Nlh—‘

<

Nlb—-

UNCUT BOX
Q= EZ - !2.

v+i/2 o -— _
5= - ‘?J’ ek [w(nJ«%é—) -w(ﬂ,u-ﬁ)] dg (100)
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! G-JZE ~ 1 -1 ;+;:
v e )
L
) I—F+1/21_._E_i;<':_€_e'il_<g [¢(n,ﬁ+‘—;—) -t,b(ﬂ,;--;-)]dz (101)
3
- . 7+%
ik
o % |(SF 6 =6 3)
L

=2 2 2,
39 :
_+1
-1 - £ vty
s_ .1 cosh gg - cosh™! &'2 2 (103)
— 1 2 - 1 2
(p+—) + 4 (p+—-) + £
2 2 é_
L

Equations 100, 101, 102, and 103 apply to all possible influence
coefficients relating the velocity potential and its vertical and horizontal
derivatives at a recelving point due to the area of a unit strength source
box within the fore Mach cone from that point. The majority of those boxes
have either no cut or at least one of the streamwise sides cut,

When one of the boxes contains the apex point of the Mach hyperbola,
the lower limit of integration in Equations 100, 10l and 102 becomes the
relative height, #, instead of either the box trailing edge or the most aft
intersection point, The special treatment of the transendental functions
sinfa), sin'l(a), and cosh-1{a) when a is an invalid argument still applies to
the apex box.
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The influence coefficients for this box are somewhat simplified by the
fact that the hyperbola does not intersect either streamwise side. The box
and its influence coefficients are given below.

-1
V- ——
2
(v, &)
€L
$+L_7A\
2 A
-] — 1
) i
£ =
TH1/2 - _
4 K -
o = f! e "ikE I (—ﬁ 2. £2> dt (104)

ik 1/2) (

7172 (v +1/2) —!) {105)

KIWI

vt 12 = —— N
+] 1 ilzk o ik £ 7 (ﬁ (gz_lz)dg
1 4
V=0 (106)

In the limit as £ — 0 these influence coefficients become those for the
planar case of a box affecting itself. The coefficients are:

1/2 S —
. SRE; (K r)ar
% (0, 0) fo etk E g (M g)dg (107)
W (0, 0) = 1.0 (108)
Vv (0, 0) = 0 (109)

The expressions for the other planar influence coefficients can be
obtained by setting £ = 0 in Equations 100, 101, 102, and 103,

The influence coefficients are evaluated numerically by a 5-point

Gaussian quadrature technique similar to the method described in Part Il of
this report.
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APPENDIX 11, SAMPLE INPUT FOR MACH BOX INTERFERENCE PROGRAM
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APPENDIX I1l. SAMPLE QUTPUT FOR MACH BOX INTERFERENCE PROGRAM
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