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ABSTRACT

In certain *‘threshold learning processes'’ (TLPs) associated with pattern recognition and
sensory perception, the processof training an observer to recognize patterns or distinguish levels
of sensory excitation may be modeled by a finite-state Markov chain. When the statistics of the

LN

signals received by the observer move at random between two setsof patamerers, we have a “'two-
mode’’ TLP, modeled by a two-mode Markov chain. Using a probabilistic measure of effectiveness,
the effectiveness of a "'simple incremental’’ feedback policy is shown to be greater for two-mode
TLPs than for one-mode TLPs over a certain range of environmental and structural staristics. A

method of designing periodic train-work schedules for two-mode TLPs is described. ("'Train’’

Tt LR

and “'work’’ correspond to ‘‘closed-loop’’ and “‘open-loop’’ respecrively.) In many real adaptive
processes an ‘RC approximation’’ of the train-work dynamics is applicable. For these processes
the ratio of working time to retraining time, yielding a desired performance level, is maximized
when the work-retrain period is made assmall as possible. Many stochastic processes present
modeling problems of near psychological complexity. Ways in which open-loop/closed-loop
relationships can help the life scientist or engineer model adaptive stochastic processes by two-

mode TLPs are indicated.
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MEANING OF 5YMBOL

Row vector. In some casesr is
a column vector — this will be
clear from the context.

Row vector as a function of n.
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number of trials.
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I. INTRODUCTION

We are studying the effect of various forms of feedback on the adaptation characteristics
{ref. 1] of adaptive processes in the life sciences and man~machine interactions, We are also
searching for open-loop/closed-loop relationships in various stochastic models that will help us
explain the adaptive behavior of life processesin terms of simple feedback mechanisms.

Here we report a few results of a study of a simple form of threshold feedback as a training
policy for *two-mode®’ stochastic processes. Two-mode stochastic processes are stochastic
processes whose staristical parameters are themselves subject to statistical fluctuation. Specifi=
cally, these parameters fluctuate at random between two sets of values. Two-mode stochastic
processes are inherently more difficult to train than one-mode stochastic processes. This diffi-
culty is reflected in terms of a need for periodic retraining, which is not needed in one-mode
processes. On the other hand the effectiveness of feedback as a means for overcoming environ-
mental and structural fluctuations seems to be greater for two-mode processes than for one-mode

processes,

Among the resultsof this study are certain open-loop/closed-loop relationships that show
promise of helping us choose the best lengths of the training and working periods.

Our initial research has focused on adaptive signal detection in psychology and communi-
cation systems. In the future we shall select other particular processes in thelife sciences and
engineering, and we shall show how our understanding of the mathematics of feedback and adap-
tation can: (a) help construct models of these processes, and (b) suggest new experiments toward
enhancing our understanding of adaptation.

MAJOR CONCEPTS AND DEFINITIONS

In this section we shall sketch a few of the major concepts in our research, and present a
few definitions.

Adaptation Characteristics, Learning, Self-Healing: Many biological processes as well as man-
made processes are often described as "*adaptive’’ in some sense. Since adaptive seems to mean
s0 many different things to different people, we present our view of the meaning of this rerm. When
a process is adaptive, we mean that it exhibits certain invariances in its behavior in response to
fluctuations in its environment and its inrernal struccure, Specifically, an adaprive process will
exhibit the following adaptation characteristics [ref. 1]:

Stability:  The performance index remains within prescribed bounds
when the environment changes.

Reliability: The performance index remains within prescribed bounds
when the internal structure changes.

Learning may be viewed as a favorable time variation of the performance index when the en-
vironment undergoes a step transition. Self-healing may be viewed as a favorable time vari-
ation of the performance index when the internal structure undergoes a step transition. Thus
learning may be viewed as a facet of stability, and self-healing as a facet of reliabilirty.

Ignorance: Any discussion of adaptive processes must deal with the concept of ignorance.
The engineer’s ignorance of the precise nature of a machine’s future rask forces him to design



machines that will adapt to fluctuations in environment and internal structure, In bioclogical
processes these fluctuations are greater in complexity than in man-made systems, and the adap-
tive power of biological processes is correspondingly greater. When we use the term “‘ignorance,"’
then, in our discusslons of adaptive processes, we are referring to these unpredictable environ-

mental and structural fluctuations.

In an earlier paper, we dealt with a classof processes in which the ignorance of the environ-
ment and the structure was expressed by a stationary pair of *‘constituent’” probability densities
{tef. 2]. In the present paper we expand the scope of the ignorance by introducing the two~mode
stochastic process, in which the parameters of the constituent densities are themselves subject
to random fluctuation. This increases the amount of training needed to achieve a required per-
formance level, but it also increases the effectiveness of feedback as a means of accommodating
unpredictable events,

Plant: When the feedback loop of an adaptive processis removed, the system that remains is
called an open-loop process or “*plant.”” The plant denotes that part of a system which is being
trained by the feedback loop.

Stochastic Process: In many adaptive processes, ignorance of the stimulus environments
and of the behavioral characteristics of the plants is conveniently described in terms of proba-
bilistic or stochastic models. Examples occur in pattern recognition, communication systems,
human and animal learning, and randomly disturbed control systems, We take the liberty of calling
the processes themselves stochastic, even though only the models are truly stochastic.

We view feedback as 2 means of enhancing the stability and/or reliability of a biological
ptocess or a manmade machine. The feedback may appear as an explicit deterministic manmade

mechanism, such as the reinforcement pelicies in the simple learing tasks of the *'stochastic-
models-of-learning’” school of psychology; or it may appear as an implicit natural mechanism,
such as the apparent strengthening of neural firing mechanisms in response to frequency of use.
In either case, feedback is usually a deterministic mechanism, in contrast to the plant, which is
usually described stochastically. The reason for the stochastic description of the plant is two-
fold: (1) our ignorance of the plant and its environment is often conveniently expressed by proba-

bilities, and (2} the mathematics of certain stochastic models is convenient and suggestive.

Mode: In some stochastic processes, it is convenient to assume that the statistical parame-
ters of the models are themselves subject to statistical fluctuation. Here we have one stochastic
model superimposed on another stochastic model.

Under what circumstances is such a hypothesis warranted? The hypothesis seems warranted
whenever the measured statistical parameters seem to jump to new values very suddenly, and to
remain at those values over a period of time substantially longer than the interval used for esti-
mating these parameters. This situation occurs frequently in communicarion systems, and is ex-

plained by bursts of noise entering or leaving the channel [ref. 3]. We shall refer to such processes

as two-mode stochastic processes, When the statistics of a process are constant, we shall call the
process one-mode or stationary.

Each mode of a two-mode process is a one-mode process whose statistical characteristics
may be determined by fixing the statistical parameters of the environment at one of the two sets
of values. If such a fixing is not physically possible or practical, it might be achieved by a
computer simulation of the environment.



2, ANALYSIS OF TWO-MODE ADAPTIVE PROCESSES

Consider a plant in which a binary signal is transmitted through a two-mode channel. If the
channel is fixed in mode A, it acts as a zZero-memory channel with relatively good transmission

statistics. If the channel is fixed in mode B, it acts as a different zero-memory channel with rela-
tively bad transmission statistics. In a one-mode operation, i.e., in the case where the channel

is fixed at either mode A or mode B, the transmission statistics are stationary. In the two-mode
operation, the channel is only temporarily fixed at either A or B, and the transmission statistics
follow a random square wave as a function of time, such as the uppermost wave in Figure 1. In

the model to be discussed, the transitions between A and B are described by a Markov chain, as in-

dicated in Figure 2. This model is a generalized version of the burst-noise channel described by
E. N. Gilbert [ref. 3].
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Figure 1. Timing Relations between Mode-
to-Mode Transitions, Threshold Shifts,
and Sampling Pulses.
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Figure 2. State Transition Graph of the Mode-to-Mode

Behavior of a Two-Mode Process.
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Now suppose the plant is trained by a simple incremental feedback policy. In this feedback
policy the controlled variable is a threshold having K possible values: k=1, 2, ..., K. The threshold
is moved up or down in response to a false alarm or false rest, respectively. The threshold remains
fixed if no error is incurred or if a boundary threshold prevents a desired adjustment. This feedback
policy is discussed in detail in an earlier paper, where it is referred to as the simple-TLP rein-
forcement policy [ref. 2]. In this report we refer to it as the simple-incremental feedback policy.

As a result of this feedback, each mode is describable as a random walk of the form shown
in Figure 3. (In Figure 3, K is 3.)

Figure 3. The Random Walk Description of o One-Mode TLP with o
Simple Incremental Feedback Policy.

Note that the two-mode process is a special case of the situation where each transition
probability of a Markov chaia shifts unpredictably from one value to another. We shall see that
such an apparently complicated model is, in the case of a two-mode (or N-mode) Markov chain,
actually equivalent to a Markov chain with constant transition probabilities. Thus a stationary
Matkov chain can be used as a model of a certain class of processes having nonstationary en-
vironmental statistics!

The following question now arises: How may the two-mode process be described in terms
of the individual mode matrices

A A
A= fayh B < {by) (1)
and the mode-to-mode transition matrix
A 1-8 &
r = ? (2)
€ |

The specific answer to this question depends on the way in which the states of the two-
mode Markov chain are defined. We shall define these states as follows. Let Al, A2, A3, Bl, B2,
B3 denote the six states of a two-mode Markov chain in which the constituent modes each have
three thresholds. (The extension to modes of more than three thresholds will be obvious.)

Now consider the sequence of events illustrated in Figure 1. These events refer to the
guesses and the error signals generated in a three-threshold TLP (for Threshold Learning
Process). The block diagram of a TLP is given in Figure 4. Just before the observer in Figure 4
generates a guess, he receives a sampling pulse which tells the observer: during this sampling
interval guess whether the observed signal, v, was caused by a 0 or a 1 at the information source.
During the sampling interval the channel will be either in mode A or mode B. If it is in A, then
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Figure 4. Block Diagram of a TLP

the two-mode process is said to be in the state Ak from the time that the threshold takes on the
value k chosen by the decision mechanism until the next time a threshold value is established.
(The next established threshold value may or may not be different from the ‘‘present’ value.)
Similarly, if the channel is in mode B during the sampling pulse then the next state of the two-
mode process will be Bk, where the increment in k depends on the size and sign of the error.
Note that by this definition of Ak and Bk, the model of the process may occupy state Ak even
though the process itself may have shifted to B. Similarly the model may be in state Bk even
though the channel is in A. The reason for the proposed definition is the nonambiguity and sim-
plicity of the resulting mathematical analysis. Actually, no loss of generality is imposed by the
definition. (A definition by which the model is in state Ak if and only if the channel is in A at
the time of threshold adjustment results in an ambiguous mathematical formulation, which we
shall come back to later.)

By the above definition, a transition from states Ai to Bj occurs with probability 8b;;, Bi
to Bj occurs with probability (1-e)b;;, Ai to Aj occurs with probability (1 ~d)a;;, and Bi to Aj
occurs with probability ¢a;;. Consequently the process may be described by the signal flow graph
of Figure 5b. [See ref. 4.1 In part a of Figure 5 is a signal flow graph displaying only the mode-
to-mode transitions. (The quantity x in these graphs represents a unit-delay operator.) To help
us in our analysis, the graph of Figure 5b may be represented by a “'vector flow graph’ each of
whose nodes represents a vector having state probabilities as elements, and each of whose
branches represents a matrix operating on the node vector at the tail of the branch. A convenient
partition of the state probabilities into vectors is_r,(n} and rg(n), where the elements of r,(n),
Ig(n) are the probabilities of states Ak, Bk, respectively, fork = 1, 2, 3. The resulting vector flow
graph is shown in Figure 6. The stimulus-response equations are obtainable in matrix form directly
from this graph. This matrix equacion is:

(1-8)A ¢&B

[;A(xx ;B(x)] - [gﬂ(x), chx)] N [;A(:o, gB(x)] x. (3)
cA (1-9B

where s ,(x), r,(x), etc. are x-transforms of stimulus probabilities and response probabilities.
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Figure 5. Markov Chain Model ofa Two-Mode Process.
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Then Equation 7 may be written in the form
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x) = s(x) + (x)I'P x. (8)
Hence the general stimulus-response equation is
rx) = s(x)[I - TP« 9)

If s(x) is the x-transform of an impulse vector, i.e., a vector each of whose elements is an impulse,
then

s{n) = ir;{(0) 8(0,n) and (1)

)} = Q) (T Py~ (11)

Note that (I' P)" # I'" P® because ' P £ P [', except in trivially degenerate cases.

DISADVANTAGES OF A DIFFERENT DEFINITION OF THE STATE OF THE PROCESS

Suppose we had defined "'state’’ as follows: The process occupies state Ak if and only if
the chanrel is in mode A at the instant immediately following a threshold transition, the value of
k identifying the threshold existing at that instant. In this case we wouldhave to consider two
classes of transition probabilities: class 1 referring to those cases in which no change of mode
occurs in the interval after the sampling pulse and before the threshold adjustment, and class 2
referring to those cases in which such a change of mode does occur. Class 1 leads to Equation 9
as the stimulus-response equation for the process. But class 2 leads to a stimulus-response
equation in which the order of " and P is reversed, namely:

x) = s(x) [1-PL ! (12)

This situation is ambiguous, because we cannot predict when class 1 or class 2 will occur.
Additional data on the occurrence probabilities of classes 1 and 2 is needed in order to resolve
the ambiguity, Even if the ambiguity is resolved, the mathematical formulation still will be
substantially less tractable than that resulting from the first definition of *'state.”

Our analysis of two-mode adaptive processes — in particular, two-mode TLPs — is focused
on two types of operation: the training phase and the working phase. In the training phase the
feedback loop in Figure 4 is closed. In the working phase the feedback loop is open, so that the
threshold k is fixed. Thus training and working correspond directly o closed-loop and open-loop,
tespectively.



3. THE TRAINING PHASE

We shall now derive an expression for the success probability, z(n), as a function of time,
n, In response to an impulse vector, (An impulse vector corresponds to the situation where the
initial thresholds have a fixed initial distribution.) This quantity is a measure of success as a
function of the length of training.

Equation 3 can be solved for r,(x) by treating it as two simultaneous matrix equations, and
replacing rp(x) by an expression involving r,(x) and not involving ry(x). This yields

£A0) = {5400 + 55) [ =(1-9 Bxl"" cAx} M(x) (13)
where

M) 2 {IL - (1-9Bx11L_ (1-8yAx] - 5eBAx?} ™" 11 - (1 -Bx) (14)
Similarly,

£5(0) ={5,00 [1 - (1-8) AxT ' 8Bx + s5(x) }N(x) (15)
where

N(x) 2411 - (1-9)AxI[1 - (1-9 Bx] - 8ABx?} ™" [ - (1-8) Ax] (16)

Suppose the training process starts with the initial threshold at k = 1. We may analyze this
training process by setting

s(x) = [1,(0}, £5(0)] {(17)

where

__ 3
11,00, g0 =—5>—11,0,0l. (18)

I"A(O) I

The coefficients ¢/(5+¢), 5/(8+¢) represent the asymptotic probability that the channel modes
will be A, B, respectively. (We assume in our analysis that the mode-to-mode fluctuations have
reached steady-state staristics.)

More generally, the training process will start with an initial probability distribution over
the range of available thresholds. For this case we have

5,(x} =1,(0) = y(0), and s4(x) = £5(0) = (1) H0), (19
where
yE s, (20)

and where r(0) is a probability vector, i.e., a vector having non-negative real elements summing



to unity. For this situation, Equations 13, 15, 17, and 19 yield
2200 =0 yL+ (1-9) [L- (1 -9 Bxl " cAx}M(x) (21)
1(x) =01 L+ y{L - (1-8) Axl"" 3Bx} N(x) (22)
Now, the success probability z(n) may be found from the following formula*:
z(n) =1,(n) g, +1g(n) qg {23)

A - - .
where q, = a column vector of conditional success probabilities for states in mode A

=g

qg = a column vector of conditional success probabilities for states in mode B.

(Note that since q, and qg are column vectors, the terms r,{(n) q, and rg(n} q; represemt inner

products [ref. 5].)

When z(n) is plotted as a function of time, we have what might be called a “‘learning curve.”’
In otder to avoid controversy over semantics, however, we shall refer to it as a performance wave,
and point out that our performance wave is the learning curve as defined by certain schools of
psychology.

The vectors g, and qg are obtainable from an inspection of the state transition graph (or
signal flow graph, such as Figure 5b) and from a knowledge of the **boundary success proba-
bilities’" p, . Pa3r Ppy» Pp3- We define p,, as the probability of success on the ""next’’ trial,
given that the present threshold is k=1 and thac the present mode is A. The remaining boundary
success probabilities are defined in a similar fashion.

Example:
a 2%
Let 94 = (9ap Tap 9a3) (24)
Then, an inspection of Figure 5b yields
1 =(1-8)a;; pyy + by, Py

,=(1~8)a,, + b‘bzz 29

Qa3 =(1~8)as3pysq + 8by; Py,

The vector q;, may be found in a similar fashion.
The x-transform of z(n) follows from an x-transformation of Equation 23:

Zx) =1,(x) q, +1,5(x) qg- (26)

*In an earlier paper fref. 2] we used a slightly different time origin for z(n). By the definition for z(n) in that paper,
the variable n in the left member of Equation 23 would be replaced by n+1. The change in time origin is just a
matter of convenience.



In conjunction with Equations 13 and 15, Equarion 26 gives us an exact formula for z(x). If the
initial threshold probability vector is t(0), then Equations 21 and 22 may be used in place of
Equations 13 and 15.

“*slow’’ or *'fast,” depending on the size

We may think of the mode-to=mode transitions as
of 8 and « Slow transitions correspond to & << | and ¢ << 1. Fast transitions correspond to
1-8<<1and 1-¢ << 1. Inthe differential-equation analysis of adaptive control systems, systems
with fast plant variations have not been satisfactorily analyzed, and systems wich slow plant
variations have yielded only to approximate analysis. The present approach permits an exact

analysis of both slowly and rapidly perturbed systems.

Larer in this report we shall refer to twoamode processes having slow mode-to-mode rransi-
tions as weakly coupled processes, borrowing a term from electrical engineering, When 5 and «
are large, the process will be called strongly coupled.

PEAK SETTLING TIME OF TRAINING PERFORMANCE WAVES

We define the peak settling time Nof the training performance waves of two-mode TLPs as
follows:

N 2 Max N(z(0)] 27)

z(0)
where N[2(0)] is the smallest positive integer satisfving
fz(m} — z(0) |2 0.9| £ — z(0)} for all m 2 N[z(0)]. (28)

This definition is identical to that for one-mode processes given in an earlier paper [ref, 2]. (See
foornote on page 9). In that paper we found that a good estimate of N is given by

A

NZ=u

logg 10 (29)

where £is the eigenvalue closest to but not on the unit circle of the x-plane.

Later we shall give an example of the use of v in the estimation of the training performance
wave of a specific two-mode process,

APPROXIMATION FOR WEAKLY COUPLED PROCESSES

When the process is weakly coupled, i.e., when the mode-to-mode fluctuations are slow, we
have & << 1, ¢ << 1. For this case, Equations 13 and 15 reduce to

£, (0 ¥s, () [1- Ax]! (30)
rp(x) ¥ () [ - Bxl™ 3D

assuming s ,(x) and s=B(x) are comparable in magnitude. For the simple training process, s,4(x%)
and sp(x) are given by Equation 19. For this situation, we have

10



(0 ¥y 0) [ - Axl! (32)
and

£,(x) ¥ (1=y) K0) [1 - Bxl™! (33)

Consider the one-mode process A. Suppose the initial threshold distribution is f{0). Then the
training threshold probability is given exactly by the following formula [ref. 2]:

£, (0 =10y 1L - AxT! (34)
Similarly,
5 (0) = x(0) [1-Bx]™! (35)

{(The subscripts Ao and Bo stand for *'A only’’ and ''B only.’’} Hence, by Equations 32 and 33,
the two-mode threshold probabilities during training are approximately proportional to the corre-
sponding one-mode threshold probabilities:

)Ty, (x)

()= (1-y) rp (%)

Now consider the conditional success probabilities for the one-mode process A. From Figure 3
we obtain

9401 =211 Pay 402 =832 9403 =333 Pa3- (36)

Comparing Equations 36 and 25, we note that

(lA=(1—3) iAo+8(_lJ30

(37)
9 =€ 94, + (1-6) g,

These equations are applicable to all two-mode TLPs, independently of the number of thresholds,
even though Figure 3 has only three thresholds. Note that

94 Tq4, when 8<<1 (38)
and

g Tqp, When e<<1, I (39)
Now,

Zaol¥) = Lyo(¥) 44, (40)

Zpo(¥) = Ip,(%) dp, (41)
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Hence, for 5 << 1 and ¢ << 1,

,%(x) ‘:}/ ZAO(K) + (1 - Y)E‘B o(x) . (42)

An inverse x-transformation of this equatjon yields

zZ(n} Ty z, (n) +(1-y) zy (n). (43)
for 5§ << 1, ¢ << 1.

Under the Two-Mode Example — Part 2 on page 35, we shall indicate the size of the
errors encountered in the use of the above approximation. We shall see that when the approxi-
mation holds good at n = =, it will hold good for the enrtire range of n between zero and infinity.
We shall see in the example that the error in the approximation increases monotonically with
increasing a, approaching a constant asymptote as n -» o,

A general error analysis for Equation 43 has not been developed. Such an analysis would
provide a useful supplement to the presenr work,

INFINITE TRAINING

After a long training interval, the success probability of the two-mode process approaches
an asymptote {. We would like to obtain a closed-form expression for £ in terms of the one~mode
matrices A and B and the mode-to-mode transition probabilities & and e. A direct approach to
obtaining such an expression is to find the residues at x = 1 of Equations 21 and 22. Because of
the complexities involved in finding these residues, we have not obtained the desired ex-
pression.

A weak-coupling approximarion, however, is easy to obtain. We have seen that a good
approximation for 2(n) is given by Equation 43. Taking the limit of this equation as n -+ = yields
an approximate expression for {:

=y L+ (-9 {p, (44)

where {, and (g  are the asymptotic success probabilities of the constituent one-mode processes.

The use of this approximation as a means toward gaining an intuitive understanding of the
utilicy of feedback in a two~mode process will be illustrated in the next chapter.

The error involved in the approximation will be illustrated under the Two-Mode Example —
Part 2 on page 35.

12



4. A TWO-MODE EXAMPLE - PART 1

In this chapter we apply the preceding techniques to a study of the effectiveness of simple
incremental training in a two-mode TLP. In Chapter 7, we illustrate the use of these techniques
in synthesizing a train-work schedule for the two-mode TLP.

In 1960, E. N. Gilbert published a paper describing a Markov model of a two-mode com-
munication channel [ref. 3]. Gilbert called it a burst-noise channel. In this channel, A and B of
Figure 2 denote the good and bad modes, respectively.

The noise in mode A is such that by proper choice of a threshold in the observer (or
receiver) all transmitted 0's and 1's can be identified without error. The noise in mode B, how-
ever, is such that the constituent probability densities of the received signals caused by 0's and
I's overlap, so that error-free detection is impossible, although a proper choice of threshold will
minimize the error probability. To simplify our calculations and at the same time preserve quali-
tative relationships, we assumed that the constituent densities have the staircase shapes shown
in Figure 7. Readers familiar with Sklansky's earlier work will recognize each of the modes in
Figure 7 as Model I of a quantal TLP {ref. 2]. Hence we refer to the overall system asa two-mode
TLP.

MODE A
PA

I~f, MODE 8
-—2

4

[
|

3

I

_.’
|
!
I
%
-*—-—- v
2

NT__*___

Fig. 7. The Constituent Probability Densities in the illustrative Example.

The constituent densities of this model have the following properties: (a) the frequencies
of occurrence of the transmitted signals in mode A are equal to the corresponding frequencies in
mode B; (b) the variances of the constituent densities in mode ;}_, are fixed, while the variances
in B are variable. Expressed symbolically, these properties are: (a) p, = pg; (b) ay=1. Thus
the four constituent densities can be specified by only two parameters: p, (or pp) and ay. Let

L o4 =0p (45)

and

W=

og (46)
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Two more parametets complete the specification of the two-mode process: § and ¢. In the
present example we assumed § << [, ¢ << 1. For this case the asymptotic success probability ¢
is dependent primarily on the ratio

I >
™

(47)

5+ ¢

and only weakly on & and ¢ individually.

Recapitulating: In the two-mode TLP under analysis, we assume & << 1, e << L.
For this case the process is completely specified by three parameters: p, a, and y, defined in
Equations 45 to 47.

For the specific densities shown in Figure 7, the best performance for mode A is obtained
when the threshold is fixed at k =2, and the best threshold for mode B is obtained when the thres-
hold is fixed at k = 3. One will suspect, therefore, that for certain values of a and p, no fixed
threshold will yield near-optimal performance in the two-mode process, and tlmr continual retraining
of the threshold is necessary to obtain near-optimal performance. We shall show that this conjecture
is correct over a wide range of p, a, and y.

DERIYATION OF THE TWO-MODE [ CONTOQURS

Equation 44 gives us an easy way to estimate the ¢ contours of a weakly coupled two-mode
process: First find expressions for the A-only and B-only asymptotic success probabilities, namely
{po and g, Then sum these probabilities linearly in accordance with Equation 44. This method
of estimating the ¢ contours is illustrated below for the two-mode TLP:

A only: oo = 1 forallp, a. (48)
B only: _ a+Q
~ on y CBO l + Q (49)
A l-a 1=-p g
h e .
where Q T p T ; (53)
Two-mode: ¢ T y ¢, + (1-y) &g, (51}
= + 1 - ﬂ
y+{d=y 7 Q (52)
where ( is given by Equation 50,
An alternative formula for / is
{ =y+{d-y) 430 {33)

where £ is given by Equarion 49.

Thus the { contours may be estimated merely by relabeling the {4 contours. The latter
contours, which appeared in an earlier report [ ref. 2], are reproduced here in Figure 8.

14
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1
2

(-5 (v ipy) (54)

For convenience, we shall assume hereafter that v = =, For this case Equation 53 becomes

Using this equation the g contours of Figure 8 are easily relabeled to form the { contours of
the two-mode process. The resulting contours are shown as theunbroken curves in Figure 0.
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Figure 9. The Unbroken Curves Show the Two-Mode & Contours for y = 5
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THE BEST-FIXED-THRESHOLD PERFORMANCE

We know thatin one-mode TLPs a fixed-threshold operation can yield success probabilities
that are greater than those obtained from simple incremental training, provided that the fixed
threshold is properly chosen. In fact for a properly chosen threshold in a one-mode TLP, the re-
sulting success probabilities cannot be exceeded by any other threshold control policy.

In two-mode TLPs, on the other hand, thebest possible fixed-threshold policy can often
be outperformed by a simple incremental feedback policy. To demonstrate this fact and to determine
the region of parameter space in which incremental feedback outperforms the best-fixed-threshold
policy, we computed the success probability contours resulting from a best-fixed-threshold policy.
We denote them as the {y;-contours. The derivation of these contours is summarized below.

A only:
{aor = L-p (55)
lhop = 1 (56)
CA03 =P (57)

(The subscripts following Ao indicate the value of the fixed threshold. For example, ¢, , is the
success probability in mode A when k = 2.)

B only:
{poy = 1= 5 (L +a) (58)
lnoy = 152 (59)
{pes = 1 - 1= (144). (60)
o3 2
Two-mode:

When the threshold of a two-mode process is fixed, the process is described exactly by a
two-state Markov chain of the form shown in Figure 2, where the square nodes are to be inter-
preted as ordinary states. For this chain, the asymptotic probabilities of states A and B are y
and 1 - y, respectively. Hence, the success probability of this process is exactly

ék =Y ‘:Aok +(1~y) éBok (61)

Substituting Equations 55 to 60 in Equation 61 yields the following formulas for the two-
mode fixed-threshold asymptotic success probabilities:

41=I-P}f-(l-y)ﬂl+ (62)
Ey = y+(-y) 12”‘ 63)
¢y =1y (1-p) ~(A-n)(A-p) =" (64)
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When y = L1 these formulas become

2
{=1-F06G+a (65)
_ I+ a
¢, 1 (66)
& = 1--p A (67)
3 P}y
Equations 65 to 67 may be rewritten in the following form:

4(1 - Cl)
P T 3ia (68)
a = 4 CZ -3 (69)

1 4(1 - é‘a)
ey (70)

These equations are in a convenient form for plotting the £, contours. The resulting {, maps are

given in Figures 10, 11, and 12,

The best-fixed-threshold asymptotic performance is
ly = M"l':x ¢y 71

The (), contours were obtained graphically by superposing the maps of {,.{,, and £3- The re-
sulting {), contours are shown in Figure 13. These contours describe the asymptotic performance

of the best-fixed-threshold process.
1

=9

L &% ) | !

0 -2 4 & .8 \
a

Figure 10. (, Contours for y = ,;__
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DISCUSSION OF THE { AND ¢, CONTOURS

The assumption § << 1, ¢ << 1 greatly facilitates the construction of the { contours, since
under this assumption £ is a linear combination of £, ~and {y . The £y contours, on the other
hand, are always easy to construct, because ¢, is a linear combination of {, , and {y , for all
values of § and ¢. No approximation isinvolved in Equation £].

If we compare the £ contours and the (g  contours, we see how the good mode expands the
acceptable stability-reliability zone. In particular, if we define the acceptable zone as the region
of the ap-square for which £ > 0.9, we see that the acceptable zone of the { map is about twice
as large as that of the g  map.

To facilitate a comparison between the { maps and the ¢), maps, we have plotted the [y
contours as dashed linesin Figure 9. We see that { > ), over a large region of the ap-square.
This observation confirms our conjecture that for some values of o and p a simple incremental
feedback policy will yield better asymptotic performance than any fixed-threshold policy. This
region, which is shaded in Figure 9, is bounded on the right by the dash-dotted line. This dash-
dotted line remains fixed for all y in the range y < y < 1, where y = —;— . (The value of y _ was
computed from data taken from Figure 9.)

Consequently, if we know a priori that («, p) lies within the unshaded region of Figure 9,
then a fixed threshold, fixed at k = 2, will yield better performance than a process trained by a
simple incremental feedback policy. On the other hand, since the shaded region of Figure 9
occupies an area significantly greater than half of the gp-square, a simple incremental policy
will on the average yield better performance than any fixed-threshold policy, if we assume that
all pairs (e, p) are equally likely. If o < %— is not admissible {which is the case if no two-peak
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constituent densities are admissible) then the shaded tegion occupies slightly less than one-half
of the admissible area of the gp-square. Hence if a < L is not admissible, a simple incremental
policy will on the average yield slightly worse performance than the best-fixed-threshold policy,
if all pairs (a, p) in the region 3 <a 51,0 p <1 are equally likely.

An interesting extension of the present work would be an investigation of the effect of raising
the number of thresholds on the size of the region over which £ > (. We believe that when the
distance between the constituent modes’ optimum thresholds is greater than in the presenc example,
then the shaded area will occupy a grearter fraction of the parameter space.

THE ULTIMATE ASYMPTOTIC PERFORMANCE

One can conceive of a thresheold adjustment that would yield the ultimate in success prob-
ability. It would be as follows: Whenever the process shifts to mode A, the threshold immediately
shifts to the best A-only threshold. The threshold remains at the best A-only threshold as long
as the process remains in mode A. When the process shifts to mode B, the threshold immediately
shifts to the best B-only threshold, and stays there as long as the process remains in B. No
better performance can be obtained, since the thresheld is perfectly matched to the mode at every
instant. The asymptotic success probability of this feedback policy is

CU = }IéAoM * (1 - )f) cBoM (72)

since the process spends the fraction y of its time in mode A and 1 -y in mode B. (U stands for
“ultimate.”’) Since the (; contours of one-mode TLPs are obtainable from the { contours, the’
¢y contours are also obtainable from the ¢ contours. Thus:

Cu = yMax (yq0 + (1-y) Max (£g,,)- (73)
Consequently the {{; contours of the two-mode TLP are easily found from the fixed-threshold
petformance contours of the constituent one-mode TLPs.

A natural question is: How closely do the { contours approach the £; contours? In our two-
mode example, £, y=12and y = —12— For this case, Equation 72 becomes

Cy = 5 W Cpow 74

With the aim of answering the above question, the {|; contours were plotted as the unbroken
curves in Figure 14, and the ¢ contours, based on Equation 54, were superimposed as dashed
lines in the same figure. (The ¢ contours are the same as those in Figure 9.)

If we compare Equation 74 to Equation 54, we note that Figure 14 is identical, except for
a labeling of contours, to the superposed {y_y and {g contours, shown in Figure 15. (The latter
figure appearedin an earlier report as the ¢y, map for Model I [ref. 2.)

The {; contours are the ultimate performance contours for the two-mode TLP. Actually,
no practical feedback palicy can ever realize the /;, contours, because no finite amounc of hardware
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Figure 15. {5, Contours Superposed on (g 4 Contours.

can recognize a sidden change of mode. There will always be a nonzero probability that a change
of mode will go unrecognized after a finite time of operation within that mode. Thus the (|, contours
represent an upper bound on the realizable contours. Is ir a least upper bound? We suspect so, but
have not been able to prove it.

21



Since Figure 14 is obtainable merely by relabeling Figure 15, we see that the ¢ contours
differ from the ¢;; contours in the same manner as the (i contours differ from the {y ,, contours.
Hence, to bring the { contours of the two-mode process closer to the ¢;; contours, we may use the
same change in feedback policy as would be used in bringing the éBq contours closer to the {g ) contours.

On the other hand, an important difference between Figures 14 and 15 is that the differences
between adjacent contours in Figure 14 are one-half of those in Figure 15: in this sense the two-
mode ('s are closer to the ultimate values than the bad-mode /'s. The reason for this is that in
the two-mode process the good mode masks some of the bad mode’s misbehavior.

In this connection we also note that the £}, contours can serve as a coarse approximation
of the { contours in the two-mode process, just as the { \ Contours serve as a coarse approxi-
mation of the {g, contours [ref. 2]. Thus:

= Ly (75)

where {|; may be computed by Equation 73.

EFFECTIVENESS OF THE FEEDBACK POLICY

We shall show that the effectiveness of simple incremental trainingin a weakly coupled
two-mode TLP is greater than in either of the constituent one-mode processes, where effective-
ness is measured as an increase in the stability-reliability area in the ap-square.

Let TAo denote the average increment in the ‘*good’’ region of the ap-square for the A-only
process yielded by closing the feedback loop, where the good region is defined as that region
where ¢ 2 0.8. (See discussion in ref. 2.) Let TBD and I be defined similarly for the B-only process
and the two-mode process, respectively,

The value of TBo is available from Table 2 in ref. 2. The value of-I_may be computed by
graphical techniques in Figures 9 to 12, The value of I,  is computed as follows:

Tag =1~ % (0.2+1+0.2) = 0.534

The results are summarized as follows:

IAO = 0-530
I, = 0.230
T = 0.583

Thus I is lacger than either 1, or I . Therefore the effectiveness, in the asymptotic sense,
of the simple incremental feedback policy is greater for the two-mode process than for either of
the constituent one-mode processes.
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5. THE WORKING PHASE

When the success probability z(n) is brought to a specified acceptable value, or higher, by
the training, the training may be stopped. The process then begins its working phase (i.e., open~
loop operarion). If the process is a one-mode TLP, z(n) will remain, throughout the working phase,
at the value it attained at the end of the training phase. But suppose the process is a two-mode
TLP. There exists a nonzero probability of a mismatch between the threshold and the mode, i.e.,
there is a nonzero probability that the threshold of the process is not optimum for the particular
mode the process happens to occupy. In a two-mode process, this mismatch probability is rela-
tively small at the end of the training phase, and becomes greater and greater as the process
moves further along in the working phase. (In a one-mode process, the mismatch probability remains
constant throughout the working phase.) Hence one expects the success probability during the
working phase of a two-mode process to diminish monotonically from a peak at the beginning of
the working phase, finally leveling off at an asymptotic value {p. {The subscript F stands for
“*fixed threshold’.) We shall show how the Markov chain model permits an exact analysis of the
dynamics of the working-phase success probability. It also permits a determination of (.

Suppose we want the success probability to remain above a prescribed lower bound ¢,
throughour the working phase. If {; > (g, then the working phase will have to be interleaved
with retraining phases. We shall show how the Markov chain mode! permits us to find an optimum
train-work schedule for any specific ¢; . Simplified techniques for approximate estimates of the
train-work dynamics will also be presented. These techniques will be illystrated under the Two-
Mode Example — Part 2 on page 35.

DERIVATION OF THE WORKING-PHASE PERFORMANCE WAYE

The basic formula for the working-phase success probability zp(n) is:

zg(n) =x(n) q (76)
= [ra r5 ][04, 0] “n
where 1, (n) is the joint probability that the process will occupy ( 8)x

mode A and threshold k at time n, q,, is the probability of suc-

cess when the process occupies mode A and threshold k, and

n = 0 is the final instant of the training phase. Equation 77 will

help us find an expression for z(n) in terms of the state proba- r.. (0)
bilities ar time n =0 and certain open-loop transition probabilities. Ak

For any particular threshold k, the working-phase signal flow
graph will be that of Figure 16, This graph yields the following 8x

yeos €
expressions for the x-transforms of the state probabilities: X
0
rgy (0}
Figure 16. A Working-Phase Signal *
Flow Graph. (I-€)x
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Eap () = B%:ET {rAk(O) [1 - (1-9x] + 1, (0) ex} (78)

Lo - 5 {er(O) [1 - (1-8)x] + £, (0) Bx} (79)
where
A
D{x) = (1 -x) [I -(1-86-e)x] (80)
We shall assume that the mode-to-mode transitions began at n = —w, so that the elements

of r,(n) and of rp(n) at n 2 0 sum to y and 1-y, respectively. It is therefore convenient to define
the two normalized vectors EA(n) and EB(n), obtained by dividing r,(n} and iB(") by yand 1 -y,
respectively. (We may think of EA(n) as a conditional probability vector, given that the process
occupies mode A.) Thus we have

IROERTAO
R (81)
LB(n) =(1 _}’) iB(n)

Substituting Equations 78 to 80 in the x-transform of Equation 77, and making use of
Equations 81 and 20, we obtain the following expression for the x-transform of the working-phase
success probability:

Zp(x) = m {nﬁA[l— (1-9x] + 8 gll ~ (1-8x1 + Se(Yypy + Y o) x} (82)

where

IrbA = EA(O) qa

¢B é EB(O) 9B
A (83)
Yap - L2000 g5

G

YBa (0 g,

and where D(x) is given by Equation 80. Recall that 9a and qp are column vectors, so that the
products in Equations 83 are inner products.

A convenient expression for the asymptotic working-phase success probability, (g, is
obrainable with the aid of the “‘final-value theorem’’ for x-transforms {ref. 6]:

¢ 2 lim zg(n) - lim [(1 ) zg(x)] (84)

Substituting Equation 80 in Equation 82, and applying Equation 84 to the resulting expression,
yields

OF =Y2 ’f‘A““(I_)’)z Yp + y(L=9) (g + Ypal (85)
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A formula for the value of z(n) at the beginning of the work cycle is obtainable from the
zero-order term of the power-series expansion of Equation 82:

ZF(O):NF(O) =)",6'A +(1"'Y)¢B (86)
This checks the fact that ZF(O) equals the last value of z(n) in the craining phase.

The following question arises: Under what conditions will the distance between zp(0) and
{r be maximized? A comparison of Equations 85 and 86 shows that this distance is maximized
when ), = ¢y 4 = 0, assuming y, ¢, and $ are fizxed. Note in Equation 83 that v, 5 and vg ,
are *‘cross~correlations’’ between the conditional success vectors of one mode and the threshold
vectors of the other mode. This distance is maximized further if we set y = 1/2. Under this
condition, z(0) = 2 {¢. Thus: the final success probability in a working phase of any two-mode
process cannot be less than one-half of the success probability at the beginning of that working
phase.

Because D(x) can be factored into the two linear portions shown in Equation 80, 2p(x) can
be expressed in the following partial-fraction form:

I Q 87
S e B &7
By Equations 84, 86, and 87, we find that P = /; and Q = z(0) - (.. Hence

zp(0) = &g + [25(0) - £ ] (1-5-0° (88)

where z;(0) and {; are given by Equations 86 and 85. Note that Equation 88 is exact — no
approximations are involved.

Equation 88 displays the degradation in performance associated with the working phase,
Thart this degradation is brought about by the mode-to-mode fluctuations is displayed by the fact
that the exponentially decaying portion of Equation 88 decays at a rate determined only by §
and e. Another factor involved in determining the extent of the working-phase degradation is rhe
degree of mismarch that occurs when a threshold optimized for one mode coexists with the other
mode. This is seen when we compare Equations 85 and 88, and take note of the definitions in
Equation 83. If modes A and B were identical, then £ would equal z;(0). As we have seen, the
degree to which (. and z(0) differ depends on the sizes of ¥, ; and ¥/p ,.

Note also that zF(n) is not sensitive to changes in the initial threshold probability vector,
1,(0) and Ig(0), provided z(0) and ¢ are fixed. Thus z(0) and { completely derermine the
working phase performance, and no knowledge of the individual initial threshold probabilities
is required.
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6. TRAIN-WORK CYCLES

We have seen that the mode-to-mode fluctuations of a two-mode process effect a degradation
of performance during a working phase. A schedule of train, work, retrain, work, retrain, etc., will
therefore be necessary if the lowest acceptable success probability is greater than (.

This is to be contrasted to one=mode processes, where a single training phase can bring the
success probability permanently to a desired value. No retraining is needed because no degradation
of performance takes place in a working phase of a onevmode process. We have seen that the two-
mode closed-loop performance (success probability during a training phase) is only weakly de-
pendent on 8 and ¢ when § and ¢ are small, The closed=loop two~mede performance for small 3
and ¢ is approximately equal to a weighted sum of the A-only and B-only closed-loop performances.
On the other hand, the two-mode, open-loop performance (success probability during a working
phase) is, as we have seen, snrongl} dependent on § and ¢, even when 3 and ¢ are small.

We shall show how train-work schedules may be constructed from a knowledge of the A-only
and B-only behaviors. We shall also show how increased accuracy in the design of a train-work
schedule may be obtained from a knowledge of the exact two-mode performance during a single
training phase,

EXACT AMALYSIS

An exaggerated example of a train-work cycleis illustrated in Figure 17, During the training

N, =N, H,-‘I e —l
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Figure 17. A Train-Work Cycle.
phase, the threshold probability vectaor is
«n) = (0} (E B)" (89)
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where

£0) = [LA(H), LB(")]

1-8 5
r =
. | € 1-¢]
C A 0
P =
Lo B
0 = a square matrix every element of which is zero.

For example, if the process involves three thresholds (k = 1, 2, 3}, if the initial threshold is
k=1, if y=1/2, and if the mode-to-mode fluctuations started at n = —oo, then

£4(0) = £,(0) (% 0, 0)

and

£(0) =(% 0,0, % 0, o).

The training performance wave is given by

z(n) = [LA(n), LB(ﬂ)] [‘I_A’ EB]'

Expressions for g, and q in terms of the constituent one-mode conditional success vectors are
given by Equation 37.

Suppose the training phase lasts until n = N . The chreshold vector at n = N_is
Nt
oN) =0 (TP

- [rM(N[), CaafNDy 15N, rg Ny 1h,(ND, 1y S(Nr}]
The meaning of this vector is made clear by the following definition:

r4,(N,) = joint probability of mode A and threshold 1
atn =N,

Immediately following n = N, the first working phase begins, and lasts until n = N+ N_.
During the working phase, the threshold probability vector is

HN +m) = [, (N +m), 1y (N +m), £, (N +m)]

where

(N + m) e [:rAk(Nt+m), er(N[+m)]
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This means that during the working phase, the threshold is fixed at a specific value, but the
choice of this value is determined by the joint probability distributions Ta () and rg (n). For any
specific threshold k, the two-dimensional vector ¢ (N_ + m) is transformed by the two-mode open-
loop Markov chain of Figure 16, The total working-phase threshold probability vector is just the
union ofgk(Nt + m) over k,

The working phase threshold probability as a function of m is found either from Equations 78
and 79 or from the following equation:

1-3 5 "
BN em) = [ra (N, 1y (N)] [ ) 1_5] (90)

form=1,2 ..., N

w"

The success probability during this working phase is found from Equation 88. Alternatively,
we may find it as follows:

A
sz(Nt+m) = gk(Nt+m) 9

where

A
% = @aw 98
Then,

zF(Nt +m) = Zsz(Nt+m)
k

I ALRLEN
k

form=1,2,..,N_.

The retraining phase starts at n = N+ N_ and lasts until a =N _+ N_ + N_. The threshold
probability vector during this phase is found by replaciag H0) in Equation 89 by f(N_+ N_} and
by an appropriate adjustment of the exponent:

oN,+N_+m) =e(N_+N_) (I" P)® “n

Recapitulating: Suppose the available thresholds range over the values k =1, 2, ..., K. At
the end of the training phase, the 2K elements of the chreshold probability vector r(N ) are grouped
into pairs — each pair consisting of the two joint probabilities associated with the same threshold
k. These pairs are then used in Equation 90 to find the corresponding pairs throughout the working
phase. At the end of the working phase the pairs are regrouped into a 2K-dimensional vector,
oN_+ N_). This new vector is used as the initial condition for the retraining phase, and used
in Equation 91 to find the threshold probability throughout the retraining phase.

A significant compucational difficulty in the exact analysis of the two-mode process 1s the
task of regrouping 1{n) at the transition between training and working phases, We believe, however,
that these transition regroupings may beignored in many cases without incurring serious errors.
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An analysis technique based on ignoring the transition regroupings is described in
the next section This technique will be illustrated under Two-Mode Example — Part 2 on
page 35.

THE RC-CIRCUIT APPROXIMATION

We shall now describe a convenient approximate method for analyzing train-work cycles.
The method is based on the assumption that when the training performance wave z{n) is near its
asymptote, z{n} may be approximated by the sum of a constant termand only one exponentially
decaying term — i.e., only one nonconstant eigenfunction. (Actually, z{n) contains five nonconstant
eigenfunctions.) This assumption automatically implies that the transition regroupings may be
ignored, since a change in the transition regroupings only affects the degree to which each
eigenfunction contributes to z(n}. The value of ¢ is unaffected by the transition regroupings, be-
cause the 0" power of any ergodic stochastic matrix approaches a limit that is independent of
the initial matrix. Another property implied by the assumption of only one nonconstant eigen-
function in the training performance waves is that the {;"s of all the working phases are identical.
Actually, the £ of any working phase is dependent on the specific distribution of threshold
probabilities at the beginning of that phase.

Another assumption of the approximation to be described is that the one-mode threshold-
probability waves ate either known or are computable without undue strain, These one-mode
threshold=probability functions are basic elements in our analysis method.

The form of the train~work cycle that we shall analyze is illustrated in Figure 17. This
cycle consists of three types of phases: (1) a training phase, (2) a working phase, and (3) a
retraining phase. The first phase is a training phase, lasting for N time units. The second
phase is a working phase, lasting for N_ time units. This is followed by a retraining phase,
lasting for N_time units, after which, the working and retraining phases are repeated indefinitely,
the phase durations remaining at N_ and N, respectively. In Figure 17, the oscillations are
exaggerated for clarity of illustration. In real situations the oscillations will be much smaller.

The train~work cycle of Figure 17 is analogous to the charge-discharge cycle of a resistor-
capacitor circuit, such as that illustrated in Figure 18. Consequently we refer to this approxi-
mation technique as the RC-circuit approximation.

WORK O
)

TRAIN

-Omeatlf-

ouT

1|t

INITIALIZE

i

Figure 18. An Approximate Eiectricol Analog of the Train-Work Cycle.
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Because the training phase is assumed to have only one nonconstant eigenfunction, the
ratios bt/at, brl/arl, etc. in Figure 17 are all equal. Call this ratio 6. We have shown that the
working phase performance wave contains exactly one nonconstant eigenfunction (Equation 88).
Hence the ratios b_,/a_,, bwz/awz’ etc. in Figure 17 are all equal. Call chis ratio 4_.

Because b /a =6 andb_,/a_,
asymptotic upper bound £, (H standsfor “*high’’) may be expressed as the following functions
of 6, 8., ¢ and {g:

= 6 for all i, the asymptotic lower bound ¢; and the

(1—9{) a.

. = ¢p + (- éF) W (92)
1-6,

Cy =& +({- < Trew (93)

The derivation of these formulas is easy, making use of the sums of geometric series, and is
omitted,

Equations 92 and 93 may be simplifiedif we normalize {; and {; with respect to £ and
{p as follows:

A CL"C}:

2 F 4
&= g = (94)
r A {y-<f
G 7o (95)

Using these definitions, Equations 92 and 93 become

. (1-8)6,

éL = W {96)

[ 97

Ho 1-66 67
Note that

&=y 0, (98)

We yet have to show how to estimate 6 and 8 . The valueof 6 may be estimated from the
nonconstant eigenfunctions of the constituent one-mode processes, (The way this is done will be
shown in the numerical example of the next chapter.) The value of ¢ is easy to find:

N
6, -(1-5-9 "

since the x-plane eigenvalue of the working phase is exactly (I1-8—¢ L.
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SYNTHESIS

Now we shall suggest an answer to the following question: For any given two-mode process,
how may the train-work cycle be designed? In particular, if the train-work cycle is of the form
shown in Figure 17, how should N, N_, N_be chosen?

Suppose we want the success probability z(n) to remain above a certain prescribed value ¢ .
In that event Equations 96 and 97 will enable us to find N, N_, and N.. (Hereafter we shall refer
to any triplet N, N_, N_as a “‘train-work schedule.’”)

By our assumption that the training phase contains only one nonconstant eigenfunction, the
training success probability is approximately of the form
2(0) = (- [¢ 2N -N)]&m (99)
for
N,-N <n2N,
where ¢ is the smallest nonunity x-plane eigenvalue of the training phase. Under the Two-Mode
Example on page 35, we shall show how £ may be estimated.

Choosing N : In the next section we shall show that making N_as small as possible will
maximize the ratio of working time to retraining time, N_ /N ., Hence N_ either will be unity or
certain practical factors will force us to choose N_larger than unity. In any event, N will be
known at the beginning of the design process.

Finding 6 : We can find 6_in terms of N_and &. Recall that 8_=b /a , referring to Figure 17.
This fact, together with Equation 99 yields

6. =¢ ° (100)

Choosing N,: We should choose a value of N that will yield as small a rise time as possible
in the performance wave, and will also result in a2 minimal amount of motion of the valleys in
z{n) as n progresses from one work-retrain cvcle to the next. To achieve these goals, we suggest
that z{n) be computed sequentially for n = 0, 1, 2, ... until we find the smallest n such that

z(n—Nr+1) > () (101)

Set this value of n equal to N..

The next step is ro find g?L. To do this we substitute the desired valueof {; in Equation 94.
This equation also requires { and (. The value of { may be found either from an exact analysis
of the training wave, z{n), or from a weak-coupling analysis. In the lacter analysis, Equation 44
vields an estimate of &

Finding {g: To find (g, use Equations 85 and 83. For Equation 83, we may find fA(o) and

r5(0) either exactly (by Equation 11) or approximately by the equations
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F M) ¥, (n) =1,(0)A"

(102)
EB(H) ?;iﬁ O(D) = _E_B(O) En

(These vecrors had to be computed when we computed the training phase performance wave for
choosing a valueof N .)

Finding {: To find ¢, we may use the method under Infinite Training on page 12, We realize
that even if {; ts computed on the basis of the exact training performance wave, obtained from
Equation 11, the computed value of (i is not quite equal to the ¢ associated with the limiting
working phase as n » «. We believe, however, that the approximation is good enough for the
purpose of finding a train~work schedule that will achieve a desired ¢; . This belief is supported
by the numerical example under Two-Mode Example — Part 2 on page 35.

Finding 6 : Once {and {; ~ or estimates of them - are obtained, we may compute the
desired value of CL from Equation 94. This value of gL, together with Equation 96 yields an
estimate of §_. An explicit expression for 8_, based on Equation 96, is

6 - —fL_ (103)

1-6(1-8)

All that remains is the computation of N_.

Finding N_: We see in Equation 87 that the reciprocal of the working-phase x-plane pole

is

1 =1-8-¢ (104)
Now

6, - ¢ ™
Hence

N_ -

= -1
log £ {6,) = logrfw (6.7

w

This completes the computation of the training schedule.

The above procedure is summarized by the following equation, whose derivation we leave

N, - log, |— L (105)
1-6.(1-4)

to the reader:

where

o>
=
)
s
L
!
fan
™

b2 glo1-s-e, 6,28, 4
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MAXIMIZING THE WORK RATIO

We shall demonstrate that, for a specified ¢, the ratio N_/N_is maximized whea N_= 1,

If for special reasons N_must be larger than 1, then the ratio N_/N_— which we call the "'work

ratio’’ — is maximized when N_1is as small as possible. This property is subject to the assump-
tions of the RC-Circuit Approximation {page 29).

Construct two setsof contours in the 6 8_-plane: a) ¢; contours and b) NW/Nr contours,
normalized with respect to £, and £ .

The QCL contours, found directly from Equation 103, are shown in Figure 19.

t

5
8'
.
2
o | l { gel.'“
0 2 r 6 0] 1
6

Figure 19, 51_ Contours.

The N_/N_contours are found by the following reasoning:

8, = fr r 6, = )fw w {106)
Hence
6, =6% (107)
where
A N
W = L | 108
N Ogér (&£,) (108)

I

Thus W is the ratio N_/N_normalized with respect to £ and ¢. Hence N_ /N is maximized
whenever W is maximized, since £, and £ are invariants of any given process. The W contours,
found from Equation 107, are shown in Figure 20.
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Figure 20. W Contours,

For any particular (;, the value of éL will be fixed, by the assumptions of the RC-Circuit
Approximation (page 29). Hence for any desired (|, the attainable pairs (6, ) must lie on one
of the {; contours in Figure 19. To maximize N_/N , we must choose that point on the ¢ contour
which yields the largest value of W. To find cthis point we may superpose the W contours on the
EL contours. When we do this we find thart for every fixed éL’ the greatest W is achieved when
8 =6_ =1. We also find that a curve of W versus 6_for any fixed {; is monotonically increasing.
Hence N_ /N, versus 8_for any fixed {; will be monotonically increasing — provided, of course,
that the RC-Circuit Approximation (page 29) holds true.

The fact thar the work ratio is a maximum at 6_= 6 = | raises the following question: What
is a formula for the work ratio at @, = 1? To answer this, note that Equations 108 and 107 yield the
following formula:

N
v 0
- W log 3 (&) (109)

where

W lcrg(9 (8,) (110)

Unfortunately, Equation 110 is indeterminate at (6, 6,)=(1, 1. To find W at g, =6,=1, find
the partial derivatives with respect to 6 of Equations 103 and 107 at ¢, = 1. Putting the two
resulting expressions equal to each other yields W = CL'I - 1. Hence

Ny - (N = (L -1} 1eg, (). (111)
N N, Z £ "
max @r =1
This expression is a convenient way of estimating the maximum possible work ratio of a two-mode
system, subject to the assumptions of the RC-Circuit Approximation (page 29). A more accurate
formula, of course, is given by Equation 105, in which we would set N_equal to the smallest
achievable value, which would be unity, barring special practical considerations. Equation 111,

however, Is a convenient approximation.
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7. A TWO-MODE EXAMPLE - PART 2.

The foregoing techniques will be illustrated, using a two-mode TLP of the type discussed
under Part ] (page 13). We shall examine a two-mode TLP whose distinguishing parameters are
a=06,p=009, and § = ¢ = 0,01, where a and p are defined by Equations 45 and 46. The point
{a, p) = (0.6, 0.9} lies well within the shaded region of Figure 9. This ensures that any working-
phase asymptote { will be significantly different from the training phase asymptote . The small
values of § and ¢ will permit us to use the weak-coupling approximations. We shall assume through-
out this discussion that the initial thresholdis at k = 1.

THE TRAINING PERFORMANCE WAVYE

1

The success probability during training, which we call the ‘‘training performance wave,”’
may be obtained from the weak-coupling approximation, Equation 43. We repeat this equation here,

adding %(n) as a definition of the right member:

2(0) = ¥n) Ly oz, + (1-p) zp, () (112)
where
A €
YT B ie (113)
Since & = ¢, we have
1
y =4 (114)
The constituent one-mode training performance waves, z, (n) and zy (n), are found as
follows:
Zao) - I(0) A"q, (115)
Zpo(n) = Ip(0) B" g, (116)
where
1,(0) = £5(0) - (1, 0, 0) (117)
0.1 09 0
A = 0 I 0 (118)
0 01 09
0.280 0720 ©
B = 0.020 0.800 (.180 (119)
| O 0.080 0.920
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The elements of B were computed in accordance with Table 1 of ref. 2. The pertinent portion of
this table is repeated here:

by - 1-FU+a b,=5La+a  b,=0

1-p 1
by =z (1-a byp = 5 U +a) b23=_5-(1_a) (120)
b, = 0 b32=—12;P—(1+a) b33=—:12-(1—a)+4;—(1+a)

When (a, p) = (0.6, 0.9) ate substituted in the above formulas, the element values in Equation 119
are obtained.

The elements of ¢, and qy  are just the diagenal elements of A and B (for this particular
example):

9ao = 10,1 1 0.9} (121)

4po = 10.280 0.800 0.920} (122)

where the braces indicate column vectors. Equations 112 to 122 yield the function Z{n), which is
plotted in Figure 21. This function will now be compared to the exact performance wave z(n).

Fin)

[+F.) o -10.04

Fn) Aln)

O.T —oo3

Aln) FOR B =g=0.l

(il
04 —0.02
0.2 —0.01
AlnY FOR 8¢ =001 _
Y - 1 | | i | | o
0 2 4 [ ] 12 12 14 16 18 20

Figure 21. Training Performance Wave of Numerical Example.

The latter is found as follows:

z(n) = x0) (C g
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where m=[os o 0 05 0 0l
3
[-I—S 5
r -
£ 1—¢
- A . -
P -
0 B
| J
0 =
L 0 i

A and B are given by Equations 118 and 119. The column vector ¢ consists of two column vectors

q, and qg:

q = (123)

where q, and g, are given in terms of ¢, . and q _ in Equation 37. The column vectors g, and
Qg &re, in turn, given by Equations 121 and 122.

The resulting function z(n) is so close to Z{n) that no difference between the two would be
visible in Figure 21. To make this difference visible, the difference A(n) 4 Z(n) - z(n) is plotted
in Figure 21 on a magnified scale. The curve is marked "*A(n) for § = ¢ = 001 .”" Note that A(n)
approaches its maximum as n > «, and chat A(=) = 0.004.

THE WORKING PERFORMANCE WAVE AFTER INFINITE TRAINING

To find any working performance wave, we need three parameters in conjunction with
Equation 88: z{0), {f, and 3 + ¢, where the quantity z(0) is the success probability at the
initial instant of the working phase.

Consider the problem of finding the working performance wave after the two-mode TLP has
been trained for a long time, or — speaking mathematically — finding the working performance wave
when the initial threshold probability vector is identical to the limit as n » = of the threshold
probability vector during a training phase.

To solve this problem, we shall use Equations 85 and 86. These equations require the
computation of Yavp Yap and 5 , at the end of the training phase. Hence, by Equation 83,
we must know 1 (n) and rB(n) at the end of the training phase, i.e., we must know rA(oe) .

(—A(“) andLB(n) are equal to £,(0) and rB(O) in Equation 83, because of the shift in the time origin.)
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Using the weak-coupling approximation, we shall assume that
Lp=) ¥ Ly ()
Ip() ¥ Lyol=)
Merely by inspection of the state transition graph of mode A (Figure 22), we find that

L, (=)= [0, 1,0l (124)

-2 ! P

Figure 22. The State Tronsition Graph for Mode A in the Numerical Exomple.

To find ;Bo(m)’ we use Kaplan’s method . Figure 23 shows the state transition graph
of mode B. The valuesof the transition probabilities in this graph are given by Equation 119.

Figure 23. The State Tronsition Graph of Mode B,

Using Kaplan’s method, nede 2 of Figure 23 is split into two nodes: a '‘source’” and a “'sink.”
A unit impulse is applied to the source node. The resulting graph is shown in Figure 24. Denote
the *“total” signals at nodes 1 and 3'by o and g, respectively. Then an inspection of Figure 24

yields

b
o, = —=2L . 0.0278
i 1-b,,
b
oy = —22— = 2.2500
1-b,,
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Figure 24. The Modified State Transition Graph for Computing
£go{>) by Kaplan’s Method.

Total delay Adotso o a, = 3.2778. Hence

1
N 0 SR S
LBO()—[d 3 d]

[0.0085 0.3051 0.6864).

i

The values of g,  and qg  are given by Equations 121 and 122. Hence, using Equation 83 to-
gether with the weak-coupling approximation we have

l’[’A g-EAo(m) Qao = 1

Yp ¥ Ipo(=) 45, = 0.8780
(125)
Yap T Laol®) qg, = 0.800
d’BAﬁ:‘ _EBO(W) 94, = 0.9237
Since § = ¢ = (.01, we have y = —21- Hence, by Equation 8BS,
CF?E’F A _4L“(¢’A+¢’B+ ¢AB+¢BA):O'9OO4 {126)
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By Equatioon 86, the beginning of the working cycle is

260 = {TT8 Lyt by - 0.9390. (127)

Substituting Equations 126 and 127 in Equartion 88 and recalling that § + ¢ = 0.02, we obtain
z () = 0.9004 + (0.0386) (D.98)° (128)

as the working performance wave.

To check the accuracy of Equation 128, we need only compute ¢ and ¢ by exact methods.
This was done on a digital computer, using the exact method described under *'The Training
Performance Wave™’ (page 35). The results are:

¢ = 0.93429705

{g = 0.90038880
Hence, within four decimal places,

& - ¢ - 0.0004

and

~

Lp — e = 0.0000

Hence the error in Equation 128 never exceeds 0.0004.

THE DISTANCE BETWEEN ¢ AND ¢

At first it may seem surprising that ¢ and . differ by only about four percent even though
(a, p) = (0.6, 0.9) falls well within the shaded region of Figure 9. This means that the working
phase in the present example imposes only a small deterioration on the success probability. Hence
for this case no retraining would be needed from a practical viewpoint. The question arises: Under
what circumstances will { differ substantially from £? We suggest that this will occur when the
number of available thresholds, K, is larger than 3. Intuition tells us that when K is large it will
‘ ‘cross-cotrelations’ ¢, p and g .. (Recall that if g, =g, =0
and if y = L. then ¢ - 2{-) This conjecture needs to be substantiated by an analysis of K-
threshold two-mode processes with K > 3.

be possible to reduce the

TRAIN-WORK SCHEDULES

We shall synthesize a number of train-work schedules with a design goal of

2L T 09250 (129)

Note that the above value of {; is slightly more than balfthe distance from {; to ¢,
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The train-work schedule will consist of a training interval N, followed by N_, N , N_,
N,, ..., as in Figure 17. In accordance with the procedure outlined on page 31, we first compute &L
whete £_is the smallest nonunity x-plane eigenvalue of the training phase. First we find £}, which
is the .f;l for mode A alone. This may be found from an inspection of Figure 22:

I(x)

S S pX 0
1-(1-p)x  [1-{l-pxl(1-%)

Hence

£yl = 1-p=0.1

Then one finds félr by one of two methods. In one method, we use the v contours of mode B. These
contours, which were given in an earlier paper [ ref. 2], are reproduced in Figure 25. In this figure,

ve33e

y=
-]
o
"3
"
=1
“ v5 Va4 $ye3.32
g
Y

V=4

y=332

Figure 25. v Contours for Mode B.

we find at (a,p) = (0.6, 0.1) that v = 8. Hence

1 1
fp. = (0.1)% = 0.750. (130)

. - -1 .
The second method is more accurate. It makesuse of an explicit formula for £, obtained from the
characteristic equation associated with mode B. This formula is

R Y
é:Blr =
\ 1 -1-2Y
(131
where
y & P2 gr -0 Ga-D1

2
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For {a,p) = (0.6, 0.9), Equation 13] yields

£y, = 0.749 (132)

Since y = %, both £, and &5, play a part in the two-mode performance wave. When the per-
formance wave isnear its asymptote, however, only the smaller of £, and £ dominates the
performance wave, Hence

€' = Max (&), &) = 0740, (133)

Next we compute N.. To do this, we use Equation 101 in conjunction with the training per-
formance wave computed carlier (Figure 21), setting N = 1. Thisyields

N, = 6. (134)

Later we shall try other values of N . Remember, however, that N = 1 is the optimum choice
when it is achievable.

We compute FA(Nt) and ;B(Nt), using

N
Ny =[1 0 0lA°
(133)

™) =1 0 0B

whete A and B are given by Equations 118 and [19. We then find the ¢'s by Equation 123, re-
placing FAo(m) and rABo(w) by ;Ao(Nt) and 1y (N, respectively. This yields, for N =6,

W al6) = 1.0000
(136)
¥ 4p(6) = 0.8000
Hence, by Equation 86, the training performance atn = N is
z(6) = zp(0) Ty ¥ ,(6) + (1~y) y06) {137}
Furthermore the asymptotic performance of a working phase starting atn = 6 is
Cp(6) Ty P 4, (6) + (1-y) 2 irgl6) + y(1-3) [ 4p(6) + g a(6)]. (138)
Serting y = Jé_ and substituting Equations 136 in Equations [37 and 138 yields
z(6) = 0.9262 (139)
(p(6) = 0.8968 (140)
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(Actually, it was unnecessary to compute z(6), since we had already computed it when we found
N, = 6 by Equation 101. We included the recomputation of 2(6) for illustrative purposes only.)

In a preceding section we computed the value of £ using the weak-coupling approximation
{Equations 125 and 127). The result was

¢ = 0.9390. (141)
Next we find ¢ _for N = 1. Using Equations 100 and 133, we find that
9. = £ = 0.740. (142)

Next we find £L= substituting Equations 129, 140, and 141 in Equation 94. This yields

-

£y = 0.665 (143)
By Equation 104,

£l - 0.98 (144)
Substituting Equations 142, 143, 144 in Equation 105 yields

N, = 5.90

The nearest integer to 5.90 is 6. Hence we choose
N_ = 6.
Summarizing: The train-work schedule we have designed is (N ,N_,N) = (6,6, 1).

By using other values of N, we can obtain other train-work schedules having the same
design goal of {; = 0.9250. Examples of such schedules are listed in Table 1.

TABLE 1

SEVERAL SCHEDULES ACHIEVED BY SYNTHESES IN WHICH
THE DESIRED ¢, 1§ 0.9250

Train-Work Schedule Work Ratio Estimated Actual
NT Nw Nr Nw’/Nr éL CL
0 0 7.10

6 6 1 6 0.9249 0.9201
7 10 2 S 0.9248 0.9202
Q 15 4 3.75 0.9246 0.9206
12 18 7 2.57 0.9249 0.9215
15 19 10 1.90 0.9250 0.9221
25 20 20 1

sa 20 oo g

The fourth column in this table lists the work ratio N_ /N, for each schedule. Included in
this column is the train-work ratio at N_ = N =0, obrained by Equation 111. Note that, as
predicted, the work ratio decreases monotonically as the retraining time increases.
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Suppose § = ¢ = 0.1, rather than 0.01 as in theoriginal example. Here, £ = (1 0.2 = 1.25.
When § = ¢ = 0.01, we have ¢ = 1.0204. Hence, by Equation 111, the maximum work ratio for
8=¢=0.11is 7.10 (i.e., the maximum work ratio for § = ¢ = 0.01) divided by 10g1_0204(1.25)- Ve
find that log, ;55,(1.25 = 11.03. Consequently, raising & and ¢ from 0.01 to 0.1 gives a ratio of
0.644, which indicates an inefficient training situarion. In fact, Equation 111 tells us that to achieve
{1 > 0.925 with a work ratio exceeding unity, the value of 5 + ¢ must be less than 0.154. Hence,
if 3 = ¢, 5 must lie below 0.077 in order to achieve | = 0.925 with a work ratio exceeding unity.
Thus we see here how Equation 111 gives us an easy way to estimate the effect of parameter
changes on the work ratio and vice versa.

EVALUAT!ON OF THE WEAK-COUPLING APPROXIMATION

In order to examine the validity of the weak-coupling approximation, the exact training per-
formance wave was computed for the case where § = ¢ = 0.1, everything else remaining as before.
The resulting error curve, marked **A(n) for § = ¢ = 0.1'* is shown in Figure 21. Again the etror
curve is monotonically increasing, except for a small dip near the origin, and is similar in shape
to the error curve for the first case, § = ¢ = 0.01. However, the asymptotic etrot of the second curve
is only about five times greater than that of the first curve, even though at n = 1 the second error
is about ten times the first.

Since the error curves in Figure 21 suggest that the maximum value of A(n) occurs atn = =
independently of 8, we computed A(=) for several values of 5, assuming § = ¢. The results are
plotted in Figure 26. Note that in the range 0 < 8 < 0.1, the error remains below 2.5 percent.

0.040,

0.055#—

0030

0.0QSL_

4 {(w)

0.0204

QOS—

Q0035

Figure 26. Asymptotic Error of the Weak-Coupling Approximation as a
Function of the Coupling Strength.
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On the other hand recall from the numerical example that in order to achieve a reasonable ¢; with
a work ratio exceeding unity, the value of & had to be less than 0.077, assuming 8 = . A work
tatio of less than unity seems to be unsatisfactory, because in most traiping situations in every-
day experience, the duration of the work growingout of a training progtam is substantially greater
than the training time.

Recapitulating: In the present numerical example, reasonable performance (we assume
{1 > 0.925 is reasonable) with reasonably large work ratios can be achieved only if the mode-
to-mode transition probability § lies in the range 0 < § < 0.1. For this range of § the maximum
error of the weak-coupling approximation lies below 2.5 percent.

These numerical results suggest that the weak-coupling approximation will be valid when-
ever the coupling is weak enough to permit reasonable values of ¢ to be achieved by work ratios
greater than unity. Further evidence, however, is needed to establish the generality of this sug-
gestion.

EVALUATION OF THE RC-CIRCUIT APPROXIMATION

To evaluate the effectiveness of the synthesis procedure, we computed on a digital computer
the actual values of £, using an exact analysis (page 26) for fiveof the train-work schedules.
These values of | are listed in thelast column of Table 1. For comparison, the estimated values
of ¢; obtained by the RC~circuit approximation are listed in the fifth column. These estimated
values are not quite equal to the design goal of (0,9250, because of the unavoidable roundoff in
N An inspection of these results shows that in every schedule the design error for | is less
than 0.55 percent.

It is possible to improve the accuracy of the synthesis by using the exact training per-
formance wave instead of the weak-coupling approximation of the training performance wave. Of
course the RC-circuit approximations (page 29) are retained to keep the synthesis procedure within
reasonable manageability. The results of this technique, using the same design goal of ¢; =0.9250,
are summarized in Table 2.

TABLE 2
SEVERAL IMPROVED SCHEDULES ACHIEVING {{ = 0.9250.

Train-Work Schedule Work Ratio Actual
Nf Nw Nr Nw/Nr éL
7 5 1 5 0.9217
8 8 2 4 0.09222
i0 12 4 3.75 0.9227
13 15 7 2.29 0.9231
i6 16 10 1.60 0.9236
26 16 20 Q.80
o0 16 00 0

The estimated values of £ were not computed in this table, because we saw in Table 1
that the roundoff in N, has negligible effect on the estimated ¢; . The actual £ s of Table 2 are
compared to those of Table 1 in Figure 27. In this figure, we see that approximately half of the
error is eliminated by using the exact training performance wave as part of the synthesis procedure.

45



aeesi— \_
DESIGN GOAL
0.924|—
-4
——
— -
e
0923 e
——
1 — Emanovzn SYNTHESIS
—
/l/
‘/
ool |—
FIRST SYNTHESIS

1 [ | | l
09%% ] 2 3 4 ) 7 8 9 10

H|'

Figure 27. A Comparison of the £) ’s Achieved by the Two Setsof Train-Work Schedules.

Recapitulating: In this numerical example, the RC-circuit approximation for synthesizing
train-work schedules yields errors in {; of less than 0.55 percent when § = ¢ = 0.01. These errors
ate cut by about one-half by using the exact training performance wave as part of the synthesis
procedure.

To test further the validity of the assumptions of the RC-circuit appreximation (page 29),
we computed the exact value of ¢, for a few different values of N, keeping N_ and N _fixed at
N_ =6, N = 1. The results are given in Table 3.

TABLE 3

EFFECT OF CHANGING N,.
{Desired ‘:L = 0.9250}

Train-Work Schedule Actual
Nf Nw Nr éL
3 G 1 0.9209
6 6 1 0.9201
7 6 1 0.9202
16 G 1 0.9200

We note that the effect of a change in N has a very small effect on ¢; ~ only about 0.01%
when N > optimum value. It N < optimum value, the effect is less than 0.1%. We conclude thar
the effect of N, on £ is negligible, which lends support to the RG-circuit model as an acceptable
approximation of the train-work cycle.
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8. MODELING ADAPTIVE PROCESSES IN THE LIFE SCIENCES

In most adaptive processes in the life sciences, no obvious model of the process exists,
In particular, the random walk associated with one=mode TLPs will not necessarily be a good
model of a given biological process. A very important need, therefore, is a technique for de-
termining a good model from a limired number of experiments.

This report, together with the preceding paper [ref. 2], points toward methods of modeling
adaptive processes by Markov chains. One such method involves a comparison of the opensloop
and closed-loop performances. In particular, the ¢ contours are computed from the open-loop
performance, and the ¢ contours are computed from the closed-loop performance. If the contours
are similar to those in Figure 9, andif in addition the transient performance wave is monotonic,
a random walk model shows promise of being appropriate.

In some biological or psychological processes, a two-mode model may be preferable to a
one-mode model. Suppose, for example, that a discrimination learning task involving a sequence
of training stimuli extends over a period of several hours, that each element of the sequence
consists of a string of 20 bits, and that the trainee is a human being. Under these conditions, the
trainee’s attention span may flectuate between a short span of about 5 bits and a long span of
about 15 bits, To test the hypothesis that the trainee’s attention span fluctuates between two
string lengths, we need a way of distinguishing one-mode from t wo-mode processes.

One way to make this distinction is by examining the contours of {and {,;.* In a one-mode
process, each (, contour is everywhere inside the cotresponding { contour, and the two contours
never intersect. ln a two-mode process, each ¢y, contour inrersects with the corresponding (
contour in the manner shown in Figure 9. Since the ¢y, contours are composites of the open-loop
contours (i.e., the £ contours), the relations between the open-loop and closed-loop behaviors
can help us decide between a one-mode and a two-mode model for a particular adaptive process.

Another way of distinguishing one-mode from two-mode (or N-mode) processes is to inspect
the statistics of a working phase. If the working-phase performance wave decreases monotonically,
the process is likely to require a N-mode model rather than a one-mode model for an adequate
description of its behavior.

*To find CM contours of a human observer, train him to use a specific threshold in discriminating berween the two
classes of signals. Then permit him to operate in an open-loop condition. This yields a set of ék contours for a
specific k. Repeat the training to achieve a new value of k. After all che L:k maps ate acquired, find éM via

éM = Mix (é:k).
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?. SUMMARY AND OUTLOOK

In this section the preceding chapters are summarized, and extensions of the present work
are suggested,

EXACT AMALYSIS OF TWO-MODE PROCESSES

A two-mode process is exactly analyzable by a Markov chain, even when the coupling is
strong. Furthermore the behavior of the process is exactly describable in terms of the matrices
of the constituent one-mode processes and the parameters of the mode-to-mode fluctuations.

From one point of view this is surprising. A two~mode process or, more generally, an N-mode
process can be viewed as a Markov chain whose transition probabilities are subject to random
fluctuations among N sets of transition probabilities. Consequently an N-mode process can be
viewed as a nonstationary Markov chain. We have shown that this particular type of nonstationary
Markov chain is representable by a stationary Markov chain!

THE WEAK-COUPLING APPROXIMATION

The performance wave (i.e., the success probability as a function of time)} of any two-mode
process may be approximated as a linear sum of the constituent one-mode performance waves
(Equations 43 and 44). The errors of this approximation are small when § << 1, ¢ << 1. Hence this
is calied a weak-coupling approximation. The errors of the approximation appreach a maximum
as the number of trials, n, becomes indefinitely large. These asymptotic errors, however,
remain small when & << 1, ¢ << 1. In the numerical example of the preceding chapter the asymptotic
errors remain below 2.5 percent when 0 = 8 < 0.1, § =«

Future Work: In order to evaluate the utility of the weak-coupling approximartion and to
determine where its application is appropriate, a general error analysis of the approximation
should be made. In addition, an attempt should be made to derive an exact expression for £
in terms of A, B, §, and .

BEST-FIXED-THRESHOLD POLICY

In a two-mode TLP the best-fixed-threshold policy can often be cutperformed by a simple
incremental feedback policy. Specifically, in the numerical example of a two-mode three-threshold
TLP, the simple incremental feedback pelicy outperforms the best-fixed-threshold policy in a
region covering over half of the ap-square. In the remaining part of the square, a threshold fixed
at k = 2 (the middle threshold value) outperforms the simple incremental feedback policy.

Future Work: (a) Investigate the effect of raising the number of thresholds on the size of
the region over which > ¢y, Will this size be increased when the cross-correlations v, , and
g 4 are reduced? {b) Find an exact formula for y  (see page 19).

ULTIMATE ASYMPTOTIC PERFORMANCE

For a two-mode TLP, the ultimate asymptotic performance realizable by any threshold
policy is a linear sum of the fixed-threshold performances of the constituent one-mode TLPs
(Equation 72).
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In the case of the burst-noise chaannel that we studied, we found that if a change in feedback
policy generates a certain stability-reliability improvement for the *'bad’’ channel operating alone,
then a proportional improvement will be obtained for the two-mode operation, with an *‘acceptable”

region in the aep-square shaped similar to the “acceprable’” region for the bad channel alone.

The contours of ultimate asympiotic performance of a two-mode process can serve as a
coarse approximation of the actual asymptotic performance of the closed-loop iwo-mode process.

Future Work: Find out whether or not ¢, is a Jeast upper bound on the realizable asymptotic
performance of a two-mode TLP,

EFFECTIYENESS OF SIMPLE INCREMENTAL FEEDBACK

The effectiveness of the simple incremental feedback policy in a weakly coupled two-mode
TLP is, in the burst-noise example (page 13), greater than the effectiveness of that pelicy in
either of the constituent one-mode processes — where effectiveness is measured as average
stability-reliability improvement in the gp-plane.

WORKING PHASE PERFORMANCE

The Markov chain model permits an exact analysis of the working phase performance wave.
This analysis is particularly simple, because the working phase performance wave consists of
only two eigenfunctions: oneis a constant and the other is the exponential function (1 -5-¢)".

Theorem: The final success probability in a working phase of any two-mode Markov chain
cannot be less than one-half of the success probability ar the beginning of that phase.

In an example of a three-threshold iwo-mode TLP, we found that { and ¢ do not differ
substantially, We conjecture that they can differ substantially when the number of thresholds, K,
is large.

Future Work: Investigate the above conjecture.

THE TRAINING-PHASE PERFORMANCE

The transient performance of a two-mode closed-loop process is only weakly dependent
on 5 and ¢ when 8 and ¢ are small. On the other hand, the transient performance of a two-mode
open-loop process is strongly dependent on & and ¢, even when & and ¢ are small.

TRAIN-WORK CYCLES

Train-work schedules for two-mode processes may be constructed from a knowledge of the
constituent one-mode behaviors. Increased accuracy in the train-work schedule may be obtained
by finding the exact two-mode performance during a single training phase.

The Markov chain model yields a procedure for synthesizing train-work schedules that will
realize a performance wave having a prescribed minimum value, ¢, after the first training phase.

Many two-mode train-work cycles can be closely simulated by the output voltage of a
periodically charged and discharged resistor-capacitor circuit (Figure 18). This circuit suggests
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the so called **RC-circuit approximation'’ for analyzing train=work cycles. In rrain-work cycles
where this approximation is valid, the ratio of the working time to the retraining time (the "‘work
ratio’’) is maximized when the retraining time is made as small as possible. A convenient ex-
pression for the maximum realizable work ratio is

N
w =

(2= - 1) leg, (&)
N, ‘. {w

max

where C.L’ &, &, are defined in Equations 94, 99, and 104.

THE NUMERICAL. EXAMPLE

The analysis and synthesis techniques, in particular the weak-coupling approximation and
the RC-circuit approximation, are illustrated by a numerical example. A number of train-work
schedules achieving a desired minimal performance, (| , were derived for a case where the
coupling is & = ¢ = 0.01. In each of these schedules, the errors in the achieved value of £, was
less than 0.55 percent.

The results of the numerical example suggest that the weak-coupling approximation will
yield errors of the order of magnitude of 2 percent or less whenever the coupling is weak enough
to permit reasonable values of {; to be achieved by work ratios greater than unity.

Future Work: (a) Investigate the range of validity of the above suggestion. (b) In a future
numerical example, use a pair {(q, p) lying outside the region where {> {,.

In designing train-work sequencesof the form N, N_, N, N_. N, ..., the effect of N_on
the achieved value of (| seems to benegligible. This enhances the applicability of the RC-circuir
approximation.

In the numerical example, the RC-circuit approximation yields errors in {; of less than
0.55 percent when & = ¢ = 0.01. These errors are cut by about one-half by using the exact training
performance wave in place of the weak-coupling approximation of the training performance wave
as part of the synthesis procedure. A general error analysis of the RC-circuit approximation
would provide a useful supplement to our work.

MODELING ADAPTIVE PROCESSES

The relations between open-loop and closed-loop behavior of adaptive processes can be
helpful in finding Markov-chain models for real processes. In particular, these relations can help
decide whether a one-mode or an N-mode model is appropriate. The relations of immediate interest
are those between the ¢, and ¢ maps, and between che training phase and working phase. Ocher
such relations may evolve in the future.
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10. GENERAL OBSERVATIONS AND CONCLUSIONS

The Markov chain model can be used in the exact analysis of a certain class of non-
stationary threshold learning processes — in particular, twe-mode TLPs. As a result we find
that the effectiveness of simple incremental feedback for two-mode TLPs is greater than in one-
mode TLPs, This is manifested in two ways:

[. Over a substantial region of the ap-plane the asymptotic success
probability, £, of a two-mode TLF exceeds the best-fixed-threshold
success probability, £,,. There is no such region in the case of one-
mode TLPs.

2. The average stability-reliability improvement for the class of weakly
coupled two-mode TLPs studied in Chapter 4 is greater than that of
eicther of the constituent one-mode TLPs.

The effect of various environmental statistics on the £ contours may be estimated by com-
puting the

L4 3y

ultimace’” asymptotic performance, {;, using the simple arithmetic involved in
Equation 72, and using the approximation = (. When the modes are weakly coupled, more accu-
rate estimates are obtainable by computing a linear sum of the {'s of the constituent one-mode

processes (Equation 44).

The numerical example suggests that the RC-¢ircuit approximation, rogether with the weak-
coupling approximarion, provides a good technique of synthesizing train-work schedules for many
two-mode TLPs in which the work ratio is greater than unity,

Equation 111 is a useful formula for estimating the effect of ¢, {, {g, £, and £, on the

(]

work ratio. Let us define a “"good compromise’’ choice of {; as one which is not so small thac
¢, is too close to { and at the same timeis not so large that the work ratio is made very small
by the facror (r:il - 1) in Equation 111, Intuitively we see that a good compromise choice of

¢; occurs at the knee of the function

l.e., at éL = 0.5. Thus a good compromise choice of {; seems to be

4 = % (C+ ¢&p)

In control theory, adaptive processes are commonly analyzed by differential equations. In
such analyses, the dynamics of systems with fast plant variations have not been satisfactorily
understood, and systems with slow plant variations have yielded only to approximate analysis.
The present approach permits an exact analysis of the dynamic behavior of both slowly and rapidly
perturbed systems. The following sacrifice, however, is made in the use of Markov chains: The
results of the analysis are probabilistic, while the results of the differential equation analysis are
deterministic. This sacrifice, however, may be put to use if we allow the probabilistic features of
the Markov chain model to express our ignorance of the plant and/or its environment.

A worth-while future project would be to show how our ignorance of a deterministic plant
and/or its deterministic environment may be expressed as transition probabilities in a Markov
chain model.

51



The problem of modeling adaptive processes, i.e., the problem of finding a model that will
adequately describe real adaptive processes, is of major importance in this research. (An ap-
proach toward this problem is sketched on page 47.) So far our approach has been to gain an
understanding of the relation between specific feedback policies — particularly the simple incre-
mental feedback policy — and the adaptation characteristics of a certain class of stochastic
processes. The framework of analysis has been Markov chains. A specific application of Markov
chains to adaptive signal detection has been demonstrated. In the future we hope to demonstrate
the use of Markov chain models for other specific processes in the life sciences and engineering.
Models more sophisticated than Markov chains will also be investigated, and specific applica-

tions demonstrated.

Another useful future project is the investigation of more sophisticated feedback policies
in TLPs. For example, in one-mode TLPs, an improved feedback policy would gradually reduce
the size of the threshold increment as a function of time, finally settling on the optimum threshold
when the increment is zete. In two-mode TLPs, an improved feedback policy would gradually
reduce the size of the threshold increment not to zero but to some small value dependent on a
finite history of the incoming signals. It would be interesting to compare the effectiveness of
these more complicated feedback policies to the more elementary policies in which the size of
the increment remains fixed.

Another useful future project would be an investigation of working-phase feedback for TLPs.
This type of feedback involves threshold adjustments based only on the guesses made during the
working phase, These guesses would have a nonzero probability of error, but could still be useful
in adjusting the threshold, provided the observer in the TLLP model knows that the channel may be
in one of, say, N modes. Such a situation may occur inadvertently in certain discrimination learn-
ing experiments. A knowledge of the effects of working-phase feedback on adaptive behavior will
help the experimenter recognize this possibility when it occurs,

Where is this research leading? We feel it leads to the following two situations:

1. When we have available a good theory of adaptive processes, we shall be able to do
the following when we encounter an unfamiliar plant to which we would like to tie a feedback
policy to enhance the plant’s adaptation characteristics: First, we shall construct a model of the
plant — a zero~-memory statistical medel, a Markov chain model, or some other appropriate model,
Then our knowledge of the open-loop properties of this model, in addition to our understanding
of the effect of various feedback policies on the adaptation characteristics of the model, will
enable us to choose a feedback policy that will yield a satisfactory performance of the closed-
foop process — taking into consideration our range of ignorance of the expected environments and
the unreliability ‘of the internal structure of the plant.

In other words, if we can describe our range of ignorance of the statistical parameters of a
given trainee and his environment, we shall be able to find a simple reinforcement strategy that
will optimize the learning process of this trainee.

2. Eventually we shall be able to examine certain features of the open-loop and closed-loop
performance of an adaptive process, and{rom these features decide on a reasonably simple model
of the process, including a description of an implicit feedback policy that may be hidden inside
the process and therefore not directly observable. From such a model we shall be able to predict

the rransient and asympiotic performance of the process under a variety of environmental con-
ditions and variations of internal structure,
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