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ABSTRACT

Techniques for measuring amplitude probabilities and probability
densities are summarized and previous results on the statistical un-
certainty of such measurements are reviewed. A rigorous mathematical
model of probability measurements is derived. It is shown that unknown
correlations inthe parameters of the model make itimpossible to develop
explicit expression for the mean square estimation error. Results are
presented of a computer simulation of amplitude probability estimates
and comparisons are made between experimental and computed mean
square errors.
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AN ANALYSIS OF AMPLITUDE PROBABILITY MEASUREMENTS

I, INTRODUCTICN

In ASD-TDR-62-973, Ref. [ 1 ], two methods are discussed for deter-
mining the mean square error in the estimation of amplitude probability
densities from a record of finite duration. In addition, this report presents
results of experimeﬁts performed in an attempt to verify the two analytic
expressions. These experiments were performed quite carefully. However,
to quote from ASD-TDR-62-973, "Neither of the two theoretical uncertainty
expressions considered appears to be completely valid for all the conditions
studied. ' The purpose of this report is to clarify several points concerning
probability density estimates, and to present a more rigorous evaluation of
amplitude probability measurements,

Section 2 presents a brief summary of the definition of amplitude
probabilities and associated measurement techniques. In Section 3, the
analytical work on amplitude probability estimates which was presented in
ASD-TDR-62-973 is reviewed and the limitations discussed. A more
rigorous approach to the evaluation of amplitude probability measurements
is given in Section 4. It is shown that the samples are not independent but
may be correlated in an unknown way; thus, making it impossible to develop
an explicit expression for the mean square estimation error. In Section 5,
the analysis is extended to probability density estimates and a comparison
is made between the new analysis and the previous results. Section 6
presents the results of a computer simulation of amplitude probability
estimates and comparisons are made between experimental and computed

mean square errors. Section 7 briefly reviews the conclusions reached.



2. AMPLITUDE PROBABILITY MEASUREMENTS

Consider a stationary random process X(t). The probability that
X(t) lies in an amplitude interval (a, b) at any time t is defined as the
fraction of the total time that a < X(t) £ b. Symbolically, this may be

expressed by
1
p= P[ < X(t) £ b] E‘ZH (1)
1

where T is the length of the ith interval in which X(t) is between a and

b. The notation P[ ] will always mean the probability of the event
described between the square brackets. Since any physical measurement
cannot extend over an infinite time, the probability p is estimated experi-

mentally be averaging over a finite time. Thus, if 1’3 denotes the estimate

FEIR (2

of p, it follows that

The averaging operation may be accomplished with analog techniques
by summing each of the TS with a clock, or through digital methods by
sampling X(t} with very narrow pulses and counting the number which fall
within (a, b). Since each type of device performs essentially the same
operation, i.e., summing time intervals, the particular measuring device
will not be of concern in this report.

To evaluate how close ﬁ is to p for a given record length, it is
desirable to know the statistical properties of the time intervals, K
Unfortunately, the time statistics of a random process are very difficult,
if not impoasible, to obtain so that an alternate analytic approach must be
employed to determine the errors involved in the measurement over a finite

time interval.



A quantity of great practical importance is the probability density
function which is given by
P [a. < X(t) < b]

f(x) = 1lim (3)
{b-a)—*0 b-a

where x lies in the interval {a, b). In Eq. (3), the procedure of taking the
limits as (b -a}) approaches zero is heyond the capability of physical instru-
ments. However, if (b-a) is sufficiently small, the probahility density

may be approximated by

A
b = 52 (b-la.)T Z;Ti (4)
Thus, an error analysis of the estimation of p by ’13 is equivalent to the
estimation of f{x} by ?(x), the essential difference being division by the
scale factor (b-a). There is one small difference between the errors
associated with the estimation of p and f(x); ?(x) is slightly biased
whereas ’15 is unbiased, This effect will be taken up in Section 5 which

deals with probability density estimates,



3. REVIEW OF PREVIOUS ERROR ESTIMATION TECHNIQUES

In Ref. [1] , the mean square error in estimating the probability density

at an amplitude x is defined by

2
a
2 P
€ = ——
N

(5)
where o 2 is the population variance and N is the equivalent number of
events u;)on which the estimate is based. The underlying assumption in Eq.(5)
is that the equivalent number of events are statistically independent. As will
be indicated later, this is generally not the case.

The numerical value of N was estimated in two ways; each of which

will now be discussed.

3.1 LEVEL CROSSINGS

One expression for N was obtained in terms of the number of crossings
of the amplitude interval. To quote from Ref. [1, P. 14—-3] (with slight nota-
tional change}: "For analyzing a sample record of length T with an amplitude
window of width (b -a), the total number of times that data is observed is
equal to F(b_a)T where -v-(b-a) is the numiaer of crossings per second of the
amplitude interval (a, b). The number of events may be thought of as the
number of crossings of the interval (a, b) multiplied by the width (b-a) of the
interval. If the interval width (b-a) is small, the number of crossings of
the interval (a, b) is approximately equal to the number of crossings of the
level a denoted by ;aT' Thus, N = (b—a)"GaT.”

Although this approach appeared to give reasonable estimates of the
mean square error in the experiments which were performed, it has several
major faults. In the first place, the level crossings will not generally be
independent events so that the basic assumption of Eq. (5) is violated.
Secondly, for a Gaussian distribution of amplitudes, the average number of

level crossings may be found without difficulty. However, for a non-Gaussian



random process, the level crossing calculation is quite difficult since it
depends upon the joint distribution of the process and the derivative of the
process. If the process is known to be Gaussian, probability density
measurements are obviously not needed and all pertinent information can

be obtained from estimates of the mean value and covariance function.

Thus, principal interest is in the cases of unknown and/or non-Gaussian
distributions for which the level crossing computation is not possible.
Because of the above facts, it is felt that the ""level crossing method" offers

little possibility for further extension and will not be considered further.

3.2 SAMPLING COEFFICIENTS

The second method considered in Ref. [ 1-] is based upon a statistical
study of the coefficients defined by the sampling theorem for bandwidth
limited random processes. Again, to quote from Ref.[ 1, p. 14—3]; "The
number of events represented by a continucus random signal is given by
N = 2BT where B is an equivalent ideal bandwidth in cps and T is the
available record length in seconds. To be more exact, T represents the
total time the signal is actually observed and analyzed. For the problem
at hand, T is only that time spent by the signal within the amplitude window
(b-a) since the signal is not actually observed and analyzed when the ampli-
tudes are outside the window (b~a). This actual analysis time is given by
}i:Ti in Eq. (5). Thus, for analyzing a sample record of length T with an
amplitude window of width (b-a), the equivalent number of events becomes
N=2Bfr . FromEq. (4), Lr,= (b-a)f(x)T. Substituting this into the

A

expression for N gives N = 2(b-a)f(x) BT."

As before, the assumption is made that the sampling coefficients are
independent random variables. It will be shown in the next section that this
is not usually true and consideration must be given to the correlations between
the samples. Also, use of the equivalent ideal bandwidth is not correct as will

be seen.



4, ANALYTICAL MODEL OF PROBABILITY MEASUREMENTS

The approach to evaluating probability measurements based upon the

sampling coefficients is valid. However, as mentioned before, a more

rigorous development is required. To begin, a brief review of the

necessary random process theory is presented below.

4.1 DESCRIPTION OF RANDOM PROCESSES

The random process X(t) is assumed to be stationary with a power

spectral density function, G{f}, which is limited to a bandwidth B and is

zero elsewhere, but is otherwise arbitrary. It may be assumed that the

frequency interval of interest starts atf=10, i.e.,

v
o
o
IA
Fh
A

o]

G(f)
(6)

This results in a simplification of certain equations which follow, but does

not change any of the results. The covariance function of X(t) is given by

B

R{T) =f G(f) cos 2wfT df (7
0

Since X(t) is stationary and band-limited, it may be represented by

M

) i 2nwBt - mm
X(t) = L. i.m. E x (=) &inl 8
” (23) 2uBt - mom (8

M—apoo m=-M

for all t, Ref. [2]



Equation {8) expresses the content of the sampling theorem for random
functions. The notation l.i.m. stands for limit-in-the-mean and states
that the right side of Eq. (8) is the best linear estimate, in the mean square
sense, of X(t) in terms of the values at the sample points. It is clear
that all the statistical properties of X(t) are contained in the coefficients

of the expansion,

8in (27Bt - m7)
25Bt - mn

The function, Sm(t) = , has the property that

where n is an integer. For values of t such that 27BT - mm > >
‘Sm(t)l varies as {2nBT - mu')—.1 which implies that the value of X({t) is
described primarily by the sample points which lie nearest to t.

For a time interval of length T, where T is chosen such that

ZBT >>1 (9}

X(t) is closely approximated by a finite sum of terms derived from the

sampling points lying within T. Thus,

N n \ sin (2nBt - nm) t contained in T
X6 & ) X (——) (10)
n=1

2B ZuBt - nm ’ N = 2BT

The major source of error is near the endpoints of T, but will be neglected
in the analysis which followa. From Eq. (10), X(t), defined over the interval

T, may be approximated by a finite sum of terms with random coefficients



{X (%)} and each of the coefficients has the same statistical properties

as X(t) for any t.

4.2 ANALYTICAL MODEL

Let a new set of random variables {Yn} be defined as follows:

n
= = i —_ 11
Yn Yn(a., b)=1 if a < X(ZB) <b (11)
=0 otherwise

Since Yn can only be zero or one, the kth moment of Yn is given by

E[Yi]=(UkP[Yn=1]=;) , k=1,2,... (12)

and the variance of Yn is

V[Yn]= E[Yi] -E2[ Yn]zp(l-p) (13)

Let N
ZNZIlq Z Yn (14)

n=1

Then ZN is an unbiased estimate of p since

E[ZN]=P (15)

Thus, an analysis of Z _ is equivalent to an analysis of amplitude proba-

N
bility measurements which use a sum of time intervals to estimate p.



An extremely important property of an estimate of some quantity

is that it be consistent. Mathematically, this means that the estimate

must converge in probability to the desired quantity. Thus, if ZN

is to be a consistent estimate of p, it is required that, for any

€ >0,
im P[lz -pl > e]=0 (16)
N— N

In general, an error analysis based on Eq. (16) would be difficult

since the computation of the required probabilities for any value of N

would not be an easy task.

The mean square error in the estimation of p is defined by

E[(ZN-p)z]z E[ZI\ZI] .pl = v[zN]

N N
L Ll e el o

By the Tchebycheff inequality, Ref. [3,p. 225] ,

pllzy - pl 2 ¢] sz-[ff—] (18)

€

so that mean square convergence of ZN to p( lim V[ZN] = 0) implies
N-+-oo

convergence in probability. Equation (18) is also useful in that it
gives an upper bound on the probability that ZN differs from p by
more than a fixed amount. The above statements are true independently
of the amplitude probability distribution of X(t}.

Conditions under which Z_..  converges in mean square to p will

N
now be given. The following theorem which is proved in Ref. [3,p. 419]



serves as a basis.

It is quoted here in the context of the random
variables under discussion.

Theorem: lim V[Z ]= 0 if and only if lim C[Y , Z ]: 0
—_— N N
N> o N0
where C[YN, ZN]1s the covariance of YN and ZN.
From the definition of the random variables {YN}, C [YN . ZN] may
be calculated as follows:
clvy. zy)= Bltrg -z -»)
2
= E[YNZN] -p
N
- & Ll ]-ef
= N E YNYn P ‘ {19)
n=1
The expectations occurring in the above summation may be expressed
as
E[Yn.YN] =P [an 1, YN= 1]

s < x{5)<n e < x[8) ]
where the right side of Eq. (20)

(20)
is the joint probability that the two
sample points both lie in the interval {(a, b}. Therefore, ZN is a con-
sistent estimate of p if and only if
N
. 1 [ n N ] 2
= — —_ = 21
lim N PagX(ZB’gb,aSXIZB]gb p (21)
Newao n=1
One interpretation of Eq. (21},

although not the only one, is
that the random variables, X [—EI;-S—’ , defined on the sample points

are required to become independent, and remain so, after some

10



finite time separation of sample points. This means that all but a finite
number of the joint probabilities are equal to the product of the individual
probabilities, and thus equal to pz.

Having established necessary and sufficient conditions for the mean

square convergence of Z = to p, the mean square error resulting from

N
a finite sample size will now be investigated for several situations of

interest.

4.3 INDEPENDENT SAMPLES

Suppose that X(t) is such that
C[Ym, Yn]=0 , m#n (22)

for all m and n. From the definition of the sequence of random variables

{Yn} . Eq. (11}, it follows that

C[Ym, Yn]= P[sz L, ¥_= 1] - p’

:P[Ym=1] [y =1|y =1] -p (23)

n

where P [Yn= 1| Y - 1] is the conditional probability that Y_=1 when it
is known that Ym= 1. Thus, the fact that all of the covariances are zero
implies

P[Yn=1\Ym=1]=p=P[Yn=1] (24)

which is the condition for statistical independence of the random variables

{Y } Since
n

P[Ynz1|Y'm=1]=P[a SX(.ZB)s blasx(%)g b] (25)

11



the independence of [Yn} implies the independence of {X (-—E-)} The
converse statement is also true.
If it can be shown that the samples obtained from X(t) are independent,

the mean square error in the estimation of p becomes

N

where N has been replaced by its value in terms of the time-bandwidth
product, namely N = 2BT. When the true numerical value of p is unknown,
it is desirable to replace p(l - p) by its maximum value which is (1/4).

Thus, for independent samples
V[Z ]< 1 27
N!S BBT 27)

Let Q be the required probability that Z . lies within + ¢ of p

N
after 2BT samples. Then, from Eq. (18),

Q=1-P[|ZN-p|>e]21-—1— (28)

BBTez

Since ZN is the number of "successes'" in N independent trials, the distri-

bution of ZN is binomial. For large N, the binomial law may be closely

approximated by a normal distribution, and in this case, Eq. (28) may be

replaced by

Q> w(—i——_l) - Q(——i—--l) = ZQ(BBTE)-I (29)
(8BT) (8BT)

12



X

0
where 1 -x2/2
@(xo) = e dx

2m J-00

which is a tabulated function.

A s an example of independent coefficients in the expansion of Eq. (10),
assume X(t) is a stationary, normal random process with zero mean and a
uniform spectral density limited to a bandwidth B. The covariance function

of X(t) is given by

B

R(7) = R(0) f cos 2mfr df = R(0) 22 2TBT (30)
0 2rBT

X(t) may be represented by its values at the sample points which are
spaced at time intervals of 1/2B. Thus, letting T = (m -n)/2B, Eq. (30)

gives

m-n |\ _ m )i sin m{m - n)
R( 2B )'C[X(zB)’ X(ZB)]‘ R(0) m(m - n}

={0 , m#n
R(O) , m=n

In the case of normal random variables, zero covariance implies statisti-

(31)

cal independence and the mean square error in estimating p is given by

Eq. (21).

13



4.4 CORRELATED SAMPLES

In the general case for which the random variables Yn are
correlated in some unspecified way, it does not appear possible to
establish an upper bound on V ZN] which converges to zero with

increasing N. To see this, let

Chom = C[Ym’ Yn]= E[YnYm] - p° (32)

and upon substituting this into Eq. (17¥), it is seen that

N-1
V[ZN] - pllop)y ;z Zl (N-n)C (33)
n=

The maximum value of Cm is p(1 - p), thus

N-1
1 2
0 s V{Z |<p(l -p)|g+— (N - n}{= p(1 - p) (34)
N N 2
N n=1
which is independent of N.

Without further knowledge or assumptions concerning the co-
variance of the sequence Yn-} , no useful estimate of the mean square
error is available. In fact, knowledge of the covariances of {Yn.} is
equivalent to a knowledge of the joint distribution of X(t) and
X(t+T). This joint distribution is a higher order statistic of the
random process X(t) than the first order amplitude distribution and
thus could not reasonably be expected to be known. In fact, the first
order amplitude distribution is directly obtainable from the joint

distribution.

i4



Suppose it is known, or can be established that the values of

{X (%)}are independent when the sample points are separated by an
interval greater than 5B where k is an integer. This means that

Cn = 0 for n>k. Under these conditions it follows from Eq. (33) that

2BT{2k+1) - k(k+1)
4(213'1")2

V[ZN] < (35)

where the value of 1/4 has been substituted for p{l - p) to make the bound
independent of p. Thus, if adjacent sample points are statistically
dependent, k = 1, an upper bound on the mean square error is 3/(8BT).
The result presented above, Eq. (35), indicates that useful boﬁnds
can be obtained if independence only over a finite interval is assumed.
However, unless the relation between the dependence interval and the total
length of the record, T, is known, there is insufficient information to

determine the appropriate value of k.,

15



5. AMPLITUDE PROBABILITY DENSITY ESTIMATES

5.1 GENERAL ANALYSIS

In the analysis that follows, it will be assumed that the random
variables {Yn} are independent. The previous analysis has been con-
cerned with the estimation of probabilities rather than probability densities,
and it has been shown that Z__ is an unbiased consistent estimate. When

N
Z . is used to estimate a probability density function, however, a bias is

N
introduced which increases the mean square error,
Let f(x) be the probability density function of the amplitude of X(t),
and F(x) the corresponding probability distribution function [F'(x) = f(x)] .

From the prior definitions, the quantity

Z (a, b)
N a+b
fN(X)——__b-a y x=— , a<b (36)

is an estimate of f(x}). The decision as to how large {b-a) should be will

be discussed later. The estimate ZN may be expressed in terms of an

empirical distribution function FN(x) go that

FN(b} - FN(a)
fy0) = —————— | (37)

where, for example,
number of X(ZB)< b
N

Fyib) = (38)

Thus,

E[f (x )] F(b) - F(a.) (39)

which is not usually equal to f(x), and a bias error is introduced into the
estimation of the probability density. To relate the above notation to the

previous analysis, note that

16



(b - a}E[fN(x)] = E[ZN] -p
The mean square error in estimating f(x) by fN{x) is given by
2 2
E [(fN(x) - f(x), ]= V[fN(x)] +E [fN(x) - f(x)]
From Eqgs. (32) and (3%), and the definition of variance,

V[FN(b)] ¥ V[FN{a)] - ZC[FN(_b), F ()]

V[fN(x)] -

(b - a)
where

c{rym), Fyta)] = E[F ) Fia)] - P
and

V[FN(b)]= F(b)[l - F(b)]

Since the elements of the sequence {YN} are independent, and setting
YN( -0, b) = Yn(b)’

N N
E[F 0 Fya)] __11? nzlE[Yn(a)Y )] +—N— m#; [¥_(a) ¥ (m]

F[min {a, b)] N-1
= N +

F(a) F(b)

_Fla) ,N-1
= =3 + = F(a) F(b)

Therefore, substituting Eq. (43) into Eq. (42},
c [FN(b), FN(a)] - %r [F(a) - Fla) F(b)]

17
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and Eq. (41) becomes

F(b) [1 - F(b)- + F{a)[l - F(a)] - 2F(a) + 2F(a)F{b)
V[fN(x)]z : -
N(b - a)
F(b) - F(a) - :F(b) g F(a.)]2 (45)

2
N(b - a)
Thus, the mean square error becomes

F(b) - F(a) - [F(b) - F(a)]z . |[F®) - Fa)
b-a

E[tty (= - 07 - -fx)| (46)

Ni(b - a;)z'

It is of interest to express the mean square error strictly in terms
of the density function rather than the associated distribution function.
To this end, let F be expanded in a Taylor series about the point x,

then letting A = (b - a),

2 3
F(b) = Fix) +{%—)f(x} +%[§‘—] £1(x) + % [‘23—] f1(x)+. ..

2 3
F(a) = Fix) -[-?—lf(x) +%[§—] £1(x) - %(%) f(x) + ...

and 31
A1
F(b) - Fla) = Af(x) + ——2—4—(35-) (47)
AS fIV(x)
The next term in the series is ~T9z0 which can reasonably be expected

to be negligible if A is small and f(x) has no sharp peaks. Assuming that
the quantity [F(b) - F(a)] can be approximated closely enough by the two

term expansion of Eq. (47), the final expression for the mean square error

is

18



: 2 " 4 n 2
2 f( ) Af (x} A f{x)f N-1} A (f
2 [ 00 - 1) =22(1 - st} + 243: CHE +( N) CAC

and the bias error becomes

2 i
E[f (x) - f(x)] ézf}i)— (49)

5.2 COMPARISON WITH PREVIOUS RESULTS
A camparison of previous approaches to the estimation of probability
densities (see Ref. [1] ) indicates close agreement with the results derived

here. Following Ref. [1] , let EZ be the normalized mean square error

defined by
2
,  Ellet= - 10}°]
€ = 5 (50)
f {x) :
i |
If all terms involving f (x) are neglected in Eq. {48), then setting
N = 2BT yields
2 1 - f{x)A
T RT e A (51)
ZBT f(x) A
. . 2 .
In Ref. [1] , the expression given for ¢ is
2 _ 1
¢ TTZBTix A | (52)

However, since A is usually small, the value of ¢ 2 as computed by
Eq. {52) should be a good approximation to the mean square error if f{x}
is reasonably smooth and the samples are independent.

Experimental results presented in Ref, [1] give a calculated ¢ 2 which
is smaller than the ¢ 2 of Eq. (52) by a factor of about 10. These experi-
ments were performed quite carefully; therefore, the difference between the
theory leading to Eq. (52) and the experimental results cannot be attributed

to calibration errors, etc. A reasonable explanation of the differences is that

19



the amplitude values of the random processes used were statistically
dependent over significant time intervals. If the majority of the correlations
were negative, this would serve to explain the apparent discrepancy.

To illustrate the effect of statistical dependence upon the mean square
error, suppose that only adjacent samples are dependent and that the bias
error can be neglected. In this case the correct expression for the nor-

malized mean square becomes, using Eq. (33),

P(l-p)  2(N-1)C
€ = + (53}
pZ N NZ

where the relation E [ZN] = p has been used.

If the measured value of the normalized mean square error is

2 (1 -p)
€y " 0.1 Np (54)
the value of C. may be found by equating the right sides of Eqs. (53} and

1
(54). Thus, it follows that

c, =ﬂi21—‘-1’-)-2 = -.45(1-p)p (55)

when N is large. If p is about 0. 04 (such as would be the case in measuring
the peak value of a unit variance normal density function with A = 0. 1), then
the value of C1 is -0.017. This result indicates that only a slight correlation

can produce significant changes in the mean square error,

20



6. EXPERIMENTAL PROGRAM

In order to further evaluate the effect of correlation, a digital simulation
of amplitude probability measurements was carried out. The basic approach
was to generate white Gaussian noise which was then passed through a digital
filter to shape the output spectrum. Amplitude probabilities were estimated
by counting the number of times the filtered process fell within the amplitude
window., Mean square errors in the probability estimation procedure were
estimated by repeating the simulation one hundred times to obtain a good
statistical sample, A total of thirteen cases were run using two different
digital filters. The first filter approximated either a lowpass or bandpass

filter. The output spectrum when this filter was used is given by

1
G, () = 3 (56}
f-f
1+
f0
where fc is the center frequency and fo is the half power frequency. A
single tuned filter was used for the second filter so that the corresponding
output spectrum was
G, f) = : (57)
2 2.2
2 22 fn £
(f -£7)+ 5
» Q

where fn is the natural frequency and Q is a measure of the narrowness of
the filter bandwidth,

The results for the thirteen cases are presented in Table 1. Before
attempting to interpret the results, the methods used in computing the various

quantities shown will be indicated.
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Case| P T Spectrum B o % o’ o Zlcr 2
(sec) n e c e ¢

1 666 | 3.25 | G (), £ = 0, f,= 10| 10.3 1.73x107> | 3.33x107> | . 520
2 |.634 §1.30 | G (D), £ = 0, f,=25] 257 1.86x10> | 3.46x1073 | .538
3 |.864 | 0.65 { Gf), f = 0, f =77 79.18.86x107% | 1.15x107> | . 770
4 |.495 | 0.65 | G(6), £ = 0, £ =100102.8 1.04x107> | 1.87x1073 | . 555
5 |.360 | 0.65 | G,(f), f_= 100, £, =100|205.6 6.24x10 %] 8.65x107% | L 721
6 |.640 {0.65 | G(f), £ = 30, Q= 20| 2.6 4.36x107> | 677 %1072 | . 064
7 |-677 1065 | G.(f), £ = 30, Q= 10} 5.2 3.80x107° | 4.18x1072 | . 091
8 |.419 |0.65 | G,(f), £ = 30, Q= 5| 10.4 2.98x107° | 2.34x107% | .127
9 |.548 {065 | G(f), £ = 30, Q= 2| 245 2.77x107> [ 7.80x107° | . 355
10 |.477 |0.65 | G,(f), £ =100, Q= 20| 7.9 8.60x10 > | 2.45x107% | .351
11 |.623 [0.65 | G,(f), £ =100, Q= 10} 15.7 lb.sex10"> | 1.15x107% | . 485
12 |.375 |0.65 | G,(f), f =100, Q= 5| 31.1 1.76x107> | 5.00x107> | . 352
13 |.514 |0.65 |G,(f), £ =100, Q= 2| 73.5 1.26x107> | 2.62x10™> | . 480

Table 1.

Simulation Results

The true value of the probability being estimated on each run was taken

to be the average over the 100 runs.

Thus,

'p':-ZP.
1

where Pi is the estimate of P in the ith run,
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Measurement time T was governed by

M
T = —'Z'I:—B—""" (59
F

where
M = numnber of data points in filter output

BF = 385 cps = folding frequency associated with the sampling interval

The experimental mean square error was computed from

2 1 -

T = T00 ¢ (Pi - P) (60)
In order to use Eq. (26) for the computed mean square error, cr: , it is
necessary to specify the bandwidth of the random process being analyzed.
However, for the spectra given by Eq. (56) and Eq. {57}, it is not possible

to define a unique bandwidth and an equivalent one must be employed. To

this end the noise equivalent bandwidth, Bn , has been used in the calculation

of Ucz . The noise equivalent bandwidth is defined by
or]
f G{f) df
0
B = —— (61)
n G
max

where Gmax is the maximum value of the spectral density function. For the

filters employed in the simulation program, it may be shown that

B

al 1. 028 fo . lowpass filter

2,056 fo , bandpass filter

1l

(62)
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Using the above relations, the computed mean square error was found from

cr?.‘: P{l - P) (63)
€ 2 BnT

The last column in the table gives the ratio of o‘j to crj . It is of interest
to note that this ratio is consistently less than one. This indicates that the
computed mean square error is a conservative estimate of the true mean
square error, at least for the cases run. Of course, it is not possible to
generalize this conclusion to other random processes.

Since each of the crez was determined from 100 runs, there is a ,
sampling variability associated with the values. Thus, to test whether T,
is in fact the same as u—c2 , a two-sided xz test with a 5% level of
significance and 99 degrees-of-freedom was applied to the results. At this
level, ;he ra:ztio c':/crcz must fall between . 741 and 1. 30 before the hypothesis
that o _ = . is accepted. Referring to the table, it is seen that the
hypothesis is accepted only for Case 3. However, a comparison of Case 3
with Cases 4 and 5 indicates that if Case 3 passed the test, so should have
Cases 4 and 5. This follows from the fact that the bandwidths of the latter
cases were larger, and thus the roll-off effects should have been smaller,

The fact that Cases 4 and 5 failed to test makes plausible the conclusion that

sampling variability caused Case 3 to pass the test when it should have failed.
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7. CONCLUSIONS

The previous work points up a central fact common to the analysis of
a sequence of random variables: a mean square error analysis of properties
of the sequence produces conclusive results only when the random variables
are independent or the associated covariances are known to some degree.

In a survey of recent investigations into the estimation of amplitude probability
densities, Refs, [l, 4,5,6,7, 8] , the assumption of independent samples was
either explicit or implicit in all cases. Thus there appears to be no analytical
formulation upon which to base an exact expression for the mean square

error which would be valid in all cases,

The analysis which led to the mean square error expression of Eq. (35)
has verified that the error varies as 1/BT, where B is the total bandwidth
of the process and T is the total measurement. This result is in essential
agreement with the expression derived in Ref. [l] with the exception that the
equivalent noise bandwidth was used there. It has not been possible, however,
to determine the explicit form of the mean square error for all cases of
interest.

The simulation program which was described in Section 6 clearly
showed that the mean square error does not follow the simple expression of
Eqg. (26). However, it appears reasonable to conclude that Eq. (26} will
provide a useful guide in the selection of record lengths but not in determining

the associated mean square error.
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APPENDIX I
{Supplement to Section 6)

DETAILS OF EXPERIMENTAL PROGRAM

The program developed to evaluate the effect of correlation, MACO004C,
was written mainly in the FORTRAN 1V language for the Univac 1107 digital
computer.

For each case processed, the program did the following:

i. Read in a control card describing the filter to be used.
ii.  Generated filter weights based on the filter parameters

iii. Generated one-hundred sets of random numbers, each
set consisting of 500 to 550 indiwidual numbers. The
sequences were developed so that their probability
density functions were Gaussian and their power spectral
densities were flat (white noise).

iv. Filtered each sequence in turn using the filter weights
developed in step ii.

V. Computed the sample probability Pi[a. sy < b] for each
sequence. The parameters a and b were preselected so
that P[a <y < b] a 172,

vi. The mean and variance of the set {Pi} was then computed.
vii. As a control, probability density and power spectral density

functions were computed of both the original filtered data
for the last case.

The numerical filters employed were of two types. The first was a

lowpass filter whose transfer function had the general form

1

' (f - fo) N
sin 2

sin (f;OIZ)

Gl(f) =

1+ (I-1)
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The filter weights were obtained from Eq. (I-1) by evaluation of the

Fourier transform of Gl(f).
m-1

gl(t’ = Af|2 Zl Gl(iAf) cos (tiAf)
1:

+ GI(O) + cos (tmAf)} G{mAf)

where
1

Af = ————
£ (2mAt)

The data was filtered through the use of

N
y(iAt) = At: xGHj) At} g(jat) (I-2)
=N

The second filtering process had the transfer function

2 1
|o, )" =

2 2 2

2 5 2 f f

G B fn + = 2

Q

More precisely,
G,({f) = L
2 - -At(jorw £) 1/2 2At(jetw §)
n 2 ) n
1 - 2e ws [mn(l-E, ) At]+ e
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which is the transfer function of the numerical filter

- mnE,At 2)1/.2 -ZmngAt
y, = xi+2.e cos[wn (1 -£ At] Yi_1 "® ¥i_2

This may be shown to have the same transfer function characteristics as

the differential equation

.e . 2
+28 w y+ =
y+ 2§ Y w_ ¥y X

provided that f and fn are less than 1/2At.

The Gaussian random numbers were generated in the standard manner;
the sequence {xj } was derived from a sequence {gi }through use of the
expression

k+11

x.=§ §&  k=12j-11
) =k |

where the { gi} are independent random variables uniformly distributed in

the interval (-1/2, 1/2). As E[gi]= 0 and E [(gi- Eg)z]z 11—2 , then

E[xj ] =0, and E [(xj - Exj)z] = 1, The central limit theorem states that
such processes as xj become Gaussian in character for a large enough
summation of §i terms. Experience has shown that the addition of twelve
of the uniformly distributed and independent random variables does indeed
appear to be Gaussian. The uniformly distributed numbers {gi }were
generated using certain numerical properties of the Univac 1107,

Although only 500 filtered values were used for each run, more than
that number were generated of the xi|s because of end point and transient

problems with the numerical filters.
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The sample probability Pi = P[a < Yj < b] for each run was obtained
using procedures such as those discussed in MAC 402-07, "Probability
Calculations on a Digital Computer, "

The sample mean and variance of {Pi] were computed using the

usual formulas:

100 100

- 1 5 2 1 2

P = —/— P , o= — Z (P, - P}
160 & i T

The final step in the program was to compute sample probability
density functions and power spectral densities of {xi} and [yi} for the
last run as a quality check of the processing.

One example of these outputs, Figurekl,1-2, and 3, is included.
These were made from data generated from the last run of case 7, as
listed on page 22.

The power spectral densities were computed using too many lags,
resulting in a very low figure (10) for the number of degrees-offreedom,
so that the confidence bands on the PSD are quite wide. This is reflected

in the scattered effect of the plot of the white noise spectra.

30



. 006

. 003 o
-
0 100 200 300 384
Figure I-1. Spectra of Uncorrelated Noise
1077 -
1077 A
0 Lﬁ\\\\ -
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