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ABSTRACT

This report is a compilation of coordinate systems, equations, and general relations used in aircraft-
motion analysis. The information presented is useful for comparative evaluation and for preliminary-design
work. Simplified and approximate solutions are given for special flight conditions. The material is defined
and presented in a form suitable for direct application. Derivation and theoretical development are not
emphasized, but sources thereof are named.
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SECTION 1. INTRODUCTION

Data and information are presented in this report for use in the analysis of aircraft motion. This report, which
was originally intended to be a part of the USAF Stability and Control Handbook published in October 1960, is a
compilation and condensation of the coordinate systems, equations, and general information related to aircraft-
motion analysis. The original form remains esseatially unchanged.

The purpose of the Handbock was to provide the data, equations, and relations necessary to analyze the mo-
tions, the stability and control characteristics, and flying qualities of aircraft in concise, consistent, and readily
usable form. In keeping with this purpose, emphasis is placed on description, definition, and application rather
than on derivation and theoretical development. Problems of unusual nature and unconventional configurations
may require special analysis and development of particular equations from the fundamental theory cited in the
references.

The basic kinematic and dynamic relations for particle and rigid-body motion are included. Several convenient
coordinate systems are defined, and coordinate transformation relations are given. Force and moment components
are developed, and a compilation of conventional stability derivatives is presented. The rigid-body equations of
motion are simplified for special flight conditions, and some approximate solutions are given. Some material is
presented pertaining to instrument readings and fuel slosh.

Symbols and nomenclature are listed and defined in the sections to which they apply. Consistency in symbols
and notation is maintained, except in cases where established usage dictates otherwise. A complete list of sym-
bols is not considered to be necessary and is not given.

Manuscript released by the author June 1964 for publication as an FDL Technical Documentary Report.



SECTION 2. COORDINATE SYSTEMS AND EQUATIONS OF MOTION

In order to describe the motion of a dynamic system it is necessary to define a suitable coordinate system and formulate
equations for the motion in accordance with the physical laws governing the system.

The diagrams and discussion that follow consider the meotion of a particle (point mass} and the more complicated

motion of a rigid bedy.

PARTICLE MOTION

Coordinate systems and equations that conveniently describe the motion of a point mass are presented in the following
pages. Rectangular, spherical, and cylindrical coordinate systems are presented. Preferred axis orientation and notation
indicated and used are consistent, insofar as possible, with the reference literature.

RECTANGULAR-COORDINATE SYSTEM (FLAT NONROTATING EARTH)

The familiar Cartesian or rectangular coordinate system has many applications in the analysis of vehicle motion. For
instance, it may be used to describe the flight path (trajectory) of a body with respect to a given starting point on the
earth’s surface. A typical case is suggested in the description of the coordinate system below. Generalization to any
specific problem is self-evident and requires no further discussion.
Description of Coordinate System

Origin of rectangular coordinates x, y, z: arbitrary, often a point on the surface of the earth.

Fundamental plane: usually the XY-plane; tangent to the surface of the earth at the origin.

Positive X-axis: arbitrary, often selected along initial heading or direction of motion.

Positive Z-axis: arbitrary, often oriented in sense to denote altitude above the surface of earth or the XY-plane.

Positive rotation in fundamental plane: from X.axis to Y-axis; i.e., right-hand system.

BASE VECTORS
(UNIT VECTORES)

X
FIGURE 1 GENERAL RECTANGULAR-COORDINATE SYSTEM



)

Yector form:

Component form:

NOTATION

orthonormal base (unlt) vectors along X-, Y-, and Z-axes, respectively

position vector of point P (rectangular ceordinates x, y, z)

position coordinates of P; also components of OP along coordinate axes, i.e, OP=xi + yj + zk
velocity vector of point P

components of velocity V¥ along the coordinate-axis directions, i.e.,, V = Vi + V;§ 4 Vok

mass of particle at point P

denotes differentiation with respeet to time

Equations of Motion
Fzm dv _ mV (1)
Fr=mV.=mx

F,-:m\-’,:m'): (2)

Fe=mV,=m?

SPHERICAL-COORDINATE SYSTEM

The analysis of motions within the inertial frame fixed to the center of the earth is most conveniently treated in
spherical coordinates. This section considers both rotating and nonrotating spherical coordinates. In order to distinguish
between these two systems, primedquantities refer to nonrotating coordinates and unprimed quantities refer to
rotating coordinates. Since it is customary to refer our position and velocity to the earth, the rotating coordinates
are generally used.

Flight-path coordinates are introduced because aerodynamic forces are frequently considered in the analysis of a
vehicle flight path. Aerodynamic forces are most conveniently related to the velocity of the vehicle through the air,
which rotates with the earth. Thus the rotating-earth flight-path coordinates may be used in the analysis of missile

and supersonic- or hypersonic-vehicle flight paths whenever aerodynamic forces are included.

The basic development of the equations of motion in this Section is given in reference 1.

Description of Coordinate System (reference 2)

Origin of spherical coordinates r, ¢, 8: center of the earth,

Fundamental plane: equatorial plane.

Reference direction in fundamental plane; arbitrary, e.g.. Greenwich Meridian used for longitude reference.

Polar-axis positive direction: toward the North Pole.

Positive rotation in fundamental plane: eastward, i.e., a right-hand system.

NOTATION

0 origin of rotating spherical coordinate system, center of the earth

P particle under consideration



DIRECTION TO NORTH
POLAR AXIS IN THE 14 15 PLANE

LOCAL HORIZONTAIL PLANE
TANGENT TO SPHERE
AT POINT P

\ 1r, 13 15 sPHERICAL COORDINATES

€, €, €; FLIGHT-PATH COORDINATES

11
NORTH

\
POL AR AXIS

P
GREAT CIRCLE / /
THROUGH POINT P \'/ (q& \ \
FUNDAMENTAL R 4
(EQUATORIAL) PLANE P :;i-:':;_:g

ZERO DIRECTION IN
FUNDAMENTAL PLANE
(FIXED RELATIVE TO
THE EARTH)

FIGURE 2 ROTATING-EARTH COORDINATE BYSTEM



or position vector of P (spherical coordinates r, ¢, 8)

-

radial distance from originto P

¢ angular inclination of P to polar axis

] angular displacement of P from reference meridian plane (;'el'erence plane rotates with the earth)

1] angular velocity of rotating coordinate system about the polar axis

1,1, 1 orthonormal base (unit) vectors at P along spherical-coordinate directions

¥ velocity vector of P with respect te rotating coordinates

v magnitude of velocity vector ¥

Vi, Vo, Vo components of velocity V along the coordinate directions, ie, ¥ = V.1, + V,1, + V.ols

€ay €4y €y orthonormal base (unit} vectors at P along flight-path coordinates (ev is aligned along the velocity vector V; e, and e.
are oriented normal and sidewise, respectively, to the flight path)

] flight-path heading — the angle between the meridian plane through P and the flight plane determined by the radius
vector OP and velocity vector V. The angle 3 is measured clockwise from the polar axis.

¥ flight-path aititude — the angle between the velocity vector ¥ and the local horizon at P
roll angle -- the angular displacement of the base vector e, from the flight plane containing OP and V. The angle ¢
is positive in the sense of a right-hand rotation about e..

F real force vector applied at P

F.,Fy. Fe components of F along spherical-coordinate directions, 1.e., F = F.1, + F,1, 4 Fsl.

F.,F., F, components of F along flight-path-coordinate directions, i.e., F = F.e. + F.e. +Foev

m mass of particle P

(.) dehotes differentiation with respect to time.

Notes: 1. Notation for nonrotating spherical coordinates is the same as above with the addition of a prime,
2. OP=rl.
3L V=Ve.

The equations of motion for a particle mass moving in the inertial frame fixed at the center of the earth are given below.
These equations are derived from the basic vector equation for the motion,

dv
—="3 = aq T @XV

It is important to note that V' is the inertial velocity measured with respect to nonrotating coordinates, and that
V is the relative velocity measured with respect to the rotating-coordinate system.

The equations of motion in nonrotating coordinates may be obtained by simply considering the angular velocity 2 to
be zero in the equations for the rotating-coordinate system (in which case V=V

The relation between spherical coordinates and flight-path coordinates is given by the following rotation of the base
vectors L, lg, 1y at P. (refer to figure 2).

a. Rolate 1, about 1. through angle 90—3 to the flight plane determined by OP and V.

b. Rotate in the flight plane through an angle y such that the base vectot 1; now coincides with the velocity V.
- This base vector is then noted as e..

c. Rotate in rofl about e, through an angle 7 to the final orientation of the flight-path base vectors

€y, €, €y



1. ROTATING-EARTH SPHERICAL COORDINATES (REFERENCE 1)

F. _ v _ Ve*+ (Vo + Orsing)? ]

m 5 r
—=F—r(d)2—r (8 +0)%sin? g

% :v¢+V,rV¢_ (Vdft:f:’:“‘i’)z s
:rc'f;—|—2i'$—r(ﬂ.~{—9)2sin¢cos¢

Fe 3 (Vo4 2rQsingl { Vy )

m =Vo+ r (tan ¢+Vr
:ré.sin¢—|—2rq¢'>(é+n) cos¢—|—2f‘(fj+-ﬁ) sin ¢ |

2. ROTATING-EARTH FLIGHT-PATH COORDINATES

%:[Vﬁ——‘iﬁcmy——rﬂzsingb(cosvsin¢+sin-yc0581:cos¢)
V sin 8 s 'I [ vz,
—20 smb‘smqs_. cosn + VSCOSy—rSin¢cos v 5in § cosd
—rﬂzsinSsin¢cos¢—2QV(0057cos¢—sinyc05851n¢}:| sin y
Fn

- :[V4§0057ﬁrﬂzsinSSin:ﬁcosda—l—ZQV(sinycosSsinqb

2

— COSy o8 ) — cos® y sin 8 cos ¢:' cos 7

I sin ¢

2
+[“Y;"(.057-—V}:-|—20V5i1’l85in¢

+ r Q% sin ¢ (cos y sin ¢ -} sin y cos § cos :ﬁ)] sin %

l:\" + rQ?sin ¢ (cos y cos & cos ¢ — sin ysin ¢‘):’

¥ _
m

Note: The equation for F. (side force) may be solved for the roll angle 5

then become the equations for motion in coordinates similar to symmetric wind axes, The angle

J

such that

the bank angle (in aircraft terminology) required for flight with zero sideslip.

3. NONROTATING-EARTH SPHERICAL COORDINATES

P VetV
m r

=F— I(q.s_]"’ — r(l,‘}’)2 sin? ¢
v’r V’dS _ V’28‘

T rtan ¢ L

.EL: \'1'4, 4
m
zrr:j:'—|—2i'<f>—r(6.')2sin¢cos¢

V"Q-V’\- V’rb vrﬂ'

Vie+—7 +rtan¢

zré"sinqb—}—Qr‘i.;G"cos qb—|—2l"é’sin¢ ]

Fy

(3)

(4)

F. = 0. The equations
y is then

{5)



4. NONROTATING-EARTH FLIGHT-PATH COORDINATES

Fur Y v ’ r & 2

n — L ’ 8’ . - ¢ 2.7l 4 : s

- [V ¥ ——cosy :Icosn +[V cosy - os® ¥ sin & cos ¢]smq
Fe : "2

n: :[V’ 3 cosy — reing cos® y' sin § cos ¢]cosn’

[ (6)
V2 .
+ l:—r—- cosy — V' 7’] sin g

F. :\'rr

m B

CYLINDRICAL-POLAR COORDINATE SYSTEM

Cylindrical coordinates have limited applications in particle-motion analysis. They are however conveniently used
in many problems of planar motion where perturbations perpendicular to the fundamental plane are considered.

The general cylindrical-coordinate system is defined and illustrated in figure 3. Two-dimensional polar coordi-
nates are a special case of cylindrical coordinates where the z-coordinate is held constant.
Description of Coordinate System
Origin of cylindrical coordinates r, @, z: arbitrary.
Fundamental plane: the reference plane normal to the polar (Zlaxis.
Reference direction in the fundamental plane: arbitrary.

Polar (Z)axis positive direction and rotation in the fundamental plane: right-hand system.

POLAR AXIE

J
Yz "™

-
-

/
{

1
BASE VECTORS

/ (UNIT VECTORS)

REFERENCE DIREC TIONK
IN FUNDAMENTAL PL ANE

FIGURE 8 CYLINDRICAL=-COORDINATE SYSTEM



NOTATION

0 origin of coordinate system

P denotes particle under consideration

opP position vector of P (cylindrical coordinates r, 8, z)

r radial distance of P from polar axis

] angular displacement of P about polar axis from reference direction
z displacement of P from the fundamental plane

1., 1a, 1.  orthonormal base vectorsat P along cylindrical-coordinate directions

Y velocity vector of P with respect to coordinate-axis system

V. Va,V: components of velocity V along cylindrical-coordinate directions, i.e., ¥ == V.1, + Vola + V.1,
F real force vector applied at P

F., F.,, F. components of F along cylindrical-coordinate directions, ie., F = F.1: 4 Fels + F:1.

m mass of particle P
" denotes differentiation with respect to time
Note: OP=r1:.+4z1,

For a particle moving in an inertial frame the equations of motion expressed in cylindrical coordinates are as follows:

;
F, ¥
T

V. — —T—r ()2

g

Fy AL,

r

:\-’g—i— :ré'—|—2;'é r (7)

=

ol

Ly,

..
z

g

4

As was noted previously, the first and second equations above may be used for planar motion {(z = constant}.

RIGID-BODY MOTION :

The coordinate systems and equatiens generally used in the analysis of the motion of a rigid body are presented
in the Sections that follow. The preceding Sections have considered the motion of a point mass in several co-
ordinate systems where position coordinates, as functions of time, are sufficient to describe the motions. For the
more nearly complete case of rigid-body motion, it is necessary to consider the rotational motion of the body. In
most cases, it is convenient to refer translation and rotation to the body center of gravity. This reference center
is used in the cases that follow, unless specifically noted otherwise. The notation and coordinates used are con-
sistent, insofar as possible, with the reference literature and cumrent usage.

This Section describes various coordinate systems and gives equations of motion for a rigid body moving with

respect to a flat, nonrotating reference frame. The origin of each coordinate system is located at the vehicle center
L, ® e . . . .

of gravity. These conditions are those most commonly used in analysis of aircraft motion.

The general notation and terminology of established aircraft usage are used in this Section. A basic notation is
established without subscripts. Various specialized axes systems and corresponding equations are denoted by
subscripts added to the basic notation.

Limiting the reference frame to a rectangular, nonrotating system eliminates consideration of Coriolis-type forces
in the equations of this Section.

*In this repert the terms center of gravity and center of mass are used interchangeably, The distinction is unimportant for applications.



All axis systems in this Section are right-hand and orthogonal.

A general notation for the force, velocity, and inertia terms used in the equations for motion of a rigid body are
given below. These items refer to a rectangular-coordinate system having axes designated by X, Y, and Z,
respectively. The origin of the coordinate system is at the center of gravity of the vehicle. The symbols below are used
as listed for vehicle body axes and with subscripts for special axis systems.

NOTATION
Lik orthonormal base ¢unity vectors along X, Y, and Z coordinate axes, respectively
F external force vector applied at vehicle center of gravity; includes serodynamic, thrust, and gravity forces
Fx, ¥y, Fz external force vector components along coordinate axes, ie., F — Fxi + Fvj 4 Fzk
G external moment vector applied at vehicle center of gravity
Gx, Gy, Gz external moment vector compenents along coordinate axes, i.e., G = Gxi + Gvj + Gzk
A\ J total velocity vector of vehicle center of gravity {translation of origin with respect to a remote fixed point)
LY, W total velocity vector compenents along coordinate axes, i.e, ¥V =Ui + Vj + Wk
- total angular-velocity vector of vehicle about its center of gravity
P,Q, R angularvelocity vector components along coordinate axes, i.e., w = Pi 4+ Qj 4+ Rk (Note: P is the angular velocity of
rotation about the X-axis according to the right-hand rule of vector representation for moments and angular velocity.)
mg gravity or weight vector of the vehicle
I, I+, I mass moments of inertia of the body about the X, Y, and Z coordinate axes, respectively
Ivz, Ixz, Lxr mass products of inertia of the bedy with reference to the X, Y, and Z coordinate axes, respectively

Subscripts used with the above symbols denote axis systems as follows:

Subseript Coordinate Axes System

e earth axes

8 stability axes

p principal axes

w wind axes
wt wind-tunnel axes

Various axis systerns used frequently in the analysis of vehicle motion are described and sketched in the pages that
follow. All of the coordinate systems presented are right-hand orthogonal systems with the origin located at the vehicle
center of gravity.

Each axis system is defined and illustrated in vehicle notation,and terminology is outlined in reference 3. Special
notation is defined as required and equations of motion are listed for the axis systems comionly used in stability
and control analyses.

EARTH AXES

Earth axes are used primarily as a reference system for the gravily vector, altitude, horizontal distance, and vehicle
orientation. Fixed earth axes provide a reference for reckoning the flight path, altitude, and horizontal distance. Earth
axes moving with the aircraft are sufficient to define the gravity vector and orientation of the vehicle. Both fixed and
moving axes are illustrated below with the preferred sequence of rotation to define the orientation angles. (See
reference 4},

Description of Coordinate System

Origin location: arbitrary for fixed earth axes. The origin of moving earth axes is usually placed at the vehicle
center of gravity.



Z.-axis: along the gravily vector mg. Thus Z. is positive downward, i.e., toward the center of the earth.

Orientation of the X,-axis: may be fixed arbitrarily. Fixed earth axes often have X, directed toward the North
polar axis. In moving earth axes the X.-axis may be directed along the vehicle’s initial azimuth heading.

Y-axis: oriented to form a right-hand orthogonal axes system.

REFERENCE
HEADING

Xa

l"llll i

INIIH’

X, Yo %o MOVING

EARTH
AXES "~ 8o, 8,
XY Z VEHICLE o
BODY
AXES
mg
Ze

FIXED EARTH AXES
BASE VECTORS
(UNIT VECTORS)

ke

FIGURE 4 RELATIONSHIPS BETWEEN MOVING AND FIXED EARTH AXES, AND VEHICLE BODY AXES
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The axes in figure 4 are defined as follows:

XY, 2. fixed earth axes

X.,Y.7Z moving earth axes parallel to fixed earth axes

XY 7, intermediate axes used in defining orientation of vehicle
Xo, Yo, 7o intermediate axes

X, Y.Z vehicle body axes

The sequence of rotations defining the orientation angles of the body axes with respect to moving earth axes is as follows:
Rotate moving earth axes X., Y., Z. through azimuth angle ¥ about Z.axis to intermediate axes X;, Yy, Z,.
Rotate axes Xy, Yy, Z; through elevation angle © about Y,-axis to intermediate axes X., Y., Za.

Rotate axes X, Ys, Z, through bank angle & about Xj-axis to vehicle body axes X, Y, and Z.

With the above rotation sequence the body-axes orientation angles may be defined in the following terms:
¥  Azimuth or yaw angle of body axes from reference direction of earth axes.
e elevation or pitch angle of hody X-axis from the horizontal or X, Y.plane.
Py bank or roll angle of the body Y-axis about the body X-axis from the X, Y.-plane.

Note: Theangles ¥ and © are not necessarily the same as the flight~path heading and the flight-path angle, respectively.

BODY AXES

The body axis system is the most general kind of axis system in which the axes are fixed to a rigid body. The
use of axes fixed to the vehicle insures that the inertia terms in the equations of motion are constant and that
aerodynamic forces and moments depend only upon the relative-velocity orientation angles a and 8. The orienta-
tion of body axis with respect to earth axis is defined in the preceding paragraph.

The general body axis system is defined and illustrated below. Special body axis systems, namely, the stability
axis system and the principal axis system, are given on pages 13 and 14, respectively, of this Section.

Description of Coordinate System
Origin: vehicle center of gravity.
Reference plane: XZ, usually a plane of symmetry.
Positive X-axis: forward along a reference line fixed to the vehicle.
Positive Z-axis: toward bottom of vehicle.

Positive rotation: about Y-axis from Z to X, i.e., right-hand system.

T



TOTAL VELOQCITY ¥

X
Y
| ‘l -...:.. v
V cos 3
BASE VECTORS
i (UNIT VECTORS) _ i AR AL AL

“LLL B PLANE OF SYMMETRY
?- i
o
ey
%

FIGURE § VEHICLE BODY AXES

The angles « and 8 in figure 5 define the orientation of the velocity vector V with respect to the body axes X,Y,
and Z. The angle of attack o and the angle of sideslip # are shown in the preferred yaw-pitch rotation
sequence. (See page 41.)

Complete equations of motion referred to body axes are given below. The general notation defined on page 9 is
used. These equations are applicable to any rigid body, since there are no simplifying conditions of symmetry
used.

F. =m(U—RV+4QW)
F, :m(\?a—PW—}—RU) ®)
F, =m(W—QU+PV)
Co=PL— Qlxr — RIxs — QR (I — Iy) —PQ Ly, — (Q* — R?) Iy + PR Iy
G, =4 Qly —RIy;— Play+ PR (Ix — I,) — QRIyy — (R?— P?) Inx+ Q Plyy (©)
G, = +f{]z—plxz—Q1Yz—PQ (Iy —Ix) —RPly — (P2 — Q%) Iyy 4+ RQIyx

Notes: 1. In most instances a vehicle has a plane of symmetry, the XZ-plane. The product-of-inertia terms Ixy and Iy are zero with this
symmetry, and the equations may be simplified accordingly.

2. Gyroscopic terms resulting from rotating masses in the vehicle are not included.
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STABILITY AXES

Stability axes are specialized body axes (see preceding paragraph) in which the orientation of the “body axes” is
determined by the initial flight condition. The X,-axis is selected to be coincident with the velocity vector V¥ at the
start of the motion. Consequently, the moment-of-inertia and product-of-inertia terms vary for each initial flight condi-
tion. However, they are then constant in the equations of motion.

The use of stability axes is limited to symmetric initial flight conditions and smail-disturbance motions

Description of Coordinate System
Origin: vehicle center of gravity.
Reference plane: X,Z., a plane of symmetry.
Positive X,-axis: coincident with velocity vector at start of motion.
Positive Z,-axis: toward bottom of vehicle.

Positive rotation: about Y.axis from Z,to X, i.e., right-hand system.

VEHICLE REFERENCE LINE, OR
BODY X-AXIS

Ya

BASE VECTORS
is (UNIT VECTORS i

PLANE OF SYMMETRY

FIGURE 6 STABILITY AXES

The initial angle of attack «, is the angle between the body X-axis and the steady relative velocity vector 'V, at the
start of motion.

Equations of Motion

The equations of motion referred to the stability axes of a vehicle symmetric about the XZ-plane are given below.
Symbols are as defined on page 9.

13



Fr,=m (U, +Q,W.—R.V,)

Fir, =m{V,+ R U, —P.W,)

F., =m (W, - Q. U, +P,V,)

Gy, =P, I¢, — Rilxs, — QuR, (Iy, — Iy} — P, Qulxy,
Gy, = Quly, — R.P, (Ip, — Iy} — (R2 — P,2) Ixy,

G., =+ R, — P, Ixy, — PO, (I, — Ir,) + QuR. Iy,

PRINCIPAL AXES

(10)

an

A special set of body axes (see preceding paragraph) aligned with the principal axes of the vehicle and therefore called
principal axes is used for certain applications. The convenience of principal axes results from the fact that all of the

product-of-inertia terms are reduced to zero. The equations of motion are thus greatly simplified.

Description of Coordinate System
Origin: vehicle center of gravity.
Reference plane: X,Z,, a plane of symmetry.
Positive X -axis: forward along principal axis nearest the direction of motion.
Positive Z-axis: in plane of symmetry, toward bottom of vehicle, normal to X,

Positive rotation about Y,-axis: from Z, to X,, ie., right-hand system.

The angle « denotes the angle between the principal axis X, and the body X-axis.

VEHICLE REFERENCE

LINE, OR BODY X-AXIS

BASE VECTORS

ip (UNIT VECTORS)

FIGURE 7 PRINCIPAL AXES
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The equations of motion referred to the principal axes are listed below, Symbols are defined on page 9.

Fr, =m (U, — R, Vo Q, W] ]

pr =m {\}l, — P, W,+R,U,) 2
F, =m (W,—Q, U, + P, V,)

Gy, =P, 15, — QuR, (Iy, —Iy))

Gy, =Qply, — Ry Py (I —Ix,) | (13)
Gep =Ry o, — Py Q (I, — Iy, |

GENERAL WIND AXES

General wind axes use the vehicle translational velocity as the reference for the axis system. Wind axes are thus oriented
with respect to the flight path of the vehicle, i.e., with respect to the relative wind.

The relation between general wind axes and vehicle body axes defines the angle of attack « and the sideslip angle g.

These angles are convenient independent variables for use in the expression of aerodynamic force and moment
coeflicients.

Wind axes are not generally used in the analysis of the motion of a rigid body, because, as in the case of earth
axes, the moment-of-inertia and product-of-inertia terms in the three rotational equations of motion vary with time,
angle of attack, and sideslip angle.

The general wind-axis system is defined and illustrated below. A special case of symmetric wind axes follows
on page 16,

VEHICLE REFERENCE LINE, OR
BODY X«AXIS
PLANE OF SYMMETRY

TOTAL VELOCITY

BASE AXES

FIGURE 8 GENERAL WIND AXES
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Description of Coordinate System
Origin: vehicle center of gravity.
Reference plane: XyZ,plane,
Positive X -axis: along the velocity vector V.
Positive Z-axis: in the vehicle plane of reference XZ and toward the bottom of the vehicle.

Positive rotation about Y,.-axis: from Z, to X, i.e., right-hand system.

The angles « and & in figure 8 are shown in the yaw-pitch rotation sequence. The orientation relations between
the body axes and the general wind axes are given in Section 3,

The equations of motion of a rigid body referred to general wind axes are identical in form to the equations of mo-
tion referred to body axes. Thus the equations in general wind axes may be obtained from the equations given on
page 12. The moment-of-inertia and product-of-inertia terms become very complex in the general wind axes system
and thus practically preclude the use of these axes in the analysis of vehicle motion.

SYMMETRIC WIND AXES

The symmetric case of the preceding general wind axes may be usefully applied in the analysis of symmetric vehicle
motion, e.g., dive recovery. Symmetric wind axes are obtained from the general wind axes when the sideslip angle g
is zero. Thus the preceding description and illustration for the general case may he used directly with § = 0,

The equations of motion for the symmetric, unbanked flight of a vehicle with a plane of symmetry are given below.

Fx, =m I:Tw )

Fv,=20 r (14)
Fz, =—mQ, Uy |

Gx,= 0 ]

Gy, =041y, L (15)
Gy, =0

WIND-TUNNEL STABILITY AXES

Wind-tunnel stability axes are used as a reference system for measuring and reducing aerodynamic data in wind-tunnel
tests. This sel of axes differs from the previous stability axes in that the Z,-axis is aligned normal to, and remains
normal to, the relative wind, whereas the general stability axes are body axes determined by the initial flight condition.

Since it is not convenient to use wind-tunnel stability axes in analysis of the motion of a vehicle, the equations of
motion are omitted for this case.

Description of Coordinate System
Origin location: in the reference plane of the vehicle at the point corresponding to the vehicle center of gravity,
Reference plane: the X;Zy¢ plane.
Positive Z,.-axis: in the reference plane of the vehicle perpendicular to the relative wind V.

Positive X,-axis: toward the forward part of the vehicle, along the projection of the relative wind V upon the
vehicle reference plane.

Positive Y,y-axis: oriented to form a right-hand orthogonal axes system.
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VEHICLE REFERENCE LINE,OR
BODY X-AXIS

Y, Ywt

FIGURE % WIND-TUNNEL STABILITY AXES

In the above figure the angle of attack « and the sideslip angle B give the orientation of the relative-velocity
vector to the vehicle body axes. Wind-tunnel stability axes use the yaw-pitch rotation sequence (page 46).

NONROLLING AXES

The problem of formulating equations of motion for a symmetric rolling body may be simplified by using a nonrolling
axis system. Nonrolling axes are a special set of body axes having the Y.axis always horizontal and the XZ-plane
always vertical. This axis system may be used even though the body rotates about the X-axis. It is necessary, however,
that the inertia parameters and the aerodynamic forces, moments, and derivatives be constant with respect to the
nonrolling reference frame. Thus the body must have rotational symmeltry about the X.axis. Applications of nonrolling
axes to the motion analyses of aircraft, projectiles, and missiles are given in reference 5.

17



SECTION 3. COORDINATE-SYSTEM TRANSFORMATIONS

In vehicle-motion analysis it is frequently necessary or expedient to transform coordinates, vector components, inerlia
parameters, and stability derivatives from one coordinate system to anocther. The following section gives the relations
most frequently used in such transformations,

Equations are used lo express the transforming relations whenever these relations are simple and not often repeated.
Matrix notation is used in the more complex transformations, and a tabular presentation is given when the forms of a
transformation relation are similar for several cases.

PARTICLE-MOTION TRANSFORMATIONS

The transformations between the coordinate systems useful in the analysis of particle motion are given in the pages
that follow. Notation and definitions of terms are consistent with those used in the preceding sections.

RECTANGULAR COORDINATES

Cartesian or rectangular coordinates are perhaps the most commonly used coordinates. The following pages give
relations for translation of the origin and the rotation of rectangular-coordinate systems about the origin, Composite
changes involving translation and rotation of the coordinate axes may be accomplished by successive application of
these two basic transformations.

The equations relating spherical coordinates to rectangular coordinates and the equations relating cylindrical coordinates
to rectangular coordinates are also included in this section.

Symbols and notation are defined when first used or as required.

Translation of the origin in rectangular coordinates is illustrated in the figure below.

TRANSLATED
z' REFERENCE

‘ SYSTEM

INITIAL P

REFERENCE
SYSTEM

%

, -

X FIGURE 10 TRANSLATION OF ORIGIN
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NOTATION
0 origin of rectangular coordinate system with axes X, Y, and Z
X,y,z position coordinates of point P
X,¥v,z components of the vector OP

a,b,c position coordinates of translated origin 0" in initial coordinate reference systern. {These coordinates
are considered as constants.)

( )} denotes coordinates and quantities referred to the translated coordinate system

From figure 10 the relation between coordinates in the initial and in the translated coordinate system is
X =x-—a
y=y—b

7 —z-—c¢

Since there is no rotation of the coordinate axes with a pure translation, the components of a vector at P referred to
the axes X, Y, and Z are identical to the components referred to the axes X’, Y, and Z’. Consequently, components of
vectors such as force and moment veclors are unchanged by a translation of the origin. Velocity- and acceleration-vector
components are unchanged also, excepl when the translated axis system becomes a moving reference system.

Rotation of rectangular-coordinate axes about the origin is very often useful and sometimes quite necessary. A general
rotation of an orthogonal-axes system may be accomplished by three successive planar rotations; hence a simple planar
rotation is considered first and then extended to the general case. Also included in this section are the direction-cosine
relations for defining a general rotation of rectangular-coordinate axes. The relations given in the following pages are
developed in many standard mathematics and engineering texts, such as referencer 6, 7, and 8. The tabular presentation
of the transformation relations is adapted from reference 9.

1. PLANAR ROTATION

The rotation given below corresponds to a rotation in the XY-plane about the Z-axis. The subscript 1 denotes the
rotated axes and components in the coordinate system that has been rotated through an angle y.

¥, Y

A m———
Z&2Z, FIGURE !l ROTATION IN THE X-Y PLANE
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The components of the vector OP in the preceding figure are transformed from x, y, and z to x;, y1, and z,
respectively, by the following equations:

xy=xcosy -+ ysiny
y1 = —x sin 4 v cos ¢

Z1 —Z

These equations may conveniently be expressed in matrix form,

X1 cogy siny O X X
Yi | =] —sing cosy 0 y =y
Z 0 0 1 z z

The components of any vector in the XY-plane may be transformed by the above relations.

Since the transformation matrix is orthogonal, the inverse transformation [¢]—! is given by the transpose of [y].
Since the transpose of a matrix is obfained by interchanging the rows and the columns, in this case the inverse trans-
. . -1,
formation matrix [y]  is defined as
cosy  ~—siny 0

W7 =[oV= | sing coy 0
0 0 1
whence
X X1
Y = [y]! i
z z

Note that this procedure is equivalent to replacing the angle y by —y and interchanging the subscripted and unsub-
scripted components in the first form of the equations.

It is convenient to introduce a tabular presentation for the transformation matrix and its inverse. Table 1 gives
the transformation matrix array with initial position coordinates at the head of each column and the rotated co-
ordinates in front of each row. From this array the transformation and inverse-transformation equations are written
by using the matrix elements as coefficients of the appropriate vector components in the transforming equations.
TABLE 1,
VECTOR TRANSFORMATION MATRIX
INITIAL AXES TO ROTATED AXES

COMPONENTS IN INTTIAL COORDINATE SYSTEM
X Y Z
Z .
=] X cos sin 0
e ! 4
7 Rt
=l
EQS Y. —sin cos ¥ 0
OB
2
=
8 g VA 0 0 1

Direct transformation equations are obtained by summing horizontally along each row.
X1 = (cos¢) x 4 (sinyg) y 4 (0) =z
y1== (—sinyg) x + {cos¢) v+ (0 z
2= (0 x4 (0 y+ (1) 2

20



Inverse transformation equations are obtained by summing vertically down each column.
X = (cosy) Xy + (—siny) y1 4 (0) 2
y = {siny) x; + (cosy) y; 4+ (0) z
z = {0) x; +(0) y1 +(1} 2
2. GENERAL ROTATION
The general rotation of a rectangular axes system may be accomplished by successive planar rotations of the type

described in the preceding paragraph. In making a general rotation, however, the sequence of rotation is important.
The basic order of rotation is described and illustrated below. This sequence of rotation and the terminology have

been used extensively in aircraft motion analysis (references 4 and 7).

P
1A*

Zg %

%y

\
\

FIGURE )2 GENERAL ROTATION ABOUT ORIGIN =~ ORIENTATION-ANGLE DESCRIPTION OF ROTATION
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The transformation matrices are given in tabular form for the basic sequences and for several other sequences of axis
rotation. These transformations may be applied to position, velocity, force, moment, and acceleration vectors to obtain
their components in the rotated-axes system. Both the direct- and inverse-transformation relations are obtained from
the tabular presentation as shown in the sample problem.

In the preceding sketch the coordinate axes are designated by capital letters (X, Y, Z) and the position coordinates by
lower case letters (x, y, z). The Greek symbols ¢, 6, and ¢ are used to refer to angular rotation about the X-, Y-,
and 7-axes, respectively. Subscripts refer to the various rotated-axes systems. Thus the subscript 3 denotes the final
axes and coordinates. Similar subscripts are used with the rotation angles to indicate the reference axes for the
particular angle. The basic order of rotation is

1. “Yaw"” about Z-axis through the angle .
2. “Pitch” about Y;-axis through the angle 8.
3. “Roll” about Xg-axis through the angle ¢u.

General transformations for rotation of rectangular-coordinate systems are tabulated in table 2, Both direct and in-
verse transformations are given, as illustrated in the sample problems on this page. Also included in this table

are the equations for the instantaneous angular velocities ¢g, 63, and ¥ about the final coordinate axes in terms
of the orientation angles and their rates of change.

The first case listed is the most commonly used order of rotation. Cases 1 and 2 may be considered as fundamental
rotations. The remaining cases may be obtained from cyclic permutations of the initial coordinate and angle notation.
It should be noted that changing the sequence of rotation changes the definition of the orientation angles. Consequently,
angles with different subscripts are not interchangeable, i.e., generally ¢, = ¢u == ¢;. Also, the orientation angle
rates of change, i.e., ¥, 61, ¢u, are not orthogonal.

Use of table 2 is illustrated by the sample problems below.

Example 1. Direct Transformation

Given: Velocity-vector components Vy, Vy, V.

Rotatien order: yaw, pitch, roll (y to 6; to ¢, asin Casel of lable 2).
Find: Velocity-vector component along Zz-axis (Vg,).
Solution:  Write equation for Vy, by summing terms along the Zy-row of the vector transformation matrix.

Vi, = (cos ¢u sin 6y cos b + sin pu sin ) Vx
+ (cos ¢ sin §y sin y — sin ¢ucosy) Vy
4+ (cos ¢pacos 1) Vy

Example 2. Inverse Transformation

Given: Acceleration vector components ay,, ay,, ay

., along final coordinate axes.

Rotation order: yaw, pitch, roll (y to #; to ¢, asin Case 1 of table 2)
Find: Acceleration vector component along X-axis (ax).

Solution: Write equation for ax by summing terms down the x-column of the vector transformation matrix.
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TABLE 2

RECTANGULAR COORDINATE TRANSFORMATIONS
ROTATION OF AXES ABOUT ORIGIN

-
VECTOR TRANSFORMATION MATRIX ANGULAR VELOCITY RELATIONS
CASE 1 77 INITIAL VECTOR COMPONENTS
A
x y z Direct —
YAW o ¢J = ¢». — ¥ sin ﬂi;
g X3 cos 6, cos y cos f sin ¢ —sin 6. %‘ = cos dr si.n $: C0S 6
PITCH ;_] . Yu = —0 sin @3 4 ¥ cos ¢a cost
ag
= : ; ; : i Inverse —
Z SIN ¢ha SIN &, cos sin ¢ sin ; sin e
ROLL E% ¥3 —cos $: sin ¢ +cos ¢ cos sin ¢: cos 8, . .o .
o8 . ¥ — 64 sin ¢ sec B | Yz cos Pa sec
ot Z; 6, = 65 cos ¢ — i sin @
-2 -« 8 z cos ¢ sin.ﬂl cos ¥ €05 2 sin 8, sin ¢ = s + 6s sin @: tan 61 + s cos patan 8
E 3 +sin ¢; sin —sin ¢; cos ¢ cOS $: cos &
CASE 2 INITIAL VECTOR COMPONENTS
x ) y z Direct —
YAW . _ ¢1 = ?51 c0s f: — Y cos @1 sin 8,
o X5 cos facosy cos f; sin ¥ . s = 6. 4 ¥ sin g
S — 1N ¢ SN B sin Y +-sin ¢, sin &2 cos § —cos ¢1 sin & G sin 8 |.b 0
ROLL E Ya = ¢p1 iR 82 + ¥ cOS ¢ COs 2
an
8e . . I
PITCH 25 Y3 —cos ¢, sin ¥ COS ¢ COS ¥ sin ¢ nverse —
gg |,b = — ds sec ¢, sin 6; + \(;.-; Sec ¢ €03 f;
-gpr-B g ; &1 = ¢u €05 B + Y5 sin 0:
é 8 Zs s-l:sil: f;:sc‘zs 8. sin a_ms; ;lnncts 8 cos ¥ o8 ucos s B = s tan ¢ sin 8 + 6y — s tan ¢ cos by
=
CASE 3 INITIAL VECTOR COMPONENTS
x y z Direct —
- @2 == ¢ cos ¥ + 6 cos ¢ sin ¥
PITCH e - _ e e
= Xg cos B cos ¥, —sin 8 cos y, fs = — g sin ¥ + 6 cos g1 cos ¥y
5 ~+-sin ¢18in 8 8in ¥ | COS ¢r sin Yo +-sin ¢1 cos 8 sin ¥ Yo = —& sin ¢ + ¢
ROLL -
-
Qitf o ) ) Inverse
= y —cos 8 sin ¥ sin @ sin V3 . . . .
YAW E = 8 +sin 1 8in 6 cos Y[ cos ¢y cos +5in ¢ cos & c03 Y §= ‘7’"_ seC ¢ sin yu + 62 sec g1 cos ¥y
85 é1 = ¢s €08 iy — by in Y
P %E g = ¢a 131.1 1 8in Y3 | 6 tan ¢y cos ¥
é 8 Z3 cos ¢, sin —sin ¢ .CO8 ¢ CcOs 8 + ¥s
=
CASE 4 7, Z 2 INITIAL VECTOR COMPONENTS
x y 2  Direct —
PITCH ¢ = ¢ + é sin 'A
g X3 cos 6 cos ¢ sin ¢ —sin 8 cos ¢ B2 = 0 ¢05 @2 08 Ya F Y sin 92
E - ! ' h Vs = ~—# sin g cos ¥1 + ¥ cos @2
YAW
-
a?} o si ) i 8 si Inverse —
Z [ ys —C08 ¢ cos 8 sin W €08 ¢: sin # sin ¥ . . ..
ROLL E% +sin ¢, gin 8 €08 g COS Y1 ~-sin ¢ cos 4 9 = 65 cos ¢: sec Y1 — Yy 8in s seC Y
E 8 \,l}, = 6, sin ¢ + \frs cos ¢
ol g w by — .; - ﬂ s L s 5 t
Br-gb 5 § % 6in s 003 @ sin ¥ —sin ¢ sin @ sin Y Pz = ¢a s COs ¢ tan ¥ + ¥ sing: tan iy
EU -+cos ¢, s_in_p____ —sin ¢ €03 Yy +cos ¢ cos ¢
CASE 5 2.2, 7 INITIAL VECTOR COMPONENTS
n . z Direct —
. ¢s = ¢ cos 8: 005 Y — ¥y 5in &
ROLL o - .'3_ o° 1 1 2
o X3 €03 ¢ €os 0. sin Y sin ¢ cos 8. sin 0s = —¢ sin ¥y + B2
S €03 f: cos Y +sin ¢ sin 8 —cog ¢ sin 6, ¥s = ¢ sin 6: cos Y1 + ¥ cos By
YAW =~
-
a E y ) ' Inverse —
PITCH E ;21 3 —sin €0S ¢ €03 1 sin ¢ €03 ¥ & = ¢ COs 82 sec Y1 + ¥u sin 8 sec ¥y
82 A —s sin 8, 4 #:a cos 8,
175 . , .
@ 8, Eg 24 €os ¢ sin 8; sin ¥, sin ¢ sin . sin ¥, 0: = ¢n cos s tan y1 + 6
ﬁU sin 82 cos Y1 —sin ¢ cos 8. ~+cos ¢ cos 8; + ¥ sin & tan
CASE 6 INITIAL VECTOR COMPONENTS
x y z Direct —
ROLL 9 eé;; = Aj; C.OS & cos ¥ + é; .sin Y2
g X3 . cos ¢ Bin.‘J/g sin ¢ sin ¥ 0., = ~¢ cos 6, Sf“ Ya 4~ 8; cos Y2
PITCH 8 roa f cos ¥ teinpeinbicosy. | —eosgsinbioos by Sgingy + vl
-
N Inverse -
4 _ . .
e ¥a cos f1 sIn ¥, €O8 ¢ €08 Vo $in ¢ cos Y, .
YAW E% —sin ¢ sin & sin yy +cos ¢ =in 8, sin Y.l b= sec 1 co8 Y — i sec 6 sin
EE él - q;u sin \(4: + é!l Cos l{d:
-8 %E Vi — s tan #; cos 2 + 6 tan # sin ¥
é 8 Zg sin 6, —sin ¢ cos 6, cos ¢ cos 8, + ¥
=
NOTES:
ta} X, Y, Z = Original coordinate axes. (b) ¢ denoles rotation abhout X, -axis.
XY, 7, Int diat dinat 8. denotes rotation about Y,-axis.
X0 Yo 2o nlermediate coordinate axes, ¢: denotes rotation about Z-axis,

X, Y, Zs = Final coordinate axes.

(¢} Direct transformation equations — sum horizontally along
each row of the transformation matrix,

Inverse transformation equations — sum vertically down each
column of the transformation matrix.



ax — (cos fh cos ) ax,
~+ (sin ¢ sin B cos ¢y — cos $pasiny) ay,
4 {cos ¢z sin 1 cos § + sin s sin ) ag,

A general rotation transformation of vector components from one coordinate-axes system to another may be interpreted
in terms of direction cosines. The direction cosines are defined as the cosines of the angles between each of the final
coordinate axes Xs, Ys, and Zy and each of the original coordinate axes X, Y, and Z. Thus there are nine angles
required to describe a general rotation of rectangular-coordinate axes. Direction angles that locate the Xj-axis with
respect to the original X-, Y-, and Z-axes are illustrated in the. figure below. Similarly, direction angles are defined

for the Y3 and Zj-axes.
Z

“\

/s,

FIGURE 13 GENERAIL ROTATION ABOUT ORIGIN = DIRECTION-COSINE DESCRIPTION OF ROTATION
(DIRECTION ANGLES FOR Xgq AXIS}

The direction-angle notatien used is as follows:

(X, X;) = Angle between X- and Xy-axes.
(Y, X3) = Angle between Y- and X;-axes,
(Z, X3) — Angle between Z- and X;-axes, etc.

The cosines of the direction angles may be arranged as a vector transformation matrix and used, exactly as in the
preceding Section, to transform vector components. The vector transformation matrix of direction cosines is shown

in table 3. CABLE 3

VECTOR TRANSFORMATION MATRIX OF DIRECTION COSINES

INITIAL VECTOR COMPONENTS
X Y Z

o
az| X cos (X, Xz) cos (Y, Xu) cos (7, Xy)
Ho
20
=] o .
2e Y: cos (X, Y:) cos (Y,Y,) cos (Z,Y)
s :
§> Zs cos (X, o) cos 1Y, Zu) cos (7, 7a)
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Relations for the direction cosines in terms of the orientation angles ¢, #, and ¢ may be obtained by equating
corresponding elements of the above matrix and the appropriate matrix of table 2. For example,

cos (Y, Zy} = cos ¢asin #, sin y — sin ¢z cos ¢
for axis-orientation angles defined by the rotation sequence of Case 1 and

cos (Y, Zy} = — sin ¢

when the orientation angles are defined as in Case 3.

3. RECTANGULAR COORDINATES TO CURVILINEAR COORDINATES

The transformation ol rectangular space coordinates to a curvilinear-coordinate system involves a nonlinear co-
ordinate change. The relations used to change from rectangular coordinates to spherical coordinates are given as
equation 16 and those used for the transformation to cylindrical coordinates are given as equation 17. In both

cases it can be seen {figures 14 and 15) that the transformation equations are statements of simple trigonometric
relationships.

z

‘ X,Y, 2; RECTANGULAR COORDINATES
r, ¢, 8{ SPHERICAL COORDINATES

FIGURE 14 RECTANGULAR - SPHERICAL COORDINATES

Rectangular to spherical coordinates:

¢ —tan—! VX 4R

Z

— tan—1 7Y ‘

Spherical to rectangular coordinates:

X =rsin¢ cosf
y = rsin ¢ sinf

Z == Trcosd¢
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Rectangular to cylindrical coordinates:

P =VEFT
§ = tan—!
X
(17

Cylindrical to rectangular coordinates:

x =7rcosé

y=rsind

zZ =Z

z
‘ X,Y, 2 "RECTANGULAR COORDINATES
r, 6, Z \CYLINDRICAL COORDINATES

X
FIGURE 15 RECTANGULAR - CYLINDRICAL COORDINATES

It is important to note that base vectors at each point in the preceding curvilinear-coordinate systems are defined as
orthogonal, Consequently, at a given point, transformation of vector components from rectangular to spherical (or
cvlindrical) coordinates is a transformation between rectangular axes and corresponds to a rotation of the axes system
at the point. Thus appropriate transformation matrices from table 2 may be used directly to transtorm veclor com-
ponents from rectangular to spherical {or cylindrical) coordinates at a point.

For example, at a point the vector
Y= V_\i —+— V)'j + Vzk
= VI, + Vgl + Vil
may be changed from rectangular components (Vx, Vi, V31 to spherical components (V,, V4, Vy) by a linear

transformation corresponding to one of the transformation mairices given in table 2. This method is used in the
following paragraph to transform from spherical to flight-path coordinates.

SPHERICAL COORDINATES

The relations used to change from rectangular to spherical coordinates are given in equation 16. As is noted
there, this is a nonlinear transformation. However, at any point in a space described by spherical coordinates, a
rolation of local base vectors is accomplished by a rotation of rectangular axes.

In this Section, presentation of vector transformations is limited to the change from local spherical-cocrdinate
axes to flight-path axes. These axes are defined and illustrated in Section 2. This transformation serves to further
illustrate the use of rectangular-coordinate transformations (table 2).
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The rotation of the local base vectors at point P from a spherical-coordinate orientation to flight-path axes is de-
fined in Section 2 on page 5. It is noted that this rotation comresponds to the roll-pitch-yaw sequence (Case 6 of
table 2} of the rectangular-coordinate transformations. Thus by identifying quantities of the transformation (Case
_ 6, table 2) with the notation defined for spherical and flight-path coordinates in Section 2 the desired transforma-
tion matrix is obtained. The correspondence between terms is given in table 4.

TABLE 4

CORRESPONDENCE BETWEEN RECTANGULAR-COORDINATE TRANSFORMATION
AND SPHERICAL — FLIGHT-PATH-COORDINATE TRANSFORMATION

Item in Rectangular-Coordinate Transformation Corrcsponding item in Spherical — Flight-Path-Coordinate System
{Case 6, Table 2) {Section 2)
X G,
Initial Vector Vector Components
C Y G, Along Spherical-
omponents , -
Coordinate Directions
Z Ge
Ga
Transformed X Vector Components
Yector Y G. Along Flight-Path-
Components Coordinate Directions
Z G.
-/ {90-8)
Orientation 4 Flight-Path Orientation
Angles : L Angles
¥z n

A general vector G may be expressed as follows:
G =Gl 4 Gyly +Gylp (spherical coordinates)
G =G,e, + Gie, + G.e, { Right-path coordinates)
Substitution of the above items in the vector transformation matrix of table 2, Case 6, results in the transformation
shown in table 5.
Note: sin {90 — 8) = cos § and cos (90 — §) = sin &

TABLE 5

VECTOR TRANSFORMATION MATRIX
SPHERICAL COORDINATES TO FLIGHT-PATH COORDINATES

COMPONENTS ALONG SPHERICAL COORDINATES
G, Gy Ga

E G c08 v Co8 sin & sin 5 cos & sin g

8 " v i -fcos & ain 4 cos —sin § siny cos 9
41
2 - ;

= \ N sin B cosy cosdcosy
i’:f_: s —Ceosysmoy —cos § sin v sin n -+ sin & sin -y sin »
s
=g . .
8 G+ sin 7y —C05 8 Cos ¥ sin & ¢os %y
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Base (unit) vectors 1,, 1y, 1, are aligned along spherical-coordinate directions,

Base (unit)vectors e,, e,, e, are aligned along the flight path ( e, is along the velocity vector of the point P ).

DIRECTION TO
NORTH POLAR
AXIS IN THE

14 1¢: PLANE

I

FIGURE 16 ROTATION OF BASE YECTORS FROM
SPHERICAL TO FLIGHT-PATH COORDINATES

CYLINDRICAL COORDINATES

Equations relating rectangular and cylindrical space coordinates are given on page 26, This coordinate change is
nornlinear, as is the change to spherical coordinates. The discussion concerning rotation of local base vectors for
spherical-coordinate systems also applies to cylindrical-coordinate systems. A similar procedure may be uscdto
obtain the transformation matrix for a rotation of the local base vectors.



RIGID-BODY TRANSFORMATIONS

Transformations useful in the analysis of rigid-body motion follow directly from the rotation of rectangular-coordinate
axes. The translation of a rigid body may be considered as the motion of a particle concentrated at the center of
gravity of the body, and the foregoing Sections may then he applied. Rotation of a body about its center of mass,
however, introduces additional degrees of freedom that depend upon the inertia characteristies of the body.

The transformation relations useful in the analysis of rigid-body motion are given in this Section. First the general
transformation of vector components and inertia parameters is discussed. Then specialized transformations such
as those used in conventional aireraft-motion analysis are given.

GENERAL AXES TRANSFORMATIONS

The transformations of this Section are limited to rotations of rectangular-coordinate systems, As is noted previously
for spherical and cylindrical coordinates, the rotation of a rectangular axis system about its origin may be utilized
for local orthogonal axis systems even though the origin of this system may be defined with respect to a curvilinear
coordinate system.

Vector components are transformed in the case of rigid-body motion in the same manner as vector components are
transformed for particle motion. Thus the transformation matrices and method given on page 23 are directly appli-
cable to the rigid-body case.

General transformations of the inertia parameter, which are important in rigid-body rotational motion,do not have
the simple form of the vector transformation. This transformation is presented for a general rotation of the
coordinate axes.

The general transformation for moment-of-inertia and product-of-inertia terms may be obtained from the vector
transformation matrix and its inverse. This procedure, given in reference 10, is outlined below.

Rotational motion of a rigid body is expressed by the fundamental relation

where I is the angular momentum vector and e is the angular velocity vector. The inertia matrix [I] is defined as
follows:

I —Ixy —Ixz
M]= —Ixy Iy —Iyy
—Ixz —Isz I,

In this matrix Iy, Ty, and I; are the mass moments of inertia and Iyn, Ixy, and Iyy are the mass prod-
ucts of inertia with reference to the X, Y, and Z axes, respectively.

The above vector equation for rigid-body rotation is independent of the coordinate system selected to represent
the vectors. Hence, if the subseript o denotes reference to the original and 3 to the transformed coordinate system,
the equation for rigid-body rotation may be written

lo = [Iu]ﬂu 01—23 - [13] o
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Vector transformations from table 2 may then be used to change the vectors I, and @, from the original te the
new coordinate system. These transformation relations may be expressed as follows:

L = [I‘} 1,

w3 =[T]w, orw,=[T] lay

where the vector transformation matrix [I'] and its inverse [T]—! denote a general rotation of axes as given
on page 20,

Combining the transformed vectors with the body-rotation equation results in the desired transformation relation
for the inertia matrix. Thus

t = [F] [InJ Wy — [F] [Iﬂ] [I‘]_lm3 == [Iu] w3
Hence

(L] =[r] [L]{ri- (19)

Expansion of this transformation relation for a general rotation defined by three orientation angles results in a
complex expression having a large number of terms, This is a straightforward procedure using matrix multiplication,
but in most cases il is impractical and unnecessary. Body symmetry usually reduces two of the product-of-inertia
terms to zero, and in many cases a simple planar rotation is sufficient te define the axes rotation. These practical
considerations simplify the expansion of the inertia transformation relations used later.

In order to illustrate the transformation of a matrix, the foregoing procedure is expanded below for a planar rotation.
This particular case provides a general form that is subsequently useful in the transformation of airplane stability
derivatives.

If [A] and [A] represent the original and the transformed matrices, respectively, the matrix transformation

relation is

[Al=[r][A)[r]t

where
Ayx Ay Axx Ay dyy Ay
(Al = Ayx Ay and[A] = ayx 4y Ag
A, 8y Bg 8¢ B8z Az

If the vector transformation matrix [I'] corresponds to a simple rotation about the Y-axis, the above equation

may be written as follows:

cos 8 0 —sin @ Aux  Ayy By cos @ 0 sin £
(A] = 0 1 0 ayy Ay A 0 1 0
sin 8 0 cos 0 A, gy Ay —sin @ 0 cos #

Note that the matrix (1] may be obtained from table 2. For example, using the vector transformation matrix for
case 1 of this table, substitution of ¥ =0, #, = # and ¢2 — 0 results in the above matrix.

Expansion of the matrix multiplication above gives the transformed matrix. Thus
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{axxcos® @ 4 a, sin® f [&xy cos 8 — a,, sin #] [{ayx — 8uz) sin & cos 8

— (ax; + a,x) sin f cos 8 + ay, cos? § — a,, sin? 4|
[K} = [ayx cos § — a,, sin §] [ag] [a,x sin f -+ a,, cos §]

[{axx — a,} sin 8 cos 8 [ayy sin @ + a,, cos @] [a sin® 8 + a,, cos® 0

—+ a,, cos® § — ay, sin? §] ~+ (ay; + au) sin @ cos 7|

The elements of this matrix are readily identified with the elements a.,, ay, #, of the transformed matrix (A).
The equations transforming the quantities represented by the matrix elements are given below. These relations are
limited, of course, to a simple planar rotation about the Y-axis.

Byx = 8y 0052 0 -}~ 8., 8i0% @ — (@ys + 2, ) 5in @ cos §

—~—

Ayy = dyy €08 § — a, sin @

8r, = (agy — 8,4) sin 0 cos § -+ ay, cos® § — a,, sin® @

—

ayy — ayx cos  — a,, sin @

I s (20)

dy == Ayy
8y; = 8y 5in § 4 a,, cos §

‘A, = (8gx — #5,;) sin B cos & + a,, cos? § — a,, sin? f

—~—

a,, = a,, sin § 4 a,, cos f

—~

8, == a4 5in7 6 + az cos? 0 -+ (ag, + 4. sinf cos # J

These equations are used in subsequent Sections for the transformation of vehicle inertia parameters and stability

derivatives.

VEHICLE TRANSFORMATIONS

Transformations of vectors, inertia parameters, and stability derivatives used in vehicle motion analysis are sum-
marized in this Section. These transformations refer to the vehicle axes systems defined in Section 2 and use
established aircraft notation and terminology.

It is convenient to consider the vehicle transformations in two groups. The first group involves single rotations
about the lateral (Yt axis. A change from body axes to stability axes is a single rotation of this type. The second
group comprises cases of general rotation such as a change from earth axes to body axes.

The inertia-parameter and stability-derivative transformations are not given for the second group. The general ro-
tation cases are used principally to define orientation of axes fixed on the vehicle, with respect to the earth or
the relative wind. As is noted previously (page 16), the inertia parameters become functions of the orientation
angles and the analysis of the motion is then unnecessarily complicated. The transformation of the inertia matrix
for a multiple rotation may be developed from the generai relationship given by equation 19.

1. SINGLE RGTATION

The pitch rotations used to change from stability or principal axes to body axes, and vice versa, are illustrated in
figure 17. These axes and the notation are defined in Section 2. Both stability axes and principal axes are fixed
to the vehicle and are therefore simply special “body™ axes. The angles between these various axes systiems are
measured as rotations about the Y-axis.
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Y, Y

& Yp
!|“
a,= TteE

angles are positive

—
7
—

o ﬁ'{.'t -] s
O J e ;S,.' ;
A5 G el
I ANE OF SYMMETRY

—

%)

as shown .k

X, ¥, &2 VEHICLE BODY AXES
X,Y,.% : STABILITY AXES
8 s

Y, Zp: PRINCIPAL AXES

FIGURE 1Y BODY - STABILITY - PRINCIPAL AXES ROTATION — PITCH
TABLE ©

VECTOR-TEANSFORMATION MATRICES
BODY-STABILITY-PRINCIPAL AXES

STABILITY AXES VECTOR COMPONENTS —STABILITY AXES
TO BODY AXES X Y 7
X o —sin aa
VECTOR oS @ 0 gin o
COMPONENTS Y 0 1 0
BODY AXES .
Z $in aq \) €os w,
PRINCIPAL AXES VECTOR COMPONENTS — PRINCIPAL AXES
TG BODY AXES X, Yo YA
[¢] —sin €
VECTOR X cos € sin
COMPONENTS Y 0 1 0
BODY AXES -
Z sin € 0 cos e
STABILITY AXES VECTOR COMPONENTS —STABILITY AXES
TO PRINCIPAL AXES X, Y, Z.
VECTOR X cos 7 0 —sin
\ COMPONENTS Yo 0 1 0
PRINCIPAL AXES -
Zn sin 7 0 cos 7

DIRECT TRANSFORMATION — Sum horizonially along each row.
INDIRECT TRANSFORMATION — Sum vertically down each column,
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Vector transformation matrices may be obtained directly from those in table 2 by letting ¢, =0, ¢, =0, and
8; = au, ¢, or % These vector transformation matrices are given in table 6. Examples of the use of these matrices
may be found on page 20,

Transformation of the inertia matrix for a general rotation is discussed on pages 29-31. However, for the vehicle
axis systems used in this Section the XZ-plane is a plane of symmetry* and only rotations about the Y-axis are
considered. These conditions greatly simplify the inertia matrix and its transformation.

The inertia matrices of an aircraft referred to body, stability, and principal axes are given below.

Body Axes [1] = 0 1y 0 21)
Ixy — Lz

Stability Axes [I]= 0 Iyg 0 (22)
Iy, O 0

Principal Axes** [I,] = 0 Iy, 0 (23)
o 0 Iz,

The transformation relations for the elements of the above mairices are given in table 7. These equations are ob-
tained by identifying elements of the inertia matrices with the comesponding elements of the general matrix trans-
formation on pages 30 and 31. The appropriate angle substitution may be determined from figure 17,

Some additional relations pertinent to inerlia-parameter transformalions are listed below,

LLay=n+4¢
. 2 Ixz
2. tan 2e = ——Iz .
2 Ixy
3. tan 2y = s
—

Stability derivatives are used extensively in the analysis of aircraft motion, They are introduced with the linearization
of the aerodynamic force and moment relations. These derivatives may be conveniently arranged in matrix form;
henee it is frequently necessary lo transform them from one axes system to another. Transformations relating stability
derivatives in terms of body and stability axes are given in this Section. This involves a simple rotation of the axes
systern about the Y-axis and follows directly from the matrix transformation on page 30.

The notation for stability derivatives is confused in existing literature. It is therefore appropriate to reiterate here
the statement on page 129 of reference 4 reminding the reader to exercise extreme care in using the literature that
involves stability derivatives. This is necessary to insure that the definitions of the symbols used are fully understood
and that comparisons and results will be correctly interpreted. {Also see reference 2.)

Notation in this report is consistent with that used in references 3 and 4. This notation, defined in Section 4, im-
plies differentiation of direct forces and moments with respect to perturbation quantities.

* By symmetry about the XZ-plane, Ixy and Iy are zero.
** Principal axes are defined by the condition Ixy, = Tyz, = Ixz, = 0
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TABLE 7

INERTIA MATRIX ELEMENT TRANSFORMATIONS

BODY — STABILITY — PRINCIPAL AXES

Angles are positive as shown on Page 32

STABILITY TO BODY AXES

PRINCIPAL TO BODY AXES

INERTIA -
PARAMETERS Coefficient of Element Coefficient of Element
BODY Transformation Equation Transformation Equation
AXES .
sin® as cos® a. sin @s €08 @ 1 gin® e cos’ e sinecose 1
Ix Iz, Ix, 2lxz, 0 I, Iz, 0 0
Iy 0 0 0 Tsq 0 o 0 Ir,
I Ix, Iz, —2xzg 0 pr Izp 0 0
Ixa —Ixz Ixz, L —Ix, 0 o 0 Iy=Ix, 0
BODY TO STABILITY AXES PRINCIPAIL TO STABILITY AXES
INERTIA
PARAMETERS Coefficient of Element Coefhcient of Element
STABILITY Transformation Equation Transformation Equation
AXES
sin” o c0s® & sin @o COS ao 1 sin®n cos®q singcosn 1
Ix, I Ix —2Ixz 0 I, Ix, 0 0
Ix, 0 )] ] Iy 0 0 0 I
Ia, Ix Iz 2Mxs 0 I, Iz, 0 0
Ixz, —Ixz Ixz Is—1a 0 0 0 pr—lzp 0
INERTIA BODY TO PRINCIPAL AXES STABILITY TO PRINCIPAL AXES
PARAMETERS Coefficient of Element Coefficient of Element
PRLN}&%’AL Transformation Equation Transformation Equation
sin’ e cos’e sinecose 1 gin®n cos” 7 sinn cos 9 1
I, 0 o 0 Ir 0 0 0 Ly,
IZP IX Iz 2IXZ 0 IXE IZB '—'2IXZB 0
0 —Ixa Ixz Ii—I. 0 —Ixz, Txz, Iz —Tx, 0
"’Ixzp: 0

Write equations for inertia parameters by summing across the row,

Example: Tp,=1Ix sin® a0+ Iz cos® oo+ 2lxz sin @ cos a.4- (0) 1
Ty, =Tx, sin’ 9 4 Ir, cos® 9+ (0) sin ao cos a0+ 1




The basic stability derivatives may be arranged in the six matrices listed below. With the assumption of vehicle sym-
metry about the XZ-plane, these matrices have been simplified to the form shown. Derivatives of symmetric forces
with respect to asymmetric variables are neglected and certain negligible derivatives are taken to be zero. These
considerations are discussed further in Section 4.

Matrix Type Matrix Symbol
[ X, O Xo ]
Force-Velocity [F‘V ] = 0 Y. 0 24)
| Z, 0 Z. |
0 X, 0 T
Force-Rotary (Fpl == Y, 0 Y. (25)
| O Z o
" 0 Xs, O
Force-Control [Fs] = Y5, O Ys, (26)
' 0 Zs, 0O
- 0 L. 0 T
Moment-Velocity [Cyl= M, 0 M. @n
0 N, O
- L, 0 | PR
Moment-Rotary [Gol = 0 M, 0 (28)
L. Nn 0 N -
‘ - Ly, O Ls, T
Moment-Control [Gs] = 0 Ms, O (29)
L N'sa 0 NBI’ -

As was the case with elements of the inertia matrix, elements of the velocity and rolary matrices may be trans-
formed according to the relations on page 31. The control-derivative maltrices, however, require specialized treat-
ment because the control displacements are independent of the stability and body axis systems.

A procedure similar to that used for transformation of the inertia matrix (page 29) may be used to find the trans-
formation relations for the control-derivative matrices. Consider a vector relation of the form

f=[B]&
in which the components of the displacement § are independent of the coordinate system used to define the

components of f. Components of the vector f may be transformed from one coordinate system (subseript o)
to another (subscript 3), which has been rotated about the origin. The vector relation above may be expressed as

fo=[B,}& or £;=[B;]8

One of the vector transformation matrices [T'] from table 2 may be used for a general rotation. Thus

f5:[I‘]f0:[I‘] [Bo]5: [Bs]s

The transformation relation for the matrix [B] is then
[Bs]=[r][B.]

Expansion of this equation for a planar rotation aboul the Y-axis results in the general form used in transforming
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the stability derivatives that involve control variables. If the initial and transformed matrices are denoted by

and [B], respectively, and the transformation matrix by [6], the transformation relation becomes

[B)= (0] [B]

or
k. N iy cos § 0 —sin @ beye by by
XX Xy X2
[§] = E\'x i;\'v E-z = O 1 0 b.“k' b.\'." b.\'z
i;;.x i;;_v i;zz sin & 0 cos 6 b by ba

Expanding the right side of this equation results in the transformed matrix [B].
{byecos 8 — by sinfd) (bycosd-— b, sind) (by cosé — b, sinf)
[B] - byx by by,
{byy sin 8 + b,,‘( cos ) (byy sin@ + by cos §)  (by, sin 6 4 by, cos 6)

[B}

Finally, identifying elements of [E] with the above expansion of [6]{B] gives the equations transforming

the elements of the matrix [B] to the elements of [B]. These equations are
f);x = by, cos § — b, sinf 1
EY = by, cos 6 — b, sin 6

B;z = by, cos § —b,,siné

{

—~—

x = byxi by = hj'y§3a'z = by ¢ -

=

!

=a

2 — bxx sin § ‘+‘ bzx cos

—~—

b,y = by sin @ + by, cosd

b,, = byzsin 8 + by, cos 8

(30)

The foregoing equations are used to transform the force-control and moment-control matrices. Special trans-
formations may be devised as required by using the method of the preceding development or that used for the

inertia matrix on page 30.

Stability derivative transformations between stability and body axes are tabulated in tables 8 and 9. The angle a,
is defined in figure 17. A prime (') is used in these tables to designate the derivatives along body axes. In sub-

sequent Sections the prime notation is deleted and the reference axes are as noted (see table 17).

The following example illustrates the use of the stability derivative transiormation relations.

Given:  Stability derivatives with respect Lo stability axes.

Find; The derivative of rolling moment with respect to rolling velocity L', referred to. body axes.

Solution: Write equation from table 8 by summing terms along the row of L/,

L', = N, sin? &, + L, cos® ay — {L; + N,,) sin o, cos a,

36



TABLE 8

STABILITY-DERIVATIVE TRANSFORMATIONS
STABILITY AXES TO BCDY AXES

MATRIX MATRIX i(g(%g. COEFFICIENT OF ELEMENT-TRANSFORMATION EQUATION
TYPE SYMBOL - ) : -

FORM sin"a, cos’a, sin an COS a» sin ao COS o 1

X Zw Xa X2y 0 0 0

X, —Za Xe XL 0 0 0

D ORCE Ty (Fy) Yo 0 0 0 0 0 Y,

Z —Xw Zy Xo—Zw 0 0 0

2 X. Zow Xot-Zu 0 0 0

X 0 ] 0 -7, X, 0

FORCE — (Fo) Y, 0 0 0 —Y, Y, 0

ROTARY @ Y, 0 0 0 Y. Y. 0

i 0 0 0 X, Z, 0

Xah 0 0 0 —Zs, . 0
FORCE — (Fy) Vs 0 0 0 0 0 Ys,
CONTROL & Yﬁ’r 0 0 0 0 0 Y,

Zs, "o 0 0 X, Zag 0

o, 0 0 0 —N. Lo 0

MOMENT — Go ) M. 0 0 0 —M. M. Q

VELOCITY (Gy . 0 0 0 M. M, 0

Ns 0 0 0 L. N, 0

L, N. L, —L,—N, 0 0 0

L, —N, L. L.—N. 0 0 0

ﬁlg%f@? h (Gg) M, 0 0 0 0 0 M,

N, —L. N, L.—N. 0 0 0

N, L, N: L+N, 0 0 0

L'sn 3] 0 0 —-Nun L‘a 0

L', 0 0 0 —Ns, Ls, 0

MOMENT — .

CONTROL (Ga) M o 0 [4] 0 0 1] Mae

N's, 0 0 0 Ls, Na, 0

N, 0 0 0 L, No, 0

@, is positive as shown on page 32

Wind-tunnel stability axes are used as reference axes for most wind-tunnel data. It is therefore necessary to trans-
form these data to vehicle stability axes {or body axes) before using them in analysis of the motion of an aircraft.
These axes are defined in Section 2. The wransformation is a simple pitch rotation about the lateral (Y) axis. The
rotation angle ¢ is the angle between the wind-tunnel-axis (or body-axis) angle of attack a and the stability
axis reference angle ey {reference 12).

Wind-tunnel axes may also be considered as general wind axes. In this case the transformation from wind-tunnel
axes to wind-tunnel stability axes is a simple yaw rotation about the Z-axis through an angle y.
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TABLE 9

STABILITY-DERIVATIVE TRANSFORMATIONS
BODY AXES TO STABILITY AXES

MATRIX MATRIX STABILITY— COEFFICIENT OF ELEMENT-TRANSFORMATION EQUATION
AXES T
TYPE SYMBOL FORI?I sin® ag cos® ap sin o cos an sin ao cos 1
X 2w X Xow+7Z0 0 0 0
X« —Z' X'v e —X 0 0 0
FORCE — ’
RS eTY (Fy) Yo 0 0 0 0 0 Y,
Za —X'w Z e - Xy 0 0 ]
Zw X' Zy —X. ~Z 0 0 0
Xy 0 0 0 2y X' 0
FORCE — (F.) Yo 1} 0 0 Y. Yo 0
ROTARY w Y. 0 0 0 -¥ Y. 0
Zy 0 0 0 —X'q VA 0
Xs, 0 0 0 7', X's, 0
FORCE . Fa Yo, 0 0 0 0 0 Y,
CONTROL Y, 0 0 0 0 0 Y's,
Zs, 0 0 0 —Xs, Zs, 0
Ly 0 0 a N’y L 0
MOMENT — (GV'] M. 0 0 ] M M, 0
VELOCITY M. 0 0 0 M M’ 0
N. 0 0 ] -L Ny o
Ly N'e L L's + N, 0 0 0
L. —~N' L N. —L, 0 o 0
MOMENT — ! ,
ROTARY (Ga) M, 0 0 0 0 0 M,
Ns ~L’ N, N,—1L,y 0 0 0
N. Ly N, —L =N, 0 ] 0
Lo 0 0 0 N's, L, 0
Ls, 0 0 0 N's, L%, 0
MOMENT — M 0 0 0 0 0 M
CONTROL €2 e , .
No, 0 0 0 —Ls, N's, 0
Ne, 0 0 0 L, N's, 0
&, 1s positive as shown on page 8 2
TABLE 10

VECTOR TRANSFORMATION MATRICES
WIND-TUNNEL AXES TO WIND-TUNNEL STABILITY AXES TO VEHICLE STABILITY A XES

WIND-TUNNEL AXES
TO
WIND-TUNNEL STAB.

VECTOR COMPONENTS — WIND-TUNNEL AXES

AXES Xw Yw Zw
VECTOR X . . 0
COMPONENTS e cos ¢ sin ¥
WIND-TUNNEL Y —sin ¥ cos 0
STABILITY
AXFES Zwr 0 0 1

WIND-TUNNEL STAB.

VECTOR COMPONENTS -~ WIND-TUNNEL STAB. AXES

AXES
TO X Y Zw
VEHICLE STABILITY AXES wr w wT
VECTOR Xz cos I ] —sin ¥
COMPONENTS
VEHICLE Yy 0 1 0
STABILITY
AXES Zs gin ¢ 0 cos §
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The rtelations between wind-tunnel axes and vehicle axes (stability and body) are illustrated in following figure
Table 10 gives the vector transformation matrices in tabular form.

WIND-TUNNEL
VELOCITY

Y Yo Yuu

PLANE OF SYMMETRY

{=a~a,

X, Y, Z YEHICLE BODY AXES
X .Y ,Z: STABILITY AXES
8

a 8
Xwt.Yot + Zgy : WIND-TUNNEL STABILITY AXES
Z Ty X You Z 5 ¢ WIND-TUNNEL AXES
(SAME A5 GENERAL WIND AXES)

FIGURE 18 ROTATION FROM WIND-TUNNEL TO VEHICLE AXES= YAW.PITCH SEQUENCE

2. MULTIPLE ROTATION

There are several transformations used in the analysis of vehicle motion that involve multiple rotations of an axis
system. Transformations are given in this Section that facilitate the changing of vector components between earth
and body axes and between wind and body axes. The relations between these axis systems define the orientation
of a vehicle with respect to the earth and the relative velocity or flight path.

The axes and notation used are defined in Section 2, and the specific vector transformation matrices are obtained
from the general cases in table 2.

Only transformations for vector components are included in this Section, As is noted previously, earth and wind
axes are not convenient reference axes for rigid-body motion analysis. This resulis from the fact that the inertia
parameters become unnecessarily complex functions of time and the orientation angles {see page 16),

Earth axes are used primarily as a reference for the gravity force and the description of vehicle motion over a
long period of time. The orientation angles between moving earth axes and body axes are defined on page 11 and
are shown in figure 19. The rotation sequence comesponds to Case’l of table 2. Hence the vector transformation
matrix is obtained by substitution of ¢ =¥, 6, — @, and ¢2 = & in the matrix for Case 1. In the angular-velocity
relations the body-axis notation, P, Q, and R, is used instead of ¢s. 8, and {,, respectively.
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FIGURE 18 ROTATION FROM TARTH TO BODY AXES =~ *

YAW - PITCH - ROLL SEQUENCE 7
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FIXED EARTH AXES

TABLE 11

VECTOR TRANSFORMATION MATRIX
EARTH TO BODY AXES

COMPONENTS ALONG EARTH AXES
Xﬁ Yﬂ Zg

- E X cos © cos ¥ cos O sin ¥ —sin 6

=

ﬁ E v sin P sin © cos ¥ sin & sin O sin ¥ i o

o g ~—cos & gin ¥ +cos ¢ cos ¥ Bl S cod

T

82 7 cos P sin O cos ¥ cos ¢ sin © sin ¥ 5 o

l A 8 +sin & sin ¥ —sin ¢ cos ¥ cos b cos
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TABLE 12

ANGULAR.VELOCITY RELATIONS
EARTH TO BODY AXES

P—d—dsin0 ¥ = @ sin & sec @ -+ R cos & sec O
Q:écosd}-}—\i’sin‘i’cose 6 =0Qcos®—Rsind
R:—ésinfb-l—‘i'cosécose =P+ Qsin®tan 6 + R cos $1an 9

General Wind Axes to Body Axes

General wind axes are oriented with respect to the relative wind. The orientation angles relating general wind
axes to vehicle body axes are therefore convenient variables to use in expressing the aerodynamic characteristics
of a vehicle. General wind axes are delined in {igure 8, The yaw-pitch definition, the preferred definition, of angle
of attack o ard sideslip angle # is illustrated in figure 20. The pitch-yaw sequence is illustrated in figure 21,
Vector transformation matrices corresponding to these definitions are given in tables 13 and 15, respectively.
The angular-velocity relations are given in tables 14 and 16, respectively.

PLANE OF SYMMETRY T e VEHICLE REFERENCE LINE, OR
& FRBODY X~AXIS

TOTAL VELOCITY
v

Y
,B is considerad positive
in the sense of a *‘left-hand’*®
rdtation about the Zy~axis
BASE AXES
jW
X, ¥, Z : VEHICLE BODY AXES
‘ KXo Your &, t GENERAL WIND AXES
w
ZW

FIGURE 20 ROTATION FROM WIND TO BODY AXES — YAW - PITCH SEQUENCE
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TABLE 13

VECTOR TRANSFORMATION MATRIX

GENERAL WIND TO BODY AXES

COMPONENTS ALONG WIND AXES
Xw Yo Zw
45 . . .
U cos @ cos 3 —cos asin 3 —SsIn a
ol
bl
<7 . 0
) sin 3 cos f3
g
S= . o
=] 8 sin o cos 3 —sin g sin 8 €08 &

TABLE 14

ANCULAR-VELOCITY RELATIONS

GENERAL WIND TO BODY AXES

P:ﬁ.isina 3 — — R seca = Pcsc e
Q=2 a=Q
R=—fcosa 0 =P+Rtana

Note: The above matrix and equations result from substitution of — g, a,and 0 for ¥, &, and g.,
respectively,in Case 1 of Table 2

TABLE 15

VECTOR TRANSFORMATION MATRIX
GENERAL WIND TO BODY AXES

COMPONENTS ALONG WIND AXES

x“’

Yw

Z w

BODY AXES
COMPONENTS

~ ~
Ccos o COS 3

L
—sin 3

P [l
~—s5In o cos f8

~d
cos X sin g

Laed
cos B

. o ~
—5ln a sin @

P
SN o

0

s~
COs &
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TABLE 16

ANGULAR-VELOCITY RELATIONS
GENERAL WIND TO BODY AXFS

P:—'«';c"sinF é‘::Q sec F: —P csc-ﬁ'
Q=%Fcos F F= R
R=—_F 0=P + QrtanF

Note: The above matrix and equations result from substitution of e, —&,and 0,
respectively, for 6,¥,, and ¢, respectively, in Case 4 of table 2.

TOTAL VELOCITY
v

PLANE OF SYMMETRY

X, Y, Z: VEHICLE BODY AXES
Xys Yy 2,  GENERAL WIND AXES

(s ")

18 fs consideted positive \ L‘U
in the sense of a *‘left-hand**
rotation about the Z-axis

FIGURE 21 ROTATION FROM WIND TO BODY AXES—PITCH - YAW BEQUENCE
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SECTION 4. REAL FORCES AND MOMENTS*

The preceding Seclions contain equations of motion and transformations useful in the analysis of particle and rigid-body
motion. Real force and moment components are indicated in these equations by a general notation for forces and
moments. [n the following Section the force and moment components are presented more specifically. The general com-
ponent expressions are expanded 1o show contributions of gravity, aerodynamic force, and direct thrust force. Aero-
dynamic force and moment components are then further expanded for the case of small disturbances.

Stability derivatives for airplane-type vehicles are summarized .

GENERAL FORCE AND MOMENT DESCRIPTION

The particular flight path or motion of a rigid body is the result of the external forces and moments that are applied.
Thus the applied forces and moments may be considered as the “driving functions” to be used with the equations of
motion of the vehicle. Solution of these equations then provides the motion or response of the vehicle to the applied
forces and moments. Inversely, the problem may be formulated to find the force and moment input required to
accomplish a specified motion.

The real forces and moments involved in the motion of a body through the atmosphete, in the gravitational field of the
earth, may be separated into contributions of gravity, aerodynamic force, and direct thrust. In the case of particle
motion, moments about the center of mass are zero, and only the force vectors need to be considered.

Components of the external force and moment vectors are usually resolved along vehicle body axes. Relations trans-
forming these vector components to the body axis system, or any other desired reference axis system, may be obtained
directly or derived from the preceding Section .

Separation of the {orce and moment vectors into gravity, aerodynamic, and direct thrust contributions is outlined below.
For illustrative purposes the general force vector F and general moment vector G are resolved into components along
vehicle body axes. Body axes are usually the most convenient reference axes.

The general vectors are resolved into components along the reference axes.
Thus
F ':in '+" ij '+' ng

@n
6=0G,i+G;j+Gk

Separation of the several components into gravity, aerodynamic, and direct thrust contributions results in the following
equations:

F, _—_Xg-}-X—{— X'r
Fy =Y, + Y+ Yy (32)
F.=Z; +2+ In
Gi=Lg +L 4+ Lg
G, =M, + M+ My (33)
G.=Ng +N -+ Np

where
X, Yg Ze are components of gravity force along reference axes
L, Mg, N are moment components about reference axes due to gravity force. (These are usually zero.)

* The term “real” is used to designate noninertial forces and moments, Thus the apparent forces such as centrifugal force or Cortolis force
are excluded. Gravitational or electromagnetic forces, propulsive system thrust, and aerodynamic force are examples of “real” forces.
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XY.Z are components of aerodynamic force along reference axes

L.M,N are moment components about reference axes due to aerodynamic force
X, Yo, Zp are components of direct thrast force along reference axes
Ly, My, Ny are moment components about reference axes due to direct thrust force

Note: Y, Ly, and Ngp are usually zero because of vehicle symmetry.

GRAVITY-FORCE COMPONENTS

The gravitational force upon a vehicle is most naturally given in terms of earth axes. With respect to earth axes
the gravity vector mg is directed along the Z_-axis (page 10). Components along vechicle body axes are readily
obtained by using the transformation given in table 11. The gravity-force components are then

X;= —mgsin®
Y; = mgcos ®sin & (34)

Zy —=mgcos®cos P
along the vehicle body axes X, Y, and Z, respectively.

There are no moments resulting from the gravity force when the origin coincides with the vehicle center of gravity.
However, if the origin is displaced from the center of gravity, the same transformation (table 11) may be applied
to the components of the gravitational moment about the origin to obtain Ls’ M, and N_.

The components of gravitational force upon the vehicle are functions of the vehicle pitch and roll attitudes only.
Heading angle does not affect the resolution of the gravity force to body exes.

AERODYNAMIC FORCES AND MOMENTS

The contributions of aerodynamic foree to the general force and moment vector components are outlined in this
Section. These components are referred to vehicle body axes (Section 2, pages 11 and 12} and aircraft terminology
and notation are used. Lift and drag forces are thus introduced and transformed to the body axis system. The
general form for expansion of aerodynamic terms for small disturbances is included in this Section also.

It is convenient to use dimensionless coefficients to describe the behavior of aerodynamic forces and moments.
These coefficients, defined according to established usage, are discussed and analyzed in aerodynamic texts and
in reference 13. The aerodynamic parameters and their derivatives should be evaluated from experimental data,
i.e., wind-tunnel or flight-test data, or estimated from the appropriate data given in reference 13 or a similar
source. Mach number and Reynolds number effects upon aerodynamic parameters are assumed to be included.

Induced effects of the propulsive system are assumed to be included in the aerodynamic coefficients, since these
effects are normally included in complete-model wind-tunnel data. Direct thrust forces and moments are discussed
later, on page 50.

Aerodynamic coeficients depend upon the orientation of the relative wind or velocity vector with respect to the body.
The angles of attack « and sideslip # which define this orientation, are thus convenient independent variables for
expressing the variations of the aerodynamic characteristics of a body. These angles also determine the velocity com-
ponents U, V, and W along the vehicle reference axes X, Y, and Z, respectively.

The angles of attack and sideslip are shown in figure 22 with the velocity components along the reference axes.
Both the yaw-pitch rotation {(a, B) and the pitch-yaw rotation (=, B) are given; however, the former is the preferred
rotation. The relations for the velocity compenents U, V, and W {follow directly from the transformations from
general wind axes to vehicle body axes in tables 13, 14, 15, and 16.
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FIGURE 22 ANGLES OF ATTACK AND SIDESLIP
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The resolution of the total aerodynamic force in the vehicle plane of symmetry is shown in figure 23. Lift, L, and
drag, D, are the familiar aerodynamic forces normal and parallel, respectively, to V cos 3, the component of the
total velocity in the vehicle plane of symmetry. Alternatively, lift and drag may be defined as the aerodynamic
force components in the plane of symmetry along “instantaneous” stability axes, symmeiric wind axes, or wind-
tunnel stability axes. It should be noted that lift and drag are defined to be positive as illustrated. Thus these
quantities have a negalive sense with respect to the usual vehicle axis systems.

The relations for the aerodynamic force components along body axes are included with figure 23. These equations

may be obtained directly from this figure or from the vector transformation from stability axes to body axes
(table 6).

VIEW SHOWN IN VEHICLE
PLANE OF SYMMETRY

TOTAL AERODYNAMIC
FORCE IN X-7Z PLANE

X =-Dcos o+ L gin a
Y=¢C
Z=-Dsaina-L coa a

I
|
|
I
|
I
I
|

-
o
D\ — - D =-Xcos a- Z sin a
) X c=Y
/ Z axas Vcos 8 L = X sin - % coa a

FIGURE 23 AERODYNAMIC-FORCE RESOLUTION

Aerodynamic forces and moments are usually given in terms of basic aerodynamic coefficients. These coefficients are
defined by the following relations:

L* = CgS lift force L* = CiqSh rolling moment about X-axis
D = Cpnq5 drag force M = CngSc pitching moment about Y-axis
€ — Ceqb cross-wind force N =C,qSh yawing moment about Z-axis
X = CxqS aerodynamic force along X-axis

Y = CyqS aerodynamic force along Y-axis

Z = CxgS aerodynamic force along Z-axis

where the quantities in the above expressions are defined as follows:

C1, Cp, Cc,Cx,Cy, €z aerodynamic force coefficients v total velocity
C, C, Co moment coefhcients 8 reference area (usually wing area)
V32 Iv wi
q= ,&2_... dynamic pressure b reference length (usually wing span)
c reference length (usually wing M.AC.}
p atmospheric density

The force coefficients Cy, Cy, and C, are expressed in terms of lift, drag, and cross-wind coefficients by the
same equations that relate the forces in figure 23. Thus

* Duplication of the symbol L. for lift and rolling moment has persisted throughout the aircraft industry since early times. However, since
coeflicients are usually used, this ambiguity is avoided by taking L as the subscript in the lift coefficient and [ as the subscript in the
rolling-moment coefhicient.
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Cx=Crsine — Cpcosn Cp=—Cxcosa— Cgsina
Cy =Cg and Ce=0Cy (35)

Cz = —Crcosa— Cpsina CL =Cxsine —Czcosa

The moment components, as treated in this Section, are defined with respect to the body axis system and as such may be
used directly. However, it should be noted that moments and moment coefficients may be defined with respect to
stability or wind-tunnel axes and that in these cases the appropriate transformation from Section 3 must be used to
obtain the desired aerodynamic moment components.

A word of caution is in order concerning the transformation of moment coefficients. The reference lengths and areas
used in defining the moment coefficients may be different and, if so, this difference must be accounted for in the
transformation of the moment coefficients from one axis system to another. Thus, although the transformation is
appropriate for the vector components, it does not directly transform these components when expressed in coefficient
form. Another important item relative to moment coefficients is the location of the moment reference center. In any
particular case this must be checked to assure that the moment-of-inertia and product-of-inertia terms on the right side
of the equations of motion, e.g., equation 9 , are consistent with the center of reference for the external moments.

The aerodynamic forces and moments are involved functions of many variables. Test data are the best source of
aerodynamic force and moment characteristics; however, in many instances a particular configuration may be in the
prefiminary design stage and test data may not yet be available, When it is required to estimate aerodynamic charac-
teristics of a configuration, data and techniques such as those contained in reference 13 should be used.

A summary of the major variables that affect the aerodynamic characteristics of a rigid body or a vehicle is given below.

Velocity, temperature, and altitude: These variables may be considered directly or indirectly as Mach numbers,
Reynolds numbers, and dynamic pressures. Velocity may be resolved into components U, V, and W along the
vehicle reference axes.

Angles of attack and sideslip: Angle of attack « and angle of sideslip 8 may be used with the magnitude of the
total velocity V to express the orthogonal velocity components U, V, and W. It is more convenient to express
variation of force and moment characteristics with these angles as independent variables rather than the
velocity components.

Angular velocity: The angular velocity is usually resolved into components P, (), and R about the vehicle reference
axes,

Control-surface deflection: Control surfaces are used primarily to change or balance aerodynamic forces and moments,

Since the above variables are identified with a steady motion, the variation of aerodynamic forces and moments
with time is assumed to be negligible. Asis noted in references 4, 11, and 14, this assumption is reasonable for
most problems in analysis of vehicle motion in the atmosphere. However, aerodynamic forces and moments are the
result of the pressure of the air exerted on the body and this pressure depends upon the flow field about the body.
Because air has mass, the flow field cannot adjust instantaneously to sudden changes in these variables, and
transient conditions exist. In some cases, these transient effects become significant. Analysis of certain unsteady
motions may therefore require consideration of the time derivatives of the variables listed above.

Two typical functional-dependence relations for the aerodynamic force component along the body X-axis are expressed
below. Similar expressions for Y and Z force components and the aerodynamic moment components L, M and N
could be written:

X—_—Xl (U,V,W,I:T,\},W,...,P,Q,R,l-’,(.), .Rs~--;8nsses 81-, éusées.sra"'af)’MaRs.---] ]

L Co o (36)
:X2{Va“sﬁivsasﬁs"-:P’QsRsP,QaB—ov--nsast:ahsasSessrs--'spsM;Rs"-) 1

-

M=MACH NUMBER
R=REYNOLDS NUMBER
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It is apparent that in the practical case of solving engineering problems much simplification of the above functional
relations is requived. Fortunately, it is possible to make certain assumptions that simplify the mathematics considerably,
while still permitting solutions of practical significance. Expansion of the aerodynamic components for small disturbances

is illustrated in subsequent paragraphs, and the simplifications of the equations of motion for practical solutions are
discussed in Section 3.

There are many cases of practical interest in the analysis of aircraft motion in which the disturbance from a steady-flight
condition 1s small. In these cases it is permissible and convenient to express the aerodynamic force and moment com-
ponents in a Taylor series expansion. This expansion is formed in terms of perturbations from a reference steady-flight
condition. The use of the expansion is limited to problems where the perturbations are small and where the second- and
higher-order derivatives of the variable quantities and the products of the perturbation quantities are therefore negligible.
Thus they may be omitted in the simplified expressions for the aerodynamic force and moment components. Of course,
this type of expansion requires the first derivatives of the aerodynamic force and moment components with respect to
the aerodynamic variables that affect these forces and moments. These derivatives, commonly referred to as “stability
derivatives,” will be discussed in detail later.

The general procedure for expanding the aerodynamic force and moment relations for small disturbances from steady
flight may be found in many places in the literature, e.g., references 4 and 11 . The notation for small
disturbances from a reference flight condition is as follows. Lower case symbols are used to designate the perturbations
of velocity and orientation variables. Upper case symbols with subscript zero are used to denote the reference values
of these quantities. For example, U = U, + u, P = P, 4 p, and & = &, -}- ¢. The incremental changes in the aero-
dynamic force and moment components are indicated by the prefix A, Thus X =X, 4 AX, Y =Y, 4+ AY, M =M,
<4 AM, ete. The control deflection angles §,, 8., and §, are used just as they are and are interpreted as the control
perturbation angles from the steady-state trimmed-flight condition. To illustrate the general expangion of the aerodynamic
force component along the body X-axis the first functional relation for X on page 47 may be expressed as follows:

X =X, + aX = X, + Xou + Xov + Xow + Xon 4 Xev + Xgw + ... +
Xop + Xog + Xer + Xip + Xaq + Xir .0+ X, 80+ (37)
Xs, 8 + X5, 8: + X3, 84+ ...+ (higher order terms)*

where X, = 90X/ du, etc.

Variables may be added to represent additional aerodynamic effects such as occur in higher order unsteady aerodynamics.

* Just the second-order terms in the expansion would require a page or more to write out, The expansion would have the following form:
1/2 [(Xaall + Xoot® 4 oo o Xaa0® o oo+ Xpop® + oo+ Xpp ...
Xosde? + 1o+ Ko + .. +2 Keary + ...+ oty ...+
Xoopv 4 oo+ XbY + oot 4 Xeafo Vb o+ X BV 4 .. +
2(Xotiw + .o KW + oo+ Kwipw + o+ Xuafow + .0 4
2(Xeva + ... F Xbopu .. oo+ 2 Koge, 8eBe oo ) + .1 ]
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TABLE 17

AERODYNAMIC FORCE AND MOMENT INCREMENTS

FOR SMALL DISTURBANCES
{Components Along Vehicle Axes)

DISTURBANCE Force Components Moment Components
VARIABLES ALX AY FAVA AL AM AN
Lineal‘ u Xn Y“’ Zn Lu * 1\’Iu Nll *
Velocity v X Y. /A j M N,
Components w Xy Y,* Z, L.,* M. N,*
Linear u X, Y;:* it L;*® M N."
Acceleration v X" Y: """ " 1: M:** N;
Components W ), S Y," Z, " L;.* M. N:.*
Angular p X, Y, z,'” L, M,"" N,
Velocity q X" Y,” Z, L,* M, N,*
Componenis r ), Y. z*" L. M.** N,
Angular p X Y;** Z:" Lyr* M;'" N; "
Acceleration q ).t Y, e Ly M;*** N;*
Components r Xt Y, " z.'" L;*** M;** N:*
Control 8 Xa; v Yau Zﬁ: * Lﬁ;\ M(s: 4 Naﬂ
Deflection 3 Xs, - Ya: Zay La: M'Se Nf)u'
3y X * Ys, Zs'® La, M, * Ns,
Control By Xi " Yt F75 L3 " M;.® N; ***
Deflection 8¢ Xatt Y& e L;' M;t** N *
Rates 8 Xz Ygrt* Z;'" Li"* M;'? N ***

Asymmetric force and moment component derivatives with respact to symmetric disturhance variables.
** Symmetric force and moment component derlvatives with respect to asymmetric disturbance variables.

(Bath seis of terma are identically zero for disturbances from a state of steady symmetric motion, i.e.,
V, P, R, and their derivatives are all zero, of an aircraft with an XZ-plane of symmetry.)

#*¢ Terma that are usually negligible.

THRUST FORCES AND MOMENTS

The propulsive system of a vehicle generally produces both a direct thrust force and indirect or induced effects upon the
aerodynamic forces. These contributions of the propulsive system to the force and moment components are presented

and discussed in reference 13.

Direct thrust force and moment components should be used in accordance with the force-moment component resolu-
tion of equations 32 and 33 on page 44, i.e., Xy, Yo, £, L, Mg, and Ny These components may be developed

directly from the geometri? relation between the direct-thrust line of action and the moment reference center of the

vehicle.

Induced-thrust and propulsive-system effects are conveniently included in the aerodynamic components. Wind-
tunnel and flight-test aerodynamic data usually include the indirect effects of the jet flow or running propellers
upon the aerodynamic characteristics of a vehicle configuration. Methods for estimating these induced propulsive-

system effects are included in reference 13.
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STABILITY DERIVATIVES

The partial derivatives that occur in the expansion of aerodynamic force and moment components are commonly referred
to as “Stability Derivatives.” These quantities are useful in general dnd most applicable in the analysis of small-
disturbance motions from a steady reference flight condition. In this Section the derivatives and notation are defined.

Several systems of notation and definition for stability derivatives and/or parameters have been developed and are
found in the literature. The reader should be forewarned and reminded to be thorough and alert when using published

works — including the present report — to check the notatior and definitions used (see page 129 of reference 4 or page
IV-2 of reference 11). The notatien in this report is selected to be consistent, insofar as possible, with that used

by NASA and in references 3 and 4.

A summary of the stability derivatives and notation used in vehicle stability and control analysis is presented in
this Section. Since symmetry of the vehicle and initial flight condition is assumed throughout, the number of de-
rivatives is reduced, as indicated in table 17. Unusual configurations and special problems may require deriva-
tives that are not included in this Section.

Data presented in reference 13 include general and detailed information on stability derivatives and methods for
estimating values of these derivatives. Also, general and special methods and analyses for evaluation of these
derivatives are found in many places in the literature. References 4, 7, and 15 are typical general references and
reference 17 is a typical special investigation.

Three types of stability derivatives are used in airplane stability and control analysis. The following paragraphs
discuss each type. Notation for these derivatives and other items used in connection with stability analysis are
given in table 18. Table 19 contains the relationships used to define the nondimensional derivatives along body
axes and expresses them in terms of stability axis derivatives. Nondimensional derivatives along stability axes
are presented and identified in table 20. This is the most familiar form of the stability derivatives.

DIMENSIONAL DERIVATIVES —BODY AXES

The derivatives used in the development of small-disturbance expansions for aerodynamic force and moment rela-
tions (see page 49) were defined as dimensional derivatives. These partial derivatives of the force and moment
components are taken with respect to perturbations of the significant velocity, acceleration, and control variables*.

* Consider the following for the case of smali disturbance from a steady flight condition:

Let U=U,+u and P=P,+4p
X axX al, aX du IxX

30 — 33U, au T aw U — ou
N _ N 9P, N @ _ N
aP — P, oP ap aP  op
. al, aP, du ap 11
since  — and op are each zero and U and 7P each equal
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The general notation uses upper case symbols with a subscript denoting the variable of differentiation, and body axes
are specified. In this case, however, body axes may refer to any axis system fixed to the vehicle and thus include the
special cases of stability and principal axes. This, at least in part, is the origin of much of the confusion in stability

derivative notation. Also, it is the reason for using the prime to dencte the difference between body and stability reference
axes in the transformation of stability derivatives (tables 8 and 9).

Dimensional derivatives are used as elements of the matrices shown in equations 24 through 29 and in various
equations throughout subsequent Sections. Some examples of these derivatives are

X M, = @—; N, = QE; Zs = 02
ow p

The dimensional derivatives are listed in table 17, with the notation given in table 18.

NONDIMENSIONAL DERIVATIVES — BODY AXES

The use of nondimensional equations is usually convenient when aerodynamic forces and moments are involved in a
problem. Hence it is useful to define nondimensional stability derivatives along body axes. As in the preceding case, these
axes may be considered as general body axes that include the stability and principal axes as special cases.

Lower case basic symbols are used to designate the nondimensional body-axis derivatives, This introduces some additional
possibilities for confusion and ambiguity in the notation. For,example, m,’ is a stability derivative and m without any
subscript denotes the vehicle mass. Although this is not a desirable situation, ultimately it is less confusing to maintain the
system of notation and be wary of the piifalls of ambiguity in the notation than to revise the familiar and established
symbols. In this instance the mass m is frequently incorporated in the parameter 7 and thus the confusion is prevented.

Several examples of the nondimensional derivatives along body axes are given below. A more nearly complete
listing of these derivatives and the notation used is giver in table 19. The equations relating stability-axis de-
rivatives to the derivatives along body axes are given in this table. The relations given in table 19 also serve to
transform the derivatives based upon wind-tunnel axes to stability axes (aq = 0.

X 1 dw 1

X = o @S 7 8d oS

N — N 1 N v 1

# T 8 qSb — 7 88 qSb
Y 1 1 b *

T eSS T Yo 4.5 =5 2V,
oM 1 ‘1

ms =

e = 8.  q.5¢C =M, QST

Note that in the above examples the divisor changes and the linear velocity disturbance variables w and v are
converted to nondimensional variables & and g, respectively.

NONDIMENSIONAL DERIVATIVES — STABILITY AXES

To many individuals the term “stability derivatives” means the nondimensional derivatives of aerodynamic coefficients
with reference to stability axes. These are the familiar parameters Cr , Cnﬁ, Cmq, etc. that are used in aircraft stability
and control analysis. Lift and drag are the Z- and X-force components. Wind-tunnel data are usually reduced to stability
axes and provide experimental values for many of these stability parameters.

* The nondimensional rotary derivatives retain the dimension of time in the case of body axes, while in the case'of stability axes the
Pb qr rb

nondimensional rolary velocities are vsed, i.c., y , .
Y Moy v Tav
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There is much literature containing analytical and experimental investigations of stability derivatives and parame-
ters. Reference 13 includes methods and reference material for evaluating these quantities. Chapter 5 of reference
4 contains a comprehensive discussion of airplane stability derivatives.

The nondimensional siability derivatives referred to stability axes are listed in table 20. The general notation
used is given in table 18. These derivatives are grouped into the longitudinal stability derivatives or parameters
and the lateral derivatives.

Included in table 20 are sketches of typical variations of the stability parameters with Mach number. This infor-
mation was adapted from reference 16. Also included in the tabulation of nondimensional stability derivatives are
some specialized parameters such as Cnﬂ' and Clp'- The effects and importance of these two derivatives are dis-
cussed in reference 18.

TABLE 18
SYMBOLS AND NOTATION
STABILITY DERIVATIVES AND RELATED PARAMETERS

SYMBOL ' DEFINITION

b wing span

C (i) basic symbol for serodynamic force and moment coefficients

(ii) aerocdynamic cross-wind force

Cr, Co lift and drag force coefficients, respectively, (stability axes)
L D
C.=— ,Ch= =
as " T oS
Cx, Cv, Cz longitudinal, side-force, and normal-force coefficients, respectively,
{body axes)
X Y Z
Cx=—",Ci=—,Cz ==
TS T T S TP T S
C,Cn, Ca rolling-, pitching-, and yawing-moment coefficients, respectively
C=-t c.=M -8
qSh qse qSh
Cuy, Cryp C..ﬂ, nondimensional stahility derivatives with reference to stahility axes
Caag, ete. (sce table 20)
Cigy Cry moment-of-inertia coefficients and product-of-inertia coefficient
C:z, CIXZ C'X = Ix C‘Y = [Y_
1.8 oSt
1 ix
C — 2 C — XZ
2= 1.5 X% = .8h

Note: 1. The divisor of Ciy contains & instead of b.

2. The inertia parameters must correspond Lo the axis system
used in a particular analysis, i.e., body, stability, or principal
axes.
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TABLE 18 Continued

{i y,me N0

l{s, Iz, Iy

P,Q,R

SYMBOL DEFINITION

¢ wing mean aerodynamic chord

D aerodynamic drag — the aerodynamie force in the plane of symmetry
along the projection of the relative wind on the plane of symmetry.
Drag is positive in the negative X {downstream) direction.

g gravitational acceleration constant

H. engine momentum , counterclockwise viewed from rear

Iz, |y, Iz moments of inertia about X-, Y-, and Z-axes, respectively

Txz product of inertia with respect to X- and Z-axes
Note: Moment-of-inertia and product-of-inertia terms must correspond

to the axis system being used.

ir incidence of thrust line with respect to XZ-plane of body reference
system. Thrust incidence is positive for Tsin ir acting in the negative
Z (lift) direction,

L aerodynamic lift — the aerodynamic force in the plane of symmetry
perpendicular to the projection of the relative wind on the plane of
symmetry. Lift is positive in the negative Z (upward) sense.

L.MN aeradynamic rolling-, pitching-, and yawing-moments about X-, Y-, and
Z-axes, respectively
Note: Lift and rolling moment use the same symbol, L

Le » M 5, N basic symhols for dimensional moment derivatives; subscript denotes
variable of differentiation {see table 17)

AL, AM, AN incremental changes in aeradynamic moments used in small-disturhance
analysis

AMr pitching-moment component of direct thrust force

Note: When direct thrust is included in the aerodynamic or total
moment, AMy should be deleted.

hasic symbols for nondimensional moment derivatives about body
axes; subscript denoctes variable of differentiation (see table 19)

direction cesines between body axes and the gravity vector

Mach number

Note: M is also used as pitching moment

mass
Note: m is also used as the basic symbol for the nondimensional

pitching-moment derivatives about body axes.

rolling, pitching, and yawing velocity components (angular) about
X.. Y., and Z-axes, respectively
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TABLE 18 Continued

SYMBOL DEFINITION
mqr smell-disturbance angular velocity components about X., Y-, and Z-
axes, respectively
q dynamic pressure
At
q= "E—
2
Note: g is also used as the small-disturbance pitching velocity.
8 wing area or reference area for aerodynamic coefficients
T net direct thrust force
1! thrust coefficient, T4 = ——T‘
q
T 8T,
v ay
t time
Uv,w linear velocity components along X-, Y-, and Z-axes, respectively
u v, w small-disturbance linear velocity components glong X-, Y-, and Z-axes,
respectively
o small-disturbance nondimensional longitudinal velocity variable, v’ = —2—
o
v total linear velocity of vehicle c.g.
XY, Z aerodynamic force components along X., Y-, and Z-axes, respectively
Xc .Y 3,20, basic symbols for dimensional force derivative; subscript denotes vari-
able of differentiation (see table 17). For example,
aX axX 2.4
Xu="""""'" 'X T re— X —_——_—
aa T Taa, TTT T o
AX, AY, AZ incremental changes in aerodynamic force components used in small-
disturbance analyses
Xr, Zo components of direct thrust force along X- and Z-axes, respectively
Note: When direct thrust is included in the aerodynamic force com-
ponents, these terms should be deleted.
X¢ 3, ¥e w3 basic symbols for nondimensional force derivatives along body axes;
subscript denotes the variable of differentiation '(see table 19}
zr distance parallel to Z-axis from vehicle c.g. to the projection of the
thrust line in the plane of symmetry (positive for c.g. above thrust
line}
o angle of attack (see figure 22)
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TABLE 18 Continyed

SYMBOL DEFINITION
o small-disturbance velocity variable, o' = -~
1)
o angle of attack of thrust line, ar = a - i
8 sideslip angle (see figure 22)
g small-disturbance velocity variable, 8 = -
~ Hight-path angle, the angle between the velocity vector and the plane
of the horizon
8, By, B¢ change in deflection of ailerons, elevator, and rudder, respectivety
P air density
. m VY, m
T fime parameter, r — _——n
P AT
¥, 0, ¢ orientation angles of vehicle body axes in yaw, pitch, roll sequence
(see page 11}
Note: In some special cases using stability axes the flight-path angle
v is used in place of the pitch orientation angle @. When
this is done, the yaw and pitch angles, ¥ and ¢, should be
used as referring to stability axes also (see page 7.
¢, 0, ¢ perturbations of vehicle axes orientation angles &, 8, ¥, respectively.

iy, Oy, Uy

In the small-disturbance approximation ¢ = fpdt, § = fqdt, ¢y =
frdt, respectively.

angular velocities of wind axes; prime is used to denote small-angle
approximations (see page 77).

General Notes:

1. All angles and angular velocities are in radian measure.

2, Fundamental units are used throughout, i.e., slugs, feet, seconds.

3. Throughout this table the symbol g denotes dynamic pressure when multiplied by
the wing area {gS).

4. The subscript
analyses.

o denotes steady-state reference condition for small-disturbance
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TABLE 19
NONDIMENSIONAL STABILITY DERIVATIVES
(BODY AXES)

Direct thrust terms included

Expanded Form in Terms of Stability
Symbol Derivative Axis Derivatives
Force X' X 1 R ,
—_— ; v+ C ® o
Velocity S Csy cos® au + Czgsin o
4 {—Cxy — Cg,) cos ma sin ae
+ 2r Ty cos it cos aa
m
Xar .ﬂ _1__ C'\'a COS fo — Czu sin® ao
da’ qos
+ {Cxy — Cza) €08 ap 8N oo
+ 2r Ty sin ir sin ao
m
¥ aY 1 C
a8 .8 8
Zu 9z 1 Cz, cos® ay — Cx, sin® an
du’  qusS
4+ (Cxy — Cz,) cos oo sin @
2r ..
L ¢ a
— Ty sinircos
Za 9z 1 Cz, cos® oo -+ Cx,, 8in® o
3¢’ goS
+ (Cxy A4 Cz,) o8 @ sin ao
— —2];!1 Ty sin ir sin a,
Foree X4 X 1 . ra
Rotary aq q(;s ( Cxq €08 &o — Czq 81N an) —2v:"
Yo aa—g (][,LS (C?p CO8 Qo == Cfr sin ao) 230
¥r _f:;%. -&% (Cx, cos @ 4 Cry, sin @) 2:1“
% ..g_zé. ‘q‘.LS { Czy c03 @o 4 Cx,y 8in @) 23’.,
Force Xy X 1 ;
Contml e Bse E:S— Cxae COS &y — Czﬁe 8In g
Yo, gy 1 Cy
ey [
o8 a qaS u
Yer é Y 1
48, q.8 Cro
Z dZ 1 .
e 38, W Czﬁe cos @ + Cx,sp sin a.




TABLE 19 Continued

NONDIMENSIONAL STABILITY DERIVATIVES
(BODY AXES)

Expanded Form in Terms of Stability
Symbol Derivative Axes Derivatives
Moment g al. 1 .
Velocity 38 1.5h Cig cos an — Copg sin o
My M i 2r Zr Z
- Co. Ty =—2T, =X -
' quSE [ u+‘m YT 2T°E:|m5a
— Chg sin a,
Me IaM 1 2
da’ 0.5¢ Cmg o8 a0 +- [C“‘“ + o Ty
— 2 Tf-0 z_T] sin @
C
iy oN 1 .
'aa';‘ E Cug cos @y + Cig sin e
Moment aL 1 .
Rotary i op a.5h [ Ci, cos® ao + Cay sin® a0 — (Crp + Cay)
€08 @, 8in ao] 2;],“
dL 1 . o
I “ar ©.5b [ Ci, cos® @0 — Cop sinwo + {(Cip — Car)
€08 ap sSin @ b
0 0 2vn
SM 1 o
my 3q quSL' [Cmq] A
aN .
np "5 Elg‘}';‘ I: Cny, 008 o — Ciyp sin® ae + (Crp — Cip)
€08 & BiN ¢ b
2V,
N 1
fir o 980 I: Ca, eo8” ao + Ciy sin® o 4 (Cip + Cay)
€08 @ 8in an b
2V,
Moment I8 1 ,
Control Is, a5, 7.5h Ca,sa COS o — C““a sin a,
i) 1 .
L, e H—q”Sh C’Gr £OS &o — C”Br sin o
aM 1 c
e 33. q.5% 8¢
aN 1
Tla, aan q,,Sh Cnﬁﬂ COS (o + Cl'su sin o
N 1
o, TR Sb Cnﬂr CO8 oo =} C'Gr 8in o
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TABLE 19 Continued
NONDIMENSIONAL STABILITY DERIVATIVES

(BODY AXES)

Expanded Form in Terms of Stability

Symbol Derivative Axes Derivatives
aM 1 T
Moment m:, T (Cm&) —
Acceleration da Qe 2v,
Notes:

1. The symbol q. is the reference dynamic pressure.

. The symbol q (without subsecript) denotes pitching velocity about the Y-axis.

. The subscript zere denotes a steady-state reference flight condition,

2
3, The stability axes derivatives are defined in table 20
4,
5

. Symbols and notation are given in table 18

TABLE 20

NONDIMENSIONAL STABILITY DERIVATIVES

STABILITY AXES

Direct thrust effects not included

I. LONGITUDINAL DERIVATIVES

Symbol Derivative Typical Variation with Mach No. {ref. 16) Remarkts
.2(CD)D )
-C
Cxy aCx X, - Cxpy=— t;C_“n M, — 2(Cp)a
5 L 27NN ‘ ,
Y. ~ speed damping derivative
F T T s
0 1 M, 2
«Cg "2 (c I)D
u
aC aC
Ca, - s Cry = —~ 35 Mo — 2(C)e
VU r L ] T
0 1 Mg 2
_Cm
c. aCen u __ 8Cx
u T u Comy = aM M,
o subject to aercelastic effects
0 1 Mo 2
AN (CLo
oC CX \e/;/
Cx, X a -~ Cx, = (Ci}o — aCn
do e — o
0 M 1 N




TABLE 20 Continued

Symbhol Derivative Typical Variation with Mach No, Remarks
-Cc ac,,
Zg Cog = — [ B] -I-(Cn)o]
Cuy 3Ca “
i - .
@ approximately the negative of the
¥ ! lift-curve slope
0 1 M, 2
- static stability derivative that
o my fixes the stick-fixed neutral point;
Cuy - this derivative is a basic static-
da s
stability parameter
T T
0 1 M, P)
ac “Cmg Cn; is important in damping of
Cog WY shorc-period mode; this parame-
al =< ter is subject to high-speed aero-
2v, — \\nf—— Y elastic effects
0 M, 2
Cxq _0Cx usually not significant
g
a
( 2Y, )
C 8 _ usually neglected; however, aero-
“ a ag elastic effects may become signi-
2v, ficant at high speeds
ACm 'Cmq piteh-damping derivative: this
Cu ac parameter is significant in the
4 é v, short-period mode
r T 1
) 1 M, 3
aC igi
Cxs x usually negligible
¢ 6.
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TABLE 20 Cortinued

Symbol Derivative Typical Variation with Mach No. Remarks
_Cz
c, aCs 5 usually small, except for tailless
& 38 aircraft
T T
0 1 M, 2
'Cm(5
c aC. control -effectiveness derivative
mg m—n——
08
T T
0 1 Mo 2
II. LATERAL DERIVATIVES
-1
- AL
aC, Ip \ damping in roll — C;p is an
C b \\ important parameter in lateral
P d av. — dynamics
0 HEE 2
c AN -(cp),
3Cn Tp ~ <¢ —_ important parameter in lateral
C —I'bm— ~ dynamies; positive values in-
ip 3 (___) \\ ——— crease damping of the Dutch-roll
2v, mode
'\——. I
0 Mu 1 2
-—-'-9—@-‘2:-— usually negligible
GCr L
P al—
(=)
\ (CL)O
_ 3G C, { 4 secondary parameter in effect on
G rb i % lateral dynamic motion; influ-
d 2y —— ences spiral mode significantly
T T
0 1 M, 2
ACa N
— ¢ damping in yaw -— Cn, is sig-
Cay 6( rh ) n, /\ nificant in Dutch-roll and spiral
2¥, modes
I i
0 M, 1 2
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TABLE 20 Continued

as.

Symbol Derivative Typical Variation with Mach No. Remarks
aCy
C \ usually negligible
Ve 3 rh
()
Cig dihedral effect = Cip s im-
Cip ac, portant in lateral-dynamic-stabil-
g ity analysis
T T
o Mg 1 2
Cn,B weathercock static stability par-
Cug 3Cn ameter; important effects upon
ag lateral dynamics
T T
0 Mo 1 P
c side-force damping derivative ~—
Y C ibutes to damping of
aCr B8 v contributes te damping
C‘"ﬂ 8_,8 Dutch roll
' ;
1] Mo 1
aC, special derivative that is signifi-
C:ﬁ b cant at high angles of attack on
a (LZV ) highly swept and delta-type wings
" (reference 18)
Cné ;L see note above for Cig
b
N\ 2v,
C aCy ~Cis, ailcron cffectiveness — important
i3 AT LT .
1 faclor in establishing maximum

o= -
[

7 =

rate of roll
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TABLE 20 Continued

Symbol Derivative Typical Variation with Mach No. Remarks
= Cag, adverse-yaw derivative — an im-
Cnﬁa _0C. portant item in lateral-directional
a84 control
1 L]
Q M, 1 2
Crs Gy almost always negligible
98,
C'ﬁr usnally has a small but signjfi-
Cip G cant effect wpon control and
r LLE : dynamic-stability analyses
2]
M, 1 2
~Cas, rudder effectiveness — important
Cas 3Ca to lateral-directional control
98-
1 1
1) Mg 1 2
c ac, Crg usually negligible in dynamic
Yar as, r A nnalygeS
I T T
L3 1 2
MD
Notes:
1. The subseript o deneles a steady-state reference flight condition.
2. The typical variation with Mach number is adapted from reference 16.
3. Methods of evaluating stability derivatives are given in reference 13.
4. Symbols and notation are given in table 18.

5. See reference 18 for additional discussion of typical variations of stability derivatives with

Mach numbers.
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SECTION 5. SIMPLIFICATION OF THE EQUATIONS OF MOTION

The general equations of motion may usually be simplified for many cases of practical interest. Certain terms bhecome
negligibly small or reduce to zero as a result of practical considerations and selection of appropriate reference axes.
The methods used to simplify these equations are outlined in the paragraphs that follow.

Fquations describing the motion of a rigid body are given in Section 2. In the following pages the real force and
moment expressions from Section 4 are used to form equations of motion for an aircraft operating in the atmos-
phere. Vehicle symmetry and the assumption of small disturbances from reference flight conditions are then used
to reduce the equations to simpler forms. The resiricted equations of motion are given in nondimensional

form also.

Steady equilibrium flight and linearization based upon steady and maneuvering initial flight conditions are discussed as
special cases.:
GENERAL SIMPLIFICATION OF RIGID-BODY EQUATIONS

Complete equations of motion for a body moving in the atmosphere are quite complex. Consequently, it is of practical
interest to simplify them in order to facilitate analysis of the motion of a body. Vehicle symmetry and restriction of the
motion to small disturbances from a reference flight condition are used to reduce certain terms to zero and to linearize
the equations,

Initial flight conditions are referred to frequently in subsequent paragraphs. Terms pertaining to these conditions are
defined below, as given in reference 19.
STEADY FLIGHT — Motion with zero rates of change of the linear and angular velocity components, i.e.,
fJ:\":W:f’:Q:R:O.
Steady sideslips, level turns, and helical turns are possible steady flight conditions. Steady pitching flight is a
“qguasi-steady” condition because U and W cannot both be zero for an appreciable time if  is not
equal to zero.
STRAIGHT FLIGHT — Motion with zero angular velocity components, P, Q, and R = 0.

Steady sideslips and dives or climbs without longitudinal acceleration are straight-flight conditions.

SYMMETRIC FLIGHT—Motion in which the vehicle plane of symmetry remains fixed in space throughout the

manenver.

The asymmetric variables P, R, V, &, and ¥ are all zero in symmetric flight. Some symmetric flight con-
ditions are wings-level dives, climbs, and pullups with no sideslip.

ASYMMETRIC FLIGHT — Motion in which any or all of the above asymmetric variables may have non-zero values.
Sideslips, rolls,and turns are typical asymmetric flight conditions.

The full set of equations for the motion of a rigid body is given below. These equations are “Eulerian™ in that they are
referred to axes fixed on the body. Because the coordinate axzes rotate with the body, the gravity-vector components
depend upon the orientation of the body with respect to a fixed inertial reference (Earth Axes). Relations are thus
included to express the kinematic angular-velocity component relations in terms of orientation-angle rates of change,
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The equations of motion with reference to general* body axes ((8) and (9)) are combined with the real force and
moment components (equations (32) and (33)). The gravity-force components along body axes are then obtained
from the set of equations (34). Angular velocity relations are found in table 16. Collecting and combining these
relations give the following sets of dynamic and kinematic equations for the motion of an arbitrary rigid body.

X+ Xp—mgsin® =m (U — RV + QW)
Y 4 YT~|—mgcos®sin<I>:m(\-’——PW)—]—RU (38)
Z4+ ZT—{—mgcos@)cos@:m(W——QU"‘rPV)

-

L+ Ly=Plx — Olzy — Rlzx — QR (Iy — ;) — PQlzx
— (Q? — R?) Iyz + RPIyx

M+ Mr= + Qlr — Rlyz —Plyy —RP(I; ~1Ix) — QRIxy | 39
— (R* — P?) Ix + PQlyy ~

N + NT ='+‘ ﬁ-IZ —?sz—- QIYZ_ PQ (Ix —_ Iy) ""'RPIYZ
— (P? — Q?) Ixy + QRIxz

&):P—l—QsintI’tan@-l—Rcos & tan @
é):Qcos(D—-RsintI: {40)
@:Qsin@sec@—l—RcostI)sec@

The moment equations (39) become significantly simpler when consideration is limited to bodies having symmetry
about the XZ-plane. As a consequence of this symmetry, the product-of- inertia terms Iyyand lyy are zero. The
thrust components Yp, Lip, and Ny are zero except for special asymmetric-thrust conditions. The dynamic equa-
tions for 2 symmetric body are then the following (references 3 and 4):

X+ Xr— mgsin®=m (U— RV + QW)
Y+ mgecos@sin®=m (V—PW <+ RU) (41)

Z+ Zr—i—mgcos@)cos@:m(W—QU-i—PV)

L= Plx ~ (R 4 PQ) Ixz — QR (Iy — ;)
M4+ Mp=0ly — (R2 — P?) Iy; —R P(I; — Iy) (42)
N =RI; — (P — QR) Ixz — PQ (Ix — Iy)

(The angular-velocity relations are unchanged from (40)).

Equations of motion in the form above may be modified o use direclion cosines of the gravity vector instead of the
orientation angles. The functions of the angles ®, ®, and ¥ are replaced by the direction cosines ¢, my, n; of the
gravity vector from the vehicle body axes. Relations between the direction cosines and the orientation angles are listed

below (see page 24).

*The present discussion is given in terms of general body axes. However, general body axes may be interpreted as any of the axis systems
fixed to the vehicle, i.e., body axes, stability axes, or principal axes.
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f, —cos (mg, Xl= —sin@
my — cos (mg, Y) = sin ® cos ®

(43}

ny = cos (mg, Z} = cos ® cos @

Substitution of the direction cosines into equations (40) and (41) results in an alternate set of equations of motion
for a symmetric body. These equations, which can be found in reference 3, are especially convenient for use with
an analog computer. Equations of motion using the direction cosine form are as follows:

X4 Xr+mgg,=m (U —RV+QW)
Y4 mgmy zm(\.f—PW+RU) {44)
Z+ Zy+4mgny =m (W— QU+ PV)

L ="PlIx — (R + PQ) Ixz — OR (Iy —Iy)
M+ My=Qly — (R2 — P?) Iy; — RP (I; — Iy) (43)
N=RI; — (P — QR) Iy — PQ (Ix — Iy)

i3 = m3R — n3Q
mg = ngP — iR (46)
n = {3Q — mgP

Nondimensional forms of the foregoing equations of motion may be obtained by simply dividing through by an ap-

propriate divisor. For the force equations (41) and (44} the divisor is the reference dynamlc pressure times the

reference area  £Yo. § . The moment equations (42} and (45) are divided by PVO gh or £Yo gz . The latter value
2

is used only with the equation for pitching motion. Further use of non—dlmensmnal equations occurs in subsequent
Sections, after small-disturbance approximations are introduced.

Many problems of aircraft motion involve only small disturbances from a steady reference flight condition. Thus the
approximations compatible with restriction of the motion to small disturbances allow further simplification of the
symmetric-body equations (40}, {41), and (42),

General notation for small-disturbance analysis is as follows. Perturbations of velocity and orientation variables are
designated by the lower case symbols for these quantities, ie., u, v, w, p, q, T, ¢, 8, and y. Upper case symbols are used
with a subscript zero to denote the reference values of these variables. Thus U,, W,, Q,. ®,, etc, are reference or initial
values for velocity components and orientation angles. Incremental changes in aerodynamic force and moment com-
ponents are denoted by the pertinent symbol with a prefix 4, e.g., AX, AZ, AM, etc.

Expansion of the aerodynamic force and moment components for the small-disturbance approximation is discussed in

Section 4 and summarized in table 17.

In addition to the perturbation quantities, the approximations noted below are used in the trigenometric relations nsed
with the condition of small disturbances.

sin (@, 4+ #) = sin ®, cos § + cos @, sin #

=~ sin ®, + # cos ®
+ ° {47)
cos (@, + #) — cos @, cos # — sin ®, sin §

== cos B, — B sin @,

Note: These relations are typical and are applicable to small-disturbance approximations of any regular variable,
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If small-disturbance notation and the above approximation for trigonometric functions in equations (40) and (42) are
used, the dynamic equations for small-disturbance motion expand to the set of equations below. Products of per
turbation quantities are neglected.

Xo+ AX 4+ Xy — mg (sin®, + fcos B,) = m (Uu+ l.l—ROV., — Rwv — Vr
+ Q()W() + Qow + Wuq)
Y, + AY + mg (cos &, — fsin ®,) (sin P, + ¢ cos &) = m (V.. -+ v + R,U,
+Ru + Ugy — P W, — P,w — Wi (48)
Zo+ AL+ Zy 4 mg (cos @, — #sin ®,) (cos P, — ¢ sin &,) == m (V.Vl. -+ w
— QoUo — Qou - qu -+ P.Y, +P0V + vnp}

Lo+ AL = (P, + p} Ix — (Ry + 1 + P.Qo -+ Poq + Qup) Ixs
—_— (QnB-n + Qur + Roq) (11' - IZ)

M, + aM + AMy = (Qo + @) Iy — (R2 + 2Ror — P2 — 2P.p) Iy
- (POR-O + Pur + Rup) (IZ - IX) (49)

Ny + &N = (R, + 1) I~ (P 4 p — QoRo — Qor — Roq) Ixs
- (POQD + Poq + Qop) (IK - IY)

Many of the terms in the above equations are zero for initial conditions of steady, straight, and/or symmetric
flight. Linearization of these equations for straight, symmetric flight and maneuvering flight is presented in the
following paragraphs.

SIMPLIFICATION OF EQUATIONS OF MOTION FOR STEADY.-FLIGHT CONDITIONS

Steady-flight conditions provide the reference values for many analyses of vehicle motion. The terms used to de-
scribe various flight conditions are defined on page 64. The equations of motion are reduced for several steady-
flight conditions in the following paragraphs. These relations for steady flight are used subsequently to eliminate
initial forces and moments from the equations of motion.

STEADY, STRAIGHT FLIGHT

This is the simplest case of steady flight. All time derivatives are zeroc and there is no angular velocity of the body about
its center of gravity. Thus, setting all of the time derivatives and the angular-velocity components P, , and R equal to
zero in equations (41) and (42) results in the following equations for steady, straight flight:

X4+ Xr—mgsin@—=20

Y4+ mgcos®sind =0 (50
Z4+ Zry4-mgcos@cosd =10

L=0

M4+ M:=0 (51)
N=20

Note that these equations are applicable to the steady sideslip. The velocity components V and W and the bank angle
are not necessarily zero. When the molion is restricted to symmetric flight, the bank angle is zero. The force equations
for steady, straight,symmetric flight are then
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X+ Xr—mgsin®=20
Y=0
24 Zr+ mgeos® =10

(52)

The moments are again all zero (51).

STEADY TURNS

In the case of steady turning flight the dotted quantities in equations (41) and {42) are zero, as in the preceding

case.

Also the orientation angle rates of change © and & are zero and the rate of turn ¥ is constant. With these
conditions applied to the dynamic and kinematic equations for rigid-body motions, the relations for steady turning flight
may be developed. However, in many cases it is convenient and practical to consider only small elevation angles or

shallow climbing and diving turns.

Applying the above conditions to the angular-velocity relations in table 12 results in the following angular-velocity
components for a steady turning maneuver. The approximation for small elevation angle (#) is indicated.

P—— ¥sin® ~_— ¥y
Q:\ilsintllcos@::‘ilsin@ (53)

R = ¥ cos & cos @ =~ ¥ cos &

For most cases of interest ¥ may be considered as a small quantity, so that the products of the angular velocity
components P, (O, and R may be neglected. In addition, for coordinated shallow turns, the side force Y is zero
and the velocity components V and W are small. The equations for a steady, coorainated, shallow turn become
(see reference 4)

X+ Xr—mgo=10
mgsin@:m\i'UcostI) (54)
Z+4+ Zy+mgcos®=—m¥Usind

L=0
N=20
Solution of the second relation of (54) for the rate of turn ¢ results in the following equation:
\i’ = tan ¢
=7 (56)

STEADY PITCHING FLIGHT

Symmetric flight of an aircraft along a curved flight path with a constant pitching velocity Q results in a quasi-steady
flight condition, The linear velocity components U and W must necessarily vary with time in this case. Thus with
the asymmetric velocity components V, P, and R and the bank and yaw angles ¢ and ¥ all equal to zero, the equations
of motion for a symmetric body {41) and (42) reduce to the following:
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X+ Xo— mgsin®=m (U + QW)
Y=0

Z+ Zr+ mgeos®=m (W — QU)
L=M+ M;=N=0

(57

The above relations may be used to evaluate initial conditions for a small-disturbance analysis. The values of U, and W,
may be taken as instantaneous values and the variation with time as disturbance quantities u and w, respectively. For
reasonable values of pitching velocity the linear accelerations & and W may be neglected, so that the X and Z relations
ahove become initial conditions

(X + Xu), — mgsin @, = m Q.W, % (58)

(Z+ Zp),+ mgcos ©, = —m Q,U,

Solution of the second equation above provides a relation between the initial pitching velocity ), and the initial load
factor nz along the reference Z-axis:

Qo:—%—(:(_zi'éli—l:lm@o):_Lg]—“(nzo*—cos(aﬂ) (59

o mg o

STEADY ROLLING OR SPINNING FLIGHT

In the preceding examples the steady-flight equations readily reduce to simple forms of the equations of motion. However,
the equations for steady rolls or spins cannot be simplified without considerable oversimplification of the physical relation
describing the motion.

The proecedure outlined in references 20 and 21 utilizes only the moment eguations to evaluate the perturbed motion
from steady roll and spin, respectively. In such cases the steady condition then becomes that of moment equilibrium

(L=(M+4+ M;) =N=0).
LINEARIZATION FOR STEADY, STRAIGHT, SYMMETRIC INITIAL FLIGHT

Simplification of the equations of motion for small disturbances from a relerence steady-flight condition results in
the sets of equations (48) and (49), These equations, when combined with the expansion of aerodynamic force and
moment components from table 17, form the linearized dynamic equations of rigid-body motion.

In the present case many terms of the equations of motion are zero, and the steady, siraight, symmetric flight
equations (52} are used to simplify the equations further.

For the steady, straight, symmetric initial flight condition the quantities V., P,, Q.. R, &, ¥, {-J,,, \lf‘,, and Wo
are all zero** Also, from the steady-flight equations (54), the initial moments (L,, M, + My, N,) and side force
(Yo} are zero. The initial equilibrium in the X and Z directions is expressed by the relations

X, + XTo—mgsin @,=20
and
2o+ Zo,+mgeos®,= 0

— (24 Zr)a
mg
#* The suhscript zero denotes initial condition.

*nzo...—._'
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The initial velocity components U, and W, are related to the initial velocity V, and angle of attack a, by the
equations below

U, =V, cos a,
Wu = Vn sin oy
Application of the foregoing conditions and relations to the small-disturbance equations, (48) and (49), reduces

them to the equations below. These are the rigid-body dynamic equations of motion for small disturbances from
steady, straight, symmetric flight. Body axes are used with this form of the equations.

AX—mchos@o:m(l;—|—qvosinao)
AY + mgy sin®u+mg¢cos®ozm(s:+rV(,005ao—pvosina,,] ) (60)

AZ — mg dsin ®, =m (V;?—qVHCOSao)

AL = ply — r Ixy
AM = ¢TIy {61)
AN:I-'IZ—];IXZ

The equations containing AX, AZ, and AM are commonly referred to as the symmetric or longitudinal equations of
motion. The equations for AY, AL, and AM are then the asymmetric or lateral equations of motion. In the above equa-
tions the thrust contributions to the force and moment component increments should be included in AX, AZ, AM, etc.

The expansions of the force and moment component increments for small disturbances are summarized in table 17,
The expansion outlined in the table applies to any orthogonal reference axes fixed to the vehicle; however, once
axes are established, the components and derivatives may not be interchanged from one axis system to another.
The transfomation relations necessary to change the derivatives to different reference axes are given in tables

8 and 9.

Within the restriction of small disturbances, the perturbation angular velocities are given by the following relations:
P=¢, q=8r=¢ 62)

Linearized equations referred to stability axes are readily obtained from the foregeing set of equations. Stability axes
are oriented with the velocity V, at the initial flight condition {see page 13). Hence U, = V, and W, = 0.
The initial elevation angle of the stability axes is the initial flight path angle v, These conditions are equivalent to
replacing @, by y, and a, by 0 in the linearized body-axis equations. It is important to note, however, that all of the
velocity, force, and moment components in the new set of equations are referred to stability axes. The linearized equations
of motion referred to stability axes are given below. These equations are restricted to small disturbances from steady,
straight, symmetric flight.

Amegﬁcosyozm{x
AY+mg¢siny°—|—mg¢cos~f0:m({r+rVU) s (63)
AZwmgﬁsiny(,:m(v.v—qVD)

AL =ply, —rlxy,

AM = q1y, {64)

aN :;‘]zs — }')Ixzs

70



(aX,AY,..., AN, ¢, 8, y, u, v, w, p, g, and r are referred to stability axes in these equations.)

Aerodynamic forces and morments are usually reduced to nondimensional coefficient form. Hence it is convenient to
express the foregoing equations of motion in nondimensional form. First the force and moment component inerements,
AX, AM, etc., are expanded as indicated in table 17. The resulting equations are then reduced to nondimensional
form and tabulated in tables 21 and 22. The equations are regrouped into the longitudinal and lateral equations.

The tabular presentation of these equations is taken from reference 3. Coefficients of the small-disturbance variables are
arrayed so that the desired equation is cobtained by setting the sum of the products of the coefficients and appropriate
variables horizontally across each row equal to zero. The appropriate variable is given at the head of each column. For
example, the force equation along the hbody X.axis is the following:

x.’ dy |, X Xy ) d(8) gt : X3 .
(T—?t-)u—}— - d"‘{'—(z—f—slna(])T—vUCOSOo“{" ; 5§ =0

Note that the operator —— is included in the coefficient of the variable. Notation used in the nondimensional equations is

dt

summarized in table 18.

TABLE 21

NONDIMENSIONAL EQUATIONS OF MOTION FOR SMALL DISTURBANCES
FROM STEADY, STRAIGHT, SYMMETRIC FLIGHT

BODY AXES .
Disturbance Variable Coefficients
Longitudinal Equations .
u’ a g &
X4 . d
Force Equation xw _d X’ (E: Bl FT" x5
Along X-gxis 2r dt : 2r - vg-cos 0, o
Zq d
Force Equation 2 W _d ('F + cos @ ) dt Z
Along Z.axis 2r 2y dr —-2 dne, 27
Moment Equation , d d *
u u’ a T — C —_—
Abeut Y-axis m me’ -+ m dt D4 dr 'y dr me.
Disturbance Variahle Coeflicients
Lateral Equatiens
4 ¢ ¥ 5a &
. ¥, . i yr 4
Force Equation v d (2_: +sin ao ) de (E' aos ao) de Yea RL
Along Y-axis 2r i +€: cos 9, + ‘i sin O, 2r 2r
Moment Equation d I d C Az ! . _dz !
About X-axis lg"+ gt TR T “ar TG g ' bee
Moment Equation L d , d C dz d C a2
About Z-axis lg"+ ~g ns wgr T lxa e TR TD "ea Tty

Symbols and notation are given in tahle 18 .
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TABLE 22

NONDIMENSIONAL EQUATIONS OF MOTION FOR SMALL DISTURBANCES

FROM STEADY, STRAIGHT, SYMMETRIC FLIGHT

STABILITY AXES

(SIMPLIFIED FORM)

Disturbance Variable Coeflicients

Longitudinal Equations
'y o 8 8
F E N 2 {C!})o _ d
orce Fquation d _ .4 C Cp—S 4 C)e C
Along X-axis T2y (Ceda 4 Con "V, dt +{C) "8
CL. + (CD)o —
Force Equation e (G =2 99 d
2(Co)o d I, T
Along Z-axis (€1 -+ 2r i 92V, dt Cus
+ (Ci)otan va
Moment Equation Cra d ] d d*
¢ R —_—
About Y-axis 0 + Cma_ 2V, a Cm‘l 2V, dt _CIY de? Cmﬁ
Disturbance Variable Coefficients
Lateral Equations
g @ ¥ S &
b d
Cy,— 2 b d
Force Equation Cra— 271 POV, dt (CY,_'“zvn — 2 m Cys Crp
Along Y-axis B dt + (Co) a
The +(Cu) o tan v,
» .
b d b d
Ci, — — Ci—— —
Moment Equation C PV, @t v, dt Cis Cis
About X-axis # dz 2
—_ CIX F + Clxz (F
* »
c. b d C b d
Moment Equation c "0 v, dt "Tav, dt C C
About Z-axis "B z 2 "a "
-+ CTXZ (F — CIZ ;E!-

Symbols and notation are given in table 18.

* Ciyxy Ciys Cigy and Ciy, must be determined with respect to the stability axes and hence are not the same as in table 21.
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LINEARIZATION FOR STEADY MANEUVERING FLIGHT

There are certain types of problems in analysis of vehicle motion in which the assumption of small disturbances from a
steady maneuvering flight condition is the most efficient method of approach. The limitation to a steady, straight,
symmetric initial flight condition is unnecessarily restrictive.

General equations for small-disturbance motions from steady flight are derived and summarized concisely in ref-
erence 22. These equations are equations of motion for small disturbances from steady turning, pitching, rolling,
or longitudinally accelerating flight. Table 23 gives the general dimensional equations for small-disturbance mo-
tion. The next table (24) summarizes the conditions to be used in the general equations of table 23 for the several
types of steady initial flight conditions.

These equations readily reduce to those used in special cases treated in the literature, e.g., references 20 and
23. Also, the small-disturbance equations of the preceding Section for steady, straight, symmetric flight may be
obtained from table 23. Stability axes are the reference axes for this case and the notation is defined in table 18.

TABLE 23

GENERAL EQUATIONS OF MOTION FOR SMALL DISTURBANCES FROM STEADY FLIGHT
STABILITY AXES

Coefficient of Disturbance Variable
u v w p q r
—%—i—(z‘: )n=d(dt) —R.| Q. 0] geosyocosdn §( ) dt —gcosyasin®d, §( ) dt
AY =] R B P —pcosyecos® §0 )t 0 v"—[g"“"’“"‘
™ de (i‘—’ ) Jrooa
dt f.
AZ =|—-0.f P. di ) geosy.sind, § ()} dt —V +[g i Yo + 0
m dt i‘ﬁ) ]I () de
! dl o
AL =lololo Ik 41 Qulv, | R (ln, = I —Polo -l 35 ) 4 Qo (Toy—Iv)
AM = 0 0 ] Rn (Ixs b Izn} —}- 2 Pu Ixzu IYS "d—id't—)“ P, (ng— Izs} —2 Ro I.\'z_
AN = o ]| o0 [<Iu d‘dt Y4 Qu (T, = Ix)| Po (Tr,— Ix) + Ro Iy, I, Q(dt—) + Qu Lxn,

Noie: ¢ = {p dt
= fqdt

¥ o= {radt
Symbhols and notation defined on table 18
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TABLE 24

INITIAL CONDITIONS FOR GENERAL SMALL-DISTURBANCE EQUATIONS OF MOTION

STABILITY AXES

(Conditions for use with table 23 )

Initial Flight
Condition

Initizl Value of
Velocity Components and
Orientation Angles

Remarks

Steady Straight
Symmetric Flight

Ue=Vo; Vo= Wo = i’Y—) =0
det J.
Pn:Qo:RHZO

Yo="Fu; Pu=10

Same as presented on page 70

(see equations (63) and {64)).

Steady Turning Flight

Uo:V..;V..=W.,=(~d—v—) =0
dt J.

P, = ~—W¥. sin o
Q. = ¥, c0s v. sin b,
R, = ¥, cos y. cos &,

Yo =2 Vo3 Pa == Buy

Steady-turn conditions also in
equations (53)

‘I.'= %tnn(b..

Steady Rolling Flight

U=V ; Vo =W. = ﬂ) =0
de J.

Po=Ps: Qo =R.=10

Yo = Yui Pu = Pa;

These conditions are used in
references 20 and 223

Steady Pitching Flight

U=Va; Vo= W = (_ﬂf_ =0
de J.

P.=R.=0; Q.= -‘-(g- (0¥ — cos %)

o

Yo == yo; B =0

n, or Q. may he used to specify
the initial conditions, This is only
a quasi-steady flight condition.

Steady Longitudinal
Acceleration

U=V ; Vo= W. =0
Pr=0Q.=R.=0
Yo = Yu} P. =0

dv

_— = constant
dt /.

This flight condilion is also quasi-
steady, since U=0.

Note: ¢ and ¥ are orientation angles of stability axes. Symbols and notation are defined on table 18,

* The symbol n in this expression denotes load factor.
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In addition to the equations of motion given in table 23 there are other speciaiized forms of these equations. The
study of small disturbances from steady pitching flight may be conveniently made with vehicle body axes for ref-
erence. Below are the equations for analysis of small-disturbance motion from “steady” pitching flight* as given
in reference 3. Body axes are used and notation is defined in table 18.

AX—Bmgcos@a:m(1i+qusinao—|—on) \
AY 4+ ¥mgsin®, - ¢ mgcos®, = m (w:-{— rV,cos e, — p V,sin a,)

AZ — 9mgsin® = m (\.v—unc:)SaD——qu)

.o ) ©5)
AL = pr —_ Ixzr + Qnr (IZ - IY) - Q“p lx_z
AM = Iy(i
AN = Izl.' — Ixz}; 4+ Qop (Iy — Ix) 4 Qor Ixz }

Note: These equations may be developed from (48) and {(49).
U,=V,cosa,; Vo =0; W, =V, sinqa,
alsoP,,R,, &, =0
(66)

The steady pitching velocity is given by

g
= = —(n, —cos®
Q V,co8 a, 7z, ")

In the above relation either the initial pitching velocity Q, or the initial load factor n,, ~may be specified.

A specialized case of small disturbance from a steady flight condition occurs in the analysis of the spinning motion of an
aircraft. An analysis of the dynamics and stability of flat spins is contained in reference 21, Because of the specialized
nature of the analysis and the likelihood of confusion in the asymbols and notation, the equations are not repeated here.

ADDITIONAL SPECIALIZED FORMS OF THE EQUATIONS OF MOTION

Rigid-body equations of motion have been developed and specialized for many specific and special problems. No attempt
has been made to collect them all here. However, some generally useful forms of these equations are summarized in
this Section,

* See definition of steady flight on page 64.
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LARGE DISTURBANCES FROM STEADY, STRAIGHT, SYMMETRIC FLIGHT. (References 3 and19)

In the equations of motion presented below, the approximation of small disturbances has been limited to the linear
velocity components U, V, and W. The remaining orientation angles and angular-velocity components are not restricted
to small values as in the case of general small-disturbance motion. Many practical problems in aircraft motion may be
analyzed under these conditions.

The initial condition used is steady, straight, symmetrie flight; hence V,(8,}, P.. Q.. R, and ®, are zero. The small,
nondimensional linear velocity disturbances are denoted by u’, £, and o', and the reference axes are the vehicle body
axes. These equations are developed from the symmetric rigid-body equations (41) and {42) and put in nondimen-
sional form. Special notation used in these equations is defined in table 18.

(3 =) v F (3w ) 0=

_|_

Xoo 5 B o £ n® —
o 8. v, sin @ 4 V. sin ®, =0

yd d Yo " y
(%“—dr)ﬁ'““ (% +S““"°) Pt (3

-|-2“8+ 8+i31n¢cos®~0

)R-—u’R-«l—a’P

R R

(i) @ ——Lcos ®,=0
V. cos ® cos V. o

67)

4 I d H, sin i L Ixz d
B T T
o+ (e )P Q%u+&mﬁ

+iro(B) =

d
m,’ my’ 4+ my—Y, H.siniy d
u! ’ a — P —
G ® +( c dt)a s +(C‘Y dt)Q
1

be

5. =0

H COSIT R+(17—IX)PR Ixz (P2_R2) _I_mﬁv
i I

Iy ¥ ¥ Ciy

e e e (g ) (B e

Ixz 117 ny
—_ —E8, =18, =0
IZ QR + Clz 3 + Clz ‘
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Note: 1. Engine angular momentum, H,, isincluded in this set of equations.
Note: 2. Symbols and notation are defined in table 18.

Note 3. Reference axes are vehicle body axes.

EQUATIONS OF MOTION ALONG WIND AXES

Generally the dynamic equations of motion along wind axes are too cumbersome for use in vehicle-motion analysis. The
variation of inertia parameters with orientation angles precludes any extensive exploitation of the simplified aerodynamic
terms along wind axes. The dynamic force equations and kinematic relations are sometimes useful, however, and are
therefore given here (equations (68) and (69)). These are taken from reference 3, but they may be developed di-
rectly from equations (40) and (41). (Symbols and notation are defined in table 18.)

T—D—-mgsinyzm‘.f
—Tﬁ+C—{—mgsintbcos-y:mV(ﬁ.—f—R—Pa)

=mV () (68)
—T(a+izx)— L+ mgcos ®cosy =m V (a — Q 4 PB)
=mV (—0Q%)

=0+ (Vysin® + Ny cosP) tan y = O’y ¥iny

Y cos ® — 'z sin ®
Y Y Z (69)

¥ = (Yysin ® 4 Oy cos P) secy

From the second and third equations above, the following relations for the rates of change of angle of attack and of
sideslip angle are obtained. ‘

a=0Q—Pg—y

f=Pe— R + 07 (70

A practical application of the above equations occurs in the simplified analysis of inertial coupling, e.g., that of
reference 24, In this case it was desired to develop a simplified analysis that provided a quick and simple method for
surveying the dynamies of a rolling aircraft. Problem areas could subsequently be more thoroughly and rigorously
investigated. The simplified analysis was then made by using the above force equations along wind axes and the moment
equations along principal axes (equation {13)).
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SECTION 6. ‘SOLUTION OF THE EQUATIONS OF MOTION

The equations developed and presented in the preceding Sections describe the motion of a particle mass and that of a
rigid body. Solutions of the complete equations are not always possible or may be impractical for the problem under
consideration. Several methods of simplifying these equations are given in Section 5.

Methods for solving differential equations found in many standard mathematics texts may be applied to find solutions
of the equations of motion. Some general methods fot solving the equations of motion are outlined in the paragraphs
that follow. Included in this Section is a brief discussion of computer methods and of some approximate solutions. The
approximation formulas are useful for preliminary estimates of dynamic stability characteristics.

ANALYTICAL METHODS

Solution of the simplified equations of motion by analytical methods is possible in many cases. The simplified equations
are generally a system of ordinary linear differential equations having constant coefficients.

Use of the direct methad of solution is outlined for the linearized small-disturbance equations. The Laplace transform
method is also outlined and a matrix method noted.

Analytical methods for solution of nonlinear systems of differential equations are not included. References 25 and 26
present analytical methods for obtaining solutions of the motion in nonlinear dynamic systems.

DIRECT METHOD OF SOLUTION

The direct method of solution for a system of ordinary linear differential equations, such as the small-disturbance equa-
tions of motion, is described and illustrated in Chapters 6 and 7 of reference 4. This procedure is reviewed below with
the longitudinal equations of motion as an example.

Equations of motion for small disturbances are separated into a set of longitudinal equations (symmetric) and a
sel of lateral equations. These equations are given in nondimensional form in tables 21 and 22. The longitudinal
equations from table 22 are used below to illustrate the direct method of solution.

If the control remains fixed, 8 is zero and the longitudinal equations reduce to a system of simultaneous ordinary homo-
geneous differential equations. These equations then have the dependent variables u’, «’, and 8 as functions of time, the

independent variable.

The solution for the dependent variables is then assumed to be

u =, et
a’ J— [1,,., e;\' %
0 — 90 e)n. ‘ (71)

Substituting these relations into the longitudinal equations of table 22 resuits in the set of equations below.

[2(Co) o & 2rA] w)ed + [Co, — (Cu)o] ahe™ + (Co)o et — 0
2(Co)ouleM + [Cr, + (Co)y + 203 ] afyed — 20 et == 0

[Cmﬁ+cma -2_:(.: }ﬂ.’ Et\t + [Cmu_é_:'f_nhn C‘Y Azjl HDCM = 0 S
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Note: Cp and C,, are assumed negligible. Steady level symmetric fiight is assumed (y, — O). Notation is given in table
18.

The {actor e** is common to ali terms in the above equations and may be divided out.* The result is then a set of linear
simultaneous algebraic equations in the variables u’,, ', and 6, with a parameter A to be determined. The condition
upon A required for nonzero values of the dependent varisbles is that the determinant of coefficients of equations

(72) be zero.** Thus,

[2(Ca)o + 2rA) [Cp, — (Cu)al (Culo
2{C[\J a [CI.Q + {_CD)H + 2TA] — 2rx =) (73
[ © 2
] [C"‘a -+ Cmirmk] [Cmq -2—"70 A — CI‘. A ]

Expansion of this determinant results in the characteristic equation for the solution. This is a fourth-degree polynominal

in the parameter A.
AV 4B L C DA+ E=0 (74)

where:

A. = _4T2CIY

B =-27C,,BCp,+ Cprp) + 4Tz(';\—f Cra * 9y Cm&)

q
o

C T
C 5*2C[Y (CDQCLO._ CLOCDQ - 2CD°2 CIY_chD2 CIY +47 CDD(—QE:VO Cmq + _W Cma)

3

+ ZTCDO (EV; Cmq) + 2TCLa("2cV—° Cmq) + 47—2Cma

[

2{.C_ L. c <
D 2CL0 (2‘/0 Cmq + 2V° Cm&)-'. 2CDo CLa( 2V°Cmq) + 2CD02( Wucmq) "ZCLOCDO_( Evocmq)+ 4TCDOC‘ma_

[}

E = 2CL02 Cm(l

The roots of this equation are the values of A corresponding to the modes of motion.

The roots of (74) may be real or complex. The complex roots necessarily occur in conjugate pairs and denote an
oscillating mode of motion. Each real root corresponds to a pure convergence or divergence without any oscilla-
tion*** Convergence or divergence of each mode of motion is established by the sign of the real root or the real
part of the com;ﬂex conjugate roots. Four types of motion are possible, as illustrated in figure 24, for the func-
tion g = ﬁn et

*The solution e*t = 0 is trivial.

**Note that the solution for any of the variables in equation (72).  would have the determinant in the numerator equal to zero. Thus for
a variable to have a nonzero value the denominator determinant must be zero. The resulting indeterminate form may then have nonzero
values. Also it should be noted that the general solution of the longitudinal equations invelves a forcing function such as a contrel pulse,
so that the right side of equation (72} is not all zero.

***Whenever the characteristic equation is of an odd degree, it must have at least one real root.
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The behavior of the dependent variables w’, o’, and # may be determined, once the roots of the characteristic
equation (values of \) are known. The variation of these quantities with time is then given by equations (71)
for each mode of mation of the system, with additional constant multiplying factors depending upon the input.

In addition to the time history of each dependent variable, several quantitative parameters that describe the mo-
tion may be determined from the roots of the characteristic equation. These items are the period and the time to
halve (or double} the initial amplitude. The cycles to halve (or double) the amplitude of oscillatory motion are
also of interest. Table 25 lists these items for both real and complex conjugate roots of the characteristic
equation.

8
6 8 = 6,0
B=8,aht
0 1]
o 0
t ——t— t -
(s) PURE DIVERGENCE {b) PURE CONVERGENCE
A IS REAL AND POSITIVE AIS REAL AND NEGATIVE

~

8=06,eAt E:jfclko(l;gr\’/ o=0.0M NN\ \/— E;‘?:’j:;i;)(l;i
// ~
il N nnp
LY VATAYA
b ~ -
N

/

(¢) DIVERGENT OSCILLATION (d) CONVERGENT OSCILLATION
I8 IMAGINARY WITH A IS IMAGINARY WITH ,
POSITIVE REAL PART A (A) NEGATIVE REAL PART (A}

FIGURE 24 TYPES OF MOTION FOR DIFFERENT ROOTS OF THE CHARACTERISTIC EQUATION
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TABLE 25
QUANTITATIVE CHARACTERISTICS OF MODES OF MOTION *

Characteristic of the Motion Real A Complex A
Time to halve or double amplitude - 0.693 _ 0693
A | A (A) ]
Period Not Applicable 2
W
Cycles to halve or double amplitude Not Applicable [T{x)]
= (.110 RO

LAPLACE TRANSFORM METHOD OF SOLUTION

Use of the Laplace transformation in the solution of linear differential equations has several advantages when compared
with the direct method of solution. This method of solution of the small-disturbance equations of motion is explained
and illustrated in references 4 and 11, There are numerous texts that contain the mathematical development of the

Laplace transform, such as references 27 and 28. These references also provide additional examples and tables of
Laplace transforms.

The primary advantages of using Laplace transformations to oblain solutions of systems of linear differential equations
are:

1. Initial conditions are introduced directly into the solution in order to avoid the evaluation of the constants of
integration required by direct methods.

2. In problems involving several dependent variables the solution for one variable may be obtained independently.
The literature provides detailed treatment of the Laplace transform method. Examples and discussion of this
method applied to vehicle motion analysis are found in references 4 and 11. Included in these references are

methods of presentation and interpretation of results in terms of both the basic variables and the transformed
variables.

To illustrate the correspondence between the Laplace transform method and the direct method, the longitudinal
small-disturbance equations from table 22 are transformed below. A bar is used over the symbol to denote the
transformed variable. For example,

(z)= Llu'(t)]
Applying the Laplace transform to the longitudinal equations from table 22 results in the following transformed

equations. The derivatives Cp, and Cy are again assumed negligible and initial level flight is used (¥o = 0).
The control is considered to be fixed so that & = 0.

[20Cy) 0 4+ 2rs] W + [Co, — (C)a] @ + (Ci)u 8 = 2r 0’ (0)
2(Ci)o” + [Cu, + (Co)o -+ 278] & — 2rs § = 2r [a’ (0} — 6(0)]

¢ ‘ e (75)
[Cma + Cm&'ﬁ 8 } I + [Cmq 2Vn 5 — CI)' 8 ] g =
Cug gy~ (0) + Ca, 5= 0(0) — Cuy [810) 4 36(0)]

(Notation in the above equations is defined in table 18.)

*RA) is the real part of the complex number  and is related to the modulus or amplitude of the vector representation of the number in
the complex plane,

ff{*) is the imaginary part of the complex number A and is related to the angular velacity of the vector representation of the number in
the complex plane,
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Note the similarity between these equations and those in the preceding Section (equation (72)). The coefficients
of the transformed variables are the same as those obtained with the direct method when A is replaced by s.

For an undisturbed steady-state condition the terms on the right side of equations (75) are all zero and the trivial
case exists. However, if a disturbance such as a contrel pulse or a gust is introduced, a dynamic motion problem
is generated.

Suppose an aircraft in steady level flight encounters a gust. The term o' {0%)* is then different [rom zero, and
the solution of equations (75) for the pitch angle may be expressed in determinant forms. Thus,

[2(CI)_)0 + 21'5] [C“a — lCL_) “J 0
a’ (0} [21Cr)e] [Cl‘“ + (Cply 4 27s] [2+]

i Cug &

0 [C + Gy, S] Y9V,

Bis) = (76)
[2(C1))n + 275] [Cna - (_C[.}n] [Ci,}n]
[2(Cy).] [C, + (Cyly + 27s] [— 21s]
€ T .
0 [Cmu —l" Cm{'rz—v—n 5] [Cm“-z_";r_[: 5 — C‘IY 5-:|

Expansion of the ahove determinants results in a quotient of two polynominals in the transformed independent variables.
The denominator determinant expands to the characteristic equation of the direct method (see equation (74)).

The solution for the pitch angle ¢ as a function of time requires application of the inverse transformation of 4(s}. Thus,

6{t) — L [Bis}]

In order to simplify the inverse transformation, it is usually expedient to separate the expansion of equation {(72)
into partial fractions. This procedure then requires linding the roots of the denominator or characteristic equation.

The zeros {roots) of the denominator of equation {76} have the same significance as the roots of the characteristic
equation {74) in determining the modes of motion as shown in figure 24.

MATRIX METHOD OF SOLUTION

A method of solving the equations of motion using matrices is presented in reference 29. This is a procedure more
readily adapted to machine computation methods than to analytical methods.

Briefly, the procedure consists of a stepwise integration of the differential equations with a Maclaurin series expansion
used in each computation step to achieve any desired degree of accuracy. This method is a rather specialized technique,
and the reader is referred to the cited reference for the detailed explanation of the methad.

COMPUTER METHODS OF SOLUTION

The development of modern machine-computing equipment has opened the way for many new and varied analyses to
be undertaken, Problems that are impractical to solve by lengthy hand-computation methods are readily computed by
high-speed digital computers. Problems that involve nonlinear equations may be solved quickly on an analog compuler.
The use of machine computation methods also permits more variables (degrees of freedom) to be considered and
reduces the number of approximations or assumptions that must be made in order to facilitate solution of a problem.
Machine compuiation methods thus provide a large increase in the amount, scope, and accuracy of analysis possible in
many problems.

It is beyond the scope of this report to present a complete discourse on machine-computing methods. The para-
graphs that follow provide some general background information and references for detailed treatment of the subject.

*All of the initial conditions such as «’ (0}, u’1(), ete., occurring on the right side of equations (75) should be interpreted as the value
at 10 + ) or 0.
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DIGITAL COMPUTER

Electronic digital computers have been developed to a very high degree as fast, automatic computing systems. The
digital computer is a device that automatically performs the basic operations of arithmetic. It performs these operations
in a sequence prescribed by the program for a given problem. Since the digital computer functions as a mechanical
desk-type caleulator, it is capable of very precise computation (many significant figures). Any problem that can be set
up for hand computation can, in principle, be programed for an automatic digital computer.

Reference 30 offers a thorough presentation of the principles and features of digital computers and data proc-
essing. The matrix method and the solution of the characteristic equation in the preceding Sections are examples
of calculations that may readily be programed for a digital computer. Iterative processes and decision-making
routines may be incorporated into a digital program.

The digital computer can perform very complex calculation routines that involve comparison with previously computed
or reference data and can then choose a procedure according to one of several alternate subroutines. This is accomplished
very rapidly and very precisely. The digital computer is used most advantageously in stability and control calculations
for making large numbers of calculations of a given type, such as the response to arbitrary control functions or the
dynamic behavior of a flight vehicle with a well-defined automatic control system.

ANALOG COMPUTER

Analog computers are a combination of electrical and mechanical components. These components are selected and
arranged so that the differential equations of the analog system are dual to* the differential equations for the problem
being studied. Electrical components are used in most analog computers. Reference 4 gives a resume of analog compo-

nents and their basic function. References 30, 31, and 32 are comprehensive texis or handbooks covering the design and
application of analog computer systems.

Certain features of analog computers are guite different from those of digital computers. The electrical analog system
operates with either the current or the potential in a compenent circuit representing a variable of the problem being
studied: Thus data are continuous and all operations are simultaneous, while the digital computer must follow a pre-
scribed sequence of operations (program) on distinct pieces of data. The accuracy of an analog computer depends upon
the precision and quality of its components. Analog computers are generally less accurate than digital computers.

The analog computer has been used extensively in airplane stability and control analysis. It is readily adapted to solving
the equations of motion when nonlinear characteristics must be included.

A very useful application of analog computers is the flight simulator, since it ean calculate in real time. This device
extends the analog simulation to include duplication of the cockpit, controls, and flight instruments. Simulators have
been built for many different types of aircraft and used for flight research and for familiarization and training of pilots
and flight crews.

APPROXIMATE SOLUTIONS

Frequently approximate solutions of the equations of motion are useful. Preliminary estimates and quick evaluation
of flying qualities often require drastic simplifications of an analysis, The paragraphs that follow present some useful
approximate solutions of the equations of vehicle motion.

*Of the same form as.
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APPROXIMATE FORMULAS FOR SMALL-DISTURBANCE MOTION

Relations resulting from approximate solutions of the equations of motion are listed in table 26. These formulas
are developed from the small-disturbance equations of motion along stability axes in table 22. Approximate quan-
titative values for the characteristics of the normal modes of motion are provided by these relations, The informa-
tion in table 26 is adopted from a similar tabulation in reference 3 and utilizes the notation of table 18.

TABLE 26
APPROXIMATE FORMULAS FOR SMALL-DISTURBANCE MOTION

Period (sec)

Damping Ratio

Time Constant {sec)

Low Frequency 0.138 Y, {ips) (Co)
Longitudinal Root Pair or T —_—
or {Phugoid) 0.234 Y, (knots) V2(Cu,
Symmmetric
Modes High Frequency Cy, c ( 2V.)
- ’ C C . 2r o Cm ‘m- —:_—:'
Root Pair Zar = b Sy Ty, M TG c
(Short-Period Gy — Cung A Cra = T
Model * — 2 \j 2TC[Y (-chmu -— Cr,ﬂ Cm,l_ “2“7)
Small Real 2r (C“BC{ —Cr G
- _ 1] B »
‘ Root (Ch]u(cnﬂcl,.7CIﬁCn..l
{Spiral Mode )
Large Real G
Lateral Root - - - -——x—b—-
or {R()ll Cfll—iv—
Asymmetric | Subsidence) "
Modes
C,. C
Root Pair 2 _____C_fz__. — Gy, -%- — \S 'z
( Dutch Roll} Cn, + Gy Cig = b -
? 2 le g o Sl G
ng L C[x ™
(this is a relatively poor approximation)

Notation is defined in table 18.

Stability axes are the axes of reference.

Damping ratio is the ratio of damping to critical damping.

APPROXIMATE FORMULAS FOR RESPONSE TO CONTROL INPUT

Approximate solutions for the response to control input and for maximum accelerations are useful for preliminary esti-
mation and checking of vehicle mation. Several items are included below that provide estimates of response to centrol
deflection, maximum acceleration, and roll rates. Notation for the relations in this Section is given in table 18.

1. LOAD FACTOR DUE TO CONTROL DEFLECTION

In horizontal symmetric steady flight the derivative of normal acceleration (load factor) with respect to control deflec-

tion is given approximately by

=
2E

V.,
8

Cma CZ{‘ - CZ

o Cmﬁ

C, C

o®

— Cmﬂ (Czq -+ 27}

c ;

1
Wy

o [l
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2. MAXIMUM ROLL VELOCITY

The maximum-rolling-velocity approximation is oblained {rom the linearized equation for moments about the X.axis,

which is selved for the sieady-state, single-degree-of-freedom case. The approximate equation for maximum steady
rolling velocity is then

2V T =T T,

UAriax m n

(E"a_) L v (78)

3. MAXIMUM ANGULAR ACCELERATION

Maximom angular accelerations resulting from contrel actuation are sometimes needed in aircralt design work. A simple
relation for maximum angular acceleration is given below.

First it is assumed that the applied moment coefficient is represented by the function illustrated in the sketch below.

A single-degree-of-freedom approximation may be used; however, static stability is neglected in the case of yawing and
pitching motion. Under these conditions the maximum angular acceleration occurs at t =t, and is given for the rolling
case by the equation

. Ci, Ci, s )
pmux - C]l) t1 e Clx . 1 (79

Similarly, the equations for maximum pitching and yawing accelerations are

S L) (80)
Juax Clll“ t, e CIY — 1
i‘ . Cn(I Cu'. ta (81)
max Cnr t1 e CIZ _ 1
Cy C'lo’ Cmo‘ or Cnn
Cm
C

TIME, t (sec )
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SHCTION 7. SPECIAL PROBLEMS

INSTRUMENT READINGS

In the analysis and the automatic control of vehicle motion it is frequently desirable -— or even necessary — to utilize
several types of instrumentation. Instruments may be used to indicate the attitude of a vehicle or to measure velocity

and acceleration components.

The following Sections present relations and equations that are useful in the reselution and interpretation of instrument
readings. These relations are adapted from references 9 and 19.

ATTITUDE-MEASURING INSTRUMENT READINGS

Vehicle attitude is usually determined from a system of gyro instruments. The rotation angles of the instrument about

the inner and outer gimbal axes are related to the vehicle orientation angles

vertical and directional gyro system 1s shown in figure 25.

VERTICAL GYRO \P\
INNER GIMBAL ’\

A\

/ w
PLY
P |
Gvo
Z
VERTICAL GYRO

SPIN AXIS

VERTICAL GYRO

/ X
VERTICAL GYRO
OUTER GIMB AL

GDo

DIRECTIONAL
GYRO OUTER

€

SO

DIRECTION AL GYROQ

FIGURE 25 CONVENTIONAL FREE VERTICAL AND DIRECTIONAL GYRO SYSTEMS

Y, 0, and . The conventional free

BPIN AXIS

GIMBAL DIRECTIONAL GYRO
/ X

DIRECTIONAL
GYRO INNER
GIMBAL

Ny

GD]'

From the above figure and the relations for the orientation of vehicle body axes, figure 19 and table 11, the gyro

equations below are developed.
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Vertical Gyro
Gy, — sin™ (cos ¢ sin € 4- sin ¢ cos ® cos &)

sin @ cos & )

cos ¢ cos @ cos & — sin ¢ sin ©

(82)

Gvo == tan! (

Directional Gyro
Gy, == sin™" [cos ¢ (cos ¥ cos P sin © + sin ¥ sin @) |- sin ¢ cos ¥ cos O]
sin ¥’ cos ® — sin @ sin © cos ¥ ] (83)

cos ¢ cos @ cos W — sin ¢ (sin W sin @ + cos ¥ cos P sin ©

Gp, == tan™ |:

where
Gy, Gy, are rotation angles about the inner gimbal axes of the vertical and directional gyros, respectively.
Gy, Gy, are the rotation angles about the outer gimbal axes of the vertical and directional gyros, respectively.

a is the angle between the outer gimbal axis of the vertical gyro and the vehicle X-axis (this is also the
angle between the vehicle Z-axis and the directional gyre outer gimbal axis). The subscript 1 denotes
reference Lo instrument axes,

W ©,d are the orientation angles of the vehicle body axes as defined on page 11,

The gyro systems shown in figure 25 and analyzed in equations (82) and (83) are for the most simple form of free
gyro. More complex attitude- and direction-sensing instrumentation is used in many advanced vehicles. The output
indications of gyro-instrumented stable platforms in terms of vehicle attitude are derived in reference 33. The
attitude output signals of other fire-control and navigational devices are discussed in references 34, 35, and 36.

VELOCITY-MEASURING INSTRUMENT READINGS

Velocity components are generally measured by instruments that are not located at the vehicle center of gravity. In
addition, the orientation of these instruments may nol coincide with the vehicle-orientation reference axes (body axes).
Thus, even after instrument errors and position errors (sidewash, upwash, etc.) are accounted for, the velocity com-
ponents of the vehicle center of gravity are not given directly by these instruments.

A general set of instrument axes may be used having its origin located by a vector r from the vehicle center of gravity.
These axes may be oriented with respect to the vehicle body axes system by the angles ¥, #, and ¢; as indicated in
figure 26.

The velocity vector on instrument axes is given by the equation
Vi=V4weXxXr (84)
In this equation the separate vectors are given by the relations

Yy, =Urir + Vi jr 4+ Wik { Instrument velocity)

V=Ui+Vj+ Wk (Vehicle linear velocity)
=Pi 4+ Qj + Rk ( Vehicle angular velocity) (85)
r =xi+yj+zk {Instrument location vector)
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The general notation in these equations is defined on page 9, and the subscript 1 denotes instrument axes.

Expressing equation (84) in Cartesian form and applying the transformation matrix for Case I of table 2 to de-
scribe the orientation of the instrument axes results in the equations below for the velocity components along
instrument axes.

VEHICLE
C.G.

AXES PARALLEL TO

VEHICLE BODY AXES VEHICLE

PLANE OF
X,Y,Z SYMMETRY
INSTRUMENT AXES
XY 7z

7 ORDER OF ROTATIONS
¥ G ¢y

FIGURE 26 GENERAL INBSTRUMENT AXES

U= (U —Ry 4 Qz) costrcosyy + (V— Pz 4 Rx) cos 6y sin y1 — (W — Qx 4 Py) sin &

Vi= (U — Ry + Qz) {cosysin ¢rsin 8; — sin gy cos ¢r)
+ {V — Pz 4+ Rx) (sin y sin ¢y sin 6; + cos J; cos ¢;)
(W — Qx -+ Py) sin ¢; cos & (86)

W= (U — Ry 4 Q2 (cos ¢ cos ¢ sin §; - sin y sin ¢ )
+ (V — Pz 4 Rx) (sin y; cos ¢y sin §; — co8 y sin ¢y )
+ (W — Qx + Py) cos 6 cos ¢
i The foregoing equations can be greatly simplified for mest cases of interest. Usually 1 and ¢1 will be zero and

certain of the distances x, y, and z may be negligible. Also the limitation te small disturbances permits the following
simplification of the expressions for the angles of attack and sideslip, respectively,
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U

,, l (87)
By =tan™! (-I‘%) . —\—L S

J
oy = tan! (E]—I) = E-i

I

ACCELERATION-MEASURING INSTRUMENT READINGS

The acceleration-measuring instruments are located and oriented in much the same way as the velocity instruments,

i.e., displaced from the vehicle center of gravity. Therefore the instrument accelerations must be related to the vehicle
center-of-gravity acceleration.

Linear accelerations along instrument axes are given by the equation

Vi=V4axXV4aXr+aeX (aXr) (88)

The vectors, in addition to those given in equation (85), are expressed below.
\.71 = {II i+ v i+ VE/' k; (Instrument acceleration)
\.’ = I‘Ii + \‘/’j + "Vk {Vehicle linear acceleration) (89)
o —Pi —+ (3] - Rk { Vehicle angular aceeleration)

Acceleration components along instrument axes are expressed below. These equations are obtained from equation

(88) and Case 1 of table 2. The general notation is defined on page 9, and the subscript 1 denotes quantities
referred to instrument axes.

Ur= [0 —RV + QW — x (R4 Q%) +y (PQ — R} 4 2 (RP + ()] cos §; cos g
+ [V—PW4RU + x (PQ4+R) —y (P24 R?) + z (QR — P)] cos 8 sin yx
—[W—QU+PV4x(PR—Q) +y (QR+P) — 2z (Q* + P} ] sin 4,

Y;f1= [ﬁ“‘RV'f‘QW—X (R*4-0Q%) + vy (PQ———ﬁ) L= (RP—I—(.))] (cos yy sin ¢y sin f; — sin gy cos ¢)
+ [‘:I_PW"*-RU‘{-X (PQ+R) —y{(P*4+R% + 2 (QR——I'J]] (sin Yy sin ¢y sin 6; -+ cos P; cos ¢r) (90}
+ W — QU4 PV 4 x (PR — Q) +y (QR + P) — =z (Q* =+ P)] sin 1 cos 6,

ﬁ’1= [ﬁ—-RV-{—QW—x(R?-{-Qz) +y (PQ-—-I‘{] —f—z(RP—i—(j)] (cos Y cos ¢ sin 8 + sin ¢ sin ¢;)
+ [V— PW 4 RU + x (PQ -+ R) —y(P24+R% + 2z (QR P} (sin 1 COS ¢y sin By ~— COS Yy 8in gby)
+IW— QU PV+x(PR—Q) +y (QR+ P) — 2 (Q* + P*)] cos & cos ¢

The above relations can be simplified in most instances, as was the case with the previous velocity component equations,
There are, however, additional factors to be considered in acceleration-measuring devices. These factors are
1. Effect of gravity force on suspended or pivoted mass (seismic element).
2. The dynamics of the device itself; the instrument has spring and damping forces acting on the suspended mass.
3. The effect of anfular acceleration of the instrument mounting, when a pivoted mass is used.

Detailed analyses of the above items are beyond the scope of the present report. The reader is referred to the
presentations in references 19 and 37 for these details.
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FUEL SLOSH

Fuel slosh within partially filled tanks is known to affect the dynamics of manned aircraft and missiles. Fuel
slosh introduces additional degrees of freedom, owing to the relative motion of the fuel mass and the airframe.
This Section of the report is concerned with the effects of fuel slosh on the rigid-body modes of vehicle motion.
The literature on fuel slosh contains numerous references to the effect of fuel slash on the flutter problem. The
latter is not treated here. Furthermore, in some applications, such as flexible boosters for large ballistic missiles
or space vehicles, fuel-slosh, rigid-body, and body-bending effects may all be inseparably coupled. The approach
described in this Section would obviously require extensions to include the effects of structural flexibility in
such cases.

CONDITIONS UNDER WHICH FUEL SLOSH HAS BEEN FOUND TO BE SIGNIFICANT

The addition of fuel-slosh degrees of freedom to the equations of vehicle motion complicates the analysis, as may
be seen subsequently. As a guide to the need for this complication, a brief summary is presented in table 27 of
conditions under which fuel-slosh effects have been found to be significant.

TABLE 27

.

SOME CONDITIONS UNDER WHICH FUEL SLOSH HAS SIGNIFICANT
EFFECTS ON VEHICLE RIGID-BODY MODES OF MOTION

Fuel-Slosh Vehiele
Fuel Mass Fuel-Tank Fuel-Tank Natural Rigid-Body Mode*
Total Mass Location Shape Frequency Affected Remarks Ref
> 025 Forward of Any Approximately | Lateral-directional The mnde damping is
Vehicle c.g. equal to t Dutch-Roll} reduced in this case.
rigid-body mode | oseillation Unstable roots can 38
appear, leading to
a limit cyele (snaking)
= 0.10 Any Large spanwise Not applicable | Spiral mode, in Spiral divergence
dimension harizontal flight occurs, as H the vehicle
had negative dihedral. 38
The long-term response to
directional control is
reversed
=010 Any Large Approximately | Long-period The mode damping is
longitudinal equal to (phugoid) reduced in this case
dimension rigit-body mode | oscillation, in 39
horizontal flight
> 0.25 Forward of Any Approximately | Yaw or pitch The mode damping
vehicle c.g. equal to oscillation in is reduced
rigid-body mnde | low-speed vertical
flight, as for rocket
take-off

*See page 84,

As is implied in table 27, fuel-slosh coupling with the short-period longitudinal mode of rigid-body motion is
usually negligible in horizontal flight. Fuel-slosh effects may be neglected in studies of this mode. Coupling
exists, of course, for this mode of motion in vertical flight, as in the take-off phase of many liquid-fueled,
rocket-powered vehicles.
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The steady-state relationship between fuel mass center shift and fuel-tank acceleration for closed-top rectangular fuel
tanks is given in reference 38.These results show that only slight tank accelerations can produce near-maximum fuel mass
center shifts, in many practical cases. As an example, for a typical height-to-length ratio of 0.08 for a wing fuel tank,
80 percent of the maximum possible fuel mass shift is attained for a lateral acceleration of (.1 g, with the tank half full.

It is concluded that the coupled motions of the airframe and sloshing fuel masses are generally significant for small
disturbances. For large vehicle disturbances, involving large values of fuel-tank acceleration in a horizontal plane, stosh-
ing fuel tends to act as an off-center fixed mass, without dynamic coupling to the airframe, or with discontinueus coupling.

MOTION OF SLOSHING FUEL

In the analysis of fuel-slosh eflects on vehicle flight dynamics, sloshing fuel masses are generally represented as mass-
spring-damper single-degree-of-freedom dynamic elements. The natural frequencies of the analog elements correspond
to the lowest or fundamental modes of fuel slosh.

More complex analogs could be constructed to represent higher frequency fuel-slosh modes in addition to the funda.
mental mode. The forces applied to the airframe by the higher frequency modes of fuel slosh are relatively small. As a
general rule, only the fundamental mode is represented in practice.

Available data on the fundamental-mode natural frequencies for several tank-shapes are summarized in figure 28.
The data in this figure are in dimensionless form. For convenience, an auxiliary chart is presented as figure 29,
for the fundamental-mode natural frequencies of open-top rectangular tanks, in terms of physical dimensions.

Available data on the forces applied to the airframe by sloshing fuel is more limited at present than the corre-
sponding data for natural frequency. For the purpose of this report, the applied-force data are presented in terms
of the “effective” fuel mass. The effective fuel muss m; is defined in relation to the single-degree-of-freedom
analog of figure 27. If the actual fuel tank and the analog are given the same horizontal and rotational motions,
the effective fuel mass m;, equal to the concentrated mass in the analog, provides the same reactions on the
container (acting through the spring and damper) as the reactions on the fuel tank applied by the sloshing fuel.

For reference, open-top rectangular data of figure 30 were developed from the equivalent pendulum concept of
reference 40, Evaluation of the transler function relating applied force to linear and rotational input tank motions
showed that the effective fuel mass m; is equal to the equivalent pendulum mass of reference 40.

LINEAR FREEDOM ONLY
il -
-1
y’/ I
A
SPRING -4 DAMPEER
my
SLOSHING FUEL SINGLE-DEGREFR-OF-FREEDOM ANALOG

FIGURE 27 SINGLE-DEGREE-OF-FREEDOM ANALOG TO SLOSHING FUEL
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