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BENDING AND STRETCHING OF PLATES "
SPECIAL MODELS FOR UPPER AND LOWER BOUNDS

B. Fraeijs de Veubeke**

The purpose of this report is to deal with certain difficulties arising
in the construction of equilibrium models and displacement models of
finite elements, yielding upper bounds or lower bounds to static influence
coefficients.

The constraints imposed on the number of parameters of the displace-
ment field or the stress field, in relation to the number of generalized
coordinates, in order to achieve either continuity of displacements or
continuity of stress transmission within the structure, are sometimes
hard to satisfy. Two cases are precented, a displacement model for
bending and an equilibrium model for stretching, where the difficulties
are removed by a particular grouping of elements in a larger building
block.

To make the report self-contained, the dual theories of displacement
and equilibrium models are briefly reviewed.

DISPLACEMENT MODELS (Reference 1, 2 and 4)

The displacement field within the element is approximated by a linear superposition of a
finite number of displacement modes, including the rigid body modes. The unknown intensities
a; of the assumed modes are the parameters of the field and form the coordinates of a column
matrix @. From the parameters of the field we pass to a set of generalized displacements
qj according to the fillowing rules:

a. Along each boundary, where the element is to be joined to a neighboring element, a
complete set of boundary displacement modes, compatible with the parametric field, is chosen,
The generalized displacements pertaining to this boundary are defined to be the intensities of
these boundary modes.

b. The same boundary modes are valid for the neighboring element. In this manner,
equating the corresponding generalized displacements secures complete continuity of the
displacement field across the elements.

The justification of these rules is that the resulting displacement field for the whole
structure is piece-wise differentiable and lower bounds are obtained for static influence
coefficients.

Since the boundary modes are deduced from the parametric displacement field, a linear
relationship is always available between the parameters Q; and the generalized displacements
qj ; in matrix form ‘

q=5a 7_ (n
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On the other hand the strain energy of the element is always available as a quadratic form

in the parameters:
i

v =3~0TAG (A=AT) (2)

Three cases must then be distinguished:
Case (a)

The simplest case is when the number m of generalized displacements is equal to the
number n of parameters and Equation 1 appears as a linear transformation with a non-singular
matrix 8, There is a reciprocal transformation

a=Tq with T=8" (3)
The strain energy can be written as a quadraticform in the generalized displacements
u=‘,'a—qTK q’ with K =T AT (4)

Let gdenote the column matrix of static generalized loads associated to the generalized
displacements, Then, according to the theorem of CLAPEYRON

| T | T
Uz=>q Ka=—q 9

and, since this is true for any q matrix,
9:=Kaq {5
and K is the ‘‘stiffness matrix’’ of the element,

Furthermore, considering Equation 3, the displacement field U is expressible as a linear
superposition of ‘‘q - modes”’ WJ

=Z%ﬂhnhz) (6)

The physical significance of generalized loads is obtained by substitution of this expression
into the virtual work equation

2 >
ng=2q 9.=IX°u

- >
dv+Jfp-u ds (7)

where X denotes the actually applied body forces and p p the actually applied surface tractions,
Identification of the coefficients of the q j on both sides gives

gj=fX-de+fp-W]dS _ {(8)
so that the @ -~ modes appear also to be the weighting functions of the applied loads.
Case (b)

When the number of parameters exceeds the number of generalized displacements required
for continuity purposes (n > m), one possible procedure is as follows:

Take a complementary set of (n - m) generalized displacements, represented by the
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column-matrix r , so that

[7]= sa

is a non-singular transformation, whose reciprocal can he written

@:=Toq+T,r (9}
The displacement field is then expressible in terms of Q@ -~ modes and r - modes
— - —
us Ya; W+ T vy (10)

Substitution of Equation 9 into 2 shows the stiffness relations to be

9 “Kgat+tK,r (2)
with
- ]
qu -T‘:l ATq

Kge Tq-AT, x;q
Kee = T; AT,

where @q is the set of generalized loads related to g and g, to r. If one operates with the

complete stiffness matrix
Kaq Kqr
Krq Kir

one introduces unnecessary constraints of continuity between the displacement fields of the
elements, which is equivalent to lowering the bounds obtained for the influence coefficients,
A final step in the procedure is therefore the elimination of the complementary set of
generalized displacements, Because the q - modes necessarily contain the rigid body degrees
of freedom, the matrix K,  is non-singular and r can be taken from Equation 12 and sub-
stituted into Equation 11, yielding ‘

9,-K;, 9, =Ka (13)

where K=Keq=Kgr Kiv Keq (14)

This expression of K is the operational stiffness matrix of the element, It must be noted that
the set of generalized loads associated to q is thereby modified. With the notation

Kf-r‘ ={fjk ?

the weighting functions of the new loads are displayed in the result

- —_— > —>
gj-jx-(Vj-ijk_v:)dv+fp-twj Tty V) ds (15)
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The procedure described has the advantage of keeping track of the physical significance of
the generalized loads and also of ylelding information on complementary generalized dis-
placements of physical interest, To this purpose the equations

= l —
r= Ko (o, qu q)
can be kept in slow memory and computed after solving for the qQ - modes, The spar element

model, whose correctbehavior inbending has beena source of difficulties, is an example where
this procedure gives excellent results (Reference 6 and 8).

Case (c)

The worst case occurs when the number of generalized displacements, necessary for
continuity purposes, exceeds the number of parameters (m > n). In most of these cases an
increase in the number of displacements modes (parameters), besides compilicating the model,
also increases the number of boundary modes, so that the inequality persists. The boundary
modes never form an independent set and it proves impossible to set up a stiffness matrix.
However, as will be shown later, it is sometimes possible by direct analysis to obtain
continuity of displacements and independent boundary modes for a group of such elements. The
success depends on the geometry of the boundaries internal to the group. A case in point is
represented by the quadrilateral plate in bending (Reference 7).

EQUILIBRIUM MODELS (Reference 6)

. The stress field within the element is approximated by a linear superposition of stress-
modes. Each stress-mode satisfies internal equilibrium conditions. For the sake of simplicity
it will be assumed that these conditions are homogeneous, although the theory can be extended
to cover the case of equilibrium in the presence of body forces {Reference 6), The external
loading of the structure must then be conceived to take place through surface tractions
applied along the boundaries of the elements, The unknown intensities 3;of the stress-modes
are the parameters of the field and form the coordinates of a column matrix 8.

From the parameters of the field we pass to a set of generalized loads g i according to the
following rules:

(a) Along each houndary, where the element is to be joined to a neighboring element, a
complete set of boundary surface traction modes, compatible with the parametric field, is
chosen. The generalized loads pertaining to this boundary are defined to be the intensities
of these surface traction-modes.

(b) The same houndary modes are valid for the neighboring element. In this manner we
can obtain, either by reciprocity of generalized loads, or by equilibrium with an external
loading mode of the same nature, complete continuity in the transmission of stresses,

The justification of these rules is thatthe resulting stress-field of the whole structure is an
equilibrium field, thereby providing upper bounds to static influence coefficients. Since the
boundary surface tractlion-modes are deduced from the parametric field, a linear relationship
is always available between the parameters [3, of the field and the generalized loads g; in
matrix form

g = Cﬂ {16)

where € is the load connection matrix. As willbecome evident later, it is a rectangular matrix,
tie number of rows (generalized loads) exceeding the number of columns (parameters) by at
least the number of rigid body degrees of freedom.
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On the other hand the complementary energy of the element can always be expressed as a
quadratic form in the parameters:
B F B (7)

The symmetric matrix F, the flexibility matrix of the element, is necessarily non-singular.

The physical interpretation of the generalized displacements is obtained by virtual work
considerations. Let

Za, 3’; (i8)

express the decomposition of surface tractions in modes for a given boundary b, Then by
definition of virtual work along this boundary,

- > = S _
fbp.udS—Zgjj;Pj-udS—Zng] (19)
Hence '
_ > -
qj = .{; Pj-v ds (20)

and the generalized displacements are weighted means of the displacements along the boundary
under consideration, the surface traction modes playing the role of weighting functions. It
should be noted that, unless the internal deformation field turns out to be integrable, no other
information is available about displacements than the above weighted averages.

A stiffness matrix for the equilibrium model is now easily built up by an appeal to the
complementary energy principle, To this purpose, all the generalized displacemenis are
considered to be specified quantities and the complementary potential energy expressed in
terms of the parameters:

-9' q=— BTcl q

The principle
_iﬁTFB —BT ch min imum
where the parameters can be varied independently, yields the compatibility conditions
| FB:=¢"gq - (21
From Equations 16 and 21 follows then
-cB=(cfF ' ¢ig (22)
In other words, the stiffness matrix of the element is
K=CF ' ¢ (23)
In contrast with displacement models, a discrepancy between the number of parameters
and the number of generalized loads does not effect the usefulness of the model through the

possible appearance of spurious Kkinematical deformation modes, Observe first that the
homogeneous system

cB=o0 —_— B=o (24)

86T



AFFDL-TR-66-80

has only the trivial solution B = 0, Indeed, referring back to the non-homogeneous system
Equation 16, it is tantamount to stating that in the absence of external loads (@ = 0) the
internal stresses must vanish. As a result, and because F is non-singular, the solutions of
the homogeneous problem

Kgq=-=o (25)

are all contained In the homogeneous problem

T
C q=0 (26)

Problem Equation 25 aims at discovering the displacement systems that leave the element
unstressed,. Rigid body modes

q-= u“) i= [,2...|’ (27)
are certainly solutions
chu, o t28)

and are generally to be found by elementary considerations, Hence the number m of generalized
loads certainly exceeds the number n of paramete:'s by the number r of rigid body freedoms:

m 2> n+r (29}
However, because of the property Equation 24, (';T is a (n x m) matrix of rank n, so that the
number of solutions of Equations 26 and 25 is exactly m - n. Therefore, if Equation 29 is not

an equality, other displacement systems appear that leave the element unstressed, they are the
kinematical deformation modes:

- T - . -
q-z(“ C Z(jy <O J=r 4+, ,m=(n+r) (30)

From the structure Equation 23 of the stiffness matrix it is also obvious that

T - ' -
Il“, K =0 :(}) K =0
and, consequently, that
T e
U(” 9 - (3”
T -
tp 9°° (32)

Equation 31 expresses the external equilibrium conditions of the element under the applied
loads; Equation 32 the additional constraints on the applied loads due to the kinematical
deformability of the element. These consirainis constitute the undesirable feature of some
equilibrium models,

Another feature of equilibrium models is the appearance of kinematical freedoms in a group
of assembled elements. Each element undergoes a rigid body motion but the group is able to
distort, A case in point i8 the quadrilateral plate formed of four triangular panels, each of
which is under a plane state of constant stress (Reference 3). A way out of this difficulty is
a suitable geometric pattern for the assemblage, whereby the constraints on the external loads
can be satisfied simply by avoiding loads on the internal boundaries of the group.
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If the elements are sufficiently sophisticated to prevent relative translations and rotations
when agsembled, the previous difficulty does not arise. However such elements have a tendancy
to produce their own kinematical modes. Two ways are open to remove the difficulties. The
first consists in sacrificing perfect stress transmission across boundaries by a reduction in
the number of generalized loads, The defictency in stress transmission should be statically
equivalent to zero along a boundary so that its effect can be expected to be small, by appeal
to the de Saint-Venant’s principle. The potential energy of the removed loads should be
converted into complementary energy, if the model is still required to give upper bounds
to the influence coefficients. This canbe done when the internal deformation field is integrable
(Reference 6),

The second way out is a grouping of the elements in a larger building block, where, by
suitable geometry and avoidance of external loadingon the internal boundaries, the constraints
on the loading of the external boundaries of the group are removed. This is very similar to
the procedure for avoiding group kinematice and will be illustrated by the triangular panel
under a plane state of linearly varying stresses.

A DISPLACEMENT MODEL FOR PLATE BENDING

This model illustrates the idea of grouping a small number of simple elements, with a
suitable geometry, to provide the correct balance between number of parameters and number
of generalized coordinates,

The theory developed by G. SANDER and the author (Reference 7) is presented here with

considerable simplifications due to the adoption of oblique coordinates. In rectangular
coordinates (£ , m), the strain energy per unit area according to the Kirchhoff theory is

( , 2 2
w =D(-é-(w&- +w"7"l’ ~{1 =-v) (”’ff w,,m ""{-q,) (33)

Now let then axis turn to form an angle g with the other. This will be our (x, y) oblique
coordinate system. We have

9 -9 2 . Q2 _ a2
9f  ox dn sin a ( dy °°° @ "3 )
and consequently
"'{6 EWyx
| !
wE'q = m (ny — £0S Gw‘l) (34)
w.,m = Fn'!—? (w” -2 cos @ w,, +cos a Wy )

Noting that the correspondence between surface elements is

d€ d7n = sina dx dy
the strain energy of the plate in oblique coordinates turns out to be

1
U= + -
oo o f/D {(w“ W,y "2cos aw,,

2
} -2 s'inza (i~} (W“wyy-w:y)}dxdy
(35)
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We adopt for the vertical deflection a complete cubic parametric field:
WEa +a,x b agy ta,x +2agxy + gy

+ 4(a.,x"' + a,xzy + a, xy? + a,oy’) (36)

Suppose the plate element to be triangular, two of the sides being defined tobe x=oandy=o
respectively.

Along y = o we have

%
1

a|+azx+q4x + 4 a_. x

{37
2

"

w
y

a;+2a,x + 4 a«x
Hence deflecticns and slopes along this side depend on 7 parameters or 7 boundary displace-
ment modes. We caninfact express the parameters in terms of a triplet (deflection + 2 slopes)
at one vertex, a second friplet at the second vertex and a transverse slope at mid-distance,
The total number of generalized displacements required for the triangle is then equal to 12
(3 triplets at the vertices and 3 mid-distance slopes), while the totalnumber of field param-
eters is only 10. One easily convinces oneself that there is no escape from this difficulty
by modifying the geometry of the element. If we complicate the field by quartic terms, we
need only two out of five possible and there is no guidance as to which one should be chosen,
Indeed there is every reason to suspect that, unless some preferential direction is desirable
in the approximation, we would ruin the isotropic behavior of the element by some arbitrary
choice,

It will now be shown that if the element is grouped at the outset with three other cnes, as
indicated on Figure 1, perfect compatibility in deflections and siopes is achievable for the
quadrilateral panel as a whole, Let Equation 36 be the field of triangle 1. Then, according to
Equation 37, the same valugs must be retained for the parameters(a,,a,Qs,a4,04 <7 andag)
of the field of triangle 2, in order to preserve continuity of deflections and slopes along the
internal boundary between the two. But the three remaining parameters can be arbitrarily
changed to some other‘values(a; a; anda_ ). Similarly, by noting that along x = o

2 3
W = (:i +a,y + aqy +4a,y
a8

w

2
X @, +2a,y +4 a,y

Compatibility between fields 1 and 3 is achieved by keeping (a' a,,a, »a,a g% and ap) but
changing the remaining three to new arbitrary values ( a, .a and aa) Tﬁe last Tield, fleld of
trla.ngle 4, is now compatible with both fields 2 and 3, if descrlbed by the parameters (@, ,q,
Q320+ Qg QgrClys e O 8N Q). In other words it must incorporate both changes and this is pos-

sible because the changes affect different sets of parameters,

The total number of parameters is now increased by six units and equal to 16. The total
number of generalized coordinates needed along the four sides of the quadrilateral is also
16 (four triplets at the vertices and four mid-distance transverse slopes), The major burden
of the analysis istoinvertthe q =S @ relationship. It is desirable to do so analytically, both for
accuracy in the numerical work and to establish the weighting functions capable of translating
any external load into generalized loads. This burden is considerably reduced by the simple
geometry provided by the oblique coordinates. One method consists in using the triplet

= = a. = w
a, = w, @, =Yy, 0 a_ y,0
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(the deflection and slopes at the origin) as auxiliary unknowns. In each triangle the seven
remaining parameters can then be solved in terms of these unknowns, the triplets at the two
other vertices and a transverse slope at mid-distance along the external boundary. This
program entails no more than the solution of systems of order two,

Identification of the expressions found for the same parameters furnishes a system to solve
for the remaining unkmowns, The final result is broken down for presentation as follows: a
column matrix of vertexdisplacements is denotad by w, column matrices for vertex slopes are
denoted by w X and wy ,» & column matrix for x-slopes halfway is denoted by¢.

For the corresponding row matrices:

N
["'x,l Wx,2 ¥x,3 "x,q]

Wy = ["’y, 1 Wy,2 Wy3 Wye ]

¢ - [4’:2 b3 Pas Pa ]

The first three parameters are needed only for establishing weighting functions, not for energy
computations:

a,
[02] =A'+Axw‘ +Ay 'y+A¢¢

as
with
A = ‘I —xs 3 0 -3 0
0 4] 0] o
I I' %, xgly, ~y,) ' 0 -x, xylp-y) O
A, = -3x (y,-y4) =3y, (x —x5)  Bxgly,=y,)  3Byylx, —x4)
X 6(‘|_K3}(Yz _y‘] lo 2 4 4 0( 3 S 5
i
[ 0 o o 0
Ay = o] 0 0O 0
S I T
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TR K Y Xy Ky Vg X KV, X) X3 Yy
2
Ay - 3x, y : “3xy ¥ 3 -3x
d 30x, -3l yg-va) ) Ya 3 Ya 3 Yz 1 Y2
30, X3 =3x, xy 3x, %y =3x, %3
The curvature matrix
Wy x
Y = Wyy =2%, +8x Yy, +8y ry (39)
Yyy

leads to a presentation of the other parameters as:

Yo = [ :: ] = P§-+I‘°" u,+-ro’u,+rf¢ (40)

ag

Ok Y P
The {3 x 4) matrices I‘O,I‘ o,l"o.I‘o are given in Appendix B. They are submatrices of a
(3 x 18) '

l.'o =(r'oo r:: roy rf’

such that

=TI, a (41

where the order of generalized displacements is taken to be

T et @ ol 47
qQ =l{w w, w ¢)

Similarly
[ 3 a, .
Y, : | ag = I; q (42)
L. as
and
Qg
7y= a,] = ry q , (43)

where the submatrices of I'x and I y

r, -0y BT ) R R i o

are given in Appendix B.
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The strain energy Equation 35 can be written in matrix form, using the curvature matrix, as

l T
U== [/ Dy Hy)dc dy (44)
with
l | —-2cosQ {v sinza-l-coszal
H: —— -2cosa 4cosza+2(!-—v) ~2¢os Q (45)
sin® a 2
{vsinla+ cofa) —2cos I

To obtain the contribution of triangle 1 to the stiffness matrix, we substitute Equations 39, 41,
42, and 43, obtaining

T T T
K =(T; WD, A +(Ty WD, +T; HT,) &} +(T KT, + I KT, )a)
T XX T T T 6)
HE, HE)A HL UL, +T, w0 A+ u L) Al

with geometrical constants evaluated over the area of triangle 1:
AY = a4 [[ D dxdy

A

=18 U| Dx dx dy A‘: =16 [f Dy dx dy

]

A‘I"‘ = 64 ff Ox2 dx dy Al"’ = 64 [ Dxy dx dy AYY =64 [f Dy* ox dy

For constant bending rigidity D, we have simply

o _ x_ 8 2 Yy _8 2
AI z 20:&I Y, Al = -—3 Dxl Y, Al "3 DxI Ya
X _ 16 3 Xy _ 8 2 2 yy__, 6

A =3 Dxl Y, A, =3 Dx' Y, A, 5 Dx, y"z

The matrix operations leading to K, are best performed numerically. To include the con-
tributions of the three remaining triangles to the stiffness matrix, new matrices I"should be
displayed, containing the expressions of a,, a;.a,, @y, a4, and q/, interms of the generalized
displacements. .

To save space, a simple rule can be given to perform the necessary modifications on the
submatrices of Appendix B. To pass from triangle 1 to triangle 2 it is enough to exchange the
subscripts 2 and 4 everywhere; this leaves invariant the expressions of the parameters “‘fhlch
are still applicable (a control on the analytical inversion) but changes @, toQg » a, toa  and
Qe t0 @, It also exchanges the order of the generalized displacements Wy 5, Wy 42 Wy, 24
Wy arbras ey ‘f, 1420d¢p ., S0 thatone is cautioned to restore this order by the cérrespond-
ing ‘'exchange of columns in the submatrices, Similarly the exchange of subscripts 1 and 3 in the
field of triangle 1, produces the expressions valid for triangle 3. Finally the double exchange
produces the field for triangle 4. it should be observed that in the calculation of the geometrical
constants, each exchange of subscripts mustbe accompaniedby a change in sign. The complete
(16 x 16) stiffness matrix

K=K +K, +K, +K,
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is now built up but expressed in ‘‘localdirections’’, those of the diagonals of the quadrilateral.
Should they be the same for all quadrilaterals, the stiffness matrix can be used directly. If
they are not, the slope directions should be aligned on two reference directions, common to
all the structural elements,

AN EQUILIBRIUM MODEL FOR PLATE STRETCHING WITH
A LINEARLY VARYING STRESS FIELD

Remarkable raising of lower bounds of influence coefficients were obtained in displacement
models for plate stretching, when passing from the linear displacement field of Turner
(Reference 1) to a quadratic one, keeping the basic triangular building block (Reference 6). It
is then natural to ask whether a similar lowering of upper bounds could be obtained by passing
from the constant stress equilibrium model (Reference 6), to an equilibrium model with
linearly varying stresses. Besides the obvious bettering of the approximation, one might
expect that such a model could avoid the kinematical deformation freedoms encountered when
assembling the constant stress models (Reference 6).

It turns out that the assumption of linearly varying stresses leads to kinematical deformation
modes within the element itself and that the way of overcoming this difficulty by a suitable
assemblage of linear fields is exactly the sameas that uged for the plate bending displacement
model. This is perhaps not surprising in view of the known analogy between transverse
displacements in plate bending and Airy function in plate stretching. An equilibrium field,
without body forces, is obtained for triangle 1, by the cubic Airy function

A(\x,yh-é—una"‘b Xy -+~-—é~cy2

6
This equilibrium field is
€y =ctax +ry
T Ty TP+ px + oqy {47)
cry= a+mzx + py

As shown in Appendix A, all this is valid in oblique coordinates, provided stresses are
defined properly. Along each side of triangle 1, we have 4 surface traction boundary modes,
as shown in Figure 2. According to the equilibrium model theory we need 12 generalized
loads to ensure perfect transmission of these surface traction modes to the neighboring
triangles. Substracting the three rigid body modes, or overall equilibrium conditions, we should
dispose of 9 parameters in the stress field and we have only 7. The triangular element has
consequently 2 kinematical deformation modes. Without bothering to exhibit these, we shall
make a direct analysis of the equilibrium conditions involved in the grouping of four of these
elements in a quadrilateral, and find them suppressed,

Exact transmission of Ty, and gy along the boundary y = o between triangles 1 and 2 im~
plies that the parameters a, b, m and p remain valid for field 2. Parameters c, q and r can
however take differentvaluesc', ¢' and r’. Similarly, perfect transmission of Tyy and o, along
X = o between triangles 1 and 3, implies conservation of b, ¢, r and q but leaves a, m and p
free to take new values d', m' and p'. Finally, in the field of triangle 4, perfect stress
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transmission with its neighbors is achieved if and only if we adopt the values a', b, ¢', p’, ¢',
r' and m' corresponding to the double change. The total number of generalized loads needed
for the external boundaries of the quadrilateral is now equal to 16. Reduced by the three overall
equilibrium conditions it becomes exactly equal to the total of 13 parameters, now at our
disposal.

If the generalized loads are defined as resultants of the surface traction modes described on
Figure 2, the loads connection matrix ¢ is extremely simple. Naturally, inversion of the
flexibility matrix F, obtainedby integrationof the complementary energy of Appendix A, should
be performed numerically to construct K according to formula 28,
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APPENDIX A
NATURAL STRESSES AND STRAINS IN OBLIQUE COORDINATES

As shown on Figure 3, the covariant components (u, v) of a displacement vector PP’ are
defined as the orthogonal projections of the vector on the coordinate axes. The contravariant
components (G, ¥), defined by the parallelogram law, are related to {u, v) by the following
transformation:

Uy = u t v CcosQa T sin?

¢ = u—vvceos Q
(48}
v = v + u cos O v sin @@ = v —ycosa

[o's]
-1
<
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Using contravariant (parallelogram law) components (F, , F. ) for any force vector and covariant
components for displacements, the virtual work expre%sicyn keeps the simple form

qu+vI-y

Thus, if the surface tractions on the elementary parallelogram are defined according to
Figure 4,the work done by these forces during a small variation of the displacement field is
given by: 3

d
I (0'! S u+ Tyy Sv) dx dy+—a"y— (Tyx 3 u+0'y Sv)dx dy

Similarly, if there is a body force field of contravariant components (X, Y) per unit area, it
produces an amount of work

(sin @ dxdy) (X S u+Y S v}

The total work is stored as an increase in strain energy
(sin adctdy) Sw
where W is the strain energy per unit area,

The work equation is therefore

] i
e (o, Sui-'rxy Sv)+ — ('r" Su +o, Sv)

sing & W= 3y

(49)
+sina ([ XSu+Y3v)

We first apply this equation to the particular case
8u =8u, (aconstant) dv=0 |,
which represents a simple translation of the elementin a direction perpendicular to the y axis.

Since there is no additional deformation, we must have W = o; equation 49 reduces to the
equilibrium equation ‘

do, | ar,
X+ ni—)(sina =0 (50)
dx dy
Similarly, a translation perpendicular to the x axis, yields
Jt e
X0 ivsinaso (i)
dx dy
We can use Equations 50 and 51 to simplify Equation 49
i zo. 9_ 9 - -
sina 3 w=o, 3 (8u)+rxy 3x (Sv)-l-'r" 3 {Su)+ Ty 2y (Sv)

and consider now a small rotation & w of the element ahout the origin:

Bu=-y sin adw Sv=xsinadw
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Again we must have 3W = o and the simplified work equation reduces to the rotational equili~
brium condition:

Ty = Tyx (52)

Furthermore, commuting the & operator with partial derivatives, the work equation is placed
in the form

sing 3 W=o0, & ¢, + Tyy 3 Yoy ¥ 9y 3 €y (53)
where
- Ou ' < du__ ov 29y 54)
“x % ax Yxy Y o “y Ty (

Equation 53 shows that the strain energy per unit area is a function of the strains defined
by Equation 54, and that the siress-strain relations are

. oW
= a
o, = sin Je,
T =sina oW (55)
Xy e Xy
, oW
o, =sin A
¥ aey

The definitions are such that there is an almost perfect formal identity of equilibrium
equations, definition of strains and stress-straiu relations, compared to the formulation in
rectangular coordinates. The formal identity would indeed be perfect if the constant factor
sin @ were absorbed in the definition of the stresses.

There remains to obtain explicit expressions for the strain energy and the stress-strain
relations. This we proceed to do for an isotropic vplate in a state of plane stress. Let (g, ,
T, .or,r]) and (& , Ye, €,) denote the surface tractions and sirains in rectangular co-

ordinates (£, ) and let th‘é axes x and £ coincide; the 7 axis lying in the same half-plane as
the y axis. Consider a segment OP, of original length dx, lying on the x axis. The orthogonal
projection of a displacement vector on this direction is, by definition, u. Hence

du
& =

& ax

For a segment OQ, of original length d7, lying on the 7 axis, the orthogonal displacement
projection is

= JEl (56)

— i
v sing = ——(v—ucosa )
sin @

Hence

= ! 9 {v—-ucosqg)

‘7) sin Q@ om
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and, since the contravariant components of the segment are dx = ~d meot gand dy = ’i'n = 47
S ) cot @+ 9 )
ef = sina -a—; v ucosa)cot a sina dy v u cos Q sing
or, after reduction, | "
€. = —7— (cos” ae€ -cos a + € 57
£ sin‘a X Yxy y ) (57)

The displacement component normal to OP is V gin @ » hence the rotation of QP towards 0Q is
measured by

g [ — . _ !
3 (vsingl= sina

—g; {(v— u cosa)

The displacement component normal to OQ is u, hence the rotation of 0Q towards OP is
measured by

du = ~cot @ 94 | du
In dx  sina dy
Adding the two contributions we find
_ !
“sna (-2cosa e trxy ) (58)

Y,
E”)

To summurize, the strain components of the cartesian systém are related to the oblique
sirain components by the matrix transformation _

€=Meo {(59)
where T
€ =fe €. )
¢ Y%eq Y,
T
-] = (fx yxy ey )
.2
sin Q Q
M‘“*-’T_ -2 sing cosa sin a
snTg ?
cos @ -2cos a |

It t(x, v) denotes the thickness of the plate, the sirain energy per unit area is known to bhe

! o] v
-y
W = ————-L-E-L—-— ¢T 0 2 [#] €
2=t ) |
L &~ o] }
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Substitution o» Equation 59 expresses it in terms of the oblique strain components. Then, ap-
plication of Equatior 55 yields

o, | -Ccos Q@ cosaa-l—v sinza
T = Et -cos a v sinza + coszu -cos O
Xy (1—vZ) sin° a . 2
0‘, cof atvsifa ~cosa I
€y
X Yay (60)
€y

A dual procedure, based on the complementaryenergy.' furnishes easily the inversion of this

relaticn. The complementary energy per unit area ¢, will be defined by the following Legendre
transf{ormation:

(sinalp=o0, € +Ty Yyytoy € — Wsin a
whence, in view of Equatidn 53
' (sina)8¢ = «, 8o, +y,, 1y, + €, 3a

and the inverse stress-strain relations

sin aié—

€ © do,
= sin & a¢ (61)
‘)"” drxy
d
ey = sin @ aj

y

Now, by elementary equilibrium considerations, illustrated on Figure 5, we have

o= N» (62)
where o7 [o* T o ]
§ &n 7
T ]
s -
O'x xy a-)‘
2
| 2 cos d cos @
N - o sing sinad cosQ
sinQ 2
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The compiementary strain energy per unit area of plate is known to be

| 0 4
|
- — T 201 + v ) 0 o
¢=7er 97| © |
v o |

Substitution of Equation 62 expresses this energy interms of the oblique stress system. Then,
application of Equation 61 yields:

-ex i [ I 2cos Q costa —vsin? a
| 2 L, 2 2
7xy =m 2cos 4cos a+2(1+¥)sin a cos Q
.2

€y cosza—v sin a 2 cos I J

Iy
X Txy (63}

%

The reciprocal character of Equations 60 and 63 can now be checked by matrix multiplication.
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Figure 1. The Triangular Field of a Quadrilateral Plate in Oblique Coordinates

Figure 2. Surface Traction Modes and Resultants Along Boundary 1-2.
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Figure 3. Covariant and Contravariant Displacement Components
in Oblique Coordinates

Figure 4. Definition of Stresses in Obligue Coordinates
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Figure 5. Relationship Between Oblique and Cartesian Stresses
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