FOREWORD

This study was linitiated by the Blophysics laboratory
of the 6570th Aerospace Medical Research Laboratories,
Aerospace Medical Divislon, Wrlght-Patterson Alr Force Base,
Ohlio. The research was conducted by the Electrical Englineer-
Ing Laboratory, Unilversity of Illinois, Urbana, Illinols,
under Contract No. AF 33(616)-6428. Prof. Heinz Von Foerster
was the principal investigator. Major J. E. Steele of the
Mathematics and Analysls Branch, Blodynamics and Blonics
Divislon, was the contract monltor for the 6570th Aerospace
Medical Research laboratories., The work was performed in
support of Project No. 7232, "Logical Structure and Function
of the Nervous System," and Task No. 723205, "Mathematical
Theory of Neural and Mental Processes." The research
sponsored by this contract was started in March 1959 and
completed in December 1961.



Coutrails

Approved for Public Release



ABSTRACT

Systems capable of identifying objects must be able
to detect the properties (invariants) these obJjects possess.
IT 18 shown that property detecting systems consisting of
networks of linear or non~linear elements in parallel may
be constructed without accurate polnt to polnt connections
as long as certaln constraints on the distribution of
connectivlity among elements in the network are satisfied.

The report discusses in three parts a general approach
toward "property detection" and considers in particular
networks capable of detecting acoustical invariants.

While the first part "Computation of Invarlants in
Linearly Interacting Continua" considers networks whose
elements constitute a continum, the second part "Kinds of
Interaction in Sets of Discrete Linear Elements" treats
discrete networks. 1In both papers the distinction is made
between interaction phenomena within a network and action
phenomena from one network to another network. It is shown
that under falrly general conditions action and interaction
systems are equivalent. The third part "Simulation of Inter-
action Functions on PACE Analog Computer" 1s concerned with
the simulation of some action and interaction phenomena on
an analog computer.
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INTRODUCTION

When in 1947 McCulloch and Pitts published their paper "How We Know
Universals"l the ideas presented in this article were generally considered to
be very interesting from a theoretical point of view but highly speculative
from a neurophysieclogical standpoint. It was not easy to believe that nerve
nets which grow apparently haphazardly should form well defined connectivities

which are capable of complex parallel computations which would render with high

reliability in the set of all stimuli certain "abstractions” which are "meaningful" -

i,e. have higher survival value -~ for the living organism endowed with such nerve
nets, After a series of brilliant experiments Lettvin et al. were able to present
unmistakable proof of the existence of physiological nets which extract certain
visual invariants in the set of all optical stimuli in the visual field of the
frog and reported their findings in the now celebrated article "What the Frog's
Eye Tells the Frog's Brain"z. At about the same time at the occasion of the
winter conference of the AIEE in New York, Von Foerster presented the nucleus of
a theory3 which allows the calculation of those logical or arithmetic coperations
to be carried out by topological neighbor elements which compute certain

desired invariants, As can be shown, accurate point to point connection is in
many cases not necessary in order t¢ obtain reliable operation of such nets; only
a certain "tendency™ of growth is required to guarantee reliable functioning

of such structures4.

Although in many special cases the powerful approach of parallel computation
led to the discovery of a series of "properties' which could be detected by such
networks, a more general approach to their structure was still lacking. The
following three papers which constitute this report represént an attempt to expand
the idea of "neighborhood interaction" and to put it on a more general basis. The
first paper by Inselberg and Von Foerster dismisses cellular distinguishability and
treats "neighborhood” from an analytic point of view. Second, Yeh, presents an
interesting theorem of equivalence which holds between discrete action and inter-
action systems. Some examples of discrete action and interaction functions are
given by Cheng who programmed these functions into a PACE analog computer.

We are today not yet in the possession of a general theory of linear, as

well as non-linear property detector fields and nets. However, it is hoped that



the work presented on the following pages may be of some help to the designer
as well as to the theoretician who wants to construct nets which perform certain

desired operations.



PART 1

Computation of Invariants in Linearly Interacting Continua

by

Alfred Inselberg and Heinz von Foerster

1, INTRODUCTION

It is generally accepted practice to consider the phenomenon of hearing
as the result of two kinds of processes, cone mechanical, and the other electro-
chemical, with the cochlea as the locus - so to say - of the important trans-
formation from the one kind into the other,

Since we shall be mostly concerned with problems connected with the transfer
of information from environmental sound until its perception and with the
possibilities of the realization of this information transfer in a series of
electronic systems, we shall forego this important distinction which is Justified
by the anatomy and physiology of living organisms and shall adopt instead a
distinction which is based on whether the processes under consideration takes
place in a given unalterable structure (pre-organization), or the structure
will change as a result of these processes (self-organization),

In the following chapter we will restrict ourselves mainly to some deter-
ministic features of such systems, drawing analogies to physiological systems
whenever such analogies may serve as clues for the construction of the corres-
ponding electronic device,

In the second chapter we will discuss the notion of a sensory layer and
shall distinguish between layers composed of discrete elements and layers where
the stimulus and response of the layer are given as point functions, We shall
furthermore distinguish between action phenomena resulting from the stimulus
activity of one layer upon another layer and interaction phenomena where the
stimulus to an element in the layer may come from an element located in the same
layer,

The subsequent chapters will deal with some special sensory layers; first,
a frequency sensitive layer composed of a series of resonators each tuned to a
different frequency, and secondly, with computational nets which perform

sharpening transformations on the response of the frequency sensitive layers,



2., DETERMINISTIC SYSTEM

The most general representation of a deterministic system is hy an

5

however, a satisfactory description can be given in terms of a seriesg of

asynchronous sequential machine, In the particular case of our interest,
synchronous sequential machines,
Each machine will have a finite number of input states 8y ey 88

finite number of output states s viay B and a finite number of internal

m1’ m+p

states go, veay qn. A discrete time scale 1s assumed, The set of all input
states to the machine will be denoted by Z& and the set of output states by
25. The output state s, 8t any given time, is determined by the pair (si,qr)
where 8, 3 Zi and q.. is the internal state of the machine at that time,
Furthermore, the internal state of the machine, at a given time, depends only
on its internal state at the previous time and the previous input symbol (see
Figure 1),

In analogy to the physiological apparatus, our system will be partitioned
into three parts as shown in Figure 2, The first part is supposed to represent
the outer ear and middle ear, having a set of input states Iil, a set of output
states Ziz and a set of internal states q ,, ...,qivl. The second sequential
machine, representing the cochlea has Zél as its set of inputs, 252 as its set

of outputs with internal q21, The third part represents the nerve

T QZV2'
connections between the cochlea and the "auditory cortex”., Finally there is
a box labelled "Brain" indicating an analyzer for the stimull from other sensory
organs, Provision has been made for feedback loops from the "Brein" to the
three lumped systems, as described above, as well as between these systems
themselves, These loops may effectively change the internal states of one or
all of the three parts,

In order to describe the environment of this system we shall postulate the

existence of a number of external states Q where j belongs to some index set

J,
A, An event e, will be defined as a combination of the Qj's:
eiﬂtqi, ---,Qlj ---)
1 n
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FIGURE 1. SEQUENTIAL MACHINE. WHEN THE INTERNAL STATE IS qr AND THE INPUT IS Si
THE OUTPUT WILL BE Ss'
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while environment will be defined by the set

The event e contains a sound signal when there exisis at least one i

where Qi is one of the formative states of e such that Qj € Zil.
n 11
An event ei may be interpreted as a time sequence if its states are

arranged so that the state Qi was reached at time ti and the state Qi
n n n+1
at time t, where t < t, . If e 1s a time sequence and if it ceontains
1n+1 ln - 1n+1 t ’
a sound signal, each of the states of the sound signal will act as an input

state to the system in the order in which these states appear in the time
sequence,

Drawing an analogy from the mammalian acoustical organ where some data-
reduction is believed to occur over the information flow, we introduce the

following assumptions which also make our system data-reducing

W) Ly -5 g ad L, zﬁl,in

2

(2) There exists an element & 1in Eﬂi and Zé‘ sitch thal

(a) (@, qij)—ﬂ'e for any j, where 1 -~ j < v,

(b} There exists s, and g, where 1 < a < v,
1ij ia’ — - i
s.,.#8 and s_ ., 1is the j~th input state of the i-th machine, such that
1ij 1ij §
s ¢}
(5145 Y3a) ™

€ 5 t s P
(c¢) If SZij 2?1 bu SZij‘f 22’141 then

(s.,.., 4

214 o) w9 tov any B where 1 < b & v

i+1,p i+



(d) If at time t. ihe internal state of the 101k machim 1w g
1
n
and the input state 1s @ then the Iniernal state 2 roc eng

b

discrete time inlervial o will be =1111
1
1 1

The element 8 will be called the null element because of property 2(d},
The description of our system in terms of sequential machines is

advantageous for the following reasons:

{1) It points out that the manner of operation of our system, whether
it is mechanical or electrochemical, is immaterial, It will be sufficient to
know that there exists a well-specified response to a well-defined stimulus,

(2) The description is flexible enough to permit the introduction of
data-reduction., In addition, even though only successive single inputs are
treated the system can accommodate simultaneous inputs if the need arises,
This may be done by redefining the input and output states as n-~tuples with
state parameters as elements of the n-tuples,

(3) Parts of the system can be isolated and studied much as a "free

hody" is studied in mechanics,



3. LINEAR INTERACTIONS IN CONTINUA

Let a field act upon a continuum of elements which perform linear operations
on their input stimulations, Within the continuum L, each element has a specified
cennectivity with all other elements in L,

The input stimulations from the field acting upon an element p € L will be
denoted by O(p) and the response of the element p will be called P(p). In general,
an element in L may receive stimulations from other elements in L and may further-
more provide stimulations to other elements in L including itself {see Figure
3).

We shall assume that L is a measurable set over some measure function .

The interaction function Kl(p,q) where p,qe I, is defined such that

K, (q,p) P(a) (2.1)

is the amount of stimulation received by p from q, If p is a fixed element of
L and q is permitted to range over all of L, then the total amount of stimulation
received by p will equal its response, therefore
I
p(p) = KO(p) + A i K (q,p) P(a) di (2.2)
q€L

where K is an amplifying factor for O(p) and A an amplifying factor for the
stimulation received by p from all other elements in q,

A word of caution is in order concerning Bquation (2,2).

1) It is tacitly assumed that Kl(q,p)p(q) is integrable
2) Equation (2.2) implies that the elements of L are non—conservativea5
When L is in an n-dimensional vector space and [l is the ordinary Lebesgue

measure (2.2) becomes:

-:b — s ko e d
p(xo) = K w(xo) + A d[ Kl(x, xo) pPix) dx (2.3)
L
> (o) (o) el
where x0 = (x1 s eee g xn )} are the coordinates of p and x = (xl, vee xn) are

the coordinates of q,
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FIGURE 3. INTERACTION IN AN N-DIMENS LONAL CONTINUTM
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Equation (2-2) is an integral equation of the scvcond kind and may be solved for some
specific choice of kernels KIE;’;;)' We shall sclve this equation for P(x)
for an infinite one-dimensional layer where Kl(ﬁ;;;) s k](xo—x), The choice of
kl(xo-x) includes the cases where the kernel is a function of the distance between
the points x and xo and furthermore makes the problem amenable to a mathematical

treatment, With these assumptions Equation {(2-3) becomes
o

=K - . o
p(xo) = U(xo) + A kl(xo P {(x) dx j (2-4)

the sclution of this equation is given by:

K Z (W -1 %1
e

0
P(x) = 1 J/' du, {2-5)
[0 ] 1 - Jﬁf N R (u)

where Z(u) and Kl(uJ are the Fourier integral transforms of O{x) and kir}, teX -%,

o0

2
respectively, i,e., Z(u) = d/ o(x) '™ dx and i° = -1, The simplwsit conditions

- o0
for which this solution is valid are given by the following theorem .

Theorem 1,

Let K 0(x) EcZ?z(-m%x:) and k{x) €X (-0, ) and lct the upper bound of

. . . 2

A Kl(u) be less than 1/ [ . Then (2-5) gives a solution of (2-4) of the classA" %,
and any other solution ofo(’z is egual to it alwost everywhere, Note: We say

f(x) € er (a,b) if £(x) is measurable and

b

I[f(x)!pdx <%0

a

11



As an example of a one-dimensional layer of sensory elements one may consider
the basilar membrane with its lining of hair cells, Under the assumption that
the essential information with respect to the acoustical environment 1s coded
in terms of displacement as a function of distance along the basilar membrane's
lengthwise extension from the basal to the apical end, neglecting displacements
perpendicular to this direction, the problem of analysis becomes a one-dimensional
one,

We shall now return to our 'amorphous" continuum L and we will introduce a
slightly less general structure to it,

Let L be separated into two subsets Ll and L2 such that
() Ek= Lllj L2’

{2) Each element q € Ll receives an excitation Ul(q) from a fleld acting on
Ll' Furthermore the elements of L1 are not interconnected and the response pl(q)
of q € L1 is solely a function of Gl(q),

(3) Each element p € L2 1s connected to every element in Ll and receives
from an element q € Ll an excitation equal to Kl(q,p) pl(q), where Kz(q,p) is a
specified function, (See Figure 4),

4) 1) L,

{11) K2 (q,p) Pl(q) is an integrable function relative to #l.

is a measurable set with respect to a measure function,q .

Under these conditions the excitation which p € L2 recelves is given by

€
q€ L,

If p simply amplifies by a factor K its incoming stimulus we have:

Py(p) = KO, (p) = K j K,(a,p) P, {q) dH, , (2-7)

€
qd Ll

Again if L is immersed in an n-~dimensional vector space (2-7) becomes

12
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x ) = K X, x ) P, () dx (2-8)
Pplx,) = Ky (%, %) Py () ax B
Ll
% = (xl, Xyy vee s xn) and‘§ _( (o) xéo), cee xio)) being the coordinate systems

of L1 and L2 respectively,
We shall refer to the cases where (2-7) holds as action phenomena in order
to distinguish them from the general interaction phenomena governed by Equation

(2-2), The function Kz(q,p) will be called the acticn function between L. and

1
L.
2
The reader will have no difficulty visualizing the partition of L into v
subsets where two consecutive subsets L1 and L1+1’ 1 < v-1, having properties

analogous to L1 and L2 described above, Then,

> ->
- K -
Pivi Gy =% ) X 1 o 1+1) Py dki (2-9)
Li
whe (%, .) is th £ lement in L ith dinat (x,)
re p i 1 s e response of an elemen n vl wi coordinates xi+1’pi X
is the response of an element in L with coordinates X, Ki+l a constant and
i i+1(xl, i+ 1) the action function from L to Li 1
Using (2~-9) we may derive p ) as a function of P (kj , J< i and
(x xj) the action function from Li to LJ’ to he deflned below, Proceeding
by
r - —
~> -
Py =k 1 Ky gy X ) Py () 8% =
Li—l
- - — ol -
= K K K =
1 J 1,1-1% X3) 1-1IK1 1,120 % 9) Py By p) o _pd¥ )
L1-1 Li—z

- - > . — 3
cee = KK L Ky ‘[. ﬁ!' oo Kij(xi’xj) pJ(xj) ax, , ... dxj (2-10)
L L



where

- = < - - -3

K ) = K. . e . 2~-11

ij(xl’ xj) 1,1-l(x’ xi-l) KJ+1)J(XJ+1:XJ) . (2 j
Returning to Equation (2~8) this equation may be solved for pl(x) if

pz(xo) is known and for some specific cases of the kernel Kz(x,xo), We shall

again work in an infinite one-dimensional layer with KZ(X,XD) = k(xo-x).

Equation {2-8) becomes:

o0
pz(xo) = K J[ kz(xo—x) pl(x) dx ; {2-12)
= #]

the solution of this equation is given by,

P (u)
ixu v
Pl(X) = f M K (u) du/ 2-13)
-}

where Pz(u) and Kz(u) are the Fourier integral transforms of ﬂztxo) and k\x—xD)
respectively,

We also have the theorem

t
Theoren 22
2 ) i

let p (x) Géf (-0 , 0} and ki(x) €, (-0, o0), Then in order that there

%:z(dm ), it is necessary and sufficient that

N po
Pz(u)/K Kz(u) should belong too(, (-0, o0},

should be a solution p (x) of

Having defined action and interaction phenomena it 18 I1nstructive tn sege
when interaction and acticon are equivalent, By equivalence we mean that given

O{q) and Kl(q,p) in Equation (2-2) and pl(q) and K_fg,p) in lrquation (2-7} how

2
shpuld Kl(q,p) and Kz(q,p), the structural properties of the two systems, be

related in order that pl(p) obtwined from (2-2) and pg(p) obtained from

15



Equation (2-7) are equal,
In order to facilitate the mathematics involved we shall again work in
an infinite one-dimensional layer with Kl(x, xo) = kl(x0 - X) and Kz(x, xo)
= kz(x0 - %), We shall also suppress the constants K and A which have no
importance in the desired result, For easy reference we restate the equations

o0

%ﬁxo) = G(xo)-+ d/ﬁ kltxo- X} P (x) dx (2-14)
= oo
o0
pz(xo) = d/ﬁ kz(xo - X) pl(x) dx (2-15)
P, o]

Taking Fourler transforms of both sides of Bquation (2-14) we obtain, where the

capltalized letters stand for the transforms of the respective functions,

P(u) = Z(u) , (2-16)
1 - ﬁ K, (u)
Similarly for (2-15)
P (u)
1 2
K _(u) = (2-17)
2 jz? ANV !

When 0(x) = pl(x) and pz(x) = P(x) Equation (2-17) yields

_ 1 P (u)
K2 (u) = ‘/2_“ SR {2-18)
Substituting (2-16) into (2-18) we have:
K (u) = —iee . (2-19)
2

1
‘/L‘,} 1- fZ_‘" K, (W)

This establishes the following thecrem!

16



Theorem 3: (Equivalence)

Under the conditions of Theorems 1 and 2 the interaction phenomenon
defined by (2-14) and the action phenomenon defined by (2-15) are equivalent
if and only if (2-19) holds,

While the conditions for which equivalence was established are rather
restrictive, it is comforting to know that equivalence is possible for the
aforementioned special, but important, case, At the present an effort was
being made to find more general conditions for equivalence,

It is pertimnent at this point to discuss the use of the derived results,

4

It has been pointed out” that action and interaction fields may be 'used eirther
by themselves or in conjunction with other devices (i.e, thresholds) to
discover some properties of a stimulus activity pattern., It is therefore
desirable to examine action and interaction fields from a general point of view,
In addition by establishing equivalence, in certain cases, a particular property
detector field may be built either utilizing the interaction principles or
action principles depending on which is easier and more economical

In the subsequent chapters we will apply the results of this chapter o

some problems connected with the analysis of sound,
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4, COMPUTATIONAL FIELDS

By computational fields we shall mean continua which perform sharpening
transformations upon a given stimulus pattern, We shall begin our search
for such fields by defining the notion of sharpening,

(1)
Let Ci

be the class of all real valued functions f(x) defined on a
subset of an n-dimensional vector space which havwe a first partial derivative
in the variable xi in a region R,

Definition 1 (Sharpening):
1)

1
let T be a transformation of Ci )into itself, e, g. T:

Let £(x) € C
> -
Cil)——b Cil) and let fo;3 be the image of f(x) under T, We say that fT(x)

> .
is an i-sharpening of f(x) in the set a, S_xi S_bi if

3 fTG;’) 3 £(D
1_8__:-:1 | > I‘E'xi | a, <% S by

with equality holding only on a set of Lebesgue measure zero,

We immediately see from this definition that sharpening is a local
phenomenon., To illustrate this point consider the two curves in Figure 5.

Within [a,b], fT(x) is sharper than f(x) while outside [a,b] the opposite
is true,

One disadvantage of our definition is that we can only discuss functions
which have a first derivative in some interval while seemingly we can say nothing
about functions for which this is not true, We can enlarge the class of functions
under consideration for at least the one dimensional case by using the terminclogy
of Schwartz Distributions,

Definition 2 (Testing Function):

The functions ¢(x) which are continuous and have continuous derivatives of
all orders and vanish identically outside some finite interval will be called

testing functions,

18



.
>

(a)

FIGURE 5. SHARPENING IS A LOCAL PHENOMENON
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Definition 3 (Linear Functional):

F(¢D is a linear functional if to every testing function ¢(x) a real

or complex number F(¢) is assigned such that
F(p, + §,) = F(@) + F(@)

F(c) = ¢ F()
where ¢ is any scalar,

We say a sequence of testing functions ¢h(x) converges to zero if the
functions ¢h(x) and all their derivetives converge uniformly to zero and if
all the functions ¢;(x) vanish identically outside the same finite interval,
A functional F(¢D is said to be continuous if the sequence of numbers F(¢%)
converges to zero whenever the sequence of testing functions ¢h(x) converges
to zero,

Given any continuous linear functional F(¢) on the space of testing

functions we shall introduce a functional symbol, say s(x), and put

od
[ s(x) @ (x) dx = F()
[~}

We shall say s{x) 1s a symbolic function.

The first derivative of s(x) will be defined by

o0 %0
f s'(x) P(x) dx = - f s(x) ¢ " (x) dx {3-1)
o 20

The advantage of this definition is that in case s{x) has a derivative
in the ordinary sense it may be obtained from (3-1) while for certain cases
where s(x) does not have an ordinary derivative,Equation (3-1) will yield a
"derivative" for s(x). We shall call such derivative a symbolic derivative,

We shall now return to our primary objective,that of finding sharpening
transformations, The discussion will be restricted to the one-dimensional
case for most of what we will say carries an obvious generalization to

n-dimensions,

20



f(x)

(a) S
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FIGURE 6. "SHARPENING" BY DOUBLE DIFFERENTIATION
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The transformation, T, such that fT(x) = cf(x) with | ¢ ! > | , 1s perhaps
the simplest way of sharpening a function., For easy reference we will call
such a transformation amplification,

Another interesting suggestion for a sharpening transformation 1s one by
Huggins and Licklider7. They indicated that some curves may be sharpened by
a process of differentiation or double differentiation, In particular they

used the polynomial approximation

(x) | = 2 £(1) -~ [£QG+1) + £¢i-1) ]
Xl
for the second derivative, Independantly H, Von Foerster arrived at simlar
conclusions and applied these results to some problems relating to optical
property filtersh.

If we combine amplification together with the operation of taking even
derivatives e,g. fT(x) = ¢ £(2n){(x), some le | > 1 we obtain a sharpening
around the maxima and minima of & certain class of functions, If n = 1 this
class of functions is composed of all the continuous functions having & > 2
inflection points and possessing second derivatives everywhere This 1s seen
by observing that the maxima and minima of such functions are 1n between palrs
of inflection points, Furthermore the second derivative of such functions will
be zero at the inflection points and hence amplification of the seccond derivative
will leave f"(xi) unchanged, where (xi, f(xi) } is an inflection of F(x), while
enlarging all other £"(x).

For n = 2, let (x*, f[x]* ) be a local maximum or local minimum of a
function f£(x) having § > 2 inflection points and possessing a fourth derivative
everywhere, Let (xi, f(xi) )} be the inflection point immediately to the left
£(

and (xi ) ) the inflection points immediastely to the right of

+17 V%441
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* x "
(x', F(x)) (See Figure 6). Let (x;, f (x,)) and (x] .,

inflection points of f"(x) immediately adjacent to (x, £"(x )). 1If
(4)

f"(xi+l)) be the

1 t 1
[xi, xi+1] C [xi, xi+1] and [xi, i+l] # [x ] then c f ix) will be*
a sharpening of f(x) in [x_, i+$ where ¢ is such that Icf (x )l > | " (x )’
*
In general then if [(xl, f(x », ..., (x“, f(x“)] are the local maxima

(3

and local minima of a curve having 2n-th derivative everywhere, let (x s
£ (D)) ang (), £ @D ()
left and the right respectively of (x

b )} be the inflection points adjacent on the

4 (ZJ)(xi)) where 1 < j < v < n and

1<1i<H If [x (J) ii;](::[xij-l) ij_l)] with proper inclusion for all

1<j<V then for an appropriate choice of ¢, cfEx) will be a sharpening of
( Yy M

f(x) in [x; 7, i+1]

In order to judge the effectiveness of amplification together with double
differentiation the reader is referred to Appendix C.

It remains to discuss for what kernel an action layer will compute even

derivatives of a given stimulus, Hence we will have to solve the equation:
0
o(zn)(x ) = ‘Jﬁ K(x, xD) o(x) dx (3-2)
~L0

for K(x, xo).
Equation {3-2) defines the symbolic function8

K(x, x ) = 6%V (x - x) (3-3)

where O(x - xo) is the Dirac delta function such that

o0
hJ\ (x) B(x - xo) dx = ¢(xo)

23



(2
for an arbitrary continuous function ¢x). The symbolic function O(x - xo)
is the 2n-th derivative of 0(x - xo).
If we would like to find an interaction field which computes the Zu-th
derivative of a given continuous function o(x) we will have Lo solve the

equation:

0
o(x ) - of¥ - j K(x, x) otd)’ ax (3-1)
o] [e] (&}
=00

for K(x, xO)A It is well to point oul al this point Lthal we canninot wsoe the
equivalence relation (2-19) because we do not yel know if K(x, x}) sutisfivs
L
the conditions of Theorem 1.
E2") v . , ] ,
If K(x, xo) o(X)", 1 <V < n, vanishes at the endpoints we can apply

integration by parts to (3-4) and obtain

w
(2u) {2m .
og(x ) -~ o (x = - hix, x 3 o{(s8) uas i3 D)
o] o . o
-
By inspection one solutinon of (3-3) 1%
(2n) U2
K{x. x J}  “(x ~ 5 ) - T4 Ao ]
(] Al
Since (3-6) involves one morse term than (3-3) we can Seoe That tl will Lo wor

economical 1o hmtld the action [ield.
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5. FREQUENCY SENSITIVE FIELD

An array of electrical resonating circuits each tuned to a different
frequency was described elsewhereg, Here we shall interpret such an array as
an actlon field,

If w stands for the frequency of an element q in a continuum L. and wb

1
stands for the frequency of a resonating element p in a continuum L2 (see

Figure 4) then the kernel of the action field will be:

1

K(q,p) = e——
2
(1 +Q (
: w
o]

where Q is the damping constant of element p,

(4-1)

ElE
1
I
—

Because (4-1) is somewhat unwieldy it is desirable to approximate it

by a different expression, One such expression is

K(q,p) = (4-2)

where b is a function of Q.
We may obtain b=b(Q) by equating the energilies corresponding to the two

kernels, in particular:

dx dx

= (4-3)
2 2 1 .2
1+ b2 (x-1) 1+ Q2 -2
1 X
where x = -3 and the integration is carried out from the maxima of hoth curves
to infinity.°
Equation (4-3) gives
b = 29 (4-4)
log 4 Q
1+ T Q



In Figures 8 to 10, (4-1) and (4-2) are compared for different values of Q,
The general equation for the action field will he:

o0

Plw) = [ 0w dw (4-5)
) z
0 ﬁ + b (:—o)

with b as defined by (4-4},
We shall now expand O{w) by a Fourier series and compute the terms arising

out of the sine and cosine components of U(uﬂ, e.g.

ao
cos n MW dw (4-6)
2w 2
0 v/l + b (’;—)
o
o0
Jf ~Sinnk 4y (4-7)
2 W
0 1 + b —
J ()
o]
where k is a constant and n=1, 2, ..., let y = E}-. Upon integration of
o]

(4-6) and (4-7) (See Appendix:BL we obtain:

o0
n kw

COS n Wy Ky w7 0
f — dy = -3¢ Vo (~—5—) (4-8)
0 JG + by

where Uo(x) is the real part of No(ix) and No(x) is Neumann's function of

order zero

sin n kw_ ¥y T n kw n ko
f — 2 dy=-2-:6{vo( b°) - ( b")} (4-9)
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where V0 is the imaginary part of No(ix) and

2m + 1

00 (-;— x)
Lo(x) = = 3 Y
m=0 {I“(m + -)}
2

with I(x) being the gamma function,

The integrals (4-8) and (4-9) are plotted for kmo =1 in Fragures 11 and
12,

Equations (4-8) and (4-9) give the response for each componcnt 31 ‘i
Fourier Series at the point p. This example illustrates the reloiive us
with which a fairly general problem can be handled using the tcechuiao: -

outlined in Section 3.
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APPENDIX A

INTERACTICNS IN CONSERVATIVE SYSTEMS

Let p be an element of a continuum L and let ¥ be an energy unit

Then, —or8Y 1“2“ at P . o(p) + j K{q,p) pa} dit (A-1)
q € 1L
energy output from p
— E, = p(p) K(q,p) du (A-2)
qg €L

replacing p by X and g by x and equating (A-1) to (A-2)} we have

G(xo) + f K(xo’ x} P(x) dx = P(xO) f K(x0, x) dx (A-3)
x €L x €L
or
U(xo) - p(xo) G(xo) = - K(xo, x) Q{x) dx . (A-4)
x€ L
where
J/- K(xo, X) dx = G(xo)
x€ L

if G(xo) # 0, (A-4) may be transformed into

Px)) = -0, (x)) + f K (x, %) P(x) dx (A-5)
x€ L
where
o(x )
o
Ul(xo) = G(x )



and

K(xo, X}

K (x mET;—T—
o

1" o’ x) =

Equation (A-5) is of the type discussed in Part II and can thevedore
be handled by the same method.
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APPENDIX B
INTEGRATION OF EQUATIONS (4-8) AND (4-9)

o0 .
sin n kly
Integration of ————  dy

¢} \/{ + b2 y2

and
cosS n kly
———————dy,k =k W
55 1 o
0 /1l + b ¥y
in n k 0 i nk ~ i nk
sin n Y 1 oinkyy 1 o ink,y
———— =7 ——— dy - 37 —— . dy (B-1)
— 2 2
0/1+b2y o /14 62yl o A+ b2yl
10
0
] e-st T
____,_;. dt = 'S { Ho(s) - No(s)} (B-2)
0 1 + ¢t

where HO(S) is Struve’s function of 0-th order and No(s) Neumann's iunction

of zero order, Letting by = t in (B-1) we have

in k t in k t
fore) 0
sinn k 1
1Y - = -
f‘“’"’“’“;dy‘ 2b1 j dt 2b1f dt
0 /1+b2y Ji+ 0 J/1+
ink ink ink ink
T 1 ‘ 1 1 1
= o0 { H(-——)-N (-—==)-H (4= +N (5 i} (B-3)
ink n k
1 . 1
H (=) = 1L (=)

37



where 2m+l

L{{x)y = Z
0

- 2
m=0 {I“ (m+%9

Letting No(ix) = Uo(x) + 1 Vo(x) (B-3) yields

o

sinn k, y nk n k
1 T [ 1
J dy ) - L0 { ~L )f {B-2)

]

l
A
L]
~

\N\
5]
L]
o
o]
o
o

0 l+b ¥y
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APPENDIX C
UNIVERSITY OF ILLINOIS DYNAMIC SIGNAL ANALYZER

The Dynamic Signal Analyzer (DSA}9

built at the Biological Computer Laboratory
at the University of Illincis contains a band of 96 resonating filters each
tuned to a different freguency. There are eight octaves each divided inte
twelve equal semitones according to the well-tempered scalell.
If fo 1s the frequency of the fundamental the~ the frequency, fl’ of the first

semitone after the fundamental is given bhy:

£ =12 /f2.t+ - 1.05946
1 o o

Similarly:
12 12 2
-_ = = . f
f2 A/ 2 fl { ‘V 2) f0 1.12246 o
and in general

fi = 2 2 £, ,= (1%V_§ )" £ (C-1)
In the well tempered scale the deviations from the Pythagorean system are
distributed uniformly along the octave and although no interval other than the
octave is according to the Pythagorean s8ystem our ear has become accustomed to
this "error". In musical string instruments the advantages of this system far
outweigh its flaws and this system 1s used in the sound spectrum analyzer

section of the DSA.

The magnitude of the response of the ith filter is given by

il f
i

f .
l%}-\ =1+ @® & - HETE (c-2)
i
where
E - is the output sinusoidal voltage when the filter is driven with a constant
amplitude, A, sinusoidal source at a frequency f.
Ei - is the output sinusoidal voltage when the filter is driven with a constant

amplitude, A, sinusoidal source at a freguency fi.

* Reference 9, p. 60, Equation (C-3).
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fi - is the design center frequency of the filter and is the resonant frequency

of the prototype filter.
Q - is the equivalent quality factor of the filter and driver circult combination.

The function defined by Equation (C-2) possesses a rather flat maximum at
f = fi' Hence the problem of resolving a given sound signal in terms of its
0=1, 2, ...

frequency components, f , 96, becomes rather insoluble unless a

1)
sharpening can be applied to the responses of each of the individual filters.
We apply the sharpening discussed in Fart 3.

For the purposes of differentiation three different approximations for

the second derivative are used,

- £" (x) M2E(1) - (F(i o+ 1) + £(i - 1)) (c-3)
x=1
- £"(x) ~ (2f(1) - (£(i + 2) + £(i - 2))] (C-4)
s 22
x=1
- P (x) ’/U’Lz' [2£(1) - (£(1 + 3) + £Ci ~ 3))] (c-5)
3
x=1

It is seen that in all three cases a central difference, arouud the point
where the derivative is soughl, is employed.

Expanding by means of a Taylor series, where A » > 0

2 3 4
X (B0 (D) (iv) (&)
T = £(1) + £ Jy + 1) SgP— e 1) S5 f (] 5P
5
(v) (&%)
+ f(i) ~ET——‘ + ..
- 59 = 1) - tre) By 97 ) @07 an @
= 17t 27 at Yy Tan
L) @9°
(1) 5t

4o



£ (1) 5 [2f(1) - (£(i + &X) + £(i - &) ] =
(LX)
Ll v 0? - a0 @0’
- (AX)z (i) 41 {1} 6!
hence
- () Re - £() - %E— ffi‘)’) (92 2—! fg)i) 7 (C-6)

Therefore our approximations imply that we are neglecting higher order terms

with (C-5) approaching

1

(22

- f"(l) -

[2E(i) - (£(i + &) + £(i - &)} (C-7)

As AX tends to zero.

Using Equation (C-7) we cobtain for the fourth derivative

- EMN(i) L [6f(i) - 4(f(i + &) + f(1i - &) &+ (f(i + 28 + £(i - 284<)) ]
(& (C-8)

which for &X = 1 yields:

S EMTIYRZGE(L) - ACE(L + 1) + £(1 - 1) 4 (£(i + 2) + £(i - 2) (C-9)

for MX = 2

S UM A [6£(1) - A 4 2) + £(1 - 2)) + (£(1 4 4) + £C4 - 4] (C-10)

2
and for &X = 3

- g1 (1)51—4 [6£€i) - 4(f{i + 3) + (i - 3)) + (f(i + 6) + £{i - B))] (C-11)
3

1



In Figure 13 a typical resonance curve, Lqguation (C-2), is approximated
by a step function and amplified by a factor of 20. In Figure 14a the
second derivative using (C-3) is amplified by a factor of 5. Figure l4b
shows the second derivative obtained by (C-4) with an amplification of 5.
Equation (C-5) is used for the second derivative in Figure 14c. The same procedure
on £"(x) is employed in order to obtain the fourth derivative, using (C-9),
(C-10) and (C-11) and this is shown in Figures 15a, 15b and l5c.
Equation (C-3), and it's "twin" Equation (C-9), is clearly superior, to the
others, for sharpening purpcses. From Figure l4a we see that the ordinate at
the origin 1s highly discernible from all other points and we need not compute

derivatives of higher order in order to achieve further sharpening.
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FIGURE 13, AMPLIFIED (20X) STEP APPROXIMATION TO A TYPICAL RESCNANCE CURVE
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PART II

KINDS OF INTERACTIONS IN SETS OF DISCRETE, LINEAR ELEMENTS

by

Raymond Yeh

1. FINITE INTERACTION NETWORKS

Consider a set S of a finite number of elements each of which has a specific
connectivity with other elements in 8 and each performs linear operations upon
its input stimulations when S is acted upon by a stimulus field, 5 is called a
linear network. The input stimulation of the ith element of 8 will be denoted by
Gi while the response of the same element is represented by Pi. If elements :in
S are connected such that each is receiving stimulations from other elements and
also to provide stimulations to other elements including itself, then S is called
a finite linear interaction network.

Let p and g be the ith and the jth elements in 8, and k;_ kf denote the
interaction coefficients such that ki specifies the amount of stimulations being
transferred from the sth element to the tth element, Figurelb is a sample
representation of the connectivities between just two elements of an interaction
network, Depending on the specific interaction function between elements, the

respense of any element in S can be expressed in the foullowing form

i_.o i i i i 4
k e k. - k il
o P+ kl P+ + k. P+ + k p '

©
i

i=1, 2

3 n

) ey

where PD igs defined to be the stimulation of the particular element under

consideration, in this case, p° = Ul. The n- equations may be expressed in
matrix form below
p = K! 0+ KD (2)
' i
where K = || ko |l and K = || k; |1 p and ¢ here denote column matrices.
We may rewrite (2) below
o =M (3)



From other elements
——

Feed back

>
From thsr_eiemenfs To other elements

Feed back L

——————
To other elements

FIGURE 16, CONNECTIVITY BETWEEN TWO ARBITRARY ELEMENTS IN AN INTERACTION NETWORK.
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where M = || m; I, 1, 3 =1, 2, » I
i
-kj
‘——i—-lfI#J
k
i 0
my = )
—ki+1
1 if 1=
k
o

If M above is non-singular, we may express the responses in terms of stimulations

by simply inverting the coefficient matrix M, Thus

- i
p=M10'=RO'if!mJ,|;£O Y
L
where M =R= i B RV
1 J
m.
J
j tl
Mi = cofactor of the jth row and i coluwe of M
Imjl = determinant of M,
If M is singular, (Im;l = 0}, then M-1 is unstable and [} cannol be CXpruossed

in terms of O under this condition,
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2, FINITE ACTION NETWORK

Consider the case where S is partitioned into m subsets Sl’ SZ’ caey Sm

arranged in order sc that
m

(1) 8 = kL=Jl sk

(2) Each element Pl € S1 receives g stimulation from the stimulus

field acts upon S,

(3) Each element PZ € S2 receives stimulations only from elements of

S1 and gives stimulations to 83. In'general, each element I?,1 € Si

receives stimulations from elements of Si and its responses

1
provide stimulations to the elements of §

{(4) No interaction within each subset is alloizé_ S is called a
finite action network under the ahove conditions and is sketched
in Figure 17.
Figure 18 indicates the action relations between the elements of the adjacent
subsets, Si and SJ . Si acts upon Sj' An arbitrary element is picked in Si as
a sample representation of the action relation from the element of Si to that
of Sj’ while the symbol a; represents the action coefficients which define the

i
further, we shall adopt the following summation convention:

activities transferred from the elements'of S, to that of Sj' Before going

k

1 2 n
g P =2, P +a  PT+ .. +ap

for k = 1,2,,..,n,

I both, Si and Sj above, contain n elements, the action relation can be

expressed as

s sse, N (5)

where

n
]
w»

(6)
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@ From acting field

FIGURE 17. FINITE ACTION NETWORK
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FIGURE 18. ACTION RELATIONS BETWEEN TWO SETS
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For A non-singular, then O can be expressed in terms of [ by simply
inverting the ccefficient matrix A:
-1
CO=A" p=Bp

Note that instability will result in the inversion 1f A is singular
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3. EQUIVALENCE OF STABLE ACTION AND INTERACTION NETWORKS

From the above discussion, we see that the action networks invelve at
least two sets of linear elements while the interaction networks only involve
one set of linear elements, Though the structure of the two kinds of networks
are different, they perform equivalent functions with respect to stimulations
and responses, Let us call the functions performed by action and interaction
networks the action and the interaction functions respectively, The following
theorem is in order,

Theorem I

In finite linear networks, for each stable action function, there exists

an equivalent interaction function and vice versa,

From Equations (3), (4), (6), and (7) we have

ag Mp:p:RO‘

P

[}

A0 =0 Bp

The above two equations show that a stable action function implies an

interaction function and vice versa,.
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4, INFINITE PERIODIC NETWORKS

A set 5 which contains infinite number of elements is called an infinirte

set, If elements of S are being grouped into a countable number of subsets, such
o ;

that § = nL=J'1 Sn,

possess the same operational characteristics, then 8 is called an infinite,

each contains N elements and all elements in each subset Sn

periodic network, Let 7 denote the periodicity, then the above network is said

to have periodicity T = N,

4.1 One-Dimensional Symmetric Action Network

Considering 5 = Si U s, such that Si acts upon Sj’ each is an infinite
periodic set with T = 1 and satisfying the following conditions,

(1) Elements of either set are arranged in a one dimensional layer such
that each element is A distance apart from its adjacent elements,

(2) The action coefficients which define the activities transferred from

elements of Si to those of Sj fulfill the conditions below

i i
k
{a) an.l =

a,
Jp dm sk -mi)

(3) Stimulations and responses of the elements 1n either sel are funciions
of distance denoted by O(x) and P(x) respectively,

§ is called a one dimensional symmetrical action network which may we illua-
trated with the aid of Figure 19. Let a; be represented by ay such that K € "
where [P] is the set of non-negative integers, then the fellowing stimulus-response

relation of the one-dimensional action network can be obtained:

Pix) = e Tz} + ul[o(x +A) + O(x-A)]

+ a O(x + 2 A) + O(x-2 A)] +

2 [
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FIGURE 19, ONE-DIMENSIONAT, 70 Gh RRETWOINL
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By use of Taylor's expansion, we have

P (x) =o 0
2 3
+a [0 + 0 A+ 07 (% %+ o™ (%) i§‘,—+ .
2 3
+ 00 -0 A+ 0" (0 5 -0 0 S )
’ 22}3 #” 2 23 "
+ Cl2 [O'(x) + 20 (XA + -2—;-—0' ()N + 3—,0' (x)A +
2 3
2
+ O(x) ~207(x) A+ -g-;- o’ (x) A -g-,—o”" OA & ]
P
2A° . o o 1
= O(x) v [1 a + 20, + 30, + ...+ FO ]
" 2&? 2 2 2
+ 0 (X)E'f"[ %o, + 2%, + 3%, + ... ]
0'””-2-‘2‘4—[ 14a 240. 340. +
+ 70 1t g * g3+ . ]
o 2 4
A #” Ay at A
P(x)=0(X)'2[3b—OT+U (x) -2 [525-,:'+0' {(x) 2ﬁ4zt—*
0 2i
(21) A :
= — t8
2z 0 (x) o1 Poy )
where
. ;
5 ey J#o
BJ = . o
2% &%y J=0°
Equation (B) represents stable action if and only if the seEies converges,
Assuming O(x) has finite derivatives up to 2it order and ST is finite, then
the series converges 1if ﬂZi represents a converging series, i,e,, if ﬁ21 is a

constant as expressed by
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B = £ " £(0 = ¢ (m=0,1, ... (9)
where Cn is 2 constant depending on n, If one can find a solution of f£{x) such
that (8) is satisfied, then Equation (8) is a stable action case, We shall
approximate (9) by integration:

0
g(n) = Jr X" £(x) dx = . (n=20,1, ...) (10)

[o}

A solution of f£(x) in (10) exist5122
A
£ g2y = £ m f (1- % ) ¢ (8) cos & d a1)
o

As a special case, if Cn = (, then one has

f(x) = e P COS K g sin (x* sint M)

for all pu < 1/2 (12)

The above equation assumes the convergence of ﬁ(n) and hence the stability of

P(x) in (8). The response in (8) is observed to be expressed in terms of even
derivatives of the stimulations, Therefore, [ may also be called a differentiating
action network, If A is small, then higher derivatives are negligible in mag-
nitude in the Taylor's expansion, i,e, only the second derivative is the

dominant factor, Consider the case where A is small and the action coefficients

is such that

[ ifm=mn
alm - -1 if /m-n/ =1 (13)
Jn

0 all other cases
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then the stimulus-response relation for a particular element is

p(x) - O(x-A) + 20(x)-0 (x-A)
2

-0(x) + U,(X)A— 0’” (x) %—4— 2T (x) - Gg(x)—O’] (x)A

2
¥
-0 (%) 2}

1

I}

==0"(x) &2

with the motivation, the theorem of Binomial connectivity comes in order.
Theorem I1

If in a finite ordered set of infinite, periodic, symmetrical sets with
periodicity one such that each set is acted upon by the preceding one with action
coefficients satisfying (13), then the responses of the elements of the last set to
be acted upeon are 2x (number of sets-1)th derivative of the stimulus function and
these responses can be expressed in terms of the stimulus function with its

coefficients according to binomial expansion in the following form

r
y(2n) 2rn 2+ n 2 1

(x) =r£b (-1) ( N ) y [x-(n-r)A)] {14)

where y(x) is the stimulus function of a particular element and A 1s assumed to

be small.
Proof
Y(ZJ(X) = -y(x-0 4+ 2y(x) -y(x + N
2 l+r 2
=r——)-:0 (-1) (r) y [x-{-m)4]
y(4)(x) = -y(2)(x-£9 + 2y(2)(x) - y(z){x~+‘A )

= =[-y (x=24) + 2y(x-A) -y(x))
+2[ -~y (x-A) + 2y(x) -y(x + A)]
[y (x) + 2y(x + A')I -y (x + 2A)]
) ,

2 4
=r‘=20 (-1 (r) y [x-(2-1) A ]
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Now assume

2m

vy =2 DT TED ylx-(n-r) A ]
a0 Y
then
GRmLY o Cm ) Ly (a)
2m
=2 DTLEY e (merrl) A
r=0
2m r+m ,2m
+2Z2 DTNy x - A
r=0
2m
+ T D3Ny (x-(mer-1) A
r=0
2 T+l 1 .2
== [ D™MTAEY, g™ &0
r=0 r-1
f ED™TE N )y er-1) A
2 (m+1) 2m mr+l 2 m 2 m m
y )= B D) Gz D D ylxmer- A
¥Yhere
m 2m m, _ 2m! 2@ m) 2 m
CHr2 D+ G = Garnieh) * G HTEDT ¥ GrsDTeTE:
- (zgz'ff)“) - (2.m+2)1(2_m+1) [(2 m2-r) @ ml-1) + 2@ m2-1) r+ r(f'—l)]
__@m+2), _ 2m2
=@ m2y = %
Amt1) 2m mr+l 9 me
v x) = T ()™ 2 72) ¥ [x=(mer-1) A Q.E.D,
r=0
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in terms of P's and 0's, the action relation between any two consecutive sets can

»

be expressed in the following form

2n
(m-1) _ ° _qyTtm 2 m (m=1)
Py = rfo (-1) Crd O kem (15)

where the superscripts represent the number of the set while the subscripts
denote the location of a particular element in the set concerned,

4,2 One-Dimemsicnal Symmetrical Interaction Networks

Consider an infinite, periodic set S with periedicity "1" such that

(1) Elements in 5 are located in a one-dimensional layer and each element
is A distance apart from its two adjacent elements,

(2) The interaction coefficients which define the activities transferred

from one element to another satisfy the following conditions

m+ K m-K
{(a) & . =8,
m k
(b) fn T qmik-n

8 1s called a one-~dimensicnal symmetrical interaction network, The stimulation

response relation can be expressed in the following way:
Px) = a%(x) + a, P(x) + a.l[P(x + A) + Px-4) ]+ a2[p(x + 2 A) + P(x-2 D]

+u3[p(x+ 3A) + P(x-34A) ) + ...

where

o
"
]



Solving for O'(X), one has

o(x) =o,; P{x) + o.’l[P(x + D+ P(x~A] + 0.’2 [P{x + 2A ) + P(x - 2A )]+ ..,

where

, ai i#£0

= o
a and a £ O
{a -1)

/ o

Qa =

o o
a

By Taylor's expansion, the above equation can be written as,

? ’
g(x) = 0,0 P(x) + a

2
(1P + poas p” 0 5+ p”
A?

+ P - p0A+ p7 (%)

(16)

. 2 4 ’
+pﬂﬂ (x);—4$ [ 1a’1+ 240.2+340.;+ ...]+ s
2

A° “ ‘A

o = peo B S p” 0 B, Eo

+ P70 2{3; —_—r t ...

oo
=2z P g By an

where

i o."i when j # 0O

~
N cMg

ao+1§1 a, when j = O
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Equation (17) represents a stable interaction if the series converges, Notice
that Equation (17) is identical in form with Equation (8). Thus all the con-
ditions which make (8) a converging series also apply to (17), i. e, Equation
(10) and {(11) may be used to approximate ﬁ’(n)_

We have shown that in finite linear networks a function is stable 1f
the coefficient matrix is nonsingular, In the infinite networks, we define
that the function of a network is stable if the stimulations of the network
can be expressed in terms of its responses and vice versa,

Lemma: Stability Criterion
In infinite linear networks, an action or interaction function is stable
if and only if its transfer coefficients together with that of the corresponding

interaction or action functions satisfy the following conditions,

a]fm a, =a'mp +a’m0
Jm T jm m “m o m
{18)
im ¢ M
CLJn cjn =%, P

Proof:

Assume the function is stable., For finite networks (18) 1s satisfied as
we have shown in previous sections. Since we are dealing with discrete elements,
elements of an infinite network can be put in 1-1 correspondence with positive
integers, Hence, by the second law of mathematical induction, (18) is satisfied
Now, suppose (18) is satisfied, by the definition of stability, the function
must be stable,

Theorem III:

In infinite linear networks, for each stable action function, there exists
an equivalent interaetion function and vice versa,
Proof:

By the stability criterion, it is clear that in infinite linear networks,
stable action and interaction functions are functionally equivalent,

Corollary:
For each stable infinite symmetrical linear action network, there exists

an equivalent infinite symmetrical linear interaction network and vice versa,
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Proof:

Recall equations (8) and (17) where

o0 21
(21) A
p(x) = 2 § o (x) Eﬁ pZi (8)
oo 21
_ @), | &
o(x) = 2 g P (x) 21 521 (17)

With A's the same in both equations and stability assumed then

o2 ‘ (21)

B21 ¥ Fa'2.1 p

Thus P(x) and O(x) in either equation can switch places under the assumption
of stability.
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5. FINITE PERIODIC NETWORKS

If a set 8 of a finite number of linear elements are grouped into m
m
subsets Sl, 82, veey Sm such that 8 = kg& Sk and each Sk contains M elements
which possess some operational characteristics, then 8 is called a finite

periodic network with periodicity T = M,

5,1 One Dimensional Symmetrical Action and Interaction Networks

Symmetrical networks in the finite case are defined as the infinite case,

From Equations (8) and (17), the following equations are obtained

n 2i
_ (21) A
p(x) = 2 ';2. c (x) T [321
8- ‘153 i.ain J#0
0 l V2a +8 0, 3=0 =0
n 21
_ {(21i) Fay ’
o) =2% p ) 55T Boy

{21)
n iy
§ itli &0

n
/ .
/2 %o +i£i ¢ JIF 0

Consider two sets Si and Sj such that Si acts upon Sj’ if an action

i
coefficient a‘j satisfies a binomial connectivity theorem, then the stimulus-

response relation between the two sets can be expressed in matrix form below

J _ 3]

R 2-10...0 o}

: -1 2-10.0 :

: = e : (22)
DJ 0 ...t +2 O"J

m m
- v L. - b -

or [[P|| = ||A]]l |lal| (23)
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As was mentioned in the previous section under the binomial connectivity,
the response of the last set can be expressed in terms of the stimulation of
the first set in a multi-set action network, The general expression in the finite

case 1s given below

2m
(2m) T4m 2m
P k =r§b -1 ¢ T ) cI‘+ k-m
(24)
K <0
¢ =0 for k m

where

h = order of the action coefficient matrix
2m = order of the derivative
K = location of a particular row in the coefficient matrix

The equivalent interaction function corresponding to the action function in

{22) can be obtained by the direct inversion of A as shown helow

| M ~ n {n-1) (n-2) 17]
LAl = ——
n+ 1 {n=-1) 2{n=1) 2(n-2) 2
E ; 3(n=-2) s (25)
2 (n-1)
| 1 2 {n-~1) n |
o Al
Since |1A]] ~ = —7—— we have
| a7 |
J
Jj(n-3+1} if =1
J -
Ai = i(n-j+1) if j i (26)

>
j(n-i+1) if i>j

70



A general interaction expression for the 2nd derivative is given below

(2) 1 K {n-K+1)
UK(n) =7 iia (L) (n-K+1) pi + JEB K(n-K-j) p K+3+1 {27)

where n = rank of the coefficient matrix.

As an example forn =9, m=2, k = 3

(2) 1
03(9) =33 [7p1 + l4p, + 21p, + 18p, + 15p. + 12p, + 9p, + 6pg + 3p9]

Three dimensional models of 11 x 11 action and interaction matrices were
built for the purpose of visualizing the transformation. Figure 20 shows
the model of action matrix while Figure Zl shows interaction model.

5.2 One Dimensional Asymmetrical Network

A one-dimensional asymmetrical action network was proposed by Milner*
in order to account for the so~called 'sharpening effect”’ performed by the
nerve net associated with the baslilar membrane. The place theory requires
high accuracy in determining the maximum amplitude of the oscillation of the
basilar membrane in order to account for the observed high pitch discrimi-
nation.

13

According to Béké%y , however, we know that only a relative flat maxi-
mum is observed in the basilar membrane (Figures 22 and 23}, According to
Milner, the cutoff 1s much more strongly pronounced if the asymmetrical ac-
tion network were used as a sharpening device.

The proposed action function along with its interaction function in

matrix form are shown below

1 0 0 -..-.....0
1 2 0 ...--.-..0
II .A.Il = 1 2 3 0-..---.-0 (28)

LI N A B A B A B R 2 N B B S B IR B Y )

1 2 sienssensansse 11
-

£

)

Milner, P. M., Oral Communication with Professor H. von
Foerster of the University of Illinoils
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300~ 200~ 100 ~~ S50~

FIGURE 22, AMPLITUDE AT VARIOUS DISTANCE ALONG THE COCHILEAR PARTITION.
REPRODUCED FROM BEKESY.
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20 22 24 26 28 30 32 34

FIGURE 23, THE MEASURED LONGITUDINAL BENDING OF THE COCHLEAR PARTITION FOR
A TONE OF 200 cps FOR TWO MOMENTS IN TIME SEPARATED BY A QUARTER
TIME. REPRODUCED FROM BEKESY.



1 0 R ¢

1/2 1/2 0,......... 0
Plaj™t o= 0 -1/3 1/3 0.....0 (29)
0.t vrersesenns=1l/n1l/n

The sharpening effect of this asymmetrical action functicn is demonstrated in
Figure 2/, Three dimensional models of the two matrices given by Equations(28)

and (29) were built and are shown in Figure 25, A similar structure was

operated on a Pace analog computer by Cheng” on the latter part of this report,

5.3 Two Dimensional Networks

Consider a set S of linear elements being partitioned into M ordered
subsets S , 8 S  such that
1 m

PIEEERY:
1) s ="
W i &

(2) Each subset Sk contains an equal number of elements and all elements
in each Sk are located in a plane,

(3) Each subset is acted upon by the preceding one., 5 is called a two
dimensional finite action network, We will assume that each element in a
certain subset is located by coordinate system, Action relation between two
consecutive subsets of 8§ is sketched in Figure 26,

In Figure 26 one element in Si and six elements in Si+l are taken as sample
representations of the action relation between two sets, Ki+1 is action
coefficient from the ith set to the (i+l1)th set, If each set contains n elements
then the coefficient matrix is an n X n matrix, In order to find the equivalent
interaction, one can simply invert the coefficient matrix, -However, if n is
large, the inversion becomes a tedious task., Although inversion of matrices by
partiticon has been mentioned in many places in the literaturelh;a simple method
derived by HohnlSis given bhelow,

Let ||A|! be the action coefficient matrix. Then ||A|) can be written 1in

partitioned form as

Cheng, Shih-mel, "Simulation of Interaction Function on
a Pace Analog Computer', Figure 33.
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RESPONSE FUNCTION

p P STIMULUS FUNCTION

JZ CUT OFF POINT
.

LOCATION OF ELEMENT

FUNCTIONAL MAGNITUDE OF EACH ELEMENT

Figure 24. Stimulus-Response Relation for ar
Asymmetrical Action Network

FIGURE 24, STIMULUS-RESPONSE RELATION FOR AN ASYMMETRICAL ACTION NETWORK
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FIGURE 26, ACTION RELATION BEIWEEN TWO SETY
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All A12
[TAl] = {301
_A21 A22
-1 -1.T 1
All + BC B -BC
11al1t (31)
(—BC—l)T C-l
-1 T -1
where B = All A12’ B = A21 11
C=A_. -A LA o A.. B
T 22 21 711 12 22 21
. -1
If n is large in Equation (30), then in order to obtain A11 , &

partitive process is involved, Tensor notations are employed in order to
reduce labor,

Suppose two planes Sl € S and 82 € S such that S1 precedes Sz and The
cartesian coordinate system in each plane is employed to locate the elements

the action relation in tensor notation is:

; B a . ;
;{3‘ = Ajla pi (i, j, a, R = 1, 2, .., n) 132,

B
where pj’ ﬁi are the responses of the elements in S1 and 52 respectively,

Symbols a,  represent rows and i, j the columns of S1 and S2 Note thart
a, i precede §,j, alphabetically.

Consider now a set 8 of linear elements such that

{1l) Each element receives a stimulation from a field acting upon 3

(2) The responses of each element in 8° provide stimulation to all
elements of 8', including itself,

(3) All elements of $3' lie in the same plane,

S' is called a two-dimensional interaction network and the 1nteraction

is expressed in the following
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i 1 i
o .
p°=X0"° 4+ BOa P, G,a=1,2 .., n)

o
. 3
0_10 _ clo a i . o
e, B o i po, (i, a =1, 2y ey M)
( _plo @ 10 # 1
- u.o J for °
ia ) a # a
i 7 i a-
-(B i 1) i= io
T for
\ a =40
o]
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6, COMPARISON OF ONE DIMENSIONAL FINITE AND INFINITE PERIODIC NETWORKS AND
OTHER RELATED NETWORKS

Finite and infinite networks not only differ at the structure but the
stimulus-response relations are qguite different due to the presence of boundary
elements in the finite network,

Consider a one-dimensional infinite set S being acted upon by a stimulus
field A, 1If obstructions were placed on the stimulus pathway such that only a
finite number of elements, say P P

12 Tgr s

Pn are able to receive stimularions
from the acting field, then the set S={x1x¢€ Py, k=12, .. n} is a

) ] kl

one-dimensional finite set, Figure 27 indicates this situation, If elements in

Figure 27 are interconnected such that

-1 if |m-n] =1
m
a =
n 0 all other cases
and
0, =2, K€ [P]

then for uniform input stimulations with obstructions removed, zero resioo s
occurs for each element (since a + (-1) + (-1} = 0). However, 1f obstruc', ns
are assumed, then all elements, except the two boundary elements, hdve zern
responses, The boundary elements, henceforth called edges, have responses
"1" since 2 + (-1) + 0 = 1. This situation is termed 'edge effect” which 1s
demonstrated graphically by Cheng.

In general, distortions of input stimulations for i1nfinite symmetrical
networks cause similar effect as edge effect. However, edge effect occurs
inherently in finite networks due to the existence of boundary elements, If a
finite action network contains more than two sets, the distortion will propagate
from one set to another, and beyond a certain set, stimulation to each element
of the sets following are distorted, This situation 1s demvnstrated in Figure
28 by a one-dimensional finite symmetrical network with its elements connected

binomially, Dotted lines in Figure 28 represent the stimulat:on prov.ded by
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FIGURE 27. FINITE SET AS A SPECIAL CASE OF INFINITE SET
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EDGE EFFECT OF A FINITE LINEAR NETWORK.
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a particular element in a set to other elements of the next set is disturbed,
With the aid of Figure 28: we may conclude that for a finite, symmetrical
action network 8 such that 5 = kEL Sk’ each Sk consists of n linear elements
and the action coefficient: satisfies Equation (14), then the input of each
element is distorted for every set beyond S E%l if m is odd and S g if m is
even for n Z % .

Due to the propagation of distortion, some elements in each set of a
finite action network will not receive the amount of stimulations expected
according to connectivities, but rather the distorted stimulation., The stimwlus-

response relations of infinite and finite networks are compared below,

(2m) 2m r+m ,2m
{Infinite) p K= rZs (~1) r) cr+K-m (35)
, (2m)
(Finide) Ox = 0 for K<0 Py =0.ork<o
(2m) Zm r+m (Zm 2m
p X =rz%¢k (-1) [ () - (77 2(m~K-1)-1r)] UraK (36)

The two equations above are demonstrated by examples below

)

po = 0_4 - 80_3 + 280_2 - 560’_l + 7000 - 5601 + 2805 - 803 + 04
{Tafinite case)
p) - 420 - 480, + 270 - 80, + @
o o 1 2 3 4

(Finite case)

In order to resemble the stimulus-response relation of infinite network

with a finite number of elements, a ring” is examined, A ring R is a system

of finite symmetrical sets such that the boundary elements in each set are

connected the same way as other elements of the set, Consider a set R' such

that R = RiiJ R;, Ri precedes R; and binomial connectivity between R; and R;

¥ Cheng, Shih-mei, Figures 33 and 38, (pp. 93 and 101).
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is assumed, Then for uniform input stimulation, zero response is cbtained for

i
each element of Rz. If we examine the action coefficient matrix |[A'|| of R',
we see that the determinant of ||A'|| vanishes as shown below
2 -1 0 ‘. -1 0O . 0 0O 0
-2 2 -1 0 ., 4] -1 2 -1 0
Al = ' = . ,
| | T T I L IR IR {37}
-1 o ...... -1 2 -1 o ... -1 2

Equation (37) implies that under binomial connectivity there exists no
corresponding interaction function for the action function of a ring In
order to secure stability, the connectivity between boundary elements is
made variable, This structure is called a pseudo-ring., Let the boundary
connectivity be x, then the determinant of the action ceefficient matrix is

a function of x and we have

2
0% oL 1y [x - = 2 s B 38
m m- m-1

where m is the rank of the action coefficient matraizx,
Since inversion would have the following form
i
[0} = —3— [p] 59

where

we see that for a desired response in a particular pseudo-ring, minimum input

LY

stimulation possible can be obtained if D = Dmax' Figures -4, 1%, a8 ijilusrrate

the relationships between X, D and m. Different stimulus functions applied 10 the
ring are also shown graphically by Cheng*_
The discussions thus far are concerned mainly with the transfoarmation of
activities between sets of linear elements; If activities of one ser are
transferred to another, we say the first set acts upon the second and the rotality

of these two sets is called a linear action network and 1ts transfer funcrion,

the action function, If activities are transferred from elements of a set o

* Cheng, Shih-mei, Figures 32 and 34, (pp. 93 and 95).
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that of the same set, then the set is called a linear 1nteractlon neiwonrk and
its transfer function, the interactlon function, The most importan' character:
of these functions is the functional equivalence of the two under stable state:
We have concentrated mostly on ocne-dimensional networks, “hough two-
dimensional networks have also been considered, Problems arise due to the
inversion of huge matrices in more dimensional sets, Tensor notations have
been suggested as a means of simplification; however, further investigarions

are needed in dealing with multi-dimensional networks,
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PART II1I
SIMULATION OF INTERACTION FUNCTIONS ON PACE ANALOG COMPUTER

by
Shih-mei Cheng

1, INTRODUCTION

With a view to reduce the labour involved in the solution of simultaneous
equations as a means to obtain approximate solution of corresponding int "gral
equations arising from the study of interaction function, an analog systen
is built on the PACE computer of the Electrical Engineering Department of
the University of Illinois, Furthermore, an understanding of the behavior
of the interaction function can be facilitated by examining the variation of
actual physical quantities, But the use of an analog computer for algebraic
equations would often lead to instability, which imposes a limitation to the
loop gain, Various conditions of loop gain have been considered in the

*
literature and if we simply employ Equation (1) in the computer,
[a](pY = [0] W

where A is interaction matrix
£ is response

0 is stimulus

it has been found that the coefficients cannot be set in the range of our

interest, To improve the stability, a system

('] + [A)P] = [0O] (2)

is huilt instead, But this system is still subject to the condition that
[A) is positive definite so that it would yield [0] = O when a steady state is

*
reached, In caseswhere [A] is not positive definite, it has been shown that

[p’] + A" 4] [P = [AYT' ()
may bring this system into a stable region but manual operation of multiplication
by [Alt is involved,
L. Gephart+ has built a system

* Rogers & Connolly "Analog Computation in Engineering Design”

+ Landix Gephart, "Linear Algebraic Systems and the REAC", Math, Tables and
Other Aids to Computations, July, 1952, National Research Council.
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j=1
e_=Kf £ idt
i
o e
Xj = —15& aij i
which he refers to as "'general method". This setup assures freedom from

instability but requires approximately more than twice of the equipment used
in system employed.,

The usual "rule of thumb'" of determining positive definiteness is to see
if the diagonal elements of the matrix are much larger than the neighboring
ones, Fortunately, the matrices of our interest fall into this category and
to exercise efficient use of available elements on PACE, (2) is chosen as our
machine equation,

Since there are 48 operational amplifiers and 100 coefficient potentiometers
in the new PACE installation, and each amplifier has seven inputs as well as
outputs, our matrix is limited to that with seven non-zero coefficients in each
column and ¢ach row, and the dinension of the matrix may be as high as 12, If
special interest dictates a matrix beyond this limitation, boosters and special

arrangements may be employed toc meet the requirement,

2, COMPUTER SETUP

A word of special importance which should he said about the matrix of our
interest is that, since we are primarily interested in a system where every
element has the same interaction with its neighbors, the matrix has similar

rows except laterally displaced. BSo, we have

Yi= Ay X vy g Yty g Yia o
n
=aX+
i1 Y7 a .
J; 13, ¥j

Since the system is iterative, the setup for ith element will be clear
enough to show the complete structure, According to Equation (2), we have

the following setup: (See Figure 32,)
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FIGURE 32,
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vy 14E CONNECTION of ith ELEMENT WITH ITS NEIGHBORS.
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FIGURE 33, THE CONNECTION OF y,

¥i

93



3. RESULTS AND DISCUSSIONS

A system of 10-X 10 matrix with each element interacting with six of
its neighbors has bheen built on PACE, By varying the coefficient potentiometers,
thus varying the interaction function, responses to different inputs have been

examined as the follows:

1 Positive coefficlents in the matrix correspond to inhibition in action

+

'function. Negative coefficients correspond to facilitation, This important

fact can be explained directly from the computer setup as frll ws:

Let
= X K
vy = e X+ Kby )
then
Ky ryy Ky, ma X
If XK > 0 then a phase inverter should be inserted in series with pot K,
therefore, X, _; Boes to the input of the ith element without phase inversicn,

which means facilitation, (see Figure 33.)

Similarly, if K < 0, no phase inverter is inserted and X, flows to the
input of ¥y with opposite polarity, which shows inhibition,

This fact has been verified by comparing Figure 34 with 35 where inhibition
has sharpening effect at the edge and facilitation gives a round off response,
2. The effect of inhibition-increases with the imcrease of a__ or K, as we
may find in Figure 34. )

3. Chain structure differs from ring structure only at the ends, and so0 is
the response, This is checked by Figures 34 and 36.

4, In the case of ring structure, if

= X - ( -
Vi =X K v V) Ky Gy v Y e
n
X -
2T BVt )

n

Then for uniform stimulus xi = X = constant

olt
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T

1+2 Z K,
J=1 3J

This useful as a check in the setting of potentiometers. If there is any
irregularity in the structure, the system would give non-uniform response even
if the stimulus is uniform, and this irregularity transmits a disturbance

that averages to the y calculated above, as we may see from Figure 37,
5. In the case of asymmetric interaction function, an enhancement at the right
edge results if the interaction is left-sided and vice versa. This is also

clear from the structure of the simulator, for example, if

then it is constructed as shown in Figure 38,
6. A triangular interaction function is examined (Figure 39). Since the term
2. Kj is large, the response to the uniform stimulus is a small constant level,
Also, the rich inhibition pronounces the response at the edge. It is inferred
that with strong inhibition, the behavior of an infinite system is like the
following: (Figure 40),

The region D will extend to a rather large distance (which increases with
the increase of interaction). If we add another stage of average or density

detector with the action function:

Then the response is of the shape shown in Figure 40. This is clear from the
observation of Figure 3, that the response excited by the edge averages approxi-
mately to the uniform response. The region where the stimulus is x = constant,

the response average is approximately

y = ———m —
and in the region where x = ¢, the output averages to zero. Still another advantage
of the average detector stage is that the effect of imperfection in the structlure
is greatly eliminated, as we have found in Paragraph 4 thatl the defect in

structure produces a response that almost averages to ; ol perfect slructure.
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7. Asymmetry and imperfection tend to reduce the violent swing of output, as
we may conclude from the comparison of Figure 34 with 41; the former has smaller
symmetric interaction but produces higher amplitude variation than the latter,

which is asymmetric, For the case of imperfect structure, compare Figure 37 with

Figure 38,
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