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ABSTRACT

The possibility that nonlinear acoustic flows may be represented by
spherical progressive waves (in the sense of Courant and Friedrichs) was
examined and found to be unlikely. An iterative finite-difference method
for the calculation of continuous periodic spherical flows was developed
together with a FORTRAN code, SPHERE, that implements the method. Sample
calculations have shown that the code is effective but stow, and several
ways for reducing the computation time are suggested. Convergence dif-
ficulties in one of the iterative loops were overcome by the use of a
semi-iterative underrelaxation scheme. When applied to linear systems,
such semi-iterative schemes were found to be equivalent_to a class of
summability methods that may be regarded as generalizations of Euler

summation,
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SECTION I
INTRODUCTION AND SUMMARY

G. M. Muller and C. M. Ablow

The purpose of the present research was to investigate possible new
methods for the calculation of nonlinear acoustic fields, with some em-
phasis on the eventual applicability of these methods to the calculation
of axisymmetric flows, especially those generated by a high-intensity
siren. However, the difficulties encountered in the course of the work
proved sufficiently great to limit the actual investigations to flows

having spherical symmetry.

Under the assumptions of classical acoustic theory, acoustic pressure
fields are governed by a system of linear partial differential equations.
For many purposes, the dissipative effects of heat conduction and viscos-
ity may be neglected, and the governing equations reduce simply to the
linear wave equation, The calculation of the acoustic pressure field im-
posed on an ambient atmosphere by a periodic source is one of the impor-
tant areas of classical acoustics; because of the linearity of the under-
lying equations, a great variety of solution techniques is available,
corresponding to the diversity of possible boundary conditions. (An
extensive compendium both of techniques and of solved problems may be

found in [ 8], especially Chapters 7 and 11.)

For acoustic pressure fielas generated by sources of sufficiently

high intensity, the approximations made in deriving the linear wave

-



equation are no longer valid,* and an adequate theory of the acoustic
field has to be based on the nonlinear equations of gas dynamics. The
mathematical complications arising from the nonlinearity are sc severe
that the only problems that have been investigated in any depth are those
associated with propagation of plane waves. A good survey of this field,
with some attention to dissipative effects, is an article by Beyer L?,
Chapter 10]; more detailed discussions and references to very recent work

may be found in a series of papers by Blackstock [1—4].

Much less is known about spherically symmetric waves, Heaps [5]
and Blackstock [1] have shown that under assumptions valid at large dis-
tances from the center of symmetry, plane-wave solutions may be made to
represent spherical waves under a simple change of variables, Naugolnykh
[7, p. 247] has derived a perturbation solution valid near the surface of
a pulsating sphere; this solution contains, to first order, the effects
of both nonlinearity and dissipation. A significant but little-known
contribution to the literature of nonlinear spherical waves in a nondis-
sipative medium was made by Laird, et al. [6] who described two different
perturbation methods (valid, respectively, close to and at some distance
from the surface of a pulsating sphere) and used these to calculate sev-

eral representative acoustic flow fields.

Two basic approaches were used in this investigation, and these are
reflected in the organization of this report: Sections II, III, and IV

deal with the general subject of oscillatory self-similar flows and

t Significant nonlinear effects may appear with acoustic pressure
amplitudes of no more than a few percent of the ambient pressure.



related theoretical questions; Sections V and VI are concerned with the
calculation of continuous, periodic, spherically symmetric flows by a
novel finite-difference method, with emphasis on the underlying numerical

analysis,

In Section II it is shown that no spherical progressive wave provides
a continuous oscillatory flow. Discontinuous pericdic flows produced by
& succession of spherically symmetric puffs of gas at the origin, a highly
idealized model of siren behavior, are considered in Section III. The
puffs are separated by shock waves, Conditions at the origin (that each
puff contains a finite mass, momentum, and energy) and at infinity (that
the shocks weaken to sound waves) have been used to eliminate a parameter
and to locate the phase plane trajectory of the solution, The remaining
parameter is determined by the strength of each puff or by the time be-
tween puffs, so that for a progressive wave flow the strength and timing
of puffs are related, A modified phase plane has been defined in which
the shock condition for arbitrary points along the trajectory can be ex-
pressed geometrically. In this plane it is c¢lear that for a spherical
progressive flow to be bounded by periodic shocks is highly unlikely;

however, this negative conjecture has not been rigorously established.

Section IV makes a start toward the exploration of general methods
for finding types of flow similarity other than that given by dimensional
analysis. One such method could be based on Noether's theorem which gives
a partial integration of equations derived from a variational principle.
The section contains an account of the theorem as a basis for possible

further work.



Section V describes a method for the numerical calculation of con-
tinuous periodie flows with spherical symmetry, It is shown that under
near-acoustic conditions such flows are, strictly speaking, impossible
even within a subregion of the flow field if the entire flow field ex-
tends to infinity. Accordingly, a modified problem is defined for flows
confined to a region 1 < r < R, with the boundary condition at infinity
replaced by one at r = R, Various forms of this boundary condition are
discussed; of these, the acoustic boundary condition--that the flow at R
have the character of an outgoing wave in the sense of classical acous-
tics——is chosen for use in the numerical computations., Specification of
the problem is completed by prescribing at r = 1 either the velocity or
the mass flow as a periodic function of time, Q(T), and imposing on the
flow variables the requirement that they have the same pericdicity in
time as Q(T)., The boundary and periodicity conditions together define
what is essentially a boundary value problem, whereas the usual problem

posed for the hyperbolic partial differential equations of unsteady com-
pressible flow is either of the initial value or the mixed initial-boundary
value type. Not surprisingly, therefore, the method of solution involves
forward-stepping (in approximately characteristic directions) within the
framework of an outer iterative loop designed lo satisfy the boundary con-
ditions. Convergence difficulties are removed by use of an appropriate

underrelaxation scheme,

A FORTRAN code, SPHERE, that implements the numerical method has
been developed and is described in sufficient detail in Section V to per-

mit its use by interested persons. Preliminary calculations are described



and suggestions both for further calculations and for modifications of
the code are made., Finally, attention is drawn to the possibility of the
existence of subharmonic sclutions and the conseguent possible lack of
uniqueness in asymptotic behavior (time — =) of the corresponding mixed

initial-boundary value problem.

In Section V the convergence difficulties are shown to be essentially
associated with the linear part of the problem, i.e.,, with the location of
the eigenvalues of a certain iteration matrix #. Section VI contains a
general discussion of methods for removing such difficulties and estab-
lishes the close relationship between these methods and various concepts

of classical summability theory.
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SECTION II
CONTINUOUS OSCILLATORY FLOWS

C. C. Ablow and L. D, McCulley

Solutions to the equations of gas dynamics are found under some re-
strictive cendition which serves to define the physical situation and to
direct attention toward appropriate solution techniques, The condition
that the flow is a spherical progressive wave is a restriction to flows
spreading from a single point in space-time and provides a simple system
of first-order ordinary differential equations feor solution, The spheri-
cal progressive blast wave of Taylor [1] and the shock reflection solu-
tion of Guderley [2] are important contributions to our understanding of

the flow of gases.

Flows of use in acoustics are oscillatory. This section reports
on a search for continuous ovsgcillatory spherical progressive waves, and

contains a rigorous proof that no such waves can exist.

A, Differential Equations

For spherically symmetric wave motion in a polytropic medium with
adiabatic constant v, the radial velocity u, the pressure p, and the

density p as functions of the radius r and the time t satisfy



u, +uu o+ pr/P =0
Pt + uli'r + p(ur + 2u/r) =0
=Y =Yy
(pp D +ulpp ) =0 (A.1)

where subscripts indicate partial differentiation.

The class of solutions may be restricted to those of the "progress-
ing wave" type [1, p. 416] in the following way. If c¢ is sound speed in

the medium, define new variables U, C, (2, P, and 7] by

r(ve) " tuem

u =
¢ = r(r ) tem

e = rfam

p = 2200 Pay)

n=rt (A.2)

2
where K and A are constants, with A > 0, Then yPAI = C , and from (A.1)
a system of ordinary differential equations with variables U, P, and R

can be derived:

Uy = A/TD
Ry = 2BR/7D
Pp = EP/TD (A.3)
where
R:Cz

D = (U - 1)2 - R

A =AU - 1@ - A - 3R - o))

B = 27w - DA -0+ (v - DUW - D - 5
- R(U - 0 )1/(U - 1)

g, = (2 - 2 - K)/3y



0'2=(3-}\.)/2
o, =1+0[20 -2+ O\ - DK]/2y
E=@-D0NU-@E+ 2v + ) + @By + K]

vz lw - - @R

B. Oscillatory Solutions

Accustically significant solutions are taken to be progressing waves
that contain oscillations and that die away with distance from the origin,
Points with zero sound speed are permitted only at the origin or at infin-

ity in physical space,
The method of sclution is to examine the solutions to
=t 20 (B.1)

in the (U,R) phase plane. An acceptable solution curve starts (7 = 0) at

a point P, on U = Q0 so as to represent a flow dying away tou = 0 at r = .

1

Since the differential equation determining 7], the first equation of (A.3),

may be written

d(in 1)

L 3 (B.2)
one sees that starting point P1 is a singularity for 1n 7 and so requires
A =0, This, with U = 0, generally puts P1 at the origin U = R = 0, (In
case 0, = 0, P, can be elsewhere on U = 0, The special case 0, = 0 is dis-

1 1 1

cussed in subsection F,)

An acceptable solution curve continues from initial point Pl toward

terminal point Pz, at which 71 = ». At Pz, A = 0 since N = @. For an os-

cillatory solution, the phase plane solution curve will spiral around in

approaching P Thus P2 is a singular point for the phase-plane differ-

o°
ential equation (B.l) of the type called a focus [3].

9



Let A and B be the polynomials A = AA, B = A(U - 1)B. Then equation

(B.1) becomes _
%% = EEEE?EI; (B.3)

Singular points in the phase plane occur where BR = A(U -~ 1) = 0. Such
points on R = O cannot be used for terminal points, P2, since the spiral-
ing solution curve would cross into negative R where sound speed function
C is imaginary. Singular points on U = 1 also require R = 0, except in
the special case Gl = 03 =1 discussed in subsection G. Thus points

(UO,RO), which can serve as end points for oscillatory solution curves,

are found from A = B = 0. These equations can be written in the form

Ry = UO(UO-1)(U0—-k)/3(U0-ol)
= (U, - DLW - D -1 + (y- DU -0 )]/ -0, . (B.4)
Eliminating RO gives a cubic equation which can be factored;
r 2
[u, - 2v/@3y -1y + U ir -3 + 0)/2 + 30 /2] = 0, (B.5)

It is easily verified that the two roots of the quadratic factor give
points lying on D = 0. Such points cannot serve as end points of oscilla-
tory phase plane curves because in spiraling toward one of them the solu-
tion curve would cross D = O repeatedly. By equation (B.2}, N would not

steadily increase along the curve.

In summary, an acceptable phase plane curve representing an oscilla-

tory solution starts at Pl’ the origin, and ends at P2: U0 = 2 /(3y-1)

with R0 given by (B.4). The curve joining P_. and P2 should not touch

1

R = 0 and so, since solution curves cross U = 1 only at R = 0, it is

necessary that U0 < 1,

10



C. The Focus Condition

The condition necessary for singular point P2 to be a focus will now

c = A and d = EU where the subscripts

be derived. Let a = B y b= B R’

R U’

indicate partial differentiation and the partial derivatives are evaluated

at (Uy,R,). Then
= - -0
a (U0 3)

2

b= 2(Uy - MU -1 + (U -+ (Y-—l)[(UO— 1) (U, - 9,)

2
+ U (U = 1) + U (U, - 02)] - R,

C:—S(UO—U)

1
= -1 - A - - - 3R c.1
d (UO )(U0 ) o+ UO(U0 1) + UO(UO N 3 0 ( )
and if {ad - bc) # O, one may write equation (B.3) near (UO,RO):
9 : - _
ar RyLa(R - R)) + b(U - U,)] .2
T (U -1 R -~ R d(G - : ’
dU o M e( O) + d(U UO)]
. (5] . »
Following Lefschetz , (UO,RO) is a focus if
(2R a - (U - 1)d1% + 8R.(U. - be < 0 (c.3)
0 0 00 ) ’
Proper choice of the two rational expressions for RO’ given in (B.4), al-
lows writing Roa and ROC as polynomial expressions in UO' Substitution

and rearrangement give

2 -
9RO + q(A,Y)HO + r(A,y) = 0O (C.4)
where

g =m - Gs

.

2
¥ = 8 - m(b + RO)

Il

n

i

SUG(UO - X)

w

= 3{U. - 1Y(U -A 9y - I - o
3CUL - DU, -4+ 2y =DV (T -7 )

+ L (U - + U (L. - 4}
{ U{UG’ L LG(L(; .

11
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Since K is arbitrary, R0 may be assigned any value. Thus condition (C.4)

can be satisfied by proper choice of K if
2
q° - 36r > 0, (C.5)

Set { =¥ - 1. Then, using the fact that UO = 2,/(3y - 1) < X, one finds

that 9 2
BCC + L)L ~=(30 + 2)(30 + 10X + 3(30 + 2" < O (C.86)

is equivalent to equation (C.5). Thus equation (C,5) holds in a region

of the (-A plane bounded by the curves

2
A= (30 +-2)(@3¢ + 10 4.:;\/9(; - 36C + 43/16(C + 1).
Since A > 0 and ¥ > 1, we may restrict the region under consideration to

the first quadrant of the {-A plane. These curves are sketched in Fig. 1,

As1+1(3/2)L r>Q INTHE ENTIRE 1st QUADRANT

{Uy =i}

|
|
S |
|
: a?-38r>0
e | U <1
Ug >t |
[
3 I F—_———,— e — —— —-
I
q2-36r>0 !
I
|

q<0 EXCEPT AS INDICATED NEAR
THE QRIGIN

I

|

I

I

I

|

I

|
| i | | . -
3 /’4 5 6 Jr’ b=y !
2-14/3)/2 2+(4/3) V2

Ra-4588-2

FIG. 1 PARAMETER PLANE — OSCILLATORY FLOW
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One may record

2
-6U,[U, (60" - 20 + 1) + 3p - 1]

q =
2
r = U; [UO2 aep? + 72.3 4 gsuz + 120 + 1)
- UO(SGLL3 + 168|.1.2 + 300 + 2)
+ (Slua2 + 180 + 1)]
b=C/2 = (y - 1)/2
U0 = 20\/(3y - 1) . (c.7)

The discriminant of the bracketed guadratic in the expression for r is
-864u3(12u3 + 16}.L2 + T+ 1)

and is negative for positive W. Therefore, r is positive for positive
A and {. From the factored form above, g is readily seen to be
negative in the first quadrant of the (A,() plane, except for a small
region near the origin. 8Since this region does not intersect that in
which egquation (C.5) holds, as shown in Fig. 1, q is negative where
the polynomial in equation (C.4) has real roots. Those real roots are

then positive values for R, and so give real, positive sound speeds C

0 o’
The existence of foci with U0 < 1 is assured for values of parameters

{ and X falling in the proper region of Fig. 1. From the fact that the

region lies between the straight lines A = 3 and A = 9(/8, one finds that

the foci lie between U0 = 0 and U0 = 3/4.

D. Existence of Oscillatory Solutions

In just what region of the (UO,RO) plane foci can lie remains to
be determined. For the finding of significant solutions, it is necessary

to know whether this region is on the same side of D = 0 as the origin

13



R =U=0. For, if so, many solution curves may be expected for a given
parameter pair (i,v)} running from the origin, Pl' to a termination at the
focus P2. If the region in which equation (C.4) is satisfied lies across
D = 0 from the origin, then only solution curves crossing D = 0 at singu-

lar points can provide a proper solution.

One can see that the region does lie across ID = 0 from the origin,
as follows: First, the line P = 0 is not in the region where equation
{C.4) is satisfied because on D = 0O, R0 = (1 - Uo)z, and the polynomial
in equation (C.,4) becomes

[2U02 3%+ 30+ 1) - U, (38 + 5) + 312,
Second, for the particular values » = 5 and v = 7, one may compute the
range on which Ry lies to be (65- 4/30)/12 < R, < (65 +4/30)/12 or
3.60 < RO < 7.24. This range is well above {1 - UO)2 = 1.4, It follows

that the region lies above I = 0 for all A and Y since it is a connected

set, the continuous image of a connected sel in the parameter plane.

In summary, an oscillatory solution exists as a curve in the (U,R)

phase plane connecting the origin P, with the focus Pz, provided there

1

is a singular point PS on D=0 in U< 1 of a type that permits the solu-

tion curve to cross D = 0 in going from P1 to PZ'

E. Phase Plane Geonmnelry

The curve A = 0, along which solution curves in the (U,R) phase
plare have vertical Langents, passes through the origin, Pl' with posi-

tive slope if J is negative, or with negative slope if Gl 13 positive,

i

1f Gl is positive, A = 0 has a branch on ¢ < U < 1 in R ™  only

tor Cl < 1. This hranch drops monotonically from R = = at U = 7, to
i

14



R=0at U=1., A solution curve starting at the origin P, and passing

1

through P3, the intersection of A = 0 and D = 0, cannot continue on toward

the singular point P2. This is because P2 is above and to the left of P3,

i.e., Ry > R3 and Uz < U3 so that the solution curve, which has positive

slope from P1 through P would have to turn back through a peint of in-

3!

finite slope, a point on A = 0., But the solution curve beyond P3 is above

and to the right of A=0 and, with its positive slope, tends away from

A = 0. Hence no solution curve can run from P1 through P3 to Pz as needed.

For Ul %< 0, the following algebraic argument shows that no oscilla-

tory solution exists, By (B.4), with U0 from (C,7), the coordinates of

2 .
= MUO(I - UO)/(UO - 0.). Since

the focus singularity P2 are related by R 1

0
0 < U0 <1, Ul $ 0 implies R0 < uUO(l - Ub). From focus condition {C.4)
the least possible value for RO is (-q - qu - 36r)}/18. Therefore, for

an oscillatory solution, this becomes

- qu - 36r = 18pU0(1 - UO) + q. (E.1)

Using (C.7) one may simplify the right side of (E,1) to -6U0[U0(6924-W-+1)-1].
If this quantity were positive or zero, (E.1l) would be satisfied. However,
with Az 3, one finds UOZZB/(394-1), and U0(6p2+ B+ 1) - (13H24-2)/(3H-f1) >0,
so that the right side of (E.1) is negative. With both sides of (E.1) neg-
ative, the inequality requires

2
[prUO(l - U+ ql? < 42 - 36r.
or

36U§[:U§(36M4 + 1ospS + 9302 4+ 18p + 1)

- UO(72M3+-156M2—+42M + 2) + (72@24-24M + 1)) < 0.

15



3 2
The discriminant of the quadratic factor is —576u3(9u + 21K + 12+ 2) s0
that the quadratic is positive for positive W, and the inequality fails

to be satisfied.

F, Special Case 0; = 0

This case yields no oscillatory solution since none of the singular

points provides an acceptable focus. The singular points are

P: (0,0

P,: (an/Cay-1], A3y - 1] - 2% /03y - 11%
P3: (0,1)

P,: (1,0)

Po: (A,0)

P ([ - alz, [r - 10%9

Points Pl’ P4, and P5 cannot provide a useful focus since, in spiral-

ing about one of these points, the integral curve would dip into regions

2
where R = C° < 0, The argument in the last paragraph of subsection E above
applies here to show that P2 is not a focus. Points P3 and P6 lieon D = 0
so that integral curves spiraling around them would unacceptably cross D=0

at nonsingular points,

This special case provides no oscillatory scolution,

Il
Q
i
f]

G. Special Case Iy

In this case, A = (3y - 1)/2, and singular point P2 lies on U = 1.

One readily checks that U0 =1, RO = 3{y - 1)2/4, and that (C.2) becomes

ar 2R0[4(R - Ry - b'(U - UO)]

du d’(U - 1)

16



2
where b’ = (3y - 5){y - 1) and d" = 9y - 12y + 11, Focus condition (C.3)
2 .
becomes (BRO - d“)" < 0 so that P2 is no longer a focus. The other singu-
lar points lie, as before, on R = 0 or D = 0 and so can provide no accept-

ahle foci.

No oscillatory solution is present in this case,

17
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SECTION 1III

DISCONTINUOUS OSCILLATORY FLOWS

C. M. Ablow and Y.D.8. Rajapakse

Periodic flows could conceivably be produced by a succession of shocks
propagating from an origin. The construction of such flows is attempted
in this section under the assumption that the region between shocks is

occupied by a spherical progressive wave,

Necessary conditions for a solution show that the source emits a fin-
ite burst of energy in each period but no mass or momentum. The quantity
of energy and the period are related to one another, and the sound speed
of the gas is zero at the source and at infinity, Just a few flows are

found that satisfy these conditions.

A major condition, that the bounding discontinuities be shock waves
at intermediate points as they are at the source point and at infinity,
has not been applied., Since even without this condition the solution is
2ll but unique, the regquirement of spherical progressive wave character
for the intershock flow is apparently too stringent, so that only an ap-

proximation to a possible periodic flow has been found.

A, The Source

For an oscillatory flow resembling that emanating from a siren, one
may consider a succession of puffs or spurts of gas at an origin, each
of which creates a spherical progressive wave, the waves being separated

from one another by shock discontinuities.
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According to the progressive wave assumption, the continuous flow
between the shocks is represented by a single curve K in the (U,C) phase
plane, the curve being traced out by parameter 7}, T = tr_h. Thus curve
K corresponds to a whole region of the (r,t) physical plane and also to

a whole region of the {(u,c) hodograph plane.

The shock curve in the physical plane provides two curves, A and B,
in the hodograph plane, with A the curve representing points just ahead
of the shock, and B the points just behind it. To be in a single contin-
uous flow region, the A points are considered to be ahead of the shock
which ends the region, while the B points are behind the shock which be-

gins it.

The content of each puff may be taken to be a certain mass of gas,
outward momentum, or quantity of energy. If M, Q, and K are the amounts
of mass, outward momentum, and energy passing through a spherical surface

of radius r between shocks, then

t
2 A
M = 4nr J pu dt {(A.1)
tg
t
A
Q = 4ﬂr2 j pu2 dt (A.2)
tg
2 tA 2
K = 41r I Lpte +u“/2) + p]u dt (A.3)
tg

where tA and tB are the times of passage of the shocks past the sphere,
and p, u, and p are the density, speed, and pressure in the gas. For a
perfect gas, the internal energy, e, is given by [p/{y - 1)pl, Y being

the ratio of specific heats. In terms of the variables describing spher-

ical progressive waves, defined in Section II, we have
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N
canny ot InA um) aap a/m (A.4)

M =
B

- Tia

Q = (ann?y A f au? an/m’ (A.5)
B

_ 1]

K = (amndy S Jn“ {ov® s Lav/(v- 1 Ipu} anm’®. (A.8)
B

The general form of these integrals reads

o N
I =k J e an (A.7)
I Ll
B
0 for I =M
i=K +3~n( -1), n = { 1 for I =@
2 for I = K

and kI is the proper constant,

The basic assumption of the present model of siren action is that
at least one of the three particular forms of the integral I is bounded

and positive in the limit as r tends to zero, while all three forms are

bounded.
Near r = O, tB = 0 and tA = T where T is the period between puiffs,
a given constant. Hence )
N, =r (A.8)

so that ﬂA becomes infinite as r tends to zerc. Assuming that near r = 0

the B shock curve can be approximated by

b
r = kBt , 0<b =1, kB >0, (A.9)

one finds
nB _ {kB rlb-l] (—1/b)| (A.10)

Thus ﬂB becomes infinite or remains bounded as r tends to zero, depending

on whether Ab > 1 or Ab = 1.
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If Ab > 1, carrying through the integration in equation (A,7) shows

that near r = 0 integral I tends to a sum of two terms proportional to

rj—Ku rjw(hb—l)(u/b)

and , (A.11)

respectively, where integrand f(7) has been supposed to tend smoothly to

a constant multiple of np_l

as 7] becomes infinite. To obtain a properly
bounded I, it is necessary that

[0 if w >0
L~ =
J PEY b it < 0, Ab > 1, (A.12)
with equality in one of the three cases I = M, Q, or K. If ¢ = 0, loga-

rithmic terms arise so that no bounded value for I can be obtained.

It Ab = 1, ﬂB remains bounded and positive as r tends to zero. As-
suming that £(7})) is integrable to a finite value over any closed finite
interval excluding 7 = 0, one finds that integral 1 becomes a sum of terms

roportional to -
propo rJ—Ap

r and {A.13)
so that for a finite I,

I {lp if p > 0,

J 0 if p < 0, Ab o= 1, (A.14)

As before, equality is required in one of the three cases. Also, W £ O

in order for I to be finite.

If A < 1, integral I becomes a sum of terms proportional to

rj, rj"l“, L™ (AD=1) (v/b) (A.13)

where integrand f(7)) has been supposed to tend to a constant multiple of
nv_l as 7 tends to zero. For a bounded I,
J < max [01 }\p"r (-’\b—-l)(\,'/b)j, Ab < 1’ (A'lﬁ)

with equality required for one of the cases I = M, @, or K. Neither

nor v can be zero for a bounded I.
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The agsumption that f(ﬂ) becomes proportional to T

infinite implies that

ko=1+ lim nlin £

H—oOO

-1

as 7] becomes

(A.17)

The same formula applies to give v if the limit is taken as 1] tends to

zero. From the explicit forms for f(n) and the equations

ical progressive waves, presented in Section II,

/ -1+ [E+ (4/U0) - 2B]/D if

!

\JJ’:I—F

-2+ [E+ 2(A/U) - 2B1/D if

-3+ max {[Ev+A/U]/D, [E + 3(A/0) - 2B]/D} if

where the functions are evaluated at N = o to obtain | or

obtain V.

B. Infinite Time

For large values of t, the flow and sound speeds are

finite or zero and the shock weak.

ro= koL, 0B =1,
From this,
-h, 1-X8
nB:I( L
My = k;h(t s
For »8 £ 1,
M, = ﬂBE1 + (1-AB)(T/t) ]

so that for large times,

e admenagy Bl
1 = LIhE’T(l ABYt QB f(nB).

23

one finds

B

governing spher-

I =M

I = @ (A.18)
I = K,

at T, = 0 to

assumed to be

The B-shock curve will then approach

> Q. (B.1)

(B.2)

(B.3)

(B.4)



Since mass, momentum, and energy are conserved, quantity I is necessarily
bounded as t becomes infinite. In terms of exponents ¢ and v, defined in

equations (A.18) and (A.19), one finds

8j-1s {(RB— v if A >1 (B.5)

(B - Dp if AB < 1,

1f M@ = 1, similar considerations show that for bounded 1 as t be-

comes infinite,
BJ - 1= 01 )\B =1, (B.ﬁ)

C. The Shock Hodograph

The conservation relations connecting guantities on the two sides of

a shock may be reduced [1, Sect. 67] to

2 2 2
0 (Y-—l)(ul— W) o+ 2cl

1

(y - 1)(u0-—w)2 + Z2c

I

v+ L (ug-w) (u, - w) (c.1)

where w is the shock speed, These equations may be rewritten as;

S(uo, Cor Uys cl) =0
V(uo, Cyr Uy cl) = W {(C.2)
where
2 4 2 2, 2 2 2 2,2
S =v{y-1) (uo-ul) + 2(y - 1) (uO— ul) (c04-cl) - 4(00 - cl)
2 2 2 2
V= Ly- 1)(u0 - ul) + 2(c0 - cl)]/Z(Y- l)(uo-—ul).
Limiting values for a weak, forward-moving shock are
de
Yo = Ny . V1
1
¢y = Cy» Yl = {y - 1)/2 (C.3)
w = uo + CO
where the derivative is taken holding u, and 4 fixed., At the strong

shock limit, defined by co/c1 = 0, one finds
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uO/cl = 0, cl/ul = Yy

vy + 1)/2 Y, = Yy - 1)/2. (c.d)

w/u1

In the hodograph plane, for each point (uo,co) on one side of the
shock, a whole locus of possible points (ul,cl) is found. For a forward-
moving shock, the locus is a curve with positive slope. It passes through

its "center” (u co) with slope Yy has infinite slope at its point of in-

0’

tersection with the u-axis (c, = 0, u

1 =u,. - cofyz), and has asymptotic

1 0

slope yz as u, and g become infinite. The slope of the straight line

joining center point (uo,co) to any point (ul,cl) lies between Yy and Y2-
If center point (uo,co) is on curve B behind the shock, then the cor-

responding point (ul,cl) on curve A ahead of the shock is on the ghock

Jump locus below the center, i.e., with u1< u0 and cl< Cqe It follows that

the slope of the line joining corresponding points on the A and B curves

in the hodograph plane lies between Yl and Y2.

D. The Phase Plane

Trajectories in this plane are solutions of

% =Hr'-§'ci:")‘§ (D.1)
Along a trajectory, 1| is found from
93%%—31 = % (D.2)
where
A =2How - nw - - 3ciw - 9,)]
B = w-1B =2 w-D%W-M + (¢ -DUW-DW-0y) - cFW-0]
D = (-1 -c?
¢l = (2A - 2 - K)/3y
Cg = (3 -A)/2
o, =1+ [20 - 24 (v - DKEl/2y.
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Singular points of differential equation (D.l) where BC = (U-1)A=0

are found to be

. . . (A . i =
SO' (0,0, Sl' (1,0, Sz. (A,0), Si' (Ui’ci)’ i=3,4,5
where
U, = 22/@3y - 1)
2
= - - A - g
cl = U (U, - DU, - M/3(U, - 9)) (D.3)
and
2
2(Ui—1) -(301—1-2?\)(Ui-1)+2h-1=0, i = 4,5
¢, = |Ui -1}, i= 4,5 (D.4)
i . 2
Note that S3 exists only if C3 < 0.
In the neighborhood of SO’ equation (D.1) simplifies to
ac _ ¢
du U
with solution
C = kU (0.5
where k is an arbitrary constant of integration as are k!, k”, etc.,,
below. From (D.2),
U = k""'l. (1).6)
Hence S0 is a node at which 7 = 0.
Near S1 equation (D.1) reduces to
2
ge Lo - DA -0 )u” - (- o cT]
'a'l_J-I= X 5. (D-7)
u'lx - MU - 301 - a,)c”]
where U' = U - 1., The substitution of 02 = VU’ gives
E; av alV + a2
’ - -"r
vV du a3 + a4
where
2, = K+ 3, a, = (2h -3y - K ~ 2)/y
azz“{(:\—l), a4:1—}.
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with solution
a

|u- Y lv|] = x |a1v + a ag = 1+ ya /a,. (D.8)

2 ' 5

This is seen to be a nonelementary singular point with saddle-point
character for small |V| and possibly nodal character for large. One finds
the value 7 takes on at this point by integrating

d(in 1) A (U'-V)
W T avra, (D.9)

The integration can be carried through when a particular trajectory is

considered so that U’ and V become related,

il

Except for the special solutions, U’ = 0 and V = 0, by equation (D.8)
any trajectory which reaches U’ = 0 does so along V = -az/al. Assuming

U3 Z 1 so that al/a4 £ az/as, equation (D,9) will be regular at U’ = 0

so that 1n T will be finite there.

In the vicinity of § equation (D,1) becomes

2!
dc 3¢y - 13)C
du © 2(U - »)
with solution
¢ = xju-a[31/2 (D.10)
Equation (D.2) simplifies to
d(in 1) B -1
al U -
so that
M=%k’ |U- xlk"l. (D.11)

Hence S2 is a node at which 7] becomes infinite if A < 1, or zero if A > 1.
The case A = 1 involves a confluence of singularities S1 and Sz. Such
special cases will be treated later as required.

Behavior of the trajectories in the neighborhood of any of singular

peoints 83, 84, and 85 ig difficult to assess in general. When more definite
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values are available for the parameters, the nature of these points can
be determined. Since 84 and 85 lie on D = 0, 1n 1) remains finite at these

points.

It is also of value to determine how trajectories may leave the fin-
ite part of the phase plane to end at infinity, Since the slope dC/dU is
given in equation (D.1l) by a rational fraction in U and C, the slope is
smooth and monotonic at great distances. Trajectories approach infinity
in a definite direction. We may therefore obtain all trajectories that
tend to infinity by examining equation (D.l1) with large U or C in the

three cases with the value of the ratio C/U zero, finite, or infinite.

If C/U is zero, C is to be neglected with respect to U, and equa-

tion (D.1) reduces for large U to

dac _ ycC
au — u
with solution y
C = kU . (D,12)

This solution satisfies the conditions under which it was derived, i.e,,
U large and C/U small, only if k = 0. Thus only the trivial solution
C = 0 is obtained in this case.

If C/U = m with m finite, equation (D.l) becomes

m = (v-nmn/(l- 3m2)

or 9
m{Z2m" + vy - 1) = 0,

Since m £ 0 andy - 1 ® 0, there are no proper solutions for m. No tra-

jectories approach infinity with finite slope.

If U is neglected with respect to C in equation (D.1) and C is large,

one obtains
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dac c(U - 03)
du © 3(U - 1)U - 01)

with solution

3 1-g)

C = k(U—cl)( - 1)0, C = (03— 1)/(01—1). (D.13)

If ¢ > 1 there are solutions approaching infinity along U = Ul; itao<o0
there are such solutions along U = 1; if 0 S 0 = 1 there are no solutions

tending to infinity in C with finite U. The special solutions U = Gl and

U = 1, corresponding to infinite or zero values of k, are always present.

If U is neglected with respect to C in equation (D.2), one obtains

d(ln T) _ Y
du T 3(U - ol)

with solutiecn

A/3

T =%k(U - o) (D.14)

Since A is positive, T| approaches a finite limit on any of these tra-

jectories. If the trajectories approach U = 0_, T tends to zero.

1

E. Exponents K and vy

These exponents are found at the extreme values of 7|, 7] = 0 and 7 = .
At SO’ T becomes zero and equation (A.19) gives
v = 1. (E.1)
By equation (D.13)
G = 3(2% - 2 - K + YE)/2(2X - 2 — K - 3Y). (E.2)
If 0 > 1, equation (D.14) shows that 7| can become zero for trajectories

approaching (U =¢_, C = ®), and one finds

1
(K+ 20)/% if I =M

v = 1 (K+20 -0/ if I =Q (E.3)
(K+2-20/2 if I = K.

At-82 and 53, T| can take either extreme value, If T| becomes zero,

one can evaluate y; if 7 becomes =, one can evaluate W, Thus
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- _ p‘ 1.f Ti = &
(B/D) = m = { v if 1 =0 (E.4)
where
_ 3y + K}/ (A - 1) at Sy
E/D = { 2(k + 3)/(3vy- 1) (U, - 1)  at 5, (E.5)
and integer n has been defined in equation (A.7):
0 ifI =M
I’l:{]_ lfI_—.Q (E.G)
2 if I =K

F. Shock Strength at r = 0

From the definition of U and from equation (A.8), one sees that near

r = 0 on shock curve A,

u = (r/2AT)U(=). (F.1)

Similarly, using equation (A.9) for curve B,

u = (r/?\t)U(k];l/b r(l"”’)/b) ) (F.2)

In each case, ¢ is given by the same expression with C in place of U,

Substitution into the first of equations (C,2) with u0 = ¢q = 0 and
taking limits as r tends Lo zero shows that

ClTgy) = YU (F.3)
where
0 if Ab <1
nBO = HB if Ab 1, 0 < HB < ® (F.4)
© if Ab 1.

\Y

One sees by equation (C.4) that the shock is infinitely strong at r = Q.

By equation (A.9), shock speed w near r = 0 is given by
w = br/t. (F.5)
Substitution in the second of equations (C.2) then gives

Ab = (V-kl)U(nBo)/Z. (F.86)
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Further, since the shock moves subsonically with respect to the gas behind

. < e

it, ib U(HBO) + C(HBO) (F.7)
For Ab < 1, Ngg = 0. From the work of subsection D above, 1) can be-

come zero at singular points SO’ 82, or SS’ or at U = Gl with infinite C,

Both the cagse with infinite C and the case with zero C but nonzero U (point
Sz) are ruled out by equation (F.3). Inequality (F.7} rules out SO since

Ab > 0. Hence, 1) becomes zero at 83.
It was shown in subsection D that T can become infinite only at 8

3

or at §, with A < 1. Since for Ab 2 1, one finds 7| becoming infinite at

83.

The possibility that Ab < 1, while A » 1, is ruled out since this
would require 7| to become both zero and iﬁfinite at 53' The trajectory
would be required to form a loop starting and ending at 83. But then
there would be a focal singular point, necessarily 84 or S5 inside the
loop. To go around either of these points, the trajectory would cross
D=0 twice, at least one of these times at a regular point. But such

crossings give double-valued mappings into the physical plane and are not

allowed L1, Sect. 162].

For Ab < 1 and A < 1, 7| becomes zero at S3 and infinite at Sz.

For Ab # 1, 1 takes the value HBO at § Equation (F,3) therefore

3

d
reads as C3

I

Y2U3. By equation (D.3), one finds that this implies

K

li

1 - 4U3 =1 - 8\/g, g =3y -1, xb £ 1. {(F.8)
Also from equations (D.3) and (F,6),

b = (v + 1)/g, Ab £ 1, (F.9)

31



It A\b <1 and A <1, then T = 0 at S, and T = = at S,. Hence, by
equatiocns (E,4) and (E.5),
b=y + ©)/(A - 1)-n,

v = 2(K + 3)/(2y - g)-n, n

il

0,1,2. (F.10)
From equations (A.7) and (A.16),

K+ 3 -n(h - 1) 2 max [0, A%, (Ab - 1)v/b] , (F.11)
with equality for one of the three values of n, Substitution of values of
K and b from equations (F.8) and (F.9) shows that condition {F.11) is satis-

fied if n = 2; i,e,, the finite energy case, I = K, is being considered,

For Ab = 1, T} becomes infinite at S, so that by equation (E.4),

3
po= 2(k + 3)/(2h-g) -~ n, n=0,1,2, (F.12)
Equation (A.14) may be written
K +3 - n(A-1) 2 max [0, Au),. (F.13)

This condition is satisfied if

K=2t-5, 21<g, n= 2, Ab =1, (F.14)

For Ab > 1, equation (F,12) gives W, while ¥ and b are available in
equations (F.8) and (F.9). Condition (A.12) may be written
k+3-n(h-1) 2 max (g, (Ab-1)u/b]. (F.15)

Substitution shows this condition to be satisfied if n = 2.

The special case A = 1, for which singular points S, and S2 become

1

coincident, is not being considered.

G. Shock at Late Times

Far out in the flow between the shocks, conditions are assumed to be-
come uniform, The shock speed becomes equal to the wave speed. By equa-

tion (B.1),
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AB = U ) + clny) (G.1)

where by equation (B.2)},

0 if AB
g, = H  if AP
@ if AB < 1.

Il v
R

0<H <o, (G.2)

If » <1, then AP < 1, and, since 1] becomes infinite at Sy
B =1, A <1, (G.3)
Condition (B,5) reads j - 1 S (A - 1)y and can be shown by equations (A.7),

(F.8), and (F.10) to be satisfied,

If » > 1, only cases with Ab = 1 need be considered, as was shown in

subsection F. If Ab 2 1 and 2%\ < g, then 7| is infinite at §_, and zero at

3
SO' The case ﬂL = 0 is then contradictory so that either
AR = U )+ C(H) =1, Ab 21, 2A< g, (G.49)
or
AR = U, + Cg <1, Abz 1, 2A<g, (G.5)
If b = 1 and g < 2\, then U3> 1 so that 7] is infinite at S3 and zero at
82. It follows that the whole trajectory lies in U > 1 so that by equa-

tion (G.1), AB > 1, Then by equation {(G.2),

B =1, Abz1, g < 2k, (G.6)

For Ab » 1, parameter K is given in equation (F.8) and ¢ in equation
(F.12). Where it is needed, in the case M > 1, parameter v has the form
given for ¢ in equation (F.10), One may then check the conditions given
in equations (B,5) and (B.6). One finds that the case given in equation
{G.6) satisfies the conditions, that in equation (G.4) does if

8g/(8 + g) = 2\ < g, Ab > 1, (G.7)

and the case given in equation {G.5) is contradictory.
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For Ab = 1, parameter K is given in equation (F.14), Parameters
and v are evaluated by the same formulas as for the Ab * 1 cases. One
finds that the case given in equation (G.6) continues to satisfy the con-

ditions in equations (B.5) and (B.6), that in equation (G,4) does so if

A = 2 and that in (G.5) if Bg s 2.

Results of subsections F and G are summarized in Table I. In
the table CB = C(HB) and CL = C(HL) and similarly for UB and UL. Point

SO is put in parentheses since no trajectory need reach this point. The

"poundary conditions"” of Table I are those at r = 0 and t = =,

For large times, particle speed u is given according to equation

(B.1) by B-1

u = (kB/R)t U(ﬂL). (G.8)

One sees that cases with P = 1 correspond to flows with positive particle
gpeeds at infinite time, while those for B < 1 correspond to flows with
zero particle speeds. Since sound speed ¢ satisfies an equation of the
same form, the sound speed is zero at infinite time in the P < 1 cases,
Since c(nL) = 0 for case (5) in Table I, the sound speed is also zero

in the case of A > 1 with b = 1.
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H. Singular Point 83

In the neighborhood of § differential equation (D.l) may be approxi-

3
mated by

ac as(U - U3) + a7(c - C3) G

U~ a (U - U,) + a (C - C.) ’
where _

a, = KCBU, B, = ?\(U-—l)AU

a, = Acﬁc, ag = AU - LA, (H.2)

and each of these is evaluated at Sa,

The nature of singular point SS is determined by the roots in x of

the quadratic
xz - (a.+a )x+(a.a_-a
& 7 6

7 59.8) = 0, (H.S)

If these roots are complex, 83 is a focus or center, If they are real and
of the same sign, 83 is a node; if they are of opposite signs, S3 is a

saddle point, If the roots are real, there are trajectories through S

3
with slope m, m being a root of
2 dC
agm” + (a6— a7)m -a, =0, mo= o 83' (H,4)
Parameters x and m are related by
X = a, + mag. (H.5)
On a trajectory of slope m through 83, one finds that near S3 equa-
tion (D,2) may be approximated by
k
d(1ln 1) 3
du TU-U (H.6)
3
where, after some manipulation,
ky = ?\(U3 - 1)D3/x, (H.7)

and D3 is function D evaluated at 83' On a trajectory which enters 53

with slope m and by equation (H.5) corresponding characteristic root x,
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variable 7| becomes zero or infinite depending on whether k3 is positive

or negative,

In the cases listed in Table I where Ab £ 1, £ has the value

(1 - 8\/g). Evaluation of the various constants gives

o, = Ley+ Dy, - 11y
0, = (G-gUS)M, g =3y-1
9, = 1-(y=-3)(U,-1)/2y
03 = 'Y2U3
o 2 (H.8)
a, = (03/4)[2U3(2Y = 3Y+3) - Ug(3Y+ DXy + 1) + 2(3Y - 1)]
2
ag = U (U, - l)[—US(BY +3y-8)+3y-5]/2
2 2
a, = ~3(y- DUL(U, -1)/2
2
ag = 6C,(Uy- 1)/
so that equation (H,3) may be rewritten
y2 + agy + alO =0 (H.9)
where
y = ZX/UB(U3 - 1)
2
a‘9 = (6y - 3y - 5)U3 - {3y - 5)
210 = -6{y - 1)(3y - 1)1)3
2
D, = -I/2Ly + Dy - DUZ + 40, - 2]

In case (1) of Table I, T =0 at 83 so that k3> 0. Since O<1U3< 1,

by equation (H.7), D3 and x have opposite signs. Hence by equation (H.9),

D3 and y have the game sign. Since with alO negative the two roots y are

real and have opposite signs, one of them will agree with that of D3.
Hence, alO negative is a sufficient condition. This requires a positive
D_. For thi
3 r S

U3 < 1/(14—Y2) or A< g/2(l-+Yz). (H,10)
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In cases (4) and (5), T = @ at §, so that k, < 0 is required. A

3 3

sufficient condition for this is again that D_ be positive; for then the

3
two roots in y have opposite signs and the proper cheoice can be made.

For case (4), U3 < 1 so that the conditions for D3 to be positive are

found in equation (H,10). For case {5) with U_ > 1, the necessary con-

3
ditions are
Y < 2 and U3 > 1/(1 = YZ) or A Z g/2(1 ~Y2). (H.11}
In cases (2) and (3) of Table I, Ab = 1 and K equals 2» - 5.
Evaluation of the constants gives
Gl = 1/7
g, = (6 - gUS)/4, g =3y -1
(53: (2+gG)/2\{, G:YUS—‘ 1
c? - wey - DUEw. - /26
3 33
- 2 3 2 2 2 (H.12)
ag = {y-1)lC, /4y GIleYG - (3y7-3y-2)G +{(3y -5y + 4)G - 2(y- 1) ]
ag = ~3(y - DLV, - 1)/261 (6% +v - 1)
a_ = —(3/2) (v - DUE(U, - 1)
7 A 373
ag = -(6/Y)C (U, - )G,
Equation (H,3) then reads as
2
2z 4+ a _z+a__ =20 (H.13)

where

N
It

2yex/(y - l)U3(U3 -1

1

s[yaz + Yy - )G +y - 1]

%9

]

36[-3(y +1)G° + (3y°- 5)G2 - (v+ 1)G + (v - gl.

For both cases (2) and (3), by Table I, X} < g/2 so that U3 <1
2
and 03 is positive only for positive G, Hence for a real singular point

G lies between 0 and (y-1), For G =v¥-1, a5 = -6y —l)zg < 0,

SS'
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Hence, for some part of its range at least, is negative, the two roots

212

for z have opposite sign, and a root with desired sign will be available,

I. Periodicity
Using subscripts A and B to denote points on shock curves A and B

gives X
Ty = tA/q, g = tB/q, g =r (I.1)

where g is a convenient independent variable in place of r., Also

u, = (r/2a)0(,), ¢, = (x/Aa)C(7,) .
up = (AU, cp = (r/AQ)C(T)

where _ _
um) = U c(m) = cmM/ - (I1.3)

The relation connecting corresponding points with the same values of

u

r on the A and B shock curves is S{u cB) = 0, given explicitly

A’ CA! Bl

in the first of equations (C.2), Since S is a homogeneous polynomial of
2
second degree in its arguments, one can multiply through by (Aa/r)” to

obtain

slumyy, <y, Uy, €mpl = o. (1.49)

Let [U = u{ny, C = C(ﬂ)] be a trajectory representing a solution in
the (U,C) phase plane. This trajectory can be transferred to a trajectory
in the (ﬁ,é) modified phasze plane, Equation (I.4) identifies correspond-

ing points A and B that are connected by the shoek relations.

Function V{(u cB) in the second of equations (C,2) gives the

A’ “ar Upr

shock speed, w, Since V is of first degree,

wo= (eAQVLTC ), Gy, Ty, oMyl (1.5)
Using w = dr/dt, one obtains
dt 1
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By the periodicity assumption, the two shocks are a constant distance

l ] . .

Replacing tA and tB by their equals from equation (I.l) and using equation

(1.6) gives d(an) d(qﬂB) .
T TR (1.8)

Solution of equation (I.8) under proper initial c¢onditions gives nA
and ﬂB as functions of g. These functions determine the locations of
curves A and B in the (r,t) physical plane., The curves are shock trajec-
tories provided that equation (I.,4) is satisfied along them. That equa-
tion is satisfied initially for the cases listed in Table I. It will

continue to be satisfied provided that
— =0, (1.9)

If §,, i =1, 2, 3, 4, denotes the partial derivative of S with re-
spect to its ith argument as exhibited in equation (I.4), then equation
(1.9) may be expanded to read

T P ’ T -~ v
[s,07(n ) + s,cmplny + (8,070 + s,C Iy = 0 (1.10)

where the prime indicates differentiation for functions of one variable.

It is difficult to see how condition (I.10} is to be implemented in
general, For any particular proposed solution the condition could, of

course, be checked by computation,

J. The Modified Phase Plane

After a solution curve [U = U(M), € = (1) ] has been found by use
of the phase plane and its singular points, one may transfer the curve

to the modified phase plane with coordinates
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U= umm and C = c(m/m. (J3.1)
The modified phase plane retains the advantage that the whole flow is
represented by a single curve while it permits the shock condition § = Q

of equations (C.2) to be given a geometric interpretation,

The shock condition of equation (I.4) reads

S(UA’ CA' UB' CB) =0 (J.2)
where UA = U(ﬂA)/ﬂA, etc, For a given point (UB, CB), the locus of points

(u }, which satisfy equation (J.2), is a curve just as described in

Al CA

subgection C for the hodograph shock curve. It passes through (EB' EB)

= 0 with infinite slope and abscissa U

with slope Yl' reaches C I\ =

A
UB— CB/YZ, and has asymptotic slope Yz as the point (UA’CA) recedes to-

ward infinity. The slope of the curve is always positive, For point A

to be ahead of the shock and B behind it, point A is restricted to the

part of the locus with CA < EB'

At r = 0, ﬂA = ®, Bince U(ﬂA) and C(ﬂA) are finite by Table I,

A = CA = 0, From the discussion in the preceding paragraph, this implies

(o]l
|

s = YZﬁB for the corresponding point on the B curve, This condition is

satisfied by all cases in Table I.
For cases (4) and (5) whers Ab > 1, Mg becomes infinite along with

ﬂA at r = 0, Near that point, in the notations of subsection H,

1/k3
r

UéU3+k§, C = vy U+ mkE, E =1

<
2Ug ko <0 (J.3)

Thus e/U = Yg'*(m"Yz)(k/Us)g . (3.4)

For the shock curve to join points on the trajectory in the neighborhood
of r = 0, it is then necessary that

(m —Yz)k < 0, Ab > 1 {J.5)
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since any line joining points on a shock has slope less than Yz'

For cases (1), (2), and (3) where Ab = 1, ﬂB = ﬂBO is finite or zero

t = i = U i C = U = "
at r 0. 1In either case, CB YzUB while CA UA 0. For the shock
curve to connect points on the trajectory as T changes from nBO’ it is

necessary that

c = <
CB Y2U for nB near nBO’ ‘b 1. (J.6)

Corresponding to the region between the shocks at infinite time is
a single point of the phase plane trajectory. Since the shocks are weak
there, in the modified phase plane the trajectory will have slope Vl at
that point, In order that the shock locus be able to join nearby points

the slope of the trajectory is restricted as follows:

In case (5), ﬂL = 0 and the representative point is at infinity in

direction C = ylﬁ. The slope of the trajectory is required to approach

%, from greater values:

1

C/U =y for T} near M, M. = 0, (3.7)

1 L

However, 7| = My, at singular point SZ' As 1| approaches ﬂL, c/U = C/U ap-
proaches CZ/UZ = 0., Condition (J.7) is seen to be violated so that case

(5) cannot hold,

In case (1), ﬂL = w so0 that the representative point is at the origin,
Here again E/ﬁ = C/U approaches 02/U2 = 0 near this point, A trajectory

with such slopes cannot contain pairs of points on the shock locus.

For case (3),'Ql‘= @ go that the representative point is again at the

origin, Near by
U= U, + kE, C £ C_ + mk§ (J.8)
3 3
with € defined in equation (J,3). It follows that

C/U = (CS/US) + (m - CS/US)(kg/UB)' (1.9)
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The shock curve gives a weak shock at the origin and is able to properly
join pairs of points on the trajectory nearby if

C3/U3 =Y, and (m - Yl)k > 0. (J.10)

Using the first of equations (J.10), equation (G.5), and equation
(D.3), one may solve for B and find B = (y + 1)/g > 2/g. This violates

a condition given in Table I so that this case (3) cannot hold.

In both remaining cases, (2) and (4), T = HL at infinite time so that
the representative point in the modified phase plane has finite, nonzero

coordinates. For a weak shock the slope of the trajectory at this point

needs to be Yl.

In summary, conditions in the modified phase plane have eliminated
all but cases (2) and (4). For case (2), additional condition (J.6) has

been found, while inequality (J.5) applies to case (4),

K. Phase Plane Configurations

For case (2) the solution curve passes through three points in the

phase plane: S, _: (U3,03), P_:

3 B (UB,CB), and P : (UL,CL). At these points,

L

T takes the values =, ﬂBO’ and nL’ respectively. The coordinates of point

83 are related by a formula given in the set of equations (H.12):
2

2
C, = -y {y - 1)U3(U3-1)/2(YU3— 1. (K.1)

Relations connecting the coordinates of the other points are found in

Table I and read

Cp = YyUps C o+ U =1, (K.2)

U, < 1. One

As pointed out in subsection H, for a real point SS’ 3

may readily show that as U3 varies, point S3 cannot cross the line 034-U3

=1 as long as U, < 1 and ¥y > 1. Hence, U_ + C3 > 1. Thus, four subcases

3 3
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arise for case (2), which depend on the order of the points 83, PB' and

P along the phase plane trajectory and which also depend on whether C

L 3

is greater than Y2U or not.

3
. <
(2a): (3, B, L) and 03 YZUS
. >
(2n): (3, B, L) and C, > vy,U,
(22): (3, L, B) and C, <v,U,
. >
(2d) : (3, L, B) and Cg > y,U,.

In all subcases, S_, is at the origin of the modified phase plane, P

3 B

is on the ray through that origin of slope Yz, and the slope of the tra-
Jjectory at PL is Yl' Also, if a point lies on the ray of slope m in the
phase plane, the corresponding point lies on a ray of slope m in the mod-
ified phase plane. If S3 lies on a ray of slope mg in the phase plane,
the trajectory leaves the origin of the modified phase plane tangent to

the ray of slope m One may assume that the trajectories cross each ray

3°
only once, It follows that in subcase 2(a), mg < my = 72 < m . The

point representing shock curve B as it moves from P_ to P, , moves from

B L’

a ray of slope Yz toward rays of greater slope., This viclates condition
(J.8). In subcase (2d), mg = Yz < m = m, SO that the same condition is

violated. Subcases (2b) and (2c) provide possible configurations.
In case (4), points PB and S3 coincide in the phase plane with

C3 = Y2U3. In the modified phase plane they coincide at the origin, As-

suming, as hefore, that the trajectory crosses each ray through the origin

only once implies that the ray through PL lies on the same side of the ray

through 83 s do points near 8, on the trajectory. But at these points

3
c< YzU according to condition (J.3). It follows that there is just the
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one configuration in the modified phase plane. The trajectory leaves the

origin tangent to the ray of slope Yz' Its slope then decreases until it

reaches the minimum value Yl at point PL'

L. Solutions
A particular problem is posed by specifying the gas, through its
ratio of specific heats ¥, specifying the amount of energy K in each puff

of the siren, and the time T hetween puffs,

A way of obtaining the solutions is as follows: Guess a value for
A and choose whether case (2) or case (4) is to be followed. Then the
parameters will all be known. The family of trajectories in the phase
plane will be obtainable as solutions of equation (D.l). The equations
of subsection H permit one to check whether singular point S, is a saddle

3

point as is now assumed. The one of the two trajectories through S_ along

3

which T becomes infinite is then chosen and is followed in a direction to
intersect the line U + C = 1. This determines C as a function of U, Egua-
tion {D.2) then gives 1ln T as a function of U except for an added constant
of integration, i.e., T} = kF(U) with function F known but k an arbitrary

constant,

Point PL is the point where the trajectory crosses U+ C = 1. Param-
eter A must be chosen so that the slope of the trajectory in the modified
phase plane takes its required value Yl at PL. Although the variables C
and U depend on 1), unknown constant k is not needed for the computation
of this slope. Important questions not answered here are whether values

of A satisfying the requirement exist and, if so, whether there are solu-

tions for each of cases (2) and (4) or only one of them.
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With X and a definite trajectory known in the phase plane, equations
(1.8) may be integrated to obtain the shock trajectories. Although con-

stant k is not needed to perform the integration since it cancels out of

the differential equation, it does enter the initial condition qﬂA == tA
=T at q = 0. Alternatively, constant k could be determined from the

energy input K by carrying through the integration in equation {(A,6).

In summary, specification of v and K or T may be expected to provide
one or a few periodic flows satisfying the various conditions at r = 0
and t = =, the extreme points. Fach of these flows determines the unspec-
ified one of X or T, However, these flows are not solutions to the prob-
lem unless one can check that shock condition (I.4) is satisfied at inter-
mediate points along the bounding discontinuities as it is at the extreme

peints,
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SECTION IV

NOETHER'S THEOREM

A. J. Penico and C. M. Ablow

A, Introduction

In the classical calculus of variations, the extremal functions, solu-
tions to a given variational problem, are usually found as the solutions
to certain differential equations, the Euler equations. Fregquently, one
may take advantage of certain, apparently fortuitous, circumstances pres-
ent in the structure of a particular variational problem to effect one or
more integrations of the Euler equations, thereby proceeding a part of the
way toward obtaining the extremal functions. It is shown in this section
that these apparently fortuitous circumstances are actually special cases

of a quite important and quite general group-theoretic idea.

The purpose of this section is to develop some proofs and applications
of Noether's theorem, which asserts that a variational problem which is in-
variant under some continuous group of transformations of the variables
involved admits of one or more first integrals of the Euler equations,
Furthermore, Noether's theorem gives an explicit construction for these
first integrals. &Since these first integrals frequently include a result
in which some differential expression is asserted to be constant, such re-
sults are often called conservation laws; many of the familiar physical
laws involving conservation of energy, momentum, etc,, can be obtained in
this way. Dimensicnal analysis and the similarity transformations, which

are often utilized in hydrodynamics, can be viewed as group-theoretic ideas
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that are closely related to Noether's theorem, It is for this reason
that Noether's theorem is being discussed in this report, even though

no novel applications have actually been found.

The material in this section is largely based on Gelfond and Fomin
[1], although some changes in presentation were motivated by the material

in Courant and Hilbert [2] and Funk [3].

B. First Variation of a Functional Involving One Independent Variable

Since the development of Ncether's theorem depends on having avail-
able a formula for the first variation of a functional, we shall discuss
this point fairly extensively. Before proceeding to the general question,
we examine some specific problems in detail, since the results in these
problems are of interest in their own right. We calculate the first vari-

ation of the functional
t 1 F r
Jlu) = F(t, u, u , u ) dt (B.1)
to
where u(t) is a function of the independent variable t, u’ = du/dt,
”

2 2
u = du/dt”, and F is a function that is differentiable in each of its

four arguments., It will also be assumed that the function u(t) has a

T

continuous fourth derivative. The values t. and tl are assumed fixed,.

0

Hence, the domain S of Jlul is the totality of four-times continuously

differentiable functions u(t) on the interval (tO,t )}, and these func-~

1

tions can be viewed as the points of the space 8. In the domain S we

t This assumption is actually much too restrictive, and our final con-
clusions hold under considerably less stringent conditions, hut for
our purposes, where we merely wish to indicate a mode of derivation
of our formulas, the restrictions are made for the sake of simplicity.
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assume the existence of a norm or distance function, which enables us to

determine whether two functions ul(t) and uz(t) are near each other. We

shall not specify this norm, but shall merely assume its existence,

Now let u(t) be a fixed point in 8 and let u + h = u(t) + h{t) be

another point near u(t) in S; that is, h{t) is near zero. If we consider

Jlu + h] and formally expand it in a power series in h about u, and if we

retaln only first-order terms, we obtain

t

1
Jlu+h] = J[ul + f lFh+F ,h’+F «h"] dt (B.2)
tg U u u

where

d
F = = F(t,q, ,q.,,0,) ’ k=20,1, 2,
uk} [aak 2’73 ]ak=u(k)

Obviously, in this problem the assertion h(t) is near zero entails some

specification on h’{t) and h”(t), as well as on h(t). Integration by

parts yields

and

[}

t t
. _ 1 1. d
[Fu,h ]dt = [h(t)Fu,] - I h ¢ (F,.) dt

to to to
Itl [F 1{] dt [F h*(t) - h(t) — (F )Jt + Itlh a® (F o) dt
# = o - - I Y o -
tD u u dt u t tO dt2 u

Then we can write,

I
t

tq 2

P L4 d d
FPh+F ,h"+F ,h |dt = F -— F ,+—= F «| h(t) 4dt
u u u u

0

tO u dt u dt2
t1

d ’,
+ [(FUI_E Fuu)h(t)+ Fuﬂh (t)]to

and from expression (B,2), we can write

ty d dz
Jlu+h] - Jglul = I F -—F , +—F »| h(t) dt
t u dt u 2 "u
Y dt
t
d ) 1
+ [(Fuﬂ ol Fuf) h{t) + Fuﬂh (t)]t . (B.3)
0
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If we require Jlu + hl - J[u) to vanish for all admissible h(t) so that

h(tO) = h(tl) = 0, we are ultimately able to conclude that

2
dt

which is the Euler-equation for the extremal satisfying the simplest var-
iational problem of this type, Here, we will not have any special inter-
est in this variational problem per se, but will require the formula (B.3)

in our next development,

Using the same functional J{u] of (B.1), consider the case in which
not only the function u(t) is allowed to vary but the endpoints tO and
tl are allowed to vary as well, Then the points in 8, the domain of def-
inition of J[u], will now include all of those arcs satisfying the appro-
priate differentiability conditions and extending between values of t in
some larger interval a = t = b containing to st < tl. Therefore, the
integral defining Jlu] can be assumed to be extendable, if necessary,

over admissible arcs extending outside the interval of immediate inter-

est. We now consider a function u(t) defined over the interval t < t < t_,

0 1
an infinitesimal variation in t
8t = t*(t) - t, (B.4)
and an infinitesimal variation in u
du = u*(t*) - u(t). (B.5)
Keeping in mind that
h{t) = u*(t) - u(t), (B.6)

we have, on expanding,

u¥(t*) = u*(t + 8t) = ult + &t) + h(t + &t)

il

u(t) + u’(L)st + hit) + h'(t)st,

These relations are illustrated in Figure 2.
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FIG.2  RELATION BETWEEN A FUNCTION u(t)
AND ITS VARIATION u*(t)

Using (B.5) and neglecting the second-order guantity h’(t)ét, (B.8)

now yields
Bu = h(t) + u’(t) 6¢t. (B.7)

In the same way, Ou’, which is defined hy

du¥* du

&u = 4% T at ! (B.8)
may he written
fu’ = h’(t) + u’ () &t. (B.9)

Similar results would follow for the variation of derivatives of

higher order,

We now observe that

rtl+6t1 ; p t]. ; .,
Jlu*]-alu] = ] F(t,u*,u* ,u* ) dt - f F(t,u,u’,u”) dt

t0+6t0 t0

tl L w 7 "

= [F(t,u*,u* ,u* Yy - Pt ,u,u’,u’)l dt
t
O
tl+5t1 ; t +6t0 P ”
+ J F(t,u*,u*’ u*’) dt - J F(t,u,u” ,u ) dt,

(B.10)
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The first integral in the last expression is, to first order,

11 P
f [Fh+F s+ F,h] dt, {B.11)
t() u u u
while the second and third integrals reduce to F 6t. - F 6t ,
t:tl 1 t:to 0
which we write as t

11
[Fé t]
to

The integral given in (B.11) is already expressed in alternative form in

(B.3), so that we may write, after collecting terms,

1 d a2
*]_ - _ g g
Jlu*]- Jlu] = Jto [Fh' qt Fu: + dt2 Fu”] h{t) dt
{ (F L YRt + h(OF Fét]tl } (B.12)
+ u' " dt o + 't tg ) :

We now rewrite the term in braces with the use of (B.7) and (B.9) to

obtain
t 2
1 d d
* - — — — —
Jlu*] - Jlul = It [Fu 5% Fu’ * o2 Fuy}h(t) dt
0
{F ’(F d F ”F h’} 6t
+ v u" dt u”) u u
t
+[F :--EL F #) fu+F «bu’ ' (B.13)
u dt "u u t ! :
0

which is the formula for the first variation for the variable-end-point
problem. An analogous result can be readily derived when F contains de-

rivatives of u(t) of order higher than the second,

We now state the formula for the first variation for the variable-

end-point problem for the functional

t
_ 1 ¢ ¢
J[ul’uz’ v uk] = Ito Flt; ul(t),..., uk(t), ul(t),..., uk(t)J dat,
(B.14)

52



which involves a single independent variable t, k dependent variables
ul(t), u2(t), ciay uk{t), and their first derivatives with respect to t,

By analogy with the development of formula (B.13), we assume that the

arcs ul(t), ceny uk(t) are continuously transformed into the "nearby”
arcs uI(t*), ey u;(t*), and we define

h (t) = u;(t) - u (v, i=1, ..., k, (B.15)
and ,

] = u®(t*) - = . .1

uy ui(t ) ui(t) hi(t) + ui(t) 6t (B.16)

With the use of (B.15) and (B.16), one may obtain the relation [1, PP.

54-59]
Jlu*, ..., w*]- glu u ] = ftl { § (F -L g (t)} dt
1? * Tk 17 't Tk + i=1 uy dt “u4i i
)
k k t:tl
+ Fu,&1.+(F - uiFu,)ﬁt .
i=1 i1 i=1 i et
-0
(B.17)
Introducing the symbol k
H= ¥ uF, -F,
i=1 1 1
we arrive at the formula
ty k
* *7 _ - _a }
afuf, oo ufl-glu, o w1 = Jt {igl(pui = Fui)hi(t) dt
0
k 1
+ z F,.bu, - H&t {B.18)
i=1 i1 t0

Now returning to the u - t space over which the functional J[u] in
(B.1) is defined, we consider as acting in this space a continuous group

of transformations

u* = 8(t*;e), t* = Y(t;e) (B.19)
in which € is a continuous parameter specifying the elements of the group,
$ and ¥ are differentiable in € at € = 0, and

¥(t;0) = t. (B.20)
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We identify u(t) with $(t;0) by setting
§(t;0) = u(t); (B, 21)
that is, the value &€ = 0 corresponds to the identity transformation. The
operation under which the set of transformations forms a group is composi-
tion, the transformation corresponding to the "product” of transformations
associated with el and €, being given by
t* = Y[Y(t;el),ezj, ut = 8(t*5e,) (B.22)

Examples of such transformations are the following:

*

t7T =t - €
u*(t*) = u(y), (B.23)
€
t*:et
ke
u*(t*) = e u(r), (B.24)
t* = ¢t
UT = ul cos € + u2 sin €
* - - in €
u; ul sin + u, cos €. (B.25)

Since the functions given in equations (B.19) are continuousiy dif-
ferentiable at € = 0, we have the expansions
t* = t + ey(t) + o(e)
u*(t*) = u(t) » ep(t) + o(e). (B.26)

It follows from their definitions in equations (B.5) and (B.5) that

bt = ey(t)
adb(t,e
du = €(§i—(*—'-l) = EZF.P(t) {(B.27)
£=0
One may also calculate
* * :
puf o QU _du_aut dt_duw  faw o odp\(, _ dy) _ du
dat* dat dt q¢* dt dt t dat dt
L8P 9_?.)
= e(dt u t ) (B.28)
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For the functional (B.l1), the mapping (B.19) will carry the points
t, and t, into tg and tI, respectively, while the function u(t), tOS'tS ty,

will be carried into the function u*(t*), t; s t¥s< t;. Thus, we may cal-

culate the value of the functional

t¥ 2
1 *( ok {4k

IR I (t*, wreery, LD )) at*.
th dat*

In the present context we are concerned with the invariance of a functional
under certain transformation groups. Thus, since each of the transforma-

tions in (B.23) and (B.25) is a rigid motion, the functional

Ptl ’ y)
Ty ugd = [ 1 /Li01” - g 3® s
0

which giveszs the length of the arc, u, = ul(t), u, = uz(t), between 1:0 and

2

tl, will remain unchanged under one of the transformations (B.23) and

(B.23). By this we mean that

o
1 Pk, 2 x7, %72 | ok

jt*,j/Lul (t*)]° & [uz (t™ 17 a” = J[ul,u2] \
0

using the meanings of ut, ug, t*, etc., introduced in (B.253). This func-
tional changes value under the similarity transformation (B,Z24) (unless
the arc is one for which ul(t) and u2(t) are homogeneous of degree k). In
general, we shall say that the functicnal J[u] in (B.,1) is invariant under
a transformation group given by (B.19) if

Jiu ] = JEu]

for every member of the group (B.19), where J[u*] is defined by (B.29).

At this point we refer all points (and arcs) in the starred coordi-
nate system to the unstarred coordinate system. This means, in this con-

text, that we shift our point of view and regard the curve consisting of
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points (t,u), to £ ts=s t], as having been transformed intc the curve con-
sisting of points (t*,u*), ts < t* g t;, the (t*,u*) being, however, still
referred to the (t,u) axes, We then suppose that J[u] in (B.1) is invari-
ant under the group given by (B.19) and suppose, for small ¢, that the new
curve is also in the domain of definition of J[u]. For small €, we can
calculate the difference, J[u*] - J{u], to first-order terms in €, and
this difference should be obtainable, without any appreciable effort, from
the formulas given in (B,13), (B.,27), and (B.28) for the several variations.
Inserting these results into formula (B,13), we obtain

2

t
1
Ju*] - Jlu] = j [F -4 F ¢ + 4 F ﬂ]h(t) dt
t u dt "u g2 u
0

+ € [{F - u’(Fur - é% Fua -u”Fuﬂ}
+(Fu: - 'aqE Fu.v) p(t) + Fua(%& -’ -‘-i-qf)]t . (B.30)

If we now assume
(1) J[u] is invariant under the group of transformations (B.19) so
that J{u*] - Jlu] = 0, and

(ii) the function u(t), to =t st is an extremal for the functional

1,
d a2
J[u], g0 that F - ~— F ¢+ + =—— F » = 0, then
u dt u dt2 u
. ’ d # j\
€ [{F -u (Ful - EE Fuﬂ) - u Fu”J Y{t)

t

]
[=

d : N
SERET Fr )9CE) + Fa (@' i) ]

G

for every (small) €. Relation (ii) implies that the expression inside the
brackets must have the same value at t = t1 and at t = tO. But t0 and tl
are arbitrary, so that this same expression must have a constant value;

i.e.,
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{F - u'(Fuf - g% Fu#) - u”Fua}wtt)

+ (Fu: - é% Fu”) p(t) + Fur(v'— u'&') = constant, (B.31)

As an application of (B.31) we assume that the integrand in the func-
tional J[u], defined in (B.1), does not depend explicitly on t. Then Jlul
is invariant under the group of translations given by (B.23). In this case,

¥(t) = -1, y(t) = 0, (B.32)

whence we obtain

? ad "
F-u (Fur - I Fuf)- u Fu& = constant, (B.33)

A formula of the form given in (B.33) occurs in its most familiar form in
oscillation problems where it connotes conservation of energy. Usually,

although not always, in oscillation problems, we have F ,= 0,
u

If we apply the same considerations to the functional given by (B,14)
and to the resulting formula (B.18), we can say that if the integrand F in
{B.14) does not contain t explicitly, then we can conclude, referring to
(B.18), that

H = constant.

C. First Variation of a Functional Involving Several Independent Vari-

Our purpose here is to explain as simply as possibly the derivation
and consequences of Noether's theorem, The examples in subsection B
should serve this purpose for variations invelving only one independent
variable. We now turn to functionals involving functions of several in-
dependent variables. Let us first consider the functional
Klu] = IR F(x,y,t,u,ux,uy,ut) dx dy dt (c.1)
where R is a region in the space of the independent variables x,y,t, the

dependent variable u is a function of x,y,t, and ux,uy,ut are its partial
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derivatives with respect to x, y, and t, respectively, We first examine
the variation of the functional K[u] when R is held fixed, Then, using
this result, we allow R to vary also and calculate the general variation
of the functional, In this case, however, visualization becomes guite
difficult, and it is helpful to be familiar with the calculation for one
independent variable. 1In the calculation for one independent variable,

we first stated the question in terms of a transformation of the underly-
ing coordinate frame--the so-called Ellﬁf viewpoint--so that the original
arc under consideration was regarded as heid fixed in the plane, while the
coordinate frame was moved. Afterward, we essentially restated the prob-

lem as one in which the coordinate frame was held fixed--the alibi view-

point--while the function u(t), to st = tl, was (continuously) transformed
into the function u*(t*), tg s t¥ = t;. 1t was from the alibi viewpoint

that the actual calculations were made,

We shall not lay any stress on the analyticity properties to be pre-
scribed for the functions u(x,y,t) in the function space S over which Klul
is defined., It will merely be assumed that the functions u(x,y,t} satisfy
properties sufficient for the carrying out of the various differentiation
and integration procedures indicated in the derivation of the variational
formulas.

For the fixed and bounded region R, we follow the standard procedure

and assume «
u {x,y,t) = u{x,y,t) + h{x,y,t) =u + h |

whence we quickly arrive at

Klu*] - klul] = xlu+ k] - k[u]

1§

i
fR LF h +Fy b+ Fa by + Fy b J av

where
dv

dx dy dt.
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Then, using differential identities (analogous to the use of integration

by parts in the case of a single independent variable), we obtain finally

klwr]-xlal = [ [, -

Fy

3_
ax X

The second integral in (C.2) is in the form of a divergence,

may express it as a surface integral:

)il -xlul = [ [r, - Lo

r
+ JaR[anux + nyFuy + niFy

where (n_,
X

surface 3R and surface area element dS,

_ 9 ) ]

g - S Fy, |hdv
Y Fu Uy 3t

a
a

o)

(Fu h) + 3T (Futh)] dav

(c.2)

so that we

Fy

h d
ay y ] v

2 ¥
3t

;]h ds

ny,nt) iz the unit outward-pointing normal to the region with

Let us now regard the coordinate system u,x,y,t as being transformed

to a new coordinate system u®,x*,y*

to be regarded as functions of u,x,y,t and a parameter €,

tions having the property that, for e =

In other words, we have again prescribed
formations (continuous in the parameter)
group having the property that the group

is the identity element of the group.

u*(x*’y*’t*)

* z
, 8, in

which the starred variables are
with these func-
:y, t*:t.

a one-parameter group of trans-
of the coordinates, with this

element corresponding to € = 0

We have

B(x*,y*,t%,¢)

x¥ = G(x,y,t,e)
y* = H(x,y,t,€)
t* = T(x,y,t,¢) (C.3)
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under the conditions

u(x,y,t) §(KJYIt!O)

L
|

= G(x,y,t,0)

y = H(X,y,t,O)

t = T(x,y,t,0) (C.4)
The variations are then
b - szonn, 5= (28
sv = ey, 1= (53,
6t = eT(x,y,t), T = (%%)620
bu =h + ¢ (%E €+ %% n o+ %% T)e=0 (c.s)
2 2 2
du, = h _+¢ (%;% € + gxgy o+ gxgt )e=0
2 2 2
bu_ = hy4—€ (gygx €+ :yg n+ gygt T)e=
2 9 2
u, = h + e(gtgx € + gtgy M+ :tz T)G::O

It is then seen that the Jacobian J of the transformation from (x,y,t) to
(x*,y*,t*) becomes, to first-order terms in €,

_alx¥, y¥, t¥)
- a(x’Y|t)

1+ €(§X + ny + Tt)

1 + (6x)x+ (6y)y+(6t)t

where a variable in a subscript means partial differentiation with respect
to that variable when and only when the variable appears explicitly. Under
the transformation given in (C.3), suppose that the region R in (u,x,y,t)-
space is taken into the region R* in (u*,x*,y*,t*)-space. Now, starting

from the definition (C.1), we examine the functional
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kL] =

% *® *
R*F‘[x*,y*,t*,u*, ou* ~du ou ]dx* dy* dt*, (C.6)

dx* 7 Jy*x ' Jpk
If we now take the view that the manifold u*(x*,y*,t*) is merely obtained
by a continuous, infinitesimal transformation of the manifold u(x,v,t) in
the (u,x,y,t)-space, then the former manifold can be referred back to the
unstarred coordinate system, and we can write
Klu*] = jn F[G, H, T, 8(G,H,T,e), & (G,H,T,e),

8,(G,H,T,8), 8,(G,H,T,6)[Jav  (C.7)
where the subscript i denotes the partial derivative of a function with
respect to its ith argument, To the first order in €

Klu*] - klul = IR [€(F1§+ Féﬂ+—FST)+ F45u~+ F56uX-+ F65uy + F75ut

+ EF(E, + M + Tt)] av .
This may be rearranged to read

Kiu*] - Klu]

IR [(F4 - %E Fg = %} Yo - 51 F,)n

o o 2
+ ax(g;1+eF§)+ ay(Fﬁh-FSFn)+ at(F7h+eFTf]dv

Il

a 3 3
- —F -=PF, -=—F h
J.R (_Fu ox UYx 3y Uy 3t ut) av
+ I [n (F, h +F &x) + n {(F, h + F 8y)
dRL x7 Mx y Uy Y
+n (Fy b+ F 6t)] ds
where the usual variational notations have been introduced as: Fu = F4,

F F_, 8x = €€, etc.

uxy 7 %5

If K[u] is invariant under the group of transformations for an arbi-

trary region R and u is an extremal of K[u], then

3
(Fy h + F 8x) + %; (Fuyh + F 8y) + 3T (Fy,h + F 8t) = 0 (C.9)

CVlOJ
"
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SECTION V
A NUMERICAL METHOD FOR CALCULATING
CONTINUOUS PERIODIC FLOWS WITH SPHERICAL
SYMMETRY UNDER NEAR-ACQUSTIC CONDITIONS

G. M. Muller

A Introduction

Under a previous contract, a preliminary investigation was made of
a numerical method for calculating continucus, periodic flows of a per-
fect gas under the conditions of spherical symmetry and constant entropy.
Our main purpose in this section is to present a completely revised ver-
sion of the original method and to attempt some assessment of its capa-
bilities and limitations., Although the emphasis will be on underlying
principles, we shall give a general description and complete listing of
SPHERE, a FORTRAN code emhodying these principles, and discuss several

sample c:zalcn:.l.‘tations..r

The idea of a periodic flow without shocks entails certain assump-
tions that we now examine, Consider a sphere immersed in an infinite mass
of fluid initially at rest. The radius of the sphere is taken to be the
unit of distance and the fluid is assumed to be a perfect gas, Denote
time by t and distance from the center of the sphere by r. Starting at
t = 0, we prescribe, say, the mass flow through r = 1 as a continuous

periodic function, f£(t), with f{t + T) = £(t). Because of the periodicity,

t SPHERE is designed specifically on the assumption that the perfect gas
is air, with the ratio of specific heats, v, equal to 1.4.
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the surface r =1 is a source of alternating compression and rarefacticn
waves, with each compression wave eventually steepening into a shockfront.
If a strictly periodic regime of periocd T exists in the limit t - «, it
must involve an inner region, 1 < r < R, without shocks and an outer re-
gion, r » R, containing an infinite sequence of shockfronts Sn' The shock-

at some particular

fronts may be labeled S o’ ey SO’ S

s—(m—l)’ 1’

instant t, After the lapse of time interval of length T, a new shockfront,
5 , has been created at r = R, and each S_ has moved into the posi-
-{m+1) n

tion previously occupied by Sn Since any shock increases the entropy

+1°
of the gas behind it, conditions at r = R will be periodic if and only if
each new shock is formed in gas of constant entropy. 1t is plausible to
assume (without rigorous proof) that this condition is at least approxi-
mately equivalent to the requirement that the d.c. component of the local
Mach number at R (i.e., the local Mach number averaged over the period T},
be greater than one. Ignoring rather extreme flows of this sort, we seek

a boundary condition to be imposed at r = R that, although permitting an
adiabatic periodic flow of period T in the region 1 < r < R, is reasonably
realistic in terms of the physical model underlying our considerations for
a near-acoustic range of conditions. (In this new context, R may be less
than the shock-formation distance.,) The imposition of this boundary con-
dition then allows us to confine our calculations to the region 1 < r < R,
It should be noted that ncot all possible boundary conditions are consistent
with adiabatic flow in 1 < r < R, Thus, if we prescribe zero particle
velocity at R, we have effectively enclosed the flow field in a rigid

spherical shell and this will generally lead to shocks,
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The condition actually incorporated in SPHERE is that the pressure
and particle velocity at R satisfy the same relation as that in an out-
going spherical wave oheying the laws of linear acoustics for a lossless
medium. We shall call this the acoustic boundary condition. There is at
the present time no existence or uniqueness theory for the problem we have
just formulated, However, on the basis of our computing experience with
the finite-difference analog of this problem, it seems safe to assume that
for sufficiently small amplitudes of the prescribed motion at r = 1, a
continuous sclution does exist and is unique.f

We now try to determine whether the acoustic boundary condition is
realistic, We first discuss the case of slab geometry (i.e., motion de-
pending on a single cartesian space coordinate x) where the situation is
relatively simple, Here it is known that for outgoing waves the shocks
do not influence the flow behind them if one can neglect the change in
entropy across each shock, Under this assumption, if the gas is at rest
at t = 0, and we prescribe a periodic motion at x = 0 for t » 0, the mo-
tion at any point x > 0 is periodic for t > x/co, y being the ambient
sound velcocity. Hence, in slab geometry, it is not necessary to consider
the periodic motion as the limiting case t - «» of a motion originally
starting from rest, For sufficiently small amplitudes, the entropy
change resulting from each new shock, being of the third order in the
shock strength, will produce only an insignificant effect. However,

these changes are cumulative so that for sufficiently large values of t,

¥ BSee subsection G, paragraph 3, concerning the possible existence of
subharmonic regimes.
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any volume of gas located beyond X, the shock-formation distance, will
have undergone some shock heating., Moreover, for x > X, the temperature
of the pgas decreases as X increases because of the decreasing number of
shocks that have passed x. Consequently, at x = X the outgoing waves
enter a region of variable mean density and sound velocity so that, even
in the limit of linear acoustics, the proper boundary condition to be im-
posed at X (or at some distance less than X} is not that there be no in-
going waves but rather that the ingoing and outgoing waves be related
according to the effective impedance mismatch at X, Although this new
boundary condition is time dependent, in many cases of interest this
dependence will be negligible over a pericd of the motion so that in

the calculation of the flow in 0 < x < X, time may he regarded as affect-

ing the boundary condition only as a parameter,

For motion with spherical symmetry, the prohblem becomes somewhat
more complicated because the creation of a discontinuity, such as a shock,
will produce a mechanical disturbance traveling backward into the region
1 < r< R, even if the entropy change across the shock can be ignored.
However, in this case we can introduce real-gas effects to reason as fol-
lows: Viscosity and thermal conductivity predominate over nonlinear ef-
fects for sufficiently small amplitudes and thus prevent the formation
of shocks. On the other hand, the disturbances produced by the real-gas
effects themselves are attenuated exponentially; therefore, for a suit-
able range of conditions, they do not penetrate significantly into the
part of the flow field in which we wish to carry out our computations

under the assumption that the gas is perfect. These considerations are
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applicable only if the amplitude of the acoustic pressure at R is suffi-
ciently small, of course. Under suitable conditiocns, therefore, we again
have nonuniform heating of the gas outside R, which may be approximately
accounted fer by a boundary condition at R, (It is likely, in fact, that
an approximately correct boundary condition can be found even if shocks
do occur beyond R, provided merely that the amplitude of the acoustic

pressure at R is sufficiently small,)

As we have already mentioned, the boundary condition actually incor-
porated in SPHERE is that of no reflection at R; it corresponds to the
physical situation at a time when a (nearly) periodic regime has already
been established but before significant heating has occurred beyond R,

It will be apparent later that the machine program can readily accommo-

date other boundary conditions.

The basic element of the method of computation is the integration
of a single partial differential equation of the form W= F(w,wﬂ,ﬂ,x)
by a predictor-corrector scheme. This is presented in subsection B, to-
gether with a summary of numerical results for a particular equation,
Wy = wwn, for which the exact solution is known. Subsection C contains
the basic formulation for the spherical-wave prohlem; the choice of var-
iables employed in this formulation is ultimately connected with the
necessity of solving what is essentially a boundary- rather than initial-
value problem for a hyperbolic system of partial differential equations.
In subsection D, we derive the exact form of the boundary conditions and

determine the form of the solution in the limit of linear acoustics, In

subsection E, we describe in considerable detail the method of computation
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for obtaining the solution of the problem formulated in subsections € and
D. Subsection F contains instructions for the use of the SPHERE code in
its present form, a discussion of its limitations, and a survey of results
obtained so far., In subsection G, we recommend specific additional calcu-
lations, suggest certain modifications of the SPHERE code, and indicate
the importance of some fundamental problems connected with the possibility

of subharmonic oscillations,

B. A Predictor-Corrector Method for Integrating w, = F(w,wn,n,x)

1. The General Method

In this subsection, we consider a finite-difference method for sclv~-

ing partial differential equations of the form

LA F(w,wn,ﬂ,x), (B.1)
subject to the initial condition

w(n,0) = £(1) (B.2)
and the periodicity condition

w(l + T,x) = w(7,x). (B.3)
We shall assume that F and f are analytic in their respective arguments,
and confine our attention to a range of x such that w(ﬂ,x) is analytic;
note that (B.2) and (B.3) require that f(]] + T) = £(1]). We shall carry
out our computations in 0 £ T} < T, and use (B.3) to obtain the reguired

approximation for wn at the endpeints.

For the finite-difference method, the T\~range is divided into N in-
tervals, of length A7 = N/T; integration in the x-direction is performed
in steps of size Ax. For any function ¢(7],x) we write

cPi’j = @(ian, jox); (B.4)
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since we are only interested in functions of period T,

n,5 = %0,4 Po1,5 = PN-1,3 (B.5)

To obtain a finite-difference approximation for (B.1l), we first integrate

(at constant 7)) from jAx to (j+1)4x:

{j+1)Ax
wi,j+1 - wi,J = jjﬂx F(w,wn,n,x) dx . (B.6)
We next approximate the integral by the trapezoidal rule and replace the
derivative wn by the corresponding central-difference quotient to obtain

Ax
Vi1 M3t T [Fi,_j+1 + Fi,j] ' (B.7)

where

, i4m, _ij) . (B.8)

Suppose now that we have calculated wi j for 0 £ i € N-1 and wish to

carry the computation to j + 1. We first obtain wN j and w 1, ] from (B.5);
) =1

this enables us to calculate F, . for 0 < i < N-1. 1If we cannot solve

3

(B.7) explicitly for the W, j we may proceed by an iteration method.
¥

+1’

Let WFO? for O £ i £ N-1 he a first guess at the value of w, ., .., We
i, j+1 i,j+1
ohtain wﬁO; and wfg)j from (B.5) and are then in & position to calculate

’ *
. (0) .
a corresponding first approximation Fi,j+1 to Fi,j+l' We may use this
approximation to calculate a new approximation w§1;+l from (B.7), and in
]
general, we have the iterative formula
(n) ox [ _(n-1) ' .
= —_ 0<isN-1. (B.9
Yool T ¥, T [ Ta e T e,y 1=N-1. (B.9)
We evaluate
e{n) = max w?“? - anl) (B.10)
J+l i i, j+1 i,j+1
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in the course of each iteration, and discontinue the computation (assum-
ing the process converges) after this quantity becomes less than some pre-

-1
assigned limit; we then set w, = w(n) = F(n )

an = and are
i, j+l i, J+1 i, j+1 i,j+1

now ready to carry the computation to j + 2.

Whether the iterative process does, in fact, converge, and if so,
how rapidly, will depend on the functions F and f, and on the values of

41 and Ax: evidently, convergence will improve with decreasing Ax, If we

choose w§03+1 = wi 3 then unless Ax is excessively small, it will usually
1 ’

{n
take several iterations to satisfy the criterion on g,

. The computation
j+i P

may often be greatly speeded up by using the following scheme., First,

(0 _ (0

observe that with the choice w; = W, ,, we also have F =F, .;
i,4+1 i,3 i,3+1 i,]
(1)

hence to find w,

i, g+l we need not reevaluate F. {Generally, the length
1

of the entire computation will be largely determined by the number of
times we have to calculate F,; it will therefore pay us to have saved the

F's for, say, j - 1 and j - 2 [Fi P is needed in any case, in {(B.7)] and

2
extrapolate to j + 1, We write down the relevant expressions:
{a) No extrapolation:
O F
i,j+1 i,J

(b) Linear extrapolation:

(0

F, . = 2 - B.ll

i,3+1 Fi,5 " Fi,5-1 (B.11)
(c) Quadratic extrapolation:

(0)
F'') = 3F _-3F .
i, 3+l i,3 i,9-1 7 Ty 52

In the machine program, the appropriate expression from (B.11) is

)

combined with (B,9) to yield w ~°
i, j+b

directly, For j+l1 = 1, we have to
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use (a); for j+l 2 2, we may use (b); and for j+l1 = 3, we may use {c),
A slight modification is required if we wish to change the step-size ix
during the course of the computation. Suppose that the second subscript
on ¥ refers to the value of x identified by the same subscript. Then,

for quadratic extrapclation,

(0)

F. ' . = R.F. . B.12

1,40 T 2%t Ry 5o BTy oo (5.12)

where
Ry = 99, Ry F 9% Ry = Q9
.4 - X, X . - X, X, - X,

Q = Jj+1 j=2 Q. = j+1 j-1 Q. = j+1 J (B.13)
0 X, - X. ' 17 x. - x. ' 2 x. - X, -

J j-1 J J-2 Jj-1 Jj=-2

Equations (B.11l) and (B.9) employed together to yield wFl)

. may be
i,j+1 Y

called a predictor, and the subsequent application of (B.9) alone may be
called a corrector, in the standard terminology used for the discussion
of numerical integration schemes for initial-value problems in ordinary
differential equations [6, D. 186]. Although predictor-corrector methods
are not commonly used for solving initial-value problems in partial dif-

ferential equations, they can be guite effective as we shall show later.

2, Preliminary Remarks About the Simple-Wave Equation, w, = wwn

We consider the equation
W= Wy (B.14)
subject to the initial condition
w(n,0) = sin T {B.15)
and the periodicity condition
w(T+ 2m,x) = w(T],x). (B.16)

It is easy to show that w(2m-7,x) = -w(7],x) so that we need only consider

the range 0 = T, = T; moreover, {(B.15) and (B.14) together imply
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w(0,x) = w(rr,x) = 0, all x, (B.17)
which makes the explicit use of (B.16) unnecessary., The solution of this
problem is well known; it is provided in parametric form by

w(l,%x) = sin T (B.18)
where T satisfies Kepler's equation,

T-x sin T = 1. (B.19)
For any x, 0 = x = 1, as T increases from 0 to T, so does T]; hence, we may
obtain T as a single-valued function of 7], 0 = T} £ 7, by reverse interpo-

lation and thus calculate w(7],x) to the desired accuracy.

Equations (B.18) and (B.19) together define a simple wave [l; 4,
Chaps. 2 and 3]. For x > 1, 7 is no longer a single-valued function of
TN; in a gas-dynamic context, x = 1 may be interpreted as the shock-
formation distance. At the point x =1, T = 0 (T} = 0 corresponds to
T = 0), 87/97) is infinite; this point is the beginning of the shockfront,
To determine the hehavior of w(ﬂ,l) in the vicinity of the incipient shock-

front, we expand (B.19) for small T,

T—(T—é73+...)=ﬂ, (B.20)
and obtain T = (Gﬂ)l/a, hence
w(,1) = (Gn)l/s, N << 1. (B.21)

3. Application of the Predictor-Corrector Method to the Eguation

Wx= an

The numerical method described in paragraph 1 is suitable for the
problem defined by equations (B,14), (B.15), and (B.17). The range
0 =T =T is divided into N intervals, of length AT = M/N. In view of

the discussion in paragraph B.2, the appropriate range for x is 0% x=1;
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it is divided into K intervals, of length 4Ax = 1/K. Because of condition
(B.17), the calculations need only be carried out for i =1, ,,., N-1;

setting

w(n) _ W(n)

. =0 B.22
0,3 N,J ( )

for all n and j replaces the procedure described immediately following

equation (B.8).

To specify the computation completely, we must provide numbers ej

such that the iterative procedure for a particular j is discontinued when

]esn)| < €., where e?“) is the number defined in (B,10). &ince the error

J J J

resulting from using a finite number of iterations at a particular value
of j affects the computed values of w for all larger j, it seems reason-

able to use a variable ¢ with €. < &8, ., In the machine program for

3’ 3 J+1
carrying out these computations, EJ was given by
Li o

1m2 lel

€ = Li —
3 L1ml + ” J (B.23)

where Lim2 and Lim1 are input data. The program was written in ALGOL for
the Burroughs 5500 computer (with 32K core memory), originally without
provision for extrapolation. Both linear and quadratic extrapolation were
then investigated; after the superiority of quadratic extrapolation had

become apparent, the program was optimized from the standpoint of running

efficiency.

4, Discussion of Results

The number of iterationst required at selected values of x(= jAx) is

LA

given in Table II., Numbers 0, 1, and 2 in the column headed ''predictor”

t This is the number of times that the values of the F; 5 were computed
1
(for a particular j) from the expression (B.8); not included in the
count is the initial estimate, (B.11).
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refer, respectively, to (2), (b), and (c) of (B.11)}. "Computation time"
is the time elapsed between the reading of the DATA card and the execution
of the first WRITE instruction; it includes all preliminary computations
such as the calculation of sin (id7). (Computation times are quoted only

for the optimized program.)

The validity of the following observations is apparent from an in-
spection of Table II:
(a) There is a general tendency for the number of iterations to
increase as x = 1,0, i1.e., as the singularity in the exact

solution is approached.

(b) A quadratic predictor is guperior to a linear predictor; a
linear predictor is superior to a zero-degree predictor.
This superiority is more significant when the exact solution
ig smooth (small x) than in the neighborhood of the singularity

(large %) {cases 2,3,4; 5,6),

(¢) Increasing Ax with AT fixed increases the number of iterations

required, especially for large x (cases 2,8,9).

(d) Increasing Ax and AT with Ax/AT fixed may leave the number of
iterations substantially unchanged (cases 2,5; 4,6) or produce

a moderate increase (cases 6,7).

These remarks are based on a limited range of experience, and some caution

should be used in drawing general conclusions.

The numerical results obtained depend on the finite-difference net,
i.e., on K and N; as one would expect, however, they are substantially

independent of the degree of the predictor used. Figure 3 shows contour
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maps of the percentage error relative to the exact solution for three
finite~-difference c::pmpu’(:aa.tions.;.'r Large errors are confined to the imme-
diate neighborhood of the singularity; a 50 X 50 net seems satisfactory
for many purposes.

To give a more precise idea of the behavior of the finite-difference
approximation near the singularity, the computed values of w(7],1) are
shown in Figure 4 for 0 < ﬂ/ﬂ = 0.2 and N = 200, 100, 50, and 20, along

with the exact solution. Note that in each case, shows a large over-

¥1,1
shoot, strongly reminiscent of the behavior of the Fourier approximation
to a discontinuous function--the so-called Gibbs phenomencn [3, Chap, 9],
In view of the close connection between finite-difference methods and fin-

ite Fourier representations in the case of linear partial differential

equations [11, P. 10], this is not too surprising.

C. Formulation of the Spherical Wave Problem

1. The Differential Equations

The equations of gas dynamics for the spherically symmetric, homen-
tropic flow of a perfect fluid obeying a polytropic equation of state may

he written in the form

99 2 Jc a4 2 _ 3c] _ cq
at+Y—18t+(q+c) r+“{-lar__2r’

c.1
da _ _2 3¢ ( _foe__2 _5_9.]_ 5 £4 ©.n
ot Y - 1 at ar Yy - 1lor r '

where the various symbols have the following meanings:
t: tinme
r: Eulerian radial coordinate
gq: particle velocity
t The maps are based on the values of wat x = 0, 0.1, ..., 0.9, 1.0

even though the computations themselves also involved intermediate
net-points,
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¢: local sound velocity

¥: ratio of specific heats.
In the case of slab geometry, the right-hand sides of equations (C.1l) van-
ish, and it is customary to introduce new dependent variables g+ 2¢/(y -1},
the Riemann invariants, These variables are also useful in the spherical
case; however, since our concern is with relatively small deviations from
an ambient state (g = 0, ¢ = co), it is convenient to define as dependent

variables the fractional deviation of g £ 2c¢/{y - 1) from the respective

ambient value:

c - CO y-1q
vo= c + 2 c. !
0 8]
(C.2)
c - c
g = 0 - Y ; 1 g_
o 0

Additionally, we introduce a time variable T measured in units of the
time taken by a signal to travel unit distance at the ambient sound speed,

and define two constants a and b:

T-—-Cot,

Y+t

TCa s S .
_ 3=y

TRy B

where the numerical values for a and b are appropriate for air, vy = 1.4.

With these definitions, (C.1) becomes

A Ay )
5; + (1 + ap - hC) E% = - % {p - o+ 5 P2 - =Ty,
{C.4)
3o Foleg 1, 1.2 1 2
6—,}" - (1 + adc —bp) ﬁ' = —? (t) - +-§ p ..,EO )

-

The characteristics [4, Chaps. 2 and 3. of this system are described

hy the differential equations
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dr

C+: a'=+(1+ ap - bo),
dr (c.s)
C : T = -(1 + ac - bp).

As we shall deal with problems for which p and o are small, we introduce
characteristic coordinates for the corresponding linearized system;
Tl:'T—I'-i—l,

(c.6)
G

I

T+ r -1;
the additive constants are chosen so that for r = 1, ( =17 = T. Because
both boundary conditions will be prescribed along lines r = constant, it
turns out to be useful to keep three independent variables, 1, {, and r,
and to use them in pairs, (I},r) and ({,r). Also, for reasons that will
become apparent later, we introduce u = rp and v = rg as new dependent
variables. To indicate that u and v are to be regarded as functions of
T and r, we shall use lower case letters; if u and v are to be considered
as functions of { and r, we shall denote them by U and V.T Accordingly,
our definitions are as follows:

u="U=rp; ul,r) = U(,r);

(c.n
v =V

li

ro; v(n,r) = V({(,r).
With these conventions, we obtain the following pair of partial differ-

ential equaticons:

3u (au - bv) (g% + ur—l) + v - % (u2 - vz)r_l
= g(ﬂ,r) = - ,
3r r[l + (au - bv)r 1]
(C.8)
v (av - bU)(—-%% + Vr'1)+-U - % w2 - vHrt
ST h{({,r) = .

r[1 + (av - bU)r"lj

t The convention regarding the use of lower and upper case letters ap-
plies only to u and v,
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2. Boundary and Periodicity Conditions

We shall wish to impose boundary conditions at r = 1 and r = R. For
the moment assume that these may be put in the form
u(m,1) = L{van’, D], VR = LU, m], (C.9)

where L1 and L, may be functional operators; the exact expressions will

2

be derived in subsection D.

It will be convenient to assume that the period T of the flow refers
to the variable T (= COt) rather than t., We see from (C.8) that, for fixed
r, both 7} and { equal T plus a constant. Therefore, the periodicity con-
ditions for u and V are simply

u(n + T,r) = uln,r), V(£ + T,r) = V((,n). (C.10)

3, Comments on the Formulation--The Quasi-Cartesian Approximation

The problem defined by (C.8), (C,9), and (C.10) lends itself to an
iterative method of solution that will be described in subsection E. For
the moment, we note that if v(n,r) is prescribed as an arbitrary analytic
function, with v(7 + T,r) = v(7,r), the first members of each pair of equa-
tions (C.8), (C.9), and (C.10) define a problem substantially identical
with that discussed in subsection B if u and r are identified, respectively,
with w and x. A very similar remark applies to the three equations involv-

ing U and V.

As a consequence of the coordinate system used, the right-hand sides
of (C.8) involve derivatives only as second-order terms; in fact, if we
set v = 0-and discard terms of order r_2, then the first equation (C.8)

becomes simply

57 =T 8us- . (C.11)
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If we now define
X =2a log r
{C.12)
w(n,x) = u(n, ),
then (C.l11) hecomes
W= an, (C.13}

X
which is identical with equation (B.14). Although the solution of this

equation, combined with v = 0, does not satisfy (C.8) exactly, this par-

ticular approximation--we shall call it the quasi-cartesian approximation--

ig essentially equivalent to an approximation that has been proposed as

having some validity for large r EZ; 8].

4, Acoustic Flow Variables in Terms of u and v

The variables u and v (or U and V) are convenient for computation;
however, we shall need to relate them to more common physical variables,
For the latter we shall use nondimensional acoustic gquantities, viz,, the
reduced velocity'azzq/co, the reduced acoustic pressure‘gzz(p-pe)/po,
and the reduced mass flowlg = qarz/(ﬁoco). Here p and 5 are pressure
and density, respectively, and a subscript 0 denotes ambient values.T

From (C.2) and {C.7) we obtain

a 1 u - v
o Ty -1 r ’
- (C.11)
© CO _ l u+ v
<y T2 T
Furthermore, we have the thermodynamic relations
. 2y/(y-1)
weg)
(C.12)
- 2 -
_P__<£;)/(Y 1)
Po V%

¥ We use the notation P to avoid confusion with p as defined in (C,2),
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From (C.11) and (C.12) we finally obtain the following expressions:

~ _ 9 1 u - v u - v
4= o "y -1 r =25 =
- 2y/(y-1)

~ p Po lu+v lu+vw 7

p = b ‘(E = +1) -l={3 + 1) -1 (C.13)
-2 2/(y-1) 5

e 1

§ - par rl(u—v)(§u+v+l =2.5r(u-v)(—l-u+v+l ,
poco Y- r 2 r

The last expression in each case is appropriate for air, v = 1.4,

D, Boundary Conditions and an Initial Approximation

1. Outgoing Spherical Waves in Classical (Linear) Acoustics

In classical acoustics, the pressure and particle velocity in an
outgoing spherical wave moving through a medium of constant properties
can be derived from a single function F(z):

F'(cot - r+ 1)

p(t]r) - P
(D.1)

0 r !
F'{c_t r+ 1) F(e.t - r + 1)
c 5 g(t,r) = 0 + o

g0 ! r r2

These formulas are obtained from the fact that p satisfies the wave squa-
tion, and from the relation 3p/dr = Boaq/at (10, p. 242]. If we specify
q{t,1) as a given function of t, the second of equations (D.l) becomes an
ordinary differential equation for F(cot). The constant of integration
gives rise to a term Ar_z in the expression for velocity; hence, even if
P =Py there may be a velocity gradient, corresponding to a constant

i- 2

P4 + p = constant;T the

mass flow 47TA, Now by Bernoulli's law, 3 Po

T More precisely, for a stationary adiabatic flow vanishing at infinity,

L2 “Ii dp/? = (p- po)/§0+_o[(p- po)zj/(poﬁo). For p << Py the

0
4
neglected term is 0{(q ).
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velocity gradient, dq/3r = —2Ar_3, therefore requires a pressure gradient

3 - ) - 2 =5
B_PI:=_p0q§%=2p0Ar .

The reascon that this pressure gradient does not show up in classical acous-
tics 1s that it is of the second order in the velocity. We mention the
peint to reassure ourselves that the presence of a nonvanishing mean mass
flow does not invalidate the use of the acoustic boundary condition at

r = R.

2. The Differential Equation for V({,R)

Let us find the relation between the variables u and v in the limit
of classical acoustics, under the hypothesis that p and q are related by
(D.1). First, we note that for'; << 1, the second equation in (C.13)

becomes

b= .27 (D.2)

If we also use the first equation in (C.13), and the definition of 1), we

find
U+ v = y-1 F(),
Ye,
(D.3)
u-v=I22 [Fm o+ TRl
0%

We now make use of the thermodynamic relation cg = Ypo/ﬁo to write the

second equation in the form

w-v =22 e e Tl D (D.4)
Py
hence
Y -1 . e
u = 2o, L2F (M) + £ FOJ,
_ ¥ -1 -1
v = 2o, r "F(1). (D.5)

By differentiating this last equation with respect to 7|, we can elimin-

ate F(1}), and have, finally,
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dv v u
5ﬁ tor = T 3p ¢ (b.6)

To determine the form of the boundary condition at r = R, we have to
put (D.6) in terms of U and V. From (C.6) it is clear that, for constant
r, df = df| since each is equal to dT, Accordingly, from the definition
(C.7), dv/31 = dV/AL. Since r enters (D.6) only as a parameter, the par-
tial derivative may be treated as an ordinary derivative, and we ohbtain

av(g,R) | V(E,R) _ _ UCE,R)
ag 2R 2R

(D.7)

We defer the solution of this equation until paragraph D.4.

3. The Differential Equation for the Initial Approximation

Suppose that the reduced velocity,'z, at r = 1 is prescribed as a
function of T, Q(T), For r = 1, T = T]; hence we obtain from (C.13) that
u(n,1) - v(n,1) = (v - 1IQ(). : (D.8)

Let us define now

=t i
vy = 2vpg F( 5 (D.9)

then (D.,4) and (D.8) yield the ordinary differential equation,
YA+ VA = Q. (D.10)
Once we have calculated ¢(ﬂ), u and v may be obtained from {(D.5}, which

now takes the form (we use (D.10) to eliminate ¥§°):

w(m, ) = (v - DL - (2 + £ Y],

(b.11)

"

v, = -y - Dr .

These expressions will serve as a first approximation in computing solu-

tions for the nonlinear problem,

4. Solution of the Differential Equations

Equations (D.7) and (D,10) are of the elementary type
y A+ By = (M (D.12)
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where B is a constant; the general solution of this equation is
1l
- T
y(n) = Ce Bl + j @(t)eB ar. (D.13)
0

Suppose now that @(}) + T) = ¢(7)); if we require that the solution
y(7) have the same periodicity, i.e,, that y(' + T) = y(T)), the constant

C may be evaluated. Setting y{(0) = y(T), we obtain

T
C = Ce—ﬁT + edBT IO @(T)eBTdT; (D.141)

hence .
ﬂ"

BTdT + J

BT 4T
v = e dl [(eB

T
-1
-1 $(T)e
JO

' @(T)epTdT] ] (D.15)
0

Since it is elementary but slightly tediocus to verify that with this

choice of C, y{(T] + T) = y(1) for all T, we omit the details,

5. The Boundary Conditions

To obtain the acoustic boundary condition at r = R for the nonlinear

computation, we use the results of paragraph D.4 on equation (D.7). This

yields
- T . & :
- BT -1 g T _ 1
V(y,,R) = -Be EJ{""li(e -1) U(T,R)e d7+ U(T,R)eb ar | , B = 55
0 0
(D.18)
a relation that expresses V({,R) as a linear functional of U({,R).
We shall consider two possible boundary conditions at r = 1. If the
reduced velocity is prescribed, then (C.13) gives
u(n,1) = v(y,1) + (v -~ 1T, 1); (D.17)
if the reduced mass flow is prescribed, then
1-2/(y-1)
~ , 1 v(T,1
u(r),1) = v(1,1) + (Y-—l)@(ﬂ,l)[l L LD ; r )] (D.18)
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Although (D.18) is an implicit equation for u(7],1), it lends itself to a
rapidly convergent iterative method of sclution. For each reguired value

(

of 1, an iterative formula is obtained by writing uru(ﬂ,l) for u(7,1) on

1
the right-hand side, and u(n+ )(ﬂ,l) on the left-hand side of (D.18); to-

gether withAkﬁo)(ﬂ,l) = 0, this defines the iterative process.

Note that the boundary conditions presented in this paragraph con-
form with (C.9). For numerical purposes, they must be supplemented, in
the case of (D,18), by the iterative procedure just given, and, in the

case of (D.16), by a suitable numerical guadrature formula.

6. The Initial Approximation

In the limit of classical acoustics, the distinction between’a(ﬂ,l)
and ©(7,1) vanishes; consequently, the considerations of paragraph D.3
are equally valid if Q(T7) is the prescribed reduced mass flow at r = 1.

Applying the results of paragraph D.4, we have

T : y
) -1 r
Y(n) = e’ [(eT-l) ! LJ Q(Tye dr ¢ JO Q(T)erT] (D.19)

from which the classical values of u and v may be obtained by (D,11)}. A
numerical procedure for evaluating (D.16) and (D.19) will be given in sub-

gection E.

E. Numerical Solution of the Boundary-Value Problem

1. Specification of the Problem

The problem we are considering is basically the following: Find the
solution of the pair of partial differential equations (C.8}, subject to
the periodicity conditions (C.10), the "ocuter” boundary condition (D.15)

L}

at ¥ = R, and one or the other of the "inner" boundary conditions (D.186)
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or (D,17) at r = 1. The detailed specification of the problem may be

conveniently divided into several levels.

a. Basic [OPTBDY, T, NOINFC, INDC, INC, INsS]T

OPTBDY specifies whether boundary condition (D,16) or (D,17)
will be used: OPTBDY = 0 corresponds to (D.16) (reduced velocity pre-
scribed at r = 1) and OPTBDY = 1 corresponds to (D.17)} (reduced mass flow

prescribed at r = 1),
T is the assumed period of the flow, in terms of T.

Designate by Q(T) either'E(T,l) orJg(T,l). {Remember that for r = 1,
T =T.y QT) is specified in terms of a finite number of Fourier coeffi-

cients. More precisely, if we write

M
N 23T
Q(TY = ao + jzl aj cos( T )+

M .
£ by sin (QZfT) , (B
J= /

then ag = INDC, M = NOINFC, a, = ING(J), and b, = INS(D). .

b. Finite-difference net [N, K, KO, K1, K2, X, R, SINE, LOGY |

The range of the two variables 7) and { is [0,T]; 1t is divided
into N equal intervals of length N/T. The interval size in the r-direction
is not arbitrary; if ry = 1, then if every net-point in (T},r) coordinates
is to be a net-point in ({,r) coordinates, it is necessary and sufficient
that the r-coordinate of a net-point be of the form rj =1+ 1/2 M5 where

M is an integer depending on j and § = T/N.Tf The r‘j are determined by

K, KO, K1, K2 in the following manner: If K1 X K2 = K, there are K2 zones,

t Expressions appearing in square brackets after a heading are the
FORTRAN names of SPHERE variables whose functions are described under
that heading.

tt This follows readily from (C.6).
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each consisting of K1 intervals., In the first zone (i.e., the zone con-
taining r = 1), each interval is of length 1/2 0 X KO; in the mth zZone,
each interval is of length 2m_1(1/2 & X KO). If K1 X K2 < K, there is

an additional zone, containing K - Kl X K2 intervals of the same length

as those in the Kzth zone, The reason for this type of zoning is to allow
for the possibility that we may wish to assign relatively less importance
to the calculation for large r than for small r, The zoning is roughly
equivalent to replacing r by a constant times log r as the distance vari-

able; see {C.12) and the discussion in paragraph E,2a helow.

The array X contains the values of r as a function of the inde:-:;'r

i.e,, X(J) = r‘j where J = j + 1; in particular, R, the position of the
outer boundary of the flow field, is found in X{(K). Perhaps somewhat
unfortunately, SPHERE also uses an array R; however, no confusion should
result, The array R contains integers required for shifting between 7

and { coordinates:
R(J) = (2N/TY[X(I) - 1] (mod N): (E.2)

its use will be explained in paragraph E,2,

The array SINE contains (y- 1)Q(T) for appropriate values of T; spe-

cifically,
+ 1, (E.3)

It
e

SINE(I) = 0.4Q(iT/N), I

The array LOGY contains factors that enter the finite-difference

equations to be described in paragraph E.2; viz,,

1]

LOGY (1) 0

LOGY(J) 0.25(1og rj - leg r, ), j=1, =3+ 1. (E.4)

j-1

t Because FORTRAN arrays are limited to positive indices, a FORTRAN in-
dex usually equals the corresponding conventional index plus one.
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c¢. Amplitude [A, AI, LIMA, CASNUM, CASECO]

SPHERE is designed, in effect, to solve a whole sequence of
problems rather than a single problem., This offers certain computational
advantages, and obviates the need for making a preliminary estimate of

the shock-formation distance.

The idea is the following: Once we have picked T and N, the value
of R, the position of the outer boundary, is determined by KO, K1, K2,
and K. Naturally, we would like to make R as large as possible, but we
have to balance this desideratum against such considerations as the need
for a finite-difference net of reasonably fine mesh, memory capacity of
the machine, and availability of machine time., In any case, suppose that
we have specified the finite-difference net, and hence R. We now prescribe
a function Q(T) of low amplitude at r = 1., By this we mean, with refer-
ence to (E.l1), that

a5 << 1, A

M 1/2
[_z (2% + %) J« 1. (E.5)
J:l J J

The program then calculates u and v for this case, using the acoustic
solution--equations (D.19) and (D.ll)--as an initial approximation, Af-
ter printing the results, the program goes on to the next case, which
differs from the preceding case only in the amplitude of Q(T):

new Q(T) = Lold Q(T)] X AI; (E.86)
the program now multiplies the values of u and v from the previous calcu-~
lation by AI to provide an initial approximation for the current case,
This process continues until A ~ LIMA, or the case number, CASNUM, ex-

ceeds CASECO.T

t The functions of the two limits, LIMA and CASECO, are redundant,
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The program will terminate earlier if the number of iterations in one of
the several iterative loops in the program exceeds some preset limit;
this condition will generally be a signal that an amplitude has been

reached such that a shock is about to appear in the flow field.

2, BSome Preliminaries

a, The Logarithmic Trapezoidal Rule

In subsection B, paragraph 1, we obtained an implicit formula
for wi,j+1 by using the trapezoidal rule to evaluate the integral in (B.86),
The resulting formula, (B.7), would appear to be suitable for each of
equations (C.8), assuming that v and U, respectively, are given. We
pointed out in subsection C, paragraph 3, that in a certain approxima-
tion, the first of equations (C.8) can be reduced to the simple-wave equa-
tion by the substitution x = a log r. From the results of subsection B,
paragraphs 3 and 4, we know that the finite-difference approximation de-
rived from the use of the trapezoidal rule leads to gquite accurate results
in that case, However, before applying this observation to the more gen-
eral case, it is important to note that by substituting x for r as the
variable of integration, we remove a factor r_l from g and h in (C,.8).
This factor changes rapidly for small r; hence the approximation derived
from the direct application of the trapezoidal rule is not very good.
Because of the restriction on the values of rj mentioned in paragraph
E.1b, it is not feasible to replace r explicitly by log r as the inde-

pendent variable for the more general case; however, we may do so effec-

tively betweon adjacent net-points., Suppose we set

€ = log r; (E.7)
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f r = f£(r) dr = J f(e”) df. (E.8)
ry log r1

We now apply the trapezoidal rule to the second member of (E.8) to obtain

the logarithmic trapezoidal rule,

r, )
f r f(r) dr == % (log r
o

5~ 108 rl)[f(rz) + £(r) ] (E.9)

g

This rule is exact if f{e™)

a + bg, i.e., if f(r) = a + b log r.

b. Notation
We introduce a convention for subscripts that reflects the

definitions {(C.7). Let

1
§ = T/N Ar = r -r, _, A . = £ (log r, -1 r,
/N, p PR EJ 5 (log 4~ log J_1)
ui,j = u(15,rj), Vi,j = v(16,rj)
- ) - , (E.10)
U, . = U{id,r) vV, . = v{ib,r,
i,] S M i, ( J)
ou = Yirl,3 7 Yi-1,j v = Viev,3 " Vior,g
i,] 2% ’ i,3 26 ’
we further set
{au - bv) (Vu + ur_l) + v - % (u2 - vz)r-1
G[u; V] = 1 ]
1 + (au - bv)r
(E.11)
(aVv - bU) (-9V + vr' 1) + U - % w2 - U?‘)r'"1
Hlv; ul =

1+ (av - bU)r“l

It is convenient to introduce yet another convention: a single sub-
script on u, v, U, and V will indicate a vector of N components., S8pecif-

1:5‘.113 y
u, luo ¥ u] ] e o0y u, -y s oy uII ] (E.].Z
J JJ IJ 1}J I\]} )
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with the corresponding definitions for v U and Vj' Consider now an

j.r J’

th
expression such as G[uj; vJ]. This is the vector whose 1 component is

obtained by setting u = u, 57 vo=v, Y and r = rj {(not a vector!) in the
3 1 —
expression for Gfu; v].'T Because of the occurrence of Vui 3 we require
1
the value of u . to compute Glu 3V ) and the value of u_ . to com-
-1, P 0,3" 0,J ‘N, J
pute G[uN j; VN j]' These values are of course supplied by the periodic-
t 1]
ity conditions,
u .= 1 .3 u. . =1u ; (E.13)
_1:-] N_l:J N!J O:J

corresponding considerations apply to H and V. There is a simple opera-
tional implementation of (E,13): Whenever a vector u appears as the first

argument in G[u; v], it shall be an extended vector of N + 2 components,

the components corresponding to i = -1 and i = N being given by (E.13);
and similarly with H[V; Ul and V. 1In SPHERE, extended vectors are always

stored in the array W2,

In connection with the various convergence tests used in SPHERE, we

also define a vector norm by

gl = _max

where wj is any vector,

c. Shifting Coordinates

The integration scheme of SPHERE requires us to evaluate Vi 5
)

given the vector Vj’ and to evaluate Ui 3 given the vector uj. From
H

{(C.6), we have, for fixed r,

Ll
¢

& - 2(r - 1),
T+ 2(r - 1);

(E.14)

T All expressions involving vectors are to be interpreted in this way.
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hence

I
li

v(T, ) V(L) V(T + 2r - 2,1),

(E.15)

i
]

U(C,r) = ul,r) = u(C -~ 2r + 2,r).

As we already mentioned (paragraph E.1lb), rj - 1 is some integer, say s,

times &/2. Hence

<
]

V({ié¢ + &b,r)),
J (E.16)

'C:
1l

u(id - sb,r.).
J

Because of the periodicity conditions, the functional values remain un-

changed if s is replaced by Sj'

Sj s (mod N}, 0= sj < N. (E.17)
Since s = (2/5)(rj~ 1), we may write

SjE (2N/T}(rj - 1} (mod N}, 0= Sj < N, (E.18)
which is the quantity referred to in (E.2). The full prescription for

shifting then becomes

<
1}
1l
s
+

. V., . where } s, if 1 +s, <« N
i, £, J J

= 1i + s.-N otherwise;
J (E.19)

[}
B}
c

. . where m = i - g, if i- s, =2 0
1,7 m, ] J J
= 1i - sj-+N otherwise.

d., The Finite-Difference Approximations for Equations (C.8)

We now replace 2u/97] and 3V/3( in {C.8) by the corresponding
central difference quotients and employ the logarithmic trapezoidal rule

between r 1 and r‘j to obtain the finite-difference approximations

uj = uj_1 + Agj GEuj_l; Vj—1] + G[uj; vj]} (E,20)

and
V. .=V, -4 ,{H V.. U, Hv, _; v, ]} E.21
-1 ; EJ C 5 J] + H[ jo17 Yo ( )

Equations (E,20) and (E.21) have been deliberately arranged so as to sug-
gest that the evaluation of u is carried on in the direction of increasing

j, that of V in the direction of decreasing j.
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e. A Finite-Difference Procedure for Evaluating (D.15)

To make use of (D.16) and (D.19), we require a procedure for

evaluating expressions of the type (D.15)., Let

- ¢ _ . _ .
A= e v, = yi8), @i = 8(i98),

_ Pi6+6 BT (E.22)
AL, = X .J 3(T)e dT,
3 i$

(Note that ¥ éi' and &Ii are not vectors but components of vectors.)

Then (D,15) becomes, for T} = ibd,

_ . N-1 i-1
g o= A 1[(1N-1) Vg akar 42 akar ], (E.23)
i k=0 ko xo0 k
from which we obtain
v = ?\—l(y -+ ﬂI )
i i-1 i-177?
E.24
N -1 N1k ( )
y. = (A - 1) £ OAAI, 1< i< N-1.
Y k=0 k

To approximate Al we use the 4-point integration formula [6, p. 167

k!

q

1.
j e ryar = é% Lfan,_

| D o+ 18 )+ 18101 ) - £C0 )] (E.28)
1
where ﬂk+1 - ﬂk = 5. Application of this formula leads to
= @ o
BI; = €%y ) + C8y v €0 0+ C 0
-8 138 1364 o2
Gy ST mm Y37 %y T o (E.26)

If ¢ is regarded as an extended vector (i.e., as a vector with additional
components @_1 = QN—l’ @N = @0), (E.26) and (E.24) allow the computation
of the vector y. It will be convenient to write symbolically

y = L(B; 2] (E.27)

to indicate the operation of computing a vector y from a vector ¢ by the

procedure just outlined.
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3, The Iterative Loops

a. The Inner Iterative Loop [INTEO, INTE1l, INTEZ, WO, W1, W2,
WU, WV, RO, R1, R2, Q0, Ql, Q2, AL, ALl, MAXIT, UONE, UTWO,
VONE, VTWO, MMAX; Subroutines JLOOP, FLOOP)

For reasons to be discussed presently, we introduce two inter-

mediate variables, w* and V*; u;

is computed from (E.20) and V; from
(E.21). Let us consider the calculation of u;. At the beginning of

this calculation, the following vectors are availahble:

Gluy_ 35 v, g in INTEO

j-3’
* ;
6lul_; v, 1 in INTEL
* .
G[uj_l, vj_lj in INTE2
n* in WO
j-1
V‘j in row J = j+1 of the two dimensional array WV.
We compute the first approximation, u§l), to ug by extrapolating the

values of G[u*; vk] for k=3-3, j-2, J-1to k= j; hence
(1) * { * *
= 1 . M
ug uj_1-+A§j (R2+ )G[uj—l’ vj_l] + RlG[uj_z, Vj—zj
+ R GLu* ;v ]} (E.29)
0 j-3’ j-3 '
Here RO, Rl, and R2 are the extrapolation coefficients defined in

(B.13), with xk = rk-l for k = j+ 1, 3, j-1, j- 2. (To account for the

shifted index recall that (B.13) is appropriate for stepping from j to
j+ 1 rather than from j~ 1 to j.) Incidentally, in SPHERE, R2 has the

meaning R_+1; RO, Rl, Q0O, Ql, and Q2 have the same meaning as in (B,13).

2
1
As the components of ug ) are computed, they are stored in W2, We

next put INTE1l into INTEQ and INTEZ2 into INTEl so that we may use INTEZ2

1
for storing G[u§ ); vj]; in calculating the components of this vector,

96



we find v, from V, according to (E.19). Next we compute

3,1 J
* (1) }
2) = G ; ; E.30
u( ) uj-li'Agj{ [uj-l’ vj_lj + G[uj : v2] (E.30)
J
. i . . (m-1) .
which is stored in W1, This process may he repeated: uj is put into
w2, G[u§m_1); vJ] is computed and stored in INTE2, and ugm) is computed
from u(m) =u + AE {G[u* C v 1+ G[u(m-l)- v ]} (E.31)
j  i-1 J J-1'" "j-1 J d )
and stored in W1, In the course of computing each ugm), we also evaluate
(m) “ugm) - ugm_l)'. Under normal circumstances, the

the quantity € =
4 Y53 3 j

iteration is discontinued when

Lim

(m) 2 t

€ : E.

i < z MK {E.32)
this is condition (B.23) with Lim1 = 0. (For the determination of Limz,
see subsection F, paragraph 1b, Card 6.} The current (vector) value ugm)
. ) * (m=-1)
ig then accepted as the correct approximation to uj and G[uj ; vj] as

the correct approximation to G[u?; vj]. Finally, ug is moved from W1l to

W0, and we arrive at exactly the situation (E,28), with j replaced by

*

j+1. The entire procedure of getting from uj 1

to ug is called an inner

iterative loop.

The extrapolation of G at the beginning of an inner iterative loop
has to be modified if j = 1 or 2. The nature of the modification follows
from the discussion following equation (B.11) and does not require further

tt

comment ,

t 1Iteration is also discontinued if m - 1 > MAXIT; under this condition,
the entire program is terminated,.

t1 The vector u*, required to compute u*, is supplied by the inner boun-
dary condition {(see paragraph E.3b),.
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The subroutine JLOOP is designed to calculate the vectors uf from
ij=1to j =K by a succession of inner iterative loops. In general, we
shall go through JLOOP several times in the course of a given computation,
Let us designate the vectors Vj stored in WV at the beginning of a partic-
ular JLOCOP by Vgn] where n is the iteration number referring to the outer
iterative loop, which we shall discuss in paragraph E.3b, Similarly, the

[nJ

array WU contains the vectors u:i . In the course of JLOOP, the contents

%
of the array WV remain unchanged,; however, as each uj is computed, the

(nl

vector uj in the appropriate row of WU is replaced by

{n]

u[.n+l] = Otu; + (1- oz)uj (E.33)

N;

where @& is the relaxation factor, (In SPHERE, o = AL and 1 - « = ALl.}

If we were to use @ = 1, the introduction of the intermediate vector ug
would be unnecessary. The reason for (E,.33) is that although the outer
iterative loop fails to converge for @ = 1, it does appear to converge

for @ = 0,5; this will be discussed further in paragraph E.3c¢ below,

The computation of V can be made completely analogous to that of u,.

If we replace j by j + 1 in (E.21), introduce a new index f, and write

Vf = VJ, j=K- £, (E.34)
we obtain
~ ~ 3
= -4 . -
Ve = Ve gI<i~(f—1){H["“?f-1’ U (so1y7 MLV Uy g1 (E.35)

Again, we introduce an intermediate variable'v*. Consider the com-
putation of‘v;. At the beginning of the calculation, the following vec-

tors are available:
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N* .
INTE

H[Vf_3, uK—(f—B)J in 0
H[M* ] in INTEL

Vi Yg-qe-zy] T

* ] in INTE2
H[vf—l’ Ygo(e-1yl *?
'§¥“1 in WO
uK £ in row Jd = §+1 = K- f+1 of the two-dimensional

array WU,

An inner iterative loop then allows us to compute’V;. The extrapolation

coefficients RO, R and Rz are again obtained from (B,13), with xk

l)

rK (k-1) for k = f+1, £, £-1, £-2; and j is replaced by f in the con

vergence test (E,32).

The subroutine FLOOP calculates the vectors’V¥ from f =1 to £ = K.
FLOOP follows JLOOP, and hence, at the beginning of FLOOP, the array WU
contains the vectors ugn+lj whereas WV still contains V;n]. As the com-
putation of eachlvi is completed, the vector V&ng in WV is replaced by

[n+l] ok [n]
= - 5
VK—f an + (1 )VK_f , (E.37)

exactly as in JLOOP except for the order in which replacement occurs,

For simplicity of exposition, it has been convenient to treat the
two-dimensional arrays WU and WV as though they were directly accessible
during the course of computaticon., In earlier versions of SPHERE, WU and
WV were, in fact, stored in core; however, with a 32K core, this put an
unrealistically low limit on the number of net-points that could he used
in the computation. In the present version of SPHERE, this limitation
has been overcome by Lhe use of four binary tapes (or disk segments),

addressed as logical units UONE, VONE, UTWO, VIWO. In JLOOP, u[nj a

V[nl

nd

are read from UONE and VONE into the actual core arrays WU and WV,
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(nl

as u[n+1] nd V are written on UTWO and

is calculated, both u[n+1:| a

VIWO. Each of the arrays WU and WV contains 2 MMAX vectors; the compu-
tation is interrupted only for the transfer of blocks of MMAX vectors
to or from tape buffers, and the comparatively slow transfer from tape
buffer to tape or vice versa takes place while computation involving

the other blocks is in progress. in FLOOP, the roles of the logical

{nJ

utm‘l:| and V are read from UTWQ and VTWO,

units are interchanged:

u[n+1] and V[n+1]

and are read out onto UONE and VONE.

b. The Outer Iterative Loop [SOMANY, MKU, MEV)

The subroutines JLOOP and FLOOP are connected by the boundary

conditions to form the outer iterative loop. Suppose that we have just

finished FLOOP; then the arrays WU and WV contain the vectors ugn] and
vgn]. We now apply the boundary conditions (D.17) or (D,18) to obtain

the vector ug with which to start a new JLOOP. By (E.18), Sj = 0; hence

Viog= Vi o Let ug denote by'E the vector stored in the array SINE (see
’ 1

paragraph E,la and eguation (E.3)). Then we have either

uf = vgnj +Q (E.38)
or * [a] 772/(v-1)
u + Vv
u; - vgn] +Ql1 + —0——2—9—— (E.39)

Equation (E,38) yields ua explicitly; if the prescribed boundary condi-

tion is (E,39}, we calculate u; by the iterative procedure described in

connection with (D.18). Having computed u*, we calculate G[u*- v[n]J

0 o’ 0
u[n+1] * [n]

=aou. + (1~ o)u

and ug 0 0

and are then ready to go through JLOOP,

After completing JLOOP, we take the vector U

ufn+1]
K

£n+1] {obtained from

by (E.19)) and calculate V; according to the scheme of paragraph
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E.2e; i.e.,

Vi = L [an)'l; U&n+l]} (E.40)

in the notation of (E.27). This corresponds to the application of the

boundary condition (D.16}. We then calculate H [V; ; U£n+1]J and

% n]

V£n+1] + (1- a)VK and are ready to go through FLOOP.

= QVK

We require a convergence test to determine when to discontinue the
outer iterative loop during normal operation of the program.T Ideally,
we should base our test on the two quantities

VEn_1] IE

max H u (E.41)

(n] _ {n-1] [n]
3 = uj Hl m?x H VJ =

however, because of the nature of JLOOP and FLOQOP, these quantities are

not likely to differ significantly (if at all) from

MKU. = (E.42)

1 MKV, =

(n] _ [n-1]
R N .

Ilvgn] _ Vgn—l] H-

In SPHERE, these two expressions are computed, respectively, at the end
of JLOOP and FLOOP, The outer iterative loop is discontinued if, after
at least two iterations, both (MKUI)/Q and (MKVl)/a are less than Limz.
The reason for the factor a_l is the following: From (E.33) and (E.37)

we have

[n-1]) (n-1])
a1 Uy

MKU = OKU)) /o =[1u;-u MRV = (MKV )/ =I|v3— v

(E.43)
and these are more appropriate measures of how close we have come to the
exact solution of the system of finite-difference equations than are the

expressions (E,42).

T The outer iterative loop iz also discontinued if the number of itera-
tions exceeds the preset number SOMANY; under this condition, the
entire program is terminated.
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¢. The Relaxation Factor

The nature of the outer iterative loop and the role of the re-
laxation factor o can best be understood by first considering the corres-
ponding linear case., Neglecting second-order terms in (E.11), we héve
simply Glu; v] = v; Hlu: vl = U, (E.44)
Because G is independent of u, and H is independent of V, equations (E.20)

and (E.Z21) yield uj and Vj— explicitly:

1
u, =u, _ + A Lv. _ + v ],
J j-1 gJ j-1 J

v, =v, b8, [(u.+u. _].
J-1 J gJ—l J Jj-1

(E.45)

It is now convenient to introduce some matrix notation., First, we
note that the vector Vj is obtained from Vj by multiplying Vj by a per-
mutation matrix Pj (a permutation matrix has one element equal to ohe in
every row and column, and zeros elsewhere), and UJ is obtained from u‘j
by multiplication by the inverse of P :

-1

J
V. P.V.,, U, =P, u,. (E.48)
J NN J J 3

(For present purposes, we shall regard vectors as column vectors and use
the convention that whenever a matrix appears in front of a vector, matrix

multiplication is implied.) We may then write for (E.44)

u, = u + AE PV + AE PV,
J 3

J J-1 Jj~1 j-1 J
1 -1 (E.47)
V., .=V, -AE P u, - A P _u,
j-1 J J-1"3 73 gJ"l 3-1"3-1’
angd repeated application of (E.47) leads to
j=1
= P 2
uj u, + Agl 0V0 + kEl Angka + AngjVJ,
E.48
a2 -1 Kil . -1 i ( )
V.=V, -~ P u, - 2 A P u - AE P "u_.
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. -1
We may now express VK in terms of UK = PK uy analogously to (E.40); since

the operation on the vector y symbolized by L[B; y] is linear, it may be

represented as a matrix which, for B = (2R)_l, we denote by LB' Hence

v -Lpt

K B K 'k’ (E.49)

and similarly, from the linear boundary condition (D.17) at j = O

~

=V
uO o + Q (E.50)
where'a is the vector defined in connection with (E.38). Inserting these

expressions into (E.48) and remembering that PO = I, the N X N identity

matrix, we find, after slight rearrangement,

=1 ~
= o
U, (1 + A§1)IVO + 2 (2A§kpk)vk + Agjpjvj + Q,
-1 K-1 -1 . (E.51)
Vv, == P u. + Z (-2AE P. Ju, + (I + L._.P_u,_.
J b I A | k=j+1 k-1 k k B K K
If we define matrices A, and B, for 0 = j £ K by
Jik J.k
Aj,O = (1 + A§1)I
= 2AE P 0< k < j
Aj R J
A, = AP
J,d J J
AL =0, j< k<K
Js (E.52
= 0= Kk <
Bix - O )
B, .= -Af P.'
J.J JJ
-1
= - 2k <
BJ,k 2A§k-lpk , i< K
— -1
Bj,K = I + LBPK s
we may write (E.51) in the form
K s
u, = 2 A, +
J k=0 J,kk %
K (E.53)
V. = & B u



Equations (E.53) are a system of 2K + 2 equations for the 2K + 2
vectors u. and V., for 0 £ j < K. We may put this system into the form
J

of the two matrix equations

= AV + Q

_ BB (E.54)

== N I =N

where u, V, and Q are vectors of N(K+1) components, and A and B are

N(K+1) X N(X+1) matrices. The vectors u and Q have the forms

(uo)0 sg)o
(uo)l (Q)1
i (uO)N_l i (Q)N_1
u = (u), , Q = (E)O , (E.55)
(ul)1 (Q)l
() (@
K'N-1 N-1
_ _ _ i

and V is defined analogous to u., (We have written (u)); for the i™ con-
ponent of the N~dimensional vector uj to avoid confusion with our earlier

usage, ui 3 which is appropriate to row vectors.) The matrices A and B
H

2
have a natural partition into (K+1) N X N submatrices, A,

and B,
J,k s

3k’
as defined in (E.52). With respect to this partition, A is block-lower

diagenal and B is block-upper diagonal.

From these definitions it follows that if V is the particular vec-

=[(n-1] (n-1]

tor V , the operation AV + Q produces just the vector a* whose
N(K+1) components consist of the components of all the vectors ug gener-
ated by the application of the boundary condition at j = 0 followed by
the subroutine JLOOP, Thus, by (E.33),
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-Ln) -[n-1]

u = al(AV )ﬁEn_l].

+ Q) + (1- o (E.56)

Similarly, the application of the outer boundary condition, followed by

FLOOP, is equivalent to

-[n] _Ln] . =[n-1]

v = UzBu (1- GZ)V (E.57)

In SPHERE, the two relaxation factors & and az are taken to be equal;

however, a trivial modification of the program would permit the use of

the more general relaxation scheme that we are considering at the moment,

In order to study the convergence of the iterative method defined

by (E.56) and (E.57), we add to these equations the two equations obtained

by substituting n~1 for n; we may then eliminate ?[n], ?En_l], and G[n~2]

to obtain

a[n.] ]a[n—IJ

= %4 - - T
[102£+ (2 o o:z)I

_[n_zj -
- - & -
Q1 1)(1 Gz)u + @9 (E.58)
where I is the (K+1)N % (K+1)N identity matrix and

£ = AB, (E.59)

We first note, provided al £ 0 and az # 0, that (E.59) may be re-
garded as a scheme for solving the equation

q= [a1a2£+ (2-u —-otz):{]ﬁ - (1- ozl)(l-afz)ﬁ + o o.Q (E.60)

1

and that this equation is equivalent to

the equation obtained from (E.54) by the elimination of V. We have thus
verified that if (E.58) converges, it converges to the correct solution,

(This point is, in fact, rather obvious if we go back to the system of

equations (E.56) and (E.57).)
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If we let al = @y = 1, we obtain the simplest scheme for solving

(E.61), viz,., _ _ _
sl _ pgle-td g (E.62)

_Ln]
It is well known [12, Chap. 2] that the sequence {ui } converges
s ~-L0] | .
for every initial vector u if and only if

Py < 1; (E.63)

here P(£) is the spectral radius of £, defined by

P = max Ihi' , {E.64)

1

where the ki are the eigenvalues of &£,

Let us now define the matrix

Zy=ad + (1- I , (E.65)
If we set o = and a, = 1, (E.58) becomes
lnd £a,a[“"1] +Q ; (E.66)
this scheme converges if and only if
PEEY < 1, (E.67)

i,e., if and only if the eigenvalues of ia lie in the open unit disk in
the complex plane. It is easily shown that this is equivalent to the re-
quirement that the eigenvalues of £ lie inside the circle whose equation
{in the complex z-plane) is

| oz + 1 - o | =1, (E.68)
i,e.,, the circle of radius a~1 and center 1 - 071. Let us call the in-
terior of this circle Ra; it is evident that o < p implies R, = Rﬁ’ and
that if S is any bounded, closed set in the half-plane Re z< 1, there is
a value of @ such that S C RQ, for ¢ < @. Hence, if the eigenvalues of

Z all lie in the half-plane Re z < 1, we can choose an & such that the

scheme (E.58), or equivalently, the scheme consisting of (E.56) and (E.57)
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converges. The scheme (E.66) is thus far more powerful than the scheme
(E.62); in fact, as we shall establish in great generality in Section VI,
there is an intimate connection between pairs of iterative methods such
as (E.62) and (E.58) on the one hand, and various concepts of classical
summability theory on the other hand., In the terminology of Varga [12,
Chap. 5] the method (E.58) is called semi-iterative with respect to the

iterative method (E.62).

As mentioned earlier, the method actually employed in SPHERE corres-

ponds to setting o, = a, = « in (E.58); t.e.,

1 2
a[n] [n-1] a)za[n-:z] . o%a

= [a2£ + 2(1-)Iu (1 o Q. (E.69)

In subsection E of Section VI we shall show how to find the boundary of
the region in which the eigenvalues of & must lie if a scheme of this
type is to converge, Application of that discussion to (E.69) shows
that the equation of the bhoundary is given parametrically hy

eiv = [azz + 2(1-—6!)]ei9 - (1- a)z; (E.7Q)

2
2-20 + o , 2-2 . 2-o
Z = —————— 0S8 U - + i
2 2
o o

sin 9, (E.71)

For 0 < w < 2, this equation represents an ellipse whose major axis is

the line segment [—(20—1— 1)2, 1) and whose minor axis is the line seg-

ment [2a—2~ 2a"l— 1(2&-1- 1), Zﬂ—z-2&_1+-i(2&‘1— 1)]. If we designate
the interior of this ellipse by R;, then we have again that o < P implies
R; :)R;. However, unlike the circles R, connected with the method (E.66),
the ellipses R; do not £fi1l the half-plane Re z < 1, By writing z =x+ iy
and taking the real and imaginary parts of (E,71}), and then letting « — O
for fixed x < 1, we can show that the R; cover the infinite region bounded

2
by the parabola y = 4(1- x) and containing the real axis from -= to +1.
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I1f some precise information about the location of the eigenvalues
of £ is available (e.g., if it is known that all the eigenvalues are real
and lie in the closed interval [a,b], b <« 1), there are various standard
gemi-iterative methods designed to maximize the rate of convergence [5,
Chap. 9; 12, Chap, 5], Over the range of cases investigated so far, the
method incorporated in SPHERE, (E.69), seems to converge quite well with
a value o = 0.5 determined by numerical experimentation, There is little
doubt that the rate of convergence could be significantly improved with

further analysis and numerical experimentation,

The analysis given so far in this subparagraph refers to the conver-
gence of the outer iterative loop under the assumption that the relations
(E,44) are valid. In any actual computation with SPHERE, this condition
can be approached arbitrarily closely by prescribing a sufficiently small
amplitude for the function Q(T) (see (E.1)). The value &« = 0.5 was chosen
on the basis of computations with Q{T) = A sin (2NT/T), and values of A
ranging between 0.001 and 0.1, It appears therefore that the failure of
the "simple-minded" scheme (& = 1) is connected with the linear part of

the problem, i,e., with the location of the eigenvalues of the matrix £,

4, Output Calculations

a., The Evaluation of Fourier Coefficients

Suppose f(7]) is continuous and of period T, with Fourier coeffi-

cients

©
1]

T
1
0 "',I“j‘o f('ﬂ) dn 1

w
1i

Efo() (
- T Jo M) cos wmﬂ) dan , (E.72)

T
2
m =T fo (M) sin (mmn) an

o
i
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where wm = 2Mm/T, (E.73)
Suppose next that (1) is known only at the points

N, = i6, 6=T/N, 1=0,1, ..., N-1; (E.74)
how should we evaluate the integrals in (E.72)? It is known [9, p. 375]
that if the trapezoidal rule is applied directly, the resulting finite

Fourier series M M

z
a, + 21 a  cos wmﬂ + mEl bm sin wmn (E.75)

gives, for M < N/2, the best mean-square approximation to the function
f(ﬂi) whose domain consists of the N points ﬂi. The appropriate expresg-

sions for the coefficients are, in this case,

& Nél
a. = = y.
0 Ti-0"1
26 N-1 {m)
am = -',i;-' iz yi Ci (E.76)
N-1
b = 28 Ty S(m)
m T j071 71
where we have set
- (m) _ (m) _ .
v, = f(ﬂi), Ci E cos wﬁni’ Si = gin mﬁﬂi. (E.7T)

On the other hand, for the purposes of SPHERE, we wish to evaluate
the Fourier coefficients in such a way that the resulting finite Fourier
series is the best mean-square approximation to the function (7)) whose
domain is the interval [O,T]. One way to do this is to approximate (1))
between ni-l and “i by a polynomial for each i, and then calculate the

integrals exactly,

t Because of the periodicity of f, we regard points congruent modulo T
as identical.
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The simplest fit is by a set of constants:

1
M =5 b, + ¥, Moy <M<y (E.78)
Then T
J i £(T) cos @ T dfj = 5%; (S§M)..S§Ti)(yi_1 + yi); {(E.79)

i-1

summing from i = 1 to i = N and making use of the periodicitly condition

at the end-points, we find

T N-1
1 (m) (m)
f = -
j (M) cos wmn dn 5 .E (Si+1 Si—l) Vi (E.80)
0 m 1i=0
Now by elementary trigonometry,
Sip1 7 8y = %6 sin s, (E.81)
so that we have sin w & No1
m- 26 2 (m)
T THE T 5 Vil (E.82)
m i=0
and similarly
sin w § N-1
m- 28 (m)
P = & T Zo YiS1 (E.83)

the expression for a_ is identical with that in (E.76). Thus, we see that

0
the only difference between (E.82) and (E.83) on the one hand, and (E.76)
on the other hand, is the factor
gin w_ &

m

1 2
wmé = 1 - 3 (wmﬁ) . (E.84)

Next, we fit f(7)) by a set of linear polynomials;

yi- ¥.

-1
£ =y, (-0, N, <N<T,. (E.85)

The same kind of analysis, though somewhat tedious, then leads to the

expressions
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5 N-1
8 = T iEO Yir
D s 1 - cos (w,5) 26 N-1 c(m)
m - 2 T jZ¢ Y171 (E.86)
(w,&) i=0
1~ 5 -

b g o 0% Sm®) 26 N y. st
m w 6)2 T iZ0 *i°1i -

m

These are the formulas actually used in SPHERE. The correction factor

1 - cos (w_6§)
2 =1 - (w ) (E.87)
(wmé)

will generally not differ much from unity, We have

2 2
1 2 T m
15 (wmé) =?(ﬁ) ; (E.88)
with N = 100, this expression is less than 0.01 for the first five har-

monics (m £ 5),

b. The Flow Variables

The principal output of SPHERE is the set of leading Fourier
coefficients of rE, ra, and B at selected values of the distance r; we
recall that ﬁ, E, and 6 are, respectively, the reduced acoustic pressure,
the reduced velocity, and the reduced mass flow, Output of the functional
values themselves is optional. The flow variables are calculated in (1], r)

coordinates by means of (C.13), with

_ u[n]

i,

-
vy = gon (E.89)

ullyory) 1,

where n is the final iteration number of the ocuter iterative loop, ni is

V[n] is

defined in (E.74), and rj is one of the selected values of r. i3
’

- =

obtained from VFn4 according to (E,19). With an obvious notation, we
)
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write 5 ., d. ., and E, . for the values of the expressions (C.13) when
i,] 1,1] 1,]

u and v are replaced by u@“l and vgng. The Fourier coefficients are then
1,] 3

q

i =r.p rq. ., or 8, ., as required,
calculated from (E.86), with ' rjpi,j’ jqi,J’ L q
The program actually prints out the amplitude and phase of the complex

Fourier coefficient a + ibm, i,e.,

-1
(az + b2 )1/2 and tan (b /a ). (E.90)
™ m m o m
For each flow variable, the Fourier amplitudes are normalized so that the
2 231/2 .
amplitude of the fundamental, (al + bl ) / , at r = 1 is unity; phases

are given in units of w/2.

5, General Plan of SPHERE [FC, FS; subroutines INIT, MAINZ]

SPHERE consists of the main program and four subroutines: INIT,
JLOOP, FLOOP, and MAINZ, After reading the data cards, the program calls
INIT. The function of this subroutine is to calculate those variables
and arrays that will remain unchanged during the entire run; typical
arrays that are filled in INIT are those mentioned in paragraph E.(1b,
and the arrays FC and FS which contain the sines and cosines required by
(E.1) and (E.86). PFinally, INIT calculates the acoustic approximation
to u and V and stores it on logical units UONE and VONE. The program
then goes through the cuter iterative loop until the convergence cri-
terion is satisfied, The sequence is: MAIN (Inner Boundary Condition)
...JLOOP, ., .MAIN (Outer Boundary Condition)...FLOOP,..MAIN (Inner Boun-
dary Condition)... . At the conclusion of each outer iteration, a line
is printed with information relevant to the convergence of the calcula-
tion. After completion of the outer iterative loop, the program calls

MAINZ, which performs the output calculaticns described in paragraph E,4,
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and prints the results., Finally, MAINZ2 carries out the preliminaries
for going to the next case, as described in paragraph E.lc; the initial
approximation to u and V for the next case is stored on UONE and VONE.

A new heading is printed, and the program once again goes into the outer
iterative loop, with a new function Q(T} in the inner boundary condition,
This sequence continues until it is terminated according to either of

the criteria described in paragraph E.lc, or for exceeding the limit on

the permissible number of iterations in one of the iterative loops.

We supplement this description with a complete listing of SPHERE,
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LISTING OF *‘SPHERE"

$IBFTC MAIN NODECK

OO0

COMMON /TEMPAL/ OPTVELOPTMAV»OPTPRE

COMMON AsAC,ACC AT +AL ALLIrAMPYAMPFAC, AMPS AVIT»BrCoCASNUMICCLCC20
1CC3rCCUsCIICOeCLIC2HC31C4rCEeDsDCCOMPDEDER»DERLyDMAX ¢ DUMYEEL+EE2
L1EPSIELIE2+FsFCrFMIFSeG0rGLeG2+GIrHMAX ) HOPHL s H2 ¢ HA+ T2 IC IFQUR» INC»
LINDC+ INSs INTEQ» INTELrINTE2»ITHR  ITUrITVeJrKeKArKKeKOrKL e K29 K3 Kok
LeLIMiLIMAPLIM2rLL rLOGYeLZeMeMAV i MAXTIT o MF s MKU e MKV ¢ MMAX » MR ¢ MS o MU » MUA
LeMVeMVA P M2 e N NOINFCINOITeNUrNL i PePCrPHAPPI e PMAX PRyPRINTT+PO» Qe Q0
1G1rG2rRrRJIIRO+RIPR2¢STI+SINErSI1eSOMANY»S0rS1¢52rS39SU1S5+1S6157 958y
ITrUONE rUTWO s VONE r VTWO e Wer WU e WV e WO rW1leW2eXe XIvZr 21022

REAL DCCOMP{21)

10 REAL AJACC AI»ALrALLI¢KKs BeClrC2¢C3sC4sCRyDESDFRP»DERLEPSELE2Y
CeOrGLleG2+GIsHOIHL Y H2 HIPLIMALLIMLIMZ2 )y MKU MKV MUMYM2,00,Q1,
CG2rROWRIIR2IS11S2:53¢S4rS55¢S56r5TvSE8vTrWO(101YrW1(101)
Cw2l3102)¢SINECLIOL) fLOGY(H02) e X (401} e FC({112101)FS(110101)
CINTECG(LOLY s INTEL(101) »INTE2(101}»WUCL019v36) e WV(LI01+36)

CPR{ 601011 2AMP(21)+PHAC(Z21)+PIsPOeDrSOrC0«¢CIeSILsSIWEELFEE2
CCCLiCC2¢CCIAICCUIMUAPMVAPAMPS(21)+W({ 6¢101)+AMPFACI(3)

B0 INTEGER CrFeFMeleICoITUITVrJrKoKOrKIrK2el sLZeMAXITHNeNOIT+NLP
CPCrQ@rRIISOMANY # Zo 21 e Z2 v K3 e KU e XI(HOL) v R(GOL) P AVITrNUPKA
CsDUMr PMAX» DMAX» HMAXsPRINTT/UONE:VONErUTWO+VTWO

100 MAX N IS 100+K IS 40C» FM IS 20, FOR LARGER N:K:QR FM» THE
110 DIMENSIONS MUST BE CHANGED
120 aLL ARRAY SUBSCRIPTS HAVE BEEN INCREMENTED BY ONE SINCE THERE IS
130 NO ZEROTH ELEMENT IN FORTRAN
INTEGER OPTMAV+OPTVEL +OPTPRE»OPTFOU OPTROY
INTEGER CASNUM
INTEGER CASECO
REAL MAV{6,101)
REAL INS{10)+»INC(10)+INDC
150 FORMAT (2SHOPERIODIC SPHERICAL WAVES//3H ASF8.5,10X¢5H ACC=F9.6:
Cl0X»7H ALPHAZ FT.4+10%»3H T=F12.87 3H K= T4e20Xs4H KO= Ti4»
C20Xr4H KL= I4,20Xs4H K2= T4/ 3H Nz I4//22H QUTER BOUNDARY AT X
C= Flo.6 )
9010 FORMAT(1L1HOINPUT DATA //8H OPTBDY= I2+20X»9H OPTVEL = I2,20X,
CaH OPTPRE = I2+20%»9H OPTMAV = I2 // eH AVIT= I5:10X%:
CiaH FM=  I510%Xr7H MAXIT=y ISe10Xr8H NOINFC= ISs10X»8H SOMANY=
CISr10Xe3H P= ISe// 4H AI= F10.5r 4H AL= F10.5r 6H LIMAZ
CF10.95 /7/76H MMAX= 15)
8014 FORMAT (1HO.10X»I6:91I12)
195 FORMAT (5F15.8/)
9001 FORMAT(41I5)
9002 FORMAT(&15]}
9003 FORMAT(6 I10)
9004 FORMAT(6F10.5)
900% FORMAT (IS5}
9006 FORMAT (26H1PRINTOUT WILL OCCUR EVERY:ISe7TH CYCLES)
9007 FORMAT (/////76HOUQNE=¢15/6H VONE=:IS/6H UTWO=»IS5/6H VIWOZIS/1HL//
Crl7/7777)
192 FORMAT{44H FOURIER COMPONENTS OF THE MASS FLOW (AMPLIT
CS2HUDE RELATIVE TO FUNDAMENTAL AT X=1.PHASE IN UNITS OF.
Ci12H 90 DEGREES))
800% FORMAT(B3HOFOURIER COMPONENTS QF VELOCITY PRESCRIBED AT INNER BOUN
COARYweu )
8015 FORMAT (1HQg»5H SINE +5Xe1QEL2.5)
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8016 FORMAT (8HO COSINE+3Xs,10E12.5)
8017 FORMAT {4HQ DC TX»E12.547/)
8010 FORMATI(A4HOFOURIER COMPONENTS OF MASS FLOW PRESCRIBED AT INNER ROQOU
CNOARY.ee )
151 FORMAT (7HU CASE= 13//)
270 FORMAT{S2HITERATION ITU MU MKU ITV MV ¢
CigH MKVY)
299 FORMAT (1H1)
320 FORMAT(2X»I3p5X02(It4r1Xe2E13.58))
10320 00 350 1 =1.10
INS(I} = 0.
350 INCCIY = 0.
READ (5¢9005) PRINTT
WRITE (6:9006) PRINTT
READ (509001) UONE+VONE»UTWOrVTHWC
WRITE (60,9007} UONEVONE+UTWO»VTWO
REWIND UONE
REWIND VONE
REWIND UTWO
REWIND VTWO
ITHR=zUONE +VONE
IFOUR =UTWO+VTWO
READ (50,9001} QPTBOY CPTVEL OPTPRE+OPTMAV
READ (5%:9002) AVITy FMr MAXITr MMAXs NOINFCr SOMANY
C MMAX MUST BE LESS THAN Krs2 +1 AND EVEN
READ (599003) KsKOrK1yKZ2:NeP
READ (%s9004) ACCy» ATIr AL» INDCe LIMAr T
READ (5,195} (INC(IYeI=1eNOINFC) e {INS(I)»IS1eNOINFC)
READ (5,9001}) CASECO
WRITE (6+9010) OPTBOY, OPTVEL» OPTPREs OPTMAVs AVITe FM, MAXIT, NOINF
CINFCr SOMANYe Pe Alr AlLe LIMA» MMAX
0O 34l I =10101
800% wllI) = 0.0
3ul SINE(I) =0,
1CASE = 1
9340 CALL INIT
1330 IF(L = SOMANY) 1331.1331.4200
1331 HMAX = PMAX
MS = PMAX
MF = DMAX
1326 BACKSPACE UONE
IF(OPTBDY)} 4200,1340,1352
1340 00 1350 1I=1.N1
1350 wWifI) = SINE(I) + WV{IM)
IF (CASNUM.,NE.ICASE) GO TO 1351
ICASEZ=ICASE+1
WRITE (6+,8005)
WRITE (6+8014) ( T »Iz1eNOINFC)
WRITE (6,8015) (INS(I)e I = 1r NOINFC)
WRITE (6+8016) (INC{I)r I = 1+ NOINFC)
WRITE (66,8017} INDC
WRITE (6+151) CASNUM
WRITE (6:270)
1351 GO TO 1360
1352 DO 1359 I =1.Ni
IC=¢0
1353 S2 = wi(]1)
WIC(I) = SINE(IV/(1« + o5 % (W1{I) + WV{IrM)))IeeS4+WVI{IrM)
IF (ABS{W1(1) =« S2).LE.A * ACC *,02) 60 TO 1359
IC = IC + 1
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11359
9696

1359

5%0
1360
136l
1370
1380
1390
1400
14310
1420
1430
1440
1450
1460

1332
1333
1334
1335
1336
1337

1470
1u80
1484
1486
2215
2216
2217
2218
2220
2230
2240
2250
2251
2252
2260

IF(IC.6T.15) GO TO 11359

GO TO 1353

WRITE(6s 9896) IC

FORMAT(1HD 1%)

60 TO 4200

CONTINUE

IF (CASNUM.NE.ICASE) 60 TO 13s&0
ICASE=ZICASE+1

WRITE (56,8010}

WRITE (6¢8014) ( I ¢IZ1sNOINFC)

WRITE (6:8015) (INS{I)s I = 1+ NOINFC)
WRITE (6+8016) (INC(I)e I = 1» NOINFC)
WRITE (6:8017) INDC

WRITE (6:151) CASNUM

WRITE (6¢270)

DO 1361 I=2+N

W2({I) = Wi(l=1)

w2(1) =wW2(N}

W2IN+11= W2(2)

DO 1460 I=1sN1

52 = wW2(I+1)

S3I = WV(IeM)

54 = (W2(1+42) ~W2(I))*DER

S5 = 52 - 83

56 = 55 + §5 + 52

INTELLI) =((Su+52452)#56=(S2+S3)#S5+53+453)/(56+1.0)

WUCI/M) = WUCTI M} x ALL + W1(I) *= AL
IF(MJsEQ.1) GO TO 1470

QUM = M = 1

DO 1336 MR =1.DUM

DO 1336 I =1/N1

WU{I'MR) = 0.0

WVII/MR) = 0.0

IF (MJNE.MMAX]) GO TO 1470

BACKSPACE VONE

MS = 1

MF = MMAX

WRITE (VTWO)} ((WV(IrMR)+IZ1eN1)  MR=MS,MF}
WRITE(UTWO) ((WULI/ MR}, I=1+/N1}eMRSMSMF)
READ(VONE) ((WVIIsMR) I = 1»N1)+MR=MS,MF)
READ (UONE) ({WU(IeMR) eI = 1+N1)eMR=MS,MF)
HMAX = DMAX +1

8ACKSPACE UONE

BACKSPACE VONE

BACKSPACE UONE

G3 = 1.0

LIM 0.0

L= 0

CALL JLOOP

RJ = R(K}

LIM = 0.0

LLSITHR=LL

BACKSPACE LL

63 =X(K)

G = NeRJ

Hl = WU{Q=1,M)

IF (a=N) 2251, 2260, 2260

H2 = WU{QrM)

G0 TO 2269

H2 = WU(l:M)
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2269 NU = 2 = RJ

2270 IF (G+1-N) 2271, 2280, 2280

2271 H3 = WU(Q+1,M)

2272 60 TO 2290

2280 H3 = WUINUsM)

2290 S1 = E1

2300 53 =0.0

2310 00 2390 I=1,N1

2320 S1 = 51=*E2

2330 HO =H1

2340 H1 =H2

2350 HZ2 =H3

2360 NU = MOD(@+I«N1)

2370 H3 = WU{NU +1¢M)

2380 S2=(Cl«HO +C2*HI+C3*H2 +Cu*H3)*S1

2381 INTEL(I) = &2

2390 53 = S3+52

2400 51= Si#*E2

2410 wl(1)==C5%53/(1.0 =-51)

2420 S51=1.0

2430 DO 2450 I=1rN1

2440 S1=S1*E1

2450 wWl(I+1)=wW1(I)*E1l +INTEL(I)*51*C5S

2460 00 2461 I=2N

2461 w2(I} = wl(I-1)

2462 w2(l) = W2(N)

2463 W2(N+1) =wWz2(2)

2470 DO 2560 I=1/N1

2480 S2=wW2(I+1)

2490 IF (I=-1-RJ) 2491r 2493, 2493

2491 NU = Q+I-1

2492 GO YO 2500

2493 NU = I=RJ

2500 53 = WU(INU'M)

2510 S4={wW2(I+2)=-w2(1))*DER1

2520 S5= 52-53

2530 S6= S5+55+52

2540 S7= G3+63

2550 INTEL(I)={(-54+52452)%S6-(52+53)*55457%53)/(56+63)

2560 WVIIrM) = WV(IoM} * ALL + W1{I) * AL
BACKSPACE VTwO

2561 LL = 0

2562 IF(M.NE.DMAX) GO TO 2567

2563 HMAX = MMAX

2564 MF = DMAX

2565 MS = PMAX

2566 GO TO 2569

2567 HMAX = 0

MF = MMAX
2568 MS =
2569 KA = K-1

CALL FLOOP

3291 LLZIFOUR =LL

3292 BACKSPACE LL

3297 L=z=L+1

3298 MUA = MKU/AL

3299 MVA = MKV/AL

3300 WRITE (63200 L¢ITUIMUMUA P ITVe MV MVA
3310 IF (MKU-MKV) 3320,3320,3340

3320 S51=MKV
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3330
3340
3350
3360
3370
3380
3350
3391
3392
3400
3kl
3420
3430

G0 TO 3350
S51=MKU

S1 =S1/AL

S4 = ITU +ITV
ITU =0

MU =0.0
MKU=0.0

MKV=G.0

IF (LeEG.1+0ReS14GT.LIM2)
CALL MAINZ

4160 WRITE (6,299)

4168 J = K=-1

M = CUM +1

NU = FM = 1

WRITE (6+r150) Ar ACCH
CASNUM = CASNUM + 1

IF (CASNUMGT.CASECO)
GO TO 1330

CONTINUE

RETURN

END

4169

GO
4190
4200

SUBROUTINE MAINZ

AL+

GO TO 1330

Te Jr KOr Kle K2» Nir X(K}

TO 10320

COMMON /TEMPAL/ OPTVEL»OPTMAV:OPTPRE

COMMON ArACPACCrATIPAL-ALLY
1CC3sCCUPCIoCOICLIC2rCTeCly

AMPr AMPFAC r AMPS»AVIT By CoeCASNUMSCC1+CC2y
C5'D'DCCOMPDE+DERYDER1»DMAX + NUMYEEL+EE2

1y EPSIELPE2eFoFCeFMIFSeG0+GLrG2+G3rHMAX s HOPHLrH2eH3 2+ 12 IC IFOUR Y INC
LINDCe INS» INTEQr INTELrINTE2  ITHR  ITUrITVrJrKe KA KK e KO oK1 oK2e K3 rKbGsL
LeLIMeLIMAPLIM2 o LL v LOGYLZrMeMAVIMAXIT e MF ¢ MKU» MKV MMAX r MR MS» MU MUA
LoMVeMYAPMZ2 e NeNOINFCoNOIToNUrNLrPePC+PHAPPT e PMAXsPRPRINTT PO GeQ0
131rQ2+'ReRJ+ROFRIIRZ»SIVSINE»SILrSOMANY»S0rSLrS2r531S4r55956¢570580
1T+UONE rUTWO r VONE+ VTWO s W o WU WV e WD e W1 eW2 ¥ Xe XTI 2021022

REAL DCCOMP (21}
10 REAL A»ACC,ALIrALsALLIKKY

BeCLreC2+C3CyrCSyDEYDERYDERLEPSeELrER,

CGOeG1r G263 HOPHL yH2 rHI P LIMASLIMyLIM2y MKUs MKV MU, MV IM2,Q00,Q1,
CA2rROPRIFR2rS1rS20S3rSUHrS5eSH6¢5T¢SBeTyWO(101) e wW1(101),
Cw2(102)»SINE{101)LOGY (402 e X{H0L) rFC(11v101)sFS{21r101})s
CINTEG(IOQ1) +INTEL(L101}+ INTE2(101) »WUC101r36)+WVI{101+36)
CPR{ 6+s10L)AMP(21) rPHA(2L)»PIePO¢DrSOeC0eCIeSILeSI+EELIEER,
CCCIvCC2oCC3rCCUYPMUAFMVAPAMPS(21)¢W( 6¢101) r AMPFAC(3)

80 INTEGER CeFeFMrIoICsITU»ITVeJeKoKOrKLisK2¢eLLZrMAXITeNINOITeNL Py
CPCr@eRJIPSOMANY v Z¢Z10Z2 K30 KU XI(HOL) »R(U01) s AVITINUIKA

CrDUM» PMAX:s DMAX,

HMAX ¢ PRINTT ¢ UONE » VONE » UTWO» VTWO

INTEGER OPTMAV»OPTVEL »QPTPRE+OPTFOUOPTBDY

INTEGER CASNUM
INTEGER CASECO
REAL MAV{6¢101)}
REAL INS{10)+INC(10}+INDC

190 FORMAT{///52HFOURIER COMPONENTS QF THE ACCQUSTIC PRESSURE (AMPLIT,
CS52HUDE RELATIVE 70 FUNDAMENTAL AT X=1,PHASE IN UNITS OF,

Cl2H 90 DEGREES))

192 FORMAT(44H FOURIER COMPONENTS OF THE MASS FLOW (AMPLIT
C52HUDE RELATIVE TO FUNDAMENTAL AT X=1.PHASE IN UNITS OF,

Ci2H 90 DEGREES))
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8002 FORMAT{13HOMASS FLOWess )

220 FORMAT(7H ORDER)

230 FORMAT{(SH (A} s12,9%Xs6(FB.5r8%X)}

240 FORMAT(SH (P)rI2+9Xr&(F8+528%X))

250 FORMAT(53H ACCOUSTIC PRESSURE(IN UNITS OF AMBIENT PRESSURE} * X)

260 FORMAT(45H VELOCITY{IN UNITS OF AMBIENT SOUNDSPEED) * X)

290 FORMAT(/TH X=¢e9Xr6(FBel4e8X))

299 FORMAT(1H1)

300 FORMAT{uH 1)

310 FORMAT(I4¢9%X+6(FL11.8¢5X))

193 FORMAT(////43H FOURIER COMPONENTS OF THE VELOCITY (AMPLIT,
C52HUDE RELATIVE TO FUNDAMENTAL AT X=1,PHASE IN UNITS OF.
Cl12H 90 DEGREES))

WRITE(UTWO} {(WU{IsMR}I=1¢N1)+MR=1,DMAX?
WRITE(VTWO) ((WV{I¢MR),»I=1¢N1},MR=2»DMAX}
3439 PC = PC +1
KKK =1
MS = 1
MF = MMAX
GO TO 3440
3440 DO 13596 Z1:z=1,PC
3450 Z =(21-1)*6*P+]
3460 IF (Z+5*P=K} 3470,3470,3490
ILTO LZ = Z+5%P
3480 GO TO 3491
3490 LZ = K
3491 IF (MOD{CASNUM=1,PRINTT).NE.0)JGO YO 3539
3495 IF{OPTVEL)4200+3539+3500
3500 WRITE (6+299)
3510 WRITE {(6+260)
3520 WRITE (6+2903(X(22)¢ Z22=Z+L2/P)
3530 WRITE (&6,300)
3539 IC = 0
3540 DO 3588 22 = ZrLZWP
IF (£2.EGQs1) GO TO 3546
MMM = M+P
MDIV = (MMM=1)/MMAX
MDIVI =MDIV = KKK/2
IF (MDIVI.EQ.D)GO TO 1
IF (K=Z2.GE.MMAX) GO TO 5
MDIVI = MDIVI = 1
KKK = 3 = KKK
IF (MDIVI.LE.0) GO TO &
500 2 IK = 1yMDIVI
BACKSPACE UONE
BACKSPACE VONE
READ(UONE) ((WU(I MR) +I=1sN1) ¢ MRSMS,MF)
READ{VONE} { (WV(IsMR)rI=1+sN1) +MR=MSsMF)
WRITE(VIWO) ({WV{I,MR)I=1¢N1)s/MR=MSIMF)
WRITE(UTWO) ((WU(IsMR)»1I=1eN1)sMRZMS,MF])
MS = PMAX + 1 =MS§
MF = DMAX+MMAX=MF
BACKSPACE UONE
BACKSPACE VONE
e KKK = 3 - KKK
4 IF{KKK«EQ.1) GO To 3
M SMMM = MMAX®x{MDIV =1}
GO TO 3546
3 M= MMM - MMAX * MDIV
G0 TO 3546
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1
3546
3550
3560
3569
3570
3579
3580
3581

3582

3584
asas

3589
3590
3591
3592
3593
3660
3670
3680
3690
3700
3809
3810
3815
3820
3830
3840
3850
3asl

3858
3859

386l
3862
3863
3864

3860
3870
3880
3890

3900

3901
3902

M = M+P

IC = IC + 1

00 3582 1 = 1#N1

IF (I=N+R(22)) 3569135793579

NU = R{Z2) +1

GO TO 3580

NU =1 =N+ R(Z2) +1

WEICeI) = (WUCIrM) = WVINUIM)Y®2.5
PROICYI) = ((CWUIT M} + WVINUM)) * 3,5
C/ X{Z2) + 1.0)%*7 = 1.0) * X(22)
MAVIICsI)=(2.5%(WUCT e MI=WVINUrM) )2 (1.0+40.5%(WUCTrMI+WVINUIM))/
1X(22))ex5)xx(22)

IF (£2 +GE. LZ) GO TO 3588
CONTINUE

IF (MOD(CASNUM=1+PRINTT) .NE.D)GO TO 13596
IF{OPTVELI4200+3593,3590

DO 3592 I = 1+ NI

NU=1=-1

WRITE (6¢310) NU» (W(Z2¢I)r22=1rIC)
IF(OPTPRE) 4200+ 3815+ 3660

WRITE (6+299)

WRITE (6250}

WRITE (6:290)({X{(22):225Z2+LZ¢P}
WRITE (6:300)

DO 3810 I=1:N1

NU = I~1 i

WRITE (6+¢310INUr{PR(Z2+1)» 22%1¢IC)
IF(OPTMAVIL200+ 38593820

WRITE (6,299)

wWRITE (6,8002)

WRITE (6+290)(X(22)¢22=2+L2¢P)
WRITE (60220)

DO 3858 1 =1:Ni

NU = I -1

WRITE (6+¢310) NU,» (MAV(Z2+1)422 = 1+1IC)
CONTINUE

CO 3596 JUMPIN = 13

WRITE (62299)

IF (JUMPIN = 2) 3861r3862+3863
WRITE (6,133)

60 TO 3864

WRITE(®&»190)

GO TO 3864

WRITE (6,192}

CONTINUE

WRITE (6+290) (X(Z2Yr22 = 2+:0.2¢P)
WRITE (Br220)

0O 3980 J=2:FM

D0 3961 22=1+IC

S1=0.0

$2=0.0

S3=20.0

IF{JUMPIN.GT.1) GO TO 3902

DO 3901 I = 1+N1

IF (J.EQ.2) S3=S3+W(Z2,1)

S1 = S1 + FS(JeI) * W(22:1)

52 = 82 + FC Jel) * W(Z2:1}

60 TO 3930

IF (JUMPIN ,EQ@e3) 60O TO 3904

DO 3903 I =1.N}
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3903
3904
3505

3930
3940

IF (J.EG42) S3=S3+PR{Z2:1)

51 = S1 + FS{JrI) % PR(Z2/1)

§2 = S2 + FClJeI) » PR{ZZ2:1)

GO TO 3930

DO 3905 1 =1+N1

IF (JJEQe2) S3=S3+MAVI(Z2r 1)

S1 = S1 + FS{JrI} * MAV(Z2:1])

S2 = S2 + FC(JeI) * MAV(Z2:I)

AMP(Z2)= SQRT(S1%S51+452#S2)*%FC{JrN)

IF (Z1.EG.1,AND.Z2+.EQ.1,AND.J.EQ.2) AMPFAC(JUMPIN)=

ClL.0/AMPI(]1)

3950
3960

3961
3969
3970
3978
3980
4039
4040
3596
13596

3599
3600
4oul
4050
4060

4070

4080
4089
4090
4100
4110

4l20

PHA(Z2)=0.9999

IF (S2«NE+0.0}) PHA(Z2)=0.63662 * ATAN(S1/52)
IF (JEGe2) DCCOMP(Z2)=S3*AMPFAC (JUMPINY*0.5
AMPS(22) = AMP(Z2)*AMPFAC (JUMPIN)

NU = J=1

WRITE (6:230)NUs (AMPS(Z2) v2221+1IC)
WRITE (&+240INU» (PHA(Z2)22 = 19IC)
CONTINUVE

NY = 0

WRITE (6€:230) NUr(DCCOMP(Z2)r22=1,1IC)
CONTINUE

CONTINUE

KKOUNT=K=LZ=MMAX

IF (KKOUNT.LE.O) 60O TO 3600

KKOUNT = (KKOUNT=1)/MMAX + 1

DO 3999 J = 1sKKOUNT

BACKSPACE UONE

BACKSPACE VONE
READ{UONE)Y ({WULI,MR)Y ¢+ I=1+N1)»MR=1rMMAX)
READ(VONE) ((WV(I+MR)»I=1+N1)rMR=1,MMAX)
BACKSPACE UONE

BACKSPACE VONE

WRITE(VTWO) ({(WV{IsMR),I=1¢N1)MR=1»MMAX)
WRITE(UTWO) ((WULI+MR),I=1e¢NL)yMRZ1yMMAX)
CONTINUE

PC = PC -

L=u

LIM2 =LIM2%AL

OO 4070 I = 1+ NOINFC

INS{I) = INS(I} = Al

INC(I) = INC(I) * AI

AZA*AL

B=B*Al

MU = S4

IF (A+GT.LIMAL.OR.NULGT.NOIT) GO TO 4200
DO 4110 I=1+N1

SINE(I) =SINEC(I)*AI

M = PMAX

BACKSPACE VTWO

BACKSPACE UTWO

READ (UTWO) {((WU(I MR)e¢I=1yN1) MR=z1+MMAX)
READ (VTWO) ((WV{I+MR)rI=1sN1)rMR=1+MMAX])
BACKSPACE UTWO

BACKSPACE VTwO

DO 4156 Fz=1.K

IF {(M.NE.L1} GO TO 4130

BACKSPACE UTWO

BACKSPACE VTWO

WRITE{UONE) ({WU{IsMR),I=1¢N1)MR=1rMMAX)
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12

4130
4135
4140
4150
41%6

4200

10

WRITECVONE) ((WV(IsMR)»I=1¢N1}syMR=1sMMAX)
IF (J.LE.PMAX +MMAX) GO TO 12
READ(UTWO) ({WU(I,MR}»IZ1,N1)yMRZ1,MMAX)
READ(VTWOY { {WV(IsMR) » I=1+N1) rMRZ1,MMAX)
M = PMAX

BACKSPACE UTwWO

BACKSPACE VTwO

GO TO 4130

M = DMAX +1

READ(UTWO) (CWULIyMR) rI=1oNL) P MRZ1¢DMAX)
READ(VTWO) ({wv(I,MR}»I=1,N1)»MR=1»DMAX)
BACKSPACE UTWO

BACKSPACE VTwO

M = M=l

J = K+1l-F

DO 4150 I=1/N1

WULIeM) = WU(IWM) * AT

WVEIPM)E = WVLIWM) * AL

CONT INUE

RETURN

CaLL EXIT

RETURN

END

SUBROUTINE INIT
COMMON AsAC,ACC/AT AL,ALLsAMP, AMPFAC,AMPS,AVIT,B,C,CASNUM,CC1,CC2,

1CC3sCCU o CIsCOrCLIC2oC3eCUICSrDeDCCOMP+DE+DERsDERL1yDMAXDUMEELEE2
1sEPSsELsE2eFsFCeFMIFS1G0+6LrG2¢G3rHMAX HOrHL H2¢H3+ I+ IC» IFOUR INC
1INDCs INS»INTEOQ s INTELPINTE2r ITHRyITUrITV e JrKr KA KK e KOs K1 o K21 K30 KU L
LoLIMyLIMAPLIM2 P LL fLOGY o LZrMeMAV  MAXIT e MF s MKU» MKV e MMAX » MR » MS » MU » MUA
1eMV oMYA M2 NeNOINFCoNOITNUPNLsPrPCIPHAPI +PMAXePRyPRINTT PO+ Q200
11+Q2sRyRIPROIRLIR2ISTHSINE,STLrSOMANY»S0+S10S52rS3¢r54eSKrS6+1ST71S8
ITrUONE +UTWO s VONE»VTWO rWeWUe WV WO WL W21 X XTI ZeZ10 22

REAL DCCOMP(21)

INTEGER CASNUM

REAL INS: INCe INDCy MAV,AMPFAC(3)

REAL A ACCoAI+sALsALLI /KKy BrCleC2¢C3¢CUCSyDE/DERYDERLIEPSIELE2Y

CGOrGLleG2rG3sHO P HL ) H2rH3 LIMASLIMLIMZ2y MKUs MKV e MUIrMY eMZ2:Q0, &1,
CR2rROIRLIR2rS1I152+S53954rS5rS0rSTrSBeTeW0(201L)owW1C(101)

Cwz{102) rSINE(101),LOGY(402) e X(401)»FC(11s301)+FS(11+101)»
CINTEG(101) s INTEL(101),INTE2(101)+WU(L101,36)+WV(101+36)
CPR( 60101) s AMP(21) o PHA{2}) rPIePOeDrSOrCOeCI»SILISI+EELIEE2,
CCCLsCC2oCCI+CCUHIMUAIMVALPAMPS(21) e W ( 6,101)

80 INTEGER CrFeFMeIeICeITURITV I JrKoKO KL o K2rLoLZeMAXITeNeNOITeNLPP»

CPCrGeRJPSOMANY 2,21+ Z22,K3sKU e XI(401),R{401)AVIT,NUIKA
C+DUMy PMAXr DMAX) HMAX PRINTTrUONE:VONErUTWOVTWO

150 FORMAT (25HOPERIODIC SPHERICAL WAVES//3H A=F8.5»10X¢SH ACC=FO,6.

ClOXr7H ALPHAS F7.4410X¢3H T=F12.8/7 3H K= I4,20%Xr4H KO= 14,
C20Xs4kH K1= I4020Xe4H K2= I4/ 3N Nz I4//22H OUTER BOUNDARY AT X
Cs F10.6 )

299 FORMAT(1H1}

341

SINE{1) = 0.0

DO 341 I=1.NOINFC
SINE(L1)=SINECLI+INC(I)
SINE(L)=(SINE(L)+INDC) %04
Lo 342 J=1.100

FS(2ed)l = 0.0

342 FCL2:.d) = 0.0
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343
34y
345
346
350
351
352
353
354
360
370

7040

380
390
399
400
410
420
429
430
440

450
461
462
470
479
480
490
500
510
520
530
540
549
550
559
560
561
570
571
579

600
6l0
619
620
630
640
649
650
660
670
680
690

ALY = 1.0 - AL

A= D

DO 7040 I = 1» NOINFC

A = A + INS(I) %% 2 + INC(I} *x 2
A = SGRT(A)

NOLIT = AVIT*K#2

LIMZ2 = A*ACC#0.1

KK = K

B = LIM2/KK
PC =C/6

PI = 3.14159265359
KK=N1

PO = PI*2.0/KK
DER =KK/T

0D = .5/DER

N = N+1

K = K+}

K3 = Kl®kK2+1
*I{1) = 0O

DO 490 J=2+:K3

XI(J) = 2% (J=2} /K1) *KO +XI(J-1)
K4 =XI{K3) =XI{K3=1l)

K3 = K3+1

DO 530 J=K3rK

XEGJY =XTI(d=1) +Kuy

DO 560 J=2/K

R{J) =XI(J)/N1

R{J) = XI(J}=NL1*R(J)

KK = XI(J)

X{(J) = 1.0 + KK=D

R{1) = 0

X(1l) =1,0

WRITE(6+299)

NU = K=1

CASNUM = 1

WRITE (6+150) Ae» ACCe ALs Te¢ NUr KO»
K3 =K +1

DO 620 J=21K3

KK = X(J=1)

LOGY(J) ==ALOG(X({J=1))%0.25
DO 640 J=2/K

LOGY(J) = LOGY(J) = LOGY(J+1)
FM = FM+1

D0 820 J=2+FM

IF (J=2)T700,+670.700

S0 = SIN{PO}

Co0 = CoS(PO)

GO TO 720
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700 SO0 = FS(20J}
710 CO0 = FC(2,0)
720 SI = 0.0

730 FC{Y ¢1) =1,0
740 CI = 1.0
748 NU = J=-]
749 KK = NU
750 FC{JrNIZ240%(1e0=C0)/ (POXPO*KIK*KK)
760 DO 820 I=2.M1
770 SIL =SI
780 S1 = SI#CO0 + CI*SQ
790 FS{Jel) = 51
800 CI = CI*CO = SI1*S0O
B10 FC(JsI) = CI
IF (J.GT.NOINFC+1) GO TO 820
SINE{TI) = INS(J=1) * FS{JsI} + SINECII+INC(J=1)}%FC(J»])
IF (J.EQ.NOINFC+1) SINE(II={SINE(I)+INDC)*0.u4
820 CONTINUE
830 51 ==D/X(K)

880 £1 = EXP(S1)

850 £2 = 1.0/E1

Be0 C1 = =E1xD/12.0

870 C2 = =E24C1%13.0
B80 C3 = E2«C2

890 Cy = ~-E2*C3/13.0
Q00 C5 = =0.5/X(K)

910 S1 = =D*x2.0

520 EELl = EXP{S1)

930 EE2 = 1.0/EE1

940 CCl = ~EE1#D/12.0
950 CC2 = =EE2*CC1%13.0
960 CC3 = EE2#CC2

970 CC4 = -~EE2#CC3/13.0

980 H1l =SINE(N-11}
990 H2 =S5INE(1)
10600 H3 =SINE(2)
1010 s1 =EEl

1020 53 =0.0 .
1030 00O 1140 I=1eN1
1040 S1 =S1xEEZ2
1050 HO =H1

1060 H1l = H2

1070 n2 = H3

1060 IF (I+2=-N) 1090:1109¢1109
1090 H3 = SINE(I+2)
1100 GO TO 1120

1109 NU = I = N +3
1110 H3 = SINE(NWY)
1120 52 = (ICCL*HOY +(CC2xH1 )+ (CCIXH2I+(CCU*HI) I %51

1130 INTEL{I) = G2

1140 53 = S3+52

1150 S1 = S1l*fE2

1160 w1(1) = 53/(51~1.0)
1170 S1 =1.0

1180 DO 1210 I=1.N1

1190 S1=S1*EE)

1200 wi(I+1)=(WL(I)*EE1)+(INTE2(]I)*S]1)
1210 wO(I) = SINE(I) ~-wWliI)
1211 DMAX = 2 = MMAX

1212 PMAX = MMAX + 1
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1213 M = PMAX

1220 DO 1325 F = 1¢K

1221 IF (M,NE.1) 60 TO 1228

1222 IF (J,GT.PMAX + MMAX} GO0 TO 1223
1223 M = PMAX + MMAX

1224 GO TO 1226

1225 M = PMAX

1226 WRITE(UONE} ((WUCLsMR}»I =1¢NL1)+#MR =1,MMAX)
1227 WRITE(VONE) ((WVIIsMR)+I =1sN1}sMR =1sMMAX)
1228 v = M = 1

1229 U = K +1 = F

1230 S1 =0.5/X(d)

1240 RJ = R{J)

1250 @ = N=RJ

1260 0O 1321 I=1+N1

1270 52 = Wl(1)*S1

1280 wul(I,M) = wWO(I) + &2

1290 JF (I=@) 1299+1319+1319

1299 NU = RJ +1

1300 wVINUPM) =52

1310 GO YO 1321

1319 NU = 1T - @ +

1320 WV{NUerM} ==52

1321 CONTINUE

1325 CONTINUE
1327 RETURN

END

1489 SUBROUTINE JLOOP

COMMON A AC,ACCeATAL,ALL¢AMPAMPFAC, AMPS,AVIT,B,C)CASNUM,CC1,CC2,
1CC3,CCUPCINCOICLPC2¢CReCHeCSeDeDCCOMPIDE+DERYDERLDMAX»DUMIEELEE2
LrEPSIELIE2sF»FCrFMIFSoGOsGLrG2eGIsHMAX v HOrHL P H2¢eH32 I IC» IFOURs INC»
LINOC» INS,INTEO s INTEL  INTE2  ITHRy ITUrITV e Je Ko KArKKe KO KL o K2 K3 Kl L
LeLIMALIMALLIM2oLL /LOGY L2 MeMAVeMAXIT » MF v MKU» MKV e MMAX » MR e MS » MU e MUA
LMV eMVA M2 e NeNOINFC o NOIT»NUr NI P»PCrPHA+PI s PMAX«PRyPRINTTSsPO,Qe Q0
1G1»@2+R/RJIPRO/RLIIRZ2¢SIvSINE,SILsSOMANY ¢+ S0rS1rS52¢S3¢SY4»5%9156+S7058
I1T/UONE e UTWO s VONE ¢ VTWO s W e WU r WV e WO r WleW2e X e XIvZ20 2122

REAL DCCOMP(21)

10 REAL AJACC,AT+AL ALL/KKe BrC1eC2+C3+C4eC5+DE+DERPDERL1+FPS¢EL1rE2)
CGEOrGLleG2+G3oHOPHL s H2 e H3oLIMASLIM)LIMZ, MKUs MKV 2o MUMV 2 M2,030,081,
CRZrROVRIIR2¢S1¢529S3¢S4255+SErSTiSBeTewW0(101)eW1(101)

Cw2 (102} »SINECLOLY)LOGY{U02) e X{40L)rFCIL11e2010FS{11e101)
CINTEGE101) e INTEL(101) o INTE2(101) »WU(L101+¢36)rWV(101+36)
CPR{ 6o 101),AMP(21)+PHA(21) +PL+POrDeSOrCO¢CI+SILISTIIEELLEER,
CCCLaCC2CC3vCCUrMUAYMYAPAMPS{Z21) v W( 6101} rAMPFAC(3)

80 INTEGER CorFeFMrI+ICrITUITVrJrKeKOrKL1rK2oL o LZeMAXITeNeNQITeNL+P»
CPCrQrRJPSOMANY ¢ 29 Z1 v Z2 s K3sK4p XI(401)eR(UOL) e AVIT NUKA
Co0UMr PMAX» DMAXe HMAXsPRINTT+UONE »VONErUTWO»VTWO

1490 DO 2211 J = 24K

g9l M = M + 1

1492 IF (M.NEHMAX) GO TO 1502

1493 JF(K-J.LE.MMAX)} GO TO 1502

1494 IF (LL.EQ.VONE) GO TO 1500

1495 READIVONEI {IWV{I+MRI»I=1,N1) r MR=MSMF)
1496 MF = I=sMMAX - MF

1497 MS = PMAX = M5 +1

1499 GO TO 1501

1500 READ(UONE) ({WU(IsMR) ¢TI =1eN1)rMRSMSIMF]
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1501
1502
1510
1520
1530
1540
1550
1551
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740

1751
1752
1753
1754
1760
1770
1780
1790
1791
1800
1801
1810
1820
1830
la40
1850
1851
1860
1870
1880
1890
1900
1909
1910
1920
1529
1930
1940
1950
1960
1970
1980

HMAX = HMAX + MMAX/2

IC =0

LIM = LIM +8
Rd = R{J)

51 = LOGY(L)
@ = N=RJ

0 1551 I=1.N1
WO(I) = Wwl(y)
&0 =061

Gl =Gz

G2 =63

G3 =X (J)

DER1 = G3*DER

IF
S7
GO
IF
Qo
Q@1
we
RO
R1
R2
U0
IF
IF
IF

(J=2) 1640+1620+1640
= Si*2.0

T0 1710

(JEQ.3) GO TO 1710
=(63=G0)/(62-G1!
S(GA=-G1}/(G2-GQ)
(G3-G2)/{G1-G0)
Ql1*Q2

-32%Q()

Q0*01 +1,0

1751 1I=1+N1

(JeEQa2) W2(I+1)= INTEL(IDI%S7 +W1(I)

(JsEQs3) W2(I+1)=(INTE2(I)#3,0 ~INTEL(TI)})*S1+wWi(I)

(JeNE+2 JANDsJJNE.3) W2{I+1)=(INTE2(I)*R2+INTEL1{I)*R1
CH+INTEO(II*RDI*51 + wi(lI)

CONTINUE

IF (M NE JHMAX = MMAX/4) GO TO 1760
IF(LL+E@.DQ) GO TO 1760

SACKSPACE LL

w2(l) = W2(N)

W2IN+1)Y =W2(2)

IF (J.EQ.2) GO TO 1810

DO 1791 I=1eN}

INTEQO(I) = INTEL(D)

Lo 1801 I=1/.N1

INTEL(L) = INTE2(I!

M2 = 0.0

IC =IC +]

IF {IC-MAXIT)} 1840+1840.,9211
IF (IC.EQ.1) 60 TO 1BgD

DO 1851 I=2«N

weil) = wit1-1)
well)zw2 (N}
w2{(N+1)zW2(2)

0o

Se=

IF
NY
53

2050 I=1eN1

W2(I+1)

{1-8) 1909,1929,1929
= RJ + 1

= WViinUeM)

TO 1940

I -6 +1

WV {NUrM)
(wa{I+2)=w2(1))*DER]
S2=53

S55+55+52

G3+G3

o aEau

INTE2(I) ={(54+52452}%56={S2+53)*S5+57%53)/(56+63)
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1990 S8 = (INTE1(I)+INTE2(I))*51 +wo(I}
2000 wil{I} =58

2010 EP5 = ABs{58~-52)

2050 IF {(EPS.GT.M2) M2:=EPS

2060 IF (M2.G6T.LIM) GO TO 1810
2070 ITU =ITU+IC

2080 IF (M2.GT.MU)} MUZM2

2090 DO 2190 I=l.N}

2100 S2 = WU(IM)

2110 53=wl(I)

2120 sS4 = S2#ALl + S3#AL

2130 IF (J.NEWK) 60 TO 2190
2140 S5 = ABS(Su4-S52)

2180 IF (55.6T.MKU) MKU =55

2190 wUlI.M) = S4

IF(M.NE.HMAX -1) GO TO 2211

2191 IF (K=J.LE.PMAX) GO TO 2206
2192 IF (LLWNE.O) GO TO 2193
2193 LL=VONE

2194 M5 = PMAX +1 = MS

2196 MF = 3*#MMAX - MF

2197 GO TO 2202

2198 LL=ITHR-LL

2199 BACKSPALE LL

2202 IF(LL.EQ,VONE) GO TO 2205
2203 WRITE(VTWO) ((WV(I+MR),I=1+N1})sMR =MS,MF)
2204 60 TQ 2206

2205 WRITELUTWO) ((WULI,MR) ¢ I=1oN1)+¢MR =MSsMF)
2206 IF(M.EQ.DMAX) GO TO 2209
2208 60 TO 2211

2209 M = 0

2210 HMAX = 1

2211 CONTINUE
9211 RETURN

END

SUBROUTINE FLOOP

COMMON AsAC+ACCrAT AL ALY AMPAMPFAC, AMPS)AVIT+BeCoCASNUM,CC1LCC2y
1CC3,CCLUeCIvCOsCLeC2¢C3,CU+CHeD)DCCOMPDEYDERDERL+DMAX»DUMEELEE2
1rEPSIELIE2eFrFCIFMeFSeG0rGLIG2¢GI+HMAX s HO v H1 v H2 e HI» I IC+ IFOURINC»
L1INDC v INSy INTEO e INTELr INTEZ» ITHR e ITU» ITVrde Ko KA KK KOs KLeK2rK30KleL
LyLIMeLIMAPLIMZrLL »LOGY ' LZrMaMAVeMAXTIT rMF o MKU ¢ MKV s MMAX ¢ MR » MS e MU ¢ MUA
1MV IMVASM2 e NP NOINFCHNOITYNUIN1eP»PC+PHA»PI+PMAX/PRsPRINTT+PD+QvQO0»
101+Q2'R+RJrROI/RIPRZvST+SINErSILeSOMANY »SDsS1rS2rS3eSUIS5rSH,ST S8y
1T+UONE UTWO s VONE s VTWO e e WU s WY r WO rWle W29 Xe X1e 2021022

REAL DCCOMP(21)

10 REAL A»ACC,AIrAL ALY sKKr BeCLleC2yC3)C4rCS'DE'DERYDERI(EPSeELIE2y
CGOrGLIG2yGI/HO P HL s H2 s H3»LIMASLIM,LIM2, MKU» MKV MU, MV M2,00,061,
CR2'RUPRLIR2rS1¢S2sS3+S4»S5r56e5TeS8»TeW0(101) e W1(101)»
Cw2{102)+SINECL101) hLOGY{(402) e X(40L)eFC(11¢101)}¢FS{11,101),
CINTEG{L101) i INTELC101) s INTE2(10L) rWU(L01e36) rWV{L0Le36),

CPRU 6r101) s AMP{21)}sPHA(21) ¢PI+POrD+S0eCOeCI1SILySIEELEEZ,
CCCL,CC2CCASCCUIMUAMVALAMPS{21) e W( 6,101) »AMPFAC(3)

86 INTEGER CoFsFMe I ICeITUSITVrJeKoKOrKLoK2oLoLZeMAXIToNeNOITINLPy
CPCrQ/RJIVSOMANY rZeZ1¢Z2 K3 e KUeXI(UOL)»RIUDL) P AVIT/NUPKA
CyDUM» PMAX: DMAXs HMAXsPRINTT»UONE » VONEUTWOVTWO

2570 DO 3290 F = 1+KA
2575 M = M =1
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2580 J =K=F

2581 IFIM.NE.HMAX} GO TO 259D

2582 IF (J+DUMJLE.MMAX) G0 TO 2590

2583 JF (LL.EQ.VTWO) GO TO 2586

2584 READ(VIWO) ((WV(IsMR}»IS1¢N1)}rMR=MS»MF)

2%85 GO TO 2589

2586 READ(UTWO) ({WULIsMR}rI=1sN1) MR =MS:MF}

2587 MF = 3=MMAX = MF

2588 MS = PMAX = MS + |

2589 HMAYX = HMAX = MMAX/2

2590 1C=0

2600 LIM= LIM+B

2610 RJU=R({J)

2620 S1==LOGY(J+1)

2630 @z N=RJ

2640 DO 2641 I=1sN1

2641 WO(I} = Wl(])}

2650 6G0=61

2660 G1=G2

2670 62=63

2680 c3=xXtJ)

2690 DER] =G3*DER

2700 IF (F=1) 2730,2710¢2730

2710 S7=51=*2.0

2720 60 TG 2800

2730 IF {(F.EQ.2} GO TO 2800

2740 QO=(G3-60)/(G2~Gl}

2750 G1={G3~Gl)/(G2-G0)

2760 Q2=(G3-G2)/(G51-GD)

2770 RO=Q1#*Q2

2780 R1=-Q2%*@0

2790 R2= Q0*@1 +1.,0

2800 CONTINUE

2810 DO 2851 I=1sN1

2820 IF (F.,EQe1) W2(I+1)=INTEL(I)=ST7+W1(I)

2830 IF (F.EQ.2) W2(I+1)=(INTE2(1)%3.0~ INTEI(I))*51+W1(I)

2840 IF (FeGT.2) W2(I+1)Z(INTE2(I)*R2+INTEL{(1)#R1+INTEO(I)*R0O}
CxS1l +wWlt])

2851 CONTINUE

2860 w2(1)=w2(N}

2870 w2inN+1)=w2(2)

2880 IF (F.EQ.1) GO TO 2910

2890 DO 2891 NU=1+N1

2891 INTEO(NU) = INTEL(NU}

2900 DO 2901 NU=1eN1

2901 INTEL(NU) = INTEZ(NU)

2910 CONTINUE

2912 IF (M.NE.HMAX + MMAX/4) GO TO 2920

2913 IF(LL.EQ.0) GO TO 2920

2914 BACKSPACE LL

2920 M2=0.0

2930 IC=IC+1

2940 IF (IC.GT.MAXIT) G0 TO 7000

2950 IF (IC.EG.1) GO TO 2990

2960 00 2961 I1=2»N

2961 w2(1) = wi(I=-1}

2970 w2(1)=w2(N)

2980 wW2iN+1)z=W2(2)

2990 DO 3140 I=1.N1

3000 S2=w2i{l+l)
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3010
3011
3012
3013
3020
3030
3040
3050
3060
3070
3080
3090
3160
3140
3150
3160
3170
3180
3190
3200
3210
3220
3230
3270
3275
3276
3277

3279
3280
3283
32864
3285
3286
3287
3288
3289
3290
7000

IF (I-1=-RJ) 3011, 3013, 3013

NU = g+]-1
GO TO 3020
NU = I=-RJ

S3 = WUINUM}
S4={(wW2(I1+2)=-w2(1)1=DER]

55= S2=53

S6= S5+55+52

ST = G3+G3
INTE2{I)=({S2+52=S4) %56~ (S2+53) x55+57%53) /(SH+63)
SBELINTELC(DI+INTEZ{I) ) %Sl +wWO(I}
wiiI) =sa

EPS = ABS(S8-~52)

IF (EPS5.GT.M2) M2=EPS

IF (M2,6T.LIM) GO TO 2920

1TV = 1TV + IC

IF (M2.6T.MV) MV=M2

DO 3275 I = 1:N1

S2 = WV(IeM)

53 =wWi(l)

S4 z=S2+#AL1 +53%AL

IF (F.NE.KA} GO TO 3275

S5 = ABS{S4=52)

IF (55.G6T.MKV) MKV=SS

WVilsM) = 94

IF (M,NE.HMAX+1) GO TO 3290

IF (J + DUM JLE. PMAX) GO TO 3287
IF (LL.NE«O) GO Tp 3279

LL=UTWO

GO TO 3283

LLTIFOUR -LL

BACKSPACE LL

IF {(LL.EQ.UTWO} GO TO 3286
WRITE(UONE) ({WU(I,MR),I=1+N1}sMR=MSrMF}
GO TO 3247

WRITE(VONE) ({WVII,MR),»I =1+N1) /MR = MS:MF)
IF {M.NE.1) GO TO 3290

M = DMAX + 1

HMAX = [DMAX

CONT INUE

RETURN

END
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F. Operation of SPHERE

1. Input

a, Arrangement of Data Deck

We list here the names of the variables to be punched into each
data card. A variable name followed by a single number, say M, in paren-
theses indicates that the variable is an integer whose value should be
entered right-justified in column M. Thus, suppose N = 100; then N(50)
indicates that "1" should be punched in column 48 and "0" in columns 49
and 50. A variable name followed by two numbers (hyphenated) in paren-
theses, "(L-M)," indicates that the value of the variable in decimal no-
tation should be punched anywhere in the field bounded (inclusively) by

columns L and M.

Card 1: PRINTT(5)

Card 2: UONE(5) VONE(10) UTWO{15) VIWQ{20)

Card 3: OBTBDY(5) OPTVEL(10) OPTPRE{15) OPTMAV(20)

Card 4: AVIT(5) FM(10) MAXIT(15) MMAX(20) NOINFC(25) SOMANY(30)
Card 5: K{10) K0{20) K1(30) K2(40) N(50) P(60)

Card 6: ACC(1-10) AI(11-20) AL{21-30) INDC(31-40) LIMA{41-50)
T(51-60)

Card 7 (additional cards if necessary): The number of entries in
this card or group of cards depends on the value of NOINFC
in card 4. Numbers in decimal notation should be entered
sequentially in fields (1-15)(16-30){31-45)(46-60)(61-75)
of each card for a total of 2 X NOINFC entries; each card
of this group except the last must have 5 entries.

Card 8: CASEC0O(5)
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b. Definitions and Discussion of Data Variables

Card 1: As mentioned in subsection E, paragraph lc, SPHERE
goes through a whole sequence of cases that differ only in the amplitude
of the function Q(T), using the final values of u and V of each case,
after multiplication by AI, to provide an initial approximation for the
next case. Under some circumstances, one may wish to examine the values
of the flow variables or their Fourier components only for a subsequence
of cases, SPHERE prints out a heading and convergence data for each case;
print-out of the flow variables, however, occurs only for cases 1, 1 +

PRINTT, 1 + 2 X PRINTT, etc.

Card 2: This card contains the values assigned to the names
of the four logical units required for storage. In systems where spe-
cific tape drives are permanently declared as logical units A, B, C, and
D, these numbers are entered in card 2, If the processor has two inde-
pendent 1/0Q channels, SPHERE will operate most effectively if UONE and
UTWO are on one channel, VONE and VIWO on the other. In systems without
such permanent assignment, any integers A, B, C, and D not reserved hy
the system may be entered into card 2; the data deck must then be pre-
ceded by a MAP subroutine, or equivalent, in which certain storage units

(tape or disk) are declared as logical units A, B, C, and D.

Card 3: This card specifies various options. For OPTBDY, see
subsection E, paragraph la, The other variables specify print-out of
functional values of the flow variables., For the subsequence of cases
determined by the value of PRINTT (see card 1), a specified number of

the Fourier components of ra, rE, and 5 at selected space positions rj
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are printed. The values of rﬁ, rﬁ, and 8 as functions of T are printed

or not according to the following scheme:

OPTVEL = 0: Do not print ra
OPTVEL = 1: Print rq
OPTPRE = 0: Do not print rp
OPTPRE = 1: Print rp
OPTMAV = 0: Do not print ©
OPTMAV = 1: Print 9,

Card 4: The program will terminate if
(i) the number of iterations in an inner iterative loop
exceeds MAXIT;
(ii) the number of iterations in the outer iterative loop
exceeds SCMANY;

(iii) the average number of iterations per inner iterative
loop in the case just completed exceeds AVIT, (This
average 15 based on the final outer iteration--JLOOP
plus FLOOE,)

The limits MAXIT and SOMANY are set to keep the program from going
inte a permanent loop. If the average number of iterations for the inner
iterative loops becomes large, this will generally be an indication that
the next case will fail to converge; this is the reason for the limit
AVIT. (In this connection, it should be mentioned that if the number
of iterations required to evaluate u; in (E.39) exceeds 15 for any one
component of this vector, the program is also terminated,) Reasonable

values for these variables are: AVIT = 4, MAXIT = 6, SOMANY = 30,
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The variable FM determines how many Fourier components of ra, rE,
and 8 are calculated and printed, NOINFC determines the number of Fourier
components that will be used to describe the function Q(T): see (E.1),

The following limitations must be observed: 1 = NOINFC < FM < 10.

MMAX determines the number of vectors transferred in one operation
to or from tape or disk. The following limitations apply: MMAX must be
even, 2 < MMAX = 18, MMAX < 1/2 K+1. As a rule of thumb, MMAX should
be chosen as large as possible, subject to the above limitations; thus,

for K = 34, set MMAX = 18,

Card 5: The role of all variables punched in this card, ex-
cept P, has been explained in subsection E, paragraph 1b. The following

limitations apply: K1 X K2 = K = 400, K1 = 2, N £ 100,

The integer P determines the positions rj at which the flow vari-

r etc,

ables ra, rp, and § are computed: Iy {inner boundary), op?

I‘P,

If the outer boundary is to be included in this set, P must be a divisor

of K.

Card 6: ACC is an approximate measure of the maximum error
with which the program solves the complete system of finite-difference
equations, in units of A, the amplitude of the oscillatory component of
Q{T)--see (E.5). The convergence limits for the inner and ocuter itera-

tive loops depend on the quantily Lim_ (see the discussions preceding

2
(E.32) and (E.42)), and the program sets Lim2 = A X ACC X 0.1. The fac-

tor 0.1 is introduced partly because, by (D.17),T the amplitude of

t The situation in the case of (D.18) is essentially the same.
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u(n,1) - v(1,1) is only 0.4A, and partly to yield an estimate of accuracy
somewhat on the conservative side. The limit for the iterations involved
in applying the boundary condition {(D.18) is set in a similar manner. A

reasonable value for ACC is 0,001,

The variables AI and LIMA were discussed in subsection E, paragraph
lc, Reasonable values are AI = 2 and LIMA = 1. AL is @, the relaxation
factor; AL = 0.5 appears to work quite well, but if the outer iterative
loop fails to converge, a slightly smaller value of AL should be tried,
INDC is the d.c. component of Q(T), i.e., the coefficient ao in (E.1).

T is the period of the flow, in units of the time taken by a sound wave
under ambient conditions to travel a distance equal to the radius of the

sphere on whose surface the inner bhoundary condition is prescribed.

Card 7: The 2 X NOINFC entries on this card or group of cards

b

are read sequentially as the values of al, az, . aNOINFC, bl’ LY

bNOINFC that will be used in the first case calculated by the program;
see (E.1). For the most effective operation of SPHERE, it is probably
best to impose the limitation A < 0.0l——see (E.5). In addition, because

of the normalization of the Fourier coefficients during the output calcu-

2 2
lation, it is necessary that a, + b1 £ Q.

Card 8: CASECO has been discussed in subsection E, paragraph lc,

2, Output

a, Beginning of a Run

At the beginning of a run, the program prints the values of all
data variables in cards 1, 2, 3, and 4, and also the values of P, AI, AL,

LIMA,
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bh. Case Heading

The output for each case hegins with a heading of the type
shown in Figure 5. Most of the entries are self-explanatory; note,
however, that the distance variable r is referred to as "X'. The line
beginning "FOURIER COMPONENTS" states whether the function Q(T) pre-
scribed at the inner boundary is the reduced velocity a or the reduced
mass flow 8. Following this line are printed the values of the sine
and cosine coefficients of Q(T), i.e., the b's and a's of (E.1). The
line labeled "DC" contains a single entry, the value of B (The column
heading "1" refers only to the sine and cosine coefficients.) The values
of all these coefficients (and of A) are those appropriate to the current
case; only for CASE = 1 will they be identical with the values read in

from card 6 (INDC) and card 7.

¢c. Iterations

Following the heading, a2 line is printed every time the program
has completed one cycle through the outer iterative loop. ITU is the
total number of iterations in the K inner iterative loops of the subrou-
tine JLOOP; in the particular case whose output we see in Figure 5,
we observe that ITU = K + 1, whence it follows that each inner iterative
loop, except one, required only a single iteration to meet the conver-

(m)

gence criterion (E.32). If we let Ej = €, {see the definition just
3

preceding (E.32)), with m the final iteration number of the jth inner
iterative loop, MU is defined as maxj Ej' We may think of this number

as the worst error made in any inner iterative loop of JLOOP, MKU per-

tains to the convergence of the outer iterative loop and is defined
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following (E.42). The quantities ITV, MV, and MKV have the same meaning

for FLOOP as do ITU, MU, and MKU for JLOOP.

d. Flow Variables

A portion of the format for tabulating the values of the var-

~

iables ra, rﬁ, or 8 is shown in Figure 6. The line beginning with
"X =" refers to the r-coordinate. The column headed "I" refers to the
T-coordinate, with 7| = IT/N; I ranges from 0 to N - 1, In the case shown,
A = 0,001, and the pressure should be very nearly given by the first egqua-
tion of (D.1); we verify this equation, written in the form

rp = F'()/py, (F.1)

by noting that in the numerical cailculation, rE is, in fact, substan-

tially a function of T only,

e. Fourier Components

The format for printing the amplitudes and phases of the complex
Fourier coefficients is shown in Figure 7. (Properly speaking, the
heading should read "FOURIER COMPONENTS OF THE ACOUSTIC PRESSURE X X";
a similar remark applies fo the heading for the Fourier components of
the velocity.) It should be mentioned that the calculated phase of a

Fourier coefficient of very small amplitude has no significance,

3. Limitations
a, Amplitude
The form of the denominators in the two equations (C.8) imposes
a basic limitation on the amplitude of the function Q(T) prescribed at

r=1, If we set ¢ = c/co, then for r = 1, these denominators equal
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PERIOpIC SPHERTLAL WAVES

Ax (,0040C ACC= 0.005000 ALPHA= 0,5000 T= 10.00000000
Ka 20 KQ= 1 K1l= 10 k2= 2
N= B0
CUTER BOUNDARY AT X= 2.875000
FOURTER COMPONENTS OF YELOCITY PRESCRIBED AT [NNER BOUNDARY...
1
SINE 0.4000CE-O;
COgINE Lo
[+ 0.
caSer 3
ITERATION ITu "y HEL LTy HY MRY
21 0.13046E-06 U.184T56-05 22 0,79297E-07 0.16071E-05
2 21 0.13007E-Cs  Q.135T5€E-05% 22 Qe TI4H10E-Q7 D.3IV6IBE-DE
FIG. 5 TYPICAL CASE HEADING AND ITERATION COUNT
ACCUUSTIC PRESSURE{IN UNITS OF AMRIENT PRESSURE) = X
X= L0007 1.125% t1.2500 123750 1,.5000 1.625.
i
Q C.00063Q47 0.00663048 0.000613051 0.00063058 0.00063061 C.00063078
1 GC0Ub5967T 0.00C65970 000065971 C.00.65982 G.00065987 GeM0C65994
2 C.00U68483 Q.00068486 0.00068489 C.00068495 L.000868506 0.L0068519
3 C.DpOCTO51T0 C.00CTCS8T 0.00070588 U.00uLTO%89 w000TCE05 G.00070604
“ 0.00072230 0.,00C72242 0.00072245 0.00072253 0.00072243 0.0007226%
5 G.00CT3%40 0.00CT3450 G.Q000T723457 $.000T3458 0.00073468 G.00073469
L] €.00GT4202 0.00074213 0.00074213 C.00074217 G.000T4227 G.00074222
T C.00074504 0.30074508 0,00074513 0.00074521 C.000T453% G.00674536
8 €.00074337 0.00G74354 0.00074357 0.000T4363 3.000742378 0.00074367
9 C.00073722 0.00073732 0.00073731 Ga00LT3TE4 0.0007175¢ G.DDOTAITST
10 0.00072648 0.00072652 0.00072652 ¢.000724668 0.000%2670 U.00CT2689
¥ C.00071123 0.0007113% 0.00071149 0.00071148 0.00071152 0.00071163
12 C.00069181 0.00C69179 0.00069180 U.00069183 0.00G62194 J03G69197
13 C.00066TT2 G.00066T8D 0.00065792 000066800 0.00066800 0.00084B07
14 0.,00G63975 0.000&3987 C.00063989 £.00u64001 C.00064000 0.,3006472120
15 C.00CA0TT3 g.00Ce0TB2 0.00060793 0.00060803 0.00060808 G.0D0608C4

FIG. 6 TYPICAL PRINT-OUT OF FUNCTIONAL VALUES

FOURITER COMPOMENTS OF THE ACCOUSTIL PRESSURE (AMPLETUDE RELATIVE TO FUNDAMENTAL AT X=1,PHASE IN UNITS DF 90 DEGREES)

X= 1.0040 1.1250 1.2509 13754 1.5000 1.6255
URDER
L&y 1 1.00000 1.06009 1.00016 1.90023 L. 00030 1.005348
Ley 1 0.35T64% 4.35764 0,35743 0.35760 0.35756 0.35753
ray z 0.060042 ©.00037 0.00032 0.20031 0.00031 D.00032
(py 2 0.62928 0.72572 0.82050 0.89352 0.89480 0.93503
(4] 3 G.00001 0.00000 0.0Q031 g.00001 0.,00002 0.00002
[ -0.35408 -D.59269 =-2.30037 -Q0.u5730 0.79851 -0.78432
(3} & C.0000) 0.00002 0.00033 0.000040 ¢.00002 0.00001
1P} 4 -(¢.09928 =0.82340 D0.4099% 0.123708 -0.62159 -0.+27533
1A} & -C.00038 =-0.00028 -0.C0025 -2.00622 -0.00019 ~0.02018

FIG, 7 TYPICAL PRINT-OUT OF FOURIER COMPONENTS
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° o+ a and © - E; this follows readily from (C.3) and (C.11). Conse-
quently, IE] must be somewhat less than unity; i.e., we must limit A to
a value somewhat less than 1. Essentially, this limitation arises from
our choice of coordinate system; if either C+qorec- a is zero, one

or the other of the characteristic directions of the system (C.8) coin-

cides with the r-direction.

b. Size and Type of Problem

By size we mean the number of net-points that the program can
handle, Unlike the amplitude limitation, the size limitation is machine-
dependent, SPHERE is presently set up to run on machineg with 32K core
memory and four available external memory units; specifically, it has
been checked out on the Stanford University IBM 7090 and the Air Force
Systems Command IBM 7094-7044 at Wright-Patterson Air Force Base. Within
this frame of reference, the limit on N, N < 100, is relatively firm;
however, the limit on K, K = 400, could readily be extended to, say,

K < 2000 with only trivial modifications of the program. The principal
reason for restricting the value of K is the time taken for the computa-
tion, This will be discussed further in subsection G; for the moment we
merely note that K £ 400 is a practical restriction that eventually may
be considerably lightened, and discuss the type of problem that may be

solved with this restriction.

In the system of units employed, the wavelength corresponding (under
ambient conditions) to the fundamental frequency equals T, the fundamental
period, It is therefore reasonably consistent to choose the spacing of

net-points in the r-direction equal to that in the s (or 7-) direction,

130



at least for the first few wavelengths. This spacing is obtained by
setting KO = 2, K2 = 1, K1 = K; the position of the outer boundary is
then given by R = TK/N + 1. If the calculation is to yield significant
values of several harmonics of the flow variables, N should probably be
chosen to be not less than 50, and preferably 100; the maximum possible
values of R are then, approximately, 8T and 4T, respectively, The ampli-
tude of the reduced acoustic pressure S at r = R is approximately A/R,
and this quantity should be small if the use of the acoustic boundary
condition is to be justified (see subsection A). Although it is not

quite clear what exact meaning should be attached to

'small,” let us
arbitrarily put a limit of 0.01 on A/R. Then we obtain the following

rules:

N = 50, K= 400: A < 0,08T,

I

N =100, K 400: A = 0,047,
Therefore, if we are interested in moderately high amplitudes at the

source, say A = (0.4, we have the following restrictions:

N= 50, K=400: Tz 5,

N

100, K 400: T z 10,

Essentially, then, SPHERE is limited to the calculation of low-frequency
nonlinear periodic flows, i.e., flows whose fundamental wavelength is at
least several source diameters, However, as larger and faster computers
become available, and with the modifications suggested in subsection G,
paragraph 2, the calculation of a periodic flow whose fundamental wave-
length is of the same order as the source diameter should become feasible,

This point is important because on general grounds, one would expect this

to be the kind of calculation least amenable to analytic techniques.
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4, Typical Results

a, The Runs SU and WP

The computations actually carried cut with SPHERE and its sev-
eral forerunners were primarily intended to check the operation of the
program and to develop some feeling for the proper choice of data vari-
ables, We shall discuss in some detail a one-hour run (SU) on the Stan-
ford University IBM 7090 (May 1966) and a two-hour run (WP) on the Wright-

Patterson Air Force Base IBM 7094-7044 (September 1966),

The finite-difference net and period were identical for the two

runs: N = 100, KO 2, K2=1, X =100, T = 10, This corresponds to a

uniform spacing 4r ATl = 0.1, with the position of the outer boundary,

H

R, equal to 11, In both runs, the inner-boundary function Q{T) was of
the form A sin (2HTT_1); this function specified the reduced velocity a
in SU and the reduced mass flow 8 in WP, For small A, the difference
between these two conditions affects the numerical values of u and V

very little, and thus has no effect on the required number of iterations,
The iteration count is, however, affected by the value of ACC, and this
variable was set at 10~ in SU and 107> in WP. With respect to the num-
ber of inner iterations, the effect is relatively minor: In the 8 com-
pleted cases of SU, ITU was 112-113, and ITV was 128-129; in the 17 com-
pleted cases of WP, ITU was 106-107, and ITV was 101-102, 1In contrast,
because of the slower rate of convergence of the outer iterative loop,
the number of outer iterations depends significantly on the value of ACC,.
However, from the printed values of MKU, MKV, and A, we can always deter-
mine the number of ocuter iterations that would have taken place if ACC

had been set to a larger value than that actually used in the computation;
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we need only recall that after two iterations, the outer iterative loop

is discontinued when max (MKU, MKV) < A X ACC X 0.1.

b, Iteration Counts

Although the initial value of A was 1073 in both runs, the
. 1/3 | . .
value of Al was 2 in SU and 2 in WP, The purpose of using two quite
different values of Al was to get some idea of how the total number of
outer iterations required to carry the calculation from one amplitude
to another depends on the rate of increase in amplitude per case. This
is of interest because to a rough approximation the total computation

time per run is proportional Lo the total number of outer iterations

during the run, regardless of the number of cases.

Table III presents the outer iteration count for the completed cases
of WP and SU. For WP, we have added a column of 3-case counts, i.e,, the
total number of iteraticns for the cutrrent case and the two previous cases,
For 8U, we give the actual count (ACC = 10~4), and the counts that would
have been obtained with ACC = 10—3 and ACC = 10-2. In the light of the
remarks above, the relative efficiency of the two choices of AI may be
obtained by comparing the column of 3-case counts for WP with the ACC =

10 column of SU; for the range covered, it is clear that 2 is a much

hetter value for AI than 21/3.

By comparing the "actual" and ACC = 10,3 columns of SU, we also see
that it takes from 4 to 6 iterations to reduce the error by a factor of
10, Generally, in a given case, the values of MKU may undergo a slight
oscillation for the first few iterations; after that, MKU and MKV both

decrease more or less regularly with increasing iteration number., The
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Table III

COMPARATIVE OUTER ITERATION COUNTS
FOR THE RUNS WP AND 35U

- 1/3 -4
WP: ACC = 1072, AI = 2 / SU: ACC = 10, AL = 2
Iteration 3-Case Iteratlon_gount —
A Case  Count Total A Case Actual ACC=10° ACC=10

0.001 1 5 (5) 0.001 1 11 5 2
2 2
3 2

0.002 4 2 6 0.002 2 9 5 2
5 3
6 2

0.004 7 4 9 0.004 3 11 6 2
8 4
4

0.008 10 5 13 0,008 4 13 7 3
11 5
12 5

0.016 13 6 16
14 6
15 6
0.032 16 7 19

17 7
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initial oscillaticon is, as one would expect, more pronounced if the ini-
tial guess for the solution is a poor one, On the basis of several
earlier computations with A = 0.1 and various net-spacings, it also
appears that the rate of convergence of the outer iterative loop slowly
decreases with amplitude; in the computations just mentioned, it gener-

ally required 7 or 8 iterations to reduce the error by a factor of 10.

¢, Fourier Components

Table IV shows the amplitude of the Fourier components of the
reduced acoustic pressure 5 X r for two cases of SU and one case of WP,
Two kinds of nonlinear effects are evident: One is the nonlinear rela-
tion between p and q and between p and §. Although Q(T) is a pure sine
wave, at r = 1 the reduced pressure has significant second harmonic and
d.c. components, even for A = 0.001. Note that these components are
approximately proportional to A. The other nonlinear effect is the growth
of higher harmonics with radial distance. This effect, well known in the
plane case, is modified in the spherical case by an initial dip that be-

comes more pronounced with increasing A.

It seems clear that extensive further computations are required to
obtain results that may be regarded as significant. Suggestions for such

computations will be given in subsection G,
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G. Suggestions for Further Work

1. Computations with the Present Version of SPHERE

Although it appears desirable to modify SPHERE with a view to en-
hancing its efficiency, there are certain computations of interest that
may reasonably be carried out with the present version., Three two-hour
runs (7094-7044) in particular are suggested:

1/3

(i) A repetition of WP with AI = 2 instead of 2 . This should

lead to the calculation of cases well in the nonlinear range.

(ii) The same as (i), but with KO = 1, K1 = K = 200, K2 = 1, This
change leaves the position of the outer boundary at r = 11 but decreases
the net-spacing in the r-direction by one-half. Computation time per
case will be approximately doubled, but from a comparison of cases cov-
ered by both (i) and (ii), the truncation error arising from the use of
the logarithmic trapezoidal rule in constructing the finite-difference

approximations (E,20) and (E,21) may be estimated.

(iii) The same as (i), but with KO = 2, K1 = K = 200, X2 = 1. This

change leaves the net-gpacing as in (i) but moves the outer boundary to

r = 21, From a comparison of cases covered by both (i) and (iii), it
should be possible to say something about the extent to which the posi-
tion of the outer boundary influences the calculated flow field. An
understanding of this question is important in providing a reasonably
definitive validation of the use of the acoustic boundary condition,

and also in justifying the patching of an approximate analytic solution,

valid for large r, onto the numerical soclution.
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2, Modifications of SPHERE

Before undertaking computations of much larger scope than those just
outlined, it would probably be wise to attempt to reduce the running time
of SPHERE, We have already indicated that the rate of convergence of the
outer iterative loop can probably be increased if the location of the
eigenvalues of the matrix & can be estimated reasonably accurately (para-
graph 3.c of subsection E}; this problem appears gquite capable of solu-
tion. Once this estimate is available, separate relaxation factors for
JLOOP and FLOOP can easily be determined for optimum rate of convergence;
the change in the SPHERE code required to accommodate this modification

of the underlying numerical method is trivial,

Another way in which the computation may be speeded up is to provide
better initial approximations for each case (after the second) of a run
by making greater use of the solutions of previous cases, There is an
obvious extrapolation method--analogous to that now used in going from
one inner iterative loop to the next--that should provide quite accurate
initial approximations even for fairly large values of AI, To accommo-
date this scheme will require two additional external memory units, and

a moderate amount of additional programming,

There is, of course, no reason why these two modifications should
not be combined; the resulting gain in efficiency should be very consid-

erable,

3. Investigation of Possible Subharmonic Regimes

So far, only periodic solutions having the periedicity of the inner-

boundary function Q(7) have been considered, Although the point has not
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been investigated, it appears intuitively certain (a rigorous proof would
be of some interest) that within reasonable restrictions, if such a solu-
tion exists, it is unique, However, it is well known that a nonlinear
system with one degree of freedom (i.e,, a system governed by a second-
order nonlinear ordinary differential equation) may have a stable oscil-
lation whose fundamental period is a multiple of the period of the forc-
ing function [7, Chap. 7). It seems possible therefore that if we modify
our hasic problem (see subsection E, paragraph 1) by relaxing the perio-
dicity conditions (C.10) on the functions u(7,r) and V({,r), and require

only that
u(n + nT,r) = u(7,r), V({ + nT,r) = V{({,r), (G.1)

where n is some integer greater than 1, we may find subharmonic solutions
that satisfy (G.1) but not (C.10). Since any solution satisfying (C,1Q)
also satisfies (G.l), the solution of the modified problem is not unique.
The question then arises as to which of the several solutions are stable;
if more than one stable scolution exists, which of these is actually
reached as t — « will depend on the initial conditions. These problems
are quite well understoed for very simple types of nonlinear crdinary
differential equations; their investigation in connection with nonlinear
acoustics would appear to be both very difficult and rather important,

and would have to depend a good deal on numerical experimentation,

148



SECTION VI
SEMI-ITERATIVE METHODS AND SUMMABILITY

G, M. Muller

A, Introduction

Systems of linear eguations encountered in numerical analysis often
appear rather naturally in the form
y = My + f (A.1)
where M is a complex n X n matrix, f a given n-dimensional vector, and y
the unknown n-dimensional sclution vector. One of the "obvious” ways of
attempting to solve (A,1) is to set up the iterative scheme
Yp =My , + 1 (A.2)
with some initial vector yO. It is, of course, well known that Yy will

converge to y for arbitrary £ and y_ if and only if all the eigenvalues

0
of M are less than one in absolute value. Suppose now that the eigen-
values of M are real and lie in the open interval (1 - u,1), 4 > 2. Then
the eigenvalues of I - M (where I is the n X n identity matrix) lie in the
open interval (O,l), so that I - M is nonsingular and hence the solution
of (A,1) exists: on the other hand, the scheme (A.2) will fail to converge,
The common remedy [6, p. 188 is to observe that we may multiply (A.1) by
any nonsingular matrix H and add to both sides the term (I -H)y to obtain
the equivalent system

y = (HM+ I - H)y + Hf, (A.3)
but with a different associated iterative scheme,

v, = (EM+ I - H)vn Hf, (A.4)

a1t
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Here we have used the symbol vn to denote the successive iterates, to
distinguish them from the y's produced by (A.2). In the case at hand,
we choose H to be a constant ¢ to obtain the scheme

v
n

]

(aM+ 1-o)v + of, (A.5)
n-1

It is easily verified that the eigenvalues of &M + (1-a)I will lie in

the interval (-1,1) if and only if the constant o satisfies the condition
0=a<2/p<l, (A.6)

With any such choice of &, the scheme (A,5) will converge to the unique

solution of (A.3), which,for o # 0, is identical with the solution of

equation (A.1). Thus, whereas the sequence Yo of (A.2) diverges, we have

produced another sequence v which converges, and to the "right" limit y.
This result suggests that [vn} may be related to {yn} by a linecar segquence-
to-sequence transformation of the type studied in connection with the
theory of divergent series, In fact, if we set v_ = Yo it is easily

0

shown by induction that vn ig explicitly given hy

n
v = ¥ (n) ak(l-a)n_ky (A.7)

n k=0 \K k
whence it follows that {vn] is the well-known Euler-Knopp transform [1; 7,

Chap. 8] of order o of {yn}.

A related problem concerns the situation where the scheme (A,2) con-
verges and it is desired to form a sequence of linear combinations v of
the vectors yn such that {vn} converges faster than [yn}. Methods which
do this are called semi-iterative by Varga [15, Chap. 5]. For the best-
known such methods, it again turns out that it is unnecessary to form the
linear combinations explicitly from the y's; rather, the v's may be ob-

tained directly from a modification of the original iterative scheme.
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We mention, in particular, Richardson’'s first- and second-order methods,
of the form (respectively),

v
n

I

(QnM-+1 - an)vn—l +a f, (A.8)

and

v
n

]

My .+ Q-a)v ,+af. (A.9)

A third method, the Chebyshev semi-iterative method, is of the same form
as (A,9); in each case, the ¢'s are determined according to certain pre-
scriptions that need not concern us here., (For details and references

to the original literature, see [15, Chap. 5].)

We may ask about the algebraic relation of the v's of (A.8) to the
v's of (A,2}, allowing the an's to have arbitrary nonzero complex values
and putting aside, for the moment, any questions of convergence, If we
set dn = (1-—an)/an, then, as we shall see later, {vn} is the [F,dn], or

generalized Lototsky, transform of {yn}, provided we choose Vo = the

Yo
Euler-Knopp transform mentioned earlier is a particular case, with dn =
(1- o)/ for all n, It is perhaps remarkable that, although the scheme
(A.7) dates back to 1910 [17], the [F,dn] transform was first defined in

1959, by Jakimovski [9].

Equations (A.2) and (A.9) together define a sequence~to-sequence
transform that is as yet nameless. Our purpose in this section is to
define and study a class of sequence-to-sequence transformations which
can be put into one-to-one correspondence with semi-iterative schemes of
the sort we have been discussing, In subsection B we shall define this

class of P-transformations, basing our definition on sets of polynomials

satisfying linear recurrence relations. We shall then establish the

one-to-one correspondence hetween P-transformations and "reasonable'
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semi-iterative schemes; the results obtained are valid in arbitrary vec-
tor spaces. In subsection C we shall study a more general transformation,

. ] . . n
the normalized transformation, in complex euclidean n-space C and prove

several variants cf the basic result that, if a given transformation sums
the geometric series to its correct sum in an open set O of the complex
plane, it will correctly sum the matrix analogue of the geometric series
if the eigenvalues of the matrix lie in O, In subsection D we shall show
how the open set O may be determined from the consideration of an associ-
ated homogenecus linear difference equation if the normalized transforma-
tion is a P-transformation. Finally, in subsection E we shall study a
number of specific summability methods, based on particular classes of
P-transformations, and determine their open sets of summability; here we
shall make considerable use of results from the theory of linear differ-

ence eguations,

Completely omitted from the present account is any consideration of
the conditions under which a particular type of P-transformation is regu-
lar, i.e., transforms every convergent sequence into a sequence converg-
ing to the same limit, For the [F,dn]—transformation, this problem has
been extensively treated [5; 9, 11]; a general investigation, however,

is probably quite difficult,

B. Normalized and P-Transforms in a General Vector Space

In this subsection, let O be an arbitrary but fixed field; polyno-

mials and vector spaces will always be over 3.

Definition B.1l, For a given positive integer k, let Pm(x), m= 0,

1, ..., k-1 be given polynomials (in an indeterminate x), at least one
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of which is not identically zero. For m=k, k+1, ..., and £=1, ..., k,
(m) . . (m) .
let Q (x) be given polynomials; all but Qk {x) may be identically zero.

Form = k, k+1, ..., let

K
{m)
P (x) = £§1 Q “(x) P _,(x). (B.1)

The set {Pm(x)} of polynomials defined in this way for all nonnegative
integers m will be called a recursive polynomial set of order k. We shall

call the Q's the generators and PO, veas Pk—l the initial polynomials of

the set.

Definition B.2. Let [Pm(x)} he a recursive polynomial set of order

k, and let N(m) denote the degree of P (x). {pm(x)} will be called a

Pk—set if
P()=1, m=0,1, ..., k-1 (B.2)
kK (m)
T Q () =1, m=k, kel, ... (B.3)
b=1 4
ko
121 Q£ {x)- 1#0 identically, m = k, k+l, ... (B.4)

A Pk-set will be called proper if, additionally,
N(m) - ® as m = = ., (B.5)
We propose the unproved conjecture that every Pk—set ig, in fact,

proper; however, we shall not need to make use of (B.5) in establishing

the results of this section,.

Definition B,3. Let {Pm(x)} be a P -set, and define the coefficients

aij by N{i) j
P(x) = 2 a.. x (B.86)
1 J=‘-0 1]
for i =0, 1, ..., and j =0, 1, ..., N(i); and by aij = 0 for j > N(i).

The row-finite matrix (aij) will be called the Pk-matrix associated with
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{Pm(x)J. If [sn] is an arbitrary sequence of elements in a vector space
V over 3, the sequence {tn} defined by
N(i)
t. = Z a, . s, (B.7)
1 Jj=0 133
will be called the Pk—transform of {sn} associated with {Pm(x)},
We note that (B.1),

(B.2), and (B.3) imply the important property

N(i)
P1(1)= Z a,, =1

%o i , all i,

(B.8)

so that the t's are weighted means of the s's,

Definition B.4,

A polynomial set (transform, matrix) is defined to
be a (proper) fP-set (transform, matrix) if it is a (proper) Pk—set (trans-

form, matrix) for some positive integer k.

Definition B.5.

Let Q(x) be an arbitrary polynomial, We shall desig-

nate by Q(x) the polynomial obtained from Q(x) by the substitution

p-1

¥ - % xn, p21;
n=0

- 0, p =20

The following relation is easily verified:

QL) - Qx) = (1-x) Qx); (B.9)

in view of the division algorithm for polynomials, this relation can be

used as an alternative definition of 5(x).

We are now ready to state and prove the principal theorem of this

subsection,

Theorem B.1. and

Let V be a vector space, L a linear operator in V,
let £, SO ¢ V be arbitrary. Let {Pm(x)} be a Pk—set, A = (aij) its asso-

m
ciated matrix, and QE ) its generators., [Let {sm} be the sequence deter-
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Sp = Lsm_1 + f, m=1, 2, ... . (B.10)

Then the sequence {tm] determined by the initial polynomials through equa-

tion (B.7) for m = 0, 1, ..., k-1 and by
k k
- T (m) 5 (m)
£ i Q (Wt , + &y 6ﬂ (L)t (B.11)
for m = k, k+1, ..,, is the Pk-transform of {sm}.

Proof; From (B.10) it is easily shown by induction that

p Pzl n
s =Ls + X LT, p21. (B,12)
mn-+p m n=0

Now consider an auxiliary vector space, V', whose elements are formal
finite sums stj} the undefined elements Sj are assumed to form a basis
for V/. We define the shift operator E by

im m

El X ¢s’) = & e’ B.13)

(j:O J j) j=0 J Jj+1 (
and observe that E is a linear operator in V’, We note in particular that
g7 = Eps' . (B.14)
m+p m

Polynomials in linear operators obey the same rules of multiplication and
addition as do polynomials in an indeterminate x, Accordingly, if we de-

note by {té} the Pk-transform of {sé], it follows from (B.6), (B.7), (B.14),

and (B.1) that, for m = k, k+l,

k
, (m) (m) (m-£)
= ’ = E Fl
tm P (E)s0 Py Qﬂ (EY P (E)s0
k
- = (m) P
& Qz (E)tm—ﬂ (B.15)
We next define a mapping H from V° to V by
Zes? 2 Le.s, ; .16
chJ H chJ ; (B.18)

clearly, H is a homomorphism, and (B.12) is the image of Epsé under H,

Since H preserves multiplication by scalars and the formation of finite
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sums, for any polynomial Q(x) we have, by the definition of a(x),

Q(E)53 ﬁ Q(L)sj + QLT . (B.17)

Again making use of the fact that H is a homomorphism, we multiply both

sides of (B,17) by amj and sum over j to obtain

N{m) N(m) N(m)

Q(E) jéo amjsj E ALY T amjsj + L) = amjf (B.18)

j=0 j=0

or, by virtue of (8.8),

QE) t7 @ Q) t_ o+ BT . (B.19)

We now apply H to the first and last wmembers of (B.15) and make use

of (B.19) to obtain (B.11), thus proving the theorem.

So far, we pave been concerned with the relation between two se-
quences, {sn} and ttn}. We now consider the relaticon between the corres-
ponding underlying linear equations, i.e., the equations obtained from
(B.10) and (B.1ll) by setting S, = S all m, and tm =t, m> k. If I de-

notes the identity operator, we obtain

{(I - L)s = ¢ (B.20)
and k k
(m) ~{m)
[1 - 21 Q (L)} t = 221 QW1 . (B.21)
Suppose we define K [
2 o™y = o™ ; (B.22)
41 2
then
Q[m](l) =1 (B.23)
because of (B.3), and
k. -
£ 3™ = 3 (B.24)
A=1

T
~

because the operation is distributive with respect to addition. Ac-

cordingly, we may use (B.9) to rewrite {B,21) in the form
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™y a-wre - 3™ as (B.25)
from which it is clear that if s satisfies (B.20), then t = s will satisfy

{B.25). {The converse is not necessarily true,)

We may also write (B,.25) in the form
t = [5[“’](14) L+1 -~ 5[m](L):lt+6[m](L)f; (B.26)
this equation is related to (B.20) in exactly the same way as (A.3) is to
(A1), with a[m] taking the place of H. Thus, any Pk—set induces a semi-
iterative scheme (B.11) with a set of "reasonable'" underlying linear equa-
tions (B.26). We note that condition (B.4) ensures that none of the

a[m]

{x) vanish identically.

We are now ready to define the class of semi-iterative schemes that
stand in one-to-one correspondence with the class of Pk—transforms. We

require the following theorem:

Theorem B.2, For a given positive integer k, let {6[m](x)}, m =2 k,

be a given seguence of nonzero polyncmials. Let
m ~lm
Q[ ](X) = (x-1) Q[ ](X) + 1, (B.27)
. (m] . (m)

and write each Q (x) as the sum of k polynomials Qﬂ (x), 1 5 £ = k; all

(m) . . (m)
but Qk {x) may be identically zero. The the Qk {(x) are the generators

of a Pk-set.

Proof: (B.27) implies (B.3) and (B.3).

Suppose, then, that we are given a set {a[m](x)}, me k, We use
this set to construct an infinite set of linear equations of the type

Lm]

(B.26). With the definition of Q (x) as given by (B.27), these equa-

tions may bhe written in the form
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t = Q[m](L)t + 5[m](L)f . (B.28)

(L) as a sum of terms Q;m)

h
kt -order recursion relation of type (B.11); if we further specify tm,

{m]

By writing Q (L), we obtain from (B.28) a
m=20, 1, ..., k-1, as weighted means of the s We have constructed a
semi-iterative scheme with respect to the iterative scheme (B.10}), and
at the same time uniquely specified a Pk-transform to which the semi-
iterative scheme corresponds. Moreover, according to our discussion
following the proof of Theorem B.l, any Pk—transform may be specified
in this way; hence, the class of kth-order semi-iterative schemes con-
structed as above corresponds one-to-one to the c¢lass of Pk-transforms.

We may, therefore, unambiguously speak of a Pk—semi—iterative scheme,

It is convenient at this point to define a more general sequence-to-

sequence transformation than the {?-transformation.

Definition B.8. An arbitrary infinite set of polynomials {Pm(x)}

will be called normalized if Pm(l) = 1, all m, The matrix (aij) derived
from the set via (B.6) will be called a normalized matrix, and the cor-

responding transformation defined by (B.7) a normalized transformation.

The coefficients aij of a normalized matrix satisfy {B.8); it fol-
lows that any constant sequence {g, g, g, ...} is transformed into itself
by a normalized transformation. A fP-transformation is obviously a normal-

ized transformation.

Now let s Eobe different elements of V, and consider the two se-

0!
quences {sm}, {§m3 generated by (B.10), Let [Pm(x)} be normalized, and

{tm], {%m} the corresponding transforms of {Sm}’ {gm}. Define

€ =t -1 . (B.29)



Applying (B.12) to So and 50, we obtain

_~ _ P _ (P~
Sp sp =L S L S0 (B.30)

from which it readily follows that
[} = - 3 R
o Pm(L)(sO so) . (B.31)
Suppose now that s satisfies (B.20). If we put gO = s, then gm = s

m, and hence also %m = 8. This gives us the following result:

Theorem B.3. Let {Pm(x)} be normalized, and let {tm] be the associ-
ated transform of the sequence {sm] defined by (B.10}. If s satisfies

(B.20) and we define

[ = i - 8 (B.32)
then R m ’

Pm(L)(s0 - 8). (B.33)

®
I

C. Summability in C"

The relations established in the last subsection were purely alge-
braic; we now turn to consideration of convergence, If V is a complete
normed linear space, we can define summability in an obvious way. With
reference to a particular sequence-to-sequence transformation A, we shall

say that a sequence {sm} is summable (A) to the vector t if the A-trans-

formed sequence {tm} converges to t, and we shall speak in this context
of the A-method of summability. Although summability for more general
spaces may he of interest, we shall confine ourselves here to deriving
some results valid in the complex euclidean n-space Cn. A polynomial in
an indeterminate x may now be identified with the corresponding complex
polynomial, and a linear operator with the appropriate n X n matrix; I
will denote the identity matrix. Convergence in the euclidean norm is

equivalent to component-wise convergence,
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lLet L be a matrix such that I - L is nonsingular. Then (B,20) has

the unique solution -1
s=(I-1L) £, (c.1)

and the quantities em defined by (B.32) (with reference to a specific
normalized transformation) represent the error in using tm as an approxi-
mation to s, It is possible for tm to converge to some vector t £ s, in
which case em - €& £ 0; this may happen, e.g., with a P-transform such

that for the polynomials a[m](x) of Theorem B.2, some or all of the eigen-
values of a[m](L) either vanish or tend to zero as m —+ «. In the present
subsection, we develop some preliminary tools for investigating this type

of problem,

Theorem C.1, Let O be an open set of the complex plane. Suppose a
linear sequence-to-sequence transformation A sums the partial sums of the

geometric series, n
Co=1l+z+ ... 42z (C.2)
-1
to (1 - 2) for z € O, uniformly on compact subsets of 0, If the eigen-
values of L 1lie in O, then A sums the sequence
m
Sm=(I+L+'“ + LT (C.3)

£ec® to(r -1t

Proof: Following Faddeev and Faddeeva [G,p. 532], we observe that

if { is a complex number, the components of the vector (1 - CL)_lf are
rational functions of { with poles l/Ki, where the hi are the eigenvalues
of L. Accordingly, each component may be written as a finite sum of par-

tial fractions of the form
a (-2 07 (c.4)
where aiv is a constant and v is a nonnegative integer not exceeding the
multiplicity of hi.
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On the other hand, (I - gL)-lf may be expanded in the form

It + (LE + CoPf 4 L. (c.5)
and this expansion converges to the correct value for sufficiently small
values of [QI. The vector components of the partial sums of {(C.5) may
therefore be identified with the partial sums obtained by adding the con-
tributions from the expansions of the several terms (C.4). Now because
of the hypothesis about uniform convergence, the A-transform sums all
derivatives of the geometric series te their correct values, for z ¢ O,
The expansion of each term (C.4) is either a geometric series or its

{(v-1)st derivative, with argument z

kiC. Hence, for { = 1 and Ki € 0,
the A-transformation sums each vector component of {(C.5) to its correct

value., This proves the theorem.

It is a well-known phenomenon in summability theory that convergence
of the transform of a sequence {GO, cl,...}to a limit ¢ does not necessar-
ily imply the convergence of the transform of the sequence {0,00,01,...}

to ¢, However, if the O's are given by (C.2), and we define the shifted

sequence {3 }by R R
n G =0; 0 =0 m=1, 2, ... (c.8)

we can prove the following lemma:

Lemma C.1. Let the transformation A of Theorem C.l1 be normalized.
Then A sums the complex sequence {amg defined by (C.2) and (C.6) to

-1
(1 - z) for z € O, uniformly on compact subsets of O.

Proof: The case z = 0 is trivial. For z # 0, we can write

3 -_-%(0 - 1), m=20,1, ... . (c.7)
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For fixed z, the linearity of A and the fact that A is normalized

imply that A sums £8m} to

- 1 1 1
g = — ( - l) = 1-z° (C.g)

Z2\1-=
as asserted; the uniformity is obvious.
We can now prove a somewhat stronger theorem for normalized trans-

formations,

Theorem C,2, If, in addition to the hypotheses of Theorem C.1, it
is supposed that A is normalized, then A sums the sequence
m-1

s =1L"s + (I + L+ ... + L ¥y, {C.9)
m 0

£, 55 €, to (I - L) te.

Proof: By the lemma just proved, the sequence 3m is summed to
(1-—z)_1. An obvious adaptation of the proof of Theorem C,1 shows that
the theorem remains wvalid if 9 in (C.2) is replaced by am, and s, in
(C.3) by Em, the latter bheing defined by

~ ~
s. =0; 858 =38

m m-l’ m = l, 2, P, (C.lO)

Accordingly, for any f,
L'f=3s -5 (C.11)

is summed to zero. In particular, Lms is summed to zero. If we write
{C.12)

the conclusion of the present theorem follows,

Remark C.1, The seguence Sm defined by (C.9) is just the segquence

generated by (B.10).

We now derive a simple corollary of Thecorem B.3 that allows us to

restate in a convenient form the hypotheses of the theorem just proved.
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We note that Theorem B.3 applies, in particular, if V = C; under the ob-
vious isomorphism, vectors and matrices may be identified with complex
numbers, and vector and matrix norms with absolute values. If we choose
s =f=1, L =12z, then s = (1~ z)"l, and the sequence {sm} generated by
(B.10) consists of the partial sums of the geometric series, i.e., s =
T in the notation of (C.2). Therefore, if [Tm} is a normalized trans-
form of {Gm}, Theorem B.3 gives us

1 -z

T =

m 1-z 1-= pm(z)’ (C.13)

and hence the following result:

Lemma C,2, For any set O of the complex plane, the partial sums of
-1
the geometric series are (uniformly) summable to (1 - z) for z € 0 by
the transformation associated with the normalized set [Pm(z)} if and

only if, for z € 0, Pm(z) ~ 0 (uniformly) as m -~ <,

Theorem C,2 may now be restated as follows:

Theorem C.3. Let {Pm(z)} be normalized, and let O be an open set
of the complex plane such that for z £ 0, Pm(z) —+ 0, uniformly on compact
subsets of 0. Let L be a matrix whose eigenvalueg lie in 0, Then the
transformation associated with {Pm(z)} sums the sequence
m-1

m
Sm =L S + (I + L+ ... + L ¥f, (C.14)

£, 5,€C", to (I -1y,

This theorem, together with the preceding lemma, is analogous to a
result of Okada [13] on analytic continuation of functions analytic at

the origin.
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D. The Associated Linear Difference Equation

The recursion relation (B.l) may be regarded as a linear difference
equation, To emphasize this, we write

P(m,z)

Il
M

P (2); Qmz) =™ (2) (D.1)
and

E,z). (D.2)

m
k

P(m,z) = Z Qz(m,z) P(m
£=1

Whereas the emphasis so far has been on the fact that the P's are poly-
nomials in z, Equation {(D,2), regarded as a linear difference equation,
relegates to z the role of a parameter. 1In the light of Theorem C.3, the
important question is whether, for a given value of z, P(m,z) tends asymp-
totically to zero., The problem is not uniquely defined until we specify
the k initial wvalues P(0,z), ..., P(k-1,z). However, for many purposes

it is enough to find the largest open set O in C for which every solution
of (D.2) tends to zero, uniformly on compact subsets of O. Since it is
known from the theory of linear difference equations [12, P. 356 that

any solution of (D.2) can be expressed as a linear combination of k funda-

mental sclutions, we can combine Theorems B.1 and C.3 to obtain Theorem D.1,.

Theorem D.1. For some positive integer k, let {Qém)(z)} be an infin-
ite set of complex polynomials, defined for £ = 1, ..,, k and all integers

m 2 k., Let these polynomials be subject to the following conditions:

k
@ I My =1,
X (m
(b) 121 QE (z) - 1 1is not identically zero.

Define the polynomials 5[m](z) by

~[m] B r g {m) _ _ -1
Q (Z)—{Ezl% (z) - 1| (z-1) ~,
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Let O be an open set of the complex plane, and for each z € 0, let

() (k)
Pm (z), ---:Pm

(z) be a fundamental system of sclutions of the linear
difference equation

X
- (m)
P (2) = £§1 Q, (z) P _,(2),

such that, for each j, P;

J)(z) - 0 as m - », uniformly on compact subsets
of 0, Let L be an n X n matrix with eigenvalues in Q0. Let f be an arbi-

trary vector, and define the vectors tm by

k
_ (m) ~[m]
t, = £§1 Q}3 Ly ¢, + Q@ W, mz k,

-1
with arbitrary vectors to, Ve tk—l' Then tm =+ (I - L) f as m — <=,

The largest set O satisfying the hypotheses of the theorem will be

called the open set 2{ summability for the difference equation and its

assoclated Pk—methods.

E. Some Particular Classes of P-Methods

1. The Pl—Methods

The question of several linearly independent solutions to (D.2) does
not even arise for the Pl—methods; we discuss these separately because
they correspond to summability methods that have been extensively investi-
gated in recent years. Reverting to the notation of (B.l), we have (omit-
ting the unnecessary subscript on Q)

P () = ™2 B

m
. (m) (m) . .
with Po(l) =1, Q (1) =1, and Q "(2) # 1 identically. Clearly, every

42 (E.1)

Pl—set is proper in the sense of (B.5). The solution of (E,1) is given

explicitly by m
P (o) = J[ (@ p (2 (E.2)
k=1
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if we choose PO(z) = 1, the sequence-to-sequence transformation defined
by {Pm(z)} is identical with the [F*,Pn]—transformation of Meir L10].

(

k .
LlIn Meir's notation, our Q )(z) is written as Pk(z).] Meir's method
is a further generalization of the [F,dnl— or generalized Lototsky trans-

formation [5; 9; 11] in which the Q's are linear pelynomials, written in

the form
z+d
. ) k| .
[F,dn]—method. Q (Z) = m}; ; dk ;‘-! —1, PO =1,

If we define ak = (14—dk)_l, then Qk(z) = akz + 1 - wk, and the corres-
ponding semi-iterative scheme is (A.8). We mention two particular [F,dn]—
methods, If we set ak = ¢, then Pm(z) = (az + 1 - a)m. The correspond-
ing classical summarility method is the Euler-Knopp methed of order o

[l; 9]; the open set of summability, O, is the open disk lz- (anl— 1)‘ <

Ia"ll and the corresponding semi-iterative gcheme is Equation (A.5)

If we set d =k - 1, thenq = k'l, Q(k)(z) _klzs (1- k_l), and

it is known [2] that O = {z|Rez < 1]. The corresponding classical summa-
bility method is the Lototsky method [2; 3], a special case of the some-

what more general Karamata-Stirling methods [16]. It is worthwhile to

state Theorem D,1 for this particular case:

Theorem E.1. Let L be an n X n matrix whose eigenvalues lie in the

half-plane Rez < 1. 1If f and to are arbitrary vectors, and
-1 -1 -1
tm = f{m L+1l-m )tm_1 +m " f, m=1,
then 1
t (I -L) £ as m= = ,

Meir LlO] has given an explicit construction for finding a sequence

{dn} such that the corresponding [F,dn]—transformation sums the geometric
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series in {zIRe P(z) < 0}, where P(z) is a given polynomial with Re F(l)

= 0., It will be convenient to consider this method iun paragraph 3.

2. Methods of Euler-Knopp {(E-K) Type

We use this designation for P-methods in which the polynomials

(m)
)

reads

(z) are independent of m, The associaled difference equation then

k
Pm(Z) = zzl Qﬁ(z) Pm_E(z); (E.3)

for a particular value of z, a fundamental system of solutions is obtained
from the characteristic equation

k
k K~&

- Z = 0, E.4
" =1 Qﬂ(Z) b 0 ( )

To each simple root i of (E.4) there corresponds a solution um of (E.3);

m
for a root pj of multiplicity r(j) there is a set of sclutions Mj,

mu?,'..,, mr_lu? {12, p. 386]. Each root will, in general, be a function

of z, and every solution of (E.3) may be written in the form

r{J) i-1 m
P(z) = ¥ ¥ f (z) m W, (z), (E.D)
m j i=1 J1i 3
where the j-summation extends over the distinct roots of (E,4). As far

as the difference equation (E.3) is concerned, the coefficient functions
fji(z) are arbitrary; in connection with the P-transformation, however,

we are interested in choosing the f's so as to make (E.5) a polynomial,
with the additional requirement that Pm(l) = 1. This is always possible;
there are k arbitrary functions f'i which can be chosen so that the expres-
sion (E.5) is identical, for m = 0, 1, ..., k-1, with k given polymials
Pm(z), Pm(l) =1, It then follows from the fact that (E.5) satisfies

(E.4), and from (B.3), that (E.5) represents polynomials for all m, with

P (1) = 1.
m
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Unless one or more roots of (E.4) have a multiplicity greater than
one for all values of z [as would happen if (E.4) contains & factor
[F(p,z)]p, F(p,2z) being a polynomial in WP and z], the expression (E.5)
will generally be of the particular form

m
Pm(Z) = jl(z) pj (z). (E.8)

. f
J
It can easily he shown that the fjl(z) involve the reciprocal of the Van-
dermonde determinant [12, p. 9] of the p's, i.e., of the product H(Mj- wk)
taken over all j and k such that j > k. If two or more roots coalesce
for an isolated point 2y the singularity produced by the coalescence
must be removable since (E.6) is analytic and bounded in every deleted
neighborhood of Zgy- Evaluating the indeterminate form (E.6) as z — Z,
by L'Hospital's rule leads to the more general expression (E.5).

The open set of summability is O = {zl max lujl < 1}. In some cases,
the boundary of O may be found as follows. Sippose we can solve (E.4)
explicitly for z; then setting W = eie, 8 real, vields a parametric repre-
sentation of the locus C of points on which |p| = 1. C will either be
the boundary of a single unbounded region R, or it will divide the plane
into two or more disjoint regions Rj' Since each of the several roots L
of (E.4) depends continuously on z, it follows that R_ or Rj belongs to
0 if and only if for some point z; in R, or R_, |p] < 1 for all roots.
Note that since the pair of values W = 1, z = 1 satisfies (E.4), C always
goes through z = 1., As a simple illustration, consider the Pz—methods
associated with the difference equation

Pm(z) = asz_l(z)+ (1--cr)Pm (z). (E.7)

-2
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The characteristic equation reads
2
-z - (L-@) = 0, (E.8)
and C has the representation

e. Jloa . (E.9®)

Rir

zZ =

-1 satisfies (E.B), hence C also passes

The pair of values p = -1, =
through the point z = -1, The curve described by (E.9) is an ellipse
for any @ £ 0. From (E.8) we see that for z = 0, lul = |1-—a[. Hence
the interior of the ellipse belongs to ¢ if and only if jl— a|<:l. For
any o £ 0, (E.8) has one root j ~ @z for |z| - =; hence the exterior of
the ellipse does not belong to 0, In particular, if o is real, we may
write (E.9) in the form

z=cos 0 + i (5 - )sin g, (E.10)
which represents an ellipse through the points 1, :‘L(201.l -1), -1,
-1(2&_1— 1y. 1In the special case o = 2, the ellipse degenerates into the
line segment [—1, 1] which bounds a single region R_.

For the methods associated with

1

p ==
W2 =352 [P (2 +P (2],
C has the representation
cos 28 + cos 9§ sin 26 + sin 4
= i . E.
z cos 8 + 1 Tl T s 8 + 1 (E.11)
C has a double point at z = -2, and divides the plane into three disjoint

regions, Two of these are unbounded; the third coincides with 0. O con-
tains the open unit disk and the line segment (-2, 1); its boundary is

tangent to the unit circle at z = 1, and has a cusp at z = =2,

If one or more of the Qﬂ(z) are quadratic in z, we can still solve

{(E.4) explicitly for z; there may be two distinct curves, C. and CZ’ for

1
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which 1u| = 1, corresponding to the two branches of z considered as a
function of W, For Q's of higher degree, probably the only case which
is reasonahbly tractable is the Pl—method of E-K type, with the differ-

ence equation
Pm(z) = Q(z) Pm_l(z); (E.12)

0 is the set |Q(z)| < 1, consisting of the interiors of the one or sev-
eral branches of the lemniscate |Q(z)| = 1; for Q{z) = adz + 1 - & we have
the classical E-K method. (For the properties of lemniscates, see [8,

Vol. 2, p. 264].)

We conclude this paragraph with a few remarks on what may be called
parasitic extensions of Pk—methods of E~-K type. Let us write ¥(W,z), a
polynomial in p and z, for the lefthand side of (E.4). Suppose

¥,2) = F(W) Y (p,2), (E.13)

F(y) being a polynomial of degree p in ¥ whose coefficients are independ-

ent of z, Consider the Pk_p-methods asgsociated with the difference equa-
tion whose characteristic equation is

to(w,2) = 0. (E.14)

If we call the open set of summability of the methods derived from (E.14)

00 and that of the original group of methods Ol’ then clearly Ol = 00 if

for all of the roots of F(u) = 0, luj < 1; and 01 is empty if for at least
one of the roots of F(u) = 0, iu| = 1. Therefore, the original Pk—methods
may be called parasitic extensions of the Pk p—methods associated with the

difference equation derived from (E.14). Very similar considerations ap-

ply if
¥(u,2) = LF(u,2) P Yo(p,z), (E.15)

where F{u,z) is a polynomial in p and z; here it suffices to consider the

simpler methods derived from F{u,z) Yo(p,z) = 0.
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3. Asymptotically Singular Pk—Methods

If the coefficients of the difference equation (D.2) satisfy the con-
ditions Qﬂ(m,z) — Qﬂ(z) as m - «, (E.16)
the equation is of a type first studied by Poincaré, His original work
on the asymptotic behavior of the solutions was subsequently extended by
many investigators, notably Perron; a summary and extensive bibliography
is given by Schifke [14]. Milne-Thomson [12, p. 523 presents the theo-

rems of Poincaré and Perron in detail. We shall apply some of the results

to the study of asymptotically singular Pk—methods; by this we shall under-
stand methods associated with difference equations for which Qﬂ(z) in (E.16)
is a constant ag, independent of z. The solutions P_(m,z) of the asymp-
totic form of (D.2) then do not depend on =z; together with the requirement
P(m,1) = 1, this implies P_(m,z) = 1.

As an illustration, we consider the class of difference equations

k k
-
Pm(z) = Lzl a, Pm_ﬂ(z) + m ﬂEl qz(z) Pm_ﬁ(z), (E.17)

where o and the a's are constants and the g(z)'s are polynemizals, subject

to the conditions,

k k

¥ a, =1, 2 oq,(1) = 0;
£=1 i £=1 £

k

Z g,(z) not identically 0O; (E.18)
£=1 £

o > 0.

These conditions ensure that (E.17) is, in fact, the difference equation

associated with a class of asymptotically singular Pk-methods.

Let )

Kk k
- a, b (E.19)
£=1

O(u) =k
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be the characteristic polynomial of the asymptotic form of (E.17). Con-
sider the characteristic equation
B(k) = 0, (E.20)

Evidently, it has a root Ml = 1. We restrict our attention to cases where

the remaining roots “i all have moduli less than 1, with |ui| £ |uj[, for
i £ 3. A theorem of Perron [12, P. 531] then asserts that there exists a
fundamental set of solutions of (E,17}, Pél)(z), i=1, ..., k, such that

(for fixed 2z), Pili(z)
lim __T%T——_' = b (E.21)

m- «
P (2)
(1}

clearly, for i £ 1, Pil)

(z) = 0 as m - ©», The behavior of Pm {z) for
m—~ © ig obtained as a special case of a theorem of Aljancid [a]:

(L
Pm+1(z)

—————

P(l)(z)
m

_ 1k )
1+ 0 %] ts q,(2) + o(n ). (E.22)
i=1

It follows from well-known properties of infinite products that for any

z such that Pél)(z) # 0 for some finite m, P;I)(z) - constant # 0 for
@ > 1, and that for 0 <o =1, Pil)(z) - 0 if and only if
k
Re[e’(l) L q (z)] <0, (E.23)
£=1 &

We have not established uniformity {with respect to z on compact

(1 _

m

sets) either in (E.21) or for P 0. This could be obtained from a

reconsideration of the proofs of the cited theorems of Perron and Aljancié;
however, since the criterion (E.23) depends only on X qﬂ(z), the open set
of summability cannot, in any case, exceed that of the corresponding Pl—
method feor which convergence on any open set does indeed imply uniform

convergence on compact subsets, For k = 1, equation (E,17) takes the

simple form
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P (2) = (1+m %(2)] P _1(2), (E.24)

1
with g{0) = 0; except for some trivial modifications, the choice & =1
gives Meir's method, referred to at the end of paragraph 1, with the open

set of summability Re q(z)} < 0,

173






REFERENCES

Section I

Blackstock, D. T., "On plane, spherical and cylindrical sound waves
of finite amplitude in lossless fluids," J. Acoust. Soc. Amer. 386,
217-219 (1964).

, "Thermoviscous attenuation of plane, periodic, finite~

amplitude sound waves,” J. Acoust. Soc. Amer. 36, 534-542 (1964).

, "'Convergence of the Keck-Beyer perturbation solution

for plane waves of finite amplitudes in a viscous fluid," J. Acoust.
Soc. Amer. 39, 411-413 (1966},

, "'Connection between the Fay and Fubini solutions for plane

sound waves of finite amplitude,” J. Acoust. Soc. Amer. 39, 1019-1026

(1966) .

Heaps, H. S., "Waveform of finite amplitude derived from equations
of hydrodynamics,” J. Acoust. Soc. Amer. 34, 355-356 (1962).

Laird, T. L., E. Ackerman, J. B. Randels, and H. L. Oestreicher,
Spherical Waves of Finite Amplitude, WADC 57-463 {AD 130949), Aero
Medical Laboratory, Wright-Patterson Air Force Base, Ohio, 1957.

Mason, P, M., Ed., Physical Acoustics, Volume II - Part B (Properties
of Polymers and Nonlinear Acoustics), Academic Press, New York, 18963,

Morse, P, M., and H, Feshhach, Methods of Theoretical Physics, 2 vols.,
MecGraw-Hill, New York, 1953.

Section II

1.

Courant, R., and K. O, Friedrichs, Supersonic Flow and Shock Waves,
Interscience Publishers, Inc., New York, 1948, Section 160-161,

Guderley, G., "Starke kugelige und zylindrische Verdichtungsstidsse

in der Nahe des Kugelmittelpunktes bzw. der Zylinderachse,”" Luftfahrt-
forschung 19, 302-312 (1943).

Lefschetz, 8., Differential Equations: Geometric Theory, Interscience

Publishers, Inc., New York, 1963, Chap. IX.

175



REFERENCES

Section III

1. Courant, R., and K. 0. Friedrichs, Supersonic Flow and Shock Waves,
Interscience Publishers, Inc., New York, 1948,

Section IV

1, Gelfand, I. M., and 8. Z. Fomin, Calculus of Variations, translated
by R. A. Silverman, Prentice-Hall, 1963, pp. 54-59, 79-83, 168-191,

2. Courant, R., and D. Hilbert, Methods of Mathematical Physics, Vol. 1,
Interscience Publishers, Inc., New York, 1953, pp. 260-266.

3. PFunk, P., Variationsrechnung und ihre Anwendung in Physik und Technik,
Springer-Verlag, 1962, pp. 437-450,.

Section V

1. Blackstock, D. T., "Propagation of plane sound waves of finite ampli-
tude in nondissipative fluids,” J. Acoust. Soc. Amer, 34, 9-30 (1962).

2. , 'On plane, spherical and cylindrical sound waves of
finite amplitude in lossless fluids,” J. Acoust. Soc. Amer. 36,
217-219 (1964),

3. Carslaw, H, 5., Introduction to the Theory of Fourier Series and
Integrals, 3rd ed., Dover, New York, 1930.

4. Courant, R., and K. 0. Fredrichs, Supersonic Flow and Shock Waves,
Intersciences Publishers, Inc., New York, 1948.

5. PFaddeev, D. K., and V. N, Faddeeva, Computational Methods of Linear
Algebra, W, H. Freeman, San Francisco, 1963.

6. Hamming, R. W., Numerical Methods for Scientists and Engineers,
McGraw-Hill, New York, 1962,

7. Hayashi, Chihiro, Nonlinear Oscillations in Physical Systems,
McGraw-Hill, New York, 1964,

8. Heaps, H. S., "Waveform of finite amplitude derived from equations
of hydrodynamics,” J. Acoust. Soc. Amer. 34, 355-356 (1962)

176



REFERENCES

Section V (continued)

9.

10.

11.

12,

Hildebrand, F. B., Introduction to Numerical Analysis, McGraw-Hill,
New York, 1956.

Morse, P. M., Vibration and Sound, McGraw-Hill, New York, 1936.

Richtmyer, R. D., Difference Methods for Initial-Value Problems,
Interscience Publishers, Inc., New York, 1937.

Varga, R. 8., Matrix Iterative Analysis, Prentice-Hall, Englewcod
Cliffs, New Jersey, 1962.

Section VI

1.

Agnew, R. P., "Euler transformations,” Amer. J. Math. 66, 313-338
(1944).

, "'The Lototsky method for evaluation of series," Mich,
Math. J. 4, 105-128 (1957).

, "Relations among the Lototsky, Borel and other methods
for evaluations of series,” Mich. Math, J. 6, 363-371 (1859) .

Aljancié, S., "Uber den Perronschen Satz in der Theorie der linearen
Differenzengleichungen,' Acad. Serbe Sci. Publ. Inst. Math. 13,
47-56 (1959).

Cowling, V. F., and C. L, Miracle, "Some results for the generalized
Lototsky transform,” Canad. J. Math. 14, 418-435 (1962).

Faddeev, D. K., and V. N. Faddeeva, Computational Methods of Linear
Algebra, W. H, Freeman, San Francisco, 1963,

Hardy, G. H., Divergent Series, Oxford University Press, Oxford, 1949.

Hille, Einar, Analytic Function Theory, 2 volumes, Ginn and Company,
Boston, 1962,

Jakimovski, Amnon, "A generalization of the Lototsky method of summa~
bility,” Mich. Math. J. 6, 277-290 (1959).

177



Section VI (continued)

10.

11,

12,

13,

14,

15.

16.

i7.

1t

Meir, Amram, "Analytic continuation by summation-methods,
Math. 1, 224-228 (1963).

Israel J.

, "'On two problems concerning the generalized Lototsky
transforms,’ Canad. J. Math. 16, 339-342 (1964).

Milne-Thomson, L, M,, The Calculus of Finite Differences, Macmillan,
London, 1933.

Okada, Y., "Uber die Anniherung analytischer Funktionen,” Math. Zeit.
23, 62-71 (1925).

Schafke, F. W., "Lbsungstypen von Differenzengleichungen und Summen-
gleichungen in normierten abelschen Gruppen,' Math. Zeit. §§,
61-104 (1965).

Varga, R. 8., Matrix Iterative Analysis, Prentice-Hall, Englewood
Cliffs, New Jersey, 1962,

Vuckovié, V., "The mutual inclusion of Karamata-Stirling methods of
summation,” Mich. Math. J. 6, 291-297 (195%2).

Young, David, "'On Richardson's method for solving linear systems
with positive definite matrices," J., Math, and Phys. 32, 243-235
(1954).

178



Security Classification

DOCUMENT CONTROL DATA-R& D

(Security classificetion of title, body of abstract and indexing annotaticon must be entered when the overaldl repart is clossitied)
1T QRIGINATING ACTIVITY (Corporate author) 2a. REFORT SECURITY CLASSIFICATION
Stanford Research Institute UNCLASSIFIED
Menlo Park, California 94025 2b, GHGOP
N/A

3. REPORT TITLE

RESEARCH IN NONLINEAR ACOUSTICS

>~

DESCRIPTIVE NOTES [Type of report and inciusive dates)

Final Report, 15 November 1964 - 15 September 1966

23

- AUTHORIS) (First name, middle initial, last name)

Ablow, Clarence M., McCulley, Leonard D., Muller, George M., Penico, Anthony J.,
Rajapakse, Yapa D.

. REFCRT DATE T8, TOTAL NO. OF PAGES b. HNO. OF REFS
December 1967 173 49
ga. CONTRACT OR GRANT ND'AF 33 (615)_2234 9a, ORIGINATOR'S REFPORT NUMBE RI(S)
Stanford Research Institute
. #RosECT MO 7231 Final Report for Project 5290
<. Task No. 723105 3b. CTHER REPQRT NO!S| (Any other numbets thet may be assigned
this report)
. AMRL-TR-67-54

10. DISTRIBUTION STATEMENT
Distribution of this document is unlimited. It may be released to the Clearinghouse,
Department of Commerce, for sale to the general public.

11 SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Aerospace Medical Research Laboratories,
Aerospace Medical Division, Air Force
Systems Command, Wright-Patterson AFB, OChio

13 ABSTRACT

45433
The possibility that nonlinear acoustic flows may be represented by
spherical progreséive waves (in the sense of Courant and Friedrichs) was examined
and found to be unlikely. An iterative finite-difference method for the calcula-
tion of continuous periodic spherical flows was developed together with a FORTRAN
code, SPHERE, that implements the method. Sample calculations have shown that the
code is effective but slow, and several ways for reducing the computation time are
suggested. Convergence difficulties in one of the iterative loops were overcome
by the use of a semi-iterative underrelaxation scheme. When applied to linear
systems, such semi-iterative schemes were found to be equivalent to a class of
summability methods that may be regarded as generalizations of Euler summation.

DD o 1473 (Pace 1)

S/N 0101.807-6801 Security Classification




Security Classification

MEY WORDS

LIN® A LINK 8

LinK C©

ROLE wT ROLE L

ROLE wT

Periodic Flows

Spherical Progressive Waves

Hyperbolic Partial Differential Equations
Iteration

Underrelaxation

Semi-Iterative

Summability

BEuler Summability

DD "2™ 1473 (sack)

{PAGE 2}

Security Classification






