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In strain dependent ( or nonlinear) high damping metals, measured values of damping vs. 
strain are often inconsistent for different damping test configurations. To better understand the 
nature of such inconsistencies shear and bending test configurations were modeled analytically. 
A hysteretic material point stress-strain relationship was used for each modeling configuration. 
This model is similar to established constitutive laws of viscoplastic behavior and has been 
adapted especially for the study of nonlinear hysteresis and the problem of strain dependent 
damping. Analytical material response analyses of bending and torsion samples indicated that 
when the damping of a single nonlinear material is plotted against the one-dimensional local 
strain of the sample, highly discrepant results are produced. However, when the same results are 
plotted against an invariant measure of three-dimensional local distortion the agreement 
improves considerably. The method can also be applied to homogeneous isotropic nonlinear 
damping materials that are not metallic (such as amorphous nonlinear high damping polymers). 
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INTRODUCTION 

In addition to add-on damping techniques currently being used in the Navy, material 
damping is being investigated as a potential means of further reducing machine vibration, noise, 
and sound emission in seafaring vessels. Ideally a high damping structural material provides a 
sufficient amount of both stiffness and damping so as to be used as a sole machine part or 
vibrating element without added treatments. Such materials are most useful for oscillating parts 
or elements that cannot be damped by conventional external treatments. Also these materials can 
be useful in situations where heat or other environmental factors ( e.g. moisture, corrosion) have 
to be considered. This approach is also useful in damping longitudinal vibrations which cannot 
be effectively controlled by external treatments. 

Because high stiffness and strength are required in many important applications, metals 
which possess a large inherent damping capacity have been extensively sought [1,2]. Some 
specific applications include gears and gear webs, pump castings, engine parts, propellers, and 
others (see [1 ]). High damping metals are also used as plug inserts and cladding, and such 
applications can provide a reduction of resonant amplification factors as well as the attenuation 
of ringing [1]. 

Generally "high damping" in metal is a measured peak loss factor or phase lag with a 
value of 10-2 or higher. Indeed many alloy compositions have been studied and found to possess 
such levels of damping ( e.g. see [3-8]). Mechanisms that give rise to damping in metals include: 
movement of point defects, dislocations, or domain walls. These effects give rise to macroscopic 
hysteresis and thus damping. For example, in Cu-Mn high damping alloys straining the material 
induces movement of twin boundaries in the antiferromagnetic matrix, even at low strain levels 
(10-6 to 10-4) [3]. High damping metals possess strain dependent characteristics because the 
primary damping mechanisms function over a finite range of strain. For example, in 
magnetostrictive materials a minimum strain is necessary to move magnetic domain boundaries 
away from their pinning points and thus activate the damping mechanism. However, once a 
maximum strain is reached which produces full alignment of the magnetic domains the 
boundaries are no longer able to move and the primary damping mechanism is saturated. Such 
effects are apparent by virtue of a well defined peak in the plot of measured damping vs. 
specimen strain. Examples of magnetostrictive metallic materials exhibiting strain-dependent 
damping are given in Fig. 1. Because the measured damping data varies with changes in 
specimen strain amplitude the character of this type of response is called nonlinear. A 
generalized stress-strain diagram corresponding to such nonlinear damping mechanisms is 
illustrated in Fig. 2. Note from this figure that the response that is hysteretic with a damping 
mechanism that becomes saturated at a strain of e0. 

The data obtained for a single strain dependent material in different test configurations is 
often inconsistent. Data from separate bending and torsion tests [3] given in Fig. 3 shows this 
effect; indeed the results indicate that the torsional tests produce significantly higher values of 
damping for common levels of peak sample strain. However it is important to note that the 
strains on the abscissa are shear strains in the case of torsional data and axial strains in the case 
of bending data. These separate strains are not equivalent and the consequence of plotting 
damping data vs strain in this manner will be discussed in the analysis section of this paper. 

ICC-2 



16. 0 

14. 0 

12. 0 

0 
0 ... 10. 0 
* 
a:: 
0 

8. 0 f-
u 
< 
u. 
U) 6.0 U) 
0 
...J 

4.0 

2. 0 

o.o 

LOSS FACTOR VS STRAIN AMPLITUDE IN 7 FE-CR BASED ALLOYS 

5 10 15 20 

fl Fg-l6%Cr-2%Mo. [4) 
II Fg-l6%Cr. [4) 
e V AC ROS IL. [5) 
0 Fg-10%Cr-4%Mo. (6) 
• TRANCUALLOY. [~ 
'Y Fg-12%Cr. (4) 
D SILENTALLOY. (8) 

25 30 35 
STRAIN AMPLITUDE* lOES 

40 45 

Figure 1: Strain Amplitude Dependent Damping in Fe-Cr Based High Damping Alloys 
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Figure 2: Generalized Macroscopic Hysteresis of Nonlinear Damping Materials 
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Strain dependent materials are, at best, difficult to model analytically because of their 
nonlinear characteristics. Early work in this area concentrated on evaluating the damping of 
members by combining material energy absorbing properties with geometric and stress 
distribution factors [9,10]. Another approach is to use a constitutive law which describes 
nonlinear material behavior and hysteresis at a point, and this approach will be used here. Many 
such laws exist (e.g. see [11,12]), but these are usually specific to postyielding viscoplastic 
behavior and large strain levels. In this paper a proposed constitutive law [13] for the stress­
strain behavior of shape memory alloys is adapted to the case of nonlinear damping. The 
equations of this law were applied to the cases of simple uniaxial tension-compression and shear 
loading, and then were expanded to analyze beam and shaft test samples in bending and torsion 
respectively. The strain dependent nature of each test configuration was computed, and because 
this behavior was of primary interest, temperature and frequency effects were not considered. 

ANALYSIS 

In order to make a useful study of strain dependent damping, a three-dimensional 
constitutive law of hysteretic material behavior was used in analyses. The law, which is of the 
viscoplastic type, was originally developed to model the large strain hysteretic behavior of shape 
memory alloys [13], and especially superelastic behavior. This choice of modeling schemes was 
pursued because the hysteretic response of superelastic materials is similar in character to that 
high damping metals (see Fig. 2), except that the stress and strain levels are different by many 
orders of magnitude. This does not prevent the use of the constitutive law, however, as long as 
the material properties of the law can be scaled to accommodate the lower stress and strain levels 
associated with the dissipative mechanisms in the damping material. 

The constitutive law is for homogeneous and isotropic material behavior and is based 
upon a separation of strain and strain rate into elastic and inelastic components: 

(la) 

(lb) 

Here an overhead dot represents ordinary time differentiation. Thus Eij and Eij are the three­

dimensional tensors of strain and strain rate, and the superscripts "el" and "in" designate the 
respective elastic and inelastic components of each. The elastic component follows directly from 
the theory of elasticity [1 4]: 

(2) 

where oij is the stress tensor, bij is the Kronecker delta,1 and where E and v are the elastic 

material constants. 
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The basic equations for the evolution of inelastic strain were taken from a model of shape 
memory alloy behavior [13]. In this model the growth of inelastic strain is a function of 
backstress ~ij• which is a variable that accounts for internal stress fields in the material. In order 

to model the saturation of damping mechanisms a unit step function was included to stop the 
growth of inelastic strain after a limiting value of distortion. This resulted in the following set of 
equations: 

(3) 

(4) 

where eij• Sjj, and bij are the deviatoric tensors of strain, stress and backstress respectively; the 

difference sij - bij is often referred to as the effective stress. The quantities l2, J2, and K2 are the 

second order invariants of the deviatoric tensors of strain, dimensionless effective stress, and 
strain rate, respectively. All these quantities are formally described below: 

1 
eij = Eij - 3 Eick f,ij 

1 
Sij = Oij - 3 Okk f,ij 

1 
bij = ~ij - 3 ~kk f,ij 

1 S" - b .. S· · - b .. J __ 1) l] 1) 1) 
2-2 y y 

Thus the growth of inelastic strain is a function of stress, backstress, and strain rate. Note that 
plus sign appearing with the radical sign of the square root of the invariants in Eqs. (3)-( 4) 
indicates that the square root, once taken, is to be positive (i.e. the absolute value of the square 
root). Also, 12 represents a measure of volumetric distortion that is invariant with respect to 

coordinate transformations, and this will be an important quantity in the forthcoming discussion. 

To summarize, the material constants in Eqs. (2)-( 4) are: 
E: Axial elastic modulus 
v: Poisson ratio of elastic material 
Y: Axial stress level where the damping mechanism is 

activated thus giving rise to an inelastic response2 

a: Constant determining the slope of the inelastic region 
= Ey/(E - Ey ), where Ey is the inelastic slope 

2 The material constant Y, as it is used here, corresponds to a stress whereupon the slope of the axial stress-strain 
curve is lowered to accomodate the activation of internal damping mechanisms. Therefore Y represents a material 
constant that is analogous to the yield stress of large strain plastic behavior ( indeed for the constitutive law in [ 11] 
Y does represent the yield stress) and above this stress the inelastic response is important. 
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n: Constant controlling the sharpness of transition from elastic to 
inelastic behavior 

fT: Constant controlling the size of the hysteresis loop 

a: Constant controlling the amount of elastic recovery during unloading 

Also, Eqs. (3) and ( 4) contain two special functions: the error function, erf( ), and the 
unit step function, {u( )}. Simply stated the purpose of the error and unit step functions 
contained in Eq. ( 4) is to allow for the recovery of accumulated inelastic strain during unloading, 
and thus simulate the unique behavior of superelastic materials [13]. As stated earlier the 
consequence of the unit step function in Eq. (3) is to eliminate inelastic growth outside a limiting 
value of volumetric distortion. 

Let us take a moment to explain the role of the inelastic response in the modeling of 
strain dependent damping. The inelastic component of strain is responsible for the dissipation of 
energy that takes place in cyclic loading. Equations (1 )-( 4) have been used to represent the 
macroscopic stress-strain behavior of shape memory alloys, and especially superelastic materials 
(13]. The hysteretic character of superelasticity is macroscopically similar to that of nonlinear 
anelasticity except that the respective stress and strain levels of each type of response are 
different by many orders of magnitude. Therefore, the inelastic response governed by Eqs. (3)-
( 4) can be used to macroscopically represent the effect of a nonlinear anelastic damping 
mechanism. 

By using Eqs. (1 )-( 4), a number of special cases can be considered. First let us consider 
the cases of uniaxial tension-compression and pure shear loading. The state of uniaxial loading 
(superscript u) is described by: 

[ 

E O O ] 
E~ = 0 -µE 0 

0 0 -µE 

_;. ~ ] 
o -pe 

[

o o o] 
0~ = 0 0 0 

0 0 0 

o o] 
0 0 
0 0 

Here E, o, and f3 are the axial strain, stress, and backstress in the x direction of Cartesian space, 

respectively. Also the lateral strain and strain rate induced by the Poisson effect (-µE and -pe) are 
associated with the coefficientsµ and p respectively. Because of the nonlinear effect induced by 
the damping mechanism µ and p are neither constant nor equal. In order to evaluate these factors 
the lateral strain and strain rate are decomposed into elastic and inelastic parts. The total lateral 
strain is decomposed in the same way. The elastic component is related to the elastic axial strain 
by the elastic Poisson ratio v, and the inelastic component is related to the axial inelastic 
response in an incompressible manner (recall that the Poisson ratio associated with 
incompressible behavior is .5) (14]. Therefore we have -µe - -veel - .Sein. Similarly, the lateral 

strain rate is -pe - -veel - .sein. Using these relations one can deduce thatµ and pare both 
variable and different from one another in the following manner: 
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If the behavior is only a small departure from elasticity then µ ::::: p ::::: v; conversely if a condition 
of strain and strain rate exists where inelastic behavior dominates and where o/E « E and do/dE « 

Ethen the response is essentially incompressible withµ::::: p::::: .5. 

For the state of shear loading (superscripts) we have: 

0 l 0 0 i 0 
2 2 

s 
l O 0 

.s 
E .. = E .. = l O 0 lJ lJ 2 2 [

O ,: OJ o:j = ,: 0 0 

0 0 0 
[
O; OJ 

f3:j = ; 0 0 
0 0 0 

0 0 0 0 0 0 

Here y and y are the engineering shear strain and strain rate, ,: is the shear stress, and ; is the 
shear backstress in the xy plane of Cartesian space. 

By using the appropriate stress, backstress, and strain tensors, as well as their respective 
deviators and associated invariants, Eqs. (1)-(4) produce the following uniaxial equations: 

[ 
2(1+p) 1~1n-l [~] l a= E e - 3 lel y y {u(Ea - IEI)} 

[ 
o [2(1 +µ) ] . ] f3 = Ea E - E + fT erf 3 aE {u(-EE)} 

Note that Ea is the limiting strain for inelastic growth. At strains above Ea the damping 

mechanism is saturated and elastic behavior prevails. Also, IEI is the absolute value of E. These 
equations can be further simplified by taking the total material response to be incompressible in 
the inelastic region (i.e. when Y /E :s E :s Ea), This simplification does not greatly affect the 

overall dissipative character of the axial response. Thus by setting µ = p = .5 in the nonlinear 
inelastic response terms we obtain: 

(5) 

f3 = Ea [E -~ + fT erf(aE) {u(-EE)}] (6) 
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Following the same process, the shear equations are: 

(7) 

(8) 

where 

2(1 + v) 
Yo = {j e0 is strain limiting inelastic growth in shear 

G = E is the elastic shear modulus 
2(1 + v) 

y 
Y s = {j is the shear stress whereupon the damping 

mechanism is activated 

Note that Ys falls out of the formulation automatically in a manner that is consistent with the 

theory of maximum distortional strain energy [15]. This is because Eq. (3) is dependent on the 
stress gradient of a potential function [13] that contains a von Mises type condition for the onset 
of the inelastic damping mechanism. Later the cases of bending and torsion will be modeled 
using finite difference geometries in conjunction with the above equations. 

Now let us examine the results produced by numerical integration of Eqs. (5)-(6) and (7)­
(8); a sinusoidal history of strain input was specified with strain amplitudes of Ep in the axial 

case and Yp in the shear case. These amplitudes were specified to be greater than the limiting 

strains so that the full character of the predicted response could be displayed in illustrative plots. 
The results of calculations for the axial and shear loading conditions are given in Figs. 4 and 5 
respectively. Both figures possess the same characteristics: elastic behavior dominates in the 
region of the origin as well as outside the limiting strain, and a hysteresis loop is manifested in 
the full cycle of strain application. The area enclosed by the hysteresis loop epresents the energy 
absorbed by the material undergoing cyclic oscillation. The elastic modulus of E = 28.5x106 psi 
and limiting strain of e0 = .0001 were selected based on the elastic modulus and approximate 

strain of peak damping in Fe-Cr alloys ( see Fig. 1 ). The remaining material constants used in 
the calculations that generated Figs. 4 and 5 were not selected to reproduce the behavior of any 
specified damping material; rather they were selected to approximate the general character of a 
nonlinear damping metal and allow for some investigative analyses. It should be noted that the 
results generated by the constitutive equations are numerically stable and insensitive to the rate 
of strain input [13]. Also the elastic and inelastic material properties (i.e. E, By, and Y) are 

accurately reproduced in numerical calculations [13]. 
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By having numerical results of the type just presented, it is possible to numerically 
calculate the energy absorbed per cycle. We can then compute the material damping by dividing 
this energy by the product of 2n and an energy storage term. This corresponds to the measure of 
damping known as the loss factor ri 

/l.W 
ri=-

2nW 
(9) 

In Eq. (9) /l. Wis the energy absorbed due to damping and Wis a measure of stored energy, often 
selected as 

1 
W = 2Emax a 

Emax 

(10) 

When the damping mechanism is linear rather than nonlinear W represents the energy stored in a 
linear elastic material at peak strain. Also, for linear materials the loss factor is constant over a 
wide range strain because /l. W and W are proportional to one another. This is not the case for 
nonlinear materials. By using Eqs. (5)-(6) and (7)-(8) in calculations for the cyclic material 
response over a range of peak axial and shear strains, and computing the loss factor associated 
with each peak strain according to Eqs. (9) and (10), the general character of the damping vs. 
strain diagram of nonlinear materials was produced; this is shown in Fig. 6. Note that both 
curves possess the characteristic damping peak associated with nonlinear damping materials. 

However the separate curves in Fig. 6 that represent axial and shear loading differ 
significantly with respect to one another. The cause of this difference was first investigated by 
evaluating the amount of energy absorbed in each loading configuration. The amount of energy 
absorbed, plotted as a function of peak strain, is given in Fig. 7. Above the respective limiting 
axial and shear strains the amount of energy absorbed by the material is essentially the same for 
both loading configurations, their difference being less than 1 %. Therefore the difference in the 
character of the two separate responses must be due to other factors. 

It turns out that the plots given in both Figs. 6 and 7 are misleading because the abscissa 
of these figures represents values of strain associated with separate axial and shear loading 
conditions, and the strains associated with these separate conditions are not equivalent. Therefore 
another measure of deformation equivalent to both types of loading needs to be employed. One 
such possibility is to use a measure of local distortion experienced by the strained material. Let 
us define an equivalent strain E as follows: 

(11) 

This measure is similar to the effective plastic strain in plastically deforming materials [14]. It is 
clear that e has a physical meaning that is independent of the choice of coordinate axes since it is 
based on the invariant 12, which is the I2 is the second invariant of the deviatoric strain eij (also 
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Loss Factor vs. Peak Strain: Axial and Shear Loading 
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called the distortional component of strain3 ). Therefore e is an invariant measure of the local 
distortion. 

By considering the separate states of axial and shear strain, and by taking the Poisson 
ratio to be the simple constant v for axial case, one deduces that the equivalent strains for each 
state of strain are as follows: 

(uniaxial loading) 

-S -11 
£ = 2 y ( shear loading) 

By using the peak equivalent strains of axial and shear loading in place of the peak strains used 
in Figs. 6 and 7 a more consistent pattern of results is developed. This is first done for the 
amount of energy absorbed as shown in Fig. 8. Note from this figure that for both cases the 
energy absorbed as a function of the distortion is in very good agreement along the entire 
abscissa. In Fig. 9 the loss factors of the axial and shear loading cases are also plotted against the 
peak equivalent strain. The results in this figure are now also much more consistent than before; 
indeed the breadth of each damping curve spans the same values of equivalent strain and the 
peak of each damping curve occurs at approximately the same level of distortion. 

The only inconsistency that now remains is in the value of the peak loss factor of each 
separate curve and this is simply due to the occurrence of different values of stored energy being 
produced by the separate loading conditions. Indeed, because the modulus of the material in 
shear is lower than that of the same material under axial loading, the value of peak shear stress 
will also be lower than the peak axial stress at equivalent levels of distortion. Consequently, at 
equal levels of distortion, the measure of stored energy W will be larger in axial loading than in 
shear and this will cause the loss modulus in shear to be greater than the loss modulus in axial 
loading. 

Because bending and torsion are common damping test configurations lets us next 
proceed to the following cases: bending of a solid beam having length L and rectangular cross­
section of width b and thickness h, and torsion of a solid shaft having length L and circular 
cross-section of radius R. Even though the stress-strain response is nonlinear we can consider 
both cases in a simple fashion without needing to consider residual stresses or movement of the 
neutral axis of the beam. This is because the response takes place in a manner which gives 
symmetric behavior for positive and negative strains, and the response is hysteretic with 
essentially no residual strain. When considering bending and torsion problems with more 
pronounced inelastic behavior and residual stresses then special considerations must be made 
when computing the acting moments [16]. 

3 The tensor eij is known as the distortional component of strain because, by definition, it subtracts the dilitational 

component of deformation out of the strain tensor Ejj· 
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Loss Factor vs. Peak Equivalent Strain: £ = 312 
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Schematic illustrations of the bending and torsion cases are shown in Fig. 10. Note that 
the strain profiles in each geometry are linear, passing through zero at the position of the neutral 
axis of the beam and starting at zero at the center of the shaft. Also note that Ep is the value of 

the axial strain at the beam surface while Yp is the value of the engineering shear strain at the 

shaft surface. Because the problems under consideration involve only small strain, the following 
simple relations can be used to compute the moments and angular displacements for the beam 
and shaft geometries respectively: 

M=-f yodA 

A 

T=fr1:dA 
A 

and 

and 

EpL 
8 = h 

,+,_~ 
'f - R 

(beam) 

(shaft) 

Here y is the vertical distance from the neutral axis of the beam cross-section, a is the axial 

stress in the longitudinal fibers of the beam, M is the resultant moment bending the beam, and 8 

is the beam rotation; for the shaft r is the distance from the center of the circular cross-section, ,: 

is the shear stress due to torsion, T is the resultant torque twisting the shaft, and cj> is the angle of 
twist. In both cases A denotes the area of cross-section. 

In analyses the surface strains of each geometry were specified to act sinusoidally in 
time. In addition each geometry was subdivided into a large number of finite, but thin, 
subsections; i.e. the infinitesimal distances dy and dr in Fig. 10 were replaced by small but finite 
distance Ay and Ar respectively. Also, the strain distribution for each finite subsection was 
assumed to be constant over the subsection thickness and the value of the strain was taken as the 
value of the ~train profile at the center of the subsection. Having knowledge of the strain profile 
of the cross-section of each geometry, specifying the surface amplitudes and a sinusoidal history 
for each one, the stress history for each subsection of the geometry was computed numerically. 
Specifically, Eqs. (5)-(6) were integrated to give the stress profile time history of the bending 
beam and (7)-(8) were integrated for the shear stress profile time history of the shaft. Then the 
following formulas were used to compute the resultant moment and torque histories of the beam 
and shaft respectively: 

N 

M = -b }: Yi oi Ay 

i=l 

N 

T = 2rt}: (ri)2 1:i Ar 

i=l 

where N is the number of subdivisions making up the cross-sectional geometry and where the 
subscript i indicates reference to the location of a single subsection. 
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Figure 10: Schematic Drawing of Strain Profile in Bending and Torsion Geometries 
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The loss factor of each sample geometry was then calculated for a specified value of 
surface strain amplitude according to Eq. (9) where 6. W was determined by the area enclosed by 
the resultant moment vs. angular displacement hysteretic response and W was determined by 

W= ½emaxMI 
8max 

(beam) 

(shaft) 

The damping values which were computed in this way were found to be independent of sample 
geometry, i.e. for a given surface amplitude the ratio of 6. W to W remained constant for changes 
in cross-sectional size, sample length or both. 

By repeating the calculations over a range of surface amplitudes the loss factor was 
plotted against the surface amplitude for both the bending and torsion cases as shown in Fig. 11. 
Note that the character of the damping vs. surface amplitude curves are vastly different with 
respect to one another. This is analogous the trend shown earlier in Fig. 6 for one dimensional 
behavior. Also, by comparing Fig. 11 to Fig. 6 it is clear that the character of the damping vs. 
peak strain curve of each sample is quite different than that corresponding to the respective one­
dimensional material point responses. This is because of the strain dependent nature of the 
damping and the fact that strain is distributed throughout the sample; therefore some regions of 
the geometry may be contributing significantly to the overall damping of the solid sample while 
others are not. 

As was done earlier, the inconsistent nature of the results given in Fig. 11 can be 
improved by making use of the peak equivalent strain E at the surface rather than the surface 
strain amplitude alone. Using Eq. (11) to calculate the amounts of peak equivalent strain at the 
surface of the bending and torsion samples, and plotting the corresponding loss factors of each 
sample against these values produces the curves given in Fig. 12. This figure shows that the use 
of peak equivalent strain for the finite sized geometries of bending and torsion samples gives an 
improved measure of correlation in the same manner that was exhibited earlier for the one­
dimensional cases. 

Thus presentation of nonlinear damping data as a function of equivalent strain rather than 
as a function of sample strain can be very useful. It is probably most useful in comparing 
damping data obtained by different test methods. It may also be useful in design work where the 
dynamic strains in a vibrating part or member are known. To show this let us consider an 
example where a designer wishes to use a high damping, but nonlinear, material in an 
application where bending is the primary mode of deformation, and suppose that damping data is 
available only from torsional tests. If the vibrational strain levels to be expected in service can be 
deduced from load and design analyses, then these strain levels can be converted to the measure 
of equivalent strain introduced in this paper. Applying the same conversion to the peak shear 
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Figure 11: Amplitude Dependent Damping in Bending and Torsion vs. Peak Surface Strain 

IC'C-22 



Strain Dependent Damping in Beam and Shaft Samples 

'"' 

0.100 

0.090 

0.080 

0.070 

.S 0.060 
C) 
o:s 
~ 0.050 
fl) 
fl) 

3 0.040 

0.030 

0.020 

0.010 

0.000 
0.000000 

0 a a a o Bending Beam 
b. a a a " Twisting Shaft 

-4 -4 
~ 0=1x10 , ')'o=l.56x10 
Y=855 psi , Ys=494 psi 
E=28.5x106 psi , G=10.56x106 psi 

-5 n=3 a=.818 a=80000 f1 =4x10 

0.000100 0.000200 0.000300 
Peak Equivalent Strain 

Figure 12: Amplitude Dependent Damping in Bending and Torsion vs. Peak Equivalent Strain 
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strains of the torsional damping data the designer would then be able to estimate whether or not 
the material damping will be in a range of peak performance for the application of interest. 

SUMMARY 

The work presented in this paper includes two major aspects; 1) modeling of nonlinear 
( or strain dependent) damping behavior via constitutive equations and 2) a way of improving 
correlation of nonlinear damping data via use of equivalent measures of distortion. These efforts 
were conducted in order to gain a better understanding of macroscopic nonlinear high damping 
material behavior and also to obtain a means in which to better correlate existing discrepancies 
in reported data for high damping materials. The modeling scheme applies to homogeneous 
isotropic materials and is adapted from a viscoplastic law through incorporation of material 
constants that correspond to small strain damping mechanisms. Also the law was modified to 
include damping mechanisms that become saturated after a given amount of strain. Analyses 
were made to calculate the loss factor of the common damping test configurations of bending 
and torsion. To do this material point relationships were used at each point in the cross-sectional 
geometry. In this way it was possible to relate the damping of the material to the damping of the 
specimen. The results did not depend on the relative dimensions of the sample geometry; rather 
the calculated loss factors depended only on the mode of deformation. The results showed that 
the strain dependent damping associated with each test were vastly different when plotted solely 
against the peak surface strain of the sample geometry. This is because the peak strains that 
correspond to each of these test configurations, namely axial and shear strain, are not equivalent 
to one another. However if an invariant measure of peak sample distortion is used in place of 
peak sample strain, then the correlation of the nonlinear damping of separate bending and torsion 
samples is predicted to improve considerably. Such an improved capacity for the correlation of 
nonlinear damping data may be very useful in comparing data obtained from different tests. 
Future research will include the modeling of specific nonlinear damping data. Also, constitutive 
law material parameters that are physically motivated by the microstructure will be studied. 
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