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The purpose of this paper is to find approximate relations for the design
of inflatable members of linearly variable (tapered) cross sections under
various loadings. Considered in the analysis are axial loads (tension, com-
pression, Euler effect), torsional moment, and internal pressure. Inflatable
members are usually constructed of impregnated fabrics such as Dacron, but
at the present time ''exact' solutions for such materials are inadequate. Con-
sequently, approximate procedures are needed to determine stresses in this
type of member. This paper discusses not only the degree of approximation
but also the procedural limitations. It includes, in addition, the effect of fiber
inclination on rigidity of the member.

INTRODUCTION

Because of the rapid development of applications for inflatable structures,
it is becoming increasingly important to develop a systematic theory for design
work and for predicting structural behavior. The active interest in space
stations, inflatable recovery vehicles, inflatable shelters, and similar struc-
tures has greatly accelerated the theoretical and experimental efforts to
develop analysis methods for inflatable structures.

The theory of elasticity, which has been used with success in the analy-
sis of conventional structures, does not adequately predict the behavior of
inflatable fabric structures due to the nonlinear behavior of the composite
material. Characteristic large deformations under ultimate load, composite
material behavior, and hysteresis effects under cyclical loadings preclude
using the conventional linear theory to accurately predict the stresses,
deformations, and strength of the inflatable structure. As long as these
important nonlinear effects are not well known, there is very little reason
to develop an ''exact'’ linear solution, For no matter how comprehensive the
linear approach may be, the resulting equations will not adequately describe
or predict the state of stresses in the inflatable structure. Consequently,
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in view of the urgent need for criteria for evaluating inflatable members,
simplified approaches seermn to be more logical. It is for this reason that a
difference of 15 percent between test results and developed theory may be
considered a very satisfactory correlation at the present time.

The methods described in this paper, which is a continuation of an
earlier investigationl, are intended for preliminary design work., It is also
hoped that they will suggest characteristics of inflatable structures which
have not been considered previously, such as composite behavior and the
effects of orientation of fibers.

CIRCULAR INFLATED CYLINDERS

The circular inflated cylinder is the most convenient model by which
to study the effects of changes in the modulus of elasticity and stresses due
to the orientation of the fibers at an angle to the principal directions. Such
a configuration will seldom arise in practice, but from a theoretical point
of view this study will lead tc immportant conclusions which can be used in the
development of an analytical procedure for tapered columns in which the fibers
are not parallel to the principal directions.

Figure 1 represents the envelope of a cylinder in which the fibers are
oriented at an angle & to the circumferential and longitudinal directions.
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Figure 1. Cylinder With Inclined Fibers

Stresses due to internal pressure are given by the well-known relations,
based on equilibrium, in the longitudinal and circumferential directions,
respectively,

PT
q; = S d¢ T PY

If the fibers are inclinded to the principal directions, the shear stress on the
inclined element must be considered in the analysis.
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Mohr's circle (Figure 2) is used to determine stresses in the direction
of the fibers and the shear stress, yielding the following equations for the
tensile and shear stresses:

2
0.50 pr {2 - cos @)

q =
Y
2
qx=0.50 pr {1 + cos a) (1)
9 = 0.50 pPr Sin @ Co§ &

Generally, q, and g are taken by the fibers and elastomer, The shear q
is taken exclusively by the elastomer.
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Figure 2. Mohr's Circle

The tensile stress in the elastomer is proportional to the relative
stiffness of the elastomer:
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where
AL, Ag = cross section of elastomer and fibers, respectively
Ey, Ef = modulus of elasticity of elastomer and fibers, respectively

The equation for the shear modulus of Dacron has been derivedl, in
which the elasticity of the elastomer, influence of tension on fibers {friction),
and the concentration of fibers were considered. Consequently, G was the
variable value, and the relation, which is used to determine deformation due
to shear, depends on this variable value:

Y= c {2)

Dacron can be considered a typical material for inflatable structures.
For the material tested at S&IDI, the following moduli of elasticity were
noted:

fibers, E¢
elastomer, E;,

840, 000 psi
4, 000 psi

#on

This leads to the conclusion that the tension stresses in the elastomer, 0y
and oy, can be neglected and total tension may be carried by the fibers only,
The sgear, however, is assumed to be taken exclusively by the elastomer
since the Dacron fibers behave as a mechanism under shear loads,

The shear deformation, Y, induces a rotation of the cylinder by an
amount

Substituting for ¥ in Equations 1 and 2, we obtain the following expression for
rotation of the cylinder:

_0.50 pL. sin & cos a

® G

Since the ‘shear modulus, G, is relatively small, the deformation angle
{(Equation 2) is significant; and angle © can be observed visually in tests
because of large cylinder length. Consequently, under internal pressure,
the bulkheads rotate with respect to one another until the position of equilib-
rium is reached. The fibers then will not be inclined at the angle, a, but at
another angle, o -Y., It is assumed that the angle, Y, defined by Equation 2,
is approximately equal to the angle Y determined by Equation 2a, since the
inclination of fibers is relatively small.
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The same phenomenon occurs if a torsional moment ie applied to the
end of the cylinder with the fibers parallel to the center line of the cylinder:

T= 21rr3q_r=17pr3 sin o cos «

where q.. is taken from Equation 1, and the effects of the small inclination of
g, to the principal directions of the cylinder are neglected,

The angle of rotation of the cylinder is also of interest, since it is
simple to measure during tests:

TL

0 = a—

JG

where

0 = angle of rotation of the upper bulkhead with respect to the lower

The required angle, ¥, (Equation 2) can now be rewritten:

= p L
Y 0 T (2a)
where
T =2nrot or J¥ = 21rr3, depending on dimensionality of Gl
L = length of cylinder

Since Y is not too small, a change of geometry occurs and the cylinder fibers
no longer intersect at 90 degrees, and the longitudinal fibers, when equilib-
rium is reached, are no longer inclined at the angle a, but at o - Y,

Due to the change of geometry, the new values for q, and g,, must be
determined, using the new angle, « -Y, rather than the inclination angle, .
Similarly, the stresses in the deformed structure are

1 2
qy—Z pr [2 - cos™ (a -Y)]
1 2
q =3 pr [1 + cos™ {a - Y}] (3)
1 )
q_r:-é- pr(sin o cos a)

»

The equation for q .. is not affected by the new angle because q . is the stress
which already correésponds to the angle o - Y,

If an axial load P is applied to the column, the column will rotate and «
will be either increased or decreased, depending on whether the load is
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one of compression or tension. Before the column can carry the load, it must
be pressurized; therefore, P will always be accompanied by internal pressure,
However, the effect of P can be studied separately, using Mohr's circle as
before. For the case of the compression load

P

2mTr

a; = -—;q, =0 (4)

In a manner similar to the preceding approach, expressions can be obtained
for q,, 9y and q_, ¢ = {(a¢-Y)., For a compression load P

P
qy T T 2nr cos ¢
P . 2
A =" 2rr sin ¢ (5)

P .
Q. = F5 0 sin ¢ cos ¢

Again, q_ introduces a rotation equivalent to that produced by the torsional
moment:

T=2ﬁr2qT:2wr2 sin ¢ cos ¢ = |—P| r sin ¢ cos ¢

2T

and this leads to an additional rotation of the column, © P in accordance with
the equation

_TL 3 T
e s )

where G is given by the equations in Reference 1.

6p will affect the first two stresses (Equation 5}, as in the case of
pressurization. Therefore, Equation 5 may be rewritten:

P 2 1
qY = -5 cos (¢ + YP)
P
Y =" 27r 20 G YP) > (5a)
P
qr = ¥ 5-—sin ¢ cos ¢
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$ince compression is always accompanied by internal pressurization,
Equations 3 and 5a can be superimposed, and

2 P 2
q ==prf2-cos (&-VY)] - 5.7 cos (o -Y+YP) w

!
\e] I

= s;in2 {e -V - YP) > (6)

1 2
= — 1 - -
q 5 PT [1 + cos™ {a -V)] 5

1
q =3 Ppr sin acos @ -
T 2

- sin (@ -Y) cos (o -Y) J

If Pis a tension load, the signs for P and YP will be reversed,
EFFECTIVE MODPULUS OF ELASTICITY IN LONGITUDINAL DIRECTION

The inclination of fibers does not affect I, but may affect E, It'is
simpler to study the change of the elasticity modulus by assuming a tensile
load on the cylinder; therefore, Equation 6 is an effective starting point,
The tensile load, P, which is applied to the column and varies from an
initial value of zero to the final value, tends to decrease the angle ¢ between
the longitudinal fibers and the longitudinal axis of the cylinder; the angle ¢
is already a function of the following two factors:

original inclination of fibers
internal pressure, which will decrease & by angleY

Therefore
¢ = o -Y {7)

To straighten the fiber, a load, Po’ must be applied, which will
cancel ¢, This means that PO will cause a torsional moment, To’ which

will cause a rotation of the cylinder through an angle, -4¢:
- b = Tol . L
JG L
JG L
T = .=
o =° L r
where

G = shear modulus
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We also know that

T = q_r21rr2

Combining the above expressions, we obtain

P
réGt o
qQ, = =F

o r 2nr

sin ¢ cosd¢

Thus the load, P,, can be determined by

P = 2rr Gt (8)

° sin ¢ cos ¢

Under this load, the fibers will become parallel to the cylinder axis.
If this force is increased, the cylinder will be elongated but no rotation will
occur. The elongation for any P>P, will be in accordance with the known
elasticity modulus, E,, for the cylindrical skin in the longitudinal direction,
if the fibers are oriented in the same direction. However, for any load
P<P,, longitudinal elongation will not occur at the same rate, The corre-
sponding modulus of elasticity will be designated by Egofss which depends on
not only the elongation but also the cylinder rotation.

To determine Eeff’ assume the cylinder to be loaded with a tensile load,
P < P,, causing a rotation $’< . Then

P
¢-¢PO

In accordance with Figure 3, elongation in the principal direction can be
expressed by

8=y ty,

whezre

and

dp = qY {(from Equation 5a)

Lcos(¢-¢/)~Lcos¢

Y2
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Figure 3. Nonlinear Elongation
Therefore

q.Lcos (p-$"Y+ E L[cos (¢ -¢') - cos ¢]
P 2
b=y, *v = E
4

Now consider a -cylinder with the fibers oriented in the principal
directions and whose length is

£=Lcosd
The corresponding elongation will then be

; —qu L. cos 4
M E

where pq) is the value of q; in Equation 4. Since the elongation is inversely
proportional to the modulus of elasticity, the effective modulus in the princi-
pal direction for the cylinder with inclined fibers will be
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5
eff = 15
v
where e (9)
qp cos (b - ¢ + E}[cos (b - ¢') - cos $]

n=

qu cos ci) J

TAPERED CYLINDERS

Inflatable cylinders of constant cross section usually can be made from
material with fibers oriented parallel to the principal directions. Unfortu-
nately, this is not the case with conical structures because they must be
assembled from one or more sectoral pieces of material. The fibers cannot
be oriented circumferentially and longitudinally. Figure 4 illustrates the
typical sector, which has the following properties:

l.  Only along the center line of the sector are the fibers located in
the direction of the principal stresses,

2. Along any line passing through the vertex (i.e., ©a), the inclination
of fibers is the same everywhere,

3. Inclination of the fibers varies along any circumferential line, bb.

4. Maximum inclination of fibers to the pPrincipal directions is at the
boundaries cc and dd of the sector.

c< d

FIBERS

|
Figure 4. Typical Sector
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To prevent the occurence of too large an angle between the fibers and
principal directions, the cone may be made of more than one sector. In
order to fabricate the cone, a sector as shown in Figure 5 is required, with
a radius of £ and a central angle ¢.

¢ = 2 360 (in degrees)

X
2
where

r = the radius of the base of the cone

If the cone is composed of n sectors, each sector will have a radius £ and
central angle ¢ /n {obviously, allowance must be made for joints).

If the fibers are placed so that at the center line aa of the sector they
are oriented in the principal direction, then

max @ = i
Zn
where
o = the inclination of the fibers from the principal directions
n = number of sectors

For any line ab defined by angle o (Figure 5), the fibers will be inclined an
angle @ to the principal directions of stress.

To locate any point of interest, it is necessary to choose a system of
coordinates. As a reference take aa, the line whose fiber is in the direction
of the principal stresses. Any other line ab, relative to line aa, can be
defined by the angle @. Any point on line ab is defined by the distances from
the vertex. The angle o can be easily measured on the sector but not on the
cone, and it is reasonable to replace « with the length u. Therefore, any
point on the conical surface is defined by two numbers, u and S (Figure 5).

The relationship between @, u, and S is

u=nS lior = S ¢ (o in radians)

u 180
o= or o =
™

wie
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DIRECTION OF v
FIBERS =

®

Figure 5. Inclination of Fibers From Principal Direction and
Cone Nomenclature

Therefore, the point which is defined by u, S will correspond to the angle o

u
y SY— o = —
(u, S} 3
-9
For o ak—'z—
b _¢
(SE’ 5) ®max T 3

If the cone is made of n sectors, the above relation will be modified:

(u:Si, S)“-“Q‘ = —‘b—-
2n max  2n

where

¢ = the total central angle of all sectors together
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SKIN STRESSES OF INFLATED CONE

Internal Pressure

The stresses in the principal direction of a cone which are due to
pressurization are given by the following equations:

qc = ps cot
{10}

1
qg-zps cot s

where

c and £ subscripts indicate the circumferential and longitudinal
directions

The angle { can be easily determined as a function of r and £:

b = arc tan (11)

The stresses (Equation 10) can be taken by fibers only along the line
3a, where the fibers are oriented in the same directions as those stresses.
At any other line ab, the fibers are inclined at an angle « to the principal
directions., Therefore, the above stresses will be split into components and
the component stresses in the direction of the fibers will be determined. The
jnduced shear will be taken in accordance with the shear modulus, G, of the
material, The stress in the direction of the circurmnferential fiber will be
denoted by gy, and in the direction of the longitudinal fiber by Ay- The
corresponding shear will be denoted by q... Therefore, to known stresses
qc and 9y, g Qy+ and q. will correspond at any point of the shell:

(Qcr 9g) — 8y 9ys 97)

The following expressions are based on Mohr's circle:

-1 s cot (1+siz ) ]
qy-zp cot y n o«
2
q :lps cot 4 (1 + cos a) > (12}
x 2
1 .
qT:iEPSCOt¢51naCOSd J

671



To prevent wrinkling of the skins, the following conditions must be satisfied:

2
Aydy 2 97

From this relationship can be found the limiting angle o for pressurization
loading only:

1
max ¢ :E ps cot Y \/2+ sin® a cos2 o

T

Sin% ¢ and cos? o are always positive; therefore, the radical is positive too.

The max q. condition will be dictated by the maximum value of

2 2

vy = [sin® o cos® «

max

The minimization process leads to the conclusion that the permissible
max o is 45 degrees. Then

max ¢ _ =—;— ps coty / 2.25=0.75 ps cot

Axial Compression

If an inflated conical member is loaded by axial compression (Figure 6),
the following stresses in the circumferential and longitudinal directions will
be induced (due to compression only):

N S
2mE cosy’ e

qzz

Substituting S ¢+ sin ¥ for £, we obtain

_ P
27S sin ¢ cos ¢

q, =
(13)

=0
9

Actually, stresses due to axial loading cannot act alone and will always be
accompanied by pressurization stresses. However, these two effects can be
handled separately, and the results superimposed.
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Figure 6. Section of Cone Along Axis of Rotation

Mohr's circle can again be used to determine Qyr Gy and q,. And
reasoning similar to that employed before will lead to similar equations.
Therefore, for axial compression:

<\
_ - P 6

9 " 27S sin g cos ¢ "
= - P Sinzci) >

9% ~ 2nS sin b cos ¢ (14)

- P

=% i

., &S sin Y cos U sin 4’ cos 4’ y

To modify Equation 14 for the case of tensile load P, we have only to change
the sign before P to a plus.

Now, to carry the analysis any further, we need to know the expressions
for the rotational angles of the variable section. If the longitudinal fibers
are parallel to the center line of each equal sector, no rotation of the cross
section will occur, since the average deformation due to q .is zero. However,
if the fibers are not parallel to the center line of the sector (arrangement of
the sector fibers is not symmetrical), the rotation due to q ., will not be zero.
This type of section tends to rotate.

Torsion

Assume that an inflatable tapered cantilever (Figure 7) is loaded on the
end with the torsional moment T. The distance x locates the section under
consideration. The torsional moment of inertia is variable:

J, >J >17J
1 xX f'e]
_ 3
JX—errXt
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The angle of rotation at x is

(15)

=
n..|—|

[+]

X
Figure 7. Inflatable Tapered Cantilever Subjected to Torsion

Some average value must be assumed for G, based on the previously derived
formula for G as a function of the inclination of fibers.

oY - j-‘l ) i-‘ dx __ T i-‘dx
o Jx o 27rr3 t amt o r3
X
T - I
1
r :X(———-—o)-I—r
X I, [s]
If we let
1 = %
= a
L
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then

r_.—ax+tr
X o

Therefore
K=o | - ——
T2 B 2
mt S lax + T ) 4rwta (ax + ro)
- T
8 = 5 (16)
4rta (ax + ro) G
where
I‘l - ro
a -
L

To obtain Y at x, we could first form the differential element and integrate
along the length, which would lead to a relatively complicated equation for Y.
Actually, the cone is only slightly tapered; therefore,it seems reasonable to
use an approximate value for Y.

T

O
Y= 0 (17)

Final Expressions for Stresses

Now we can return to Equation 12. The shear stresses create a torsional

moment
— 2
T= 2
q. Ter
where 2T
f q dx
- _ o T
q'r_ 2mr

which will cause, in accordance with Equations 16 and 17, an additional
twisting of the fibers:
q r
o
y = u — (18)
4rmta (ax + ro) G
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Taking into account this additional change of angle, we may rewrite
Equation 12:

1 2
q ==pscot [l + sin (a-Y)]
vy 2
1 2
q,, =3 Pps cot $[1 + cos (o - Y}] > (19)
_:L.l H
q'r_ Eps cot Y sin o cos @ J

Similarly, axial compression will cause an additional tersional moment,
distributed locally in accordance with Equation [4:

where

which, in accordance with Equations 16 and 17, results in the angle of
rotation, YP:
a r
Vo, = T — o (20)
4rta (ax + ro) G

Now we may rewrite the expression for axial compression, Equation 14.

FP C
y = 2wS sin § cos {

os2 (¢ £ YP)-\

FP
x 278 sin (| cos qu

i (4 =vp) ) 21)

FP

= % i
B 278 sin | cos sin ¢ cos ¢ J
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The upper signs for P and Y are for the case of compression; the lower
signs, for tension.

For cases in which an axial load acts simultaneously with pressurization
loads, the stresses {Equations 12 and 14} are superimposed:

, 5 I—"’c:os2 (4) + YP) )
_1 : - F
qy 2 ps COt 4} []. + sin (a Y )] ZTTS Sin l.|J cOs qj
2
1 5 P sin (4’ * Yp)
== 1 -
q =7 PSs cot ¢ [1 + cos” (a-VY)]7 21S sin § cos Y (22)
1 . Psin ¢: cos <|>
qT_ZpS cotd;smacoso:#zﬂs sin  cos J

Effect of Variable Modulus of Elasticity

Inclination of fibers was defined by the angle «, which, along the circum-
ferential direction, varies from ¢ =01to o = « . The modulus of elasticity
E will decrease with an increasing angle o (derived in a study of an idealized
cylinder with inclined fibers). Since « is constant along any line ab, E is
constant along ab; but it varies along the circumference.

The stiffness of the section depends on EI; this parameter is used in
bending and stability expressions.

If a section is divided into srall elements, we can write
EI=EZI,
i
where

I.1 represents the moment of inertia of the ith small element. But E is
variable too; therefore, the above relation can be rewritten:

El = ZE.L,
ii

677



where

E; is the reduced modulus of elasticity on the ith element to account for
inclination of the fibers.

However, it is simpler to work with a constant elasticity modulus E
instead of variable Ei' Therefore, let us define I;:
s 128

i ig

If y is the distance of the ith element (whose area is A) from the neutral axis,
we can write
e o 2
= 2 — - = b
L=y®A~L =y ) A

which leads to

v o=y [—= (23)

where
ya‘ = the distance of an element (corresponding to the ith element) with
moment of inertia [} and area A

For such a section
%k ® 2
El =EZ({y) A (24)

The moment of inertia can be so written because the section is usually
symmetrical about the neutral axis. This means that we are working with a
transformed section which remains symmetrical about the neutral axis,
which has a constant elasticity modulus E, but which is no longer circular.
The group EI* is less than EI. Such transformed sections are represented
in Figure 8 for two cases; the section is composed of two and four sectors.
It is usually easy to predict which directions will be most affected by the
transformation; and this may be employed for determining the effective r
to be used in calculating the Euler effect because the column will tend to be
bent in the weakest direction.

The same reasoning may be used in the study of the bending of a tapered
beam, and it helps one understand where to place the joints of the material
in order to have a symmetrical section about the neutral axis. Generally, the
transformed section will be determined at two end points of the tapered beam,
because any section in between is obtained by linear interpolation.
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2 SECTORS
TYPICAL € TRANSFORMED
JOINT SECTION

4 SECTORS
& &

Figure 8. Transformed Sections

This is one way to determine EI. The modulus Ey was unchanged but
the moment of inertia was modified. This is a more or less accurate way
since no unjustified averaging is performed.

It is possible to approach the problem differently. Assume I to be as
it is, but instead of a variable E, we use some average value, This means
that the circumference is divided into segments, and the elastic modulus Ei
corresponding to each segment is to be determined. Then

n
e,
E = 1

eff n

where
n = the number of segments

This approximation is less justifiable than the previous one, but it may lead
to a faster determination of results.
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Euler Buckling Load

In the derivation of an expression for the buckling load, the variation of
the geometry along with the length must be considered. A linear relation is
assumed for the variation of column depth along the length. For a circular
section, the depth is the diameter; for an elliptical section, the diameter of
the minor axis; and for a square section, the side. For any transformed
section (described in previous paragraph), the depth is the distance between
the most distant points from the neutral axis under consideration (Figure 9).

€

NEUTRAL
AXISS DEPTH

Figure 9. Depth of a Transformed Section

Consider a tapered inflated tube with rigid ends (Figure 10), where

o
|

A = upper, smaller depth of secticon

di = lower, larger depth of section
x = distance from upper end along the axis of the column
L = length of column

Depth of the 'secti.on2 corresponding to any x can be expressed by

d
B X
= 1 —_ =
dx dA * (d A ) L (25)

The following known equa.tionz can be used for determining [ at any point of
column x:

dB % n
- 1 +|l—-1}= 26
Ix IA + dA 1 T (26)
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where

moment of inertia at distance x from upper end

b
n

1

moment of inertia at upper end

e

n = shape factor

X,

B

\—,dB—‘-—l
X
Figure 10. Tapered Inflated Cylinder

The shape factor? can be evolved by observing that Equation 26 must

give I = Ip when x = L. This leads to

IB

log7—

A

n = ——— {(27)

d

B

log 5—

A
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For the conical case, n varies between 2 and 4.

In Reference 2 a useful equation is presented for critical loads:

(28)

P* is given in graphs for various n and dg/dp (Figure 11). Equation 28
corresponds to pinned supports on both ends. In the same reference similar
graphs were obtained for different supporting conditions. However, for the
inflatable fabric column another requirement must be considered., From a
derivation of the Euler load for a cylindrical colurmnn, we know that the Euler
load is limited by the limiting load (Reference 1), which is a function of the
internal pressure. The limiting load will be derived in the following section.

P*
n4

dg
da

—T

Figure 11. Determination of Critical Load

The Limiting Load P,

The limiting load is the function of o or, in our case, qY, which was
presented in Equation 20. It is evident that, with reference tfo any section,
the limiting load is variable and can be determined from the following
equation:

P cosz(<p+y)
1
q = =ps cot ¥ [1+sin2(a-y)] L - P =0
y 2 275 sin § cos Y

which leads to
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1Tps2 [1+ sin® (@ -v)] coszliJ

P =
L cos2 (p + v_)
A (29)
The weakest material will be at o = @ oy’ consequently, if this value
or some average value
.+
“min = “max
s o
2 av

is introduced into Equation 29, there remains only cne variable, S, which
can be used to determine the variation of PL along the length of the tapered
beam.

CONCLUSIONS

The material presented in this paper may be regarded as a contribution
to the preliminary design of inflatable structures. However, the concepts
should be extended to include memory effects and hysteresis, when these
phenomena have been better defined for impregnated fabric materials. More-
over, considerable research in the area of materials behavior is needed. In
the meantime, it is hoped that the approaches treated here will be of use to
the structural analyst.

NOMENCLATURE
q, Stress in £ direction (1b/in, )
de Stress in ¢ direction (1b/in.)
dx Stress in x direction {lb/in.)
dy Stress in y direction {l1b/in.)
q- Shear stress (1b/in.)
Uy Stress in x direction (1b/in. 2)
oy Stress in y direction (1b/in. &)
T Shear stress {lb/in, 2)
E, E, Eg Young's modulus in general, of elastomer, of

fibers, respectively (1b/in. 2)
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Effective modulus of elasticity (1b/in. 2y

Shear modulus in 1b/in. 2, 1b/in., respectively

Internal pressure (1b/in. %)

Axial load (1b)

Euler load (1b)

Load at which inclined fibers of cylinder will be
straightened (1b)

Limiting load {1b)

Torque (lb-in, )

Moment of inertia (in, 4}

Moment of inertia of small element {in. 4)

Polar moment of inertia (in. %)

Polar moment of inertia at locations o and 1

Area of diagram of length x and ordinates —T-, which
also represents reaction of fictive loadin‘é (1b/in. 2)

Angle of inclination of fibers

Angle of distortion due to shear stress

Angle of rotation of end bulkheads with respect to
each other

Rotation angle 6due to P

Angle Y due to P

Total inclination of fibers, ¢ = & - v ; also central
angle of a sector of fibers

Angle between directrix of cone and radius of base

Elongation of fibers (in. )

(in. )

Total area, area of elastomer, area of fibers,
respectively (in. 2}

Thickness (in, )

Length of cylinder (in.)

Radius of cylinder (in.}

Diameter of tapered cylinder at A, B, x locations
(in. )

Distance from vertex of cone to any circumference
(in, )

Circumferential coordinate (in.)

Modification

Neutral axis
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