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ABSTRACT

Linnell's pressure prediction method is used as a basis for developing
hypersonic aerodynamic influence coefficient matrices, Matrix inpats are graphi-
cally presented, for ten airfoil sections, in Volume 2. The method developed
accounts for the nonlinear variation of lifting pressure with angle of attack which is
present at hypersonic speeds. Comparisons of theoretical and experimental hyper-

sonic pressure distributions are made.
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SECTION 1.0
INTRODUCTION

The purpose of the subject study is to extend the technology of hypersonic
aerothermoelastic stability and control analysis and test that had been developed
under Contract AF33(616)-6653 (References 1~5). The specific requirements of the
study were separated into two distinct areas of effort, namely (1) aerodynamics and
(2) static aeroelastic solutions and tests. Results of the aerocelastic studies and tests
are given in References 6 and 7. The specific requirements of the aerodynamic
studies were to develop a method for obtaining hypersonic aerodymimic influence
coefficients which extends the region of application of the methods described in

Reference 1 and to evaluate this method by comparison with test data.

In order to determine the stability and control characteristics of flexible
aircraft, it is necessary to have available analytical methods which accaint for the
redistributed air loads caused by structural flexibility and the attendant changes in
equilibrium angle of attack of the flexible aircraft. Analytical methods have been
devised which utilize both structural and aerodynamic influence coefficient matrices.
These matrices sexve as inputs fo the static aeroelastic matrix equations which
provide a solution for the equilibrium angle of attack under a given set of flight con-
ditions. The equilibrium solutions are then used to obtain the flexible air loads and

flexible stability and control derivatives.

In the supersonic speed regime a linear relationship exists between lifting

pressure, Ap/q ,and equilibrium angle of attack, a , i.e.,

22 (4]
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where [Q] is an aerodynamic influence coefficient matrix.* In direct contrast to
the supersonic case, lifting pressure in the hypersonic speed regime is a nonlinear
function of the equilibrium angle of attack. Furthermore, the resultant aerodynamic
influence coefficient matrices are diagonal matrices since the lifting pressure at a
point is a function of only the angle of attack at that point, This phenomena lends
itself to simplications in the formulation of lifting pressure relationships and the
resultant influence coefficient matrices. The independence of one point from another
differs from the supersonic case where the lifting pressure at a reference point is a
function of not only the angle of attack at that point but at all other points in the for-

ward Mach cone emanating from the reference point.,

It was shown in Reference 1 that hypersonic lifting pressure distributions

may be expressed as

(2} o)

where, for instance, {F (a )} can be of the form
{F(a)} = lQl] {a} + I_Qs" {a3} or
{F (a )} - I_Ql] {sin a cos a} (1.3)

Further discussions in Reference 5 show that no simple closed form solution (such
as is available to the aeroelastician in the supersonic case) for the equilibrium

angle of attack can be obtained using Equations (1.3). In order i{o determine {a} s
nonlinear methods of analysis are needed. The solution procedures for {a} are
further complicated by the fact that nonlinear structural response is being considered
in the present study. That is, not one structural slope matrix [8 a Z:I is used
throughout an aeroelastic analysis as in the past but an [8 a Z] matrix is used which
changes during the interaction process In accordance with the nonlinear behavior
being considered. The incorporation of these nonlinear elements in a static aero-

elastic analysis are discussed in Part II of this report, Reference 6.

* [Q } is essentially a linear transformation relating the lifting pressure at given
reference points to the angles of attack at these same points.



Several methods for determining hypersonic lifting pressure distributions
were digcussed in Reference 1. If the analyst considers a slender airfoil at high

gpeeds in an inviscid real gas then the lifting pressure function {F { a )} takes the

{re} o] - [og] {e} (o] { =} la]{a’)

(1.4)

form

in accordance with Dorrance's method as discussed in References 1 and 8,
Dorrance's method, however, is valid in the range 0 < ’K S l € 1.0, Froma
practical standpoint it was found desirable to extend I Ks ] above 1,0 but retain
the same form of {F (a )} as given by Equation (1.4}, Previous studieé showed
that Linnell's method (Reference 9) could be written in the form of Equation (1.4).
This method ig valid in the range 0 < , KS l £ 5.0. The use of Linnell's original
work in developing a method to obtain aerodynamic operators is discussed in the

following section.

It is desirable to assess the validity of theoretical methods by comparing
their predictions with experimental data. Both Linneil's and Dorrance's methods
have been compared with hypersonic pressure data measured on a series of flat,
twisted and cambered wing models in Section 4.0 of this report. The test program
had been carried out by Grumman Aircraft Engineering Corporation under Contract

AF33(616)-6846. Results of this program are discussed in Reference 10,



SECTION 2.0

DESCRIPTION OF LINNELL'S HYPERSONIC
PRESSURE PREDICTION METHOD

2.1 GENERAL

In the previous study, Reference 1, methods for obtaining hypersonic
aerodynamic influence coefficients were developed for a given range of IKS , .
Specifically, Dorrance's method, valid in the range 0 < ' Kg , £ 1.5, was used to
determine influence coefficients in the moderate hypersonic speed regime,

3 £ My < 15. Studies showed that Dorrance's methord could not be used to extend
l K 8' above 1.5 and in fact the true upper limit as discussed in Reference 1 is
approximately 1.0. Another method, originally proposed by Linnell, was used to
develop lifting pressure relationships in the range 0 < I KSI £ 5. However,
hypersonic aerodynamic influence coefficients were not developed in Reference 1
using this method. As part of the work on the present study Linnell's method was
used as a basis for formulating hypersonic aerocdynamic influence coefficients in
order to extend the range of [ K 8‘ . It is the purpose of the present chapter to
discuss Linnell's method as a means for obtaining lifting pressure distributions on

slender two-dimensional flexible airfoil configurations at hypersonic speeds.

Before proceeding to the derivation of pressure relationships certain
definitions associated with rigid and flexible flow deflection angles must be made.
Linnell's method is a function of the rigid flow deflection angle which in turn is a
function of the local surface slope and geometric angle of attack, The local surface
slope & b (x) is measured with respect to the x axis which joins the leading and
trailing edges of the airfoil. The geometric angle of attack, denoted as a g
bt'
is the angle between the relative wind direction and the aircraft

ag= QREF+ abi+ a

9 REF

reference axis while @, is the angle between the aircraft reference axis
1



and some wing reference plane. The third angular component, a by is the angle
between the wing reference plane and the x axis. All of these angles are positive in
the clockwise direction. The angle Q by can be visualized, for example, as a built-in

structural twist angle,

The rigid flow deflection angle is defined to be the angle between the wind
direction and the local tangent to the undeformed airfoil surface. In the case of a
flexible airfoil, one additional angle, namely a 5 the structural deformation angle,
must be considered before the flexible flow deflection angle can be defined. @ < is
defined to be the angle between the tangent to the deformed airfoil surface and the
tangent to the undeformed airfoil surface and is considered to be positive in the
clockwise direction, Basic to the definition of a flexible flow deflection angle is the
fundamental structural hypothesis that, '"plane sections which are perpendicular to the
x axis of an airfoil before deformation remain plane after the airfoil is deformed.”
This hypothesis allows the analyst to simply add @ s to the rigid flow deflection
angle in order to obtain the flexible flow deflection angle. Structurally speaking, the
airfoil can be thought to be replaced by the x axis. It is this line which deforms and
yields the deformation angle @ < Physically, the airfeil "wraps itself' around the
deformed x axis. Figures 2.2 to 2.4 geometrically describe the flow deflection

angles,

In the derivation of the lifting pressure relationships the x axis rather than
the mean camber line was chosen in order to facilitate the derivation, (Of course for
symmetrical airfoil sections the x axis is the mean camber line,) The choice of the
mean camber line presents no problem in the fiexible case, nor in the rigid case for
that matter, for to obtain the deformed shape, as is just added to the upper and lower
surface regardless of what reference axis is chosen. As will be subsequently shown
the lifting pressure relationships can be derived by only considering the known local

surface slopes of the rigid airfoil,
2.2 DISCUSSION OF LINNELL'S METHOD

Linnell's method is thoroughly discussed in References 1 and 9, Reference

9 being Linnell's original work. Another important work, which appeared after



Linnell's paper, was performed by Messrs. Eggers, Syverston, and Kraus of NACA
(Reference 11). Their work is identical to Linnell's for certain flow conditions and
was labeled the "shock-expansion (slender airfoil) method", It is this label which

gives the aeroelastician an insight into Linnell's method,

Consider the slender rigid airfoil shown in Figure 2.1.

5, u ©

ag 8e, g (0

’ x
Mg >3 M, p
P Shock Wave

Figure 2.1. Rigid Airfoil Geometry and Physical Relationships

The pressure ratio at any point on the top surface can be obtained from the definition

P -
(55 )() &
P Pm ps

where ps is the pressure immediately behind the attached shock wave and p is the

‘pressure at the point under study. The pressure ratio {ps/pm } is given by the well-

known "tangent-wedge'' pressure relationship.

(2.2)

P 2 5
g _ Y{(r+1) .2 2 2 Y+ 1 4 8
_.5c_0._1+—z——-M0385 + Y Mg, Ss + 5

Mo

where & g is the shock flow deflection angle as shown in Figure 2.1, Equation (2.2) is

derived from the obligue shock equations which are simplified for hypersonic flow,

The pressure ratio P (p_e , for this typical case) is given hy the classical '"Prandtl-

8 5. . . . ips
Meyer" expansion relationship and isentropic flow conditions as



27
p M
e y-1 8 r-1
e (2)(0) o)
where Ke =M & o’ ) o being the expansion flow deflection angle, The derivation
of Equations (2.2) and (2.3) are presented in Reference 1. It is seen that the pressure

ratio -pg-— is given by the product of the oblique shock and simple wave expansion

a
pressure relationships. Equation (2.1) can be rewritten in coefficient form by use of

Equations (2.2), (2.3) and

c = 2 (_P__ ..1) (2.4)

P 2 P
)’McD @
as o 9y
szligszp; 22][1'( yz_l)(MS)Ke] - 22 (2-5)
)’Mco w YMGD
where 5
P = Y+ 1 +/\/)f'+1 N 4
8 2 2 K2
s

It is noted that for a given airfoil thickness distribution & < depends on the angle of
attack and leading edge slope only, 8 o varies with x, however. Equation {2.5) is the
expression Linnell had derived, It affords a means to compute pressure coefficients

on slender rigid airfoil configurations at moderate hypersonic speeds.

In order to use Equation (2.5), certain flow deflection angles need be
defined, These angles are those physical quantities through which the air turns to
produce an increase or decrease in surface pressure. Since the aeroelastician
treats flexible configurations rather than rigid ones flexible flow deflection angles
must be defined. It is noted here that in Linnell's method the flow deflection angles
need be defined for two cases; namely for the equilibrium angle of attack @ less than
or equal to the leading edge slope of the upper surface and for o greater than or
equal to the leading edge slope of the upper surface. With the aid of Figures 2.2 to
2.4 and the definitions in Section 2.1 the required flexible flow deflection angles can

be stated as follows:
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Two pressure coefficient expressions are obtained for a particular airfoil
shape depending on which set of flow deflection angles are chosen, or better still,
what range of angle of attack the aeroelastician is working in. This state-of-affairs
is detrimental to a static aeroelastic solution since the aeroelastician must "switch
over' to a new set of Cp relationships whenever a (0) 2 4 bu(O). In addition, it is
seen from Equations (2.6) and (2.7) that consideration must be given to the value of
the equilibrium angle of attack at the leading edge. Thus another drawback in using
Linnell's method for flexible configurations is that the aeroelastician must have
previous knowledge of the equilibrium angle of attack at the leading edge before a
solution for Cp can be obtained. In a practical sitnation this information is what the
aeroelastician solves for through the interaction analysis, Means for circumventing

these difficulties have been found and are presented in Section 2.2,2,

The desired lifting pressure expression can be derived by applying
Equation (2.5) to each surface of the airfoil under consideration. In addition the
coordinate system shown in Figure 2.1 can be transformed into a more convenient

nondimensional coordinate system by use of

X
= — = = T =
¢ o cT t ! c
max

t
z_ Z max (2.8)

Also define g
b dz Td
8 f

af == a = %, K=Mgy T (2.9)

Use of Equations (2.8) and (2.9) in Equations (2.5} to (2.7) yields the expression:

C. 2
— = SOE(§)- —5 (2.10)
T Y

11



where

2
S(0) = 8§ “@©P +
B¢ 5¢ YK

o [l o F

The flow deflection angles become:

For 0 £a(0= g, (0)

O, 0,0 =5, © - & 0, Ge,uf(E)z[gu(O)-gu (E)]— [& (0)-E<e)]
(2.11)

as’jf(0)= @ (0) - g 4 (0), ee’jf(f)r[gi(f)—gzw)] —[E (£)- 5(0)]

For a (02 g, (0)

Oon @ =00 Og (=T (6) -8, (&)
(2.12)

Bs,lf (0) = E(O)-gj(m. ee’jf(£)=l:g£(.s)~g/€(0)]-[a(g)-a(oi

The lifting pressure coefficient can now be obtained by substituting Equation (2.10)

into the following expression:

C
p
A p/d L _u (2.13)

or
(2.14)

12



where

2 2
Sp0)= 8 0P +
l S,ﬁ’f S,/@ sz
2 2
Su(O) = § s,uf (0) P u +

(0)+\/(~—~ ﬂ 0 + 8S 1,

2
2 Y+ 1 2 Y+ 1 4 4 2
u © Ps,u - (__53" )9 s, uf(O) +A/(~2_ ) asa,uf(O) +;§_ 8s, uf(o)

2
8. lip, 4° (

Tt
— M 2)(
-1 8 y-1
Ej(€)= 1(l~)(——) K 6 (a)}
y2 L 2 Mep/p e,
27
I M
o ) (= r=1
Eu(E)— 1 (2 )(Mw ng'u(f)jl
L u f
The flow deflection angles 98’ uf(0), Bs,jf(O), 8 uf({)and Ge jf(f)are
given by Equations (2.11) and (2.12). Note,when[( > )(M ) e () 2
(e f

1, the terms Eu (£ )and EI { £ ) should be set equal to zero.

The Mach number ratio in Equations (2.10) and (2,14) is given by

oali) o ]
(2) | ool )Hm,] Mm(_)[(y o2} o0 ]

(2.15)

(&)

13



If the Mach number is sufficiently high the second term in Equation (2.15) can be
neglected, then

Pg

(MS )2 (Y+1)(Fm>+(7—l)
-—M-{'I-:) = D b (2.16)

o) o]

Figure 2.5 shows plots of Equations (2.15) and (2.16) for various Mach numbers. It

can be seen from this figure that the second term in Equation (2.15) does not become
negligible until My # 15.0. However, no mention has been made of the maximum
pressure ratios expected when Linnell's method is used. First, it must be recalled
that in the derivation of the tangent-wedge pressure relationship, the assumption
tan” & g P st is made. This means thatd 5 15°. Using this condition

in the tangent wedge pressure relationship yields

ps 2 2 -2
——-> = 0.0580 My + 0.370 My 0.0247 + M, + 1,00. (2.17)

P
D/ max

Use of Equation (2.17) in Equations (2.15) and (2.16) gives the results shown in
Figure 2,6, It is seen that for the maximum pressure ratios permissible af each

Mach number the differences between Equations (2.15) and (2.16) are not large and

P P
in fact decrease to zero when(—-—us— ) < ( s ) . Another evaluation of Equation
Po P /max

(2.15) and (2.16) is shown in Figure 2.7. In this figure the lifting pressure on a rigid
half-diamond airfoil, in the interval 0.50 < % £1.00 was computed for various
Mach numbers using Equations (2.14), to (2.16). The differences obtained using
Equation (2,15) or Equation {2.16) are insignificant at the lower Mach numbers. At
the higher Mach numbers the results are identical. From the above discussion, it
can be concluded that small differences in the Mach number ratio give rise to smaller
differences in the lifting pressure function. For the purposes of this study Equation
{2.16) will be used to determine the Mach number ratios. In closing this particular

discussion, it is noteworthy to point out a mathematical error in Linnell's original

paper. An expression for the Mach number ratio is

14
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M 2 Y+ 1) K 2 P o+1
( 8 ) _ 1 4 8 s (2.18)
M RTEZS! 2 )
a
( 4 ) Ks Ps +1 A K 2 P +1
2 8 8
- r-1 - o 7+ 1
Linnell had listed r in the denominator of the first term as n The

accuracy of (Equation (2.18) is easily verified by substitution of Equation (2.2)
into Equation (2,16).

2.2.1 Region of Validity of Linnell's Method

The region of validity of Linnell's pressure prediction method is
based on both mathem:.tical and physical approximations. These approximations
arise in the derivation of the shock and expansion pressure ratio expressions. In
the development of tangent-wedge theory, which predicts the shock pressures, the
only physical assumption made is with respect to the flow deflection and shock
wave angles. In Reference 9 it is stated that tan 8 s » 3 S which yields the
approximation 0 £ 3 5 <€15°, No approximation is made with respect to the Mach
number and it can only be assumed that tangent-wedge theory holds for Mg 2 3.
The region of validity of tangent-wedge theory in terms of the hypersonic similarity
parameter KS =Mgp 8 o’ is

K 20 (2.19)

In the development of the expansion pressure ratio relationship for hypersonic speeds
the physical assumption is made that the free stream Mach number is large such

that MS>> 1. This being true then the following approximations can be stated

,}Mz-lea.nd M2—1 &® M (2.20)
5 8 e e

In addition, a mathematical approximation is made in the derivation of the expansion
wave turning angle v. The formulation of a mathematical expression for ¥ depends
upon the series representation of the arc tangent functions in the equation for v .

In the present case, only the first two terms of the infinite series representation of
the arc tangent functions are used. This approximation limits the size of the expan-

sion flow deflection angle & e from a mathematical point of view, physically & a

7



can be of any magnitude, The Mach number limitations expressed by Equation (2.20)

result in the restriction
Mg 2 5.0 (2.21)

Another limitation arises from the expansion pressure ratio expression, namely
Equation (2.3). As previously mentioned Equation (2.3) can be used only for the

condition

M
Y-1 8
( 5 )( Mao) K, <1 (2.22)

Physically, the expansion pressure cannot have a value below zero; Equation (2.22)

insures this. For ¥ = 1,40 Equation (2.22) becomes

M
K, $5 (Moo) (2.23)
8

The Mach number ratio is greater than or equal to one so that the lower limit would
be

Ke < 5.0 (2.24)

In the shock case K 2 0 and in the expansion case K, £ 5,0. Since
these cases are used in combination in Linnell's method the maximum permissible
value of the similarity parameter would be K§g £  5.0. In summary it can be stated

that for the

Shock case only Kg >0, Mgz 2 3.0
Expansion case only Ke < 5 Mgp2Z 5.0 (2.25)

Shock-Expansion Case KS € 5 Mg 2 5.0
(Linnell's Method)

The last of Equation (2.25) may be rewritten in terms of the hypersonic similarity

parameter K as
K8 £ 5.0 (2.26)

Note that no restrictions have been placed upon K.
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2.2,2 Discussion of Linnell's Exact and Approximate Methods

In the discussion of Equations (2.5) to (2.7) mention was made of
the difficulty an aeroelastician would have in applying Equation (2.5} to a flexible airfoil
since the unknown equilibrium angle of attack at the leading edge of the airfoil, @ (0),
is needed in order to compute Cp. One means of overcoming this difficulty is to
assign a known value to @ (0) which fixes the shock flow deflection angles and
portions of the expansion flow deflection angles. In addition the Mach number ratios
are known since they depend upon these flow deflection angles. With these known
quantities a static aeroelastic analysis could proceed unheeded, however, the question
naturally arises as to what quantity or value should be assigned to a (0). Since a
static aeroelastic analysis is begun by choosing a value for a g (and other inputs
such as Mg and altitude) the logical choice would be to set @ (0) = @ g This
approach would seem to be entirely feasible as long as a S 0/ a g << 1
The approach described above will be called Linnell's "approximate' method. The
use of Equation (2.5) "per se", that is, the application of this equation using a (0)
rather than a g will be called Linnell's "exact" method, Two examples will be shown
in which a static aeroelastic solution is performed by use of both the "exact' and
"approximate’' methods.* The first example treats the classical simple cantilevered
beam while the second treats a square cantilevered wing. Geometric and structural
input data for these examples are given in Reference 5, Appendix A.1.0 and Reference

6, respectively,

The two bagic interaction equations for these examples are

{a}: {ag}+ {as} (2.27)

and

{as} B q[saz]l_R] { qu} 2.28)

* For the reader unfamiliar with the subject of Static Aeroelasticity References 5,
6, and 12 should be consulted,
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where { a sl is a column mairix of local structural slopes

{ ‘ﬁ_ql.)_ } is a column matrix of local lifting pressures

{ Cl} is a column matrix of local equilibrium angles of attack.
[3‘ ] is a square matrix of structural slope influence coefficients

az
I.R] is a diagonal matrix of reference point areas

Equations (2.27) and (2.28) are used in conjunction with Equation (2.14) to effect a

solution for the equilibrium angles of attack by use of an iteration scheme.

Results of the static aeroelastic analyses are presented in terms
of equilibrium angles and pressures in Tables 2.1 and 2,2, Study of Table 2.1 shows
that good agreement between the methods is obtained for the three cases considered.
It appears, however, that larger differences exist between the lifting pressures than
bhetween the equilibrium angles of attack when the exact and approximate methods
are compared. The general trend in the results shown in Table 2.1 are unaffected by
the change in K § 5 the hypersonic similarity parameter based on My, and 8 sy
Results for the cantilevered wing are given in Table 2.2 and show excellent agree-
ment between Linnell's exact and approximaite methods thereby further establishing

the validity and use of the approximate method for static aeroelastic analysis.

It is concluded from these studies that Linnell's approximate
method can be successfully used for determining hypersonic static aeroelastic
solutions. In order to use this method the aercelastician replaces a (0) by a g in
Equations (2.11), {(2.12) and (2.14) therebyeliminating an unknown parameter. It is
emphasized, however, that if the a s {x) distribution were known then @ (0) would
be known and the exact method could readily be used. Such an approach is used in
Section 4.0 where theoretical and experimental pressure coefficients are compared,

In that section, Q 5 (x) is replaced by the known local twist and camber angles.
2.2.3 Derivation and Presentation of Lifting Pressure Functions

Lifting pressure functions using Equations (2.11) to (2.14) have

been derived for the ten airfoils shown in Table 2.3, Results are given in Tables

20



TABLE 2.1

RESULTS OF FIRST ILLUSTRATIVE EXAMPLE

Input Data: Mgy =10, § | (0)=2.86% q =10 psf, 7 =0.10

u
a , = 1.50°% 0.762 < |K38| < 0.878 e
Ref. {a } . }'
Pt. Exact. Approx. Exact, Approx.
1 0.0268 0.0268 0.0183 0.0188
2 0.0339 0.0340 0.0235 0.0239
3 0.0378 0.0380 0.0266 0.0269
a =2.75°,0,980% 'KS , < 1.20
g s
1 0.0492 0.0492 0.0341 0.0348
2 0.0626 0.0630 0.0444 0.0456
3 0.0700 0.0707 0.0504 0.0519
a =4.0°1.80 < IKB Ig 2.21
g
<]
1 0.0713 0.0713 0.0442 0.0436
2 0.0879 0.0879 0.0554 0.0553
3 0.0970 0.0971 0.0622 0.0624
TABLE 2.2
RESULTS OF SECOND ILLUSTRATIVE EXAMPLE
(0) = 0°, T = 0.0250

Input Data: M, = 10, & (0) = -2.866°, B
O b£

b

g=10psf, a g=1.5°

u

Ref.

Pt. Exact. { a} Approx. Exact. { %‘R} Approx.
1 0.0260 0.0260 0.0281 0.0281
2 0.0271 0.0271 0.0103 0.0108
3 0.0273 0.0272 0.0288 0.0288
4 0.028b6 0.0285 0.,0108 0.0110
5 0.0283 0.0282 0.0295 0.0294
6 0.0290 0.0289 0,0292 0.0299
7 0.0293 0.0293 0.0112 0.0117
8 0.0294 0.0293 0.0112 0.0117

21




2.4 and 2.6. Either the exact or approximate method may be used to compute lifting
pressures from these equations. A typical derivation of a lifting pressure function
is shown below, Consider the single parabolic airfoil whose geometric properties
are given in Table 2,3. In accordance with Equation (2.14) the following flow deflec-

tion angles are written:

For 0 < a © < 4 a () > 4

0 =4-a(@© 0 =0

8s,u

a (o) 8g,4 ©

é?s,u

6g g © a (o) (2.29)

I
Rt

8o o (&) = 8Era(E)-a0) g, (&) (§)-40-2¢)

0 - a (&)

fl
=]

8o, p(8) =2 ®-3(&) g, (&)

Substitution of Equations (2.29) into Equation (2,14) yields

For 0 A< 4

2
o [ o5 wot S oo

[

- M N ,_g,l’__
- _ - Y -
- (2 ) k(a@-a ¢y ! (2.30)
i 2 A Mol

B 2
2 Y +1 = 2 Jr+ 1 = ond L 4 a (o0
- ———2+('—2—)(4— a (0)) + ("—2——) (4 -a(0)) +—'K'é(4—a(0))} X

- 2Y

M [l
1- (’L;__l)(_ﬁf'a) K(ag-»a(g)-a(m)} r-1

u
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For a0 2 4

2
Ap/q _ 2 Y+1 V= 2\ﬁ+1_ ~ 4 4 - 2
2" { K2+< 5 )a(O) + (2)a(0) +—5 @(0) }x
Y

K
M 2Y
Y-1 s - — r-1
‘:1- (—5* )(ﬁa))‘ K (a(0) -a(f)):, (2.31)
27
- 22 [1-(%3)K(6(€)—4(1-2&))]Y'1
YK

Equations (2.30) and (2.31) may be rewritten in the notation of Table 2.4 as

...._,_AP{Zq = (ro + rl) el'— (rO + r7) 311 valid for 0<a 0) <4, (2.32)
T 0 €& <1

A___P/zq = (rO + rl) e - T, €, valid for a (o 24 (2.33)
T 0 £E=1

From study of Equation (2.14) and Tables 2.4 to 2.6 it is seen
that the lifting pressure expression is a complex nonlinear function of the equilibrium
angle of attack as well as other pertinent parameters. For purposes of efficient
static aeroelastic analyses the present formulation of the lifting pressure functions
is not satisfactory. It is best to express aerodynamic inputs for such analyses in the
form of aerodynamic influence coefficient matrices. The next section of this report
describes the formulation of Linnell's method in influence coefficient form, Means

for obtaining these influence coefficients are described and are presented graphically

in Volume 2 of this report,
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TABLE 2.3

SUMMARY OF AIRFOIL SHAPES AND SLOPES

Alrfoil Equation Slope
Flat Plate N,= Mg =0 8,8y 0 0s € €
| e ————ea-usm—
Half Diamond M, =2 3 g, =2 ,0 S & £0.50
= 2(1-¢ - - <ég
n, = 20 &) g, = -2 ,0.50<¢8<€1
= - s <
T np=0 gy 0 0% 8 <1
Double Wedge 7, = 0.50§ g, = 0.50 L0<€ E <1
—] 2=y Bp= "By
Diamond "?u:€ g, =1 ,0S & S 0,50
=1- = - <& <
n,- 1< g, = -1 ,0.5. £ <1
<> Ng=- & gp=-1 L 0SE < 0.50
n£=§_1 gp=1 ,0558 €1
Single Parabolic '-'7U=4E (1-&) gu=4(1-2£ } ,0sé€ <1
=0 = ,0 ¢ <1
P — gy gy=0 3
Double Parabolic - 'nu=o.5o€ (2-§) gu=1—€ ,0S€ <1
Blunt T.E. M, = _
l_ tu gj gu
]
Single Wedge nu= g, = 1 0sé< 1
— = < <
—_—] 7y =0 gy =0 LRI
Single Parabolic My = £ @2-&) B, ~ 2(1-€ ) 0S8 <1
Blunt T.E. _ ~ B <
P — KA o R
Single Wedge - Plate nu_.s/el ga=1/¢& ,0< &< €1
‘ =1 =0 . <¥ < 1
= = < <
'Y]ﬂ 0 ng ] L0 % & €1
. 0.50 c s <
Modified Double Wedge Mu=050&/&; I8y ahra L0sESE
¢ 1
|<14$ Tu =050 By = 0 83858,
_ 0.50
E E nu=o.50(1—('%) By =~ £, 5ES1
=1 - .. 3
2 1 77!”‘ 'nu gﬁ“'gu
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TABLE 2.4
SUMMARY OF LIFTING PRESSURE FUNCTIONS

9 -
Airfoil A p/q/ v for 0 £ @ (0) £ 8, (0
Te -~f(r. +7)e <
Flat Plate roe20 ( 0 + rl) €, for a (0) £ 0,
T=0
-Di - ¢ =
Half-Diamond (rO + rl) e (r0 + r2) e, 0 0.50
- < <
(ro + rl) e1 (r0 + rz) e3 0 50_.6 1
- < <
Double Wedge (ro + r3) ey (rO + r4) e, 0 < { <1
i - < <
Diamond (r0 + r5) el (r0 + r6) e2 0= f < 0,50
- < <
(ry+ T e, = (T, + T e 050 <& <1
i i - <§& <
Single Parabolic (ro + rl) e (rO + r,?) €1 0= f b |
Double Parabolic| (r.+r e, -(r.+r)e 0 =< ESI
Blunt T.E, 0 5 13 0 6 14
i < ' < ¢ <
Single Wedge (r0 + rl) e (r0 + r6) e, 0 f 1
Single Parabolic | {r + v )e, - (v, + T )e 0 <€ <1
Blunt T.E. 0 171 0 "2 716
; - - < <
Single Wedge (rg+r)e - (r,+r)e, 0§ < 1
Plate r+r)e -(r.+T)e
(rgtrpe; ~ g rg) ey 1285,
Modified Double | (r.+r )e -f{r. +r_ )e 0< € <¢
Wedge 0 g 1 0 10 2 1
- < <
(r0+ rg) €51 (r0+ o €22 81— € = 6
(r0+r9)923'(r0+r10’e24 Ezﬂf <1
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TABLE 2.4 (CONT)

Airfoil Av/g/t " for @ (0) € g, (0 Valid
— — —— _ — = )
Flat Plate (r0 + rl) €1~ T €y for @(0) > 0, 0 €& < 1.0
T=0
_Di - < <
Half-Diamond (r0+ rl) e " T8y 0 £ & £0.50
- <§ <
(r0+r1)e1 r0e5 0.5 _E =
- - R .
Double-Wedge (r0 + r3) €~ Tolg 0 6 1
i < <
Diamond (ro + r5) e " Ty 0 €& £0.50
- 50< <
(ro + r5) e7 rOel{] 0.50< E 1
s s \ _ < S
Single Parabolic | (rg+ r}e -roe ., 0 € §<1
i £§ <
Double Parabolic (r0 + r5) €18~ Toys 0 5 1
Blunt T.E.
. _ < & <
Single Wedge (rO + rl) € = Toly 0 = E =1
. . _ < <
Single Parabolic (rO + rl) e " To®y7 0 < f <1
Blunt T.E.
i - - < <
illrﬁie Wedge (r0+ r1) € " T%ig 0= f < f 1
- < <
(rg * ry) e = rgey, FERIER!
. _ < £<
x:glgf;ed Double (r0 + r9) € " Toeos 0g &< € 1
- < <
(fg * Tg) Ca1 = To®a0 {sés¢
- < ¢ <
(fo + Tg) €o5 ™ ToCoq PERER
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TABLE 2.5
TABULATION OF r FUNCTIONS
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TABLE 2.6
TABULATION OF e FUNCTIONS
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SECTION 3.0

FORMULATION AND PRESENTATION OF AERODYNAMIC
INFLUENCE COEFFICIENTS

3.1 GENERAL

The concept of an aerodynamic influence coefficient, or an array of such
coefficients, which is called an aerodynamic influence coefficient matrix, has been
previously discussed in References 13 and 14, The matrix relationship between

angle of attack and lifting pressure can he written as

(82} [a] {4}

where [Q ] is defined as an aerodynamic influence coefficient matrix. Equation (3.1)
is based on the assumption that the relationship between pressure and angle of attack
is linear, This is generally considered to be true in the supersonic speed regime; it
is not, however, necesgarily true at hypersonic speeds. This then leads to a new

definition of aerodynamic influence coefficients for the higher speeds.
Consider the half span swept wing shown in Figure 3.1 with the hypersonic

"pressure loadings" (éfig)l and (%)J at points i and j, respectively. It had

Z'Y

Yo (&) (88),

Figure 3.1. Aid in Defining an Influence Coefficient
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been demonstrated in Reference 1 that the lifting pressure at point i is a2 function of

the angle of attack at point i only and not at j as well. Likewise, ('%B)j is a function

ap
P q
a i does not affect (lﬁ—-).. Therefore, one needs only to consider the basic relation-

ship between (__A__E)i and a i in order to determine the desired aerodynamic influence

q
coefficients. Aerodynamic influence coefficients in the hypersonic case are defined as

of a j only. In this manner the "influence" of aj upon ( )i does not exist. Also,

"those quantities which relate the aerodynamic load (or pressure) at a particular point
to the angle of attack at the same point and only that point''. This definition yields dia-
gonal influence coefficient matrices since the off-diagonal elements are zero. The off-
diagonal elements relate the aerodynamic load to the angle of attack at other points
than the one in question and this relation or influence does not exist in the hypersonic
case. The above definition can best be shown mathematically. In general, it may be
wriiten that

AD = :

(-——q )i F. (a) (3.2)
According to Reference 1 typical forms of Equation (3.2) are
2
Fplap=9q, 9, @ (3-3)
1 1

F. (a,) = a . + e’ (3.4)
p (ay = q1i i qsi i :

The quantities qoi, qli ete. are aerodynamic influence coefficients as previocusly
defined. The subscripts 0, 1, 2, ... n are equal to the powers of a i which they
premultiply. The influence coefficients are functions of the parameters & i T,
My, 7, and airfoil shape. Equations (3.2) to (3.4) can be readily put into matrix
form. This is highly desirable since it preserves existing static aeroelastic notation
and matrix techniques previously developed in supersonic and hypersonic aero-

elasticity studies.
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3.2 COMPUTATION OF AERODYNAMIC INFLUENCE COEFFICIENTS

Since Linnell's pressure relationships are complex functions of the equili-
brium angle of attack it would be advantageous to reformulate this method to yield
relations such as Equations (3.2) to (3.4). This can be accomplished by computing
lifting pressure values using Linnell's method and then fitting a polynomial to these
values. The coefficients of the polynomial are the desired influence coefficients in
accordance with the above definition. In addition, this representation satisfies two
objectives, namely (1) derives an explicit relationship between lifting pressure and
angle of attack and (2) derives a set of input compatible with the nonlinear static
aeroelasticity FORTRAN program of Reference 6.

Curve fitting studies demonstrated that a third degree polynomial (cubic)
provided the best '"fit" to the lifting pressure values. Thus, aerodynamic influence
coefficients were computed for the ten airfoil shapes listed in Table 2.3 using an
IBM 7090 electronic digital computer. The lifting pressure relationship given by
Equations (2.11) to (2.14) was programmed in FORTRAN language. Included in the
program was a least-squares curve fitting procedure which fit a cubic equation to
the lifting pressure values computed by use of Equation {2.13). Program input data
consisted of the geometry of the airfoil and the parameters € 1° a (0}, a ( £ )
and K.

The general computational procedure used is as follows:

(1) Select airfoil geometry.

(2) Select 3 1» €, @(0) and K values. (Note that @ (0) is not taken to
be Q ; at this point. For purposes of aeroelastic analyses the aero-
elastician can then choose @ (0)= @ g when formulating the I_Qn]
matrices.)

(3) Input Items (1) and (2) into the FORTRAN program.

(4) Compute [:'\flp )i /'r 2 versus @ ( €) for known sets of @ {0), K for
51, and € values,

(b} Use least-squares curve fitting subroutine to fit a cubic equation to
the data of step (4).

(6) Print out the coefficients of the cubic and the standard deviation o
of the curve fit.
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Typical results of Steps (1) through (5) are shown in Figure 3.2, Standard engineering
plots are used to present the aerodynamic influence coefficients as a function of K

and @ (0) for each section listed in Table 2.3,

Numerical values of the parameters a ( '3 ), @ (0), and K were chosen
to best describe flight conditions, airfoil geometry and static aeroelastic deforma-
tions that would be encountered by a practicing aercelastician, The maximum air-
foil thickness ratio is assumed to be equal to 0.20, With this assumption, numerical
ranges of the parameters can be defined, For the moderate hypersonic speed range
K will then have the values 0 £ K < 3. By definition @ (0)= @ g when Linnell's
approximate method is used. @ g is a function of the thickness ratio T and the
maximum value of a g permissible, Figure 3.3 displays @ (0) versus 7 for
vaﬂrious values of @ g From this figure it can be seen that an upper limit of

Q@ (0) = 5.0 is more than sufficient to cover the T range when a2 maximum value of

a . =15° is chosen, The range of the parameter a ( '3 ) depends upon the struc-
tural slopes @ _ ( € ) and thickness ratio. Figure 3.4 shows @ ( £ ) as a function
of 7, C!S ( €)and a g assuming various multiples of ag for CIS (€ ). Itis

seen from this figure that an Q (£)=3.0and @ _ =0.50 @ is sufficient.
max 8 g

The SHARE subroutine described in Reference 15 was used to fit a third
degree polynomial to the lifting pressure points obtained from the FORTRAN program.
This subroutine fits polynomials of order one through seven to N given points by the
method of least squares. The standard deviation ¢ was used as a measure of how
well this subroutine fit the pressure points. A ¢ £ 1.0 was considered acceptable
for a satisfactory curve fit. It was found that the value of O could be grossly
affected by the numerical values of @ ( & ) chosen in the computing process.

Results of curve fitting studies dictated that the lower portion of the interval
0< @ (€)< 3.0 be heavily populated with pressure points in order to keep

o < 1.0,
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Figure 3.2, Typical Lifting Pressure Curve Fit

35



20-}

15~ a
20°
15°

a (0) 10 ‘ 10°
{Reduced °
radians) “ 3

5

¥ 1
0 0.05 0.10 0.15 0.20

Figure 3.3. Parameter a (0) versus ¢

T 1
0 6.05 0.10 T 0.15 0.20 0.25

Figure 3.4. Parameter a (&) versus ¢
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3.3 ILLUSTRATIVE EXAMPLE

The method for determining aerodynamic influence coefficients for a
slender sharp nose airfoil is presented. Consider a rectangular wing with cross-
sectional and flow properties as shown in Table 3.1. Using this information and
Figures 5 to 14 in Volume 2, the coefficients given in the center portion of Table 3.1
are obtained. Experimental values for this wing are available in Reference 16,
Using the coefficients in Table 3.1 yields the comparisons shown in the lower portion
of the table. Although theoretical predictions are somewhat higher than test values,
the comparisons shown in Table 3.1 are considered to be satisfactory when the
inherent inaccuracies in the test data are taken into account. It is noted that the
theoretical lifting pressures obtained by using Dorrance's method, Reference 1,

agree within 10% of those obtained using Linnell's method.
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INPUT DATA

TABLE 3.1
AND RESULTS FOR ILLUSTRATIVE EXAMPLE

Input Data
Half Diamond Section
Mg =6.86, c=4inches
2b =4inches, T =0,050
gy =0°6°

Aerodynamic Influence Coefficients

Qo) =0, K-=0.343

0.050 -0.0426 0.905 -0.950 6.60
0.315 ~-0.0426 0.9056 ~-0,950 6.60
0.685 0.0218 0.390 0.500 4,00
0.950 0.0218 0.390 0.500 4.00
@ (o) = 2.09, K=0.343
< do; 41 a2 a3y
0.050 -0.0435 0.920 -1.05 6.00
0.3158 -0.0435 0.920 -1.05 6.00
0.685 0.0208 0.390 0.5560 3.80
0.950 0.0208 0.390 0.550 3.80
Theory to Test Comparisons
{7}
q
a - 0o _ 60
{e} - {v} {eet {7}

i Test Theory Test Theory
0.050 -0,0404 -0.0426 0.,0467 0.0506
0.315 -0.0402 -0.0426 0.04586 0.0506
0.685 -0.0153 0.0218 0.0623 0.0720
0.950 0.0199 0.0218 0.0596 0.0720
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SECTION 4.0

COMPARISONS OF THEORETICAL AND EXPERIMENTAL
PRESSURE DISTRIBUTIONS

4.1 GENERAL

The purpose of this chapter is to present comparisons of theoretical and
experimental pressure distributions in order to evaluate Dorrance's and Linnell's
pressure prediction methods as to their accuracy and range of validity when applied
to warped and fwisted wing geometries. Experimental data obtained on Contract
AF33{616)-6846 by Grumman Aircraft Engineering Corporation for the Flight Control
Lahoratory, Aeronautical Systems Division was used. Results of this program are

available through Reference 10,

Comparisons are graphically shown in two ways. First there is the type
of presentation shown in Figure 4.3. A line of perfect agreement between theory and
test and lines of +10 percent deviation are shown, Although many features, such as
chordwise and spanwise variation of the pressure coefficients, are not readily
distinguishable, this method of presentation was chosen as the most feasible manner
of comparing theory to test values in a reasonable number of figures. Only data
points of maximum and minimum theory to test agreement have been presented, In
this manner test data scatter can be shown. The second means of displaying com-
parisons are the use of standard engineering plots such as shown in Figure 4.4. It is
noted however that only typical sets of comparisons are given in order to give the

reader a better understanding of the chordwise variation of the pressure coefficient.
4.2 DESCRIPTION OF WING MODELS AND TEST CONDITIONS

A thorough description of the wing models, tunnel test conditions,
instrumentation and run schedules is given in Reference 10, For the sake of com-
pleteness a brief review of these items are included in this report. Tests were
conducted on the following wing models, sketched in Figures 4.1 and 4.2, at nominal

Mach numbers of 12,0 and 19.0:
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25°
1 — 1 1t

< —-.
L 0.594 E0.188
d 32° 4,500

Dimensions in Inches

Figure 4.1. Sketch of Flat Rectangular Wing

Dimensions in Inches

Figure 4.2. Sketch of Flat 70° Delta Wing
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A. Réctangular Planform

Condition Twist Distribution
1. Flat a =10
s
2. Circular-are camber a g™ 5-10 (x/c)
3. Symmetrical linear twist a_ = 5(y/b/2)
B. 70° Delta Planform
Condition Twist Distribtuion
1. Flat a =0
8
2, Circular-arc camber a_= 5-10 (x/¢c)
3., Sine~-wave camber a_ =5cos 27 (x/c )
8 root

Twenty pressure transducers were located within each wing model measuring
pressures on the lower surface only. During test the geometric angle of attack, a g’

was varied from 0 to 15° in steps 0°, 2°, 5°, 10° and 15°.

To use Dorrance's or Linnell's pressure prediction methods, the unknown
equilibrium angle of attack distribution, Equation (2.27), mustbe determined,
Although the test models are not 'flexible', aeroelastically speaking, they can be
considered to be so by taking { a 5 } to be the local spanwise twist, or local chord-
wise camber angle. This approach was used for both wing models. The {a}

distributions so derived are listed in Tables 4.1 and 4.2,
4.3 COMPARISONS USING DORRANCE'S METHOD

This pressure prediction method states that the local pressure coefficient
is a function of the local flexible flow deflection angle at the point of interest. As

stated mathematically in Reference 1, Cp for the lower surface of the model is

L2 ye1 o 2 y+ 1 3
ij— Mﬂ)a’éf+( 5 ) Sﬁf+( ) Mg Bff

(4.1)
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TABLE 4,1
EQUILIBRIUM ANGLE OF ATTACK DISTRIBUTIONS - RECTANGULAR WING

Flat:

a

o

2

o

5

10°

Q

15

g
X
C

a

a

a

Q

0.050
0.149
0.260
0.371
0.482
0.593
0.704

0.03490

0.08725

0.17450

0.26175

L]

Linear Twist:

o]

=]

[

a, 0° 2° 5 10 15

y/b/2 a* a a Q o}
0 0 0.03490 0.08725 0,17450 0.26175
0.500 0.04363 0.07859 0.13028 0.21813 0.30538
0.917 0.07128 0.10618 0.15853 0.24518 0.33303

*The @ distributions are valid at all chordwise positions at any particular spanwise

position,

Circular Arc Camber:

o

[+

Q

o

Qg 0 2° 5 10 15

* a a a a a
0.050 0.07853 0.11343 0.16648 0.25303 0.34028
0.149 0.06125 0.09615 0.14850 0.23575 0.32300
0.260 0.04188 0.07678 0.12913 0.21638 0.30363
0.371 0.02251 0.05745 0.10976 0.19701 0.28426
0.482 0.00314 0.03804 0.09039 0.17764 0.26489
0.593 -0.01623 0.01867 0.07102 0.15827 0.24552
0.704 -0.03560 -0.00070 0.05165 0.13894 0.22615
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TABLE 4.2

EQUILIBRIUM ANGLE OF ATTACK DISTRIBUTION
70° DEL.TA WING

Flat:
a 0° 2° 5° 10° 15°
g
)
¢ /poot a o a a a
0 0 0.03490 0.08725 0.17450 0.26175
0.237
0.384
0.532
0.679
0,827
0.974
Circular.Arc Camber:
a 0° 2° 5° 10° 15°
g
X
(*c—) Q Q a Q a
Root
0 0.08725 0.12215 0.17450 0.26175 0.34900
0.237 0.04589 0.08079 0.13314 0.22039 0.30764
0.384 0.02199 0.05689 0.10924 0.19649 0.28374
0.532 -0.00558 0.02932 0.08167 0.16892 0.25592
0.679 -0.03212 0.00278 0.05513 0.14238 0.22938
0.827 -0.05706 | -0.02216 0.03019 0.11744 0.20444
0.974 -0,08271 | -0.04781 0.00537 0.09179 0,17904
Sine Wave Camber:
a 0° 2° 5° 10° 15°
g
X
(FL a a a a a
oot
0 0.08725 0.12215 0.17450 0.26175 0.34900
0.237 0.00685 0.04175 0.09410 0.18135 0.26860
0.284 -0.06500 | -0.03010 0.02225 0.10950 0.19675
0.532 -0.08568 | -0.05078 0.00157 0.08882 0.17607
0.679 -0.04092 | -0.00602 0.04633 0.13358 0.22083
0.827 0.04092 0.07582 0.12817 0.21542 0.30927
0.974 0.08603 0,12095 0.17328 0.26053 0.34778
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where the flexible flow deflection angle 3 4 (%) is defined as
f

S,é xx=a-8 {x) 4.2)
f

b/

Substitution of Equation (4.2) into Equation (4.1) and rewriting the result in matrix

form for all reference points gives the result

{eg, Lol {1} [l o [od{e"}+ [al{"}

where the elements of the aerodynamic influence coefficient matrices are given by

q. _ _7+1 3 v+l 2 2
0=~ Mo bp, @+ P8y, 0 - 5 O,
2 Y+ 1 2
4 =5 ~(r+DE, , WMy 8T @
L Mo 0L 2 ® by
_,ry+1 y+1
4 =) - 2)Mm8b£(x)
1 M
ay = () Mg (@4
i 6

Using the geometric properties of each wing model and the values ¥ = 1.4
and My = 12,6, 12,8, 18.9, and 19.2 yields the results shown in Table 4.3, It should
be noted that in applying Dorrance's method to a swept wing the geometric, properties

of the swept wing in the free stream direction should be used.

Use of Equation (4.3} and the tabular inputs in Tables 4.1 and 4.2 yields
the pressure coefficients shown in Figures 4.3 to 4.17. Experimental data is shown
by the various symbols while theoretical data is shown by solid lines. Results for
the rectangular wing will be discussed first. Figure 4.3 gives a quick comparison
of Dorrance's method with test data. The majority of the predicted pressure co-
efficients are below test values. Figures 4.4 to 4.9 show the chordwise variation of
the pressure coefficients, Note the values of the hypersonic similarity parameters

KSI . Test data might indicate that Dorrance's method could be used for l K8| 2

1.50. The chordwise trends of the test pressure coefficients for the circular arc
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TABLE 4.3

TABULATION OF AERODYNAMIC INFLUENCE COEFFICIENTS,
DORRANCE'S METHOD

ab = -0.4363 0 <X < 90,0892
Re lar Wing: ¢
ctangular Wing g, =0 0.0892 £ = < 1,00
by c
Mg 12.8 19.2
q4, 0 X <0.0892 [0.08925 X <1,00[0 < & < 0.0892[0.0892< X <1.00
C C C
q, 0.7218 0 0.9117 0
q, 4,1273 0.1562 5.5371 0.1042
q, 7.9016 1.200 11.4524 1.200
qg 5.1200 5.120 7.680 7.680
g,, =-0-15811 0< % < 0.1434
70° Delta Wing: 4 Root
b =0 0.1434 < re < 1.00
y4 Root
Mg 12,6 18.9
a 0<>X < 0.1434I0_1434_<_£ <€1.0 OS% < 0.1434 0.143453—— £ 1.0
“Roat € a0t Root Root
q, 0.0750 0 0.0766 0
q, 0.9160 0.1587 1.0520 0.1058
a, 3.591 1.20 4.786 1.200
q, 5.040 5.04 7.560 7.560
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cambered airfoil are predicted by Dorrance's method, However, the spanwise
variation of the test pressure coefficients for the flat and circular arc camhbered
airfoils are not predicted by this method. Theory dictates that Cp is constant

across the wing span since a depends only on x/c.

Figures 4.11 to 4,17 show comparisons for the 70° delta wing. As shown
by Figure 4.11, theoretical values of Cp are for the most part greater than ex-
perimental values. Best results have been obtained for the sine-wave cambered
wing. Trends in the experimental data are predicted by Dorrance's method. Note

the good agreement between Dorrance's and Linnell's exact methods for 'KSISLOO.
4.4 COMPARISONS USING LINNELL'S METHOD

Comparisons are made using Linnell's exact and approximate methods as
described in Section 2,0 of this report. Equations (2.10) and (2.12) are used to de-
rive the pressure coefficient expression for Linnell's exact method, Linnell's
approximate method is used in influence coefficient form as described in Section
3.0. It is noted that comparisons are only made for the 70° delta wing since
Linnell's method cannot be used for the rectangular wing due to the 25° leading
edge wedge angle on this wing. This angle and the large test Mach numbers yield
smgall values of MS which violates one of the approximations upon which Linnell's

method is based, i.e.,

.\/MZ -1~ M and /M2 -l M {4.5)
s 8 A/ e e

In addition to the above violation, another one is present. Since Ms and consequential-
ly Me are not large encugh, the expression for § e becomes less accurate since more
terms in the arc tangent series must be used to describe 8 o What this amounts to
is that large errors arise in the E( £ ) terms in Equation (2.13). These approxi-

mations are discussed further in Paragraph 2.2.1 of Section 2.0,
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4.4.1 Exact Method

In accordance with Equation (2.10) the pressure coefficient

expression for the lower surface of the 70° delta wing is:

ij/ . 72 S)é (o) E,@ (x/c) - 2 5 for a (0) 2 0 (4.6)
YMy

The flow deflection angles are determined by use of Equation (2.12), Results are

shown in Table 4.4. Use of these tabular entries and Equation (4.6) with Y= 1.4,

My = 12.6 and 18.9 yields the results shown in Figures 4.10 to 4.17.

4.4.2 Approximate Methed

The curve fitting procedures described in Section 3.2 were
used to generate the aerodynamic influence coefficienis given in Table 4.5. How-

ever, in this instance the¢ FORTRAN program was amended so that Cp was com-

puted rather than ‘%B . This was necessary since test data was obtained only on the

lower surface of the models. As discussed in Section 3.0, the pressure coefficients

can be stated in matrix language as:

(o) Lol { 1} [l [ @Ko} (2] {") wn
where the matrix elements are given in Table 4.5. Using these values and the

entries in Table 4.2 the pressure coefficients shown on Figures 4.12 to 4.17 are

obtained.

Study of Figures 4.12 to 4.17 show poor to fair agreement of
Linnell's methods with test data. Best agreement is obtained for the sine-wave
cambered wing. Trends in the test data, however, are definitely being predicted by
both the approximate and exact methods. Note the good agreement between the
exact and approximate forms of Linnell's method. This further establishes the use

of the approximate form in static aeroelastic analyses,
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TABLE 4.4

TABULATION OF FLOW DEFLECTION ANGLES, LINNELL'S
EXACT METHOD

Se’ Jx/e)
&) .f |
¢ /Root Flat Circular Sine
0 0 0 0
0.237 0.15811 0.19947 0,23851
0.384 0.22337 0.31036
0.532 0.25094 0.33104
0.679 0.27660 0.28628
0.827 0.30242 0.20444
0.974 v 0.32807 0.15933
8, (Y
a, 0° 2° 5° 10° 15°
Flat 0.15811 0.19301 0.24536 0.33261 0.41986
Circular Arc 0.24536 0.28026 0.33261 ¢.41986 0.50711
Sine - Wave 0.24536 0.28026 0.33261 0.41986 0.50711
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TABLE 4.5

TABULATION OF AERODYNAMIC INFLUENCE COEFFICIENTS,
LINNELL'S APPROXIMATE METHOD

a0)=a, 0° 2° 5° 10°

0< &4 € 0.1434

dg, 0.06876 0.06542 0.0629 0.06418

q, 0.9183 0.8298 0.7311 0.6367

A, 3.436 3,050 2.583 2.056

a3 19.90 15.89 11.42 7.085

0.1434 < § ; £ 1.00

do; 0.000666 0.001458 0.00314 0.00725

ay; 0.1630 0.1616 0.1640 0.1780

a2; 0.5740 0.5980 0.6240 0.6480

a3, 7.200 6.050 4.700 3.260
Mgp =18.9

a{0)= Qg 0° 2° 5° 10°

0< &, € 0.1434

dg; 0.06384 0.05967 0.05741 0.0599

a1, 0.9816 0.8381 0.7064 0.6027

dg; 3.705 3.188 2.623 2.046

9, 32.34 22.82 14.47 7.970
0.143¢ £ § ; < 1.00

dp, 0.001157 0.002157 0.004084 0.008391

dyy 0.1255 0.1249 0.1310 0.1507

dg, 0.21625 0.3523 0.4732 0.5680

d3, 9.671 7.47 5.360 3.480
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4.5 SUMMARY AND CONCLUSIONS

The purpose of making theory to test comparisons was to further
establish the use, accuracy, and region of validity of Dorrance and Linnell's
pressure prediction methods in operator form. Due to the fair agreement between
these theoretical methods and the test data no conclusive statements can be made
in regards to the accuracy and range of validity of the hypersonic aerodynamic
operators associated with these methods. It should not be hastily concluded how-
ever that the aerodynamic operators are of no use since the inaccuracies in the
test data must be accounted for as well as any shortcomings which exist in the
theoretical methods, These same theoretical methods have been successfully applied
at lower hypersonic speeds (See Reference 1). In regards to the test data, the
reader should consult Reference 10 for a complete discussion of data accuracy.

As stated in that reference ''the widest discrepancies in the test data were obtained
at reference points near the leading edge. Except for these points the average
scatter of the results was within +5 percent or less, Increased scatter was
apparent at the low angles of attack (0° and 2°)." Based on the above discussion
and study of Figures 4.3 to 4.17 certain observations and conclusions can be made.
These are:

(1} Chordwise trends in the test pressure coefficients can be predicted

using Linnell's and/or Dorrance's methods.

(2) Predicted pressure coefficients were generally below test values
for the rectangular wing and above test values for the delta wing.

(3} Best results were obtained for the sine-wave cambered wing,.

(4) Linnell's approximate and exact methods yield essentially the same
results, The approximate method gives pressure coefficients which
are somewhat lower than the exact method. These values however
lie between those obtained by use of Linnell's exact and Dorrance's
methods,

(5) The theoretical methods which used aerodynamic influence coefficient
matrices were easy to apply to the twisted and cambered wing models.

(6) Test data was well organized and graphically presented so that
comparisons were easy to make,
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(7

(8

(9)

The presence of a large leading pressure gradiant adversely affec~
ted the measured pressures. This pressure gradient was caused by
the large leading edge wedge angles (see Reference 10). Further
study indicated that the effect of the pressure gradient can be sub-
tracted out to some extent for certain twist configurations. This is
easily accomplished by forming a set of incremental pressure coeffi-
cients, defined as the difference between cambered {or twisted) wing
pressures and flat wing pressures. Figures 4.18 and 4.19 show
selected results. As seen, best results are obtained for the circular
arc cambered wings; results for the linear twist and sine wave
cambered wings are less satisfactory. In addition, the comparison
generally becomes poorer as Mach number and angle of attack are
increased. Theoretical predictions show that the pressure incre-
ment is invariant along the chord (or span) and the existing experi-
mental evidence, in certain cases, tends to bear this out. As pre-
viougly observed, trends in the test data are definitely predicted.
Thus, the conclusion reached is that pressure perturbations caused
by twist or camber can be adequately predicted by the methods of
this report or those in Reference 1. This would indicate that
absence of the leading edge pressure gradient could possibly result
in closer azgreement between measured and predicted pressure coef-
ficients. The phenenoma of item (8), however, may affect this con-
clusion,

The theoretical methods used are developed for so-called "sharp-
nose' airfoils. Hence the wing models must be geometrically and
aerodynamically sharp otherwise the ""sharp-nose" inviscid pres-
sures might well be masked by either boundary layer or blunt nose
induced effects. If these effects existed then the theoretical predic-
tions would be in error.

It is definitely felt that the type of tests conducted and the twisted
and cambered models chogsen were worthwhile. However, tests con-
ducted on models with smaller leading edge wedge angles and at
speeds in the range 0 £ M, £ 15 would make the application of
Linnell's and Dorrance's pressure prediction methods more feasible.
It is felt that tests should simulate, as near as possible, the physical
and mathematical approximations and idealizations pertinent to a
theoretical method in order to properly assess this method as to its
validity.
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SECTION 5.0
SUMMARY

It became apparent during the studies reported in Reference 1 that no
inviscid hypersonic pressure prediction method, expressed in influence coefficient
form, was availahle for IK Sl 2 1.0. The purpose of the subject study was to
extend the range of application of the influence coefficients, (as expressed by I KSI )
by using an existing inviscid hypersonic pressure prediction method and in addition
to evaluate the resultant aerodynamic influence coefficients by comparison withtest

data.

The range of application of the aerodynamic inputs developed in Reference
1 was extended by use of Linnell's pressure prediction method. Theoretically it was
shown that this method is valid in the range 0 £ I K 8| 2 5.0, however, one dis-
advantage of this method was uncovered. It was found that the lifting pressure for a
flexible airfoil is a funetion, in addition to other parameters, of the unknown equili-
brium angle of attack at the leading edge of the airfoil. It has beensuccessfully

demonstrated that by choosing @ (0) = @ _ the problem is easily solved. Another

method of solution is to iterate upon a (O)gby programming Linnell's method as a
subroutine in the nonlinear aeroelasticity FORTRAN program which is described in
Part II of this report. Using this method aerodynamic operators would be calculated
at each iteration for {Q} . The former method uses one known set of aerodynamic
operators which are valid for all {a} iterations. The additional accuracy and loss
in economy of the iterative method over the procedure derived in the present
investigation is questionable in the light of the good results obtained using the

present method. One certainty is that the iteration procedure described above would

increase the complexity of the nonlinear aeroelasticity FORTRAN program.

Previous formulations of hypersonic aerodynamic influence coefficients
(Reference 1) were easily obtained since lifting pressure relationships were poly-

nomials in @ . Inthe present study A p/q is a complex function involving algebraic
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sums and products of powers of Q@ , An accurate polynomial representation of

A p/q was successfully obtained by applying a least-squares curve fitting technique
to the complex a function. Volume 2 of this part of the final reporf presents aero-
dynamic influence coefficients using the approximate form of Linnell's method.
These coefficients are presented graphically and have been devised so that only the
pertinent parameters are shown. Unlike those developed in References 1, 13, and 14,
the influence coefficients are a function of @ g’ the rigid geometric angle of attack
of the aerodynamic surface. Hence the Aeroelastician must not only take into
account wing planform and cross-sectional shape, speed and altitude, but also the

rigid angle of attack in order to determine Qn matrices.

As with any theoretical method, it is desirable to assess its validity by
comparison with test data., Both Dorrance's and Linnell's methods have been com-
pared with pressure data measured on a series of warped and iwisted wing models
at hypersonic speeds. The test program was conducted by the Grumman Aircraft
Engineering Corporation. Due to the fair agreement obtained between the
theoretical methods and these particular test data no conclusive statements can be
made in regards to the accuracy and range of validity of the hypersonic aerodynamic
operators associated with these methods. Numerous results and conclusions based

on the theory to test comparisons are given in Paragraph 4.5 of Section 4.0.

The pressure prediction methods and the associated influence coefficient
matrices presented in Reference 1 were the first steps in detailing hypersonic aero-
dynamic operators for use in nonlinear static aeroelastic analyses. The work per-
formed in the present study and presented in this part of the final report extends

those methods developed in Reference 1.
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