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The research program summarized in this report was initiated 1 June 1962
by AF Flight Dynamics Laboratory, Research and Technology Division, Wright-
Patterson Air Force Base, Ohioc. The research effort consisted of converting
RTD's Six-Degree-~of-Freedom Flight Path generalized computer program from SOS
to FORTRAN/FAP computer language and was undertaken as a portion of the study
conducted by McDonnell Aircraft Corporation under USAF Contract No. AF33(657)-
8829 during the period 1 June 1962 to 31 December 1963. Thils report, prepared
by A. E. Combs, McDonnell Aircraft Corporation, is essentially the original
formulation report (WADD TR-60-781, Part I) with the additions, modifications,
and corrections made since its publication. Mr. B. R. Benson of the AF Flight
Dynamics Laboratory has been the Air Force technicsl representative.

This report was prepsred under Project 1431, "Flight Path Analysis", Task
143103, "Six-Degree-of-Freedom Flight Path Analysis".

The authors are indebted to Measrs. D. C. Bounds and K. D. Reside of the
System Technology Division for contributions to the original analytical formu-
lation and to the following members of the McDonnell Automation Center:
Messrs. P. W. Seubert and N. E. Usher for design and modification of the
computing program, and R. F. Vorwald for further modification, correction,
and conversion of the machine language.

For ease of reading, the documentation of thils project has been prepared
in several parts. The total documentation is summarized as follows:

Part 1
Volume 1 - Basic Problem Formulation

Volume 2 = Structural Loads Formulation

Volume 3 - Optimization Problem Formulation
Part II
Voluwe 1 - User's Manual for Part I, Volume 1

Volume 2 -« User's Manual for Part I, Volume 2

Voluwe 3 - User's Manual for Part 1, Volume 3
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ABSTRACT

A trajectory computation program is described for determining vehicle per-
formance throughout the entire flight regime of speed and altitude in the
atmosphere and gravity field of a non-spherical rotating planet. The program
is formulated for seven options of varying refinement from the six-degree-of-
freedom problem to the two-degree polnt mass problem. A reverse gption for
the aerodynamic analysis of flight test data, a punched ecard output, and a
semi-automatic computational tie to an interplanetary trajectory computer
program are included. The program is specifically oriented for computation
on the IBM 7090/709L4 digital computer using the FAP/FORTRAN2 machine language.

This technical documentary report has been reviewed and is approved.

_O/uéu A ()) &.Lua'kc'( Z; ]

Philip P. Antonatos

Chief Flight Mechanics Division
AF Flight Dynamics Lahoratory
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SYMBOLS AND NOMENCLATURE

The symbols and nomenclature used in the formulation of the Six-Degree-of-
Freedom Flight-Path Study computer program are summarized in this section.
Standard symbols, currently in use in the fields to which they are applied,
have been used whenever such use does not result in conflicts. Duplicity of
symbols has been allowed for derlvation purposes; however, all quantities computed
by the program have unique sywbols assigned. The engineering notation and the
normal units for each quantity are included with the definition. The symbols
and definitions have been subdivided according to usage ag follows:

Category Page
AerodynamicB o + « = o o o o + o o 2 = s ¢ ¢ o + s o o« o xiii
derodynamic Heabtdng « « e o ¢ o o o « o o o o s » s & & XX
Angular Position Data. « « +» o & s ¢ ¢ o ¢ 2 o o & s « » xxii
Angular Velocities o o + ¢ o 4 o o o o o o o o o s » & o Xxiv
Atmosphere DatB. « e ¢ « o s o s & & & & & o & o« 4 + « o XXV
AXes BYSLEmE o o o o 4 o s o 4 s 8 ¢ s« 4 s 2 s s+« « Xxvi
Body Physical Data « o v o o o o s s « « o o o » o s o o xxvili
Direction Cosiness o« o« o ¢ ¢ & v 4 o v o 2 o o s o o o « XXX
Engine Data. o o o o o o o o + o s s 2o s s o s v 2 o+ « xxxi
Flight-Plan Prosrammer and Autopilot o o ¢ o o o o o« o o xxxii
Forces and Moments « o o o ¢ o o 2 o 4 ¢ o « a & 2 4+ 2 + XXXV
Geophysical DBtA o o + =« & « o 2 5 ¢ o ¢ ¢« 2 o & o + o & Xxxvi
Linear Velocities. . o ¢ = ¢ ¢ v 4 o o o o « o o & o + « Xxxvii
Position Datae « o 4 o 2 o ¢ o « 4 o 4 0 & o o o &« » & o XXXViil

MiscellaneomsSe + o s & o o = s s s o s o s ¢ o o » = o« « Xoxix

xii



AERODYNAMICS

SYMBOLS DEFINITION AND UNITS

Wind Axes Forces - Pounds

D Drag

Y Side Force (also inertial or space-fixed
coordinate system)

L Lift (also summation of rolling moments in the

body axes system)

Body Axes Forces - Pounds

a Axial Force
y Side Force (also body-axes coordinate system)
ng Normal Force

Aerodynamic Body Axes Moments - Foot-Pounds

1 Moment About the x Axis
m Moment About the y Axis
n Moment About the z Axis

Coefficients - Dimensionless

Ca Axlal Force Coefficient

Cy Side Force Coefficient (body axis)

Cy Normal Force Coefficlent

Cy Rolling Moment Coefficient

Cn Pitching Moment Coefficient

Cn Yawing Moment Coefficilent

Cp Drag Coefficient

Cy Side Porce Coefficient (wind axis)

CL Lift Coefficient

Cr Skin Friction Coefficlent

Cp Pressure Coefficient

q* Dynamic Pressure - pounds/square foot

Ry Reynolds Number

B Coefficient of Viscosity - slugs{foot-second (also
gravitational potential constant

CK Axiel Force Coefficient Defined in the Plane of
oy, = a/q*s

CN Normal Force Coefficient Defined in the Plane of
CIT, = nl'-,!/q*S

Cg Pitching Moment Coefficient Defined in the Plane

of Om, = m"/q*Sdl
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Magnus Terms

CI{I’P Magnus Force Coefficient = OC{/0 (pd;/av,)
Ct‘];P Magnus Moment Coefficient = BCI;/B (pdy /2v,)
Caq Cpat ¢=p=0° - dimensionless

Cag SCp/0c - per degree

CAag EﬁCAdee - per c’!ua\gree2

CAﬁ CCp/0p - per degree

CAE@ bCA/éﬁe - per degreeg

CASq ECAfC'E)q - per degree

CAB% 30/653 - per degree2

Cags cZcp focbp - per degree®

CAoﬁq Becﬁfoabﬁq - per degree”

ngaq 520Aﬁ:;3535q - per degree2

(CA) -0 Cp at 5];) = 6(1 =8, = 0° . dimensionless
CNg Cyeat a=p= 0° - dimensionless

Cch E)CNfOOi - per degree

CNQE BCN/E‘O.Z - per degree2

CNB Cyfop - per degree

CNBE chfofig - per degree2

Cqu aCNfobq - per degree

CN6q2 E:CN/SGS - per degree®

CNQ{_.} 520Nf0a55 - per degree®

CNaﬁq beCNfo'Ctaﬁq -~ per degree2

CNﬁﬁq BECN/BaE)&q - per degree2

CNEx EJCN/%(éﬂl/EVa) - per radian

cNé‘x SECN@(ddl/E’Va)be.G. - per radian per foot



y)5=0

oCy/0(ad; /2Vg) - per radian
BECN/B(qdl/EVa)BxC_G. - per radian per foot
Cy 8t 8, =8y =8, = 0° - dimensionless
Cyata=p = 0° - dimensionless

OCyfoa - per degree
acyfoae - per élegree2

acy/aﬁ - per degree

chﬁj 6% - per degree”

0Cy /0%, - per degree

EJCy/BBrg - per Gegree®

E‘)Ecy/aaaﬁr - per ciegr,e:e2

52Cy/5055 - per degree®

b2cy/5f§iﬁr - per degre.—:‘e2

acy/a(édg/EVa) - per radian
BECyﬁj(édE/EVa)Bxc.G' - per radian per foot
chﬁi(rdE/EVa) - per radian

Bgcy/b (rdp/2v,)0xs ¢, = per radian per foot

0

C.atsd_ =8, =58,.=0 - dimensionless

¥ P q r

CLet a=§ = 0° . dimensionless
6Cy/oq - per degree

?Jcl/aaz - per degree”

BCl/afi - per degree

Bclfé Ese - per ciiegx'ee2

Bcl/Ein - per degree

- : 2
oclfOEIv?) - per degree



6201/3056 - per degree2

Becl/aa6bp - per degree2

Bacl/aﬁabp - per degree?

0Cy fo(pdp/2V,) - per radian

oCyfo(rdg/evy) - per radian
BECl/B(rdg/EVa)be_G_ - per radian per foot
€, at EP = Bq = Br = 0% . dimensionless

Cp 86 @ = p = 0° - dimensionless

SCp/fo - per degree
6Cm/6a2 - per degree2

OCp/Sp - per degree

BCm/EBE - per degree2

ch/abq - per degree

ch/abg - per degree®

EECm/axéa - per degree2

becm/aaaaq - per degree2

aecm/agbaq - per degree2

oC,/fo(&d)/2V,) - per radian
becm/a(édl/EVa)axc.G_ - per radian per foot
oC/o(qd) /&N,) - per radian
bacm/a(qdl/ZVa)be'G. - per radian per foot

Cp at ﬁp = Bq = Br = O0 - dimensionless

© _ dimensionless

Chata=p=0
GCp/Sa - per degree
9y /0F - per degree”
¢Cpu/ob - per degree

SC, /OB® - per degree”
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SYMBOLS

Cadgog

Al

DEFINITION AND UNITS
0C,/0®, - per degree
oC, /o8 2 - per degree”
Becn/bcpa - per degreee
620n/5005r - per degree2
becn/aﬁb&r - per degree2
oCp/o(fda/2Vy) - per radian
52Cn/b(éd2/zva)bxc.g_ - per radian per foot
oCp/fo(rdy/2V,) - per radian
éacn/é(rdg/EVa)axC_G_ - per radian per foot
c, at Bp =® =05_=0° .~ dgimensionless

q Ir
Aerothermoelastic Coefficients

FirsE Order Elastic Coefficient in CA Equation -
feet/pound

SecoEd Order Elastiec Coeffilclent in CA Equation -
feet /pound

First Order Elastic Coefficient in CAa Equation -
feet?/pound

Second Order Elastic Coefflcient in CA& Equation -
feet™/pound® q

First Order Elastic Coefficient in CN Equation -
feet?/pound

Second Order Elastic Coefficlent in CN Equation -
feet /pound2

First Order Elastic Coefficient In CN5 Equation -
feet?/pound

SecoEd Order Elastic Coefficient in CN5 Equation -
feet™/pound®

First Order Elastic Coefficient in Cq

¥ Equation -
feet?/pound B

Second Order Elastic Coefficlent in Cy Equation -
feet!/pound® p

xvii



SYMBOLS DEFINITION AND UNITS

Ay First Order Elastic Coefficient in Cys_ Equation -
feetz/pound

Ao Secopd Order Elastic Coefficlent in Céar kEquation -
feet™/pound®

A3 Firss Order Elastic Coefficient in Cl, Equation -
feet2/pound

Ay Second Order Elastic Coefficient in C]  Equation -
feet™ /pound?

1

Arsg First Order Elastic Coefficient in Cig Equation -
feet?/pound P

Mg Secopd Order Elastic Coefficient in Ciﬁp Equation -
feet*/pound?

K17 First Order Elastic Coefficient in céa Equation -
feet/pound

A18 Second Order Elastic Coefficient in céa Equation -
reet!/pound®

Ag First Order Elastic Coefficient in Cés Equation -
feet?/pound q

Axp Second Order Elastic Coefficient in Cp, Equation -
reetd/pouna® !

Ay, First Order Elastic Coefficient in C; Equation -
feet?/pound B

Ao Second Order Elastle Coefficient in CSJ Eguation -
feet™/pound?® P

Ag3 First Order Elastic Coefficient in Cng  Equation -
feet2/pound r

Aoy Second Order Elastic Coefficient in Cﬁa Equation -
feet'/pound® r

€1 Error Multiplier for Cy - dimensionless

€ Incremental Error in Cy - dimensionless

€3 Error Multiplier for Cp - dimensionless

€l Incremental Frror in Cp - dimensionless

€5 Error Multiplier for Cy -~ dimensionless

xviii



SYMBOLS
€6

€7

€8

€9

€10

€11

12

DEFINITICN AND UNITS

Inecremental Error in Cy - dimensionless

Error Multiplier for
Incremental Error in
Error Multiplier for
Incremental Error in
Error Multiplier for

Incremental Error in

xix

C1

Cy

dimensionless
dimensionless
dimensionless
dimensionless
dimensionless

dimensionless



AERODYNAMIC HEATING

SYMBOLS DEFINITION AND UNITS

°pp = Specific Heat at Tg=0 ~ BTU/pound °R

Cps Specific Heat of the Skin - BTU/pound R

CP Pressure Coefficlent

D, -Dg Constants

DT Wedge Angle - degrees

H Free Stream Enthalpy of Air - BTU/pound (also

angular momentum and gravitational potential
harmonic constant)

H* Reference Enthalpy - BTU/pound

Hoy Adiabatic Wall Enthalpy - BTU/pound

He Enthalpy Baged on Equilibrium Stagnation
Temperature - 9R

Hpof Reference Enthalpy of Air at 540°R - BTU/pound

He Skin Enthalpy - BTU/pound

Hep Total Enthalpy - BTU/pound

7y Adiabatic Well Enthalpy at the Stagnation Line
of a Hemi-Cylinder Leading Edge - BTU/pound

Ho Enthalpy Aft of the Shock Wave - BTU/pound

1y Characteristic Length to Skin Temperature
Point - feet

M, Mach Number Normal to Bhock Wave

Mpo Mach Number Af't of the Shock Wave

(PI.*')"E/3 Prandtl Number Based on Reference Enthalpy
(raised to the «2/3 power)

Po Static Pressure Aft of Shock Wave - pounds/square
foot

ry Constants Depending upon Reynolds Number

b
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SYMBOLS DEFINITION AND UNITS

Rygx Reynolds Number Based on Reference Enthalpy

RNCRIT Critical Reynclds Number

Ryp Reynolds Number Aft of the Shock Wave (local)

Ta Equilibrium Stagnation Temperature - °R

Taw Temperature Based on Reference Enthalpy - “R

Ty Effective Temperature of Space - °R

Ty Skin Temperature - °R

is Skin Temperature Rate of Change - “R/sec

Tsegt Estimated Skin Temperature - ©R

To Temperature Aft of the Shock Wave - °R

Vo Velocity Aft of the Shock Wave - feet/second

o Ancrle of Attack of Skin Surface - degrees

B Shock Wave Angle (also sideslip angle) - degrees

Bg Skin Thickness - feet

€g Emissivity of the Spherical Nose

€g Emissivity of the Skin

€sm_=0 Emissivity of the Skin at T_=0

8

des/dT Derivative of Emissivity with Respect to
Temperature

p* Coefficient of Viscosity Based cn Reference
Enthalpy - pounds/foot-second

Mo Coefficient of Viscosity Aft of the Shock Wave -
pounds/foot -second

Pg Skin Density - pounds/foot3

p¥* Density Based on Reference Enthalpy - pounds/foot3

g Stefan Boltzmann 00ﬁ5tant (L.758 x 10-13)
BTU/second/foot2/OR* (also azimuth angle)




ANGULAR POSITION DATA

SYMBOLS DEFINITION AND UNITS

A Azimuth of Platform Xy Axis - degrees

B Equatorial Angle Between Geocentric and Inertial
Ccordinate System - degrees

Ba Bank Angle - degrees

B Equatorial Angle Between Inertial and Platform

P Coordinates -~ degrees

a Angle of Attack - degrees

o Total Angle of Attack - degrees

8 Angle of Sideslip (also shock wave angle) -

degrees

7 Elevation Flight-Path Angle - degrees

7a Elevation Flight-Path Angle Including Effect
of Winds - degrees
Geodetic Flight~Path Angle - degrees

)] g

BP Control Deflection to Induce a Moment About
the x Axis - degrees

Bq Control Deflection to Induce a Moment About
the y Axis - degrees

5. Control Deflection to Induce a Moment About

the z Axis - degrees
61,2.--n Control Surface Deflections - desrees

a Horizontal Flight-Path or Azimuth Ansle (also
Stefan-Boltzmann constant) - degrees

Oy Azimuth Angle Including Effect of Winds - degrees
qD Geodetic Hotizontal Flight-Path Angle -~ degrees
¢A Aerodynamie Roll Angle - degrees

¢rp Platform Geocentric Latitude - degrees

@ Angular Rotation of the Plane of Swivel of a

Thrust Vectoring Nozzle About the x Axis - degress
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SYMBOLS
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¥

DEFINITION AND UNITS

Angle of Swlvel of a Thrust Vectoring Nozzle -
degrees

Euler Angles Between Body Axes and Local-Geocentric
Horizon Coordinates. Set 1. Yaw-Pitch-Roll
Rotation Sequence ~ degrees

Set 2. DPitch-Yaw-Roll Rotation Sequence - degrees

Set 3. Pitch-Roll-Yaw Rotation Sequence - degrees

Euler Angles Between Body Axes and Inertial
Coordinates in Degrees

Measured Euler Angles Between Body Axes and Plat-
Torm Axes System - degrees

Euler Angles Between Body Axes and Platform Axes
System. ©Set 1. Yaw-Pitch-Roll Rotation Sequence =
degrees

Set 2. Pitch~-Yaw~-Roll Rotation Sequence -~ degrees
Bet 3. Pitch-Roll-¥aw Rotation Segquence - degrees
Angles Between Rotating Machinery Axes System

and Body Axes System - degrees

Autopilot Command Values of ¢T and Ap - degrees

xxiii



ANGULAR VELCCITIES

SYMBOLS DEFINITICN AND UNITS

P Inertial Angular Rates of Body About Its Axis
a System - radians/second

r

aa Aeroelastic Inertial Angular Rates of Body
ra About Its Axis System - degrees/second

Pe Planet Referenced Angular Rates of Bedy About
Qe Tts Axis System ~ radiens/second

Te

Pm Measured Inertisl Angular Rates of Body About
Am Its Axis System - radians/second

Fm

Wy Rotation Rate of Machinery Within the Body About

Its Axis System - RPFM

xxiv



ATMOSPHERE DATA

SYMBOLS DEFINITION AND UNITS

ng Geopotential Altitude - geopotential meters

P Atmosphere Pressure - pounds/foot®

T Temperature of the Atmosphere {also engine
thrust) - R

Ty Molecular-Scale Temperature of the Atmosphere -
R

' Speed of Sound - feet/second

v Kinegatic Vis cosity of the Atmosphere -
feet“/second

p Atmosphere Density - slugs/foot3



SYMBOLS

AXES SYSTEMS

DEFINITION AND UNITS

Body Axes Coordinate System or Displacements From a
Specified Origin in that System (y also aerodynamic
side force, body axes) - feet

Inertisal or Space Fixed Coordinate System or Dis-
placements from a Specific Origin in that System
(Y also aerodynamic side force, wind axis) - feet
Wind Coordinate Bystem or Displacements from a
Specified Origin in that System « feet

Earth Reference Coordinate System or Displacements
from a Specified Origin in that System - feet

Local -Geocentric-Horizon Coordinates or Displace-
ments from a Specified Origin in that System - feet

Local Geodetic-Horizon Coordinates or Displacements
from a Specified Origin in that System - feet

Measured Displacements in a Coordinate System
Fixed to the Planet (radar coordinates) - feet

Platform Coordinate System or Displacements from
a Specified Origin in that System - feet

Rotating-Machinery Axds System or Displacements
from a Specified Origin in that System - feet

*xvi



AXES SYSTEMS

INTERFLANETARY TRAJECTORY FROBLEM TIE-~IN

SYMBOLS DEFINITION AND UNITS

oy Right Ascension of Planet North Fole - degrees

T Planetocentric Equatorial Coordinates Based Upon

A the Earth's Eyuatorial Plane and the Mean Vernal

T Equinox of Reference Date in Ephemeris Time or
Displacement from & Specified Origin in that
System - feet

BN Declination of Planet North Pole -~ degrees

i Hour Angle of the Vérnal Equinox. Referenced
with the Intersesction of the Planet Equatorial
Plane and the Earth Equatorial Plane of Reference
Date -~ radlans

Ay Hour Angle of Launch-Site Meridian with a Plane
Perpendicular to the Intersection of the Planet
Equatorial Plane and the Earth Equatorial Plane
of Reference Date - hours

My Hour Angle of the Vernal Eguinox of Reference
Date with Respect to the Launch Point at the Time
of Launch - hours

tT Sidereal Time - hours

HA Hour Anzle of Planet's Prime Meridian Measured

from the Meridian Passing Through the Vernal
Equinox of the Reference Date - degrees

xxvii



SYMBOLS

XC.G.
Yo.G.
ZC IG!

&Xe G

BODY PHYSICAL DATA

DEFINITION AND UNITS
Wing Span - feet
Center of Gravity

Reference Length - Longitudinal Plane - feet
Reference Length - Lateral Plane - feet

Modulus of Elasticity - pounds/inch2

Moments of Inertia of Rotating Machinery Within

the Body About Machinery-Axes System - slugs-feeta

Moments of Inertia About the Body Axes -
slugs-feet2

Products of Inertia About the Body Axes -
slugs--feet2

Characteristic Distances for Jet-Damping
Moments -~ feet

Characteristic Distances for Jet-Damping
Forces - feet

Mass of the Body - slugs

Fuel Mass Consumed - slugs

Radius of Hemispherical Nose (stagnation region) -
feet

Reference Area - f‘eet2

Weight of the Body - Equal to Mass Times Reference
g = pounds

Position Coordinates of the C.G. in Body Coordin-
ates - feet

. - feet
(x0.5. xC.G.ref) ee
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SYMBOLS DEFINITION AND UNITS

€15 Ineremental Error in Vehicle Mass - slugs
€18 Incremental Error in C.G. Location - feet
€19 Incremental Error in Iyy - slugs-—feet2
€20 Incremental Error in Iyy - slugs-feet2
€51 Incremental Error in Izz - slugs~feet2
€00 Incremental Error in Ixy - slugs—feet2
€23 Incremental Error in I,, - slugs-feet2
eol Incremental Error in Iyz - slugs-feet2

xxix



SYMBOLS

ala2a3
blbgb3

010203

dldgd3
616283

111213
J1d233
klk2k3

i10i20i30
J10J20g3g
K10ke0¥30

111213
mlm2m3

010203
P1P2P3
4192493

ulU2U3
VlV2v3
WlW2W3

DIRECTION COSINES

DEFINITION AND UNITS

Matrix of Direction Cosines. Used to Transfer
Quantities from Inertial Axes System to Platform
Axes System

Matrix of Direction Cosines. Used to Transfer
Quantities from Local-<Geocentric Horizon Coor-
dinate System to Body-fxes System Usinz Loeal
Body Euler Angles and to Transfer Quantities
from the Body Coordinate System to Platform Axes
System Using Platform Euler Angles

Matrix of Direction Cosines. Used to Transfer
Quantities from Geocentrie Horizon Coordinate
System to Inertial Coordinate System

i, j, %, Direction Cosines with wy = G

Matrix of Direction Cosines. Used to Transfer
Quantities from Inertial Axes System to Body-
Axes Systenm

Matrix of Direction Cosines. Used to Transfer
Quantitles from Wind Coordinates to the ¥g, Y,
Zs System

Matrix of Direction Cosines. Used to Transfer
Quantities from Body Coordinates to Wind Coor-
dinates



ENGINE DATA

SYMBOLS DEFINITION AND UNITS

Ag Engine Exit Area - square feet

Lmp Engine Thrust Momentr in the Body-Axes System -
M foot /pounds

N

N Throttle Settinz (also moment in body-axes system)
T Engine Thrust (also temperature) - pounds

TYAC Vacuum Engine Thrust (rocket motor) - pounds

Tya Enzine Thrust Ferces in the Wind-Axes System -
TY A pounds

TzA

TXe Engine Thrust Forces in the Earth Reference Axes
Tye System - pounds

TZe

Ty Engine Thrust in Body Components - pounds

Ty

T,

x5 Engine-Nozzle Swivel Point from Reference Center
YN of Gravity - feet

ZN

€13 Error Multiplier for Thrust Force - dimensionless
€1l Incremental Error in Thrust Force - pounds

xxxi



FLIGHT-PLAN PROGRAMMER AND AUTOPILOT

SYMBOLS DEFINITION AND UNITS
AXP Indication of Flatform Accelerometer - feet/second2
AYP
Az,
Y
ay Body Axes Components of Inertial Acceleration -
ey feet/second
Bz,
B1-B3o Bias Values Used in Autopilot Equations
CAC Axisl-Force Coefficient Command
Cye Side-Force Coefficient Command
Cle Normal -Force Coefficient Command
Cp. Drag-Force Coefficlent Command
CYe Side~Force Coefficient Command
CL, Lift Coefficlent Command
Ca» Gain Coefficients
Ca
Cp
Cy
Cy
E1-Epg Auxiliary Variables Used for Solution of Autopilot
Differential Equations
Ky -Ky Autopilot Gains (see defining equations)
Ly -Lpg Limiter Values (see defining equations)
Dg Body Axes Load Factors - g's
By
g
nNg Body Axes Load Factors Commands - g's
ny,
8¢
iy Wind Axes Load Factors - 2's
Ng
Ny
Ny, Wind Axes Load Factors Commands - g's
ngc
Toye

xxxil



SYMBOLS

K11
§12

13
Ky
Ky 5
KlT
K18
K19
Kpp
Kop
K23
Kol
K25
K26

RNTF
RNTR

RNTY

DEFINITION AND UNITS

Yaw Gyro Bias - degrees

Yaw Gyro Drift Rate - degrees/second

Roll Gyro Bias - degrees

Roll Gyro Drift Rate - degrees/second
Tolerance for Assuming By is zero - degrees
Tolerance for assuming @ is zero - degrees

Error in Initisl Yaw Alignment - degrees
One-Half Yaw Dead-Band Width - degrees

Error in Initial Roll Alignwent - degrees
One-Half Roll Dead-Band Width - degrees

Error Multiplier for Pitch torque commend -
dimensionless ‘

Pitch Gyro Bias - degrees

One-Half Pitch Dead-Band Width - degrees

Error in Initisl Pltch Allgnment - degrees
Pitch Gyro Drift Rate - degrees/second

Error Multiplier for Trim Angle of Attack -
dimensionless

Moment Due to Misalignment of Thrust and/or
Agsymmetric Aerodynamics in Pitch - foot-pounds

Moment Due to Misalignment of Thrust and/or
Agymmetric Aercdynamics in Roll - foot-pounds

Mowent Due to Misalignment of Thrust and/cr
Asymmetric Aerodynamiecs in Yaw - foot-pounds

Time to Commence Glide Phase - seconds

Roll Rate Command - degrees/second
Pressure Command - pounds/foot?
Dynamic Pressure Command - pounds/foot?
Angle of Attack Command - degrees

Angle of Sideslip Comwand - degrees

Rate Command - dezrees/second

Attitude Commands - degrees

Density Command - slugs/foot3

Density Command Corrected for Planet Rotation =~
slugs/foot3

Pitch-Attitude Command - degrees

xxxiii



SYMBOLS DEFINITION AND UNITS

Vot Yaw-Attitude Command -~ degrees
c
§l~§20 Damping Retios - dimensionless
oL, Longitude Command - degrees
¢Lc Latitude Command - degrees
e Temperature Limiting Attitude Error Signals - degrees
¥
Ta=Tg, Time Constant - seconds
T =T30
W) =gy Natural Frequency - radians/second

b



g, e, g ., e i e g, —

FCRCES AND MOMENTS

TEFINITION AND UNITS
Force - pounds

Summation of Forces in the Body-Axes System
Including the Body Component of Weight - pounds

Summation of Forces in Earth Reference Axes
System Including the Body Component of Weight -
pounds

Jdet Damping Forces - pounds

Anzular Momentum (also gravitational potential
harmonic constant and enthalpy) - foot-pound-
seconds

Summation of Moments in the Body Axes System (L
also 1ift and N also throttle setting) -

foot ~pounds

Jet Damping Moments -~ foot-pounds
Summation of Forces in the Wind Axes System -
pounas

Generalized Force Input - pounds

Generalized Moment Input - foot-pounds

XXXV



GEQPHYSICAL DATA

SYMBOLS DEFINITION AND UNITS

Epef Reference Gravitational Acceleration (32.17h
feet/second?) Used to Define Weight

Ex Components of Gravity in Body-Axes System -

Sy feet/second

€z

gx Components of Gravity in Inertial-Axes System ~

gy feet/second

&z,

X Components of Gravitg in Barth-Reference Axes

Yo System - feet/second

e

EXg Components of Gravity in Geocentric Horizon

27, Coordinates - feet/second®

g

J Gravitational Potential Harmonic Constants (H

H also denotes angular momentum and enthalpy) -

K dimengionless

ko-k3 Constants in the Equation Relating Geodetic and
Geocentric Latitude

Re Equatorial Radius (reference spheroid) - feet

Rp Polar Radjus (reference spheroid) - feet

U Gravitationsl Potential - feet?/second®

M Gravitational Potential Constant (also coefficient
of viscosity) - feet3/second®

wp Planet Rotation Rate - radians/second (positive if
in same direction as planet Earth)

qxg Components of the Planet's Rotation Rate in the

ng Local-Geocentric Coordinate System - radians/second

€og Error Multiplier for Atmospheric Density - non-
dimensional

€06 Additive Error for Atmospheric Density - slugs/foot3

xxxvi



LINEAR VELOCITIES

SYMBOILS DEFINITICN AND UNITS

My Mach Number

u Inertial Velocity Components in Body Coordinates =

v feet/second

W

U Measured Inertial Veloclty Components in Body

i Coordinates - feet/second

Ym

Uy Inertial Wind Velocity Components in Body

Vi Coordinates - feet/second

Wy

v Inertial Speed - feet/second

vy Airspeed - feet/second

vy Velocity Increment Due to Drag - feet/second

Vgrav Velocity Increment Due to Gravity - feet/second

Vg Ground Referenced Speed - feet/second

Vg' Check Value of Ground Referenced Velocity Vg -
Teet/second

Vp Veloclty Increment Due to Rocket Nozzle Back
Pressure - feet/second

Viheo Theoretical Velocity Increment Due to Tyae -
feet/second

Vi Wind Speed - feet/second

ggw Wind Velocity Components in Local -Geocentric-

Yow Horizon Coordinates - feet/second (Xgy positive

Zgw when blowing north, ng positive when blowing
east, Zyy, positive when blowing downward)

3w Wind Velocity Components in Inertial Coordinates -
Yy feet /second
Ly

xxxvii



POSITION DATA

SYMBOLS TEFINITION AND UNITS

h Geodetic Altitude - feet

h! Geocentric Altitude - feet

R Distance from Center of Planet to Body - feet
RD Total Distance Traveled Over Planet Surface -

nautical miles

Rg Approximate Range of Vehicle frow Launch Point
Over Great Cirecle Path - nautical wmiles

R¢L Local Planet Radius - feet

t Time - seconds

tg Stage Time - seconds

er, Longzitude - degrees

P Geodetic Latitude - degrees

1, Geocentric Latitude - degrees

Kg Constant Used in Equatorial Flight to Specify the

Pirection of Launch (Kg = 1 for easterly launch;
Ky = -L for westerly launch) - dimensionless

RDo Initial Total Distance Traveled Over Planet
Surface -~ nautical miles

R¢Lo Initial Local Flanet Radius - feet

9L, Initial Longitude - degrees

dgo Initial Geodetic Latitude - degrees

¢L0 Initial Geocentric Latitude - degrees

0o . Initial Heading - degrees

X5 Downrange along Initisl Great Circle - nautical
miles

YD Crossranze from Initial Great Circle - nauticsl
miles

xxxviii



SYMBOLS

1,1y 1,

ref

o] =i 0

H|

SL

€1
i=1,2...n

r

P

MISCELLANEQUS

DEFINITION AND UNITS
Unit Vector - subscript indicates the axes system

Subscript c Denotes an Autopilot or Flight-Flan
Programmer Comumand Signal

Subscript ref Indicates Value is a Reference
Quantity

A Bar Over a Symbol Denotes a Vector
A Dot Over a Symbol Denctes Timwe Derivative

Two Dots Over a Symbol Denotes the Second Deriva-
tive with Respect to Time

Subscript o Denotes - initial, time zero, origin
of axes system, sea level conditions

Radius Vectors

Subscript Indicates Bea Level Reference Value

Refers to an Error Constant, Either Multiplier
or Additive (subscript number defines which one)

Subscript r Denotes Rotating Machinery
Subscript p Denotes Platform

Subscript v Denotes Vertical Axes System

XXxix
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1. INTRCDUCTION

In the current wide-spread use of high speed digital computing machines for
solving flight path and vehicle motion problems, it is common practice to develop
& number of specialized computer programs each applicable to a specific problem.
It 1s usually found desirable, in formulating these programs, to omit wmany of the
terms of & more general formulation which are considered to be of secondary effect
to the particular investigation at hand. This limits the range of application of
these programs end results in considerable duplication of programming for each
nev specialized performance analysizs. The object of the present study is: (1)
the formulation of the generalized equations of motion with six degree of freedowm
for the flight-path study of any type of vehlcle operating in the atmosphere and
gravity field of & rotating non-spherical planet, and (2) the design of the digital
computer program necessary to solve these equations. A feature of this computer
program is the facility by which restricted problems of less than maximum
sophistication may also be treated.

The general specificatiomswhich were followed in the development of the
requlred Slx-Degree-of-Freedom Flight-Path Study computer progrem are outlined
below:

1. Geophysicel Characteristics

Rotating non-spherical earth accounting for oblateness effect on alti-
tude as well as gravity.

Atmospheric properties consistent with latest information with flexi-
bility to permit use of other atmospheres or atmospheric variations.

Wind effects.

2. Vehicle Characteristics
Options to permit various degrees of sophistication in aerodynamic data
input or output applicable to boost, interim, or re-entry configurations.
Aerodynamic date input as function of multiple variables, such as speed,
altitude, and vehicle attitude tc be provided. Other options to be of
various degrees of refinement.
No restrictions to small angles of motion or attitude in any degree,

Vehicle spin effects, including Magnus effects, to be included for n rpm.

Account for thrust misalignment and transient effects due to stage
separation for n stages.

Include damping derivatives and cross coupling between the various degrees
of freedom.

Include provisions for simulation of vehicle autopilot.

Manuscript originally released by authors October 1960 for publication as WADD
Technical Report 60-781. Revised and released by suthors February 1964 for
publication as an BTD Technical Documentary Report.



Include provisions for simulation of flight programmer.

Vehicle control to be pessible by serodynaunle, main engine and/or
vernier thrust vector, retrorocket, and reaction type control.

3. Characteristics of Digital Computer Program
Program to give time history of motion of all six degrees of freedom.

Program utilization of varicus degrees of complexity from two degrees
to six degrees of freedom of motion.

Velocity input and ocutput option relative to the surface of a rotating
central body or absolute with respect to axis system.

Provide for performence readout in latitude and longitude according to
standard nomenclature, and all pertinent values required in the solu-
tion of operational type as well as design problems, e.g., range in
both maneuvering and straight-out cases, and energy wmanagement
parameters.

Coordinate system transformation capability.

Trajectory control during operation by limiting any or all three degrees
of rotation, and/or any or all three degrees of translation.

Provision for tying intc an aercdynamic heating cowputer program and
an interplanetary trejectory computer program, and provision for
handling heating limits.

i, Program Operating Modes

The program should contaln & reversible option whereby known trajectory
motion becomes the input and aerodynamic data is obtained as a result,
as is accomplished in flight test.

The computer program which will handle this degree of problem complexity
mst, of necessity, be designed on a "unit construction” basis such that the
individual building blocks may be readily isclated. In addition, to insure
that the program will not become cbsolete as requirements develop for the simula-
tion of new vehicle concepts, the basic program must be easily revised. Recognizing
that every flight dynamics computer program has certain essential parts which are
the same regardless of the characteristics of the specifie vehicle inveolved, the
concept of a central program area with interchangeable subprograms has been
adopted.

This report presents the analytical and theoretical developments leading
to the problem formulation and the computer program design. In the derivations and
explanations presented, any simplifylng assumptions or approximations which are
made are lncorporated only after the development of the more general expressions.
In this way the degree of approximation involved is made clear, and the form of
the terms deleted are specified should they be required at a later time for
specific analyses.



2. DERIVATION OF EQUATIONS OF MOTION

Thie section presents the derivation of the equations of motion, of a
body in "inertiml" space, as required for use in the Six-Degree-of-Freedom
Flight-Path Study computer program. One of the features of this program is
that problems which require motlion analysis in less than six degrees of
freedom may also be considered without the penalty of substantial amounts of
mll arithmetic. Consequently, alternate sets of equations are developed
from the original relations by deletion of terms which are not required. The
equations of motion will form a portion of the computation loop which 1is
unaffected by the libraries of interchangeable subprograms describing alter-
nete control systems; airframe aerodynamics, etmospheres, and geophysical
parameters, or the data-monitoring subprograms to be incorporated. The
several coordinate transformations and veloclty and angle resolutions, which
complete this central portion of the problem, are described in Sectlon 3 of
this report.

2.1 Six-Degree-of-Freedom Analyses. - Since the equations involving the
moments of inertia, aerodynsmic forces, and thrust forces are greatly
simplified 1if ?fgressed in body coordlnates, this system of body reference

will be used. The two basic equations which define the motion of a
body are:

= d - - d

F=g mV) (2.1) M= 3¢ (H) (2.2)
Mumerical analyses of these vector Y

equations require their resolution
into vector components and definition
of the scalar coefficients. These
manipulations are discussed in

detail in many texts in mechanics
(e.g., References (1) through (8)).
The essentiel steps of the deriva-

P(x:y,z)

<

tion are reviewed here, however, _ R x
for completeness. _ ) _x
lY P \‘E
To determine the displacement R
accelerations, consider a polut P al X
displaced from the origin or coor- ik
dinate system X-y-z such that the 17,
vector r designates the point. 7

Figure 2.1 illustrates the system.
Figure 2.1 Generalized Inertial and Body-
Axes Coordinate Systems

(1) An exception is made for the three-degree-of-freedom point-mass
problem, discussed later, where it is found more convenient to use a wind-axis
reference systen.



Let the origin of the coordinate system x-y-z be displaced from the origin of a
space-fixed coordinate system X-Y-Z by an smount and direction given by R.
Further, let the coordinate system x-y-z rotate in the X-Y-Z space such that the
vector, 6, defines the rotation.

Then
r = xIx+ny+zIZ
R = Xiy + Yiy + 21y (2.3)
W = W71 T 1

xlx + wyly + wzlz

The coordinate system x-y-z will be recognized as the body axes and the coordinate
system X-Y-Z are the non-moving "inertial” or Newtonian axes. The total velocity
of the point P is given by

. v

= Bar =y + ¥y + 20z + (x - g, + 2 )T,

© |-

+ (¥ + 2w, - zwx)Iy + (z - Xy + wa}Iz (2.4)

It is more convenient to express the velccity of the body-axes origin in body-
velocity components than in velocity components coincident with the "inertial”
reference cocrdinates. The vector R can be written in any coordinate system, so

R=V =XLy + Yy + 4ly = x,1y + yoly + 251,

and Eguation (2.4) may be rewritten as

.

Xolx + Yoly + 2ol + {xp - Ypin + Zp@y)ly

e = Va+r

+ (yp + XpWz - zpug)iyr+ (Zp - Xy + Yp“k)Iz (2.5)

vwhere the subscripts o0 and p have been added to distinguish between the velccity
components of the origin and the relative movement of the point P with respect to
the origin of the x-y-2 coordinate system respectively. Differentiating Sgquation
(2.5) gives the relation for the total acceleration to be

o = (X, - ¥z + 2oyl Iy + [0 + xgey - 2gx] Iy + {zg - Xy + Youxl 1,
- 2. ‘ 2 2 ‘ ‘ =

+ [x - Yoy + 2z iy - Xy (w, + wy) + yb(wxpy - wy) + zp(wy oy )] 1y

LX] * * 2 2 X - - -

+ [yp +2x 0, - 2ugy - Yp (Wi +w3) + ZP(Luwa - wy) + xp(wz + wxuy)] 1,

e - . . ‘ 2 2 - - - —

+ ['z.p - Bxpmy + Eypl.ux - Zg (my + mx) + xp(wzwx - wy) + yp(wx + wwz)] 1,

(2.6)

This acceleration relation is completely general and applies to any polnt on the
body. In developing the equations of motion, the point of interest, P(x,y, z),
is the center of gravity. If the center of gravity is assumed to move, relative
to the body, along the x-axis only, the following simplificaetion can be made.



pr Zp: =0 Jps Zps Yp» Zp =0
The components Xg, Yo, Zg, 8nd Wy, Wy, W, are more commonly known as u, v, W
and p, q, r respectively. The coumponents u, v, and W are the velocities of the
reference point on the body. Making the above substitutions gives

% mlu = vr + wg + Xp - X 2 2))

r + g

ko
n

ol

. . . (2.7)
y =MV +ur - wp + 2x,r + xp(r + pa)]

‘o
1]

gl
]

z =MV - ug + vp - 2x5q + xp(rp - Q)]

In view of the fact that most vehlcles are designed to have small center-cof-
gravity travel, the acceleration and velocity of the center of gravity are both
very small quantities and may be omltted from the problem formulation. If the
reference point is further restricted to be the center of gravity, then %p and
its derivatives may be omitted from the equations and the components u, v, and w
are the veloclties of the center of gravity. In matrix form the egquations reduce
to the following:

Fx U 0 -r d u
Fy =m || ¥ + T 0 -p v {2.3)
F w o 0 W

It may be noted here that in the analysis of flight-test data, where the output
of accelerometers, mounted away from the center of gravity, are used to record
the motion of the body, the complete form of Equation (2.7) must be used. It
will also be noted that, although Equation {2.1} states Newton's Law as the
time derivative of the momentum, a formal differentiation ofmV, assuming m
to be a functlon of time, has not been performed in the derivation of dguation
(2.8). Such a formal differentiation gives

F =, & + am V
at dt

This differentiation leads to erroneous results, however, since the residual
momentum of the expelled gases has not been accounted for by this procedure (See
Reference 8, page 111). The equation should be

F = av o+ an c
nzdt dt



when the residusl wmomentum of the expelled mass is properly considered. Here, ¢
is the veloc1ty'of the expelled mess with respect to the continuing vody. The
contribution 7 ¢ is the momentum-change portion of the thrust apd is included in
the summation of external forces.

There are additional accelerations produced which are unique to configura-
tions which have very large fuel-flow rates and which have the thrust nozzle
located & considerable distance from the center of gravity, These sccelerations,
linear and sngular, are the so-called jet-damping contributions. The teru is a
correction to accslerations computed on the basis of only the externally applied
forces {or moments) and accounte for the woment of momentum which is imparted to
the fuel by the pitching velocity of the body. The derivation of this contribu-
ticn is considered in greater detaill in Appendix One to this report. The
principal contribution to the equations for linear acceleration are in the y-and
z-direction and have been added to the expressions of (2.8) to give the following
result.

Fy u 0 ~T q u 0 !

Fy =T v +1r 0 -r v + -E‘mrly ; (2.9)
. ¥

F, _w ~g p 0 W i +2 7 al i

The relations expressing the rotational motion are obtained in a straightforward
manner. The components considered in this analysis come from three basic sources;
the time rate of change of the moment of momentum, the gyroscopic moments which
arise from the rotating machinery of the vehicle, and the externally applied
moments. The moment of momentum of a body (or angular momentum) about its center
of gravity, in terms of its components, is given by

Hy = -I:,,:y Iyy _Iyz wy
E, T, Ty Tia ||z

or, since‘”x,‘”y, and ¥, are p, ¢, and r, respectively:

H = [Iyyp - Ixyq - I,,r] 1+ [-Ixyp + qu, - Iyzr] 1,

+ [-Iyb - Typq + Ipprl Iy (2.10)

*
The required differentiation of the moment of momentum gives

*The time rate of change of inertia noted here refers to that change occurring
at constant mass only.



Ixxp + (Izz - Iyy) qr - Iyz(qg - I‘2) - Ixz(r + PQ)

i
I
-
®
Y
ot
+

bl

- Ixy(q -pr) - L,r - Iny] x

g8 + Iyya + (Tgy = Ipg) B - I(3® - 29) = Iy(e + ar)

- Iyz(r - pg) - Igyp - Iyprl 1,

-

. - 2 .
+ I:Izzr + Igor + (IZYTY - IX_X)PQ - Ixy(P - q%) - Iyz(q + pr)
- Ixz(p - ar) - Ixzl - Iypg] 1y (2.11)

It is the general practice at this point in the derivation of the eguations of
motion to assume that the reference axes of the aircralt are principal axes and
that the moments of inertia do not vary with time. This convenlently eliminates
the products of inertia and the time derivatives of the moments and products of
inertia, respectively. However, it 1s desired to have a more general applicability
than this for the computer program belng developed and these terms will be retained.
The inclusion of the time derivatives of the inertia iwmplies that all mowment of
momentum has been removed from the wass heing lost by the body. This assumes

that the geses have no swirl after they have left the body. Staging and drepping
of discrete masses from the body introduce discontinuities in the wass and inertia
properties of the body. The solution must not proceed across these discontinuities.
Therefore, the integration of the eguations of moticn will be interrupted when mass
is dropred and automatlically re-established immediately thereafter (See Section

b4 - Stages and Staging).

The jet demping contribution to the expressions for angular ascceleration
(from Appendix One) is

— . 2 — » — [ —
MMp =-pml i 1x - 9m lm2 ly -r n'lne LI (2.12)

The expression for the total angular acceleration due to the time rate of change
of the moment of momentum, including jet damping, is conveniently given in matrix
form as shown on the following page:



’ I , Iiw Iy Iyg p | T ~M13° -Iyy I, P
E l{ = | Ixy  Iyy Iy a |+ |y TPl I, q
| Txe Ty Igg r Ty, i, Ty,-m1 2|
¢ -r aq 3% e p {
R R R L S S q
a2 0 |-T, Iy Tpz r | (2.13),

The torques due to precession and changes in rotational speed of rotating machinery
aboard a vehlcele which is free to gyrate in space can contribute significantly to
the anguler accelerations which the vehicle experiences. Appendix Two of this
report derives the torgues generated by the precession of rotating machinery in
general terms and simplifies these relations as required for the solution of the
folloving proclems.

{a) The motion of an aircraft powered by an engine with a rotating mass
which ig fixed in its orientaticn with respect tc the reference axis of the
aircraft.

(b} The motion of an aircraft powered by a rotating-mass engine which can
be rotated in a plane parallel to the plane of symmetry (e.g., a convertiplane
which is in the transition from vertical flight to forward motion or vice versa).

{c) The wmotion of & satellite in which motors are being operated (by the
proper selection of reference sxes).

The gyroscopic wmoments due to the rotatlonal rates p, q, and r and the angzular
momentum of the rotating wachinery are approximated as follows:

ALy = -Iyp Wyp(g + 6p) sin oy
LMy = Ixr wp(p sin €, + r cos 6,) (2.1k4)
ONp = -I.. (g +8,) Wy cos @

The complete rotational equations of motion are, therefore, from Zquations
(2.11), (2.12), and {2.13)

M o= Llyx + ML, +NL,
in which

Tyxl + Iyxp + (Igzp ~ Iyy)qr - Iy (q2 - r2)

=
H

- Ixz(r + PQ) - Ixy(zl - pr) - IXZr = Ixyq

. 2 .
- pmly - L@ (q+0) sin 6,



M = Iyyq + Iyyq + (I, -~ I,,)pr - Ixz(r2 - 12)
- Ly{p+ar) - I(r - pa) - Ip - Lo
- qqh_lmE + Ixrwr(p sin @, + r cos Op)
- T 2
N o= Tr+I,r+ (Ty - ) - Ixy(pa - ¢°)
- Ixg(p - ar) - I,(q+pr) - I,p - Iypg
o2 :
- rml - Ixr(q + Qr) w,.cos @y
These relations, written in matrix form, are:
L] . . 2 ». -
L Lox 'Ixy Iy D Ixx—rnll ’Ixy Iz hel
_ - . L] . 2 *
M| =)y Iy Ipflaf+|Ty Lyy- Mln~ Iy g
. . . . .
N ‘Ixz "Iyz IZZ r -Ixz —Iyz ZZ-?ﬂln r
0 -r q T Ixy  ~Ixg % P "Ixfﬂr(q + 9,) sin 9,
+| r 0 -p “Lyy Iyy Iy ql| + T, (psin @, + r cos )
*
-q T 0 I Iz 1., r -I, . (g + Op) cos 6y

dquations (2.3) and (2.15) constitute the general six-degree-of-freedom equations
of metion which will be used in the computer program. The program insiructions
wlill provide for the removai of certain combinetions of terms as follows:

(a) Al product of inertis terms for the case where the body is inertially
symnetrical sbout the x-axis.

oz which are zero when the x-z

(b) The product of inertia terms Ixy and I&

plane is a plane of symmnetry.

(c) The terms containing the time rates of change of inertia, products of
inertia, and mass.

{d) The gyroscopic contributions of rotating wmachinery.

(e) The jet damping terms, both forces end moments.

2.2 Three-Degree-of-Freedom Longitudinal Anslyses - Three-degrees-of-freedon
analyses may be used for longitudinal dynamlic stability investigatlons and for

simplified performance work where the lateral moticn is zero. For the assumed
motion the following constraints exist:

(2.15)



These restrictions require the motion to be in the equatorial plane when the motion
is over a spherical planet. The equations of motion, {2.9) and (2.15), reduce to

F, = m (0 + wg)
F, = M (v - ug) + 2 Mmaly (2.10)
M T. g+ 1 waol ~

These equations do not depend on motion in pleanes other than in the x-2 plane and
therefore require no additional constraints, except that gyroscopic moments must
be assumed to be zero since such moments are not compatible with the assuunpiion
of the reduced degrees of freedom.

2.3 Three-Degree-of-Freedom Lateral Analyses - A three-degree-of-freedon
problem option is included for analyses of lateral stability problems and preliminary
development of the lateral guidance computer loops. In this problem the motion will
be computed within the bounds of the following assumptions:

FX = FZ = M = 0
The general equations of motion, (2.9) and (2.15), reduce to

F

i

¥y (v + ru - wp) - 2m rly

L = Ixxb + ixxP - Ixzf + Iyzr2 + Ixypr

- TgaT - M pL,2 (2.17)
N o= Ir o+ Inpr - Ts® - Iyppr - Iygp

- ixzp - ‘-’;’lrlne

This set of equations is not independent of the motion in the x-y planz due to the
velocities u and w appearing in the F, equaticn. Hence, it will bve necessary to
apply an additional constraint that u and w are specified functions of time. Gyro-
scopic mowments must alsco be omitted from this problem.

2.4 Three-Degree-of-Freedom Trajectory Analyses - A three-degree-of-freedom
roint-mass problem option is included to permit performance analysis and trajectory
computations of aireraft in three-dimensional space. Since the angular rotation
relations are omitted in this option, some difficulty is experienced in obtaining
the body rates p, q, and r required in Equation (2.9). This difficulty is eliminated,
however, if the body axes formulation is abandoned in favor of a planetocentric axis
systen oriented with the X; - Y, axes in the equatorial plane and the Zg-axis through
the South Pole. This coordinate system 1s selected because of the simplification it
affords the six-degree-of-freedom problem for the flat-earth option. The Xe-Ya-Zg
axis system rotates with the earth, and the Xo-zxis designates the longltude of the
body at the instant of starting the problem. With this coordinate system, the
equations of motion can be obtalned directly using Coriolis' Law which states:

F = m{a,. + 8, + EGPXV) (2.18)
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where Er is the acceleration a particle would have if the planet were stationary,
and apy is the acceleration a particle would have due to the planet's rotation.
EbeV is the Coriolis acceleration, where V is the velocity with respect to the
planet (i.e., with respect to the rotating coordinate system) and Wy is the
planet's (coordinate system) rotational velocity. It should be noted, however,
that because of the manner in which the coordinate system has been established
(+Ze is through the South Pole), the vector ¥, must have a minus sign associated
with it in the derivation which follows. Expanding this equation in the Cartesian
coordinate system selected, the eguations of motion are:

Fx, = m (Xe - Xe Wi + 2 Yo vp)
Fre = m (Yo - Yo W 2 - 2 Xo Wp) (2.19)
Fzo = m (Zg)

Force components in the wind axes ere required for use with this coordinate
system. The force contributlons due to jet damping are omitted in this motion
since the rates p, g, and r are undefined.

2.5 Two-Degree-of-Freedomn Trajectory Analyses - For a two-degree-of-freedom
trajectory analysis, the side-force is Zero. This constraint is simply imposed by
eliminating the Fzg equation in (2.19). This requires the trajectory to be in the
equatorial plane. The equations of motion are:

Frg = m(Xg - Xp2 + 2 You,)

Fy, = m (Y - Yewp2 - 2 Xoly) (2.20)
2.6 Flat-Planet Analyses - In certain cases the contributions of a planet's
rotational veloelty and the centrifugal effects of the body's motion about the
planet are truly negligible and only complicate and lengthen the computation
(e.g., the dynamic behavior of a missile during the launch phase, or take-off and
landing phases of aircraft flight). An additional set of reduced-degree-of-freedom
options can he obtained by eliminating the planet's rotational rate and revising
the coordinate trensformations required to record the moticn. The equations of
motion are unaffected by this option, however, and a further discussion of flat-
planet analyses is more appropriately confined to the descriptions of the coordinate
transformaticns (See Section 3.1).

11



3. COORDINATE SYSTEMS AND COORDINATE TRANSFORMATIONS

This section presents a description of the reference coordinate systems chosen
for the Six-Degree-of-Freedom Flight-Path Study computer program. The coordlnste
transformations required to relate the various parameters of the computation to the
several coordinate systems are also derived. The coordinste transformstions re-
gulred in the program may be categorized as follows:

(1) Transformetions inherent in solving the basic equations of motion.

(2} Transformations to provide input data to the guidance, autopilot,
and flight-plan programmer simulations.

(3) Transformations to present readout data in the most desirable form and
auxiliary transformations which may be required for the definition of certain
special pareameters. These transformetions may be deleted from the program when
they are not required.

(4) Transformations to provide input date to connecting interplanetary
trajectory programs.

3.1 Coordinate Transformations for Baslec Equations of Motion - This section
describes the coordinate systems and derives the releted transformations under
Category (1) above. The coordinate systems and transformations required to des-
cribe the rigld airframe motion in six degrees of freedom are modified for use
in the optional reduced-degrees-of-freedom problems. The coordinate transforma-
tions which relate the merocdynamic angles end velocities to ground-referenced
velocitles in the presence of winds are also presented.

3» 1.1 BOd!-Axes Bod‘y ad
Coordinates - The Coordinstes _ x
equations of motion
(Section 2) are solved ¥ Locsl Geocentric

in a body coordinate Houd o brie
system (see Figure 3.1). x_ [ Horizon Coordinates

The origin of this system Z R —- -
is at the center of gravity - ™~ -~
of the alrcrsft with the x- - Y
exis along the geometric
longitudinal axis of the Y Zg Inertial

body. The positive direc- Coordinates
tion of the x-axis is from ¢EJ o0

the center of gravity to

the front of the body.

The y-axis is positive to the
right extending from the
center of grevity in a
water-line plane. The

wp/’

X quator

Figure 3.1 Relationship Between Inertial,

12

Geocentrle, Local-Geocentrie,

and Body Coordinates



z-gxis forms a right-handed orthcogonal system. This coordinate system was chosen
hecause inertla characteristics sre thus wmade independent of attitude.

Accelerations and velocities computed in the x-y-2 body axis must be related
to velocities and accelerations referenced to a fixed point on the surface of the
vlenet to (a) describe the motion which a fixed cbserver would semnse, and {(b) to
compute the aercdynamic forces on the body immersed in an atmosphere which essen-
tially rotates with the surface of the planet (except for winds which are referenced
to a point on the surface of the planet).

3.1.2 Inertial Coordinates - The resolution of the body-axes motion to the
motion referred to the surface of the planet will alwvays be made through the
intermediate coordinate system assumed to te the "inertial" axes(l). The assumed
"inertial” coordinate system selected has as its origin the center of the planet
and is oriented so that the X-and Y-axes are in the equatorial plane with the Z-
axis coincident with the polar axis of the planet and positive toward the south
pole. The angular orientation of the inertial axes remain fixed (i.e., the axes
have no further rctation or linear acceleration) with the X-axis established by
the initial instantanecus longitude of the body. The positive direction of the
Z-axis was selected so that the inertial coordinate system would coincide with
the coordinate system for the flat-planet options discussed in Paragraphs 3.1.8,
3.1.9, and 3.1.10. This will permit the use of the same resolutions for some of
the coordinate transformations in both the roteting cblate-planet problems and
the flat-planet options(e). It should be noted that this coordinate system is
used only for computational purposes in the program. A resolution, explained in
Faragraph 3.1.4, will describe the body position in the customary spherical coor-
dinates. Figure (3.1) aids in the description of the coordinate systems adopted.

3.1.3 Direction Cosines - The direction cosines relating the body x-y-2
axes_to the inertial coordinate system X-Y-Z are obtained in the following manner.
Let 1y, ly, lz be unit vectors along the body &sxes, x, y, 2, respectively, and
let 1y, ly, lz be unit vectors along the inertisel axes, X, Y, 4, respectively.

The direction cosine matrix relating these two sets of unit vectors will bhe of
the form:

|
1y = m  omp  omg Ly (3.1)
lZ ! ny np ng 1,

(1) An alternate inertial axis system is discussed in Section 3.4 which
is normally assumed for certain astronomlcal work.

(&) This systen is wmost convenlent for the six-degree-of-freedom flat-
planet option but not necessarily the most convenient for the other reduced-
degree~of-freedom options. The complications incurred in the latter case have
been accepted, however, as will be explained in FParagraph 3.1.7.
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Performing the matrix multiplication indicated gilves:

1y llik + lEIY + lSEZ

Iy-= mlik + mei& + m3lZ (3.2)
Ié = nlik + naiy + HSIZ

The derivatives of Tx: Iy, Iﬁ with respect to time in terms of thelr components

in the inertial system are found by differentiating Bquation.(3.2). These

derivatives are:

llik + IQTY + 13IZ

X
Iy = mix + aply + m3I2 {(3.3)
1, = mjly + n2ly + n3ly

The derivatives of Ix, 1 R Tz with respect to time are dependent only cn the
change in direction of the unit vectors. Therefore,

1y = wxfx =1ly - ql,
1y = wxly  =ply - rly (3.4)
IZ = Gkiz = qix - pIy

where G = I\IX + q-_]:-y + I‘Iz

Equating the relations for 1, from equations (3.3) and (3.4):
llik + lgIY + l3i2 = fIy - qu

Substituting the relationships for Iy and iz: respectively, gives the relation:

111x + loly + l3iﬁ r(mlx + moly + m3IZ)

— _ _ (3.5)
- q(nllx + nply + n3lz)
By using the component properties of & vector, the relations
1y = rm - gn (3.6a)
lo = riy - gng (3.€b)
13 = rug - gn3y (3.6¢)

are obtained from Equation (3.5).

Ferforming the same operation for the 1, end ié components defines the time
derivatives of the remaining direction cosines. These are:

1k



W = pmy - rly (3.64)

mp = png - rlp (3.6e)
ﬁ3 = pn3 - rl3 (3.6}
B o= - P (3.68)
np = qlp - puy (3.6h)
ﬁ3 = qls - pug (3.61)

The nine Equations {3.6a) through (3.61) are integrated to obtain the
instantenecus values of the direction cosines. This method of calculating the
direction cosines has been selected instead of the usual evaluation by weans of
the guler angles because, regardless of the order of rotation selected, there are
points at which certaln fuler angles become, undefined. The direction cosines
evaluated by this method are always r:'ief:i.ned.(3 +»  The methed by which the ortho-
gonelity of the direction cosines is maintained is described in Appendix Three.
The Buler angles may he calculated from the direction cosines if desired; however,
they are not required for componetrt resolution.

The cowmponents of inertial veloclby in the hody cogprdinate system, u, v, and
W, will be resolved into velocity components X, ¥, and Z in the inertial coordi-
nates., Since components of inertial velocity are known in body coordinates, a
resolution of components using the direction cosines given in Equation (3.€) will
give couponents of inertiel veleoeity in the inertial ccoordinate system, as follows:

.

% : ].]_ ml nl ! : u
P N
! Y| =1, no i L v (3.7)
P E
2 o

113 m3  n3

3.1.% Geocentric Coordinates -~ The components of velocity in inertial coor-
dinates will be integrated and the displacements resolved into the geocentric
coordinates of latitude, longitude, and distance from the center of the planet.
With the aid of Figure (3.1), several pertinent geometric relationships can be
obtained., The angle, B, rapresents an inertial longitude which differs from the

{3) It is recognized that nine integrations are involved in the present
method of computation instead of the three that are normally required when the
Euler-angle rates are integrated to give the Fuler angles. However, a cocordinate
transformation is required to obtaln the rates, and the sines and cosines of the
angles must also be computed In the usual directiocn cosine cowmputation. The
machine time required for the two methods of computation is comparable.
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planet longitude change, (6L - ©Lg), by the amount wyt. (@p is the angular
rotational rate of the planet.) The inertial angle 1s given by:

B = Ta.n'l(z) 3.8)

)4
and the instantaneous geocentrlie longitude of the body is:
6L = 6L, - B - wjt (3.9)

The geocentric latitude of the vehicle, ¢L: can alsoc be expressed in terms of
inertisl coordinates. Referring to Figure (3.1):

g, = Sin-l 2

‘/x2 + Y2 4 22 (3.10)
and, the distance from the center of the planet is:
R =Jx2 + Y2 4 22 (3.11)

3.1.5 Local-Geocentrie Coordinates - To describe the moction of the hody
relative to the planst, & local-geocentric-horizon coordinate system is smployed.
The Zg-axis of this system is along & radial line which passes through the center
of gravity of the body and is positive toward the center of the planet. The Xg-
axis of this systew is normal to the Zgy-axls, and is posltive northward:; and Ty
forms a right-handed system. TFigure (3.1) shows the relation of this coordinate
system to the other systems assumed. The direction cosines relating the orienta-
tion of this system in inertial space will now be developed.

Tc locate the Xg-Y -7 axes with
respect to the X-Y-Z axés, firsi rotate
about Z by an angle (130° + B) and then

Xt retate about Yg through the angle (30°-
$.). The first rotetion defines the
interwmediate coordinate system shcown

1830° + B in Figure (3.2). Using the matrix
methods of Reference (S} the transfor-
metion is given by:
Y ot

\\ i-x.’ Cos (180°4B) Sin (180°+B) of | Ty |

T g Tyg| =|-Sin (130°48) Cos (130°48) O||Ty
Y IZ ‘ Q Q 1 IZ
x i
or
Figure 3.2 - Intermediate Ccordinate - ‘ R
Systen Transformation From L -Cos B -3in B 01 Ix
Inertial to Local-Geocentric - _
Coordinates 1y ={SaB -CosB O 1y |
1, 0 0 1] Tz (312
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The second rotation is shown in Figure (3.3). The transformation matrix for the

second rotation is given by:

Ix, Cos (90° - #r) O -8in (90° - g )}{1x*
Iyg = 0 1 ) I&g
- . ] - X
17, Sin (90° - #1) © Cos (90° - ¢TIy 5 $
90991 s
cr
Igg 8in §, O -Cos @ i | Ixt
’ g
Vig Cos #r, O  Sin @y iz | ;

Figure 3.3 - Final Rotation
in Transformation From Inertial
To Local -Geocentric Coordinates

In this analysis, & positive rotation 1s defined in the samne sense as that
adopted for vector cross products in a right-handed system. That is, & positive
rotation about the z-axis occurs when the x-axis rotates inte the y-axis; positive
rotation about the x-axis when the y-axis rotates into the z-axis; and positive
rotation about the y-axis when the z-axis rotates into the x-axis. The interme-
diate coordinate system X', Yz, Z will be eliminated according to the methods of
successive rotation, Reference (9). The couplete trensformation is given by:

il

Ikg Sin ¢ ©0 -Cos #L -Cos B -Sin B 0 | ¥
lyg| = o) 1 0 SinB -Cos B O Ty ! (3.1k)
Ezg Cos g, O sinfy |1 o 0 1 ! i)
which can be reduced to the single transformation matrix.
Ikgi -Sin @; Cos B -5in @y Sin B  -Cos @y i Ix
- Dl
lyg = Sin B ~Cos B 0 i i ly {3.15)
I Cos @y, Cos B -Cos @, Sin B Sin ¢ i( T, !
L ~Cos Py, Cos -Cos §1, Sin in §r 7 |
The direction cosines will be defined as follows:
Iyg [ = |12 J2 ke Iy (3.16)
1zg i3 J3 &3] 1y

17



where the i's, j's, and k's are defined in Equation (3.15). For exaample,
j1 = -Bin @ Sin B

The resolution of inertial velocity (in inertial components) to local-geocentric
conponents of surface referenced velocity is obtained by the following manipula-
tion. Let R be the displacement of the vehlele in Iinertiasl space. Then:

R = Xy + Yy + 21z (3.17)

and the inertial velocity may also be written with respect tc the local-geocentric
coordinates as:

]l

+ WX

; (3.13)

R =

219,

where 6ﬁ/5t is the velocity observed in the moving coordlnate system Xg-Yg-Zg
and wp is the angular velocity of the planet. The observed surface referenced
velocity 1s:

BR = Xglxy + Yply, + Zglzg (3.19)
ot

and
wp = -L:JP iy

The angular veloclty vector will be resolved into components in local-geocentric
coordinates as follows:

wp = Wy Cos #1, 1xg - wp Sin g 124 (3.20)

Writing the displacement vector in local-geocentric coordinates,

R = -R Izg (3.21)
The required cross product ap X R is:
wy x R = wy R Cos f#, 1y, (3.22)

For convenience, the unit vector Ifg will be resoclved into components in the
inertial coordinates.

Ly, = ip Iy + Jp Ly + kp 13

(3.23)

Sin B 1y - Cos B 1y

From the geometry of Figure (2.1) the relations:

R Cos # = \/ X2 + Y2 (3.24)
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Sin B = — Yt (3.25)

Cos B = X (3.260)

\;Xz + YE

are obteined. Substituting Squations (3.23) through (3.26) into Zquation (3.22)
gives the inertial cowponents of the reqguired cross product as:

wy x R = mpY 1y - wpx ly (3.27)
Substituting Tquations (3.17), (3.19), and (3.27) into cquation (3.13) gives:

A1y + Y1y + 71z = Xngg + Yglyg + Zglzg + wPYlX - prlY
or collecting llke terms,

(¥ - wpY)ly + (Y + wX)ly + 2ly, = Xglxg + Yglyg + Zglig (3.23)
Converting the unit vectors iﬁ, Iy, EZ to components in the moving system by using

the direction cosines determined in fZquation (3.15), and equating components in
the moving coordinate system, glves the following relationship.

Ay iy dy kl X - wpY
Yy | = 12 o &p l Y+ wX (3.29)

One other cocordinate system 1s used in the point-mass reduced-degree-of-freedom
operation of the program. This system will be discussed and the transformation
derived in Paragraph 3.1.10,

3.1.6 Inverse Transformations - The preceding development completes the
calculation of planet-referenced velocities and displacements., Several resolu-
tions are necessary, however, to transform information in planet-referenced
coordinates back to body coordinates. These transformations will use the inverse
of the direction cosine matrices previously derived.

Gravity couponents, calculated in the geophysical data subprograwms, are
considered inputs to the central program. These components are normally specified
in local-geocentric coordinates and must be resolved inte components in body coor-
dinates., The first transforwation will use the inverge of the transformation in
Equation (3.15) to resolve local-geocentric gravity components into inertial
gravity components.

& i, 12 i3 &Ky |
gy| = |Jp d2 d3 0 (3.30)
&, }.{l 't{2 k3 gzg
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The second step will resolve the inertial components of gravity into the required
body components zx, &y, gz. The direction~cosine metrix releting inertial coordl-
nates with body coordinates was derived previously and is given in Zguation (3.1).
The required transformation is, therefore:

Ex In 1, 13 4| 8
By | = |®m W m &y (3.31)
&g n;  np 103 gz,

The direction cosines are defined by the relatlons of Equation (3.6). A segquence
of resolutions similar to those leading to dquation (3.31) is required to resolve
local-geocentric components of winds into body-axes components. To obtein inertial
components of wind the inverse of Equation (3.29) applies.

Xw -UJPY il 12 13 ng
Yy +uX|=|i d2 33 || Y (3.32)
Zog i ke ky || Zg,

The components w. Y and -wX must be added to the result to obtain inertial coumpo-
nents of winds. "Resolving inertial wind components to body-axis components
requires the same direction-cosine matrix used in Squation {3.31), and the body
components of winds are:

Uw ll 12 l3 XW
VwiT|m T2 By Yy (3.33)
Wiy n, n, n3 g

The body components of alrspeed ars determined by subtraciing the body components
of wind from the body components of veloecity.

The body components of alrspeed will be used to compute the angle of attack
and sideslip.

R
[

Tan™t (w - WH). (3.34)
o= My

Tan"l(v - vﬂ) (3.35)

0 - Uy

™
i

The definitions of angle of atteck and sideslip are consistent with the aercdynamic
data normally cobtained from wind tunnel tests of sting-mounted models bhecause of

the manner in which the sting way be moved. The corresponding transformations from
wind axes to body axes are given as Section 3,1.11. If aerodynamic data as cbtained
from turntable-and-sirut mounted models are used, an alternate definition may be
required depending upon the procedure used in data reduction.
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2,1.7 Beduced-Degrez-of-Freedom Analysaes Cptions - The following para-
graphs describe the coordinate transforuations required to account for the
motion of the body when ths program is operating in several reduced-degree-of-
freedom modes, From a program economics standpoint, it is more convanient to
solve the equaticns of motion in vehicle body axis (with the exception of the
point-mass option} and revisz the coordlnate transformations than to rewrite
the equations of motlon bacause the limited-motion transformations ars quite
simple. In general, however these transformations can not be obtained simply
by delsting terms from the unrestricted-motion transformations because the
constraints imposed by limiting the motion imply certain planes of operation.
For example, the three-degree-of-freedeom longitudinal analysis is cbtain=d by
excluding, among other things, the side foree, which 1nclades side-forces
componants of Corlolis acceleration. This restriction can be fulfilled only
vhan the motion 1s in the equaterial plane. Whan the restricted plane of motion
is recognized, some of the required transformations can bz calculated from the
general transformations by suitable substitutions.

3.1.8 Three-Degrez-of-Freedom Longitudinel Analyses - The thres equations
of motion involving the summation of forces slong tne x- and z-body axes and
the suzmation of moments about the y-&xis are solvad for the translaticnal
accelerations 3 and w and the angular acceleration §. Integration of these
quantities ylelds the components of ilnertial velocity v and w and the pitch
rate q. Integration of g gives the pitch attitude with respect to the insriial
X - Z-Bxes.

Flet-Planet Froblem -~ The inertiel coordinetes in the flat-planst problexn
are the Xg-Zg elevation-plans coordinates, Veloeilty components in the Yg-zw
coordinate system may be found by direct resolution through the angle & whith
is obtalned by integreting g. The direction cosines relating the body and Kg-ug
coordinates &are:

Xg Cos @ Sin © E bid
= (3.36)
Z -3in @ Cos © z

The velocity may be resclved using the same transformation, so that

Xg Cos © Sin & 1
. 1= (3.37)
Zg -3in @ Cos © W

Pogitions in the X %y system are then determined by integration, Components
of wind and gravity a%ong the body axes are resolved using the inverse of

Equation (3.36). For winds:
1

Uy Cos & -Bin @ kgw _
(3.33)

Wy S5in © Cos © 2gw
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The Thody components of airspeed may be calculated and the angle of attack computed
as in dquation (3.34).

In the flat-p%anet problem, ng = zerg and gzg = Bpape Therefore, the body
components of gravity are:

8z = Bper C08 9

fx
o
N
-

[y

Cx

1

Rotating-Planet Problem - A three-degree-of-freedom longitudinal problem
with a rotating planet mst he confined to the equatorial plane in order that
all couponents of Coriolis acceleration are included in the equations of moticn.
This weans that the coordinate system used in this problem is thes X-Y inertial
axes in the equatorial plane. At time equal zero, the vehicle lies on the X-
inertial axis. The inertial angle B is equal to Q;O - &7, - w.t, as in the six-
degree problem, and may be expressed as a function of inertiaE disyplacement:

B = Tan-l (Y) (3.40)

X

The angle B locates the local-geocentric-horizon coordinates which will be
referred to as the YS'Zg coordinates since Xg is not necessary in this provlem
(see Figure (3.4):

D

Figure 3.4 - Relation Between Dody Axes, Local-Geocentric,
and Inertial Coordinates for Motion in Zquatorial Flane
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The direction cosines relating the inertial axes X - Y and the body axes x-z uay
be determined by rotating the X-Y-Z system about X through 50° to define the
coordinates, X-Y)-47, and then rotating this systeu through @ to reach body
coordinates. The transformation is defined by:

b4 £

v = | o 50° Y (3.41)
Y1 X

z Z

or, substituting the individual rotation matrices,

X Cos® O -3in & 1 0 0 X
vl = 0 1 0 0 Cos 50° Sin 90° Y
zZ Sin® 0 Cos © 0 -8in 40° Cos 4Q° bt
The inertial angle & is ftq at + 6. - $0°. The direction cosines relating body

and inertial coordinates®are given by the eleaents of the resulting matrix.

X Cos & Sin® 0O X
y | = 0 0 1 Y
z Sin & -Cos & © 7 (3.42)

s¥panding the transformation

Xx = X Cos &+ Y Sin &
y = 4
Zz = X Sin® - Y Cos @

But 2 = 0 since the motion 1s restricted to the X-Y plane and the required trans-
formaticn reduces to:

X Cos & Sine || X
z Sin@  -Cos @ || Y (3.43)

Inertial components of inertiml velocity may be found by using the transpose of the
transformation matrix Zquation (3.43)

X Cos @ Sin@|[ u
Y Sin @ -Cos @ || w (3.44)
Because positive rotations were used in dfquation (3.41), the resulting body-axis

orientation is for a normal upright easterly flight. To obtain the proper orienta-
tion for a westerly flight, the rotation about the X-axis is negative and Zyuation
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(3.L41) vecomes

%X X
N = =@ -G0° Y
Yy X
z 2 {3.45)

Zquations (3.43) and (3.44) then becouwe

X Cos & Sin & X

o| " lsime  wesel| v (3.16)
and

X Cos @ -Sin & u

¥ i 3in @ Cos o l W (3.47)

A single equation for each transformation may be obtained for both easterly and
westerly flight by incorperating the ccnstant Kz, as follows

X Cos & Sin & X

2| oSin @ -K Cos @ || Y (3.48)
and

' Cos & KgSin @ u

e ) Sin € -K ;Cos ] w (3.49)
where

Ky = +l for emssterly flight

Kg = -1 for westerly flight

The resolution of inertial components of inertial velocliy to loecal-geocentric
components of planet-referenced velocity 1s obtained by setting ¢L = 0 in squation
(3.29). The transformation becoues:

X 0 0 -1 X - wy
ig = 5in B ~-Cos B 0 Y + wPX
é.g Cos B -Sin B O z

This may be simplified to & single-plane transformation by deleting }.ig and % in a
manner similar to thet used to derive Zquation {3.48).
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% Sin B -Cos B X - w. Y
g
.7 (3.50)

ZE; -Cos B -3in B Y + pr

The inertial componenis of winds are determined by using the transpose of the trans-
formation matrix of Equation (3.50), and are

Xy - wp¥ Sin B -Cos B Yy,
Yy + wpX -Cos B -Sin B Zgw (3.51)

The terms w_Y and w X are ineriial components of the velocity due to the planet's
rotation. 1t w1llpbe convenient to resolve this rotaticnal velocity component to
local-geocentric components. This operation may be verified by substituting
Bquations (3.17), (3.19), and {3.22) into (3.18) and comparing components.

Xy Sin B -Cos B Yo, + WR
Y, | -Cos B -sinB| | zg, (3.52)

The body components of winds are reguired and may be determined from the inverse
of the transformation matrix of Equetion (3.43).
uy Cos & sind]] Xy

W oSin @ KgCos & (| Yy (3.53)

W

The resolution of wind cowmponents from local-geocentric to body coordinates may
be accomplished by combining Equetions (3.52) and (3.53) asccording to the method
of Reference (9).

The transformation is:

Uy Cog & Bin Sin B -Cos B .ng + wPR
Wy Sin @ -Cos @ | -Cos B -8in B || Zg,
Qr
(Cos € Sin B (-Cos B Cos & .
Uiy ng + LUPR
-Sin © Cos B) -Sin B Sin @)
(Sin ®& Sin B (-8in @ Cos B .
Wiy Zgw
+Cos © Cos B) +Cos @ Sin B)

which simplifies to

Uy, Sin (B -® ) - Cos (B -9 ) Yg, +WR

I

W, Cos (B -@) Sin (B -@) L, (3.54)
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From Figure (3.4) the following relationship between &, € and B may be written:

30° = KB + 6 - K0
8 =90° - K (B -9 ) (3-55)
Therafore:
Sin & = Cos (B -9 )
Kg Cos @ = Sin (B -9 ) (3.56)

Substituting dquation (3.56) into Hquation (3.5%) and incorporating the factor
Kg as defined for iquations (3.43) and {3.49)
Uy hUCos ® - Sin @ ng + wa

W, Kg8in 6 Cos @ Zgw (3.57)
Couparison of this equation with Zguation (3.33) suggests that the same wind ‘rans-
Tormation watrix may be used for both rotating and flat-planet three-degree-of-
freedon longitudinal problems. The couponent wyR must be included in the case of
the rotating planet, howsver, to ensure that the vector defined by the transformed
conmponzants is the same vector as described by the original components. The local
Zuler angle @ then is the only attitude angle required for resclutions in the
thres-degree-of'-freedom longitudinal analysis problem. The angle of attack is
computed as in I uation (3.34). The component resolution of gravity for the
roteting-planet mode of operation of this problem is given by Zguation (3.39;

since gxg is also zere in the equatorial plane.

2.1.9 Three-Degree-of -Freedom Lateral Analyses - Three-degree-cf-freedom
lateral analyses are often perforwmed in the design of aircraft, autopilots, and
guidance coumputers on the vasis that the lateral and longitudinal motionz are in-
dependent of each other. Although the informatiocn obitained from such an analysis
is considered quite valuable, certain inconsistencies are created in the mechanics
of solving the problem, The three-degree-of-Ifreedom lateral motion is not defined
completely by the three accelerations considered, as noted in Faragraph 2.3,
Therefore, the motion calculated is treated as a perturbation motion. The assunp-
tions made concerning this motion are:

(a) The lateral displacement from a given straipght-line track is due only
to the velocity imparted by body side-force acccelerations. The displaceuments
from the reference line due to the axial velocity and yaw angle are neglected.

{h} The center-of-gravity of the body 1s assumed to travel in the plane
established by the motion described above. The wvertical and lateral dispiacements
due to the sinxzing velocity and the roll attitude of the body are neglected.

The coordinate systems and transformations which retain these assumptions
and constraints are described and derived in the following paragraphs. The intent
of this opticn is to provide a digital simulation of the norwmel lateral-dynamnics
rrovulen assumed for control-system analysis, and further, to provide this problem
option in such a forwm that the valldity of the assuuaption of decoupled notion may
ve easily verified. The inconsistencles of the usual dynamnic analysis will he
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ohserved as the discudsion proceeds, For operation of the progran in the thres-
degree-of-freedom lateral mode, the eguations of motion describing transiation
in the y direction and the two moment equations for yaw and roll ars solved for
ot f, and v. The veloclty components v and w appearing in the y-acceleration
equation are programmsd input funetions, as noted in Paragraph 2.3. Tha computed
accelerations are integrated to obtein the body angular velocitlzs p and », and
the body component of veleocity v. DBody angular
velocities will be resolved into inertlal com-
ponents. The regquired rotations are conveniently
represented on a unit sphere, TFigure (3.5). The
labelled points represent the intersection of a
particular coordinate axis with the surface of
the unit sphere. Since only a flat planet is
considered in this optional mode, the Xg-Yg-Z4
coordinates are the inertial coordinates. Only
two rotations are required to orient the body
axis, x-y-z, with respect to the inertial axes
sinc?hghe Zuler engle O is arbitrarily set to
zero' /. The first rotation is about the Zg-
axis through the angle ¥ and the finsl rotatlon
is about the x-axis through the roll angle §.
The angular rotation rate of the body axes umay

be written as the vector W. Figure 3.5 - Unit Sphere
_ _ _ Diagram For Lateral lLotion
w=pl, +71 1y (3.58) Cocrdinate Transformations

which may be expressed in the x—n-Zg system (since these are the axes about which
the rotations occur) as:

W= g Ix+ 0o I+ 1z (3.59)

The unit vector Iz has components in the x-n-Zg coordinate system which are:

1, = Cos¢lz,g - s:'.n;él11

(4) This essumption is normelly wmade in the three-degree-of-freedom lateral
dynamic analysis, but is inconsistent with the assumptions regarding the velocity
components u end w which define the body angle of attack (@ = Ten~i {w/u)).
Since the Euler angle 6 is the angle vetween the horizontasl plane, in which the
lateral motion is assumed to cccur, and the body axis, x, the Buler angle should
be @ = o This discrepancy is normally disregarded in the perturbation analyses
conducted in lateral dynamics investigations and will also be neglected here.
This is done so that an evaluation may be obtained of the errors incurred by
assuming the motions in the longitudinal and lateral rlanes to be decoupled.
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Substituting this expression for the body unit vector in the z-direction into
Bquation {3.53) resolves the expression for W into components in the x-n-Zg
system as follows:

w=pIy~-rsingI,+r Cos ¢ ng (3.60)
Comparing the scalar coefficients of similar unit vectors in Equations (3.59)

and (3.60) provides the required relations for resolving the body angular rates
into Huler angle rates.

g = p
6 = -r Sin ¢ (3.61)
v = rCos §

However, the perturbatlion displacements in the pitch plane are not permitied in
the analysis, as ncoted in the introductory paragraph to this section. Therefore,
the velocity

6 = -rS8in g

must be disregarded, since it rotates the plane in which the lateral perturbation
motion is assumed to occur. This is the second major inconsistency of the normal
lateral analysis. The resolution which will be used is:

g

.

v

P

'}

r Cos §

These relations point up & third inconsistency of the normal lateral dynamic
anaelysis, which is that the roll and yaw rates sbove are integrated to define
the perturbed attitudes of the body. However, these are not the total motion
of the body and the displacements which actually occur due to the combinations
of u and w velocities in the ¥ and § directions, respectively are ignored. The
gravitational component resolution required is:

gy = &, Sin # (3.62)
since the pitch angle © is arbitrarily set to zero and angle of attack is lgnored.

The compeonent of wind in the y-direction way be calculated by resolving the
Yg component of wind to the body axes.

L] ’-l\
Vg = ng Cos Yg ¥
From the spherical trigonometry of the triangle of reference, Figure (3.5),
”—
Cos Yg ¥ = Cos § Cos ¥

Therefore,

v, = %gw Cos @ Cos ¥ (3.63)
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The vody component of translational velceity will be resolved to a couponent of
velocity along the Yg-axis cnly, as velocities in tha elevation plans are not
computed in thils option. This resoclution may be written:

Y, = v Cos Y;\y =v Cos § Cos ¥ (3.64)

3.1.10 Point Mass Analyses - For this option the rotational body rates
P, 49, and r are undefined. It is, therefore, necessary to rederive the equations
of motion in such a manner as to avoid this complication. The most convenient
coordinate system is considered to be a Cartesian planetocentric coordinate
system designated Xg-Yg-Zeg. The origin of this system lies on the polar axis
of the planet and in the equatorisl plane. The Zg-axis is collinear with the
polar axes and positive toward the south pole. The Xg-axis 1s in the equa-
torial plane and is fixed at the longitude of the vehicle at time equal zero;
(i.e., the coordinate system rotates with the planet) the Yo-axis is positioned
to form a right-handed system. The inertial coordinates X-Y-Z and the ccor-
dinetes Xg-Ye~Zde coincide at time zero.

The components of the planet-referenced acceleration are integrated to
obtain the planet-referenced velocity components Xo~Ya-Zo. Vehicle positions
in this coordinate system are determined by integration of these velocities.,
The position of the wmissile in a planet-referenced spherical coordinate system
will be determined. The spherical coordinates are longitude, geocentric
latitude, and distance from the center of the planet. The angle "C" (see
Figure (3.6)) represents the change in longitude of the vehicle and may be
written:

C = o, -6 (3.65)

Thus the angle C differs from the angle B of the six~degree-of-freedom program
by the planet's rotation, wpt. The angle C is related to the wvehicle dis-
placement by the expression:

¢ = Tan-l (;.‘(_) (3.66)

e

The geocentric latitude, eltitude, distance from the planet's center, and
geodetic latitude are computed as in the six-degree-of-freedom program, (see
Paragraph 3.1.4). Components of planet-referenced velocity Xp-Yo-Ze Will be
resolved into velocity components in local-geocentric-horizon ccordinates
Xg-Yg-Zg. The direction cosines describing the orientation of the local-
geocentric horizon relative to Xg-Ya~Zo coordinates may be derived in a manner
similar td that of the six-degree-of-freedom problem, (see Equation (3.15).
The only difference is that the angle C must be used in place of B and Xe~Ya-Zg
used in place of X-Y-Z respectively. Since B = OLo - 8f, - wpt, the angle C
may be calculated by setting wp equal to zero in B. Therefore, the direction
cosines requlred to orient the local-geocentric coordinates may be calculated
as in the six-degree-of-freedom problem if is set equal to zero, since
both local-geocentric and Xg«Ye-Ze are planet-fixed coordinates. The required
resolution is obtained from Equation (3.15). The subscript zero indicates
that the direction cosines are evaluated with Wy = 0.
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Xg 10 J10 ko Xe
T, = [t20 Jeo  keo e (3.67)
Zg izp 430 k30 Ze

The planet-referenced velocity may be calculated from its components:

AR TN (3.68)

Local -Geocentric X

Horizon Coordinates v——:z;ré::;‘f

Figure 3.6 Relation Between Local-Geocentric,
Inertial, and Farth-Referenced Coordinates for Point-Mass Problems

The flight-path angles(S) are computed as in the six-degree-of-freedom problem:

Yq
-l
¢ = Sin m (3.69)
a [z
y = stn~l (_.&) (3.70)
Vg

Egquations {3.68), (3.69), and (3.70) are applicable to both the oblate- and
flat-planet optilons.

(5) The flight-path angles are defined by surface-referenced velocities
with respect to the local horizon and longltude lines.
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The aerodynamic and thrust forces for the point-mass problem will normelly
be summed in a wind-exis coordinate system, Xp~-Yp-Zp. Since the equations
of motion are solved in the Xg-Yg-~Za coordinates, the wind-axis components of
forces must be revolved into the components of this systen.

The forces will first be resolved from the wind sxes to the local-
geccentric coordinates. The wind axes are defined relative to the local geo-
centric axes by three angles: heading, o; flight path attitude, 7; and
bank, Bg.

Figure 3.7 - Relationship Between Local {ieccentric
Axes and Wind Axes

The transformations are:

- _ Xt cos o sin ¢ 0 Xg

¥*| = | -sin o cos g 0 Yg

Zg 0 0 1 Zg

Xp cos y 0 -sin 7 Xt

Yty = 0 1 0 Y

" sin y 0 cos 7 Zg

/ h Xa 1 0 o Xa
Yal = 0 cos By sin Bp Y

Za 0 - sin By cos By z"
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The complete transformation then is:

Xa COS y COB O cog 7 sin @ -sin 7 Xy
Ya| =1 -sin ¢ cos By cos 0 ¢os By cos ¥ 8in By Yg
+ 8in 7 cos @ sin By + sin 7 sln o sin Bp
Zp sin ¢ sin By -cos ¢ sin By cos 7 cos Bpa| | 2,
+ gin ¥ cos g cos By + sin ¥ sin ¢ cos By
which will be defined as
ry 51 tl Xg
= | ro 8o to Yg (3.72)
r3 83 3 - Zg
The resolution of foreces from wind axes to local geocentric becomes:
Fxg ry ro r3 Fxy
Py, == 85 83 FYp (3.73)
F7q ty to tg Fz,

For the rotating-planet, the local geocentric components must be resoclved to

components in the X -Yo~Ze system.

The required direction cosines are given

by Eguation (3.67) evaluated using the angle C in place of angle B.

15’ 110 120
Fyo | = | d10 doo
Fze 410 20

i30 Py
J30 ¥z,

The combined trensformation from wind axes to locsl geocentric will be defined

as a single matrix.

Fxe 01 02
Fr = |m P2
Fze 9 42

03 FXA m&xe
P3 Fep | + ) may, (3.75)
%3 Fzp "%
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3.1.11 Body-Axes to Wind-Axes Transformation - To permit the use of body (x,
¥, Z) axes aerodynamic data and to convert the body axes components of thrust
to the wind axes system, a coordinate transformation must be made. The coor-

dinate transformation below is first through the angle of attack, «, and then
through an suxiliary angle, B'.

X
v
Y L’
w1,
vl
Yvh u X
8
v
v u
tan B! = ~ cos Q@ /"'Os
u @ t
x
= tan B cos O zt
z

Figure 3.8 Relationship Between Body Axes
and Wind Axes
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xt cos Q 0 sin o x
y'| = 0 1 0 y
z! -sin o 0 cos O z
Xp cos Pt sin p? 0 x!
Yal = -sin p' cos B! 0 y!
Zp 0 0 1 z!
= cos B cos @ sin gt cos B' sin o X
-sin B! cos ¢ cos B! -sin p' sin ¢ y (3.76)
-sin ¢ C cos o Z

which is defined as the u-v-w direction cosines.

Xa vy uo u3 2 x

Y= | vy, Vo vy | y (3.77)
2y Wy Wo w3 } z

Cp Uy u, us T -Cyp i

Cy | = [ vy Vo vy ; Cy | (3.77a)
o ! |n " B

The relationship between body and wind-axes aerodynamic coefficients is then
established, noting the negative directions of the coefficients relative to
the axes system.

If the assumption is made that the body xy plane lies in the vertical,
¢ = 0, an alternate transformation can be made (Figure 3.9) using the pitch
angle 9, the difference between the azimuth heading and the yaw angle, o - V,
and the flight path angle, 7.

The direction cosines reguired for this transformation from bedy to the
vertical wind axes system are:

Xay cos ¥ O -sin 7 |{cos {o~¥) sin (g-¥) O ||cos © 0 sin 6 ||x

Yay | = 0 1 0 -sin (g-¥) cos (o-¥) O 0 1 o y

Zay sin 7y 0 cos ¥ 0 0 1 -sin® Q cos O z
(3.78)
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Figure 3.9 - Relationship Between Body Axes and Vertical
Wind Axes With Zero Body Roll Angle

The angles ¥y and ¢ are computed in the point mass options; € and ¥ are not.
Applying the law of sines to the spherical triangle XA-ZE-E:
v

sin (o - y) = SinBl (3.79)

cos ¥

The sine of B! may be expressed in terms of the body coordinate components of
velocity as:

v v
sin B = — = Pt et e (3.80)
v J-\-JE + VE + W2

Dividing numerator and denominator by u and expressing in terms of Q and g

tan B

SR Ty (3-61)

Substituting Equation (3.81) into Equation (3.79)

tan B

- = -l .82
o-¥ sin cos Y4/l + tan® @ + tan® B (3.82)
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Since the body roll angle is zero!
@ = + 7' (3.83)

Applying the law of sines to triangle XAJy-C:

_{sin y\_f s8in 7 .
a7t - ( s')‘ YaEr= Y (361

The angles © and g~y can now be evaluated in terms of @ and f for use in the
vertical wind transformation, Equation (3.78).

This transformation from body axes to a vertical wind axes, with the
assumption of zero roll, is the transformation used in the computer program.
Thus, the load factors computed are slso in the vertical wind axes system.
The transformation from the verticsl wind coordinates to the local geocentric
is given by Equation (3.71), noting that the bank angle is zero for the
vertical wind axes system.

3.1.12 Winds in a Polnt Mass Analysis - The effect of wind can be intro-
duced in a point mass problem when the vehicle's angular position is dictated
by an assumed perfect control system. The wind computations in this section
are specifically designed for a control system using three rate-integrating
gyros. The wind components will produce an angle of attack and an angle of
sideslip which are not removed by the assumed aerodynamic stability of the
vehicle, since the vehicle'!s angular position is fixed by other means, e.g.,
reaction control. The above conditions wust be realized before the optional
computations presented in this section can provide meaningful results. Only
Flight Plan Programmer 10 meets these requisites.

The change in ¢ and p due to the three components of wind is to be deter-
mined assuming that no instrument errors are present. Figure (3.10) contains
the geometry necessary to consider winds. XA-YA-ZA is the location of the
wind coordinate system before the perturbing wind components are introduced.
Xp-Yp-Zp 1s the new location of the wind coordinates after the perturbation
cccurs. XA 1s coincident with the airspeed vector, ZA is coincident with the
1ift but is positive in the opposite direction, YA defines the side force.

The three local geccentric components of winds will be introduced in a
tabular listing with altitude as the independent variasble. Let the three
components of wind be written as follows:

Xg  North
gg East
Zg Directed toward center of earth

The airspeed vector is given by:

Va = \_fg - VW (3.86)
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where Vg is the velocity relative to an atmosphere which has the same angular
velocity as the earth. The three local geocentric components of airspeed are:

Ta = (Rg - Xg) T + (g - Y ) Ty + (g - 2g) T (3.87)

The elevation and azimuthal flight path angles of the airspeed vector are:

Yy = sin~t M (3.88)
Va
Y, - ¥

o, = tant [ & 8w (3.89)
xg + ng

The summation of the external forces 1n Option Six is performed in the
wind coordinate system (XaY¥pZp), and the resulting components are resolved to
the local geocentric system through the r-s-t direction cosines. The r-s-t direc-
tlion cosines are derived with the 1ift vector restricted to the vertiecal plane.
This derivation is unsuitable when the direction of the 1ift is dependent on
the vehicle's roll angle. The sdditional angle required to define the direction
of the 1ift (negative Zy axis) is the bank angle, Bp. The_bank angle is
weasured in & plane perpendicular to the airspeed vector (V,) and is referenced
to the vertical plane containing Xp. The resulting r-s-t direction cosines
will be altered by adding the rotation about the Xp axis through the bank
angle to the sequence of rotations, thus leading to Equation (3.71) transposed.

FXg co8 Yy CO8 gy -s3in op 8in ¥, cos Gy {1 0 0 Fy,
Fyg = ! cos Ty sin oy Co8 g p sin ¥, sin oy [ {0 cos By, ~-sin By Fy.
Fzg -sin 7y ] co8 Yp 0 s8in By cos By an

vhere an, Fy., and an are the components of aerodynamic and thrust forces in
the wind coorﬁinate system. Performing the indlcated metrix multiplication

glves:
Fxg cosY, cosgy -s8inoy cos By singy sin B i an
+sinv cosogy sin By +8in cosoy cos By i
i
F}:g = |cosY, sing, cosay cos By -cosay sin By | Fy, (3.90)
+8in%, sincy sin By +sin sinogy cos By |
Fzg -sin ¥y cos ¥, sin By cosY, cos By E an
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The r-s-t direction cosines are to be defined by corresponding positions in
equation (3.90) and (3.91).

Fxg rl 1‘2 I'3 FXE.
FYg = 18] Sp 83 Fy, (3.91)
Fz, t1 t2 t3 ¥z,

The development of the direction cosines relating the wind and body
systems presented in Section 3.1.11 is also performed with the restriction
that the 1ift is in the vertical plane., This restriction will be removed by
permitting an additional rotation of the existing wind coordinate about the
velocity (Va) through the bank angle, Bs. This change is required to permit
the correct summetion of aercodynamic and thrust forces. The additional rota-
tion matrix is made to Eguation (3.78).

JXAf 1 0 0 cosyp 0 -sinypl|| cos{o-y) sin{o-y) O cosé O sine
{
;YA1= 0 cos By sin By 0 1 0 ||-sin{e-¥) cos{o-y) Of © 1 0
[ZAl 0 -sin By cos By {{sinypy O  cosyp 0 0 l|~8in® O cos®
(3.92)

3.2 Quidance and Autopilot Coordinate Transformations ~ The vehicle
attitude information taken from the gimbals of a stabilized platform and the
outputs of platform-mounted accelerometers may be required in certain autopilot
and guldance-system computations in the Six-Degree-of-Freedom Flight-Path
Study computer program. This section presents the derivation of the equations
relating accelerometer and attitude information to data computed in the
central program. The method for deriving coordinate transformations for any
gimbal arrangement 1s presented for reference.

3.2.1 Gimbal Arrangements and Rotation Sequences - Three frequently used
gimbal arrangements will be considered iIn this section. Each gimbal is
equivalent to an intermediate coordinate system in a series of Euler-angle
rotations. Reading from the inner gimbal to the outer gimbal (and neglecting
redundant ginbals) the arrangements considered are:

(1) Yaw-Pitch-Roll
(2) Pitch-Yaw-Roll
(3) Pitch-Roll-Yaw
vhere the analogy between coordinate system rotations and gimbal movement is
used. Other giwmbal arrangements are possible; however, the three discussed
in this section are the ones most {requently utilized. The transformations
for the alternate arrangements can be obtained using these same techniques.
3.2.2 Euler Angles - In the central program, the direction cosines re-

lating the vehicle body-~coordinate system to a fixed lmertisl system sare
calculated by integrating functions of the body angular velocities, p, g, and
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r. The direction cosines relating the body and inertial systems are determined
by the cosines of the angles between the various axes of the coordinate systems
and are dependent only upon the position of the body coordinates referenced

to inertial coordinates. That is, the order of rotation selected to arrive at
a certain orientation does not alter the numerical values of the direction
cosines for that orientationm.

FEach individual direction cosine may, therefore, be defined in terms of
the Euler angles from a given sequence of rotations. These definitions will
provide the Euler angles of the body with respect to the plstform coordinate
system for the three rotational sequences selected.

The direction cosines, in terms of the three sets of Euler angles, will be
derived using the method of Reference (9). The technigue used is to find the
direction cosines for each individual rotation in & sequence and determine
the complete transformation by multiplying the individual direction cosine
matrices. The overall picture of the rotations is best observed on a unit-
sphere diagram. The points on the unit sphere represent the intersections
of the coordinete axes with the surface of the sphere.

The order of rotation and the axis about which rotation occurs can be
described using the following diagram.

AXIS AND ROTATION ORDER

X Y Z This diagram indicates that the
Ay 1. first rotation is about the iner-
g ! Z tial Z-axis through the Euler
e 2. angle V. The second rotation is
x n 4 about the intermediate axisn
t¢ 3. through the angle ©. The final
X ¥ z rotation is about the body

x-axis through the angle ¢.

The derivation of each sequence of rotations will proceed in the follow-
ing manner:

(a) The order of rotation will be defined.
(b) The unit sphere showing all three rotations will be presented.

(c) The individual rotations will be shown in three gseparate diagrams
that contain the plane perpendicular to the appropriate axis of rotgtion.

{d) The direction cosines for each individual rotation will be written
in this manner:

£ Cex Cey Cgg X
11=1%x  Cny Cnz Y

x| |Cx Cx Cu (|2

Lo



where Cyj is the cosine of the angle between the 1 and j axes.

(e) The matrix of direction cosines relating the inertial and body coor-
dinates will be determined by matrix multiplication.

The computation sequences required for these computations are outlined by the
functional flow dlagram, Figure (3.11).

YAW-PITCH-ROLL ROTATION

AXIS AKD ROTATION ORDER

X Y A
Py 1.
3 1 Z
;0 2.
x 1 4
] 3.
X y z
Pigure 3.12 Unit Sphere For
Yaw~Pitch-Roll Sequence of Rotaticn
Y
FIRST ROTATTION “\»—-— :
. Cos ¥ Sin¥ 0 J|X \ Uk
al=|smy cosv o ||¥ 4 X

Z 0 0 1 Z i

SECOND ROTATION

X Cos © 0 ~Sin 611 &
nl= o 1 0 n
4 Sin @ 0 Cos @ ||2
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THIRD ROTATION

b 1 0 0 X

yl=1l0 Cos ¢ Sing || 1 .

z 0O -sin@ Cos @ || ¢ v \
\
\
z

The transformation metrix is given by

»

*)

(o]

"

Y|¢l

or, in terms of the planar rotation matrices, the intermediate mxes are elim-
inasted by

X 1 0 0 Cos @ 0 -Bin @ Cos ¥ Sin ¥ ol X
yl=1]0 Cos ¢ Sin ¢ 0 1 0 ~Sin ¥ Cosy Of|Y
z 0 -Sin¢  Cos ¢ Sin® 0 Cos © ) 0 1)z

The direction cosine elements of the transformation matrix are cobtained by per-
forming the indicated multiplicetion. For the yaw-pitch-roll rotational
sequence

p (Cos @ Cos ¥) (Cos € Sin V) (-Sin ©) X

yi=((-Cos ¢ Sin ¥ (Cos ¢ Cos ¥ (Sin ¢ Cos @) Y
+ 8in ¢ Sin & Cos ¥) + 8in ¢ Sin @ Sin ¥)

z (5in ¢ Sin ¥ (-Sin ¢ Cos ¥ (Cos ¢ Cos @) Z
+ Cos ¢ Sin @ Cos ¥) + Cos @ Sin © Sin ¥)

(3.93)
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PITCH-YAW-ROLL ROTATION

Figure 3.13 Unit Sphere For
Pitch-Yaw-Roll Sequence of Rotation

FIRST ROTATION

g Cos ' O =8in@'| |X
Y| = 0 1 0 Y

1 Sin @' O Cos 9| | Z

SECOND ROTATION

x Cos ¥' Sin ¥y' O 3
E| =|-Sin ¥* Cos ¥' O b4
N 0 0 1 "

4

AXTS AND ROTATION ORDER

X

Z
e! 1.

X 1
U' 2,
¢ 1
3.
Y Z
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THIRD ROTATION

X 1 0 Q X
g smgr|¢ : Y
¥y|=1}0 Cos in '
¢ - \
z 0 -Sin @' Cos @t'!l] q y~ \

The transformation matrix is given by

o el forf |

2

or, in terms of the planar rotation matrices, the intermediate axes are elime
inated by

b'e 1 0 0 Cos ¥' Sin ¥ Cos @' -Sin @"|| X
y|=l0 Cos ¢! Sin @ -Sin ¥ Cos V! 0 Y
z 0 -Sin @'  Cos §° 0 Sin @ Cos @t ||2
The direction cosine elements of the transformation matrix are cobtained by
performing the indicated wultiplication. For the pitch-yaw-roll rotational
sequence
x (Cos ¥' Cos ') (Sin v*) (-Cos ¥! Sin ©) X
(Sin @' Sin (Sin @' Cos o
yi|= (Cos g? Cos V)
-Cos @' Sin ¥' Cos €'} + Cos " 8in 07 8in ¥*) | !¥Y
z (Cos §* Sin &7 (Cos ¢t Cos @
(~Sin @' Cos ¥?)
+ Cos @' Sin ¥! Sin ¢*) - Sin @' Sin O' Sin ¥') |{Z
(3.94)
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PITCH-ROLL -YAW ROTATION

AXIS AND ROTATION

X 19" Z

{o

§ ¢ Z
Y

fi

Ul

X

el ‘f‘,f”

Figure 3.14 Unit Sphere For
Pitch-Roll-Yaw Sequence of Rotation

FIRST ROTATION

] Cos " 0 -Sin o" X

Y| = 0 1 0 Y

1 Sin 9" 0 Cos &" 7

SECOND ROTATION
£ 1 0 0 3
ti=|o Cos ¢" Sin ¢" Y Y 5
]
= 1]
Z 0 «Sin ¢ Cos ¢"{ |0 s N/
g e
Z

n
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THIRD ROTATION

X Cos ¥ Sin¥" 0| |¢&
|

y{= |-Sin ¥" Cos ¥" O |¢
z 0 0 1 z

The transformeticn matrix is given by

X X
y| = lw".rcﬁ"”o"l Y
2 z

or, in terms of the planar rotation matrices, the intermediate axes are elim-~
inated by

| x g Cos ¥" Sin " 0 1 0 o) Cos @” 0 <8in 8" ;' X
- 1 .
! y
y|= 1 -8in y"  Cos y" 0 0 Cos ¢" Sin g¢" [ © 1 0 'I Y
H
z 0 0 1 0  -8in ¢" Cos §' || 8in @" 0 Cos ®"||Z
} ;
The direction cosine elements of the transformation matrix are obtained by
performing the indicated miltiplication. ¥For the pitch-roll-yaw rotational
sequence
(Cos ¥" Cos 6" (-Cos ¢" Sin " ;
x (Sin ¥" Cos ¢") (X
+ Sin ¥" Sin @" Sin &") + Sin ¥" Sin ¢" Cos &")
(-8in ¥" Cos &" (Sin ©" Sin ¥"
vl= (Cos V" Cos ¢") Y
+ Cos V" Sin ¢" Sin &") + Cos ¥" Sin ¢" Cos 6")
z (Cos ¢" 8in o") (-Sin ¢") (Cos @" Cos &") yA

(3.95)

L7



The direction cosines relating body and inertial coordinates are assigned the
following symbols in the central program {see Equation (3.1)).

yi|= ml m2 m3 Y (3‘96)

By comparing identical positions in the matrix of Equation (3.96) with the

matrices in Equations (3.93), (3.9%), or (3.9%), the direction cosines above
are defined in terms of the appropriate sequence of Euler angles.

3.2.3 Platform Coordinstes - An orthogonal platform coordinate system,
p~t -Zp is defined by the sensitive axes of three mutuslly perpendicular
acce erometers. The direction cosines describing the inertial orientation of
platform coordinates will not be derived. The angles used to orient the plat-
form are the inertial angle, Bp, geocentric latitude ¢, and azimuth A. The
sequence of rotation is given in the following diagram.

AXTS AND ROTATION ORDER The first two rotations coincide with
the sequence used in Equation (3.15)
X to def'ine the local-geocentric-horizon
(1800+BP) 1. coordinates. The direction cosines
] Z vwhich relate the local-geccentric co-
(90 -¢L )5 2. ordinate system to the inertial coor-
Y? Zg dinates will be used for the first
Ag 3. two rotations.
XP Yp Zp
Xgi -Cos By, Sin ¢LP -3in By Sin ¢Lp -Cos ¢Lp X
i
Yg | = Sin Bp -Cos Bp 0 Y (3.97)
Zg ~Cos Bp Cos ¢Lp -Sin By Cos ¢LP Sin ¢Lp Z
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The direction cosines defining the platform coordinates with reference to
local ~geocentric horizon coordinates may be obtained by rotating about the
Zg-8xis through the azimuth angle A, as shﬁ¥p in Figure (3.15).

-
v ¥
Z

Figure 3.1% Relation of Platform and
Local-Geocentric Horizon Coordinates

The transformation matrix for this rotation is:

Xp Cos A Sin A 0 g
Yp|=|-5in A Cos A 0 Yg (3.98)
Zp 0 0 1 Zg

The direction cosines defining the Xp, Yy, and Z, platform coordinates may then
be determined by substituting Equation (%.98) into Equation (3.97).

The direction cosines defining the transformation from the inertial coordinate
system to the platform coordlnate system, in terms of the orientation angles, are:

Xp (-Cos By Sin ¢Lp Cos A (-Sin B Sin ¢Lp Cos A {-Cos ¢LP Cos A)] jX
+ Sin Bp Sin A) -Sin A Cos Bp)
¥p| = | (Cos Bp Sin ¢Lp Sin A (8in Bp Sin ¢1T Sin A  (Cos ¢LP Sin A) Y
+ Sin By Cos A - Cos Bp Cos A)
Zp (=Cos By Cos @Lp) (-5in Bp Cos ¢Lp) (Sin ¢Lp) z
(3.99)
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For convenience, the direction cosines in the matrix will be defined by
the notation,

£Lp ay an a3 X
Yp[=]b1 bo b3 Y (3.100)
ZP cl C2 c 3 Z

3.2.4 Platform Angles for a Flat-Planet Problem - For a flat-planet
problem, the orientation of the platform coordinate system will be assumed to
coincide with the flat-planet coordinates. Therefore, the angles mweasured on the
gimbals of this platform may be determined for the three gimbal arrangements
considered. For the yaw-pitch-roll ginbal system, the following direction
cosine relationships are cobtained by comparing corresponding positions in the
matrices used in Equations (3.93) and (3.96). Five elements are sufficient to
define these angles.

13 = -3in &

1l =Cos © Sin ¥

1; = €os & Cos V¥ (3.101)
my = Sin § Cos @

ny = Cos g Cos @

The first equation defines the angle ©. The angles ¥ and ¢ may be defined
explicitly by combining the second and third esquation and the fourth and fifth
equation, thus,

Sine = -13
Tan ¥ = 1p/1)
and Tan § = m3/n3

For the flat-planet problem with the platform stabilized to coincide with
the Xg-Y¥,-Z, coordinates, these angles represent the angles measured on the
gimbals and will be designated with a subscript p.

@p = -Sin~l 13
¥p = Tan~l 1p/1; (3.102)
o = Ten™l w3/ng



Similarly, the angles measured on a pitch-yaw-roll gimbal arrangement may
be computed by compsring identical positions in the watrices used in Equations

(3.94) ana (3.96).

Then

1l =

Sin Wﬁ

1
Tan Op

Tan §]

Sin Wﬁ

Cos W; Cos 05

-Cos §! Sin Q!
P P

Cos ¢5 Cos WB

-Sin ¢5 Cos ¢5

= 12
13/

-np/wp

(3.103)

Azain for the flat-planet problem, the gimbal angles for this arrangement are:

il

1
W?

1
GP

Pp

Sin~1 1p
Tan-l -13/11

Tan~l -no/mp

(3.104)

The appropriate direction cosines for the computation of the angles for
a pitch-roll-yaw system are:

ng-—-

ma2
lp =

m =

n3—

The platform angles are

#p =

L)}
)

]

ji]

"
VP

-Sin @p
Cos ¢£ Cos ¢;

Sin yp Cos ¢£

Cos @y Sin op

Cos @p Cos &y

found from these direction cosines to be:

-Sin=1 np
Tan-! ny/n3

Tan-l 1o/mgy
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For the flat-planet problem, the angles derived in Equations (3.101)
through (3.106) represent the attitudes of the vehicle with respect to the
Xg-Y -Z flat-planet coordinates and also with respect to a platform coordinate
system whose respective Xp-Yp-Zy, axes are parallel to Xg-Y ~Zg. Since the
orientation of the platform ghis problem also corresponds to the orientation
of the inertial coordinates X-Y—Z of the rotating-planet problem in the equatorial
plane, these angles are also the inertial attitudes {¥,®,®) of the vehicle
with respect to X-Y-Z coordinates of the rotating-planet problem. The com-
putaticon of these platform relations are summarized, along with the accelero-
meter indication in Figure (3.16).

3.2.5 Platform Angles for Rotating-Planet Problem - The attitude angles
avallable from the orientation of the platform gimbals will also be required
in the guidance and control subprograms for the rotating-planet problem. 1In
Paragraph 3.2.4, the direction cosines relating the platform coordinates and the
body coordinates were known, and 1t was relatively simple to obtain functions
of the platform angles. For the rotating-planet problem, it will be necessary
to express the direction cosines relating the body and platform coordinates
in terms of the l-m-n and a-b-c direction cosines. When this is accomplished,
the procedure develcped in Section 3.2.4 will be used to obtain the platform
angles. Let this required set of direction cosines be defined in general form
as:

Y| =| 42 eo fo Y (3.107)
ZP d3 e3 f3 [ Z

The direction cosines in this 3-by-3 matrix may be defined in terms of
any one of the three sequences of rotations derived in Equations (3.93),
(3.94), and (3.95). For the yaw-pitch-roll sequence, this metrix is obtained
by using platform Euler angles 1in Equation (3.93).

Xp [ (Cos op Cos ﬁp) (81in ¢p Sin @p Cos Wﬁ (Cos @y Sin e, Cos ¥y | x
- Cos @p 8in ¥p) + 8in ¥, Sin ¢;)
Yy |= {(Cos 8 Sin ¥y)  (Sin @y Sin 6y Sin ¥, (Cos @, 8in @) Sin ¥, | | ¥
+ Cos @p Cos Vp) - 8in @y Cos ¥p)
Zp (-Sin &p) (Sin ¢P Cos Gp) (Cos ¢P Cos GP) z
(3.108)

The d-e-f set of direction cosines will be expressed in terms of the a-b-c
and l-m-n direction cosines. The a-b-c direction cosines relating platform
and inertial coordinates were derived in Equations (3.96) through (3.100);
these a<b-c direction cosines may be evaluated from input data and/or from
central program information according to the platform orientation scheme
selected (see Paragraph 3.2.6). Equation (3.100) is repested here for con-
venience.
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XP a; 8o a3 ? i X

by by b3 |y (3.100)

L
o
1

Zyp c1 co 3 Z

The transformation from inertisl coordinstes to body coordinates was derived
in Parsgraph 3.1.3 and the direction cosines in this transformation are cal-
culated in the central program as follows:

X ll ml nl! :xi
Y| =]1o mo no y (3.109)

z

|
Z 13 m3 n3j

Equations {3.100) and (3.109) may be combined according to the laws of
matrix maltiplication to give

%p 8y &y &3 1, m mnpl|x
Yo ={bL b2 b3 {jl2 mp ny|ly (3.110)
Zp c] ¢c2 ©3 13 m3 03 z

Since the product of the matrices in Equation (3.110) are the direction
cosines relating platform and body coordinates, this product is the required
set of d-e-~f direction cosines, and

@ e1 fi] [(e1ly + aply + 2a3l3) (aym + apmp + agm3) (ayn; + agnp + a3ng)
dp ep fa|=|(b1ly + bplp + b3lgz) (bim + bomy + bym3) (bing + bonp + b3ng)
a3 e3 3} l(e1ly + eply + cgl3) (epwy + comp + c3m3) (cinp + epnp + e3n3)
(3.111)
Functions of the three angles of the yaw-pltch-roll sequence may be determined
by equating corresponding positions in the matrix on the right of Equation
(3.111) with the matrix of Equation (3.100). First equate the terms in the
31 position (third row, first column).
- Sin Op = ec1ly + eolp + C313
The piltch attitude of the missile with respect to the platform is then given by:
8p = = Sin7l (113 + eolp + c3l3) (3.112)
Equating the 11 and 21 positions in each matrix gives the following relationships:
Cos 6p Sin ¥p = bil; + bplp + bslg {3.113)

Cos Op Cos ¢p

H

ajly + aglp + asly (3.11L4)
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Dividing Equation (3.113) by (3.114) gives an expression for the angle WP;

b3ly + bolp + hal
¥ = Tan-1 141 22 3+3 .
P (alll + aplp + aslj (3.115)

Finally, the roll angle ¢p will be found from the 32 and 33 positions

Cos @p Sin ¢p

Cos @y Cos ¢p

cmy + cpmp + c3w3 {3.116)

c1p] + cgnp + c3ng (3.117)

Dividing Equation (3.116) by (3.117) provides an expression for the roll angle:

R m + ¢ +
§p = Ten-t (1717 7272 7 7373 (3.118)
€101 + conpg + c3ngy

This completes the solution for the three angles for the yaw-pitch-roll
sequence for & rotating-planet prcoblem. The platform angles for the other two
sequences are found in a similar fashion and are given as follows:

Pitch-Yaw-Roll Sequence

vy = Sin'l (b1 + balp + b3la) (3.119)
of = Tan-l ( -{oily + cplp + c3l3) (3.120)
ajl) + aply + agls
v = Tap-l ~(byny + bonp + banz)
% an ( 1w + bomp + bamy (3.121)
Pitch-Roll-Yaw Sequence
y = Sin-1 (-(blnl + bpnp + b3n3)) (3.122)
ot = Tan"l ain] + agny + a3n3
P (Cln]_ + eghp + c3ng (3.123)
b1, + 1 + bal
¥p = Tant bl 1 * P2lp * B3l (3.124)
1ml + b2m2 + b3m3

3.2.6 Platform QOrientation - For many problems, it is convenient to torque
the platform in some prescribed manner. The actual dynamics of platform stabil-
ization will not be considered in this problem, however, the platform can be
oriented in any prescribed fashion by adjusting the direction cosines relating
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the platform and inertial coordinates. These direction cosines are funetions of
the inertial angle Bp = @[y - O - Wpt, the platform geocentric latitude, ) g
and the aximuth of the platform. Three cases of platform orientation will now
be considered.

Case I Platform Inertially Fixed - The platform may be fixed inertially at
any desired orientation by using the appropriate angles, Byp, , and A in the
evaluation of the a-b-¢c direction cosines relating platform and inertial coor-
dinates. The usual procedure could also be aligned by a stellar fix. In this
instance, By = 0, ¢LP = geodetic latitude of the launch site, and A is the
desired azimuth. These values are constants during the flight since the
platform is fixed inertially.

Case II Platform Torqued at Constant Rete About the Polar Axis ~ The constant
angular rate selected for this application is usually the angular rotational
rate of the planet in gquestion. The platform coordinates now becowe a tangent
plane fixed to the planet at a point which iIs usually the launch site. Then
the angle Bp ¢L is the geodetic latitude of the launch site and A
is the deaired BZ muth.

Case III Platform Aligned With the Local -Geocentric-Horizon Coordinstes =~
The platform 1s rotated so that Zp is aligned geocentrically downward and the
Xn-axis 1s pointing northward in a meridian plane. This orientation of the
platform coincides with the orientation of local-geocentric~horizon coordinates.
The direction cosines relating the local-geocentric-horizon coordinates and
inertial coordinates are continucusly eveluated in the central program and may
be used as the direction cosines relating the platform and inertial coordinstes
for this case only; thus

21 ap a3 | 1 a1 ky
ibl bp by 1 = |1z I ko (3.125)
1 g g 3 43 kg

These three cases are among the ones most frequently used. Additional
methods of platform orilentation may be simulated by following the procedures
used in developling these three casges.

3.2.T7 Platform Coordinate Transformetions -~ Reduced Degrees of Freedom -

When an autopilot 1s used to control the flight of a vehicle which is cone-
strained to motion in reduced degrees of freedom, the platform motion has s

similer constraint applied to it.

The coordinate transformations required to

relate the platform to the body axes are simplified for the same reasons the
transformations of Paragreph 3.1.7 are reduced. Of the reduced-degree-of-freedom
options available, the three-degree-of-freedom longitudinal option is best

suited to the use of & platform in conjunction with the autopilot. The

platform transformations which follow are spplicsble to this option. The
platform coordinate system will be defined as the Xp-Z, axis for the three-
degree longitudinal problem; three possibilities are considered for the
rotating-planet problem in the equatorial plane.



1. Platform inertially fixed at launch site.

Y
Equator P

P
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Figure 3.17 Platform Coordinate
System Inertially Fixed at Launch Site

The platform axes are situated In the position of the Yg;2§ coordinate system
e

at t = 0. (See Figure (3.4), Paragreph (3.1.8)). The a of the body axes
with the platform axes 1s 90° + @, therefore:

OP = 9 + 90° (3.126)
Y
2. Platform torqued at the planet rotational rate. P

Equator

T """”"\
.

%

Figure 3.18 PFPlatform Coordinate
System Torqued at a Constant Rate

57



From Figure (3.17) for eastward flight QP = 90° + wpt +%©. Similarly, for
westward flight &p = 000 - mpt + G

The appropriate sign is inserted by using the factor Kg:
6p = 0° +Kg wyt + (3.127)
3. Platform torqued to local-geccentric - In this case local-geccentric
coordinates Y,-Z, are identical to platform coordinates YP'ZP so the platform

angle is the angfe with the local-geocentric horizon, 6, given by Equation
(3.55), Paragraph (3.1.8),

0 = 6, = X°-K, 3+% (3.128)

For a three-degree longitudinal flat-planet problem with the platform coor-
dinates coinciding with the flat-planet coordinates, the platform angle is the
same as the pitch attitude, 6, with the flat-planet (inertial) coordinates,

so that:

6, = 6 (3.129)

The computations required to determine the platform angle for the three-degree-
of -freedom, longitudinal, equatorial-plane option are summarized in Pigure (3.19).

(a) EQUATCRIAL PLANE

HOW IS PLATFCRM ALIGNED

S —— =

INERTIALLY , TORQUED ABOUT) TORQUED TO
FIXED | POLAR AXIS LOCAL
I IGEOCENTRIC

= o = o
9p = 90 + O 6p = 07 + Ko w

| _.
Pt+'e' | e. =0

Y
CONTINUE PROBLEM

(b) FLAT PLANET

CONTINUE FROBLEM

Figure 3.19 TFunctional Flow DiagramPlatform
Angle for Three-Degree-of-Freedom Longitudinal Computation
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3.2.8 Accelerometer Indications - Let A be the vector sum of the platform
accelerometer outputs and g be the mass attractive acceleration of the planet.
The accelerometers are calibrated to read zero vhen they are unaccelerated _
and aligned such that the semsitive axis is perpendicular to g. The vector R
will represent the displacement of the platform with respect to the center of
the planet. It will be shown thet A = R - g where R is the inertial accelera-
tion of the platform. Consider the vehicle accelerating vertically at 1g with
regpect to a spherical body. In local-geocentric~-horizon components then

R g lzg

In the absence of a gravitational field, the
accelerometer should reed -lg. Positive
motion of the accelerometer mass along the
Zg axis represents a negative acceleration
in this cese, and the vector g is equal to
g 1Z,. Comsideration of the gravitationel
field will cause an additional displacement
of the accelerometer mass in the positive
Zg directlion giving a total indication of
-2¢. 'The equation

|
=1 H

-g (3.131)

will be evaluated from the data

E B - lg -i-Zg

so that Figure 3.20 Accelerometer With
- _ Sensitive Axis Aligned With
A=-2g17, (3.132) Locel ~eocentric Vertical

This result 1s shown schematically in Figure (3.20).

The vector A is equal to the vector sum of the accelerations produced by
the externally applied forces. The body components of the externally applied
forces may be taken from the separate subprogram which gives the summation of
forces and mowments. Py, Fy, and ¥, are the body components of the external
forces plus the weight. Tge weight must then be subtracted to determine the
body components of A:

- X - - - Fy - - ¥z - =
A=R -g= (F-’-‘—%m—g-l‘)lx + (—i—,};’%n—gx) 1y + (%ﬁ) 1, (3.133)

The body components of the vector A will now be resolved to platform coor-
dinate components; these platform compeonents will then represent the accelero-
wmeter outputs. This resolution utilizes the directlon cosine matrix of Equation
(3.110) which relates these two coordinate systems, thus
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Fx

AXP a1 an a3 1 my n T 8x

Aypl= oy b2 B3 1, mp np ;g - gy (3.134)
F

Azp c3 co cg 13 m3 ng ‘;% - gy

where Axp, AYP’ and Ag.. represent the output of accelerometers whose sensitive
axes are aligned slong the three platform coordinate axes.

3.3 Auxiliary Transformations - The computer program developed in the
Six-Degree-of-Freedom Flight-Path Study is a generalized program capable of
calculating the motion of various types of flight vehicles. To define completely
the various trajectories which may be analyzed requires the computation of a
wide varlety of flight parameters. It 1s evident, however, that for many
analyses the computation of the entire library of these parameters is unnecegsary.
It is the purpose of the present discussion to specify and derive the special
relaticns and transformatlions for those auxiliary parameters which, in the
interest of program simplification, may be deleted from the computation if the
parameter 1s not required. The coordinate transformations and auxiliary para-
meters discussed in the present analysis may be generally considered as
Category (3) transformations, as defined at the beginning of Section 3. Under
certain conditions, however, the transformations may be equally pertinent to
other categories. (For example,t and p may be required to compute aerodynamic
forces related to Category (1) as well as being used for the convenience of
the analysts in readout, Category (3)).

3.3.1 Angular Rates - In most cases, machine differentiation is accurate
enough to determine the time derivative of a function. For this reason, the
anguler rates of angle of attack, side slip, elevation flight-path and azimuth
angle are obtained by this manner in the present formulation of the Six-Degree-
of ~Freedom Flight-Path Study computer program. In some cases, however, it
may be desirable to have analytical expressions for these angular rates. For
this reason, the following paragraphs will present a derivation of expressions
for the time rates of change of the vertical and horizontsl flight-path angles,
7 and g, and of the aserodynamic angle of attack and sideslip. The basic
definitions of these parameters are given in Sectlion 3.1.

(a) Derivation of time rate of change of flight-path angle, 7

The elevation flight-path angle 1s defined as

-Z
y = Sin~ (-——g) (3.135)
Vg
Differentiating
- V -'.Z. - -é ‘}
5 - o) = (-22) (V) (3.156)

1
22\ % v, 2
@ g



The surface-referenced speed is

+ 2 s 2 s 2
Vg = -‘[xg + Y7 4 L (3.137)
from which is obtained the derivative
* }'{"+f¥ + 2.2 X+YY +Z
v o= _ Xglg + Yglg + 22
02 02 02 v
‘/Xg+Yg+Zg g

g
Substituting Equation (3.138) into Equation (3.136) gives

(3.138)

Bg(Xgkg + ig?s + ig%g) - Vgié (3.135)
v ve _ g2 .
s YV - %

(b) Derivation of time rate of change of heading angle, &

-3

The horizontal flight-path angle is defined by

Yg
¢ = Sin~t = - (3.1L0)
Xge + Yg2

Differentiating with respect, to time, and rearranging the product of fractions
which is obtained, results in

- » 2 - 2 » - s »

(3.141)
X (}'{ 24y 2)
g g g

Relations for the quamtities Xg, Y, fg, and Vg, which appesr in the 7- and

G- equations, are derived in Section 3.1, Equation (3.29) s, Also appearing

in the 7- and d-equations are the quantities Xg, Yg, and Zg, for which expres-
sions are derived as follows:

Let R be the displacement vector of the vehicle from the center of the planet,
see Figure (3.1). In inertial coordinates

R = XTIy + YIy + 21, (3.1L2)
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and in local-geocentric coordinates
R = -Ri'zg {3.143)

The wvelocity of the body is

o _ g_ — _ SR — —
Vo= (R) = Tt U xR (3.1h4)

where Bﬁ/ﬁt is the derivative of R with respect to the moving coordinate
system Xg—Yg-Zg. The acceleration, which is ultimately required, is

= 8] - .=y B8R - BR - &R dip =
s s S Gt xR s T xg Xt 2 xR (3.145)

In terms of the local-geocentric coordinete system, the velocity and accelera-
tion contributions are

aﬁ' _ [ - -

and

2~ Felxg + Ygiyg + Zglzg (3.147)

The cross products require several vector manipulations to obtain expressions
in a usable form. The acceleration of Equation (3.145} is more conventionally
written

T - -g-t?%+25px-g%+fspx($px§) {3.148)

since the time rate of change of the planet's rotationsl velocity may be

taken &s zero.

The rotational rate of the planet is

G o= mup Iz
in inertial coordinates but may be expressed more conveniently in terwms of the
local-geocentric coordinates for the present derivation by

Wy = ugéixg + wzéiﬁg (3.149)
where, from Figure (3.1)

wgg = Wy Cos ¢,

ng = Wy Sin ¢,
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None of the planet's rotational rate sppears in the Yg axis since W, and
lyg are perpendicular vectors. The Coriclis =mcceleraticn, Bnp x BR/Bt is

ng lYg lz,g
— aﬁ _ . - ¢ g
2wp X 5 wxg 0 hE.g = 2 [-(ngzg)lxg + (wz.gxg - wxgzg)l'fg
xg Yg Zg + (UXng)lZg] (3.150)

The centripetal acceleration, W, x (EP x R), is similarly obtained using
Equations (3.143) and (3.1&95, o be

Bp x (W, xR) = -(uxg vz, R)Tx, + (x R)Ig, (3.151)

Substituting Equatioens (3.147), (3.150), and (3.151) into Equation (3.148)
and e¢ollecting like terms gives

— » - " » v -_—
a= [xg - Ay, - ‘*’z%w){g R] xg + [Yg + Xz, - Zgﬂxg)] v,
2 T (3.152)
+ ZY + wR | 1L
g”x “Xg ] Zg

The acceleration, in inertial coordinates, is

v e ot L

a = Xlg + Yly + Zly {3.153)

Bguations (3.152) and (3.153) are equal, and by means of the direction-cosine
matrix releting inertial unit vectors to local-geccentric unit vectors,
Equation (3.15), Section (3.1), the conversion is

(3] - » sl
Yg + 2(Xgoy - Zgix,) | =12 Ja k|| ¥ (3.154)
" & 2 .

Since X g’ and ﬁ are the required quantities, the components of Coriolis

and cen%ripetal accelerations must be subtracted. The inertial components of

acceleration may be calculated by the direction-coslne matrix relating body-
coordinate unlt Xectors to inertial-coordinate unit vectors, Equation (3.1},
Section (3.1):

e F
=[1lo mo np %% (3'155)
?ZT ]_3 m3 n3 f_y_\z

(6) Note that Fys Fy, and Fz include the weight components of the vehicle,
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(c) Derivation of the time rate of change of angle of attack, &

The angle of asttack is defined by

@ = Tan-l (W - Ww) (3.156)

u - Wy

Taking the derivative of Equation (3.156) gives the required solution for &;

& = (u = ug) (W = W) = (v - ) {0 - ) (3.15T)
(u - uw)2 + (w - ww)2

(d) Derivation of the time rate of change of sideslip angle, B

The angle of sideslip is defined by

g = Tan~t (V = v") (3.158)

u - uy

Taking the derivative of Equation (3.158) gives the required solution for é;

. _ (u - uw)('} L) W}w) - (V - Vw)(ﬁ - ﬁW)

(3.159)

(u - uw)? + (v - wy)?

The quantities u,, vy, Wy, which appear in the a and P equations, have heen
defined by Equation 3.335 of Section (3.1)}. The quantities, G, v, ¥, u, v
and w ere obteined by the solution of the equations of motion. Relations for
the quantities Gy, Vy, and W, are obtained as follows:

Wind velocities are normally given in local-geccentric coordinates. The trans-
formation of these data to body coordinates 1z made through the inertial
coordinate system. The required direction coslne matrices are

Ix i, L2 4 1x,
Trp=fa  d2 9| |4,
Iy |k ka k3| | Iz .
and

— , —
Iy Lol 1 Ty
ly =|m mo m3 1y
IZ I'll n2 D.3 EZ
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as defined by Equations (3.15) and (3.1). These transformation matrices are
the inverse of those used in Equations (3.154) and (3.155), sbove. The time
rates of change of vehicle velocity due %o change in wind veloclty are:

Vel{= |m w2 w311 J2 J3 §gw+2(wzgigw -wxgigw) (3.160)

» v 2

The methods by which the acceleration components of the wind velocity are
obtained depends upon the manner in vwhich wind date have been incorporated
into the problem. In genersl form, the derivatives are:

e (X ) - B¥ & dn & gy , 8¢ L
Yo = wXaw) = 35 *m = T IF & 06 ®

3% dY of¥g, ofy OYg, aop
. a v Bw dh &w L Ew 161
Yo, = @(¥gy) = Tt + 38 & ' g, a T oo (3.261)

: 3z oz 3%g, oy Obg, a
a Ew 8w dh Ew gw 99
gy = wlad) = 3T *Sh &t o} ® ° oL &

When the wind data are incorporated into the problem by curve-read techniques,
the total derivative is obtained by machine differentistion.

3.3.2 Inertial Components of Planet Referenced Velocity (Point-Mass .
Problem) - In the point-mass problem, the planet-referenced velocit;es.fET'Ye,
and Ze are normally calculated. However, the inertial velocities X, Y, and Z
mey be required for reference purposes or to provide initlal conditions for
interplanetary trajectory computaticns. The transformation between inertial
velocities and plenet-referenced veloclties is derived as follows:

NP

" J\mp

—

/’
//
Y fr
Je
X X, quator
Z: e

Figure 3.2l Inertial and Earth-
Referenced Coordinate Systems
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Let R be the displacement of the point-mass, (see Figure (3.21)).
In inertisl coordinates

R

#

X1y + YIy + 21, (3.162)

and
[ ]

— W i L &

V=R =Xy + Y1y + 21y (3.163)
In planet-referenced coordinates
R = Xelxe + YelYe + Zelze

However, due to the rotation of the Xg, Yo, &g coordinate system, the velocity
is

f=ﬁ=§%+apxﬁ (3.164)
where

BR . . - . -

B = XIx, + Yely, + Zelz, (3.165)

The planet's rotation is sbout the Z-axis which is also the Zg-axis. Therefore

“p = ~Uply = -4plz,
and the required cross product is:

ike lYe lze

w, x K =|0 0 -y | = (Tep)1xg - (Xewp)ly, (3.166)

X ¥q Ze

Substituting Equations (3.163), (3.165), and (3.166) into Equation (3.164)
Xix + YIy + 217 = (e + w¥e)Tx, + (Yo - 9Xe)Ty, + (Z¢)1z, (3.167)

The relation between the unit vectors in the inertial system and unit vectors
in the planet referenced system are obtained by a single rotation about the
Z-axis.

The transformation matrix is:

1%, Cos Wyt -Sin Wt 0 |[Ix
Ive = |Sin @t Coswpt 0 ||Ty (3.168)
1z, 0 0 1|1z
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The transformation from planet-referenced velocities to inertial velocities
is made with the inverse of the matrix of Equation (3.168) and the component
relations derived in Eguation (3.167).

- ' -

X Cos th Sin wpt 0 Xe + wae

Y} = |-8in @t  Cos wpt 0 Te - W Xe (3.169)
Z 0 0 1 Zg

The components of inertial wvelocities are used to calculate the speed of the

body &as:
v =‘[{(2 +¥2 4+ 22 (3.170)

Equation (3.170) is valid regardless of the initial coordinate system involved.

3.4 Interplanetary Trajectory Problem Coordinate Transformations - The
Six-Degree-of-Freedom Flight«Path Study computer program may be used to compute
the Injection conditions for vehicles embarking on deep-space journeys from 8
planet; and may also be used to compute the terminal trajectory of vehicles
approaching a planet from such journeys. OSince the Bix-Degree-of«Freedom
Flight-Path Study computer program considers the actual volume and gravitational
effects of a planet's oblateness, as well as the atmosphere, this program is
sulted to the detailed computation of the motion of a space vehicle in the
proximity of a planet. Use of this program would be costly from the stand-
peint of machine and analyst time, however, and a reduced-dezrees-of~freedom
point-mass problem formulation which accounts for the position of the planets
and the resulting strength and direction of the gravitational field at the
location of the vehicle would be more useful. The following paragraphs explain
the coordinate systems convenient to such a problem and derive the coordinate
transformations reguired for the transition. It should be noted that the
coordinate transfermations presented in the followlng paragraphs are performed
only once in the computaticon of =& trajectory using the Six-Degree-of-Freedom
Flight-Path Study computer program, whereas the transformations presented in
the preceding paragraphs of Section 3 are required at every time step.

3.4.1 The Coordinates of the Interplanetary Trajectory Problem - The
coordinate system normally adopted for the interplanetary trajectory problem is
a heliocentriec, equatorial, Cartesian axis system based upon the Earth's
equatorial plane and the mean vernal equinox of reference date in ephemeris
time. This system will be called the T-A-T coordinate system for the S5ix~
Degree-of-¥Freedom Flight-Path Study. The T- and A-axis are in the equatorial
plane of reference date, ephemeris time, with T pointing to the mean vernsl
equinox of this date. The I' axis is perpendicular to the plane of the T-A
and is positive toward the north pole of the Earth. The position of the planets
is normally given in this coordinate system, and the position and velocity
of the vehicle will be conveniently calculated in this coordinate system
by an interplanetary trajectory computer program. The vehicle position and
velocity will be computed relative to the center of the sun. It is assumed
that the interplanetary program also has the capability of transleting the
origin of the coordinate system from the center of the sun to the center of a
planet without disturbing the angular orientation of the axes in space. The
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planetocentric-equatorial components of the planet-reference position and
velocity may then be computed in the interplanetary trajectory problem.

3.4.2 The Inertisl Coordinates of the Six-Degree-of-Freedom Problem - The
X-Y-Z "inertial" coordinates of the six-degree-of-Ireedom problem have been
defined in Section 3.1. The X-and Y-axis of this system are in the equatorial
plane of the planet with X inertlially fixed to the meridian of the wvehicle at
the time of problem initiation. When transferring from the interplanetary
trajectory problem to the six-degree problem, the X-axis will be determined
by the planet meridian of the vehicle at the time of transfer. The Z-axis
I8 mligned with the polar axis of the planet and is positive towards the south
pole.

3.4.3 Astronomical Angles Required for the Coordinate Transformation -
& convenient derivation of the direction cosines relating the X-Y-Z andT-A-T
coordinate systems may be mede using the right ascension (@) and declination
(%) of the planet's north polar axis with respect to the T~ A-I coordinate
system of the reference date. The right ascension and declination of the
north pole of several of the plenets may be found on Pages 521 and 522 of the
1960 American Ephermeris and Nautical Almanac (Reference (10)). The two
rotations through @y and By define the equatorial plane of the planet; one
more rotatlon, the hour angle, is necessary to orient the X-axis of the
Six-Degree-of-Freedom problem. This procedure may be used for transferring
elther to or from the Six-Degree-of-Freedom Flight-Peth Study comwputer program.

3.4.4 Transformetion From Interplanetary to the Six~Degree-~of -Freedom
Inertial Coordinate System - The information required to evaluate the direc-
tion cosines in this coordinate transformation are:

1. The right ascension and declination of the north polar axis of the
planet in question.

2. Position components in the mean-equinox-of-reference=-date coordinate
system wilth the origin at the center of the subject planet.

The required direction cosines will be determined by the multiplication
of the transformation matrices of each indilvidual rotation required to align the
two coordinate systems according to the methods of Reference {9). The sequence
of rotations is given by: (See Figure (3.22)).

Ix Iy
Ty {= |180° | | ay | |0%-8y |iag |{TI, (3.171)
iy X -Z A T |1

The equatorial plane of the planet is defined by the coordinate system
A-B-(-Z) which is obtained by rotating through ay end (90°-%y). The X-axis
will be located in this plane by the meridian of the wvehicle at the time of
transfer. The angle Ay specifies the hour angle of the weridian of the vehicle
with reference to A and may be determined from wvehicle position components,
as noted in the next paragraph.
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FIGURE 3.22 A UNIT SPHERE SHOWING TRANSFORMATION
FROM AN INTERFLANETARY TRAJECTORY PROBLEM TO THE
SIX-DEGREE ~OF -FREEDOM PRCBLEM INERTIAL COORDINATES
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The direction cosines of the transformation will be obtained by writing
Equation {3.171) in terms of the individusl transformations as follows:

1x 1 0 0}/ CosAay SinAy 0 ||Sin &y 0 -Cos x|} Cos @y Sin o O[Ty
Iy|=]0 -1 0]{-Sin Ay Cos Ay O 0 1 0 -Sin oy Cos O Of[Tp
1z, 0O 0 -1 0 O 1|{Cos®y O Sindy 0 0 1| 1p

Carrying out the indicated multiplication gives the required transformation,

Ix | | (Cos Ay Sin By Cos oy (Cos Ay Sin By Sin ay (-Cos Ay Cos By) IT
-Sin Ay Sin ay) +5in Ay Cos o)

Ty| = | (8in My Sin By Cos oy (Sin My Sin By Sin @y (-Cos By Sin Ay) I,
+Cos Ay Sin o) -Cos Ay Cos o)

‘Ei (-Cos By Cos o) (-Cos By Sin ay) (-Sin By) IF

(3.172)

Since the X-axis i1s established by the position of the vehicle at zero-time,
when the transfer is mede to the Six-Degrees-of-Freedom Flight-Path Study, the
Y component of the transformation of Equation (3.172) must be

(sin AN Sin By Cos o + Cos Ay Sin o)T + (Sin Ay Sin By Sin Oy - Cos Ay Cos Of)A
- (Cos By Sin My)T = O

which, solved for Ay, gives

Mg = Tan-1 ACos oy - T Sin oy
N = T Cos Oy Sin Oy + A Bin Qg Sin by - T Cos Oy (3.173)

3.4.5 Transformation From the Six-Degree-of-Freedom tc Interplanetary
Coordinates = The direction cosines derived in this section are applicable vhen
trensferring the computations from the six-degree-of-freedom problem to an
interplanetary trejectory problem. The final angle {My) in the sequence of
rotations discussed in Section 3.4.4 was determined from knowledge of the
vehicle position in the mean-equinox-of-reference-date coordinate system.
Since these position components are not known when transferring from the six-
degree-of-freedom problem to an interplanetary problem, another method of
determining Ay mwust be used. Since the right ascension of the north-polar
axis of the planet establishes the line of intersection of the planet's
equatorial plane and the Earth equatorial plane of date, the hour angle of
the launch site at the time of launch with this datum is required. Unfor-
tunately, planet hour angles are not usually referenced to this pointj however,
the angle Ay may be evaluated frowm the planet hour angle of the vernal equinox
with the planet meridian of the launch point at the time of launch. From
Figure (3.23), the required relationship is:




PLANET EQUATOR

|
3]

Launch Point

=
]

Vehicle Position at
Time of Transfer

FIGURE 3.23 UNIT SPHERE DIAGRAM
SHOWING THE TRANSFORMATION FROM THE SIX-DEGREE -OF-FREEDOM
PROBLEM TC AN INTERPLANETARY TRAJECTORY PRUBLEM
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XN = pN - I'.!N + 900 (3'lTl|')

where uy 1s the hour angle of the vernal equinox of date with the launch point
at the time of launch, and vy is the angle of the vernal equinox of date with
the intersection of planet's equatorial plane and the Earth equatorial plane
of the reference date.

The angle Yy will be determined from the spherical triangle TCA (Figure
(3.23)). By the law of cosines for sides:

Cos ¥y = Cos TC Cos (90 + ay) + Sin TC Sin {90 + o) Cos ny (3.175)

Several terms in the equation must be related to the known parameters Oy
and By« The cosine of ny may be found from the law of cosines for angles:

Cos 7y = Cos By Cos vy (3.176)
From the law of sines:
SinYC = Cos Sy Cos Oy (3.177)

The cosine of the arc’f?! ig also required in Equation (3.175) and is easily
obtained by the trigomometric identity:

Cos 'FC = ﬁ - Cos® By Cos® Oy (3.178)

Substituting Equations (3.176), (3.177), and (3.178) intc Equation (3.175)
and solving for Cos vy glives the relation:

~5in Qy
Cos vy = > (3.179)
Jl - Cos? By Cos” ay
The angle Ay is then obtained from Equation (3.174):
-~Sin Oy
Ay = #y - Cos™t + 90° (3.180)

‘/l - Cos® By Cos® ay

The angle Ay completes the set of angles that will be used to rotate the
T«A-TI' coordinates into congruence with the X.Y-Z system. The transformation
matrix for each individual. rotation will be determined and the required direc-
tion cosines will be obtained by multiplying these matrices.

1y " 1y

Iy| = |180°% |ay| [90- aNg ay | |I, (3.181)
- ] rl |5

lg, p 4 Z A lF

This sequence of rotations is identical to the sequence in Section (3.h.4).
Therefore, the definitions of the direction cosines used in Section (3.4.k) also



may be used when transferring from the six-degree-of-freedom problem to an
interplanetary trajectory problem. The angle Ay 1is computed in a different
manner in each casge, but this will not affect the definitions of the direction
cosines. The transformation from X-Y-Z toT-A- T coordinates is therefore
glven by the inverse of Equetion (3.172).

TT (Cos Ay Sin By Cos ay (8in My Sin By Cos oy ~Cos By Cos ay IX
-Sin My Sin ay) +Cos My Sin ay)

Iy|= {(Cos My Sinby Sinay  (Sin Ay Sin 8y Sin oy  -Cos By Sinay|{ Iy
+81in Ay Cos ay) ~Cos My Cos oy}

Ip| [ (<Cos Ay Cos &y) (-Cos By Sin Xy) -Sin By 1z




4. VEHICLE CHARACTERISTICS

The methods by which the aerodynamic, propulsive, and physical characteristics
of a vehicle are introduced into the Six-Degree-of-Freedom Flight-Path Study com-
puter program are presented in this section. The form and preparation of these
input data are discussed together with methods by which stages and staging may
be used to increase the effective data storage area allotted to a description
of the vehicle's properties.

4,1 Aercdynamic Coefficients

4,1.1 Form of Data Input - The primary objectilve of the aerodynamic data
input subprogram is to provide for a complete accounting of the various contri-
butions to the aerodynamic forces and moments regardless of the flight conditions
or the vehicle being considered. Two powerful techniques are available for
use in digital computer programs; (a) an n-dimensional table look-up and
interpolation and (b) an w-order polynomial function of n variables prepared
by "curve fit" techniques. In the first method, the proper value for each term
is obtained by an interpolation in "n" dimensions where the number of dimensions
is taken to he the number of parameters to be varied independently plus the
dependent variable. This method has the advantage of accurately describing
even the most non-linear variations with a2 minimum of preparation effort. The
amount of storage space which must be allccated to such a method, however, can
achieve completely unreasonable proportions and may require substantial com-
puting time for the interpolaticn as the number of dimensions is increased.

The second method has essentially the opposite characteristics; that is, a

large amount of data may be represented with a minimum amount of storage

gpace and the computation time is held to reascnable limits but the data varia-
tions which may be represented must be regular. A substantial amount of effort
is usually required for the preparstion of data by a curve-fit technique. 3Both
of these methods are very convenient when the amount of data to be handled is
moderate, but tend to become unmanageable when large amounts of data are required.
This usually occurs when the program, having several degrees of freedom, is
committed to cne or the other of these two techniques. Therefore, the Six-
Degree-of -Freedom Flight-Path Study computer program will incorporate both of

the technigques discussed as a compromise to take advantage of the more desirable
features of both. To do this, a general set of data equations will be programmed
which define each of the aerodynamic forces or moments. In generel, the co-
efficients for these equations will be obtalned from a curve-read interpolation.
Several simplifications may be made to the equations depending on the flight
condition and vehicle to be considered.

The effects of the feollowing parameters will be considered:
(a) Angle of attack and its time derivative (q, @)

(b} Angle of sideslip and its time derivative (B, B)

(c) Roll, pitch, and yaw control deflections (3p, Bq> B,.)
(d) Roll, pitch, and yaw angular rates {p, q, r)

(e) Mach number (MN)

s



(f) Center-of-gravity position (x¢.g.)
(g} Reference structural temperature (Tsref)

The serodynamic forces and moments considered with respect to each coor-
dinate axis include the effects of angle of attack and sideslip, primary control
deflection with respect to each axis, lag of downwash, and primary damping
effects. In addition, the :yolling moment due to yaw rate is included, and
Magnus forces and moments are accounted for in cne of the airframe options.
Complete generality in the aerodynamic coupling effects has not been included
in the present subprogram options since the desecriptive terms required depend
upon the particular problem considered. However, the storage space provided
for the several existing optlons is considered to be adequate to accommodate
other special problem formulatlons through substitution of terms.

Quite often the particular application will not require some of the terms
listed in order to describe completely the flight path and vehicle under con-
slderation. The subprogram will be arranged so that the computer will assign
a constant value to any curve for which the data has not been supplied. For
most curves, the constant value will be zero. This technique will reduce sub-
stantially the time required for the preparation of data., Values intermediate
to those introduced in a tabular listing will be obtained by linear interpola-
ticn. The method of incorporating data for staged vehicles is discussed in
Paragraph b.4. The method of introducing the effects of static aerothermo-
elasticity is outlined in Appendix Four.

4,1.2 Flight Path and Vehicle Types - In most of the cases discussed
below, a ¥ curve-fit technique will be used to obtain all or s portion of the
serodynamic terms. For the purposes of this subprogram, it will be assumed
that the curve fit has been selected to represent the variation of the coeffi-
clent about the trim conditions. This may have the effect of removing physical
significance from some of the individual terms, and only the sum of the terms
will represent the data. A typical example is indicated below.

Actual

— — — — Curve Fit

Cro Curve Fit

L —

Trim

Normal Force Coefficlent, Cy
T

CNO Actual

Angle of Atteck, o

Figure 4.1 Curve Fit Non-Linear
Aerodynamic Characteristic
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In this case, the CN, and CNG values used in the equation for Cy are cbviously
different from the actual values of these parameters.

A functional flow diagram for the solution of the aerodynamic forces and
moments is presented in Figure (4.2). It should be noted that the actual
machine programming will not necessarily follow the sequence shown since
certain computer operations have been omitted in this description of the
problem formulation.

Airframe Option (1) Controlled Aircraft - A controlled aircraft repre-
gents the most general case that will be considered. In order to account for
the many component forces, it is necessary to make certain restricting assump-
tions. The assumptions will be made that the aireraft is confined to modersate
variations in position angles and control deflections. Varying Mach number,
center-of -gravity shift along the x-~axis, and aerothermoelastic effects are
ineluded. The coefficients can then be expressed as shown in Block Number
(1-7) of Figure (4.2). The functional computation sequence for this option
proceeds from Block Number (1) to Block Number (1-7) in a straight-forward
manner .

In the axial force coefficient equation, there is e provision for includ-
ing the effects of variation in Reynolds number. This will be accomplished
by supplying CA, as a function of unit Reynolds number and Mach number. A
three-dimensional interpolation will be made to determine the value to he used
in the equation.

The analyst will be provided the opticon of bypassing the aerothermo-
glastic calculations as indicated in Figure (4.2). The change in dynamic
derivatives due to a change in the center-of-gravity location is programmed as
a curve-read in order to avoid the complications of a transfer. It should be
noted that either body-axls or wind-axis data can be supplied to these equations
as the provision will be made to rotate wind-axis data intoc the body axis.

The definition of ¢ and B as applied to the SDF computer program is noted to be

a@ = Tan-l (EL;Llﬂi) and g = Tan~L (v - vy
—— e (%.1)

Data supplied must correspond to this definition or an alternate computation
of these angles must he formulated to agree with the method of data reduction.

Airframe Option (2) Point Mass - The consideration of the motion of a
mass greatly simplifies the equations for the aerodynamic coefficients as no
moments are considered. The additional restrictions that are imposed on this
routine are that the vehicle is confined to moderate varlations in position
angles and control deflections. In addition, no consideration of aerothermo-
elastic effects, dynamic effects, and center-of-gravity shifts will be made.

?ﬁis)reduces the equations to the form shown in Block Number (2-3) of Figure
.2},

The forces calculated in this case will be in the wind-axes system rather than
the body-axes system. This is in keeping with the solution of the equations
of motion as noted in Paragraph 2.k4.
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Airframe Option (3) Pitch-Up, Spin, and Similar Maneuvers of a Controlled
Aircraft - The study of a pitch-up, spin, or similar maneuvers of an aircraft
is normelly restricted to particular conditions of veloecity and altitude.
Aerothermoelastic effects and center-of-gravity shifts will be neglected.
Since large angles of attack and sideslip are expected, a four-dimensional table
look-up and interpolation of the coefficients as functions of angle of attack,
8ldesiip angle, and Mach number will be used. For this case, the parameters
(Cale=0, (Cw)s—o; (Cy)gzo, (C1)e=0» (Cm)6=0’ and (Cph)g-p Will be specified as
functions of @, P, and My. This allows the equaticns to be reduced to the form
indicated in Block Number (3-3) of Figure (L.2).

Airframe Option (L) Tumbling Re-entry Shapes - This option will have the
capability of accounting for the aerodynamic characteristics of a tumbling
re-entry shape that is rotationally symmetric about the longitudinal axis.

The Magnus forces and moments developed by a2 spinning motion about the longitud-
inel axes may be included. Restrictions on this case are: (a) no controls

are employed, (b) the center-of-gravity location is constant, and (c) aero-
thermoelastic effects are neglected. Each of the coefficients may then be
expressed as functions of the total angle of attack and Mach number. The

total angle of attack is defined in the following manner:

op = Tan-l V{W - ?w)f : gV - v)® (4.2)

The aerodynamic coefficients required to describe the forces and moments
on such a vehicle are listed in Block Number (4-1) of Figure {4.2). A three-
dimengional interpolation must be performed for each coefficient together
with a rotation of the coefficients through the angle ¢A to the bedy axes
system. The aerodynamic roll angle, @a,is defined as:

@p = Tan~l (l’_'_l',‘i) (L.3)

W o= Wy

4.1.3 Error Constants - The use of error constants, designated by the
symbol €4, to modify the aerodynamic data characteristics is shown in Figure
(h.2). A detailed explanation of these error constants and their use is given
in Sectiom k.5.

4.2 Thrust and Fuel Flow Data - The technigues to be employed in the
introduction of the thrust and fuel-flow data into the solutions of the equa-
tions of motion are developed in an approach similar to that employed in
Paragraph 4.1, which considered aerodynamic data. An n-dimensional tabular
listing and interpolation technique is used, with the independent variables
being defined by the type of propulsion unit being considered. Equations are
developed to resolve the thrust forces into forces and moments in the vehicle
body-axes system. The provision to include error constants in the thrust and
fuel flow parameters is provided.

4,2.1 Data Inputs - The number of independent variables which affect
the thrust and fuel flow is determined by the type of propulsion unit being
considered. For the present formulation, the propulsion units are grouped
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into the following options: (1) non-controlled-thrust rocket, (2) controlled-
thrust rocket, and (3) air breathing engines. Options (2) and (3) require
command information from an autopilot or flight plan programmer. Figure (4.3)
presents a functional flow diagram for the computation of each of these three
options for the case of a single nozzle (or propeller) engine. The data input
techniques applicable to each option are outlined below.

Propulsion Option (1) Non-Controlled-Thrust Rocket - The thrust of a
non-controlled-thrust rocket wotor is assumed varilsble with time and altitude.
The altitude effect is determined by the exit area of the nozzle, Ae, and
the ambient pressure, P. If the thrust 1s specified for some constant ambient
air pressure, the altitude correction can be calculated within the subprogram.
In this subprogram, the vacuum thrust, in pounds, will be introduced by a
tabular listing as a function of time, in seconds, and corrected as follows:

T = TVAC - PAe (]-I-.ll-)

The propellant consumption rate will be specified by a tabular listing,
in slugs per second, as a function of time, in seconds. The vehilcle mass
can then be determined from the integrated propeliant consumption rate and
initial mass.

%
M = M, - tof. M Gt (4.5)

Note that (@ 7 /at) = - 271p for this definition of mass.

Propulsion Option (2) Controlled-Thrust Rocket - The controlled-thrust
rocket differs from the non-contrclled in that the propellant flow rate and
the thrust at any given time and altitude may be varied by the flight pro-
grammer or autopilot subprograms of the computer program. It will be necess~
ary, therefore, to specify the vacuum thrust as a function of propellant flow
rate. The propellant flow rate must be obtained from an autopilot (or flight
programmer) signal. The flow-rate commend will then be used in the tabular
listing of vacuum thrust. Correction of this thrust for altltude will be
made by use of Equation (4.h)}. The vehicle mass is determined from an inte-
gration of the mass flow rate according to Equation (4.5).

Propulsion Option (3) Air Breathing Engines - An air-breathing engine
is strongly affected by the environmental conditions under which it is operating.
Engines which would be grouped in this classification are turbojets, ramjets,
pulse jets, turboprops, and reciprocating machines. The parameters which will
be considered of consequence in this program are:

(a) Altitude (h - ft)

{b) Mach number (My)

(c) Angle of attack (@ - degrees), and

(d) Throttle setting (N - units defined by problem).

Both the thrust and fuel flow are functions of these variables. In order
to accomodate these variables, a five-dimensional tabular listing and inter-
polation will be used %o obtain beth thrust and fuel flow. The thrust needs
no further correction as the effects of all parameters are included in the
interpolated value. The mass of the vehicle is determined from Equation (4.5).
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The functional computation sequence for introducing these data is straight-
forward as outlined in Figure (L4.3). Also shown in Figure (k4.3) is the com-
putation required to resolve the engine force into body-axes or wind-aXes
components. This computation must be performed for all prcpulsion options and
is, therefore, associated with the fixed portion of the computer program rather
than with the thrust and fuel flow subprogram. The resolution is shown in
Figure (h.3), however, since it is so closely assoclated with these forces.

L.2.2 Component Forces and Moments - All propulsion units are capable
of Introducing components of force and moment along each of the three coor-
dinates of the vehicle body-axes system. These may be due to misalignments,
position of installation, or vectoring of the thrust. A common method of
control utilizes the thrust force to produce control moments by swiveling the
exit nozzle. ©Since the equations of motion are derived on the basis of motion
in the vehicle body-axes system for all options except the peint-mass, it is
necessary to resolve the forces and moments in the proper axes system. De-
fining the pleane of swivel as a plane parallel to the x-axis and including the
thrust wvector, let ¢T be the angle of rotation of this plane from the x-y
plane (y into 2z rotation is positive). Also let M be the angle between the
thrust vector and a line parallel to the x-axis in the plane of swivel
(0 < A < 90°). Then

Tx = T Cos )UI‘
Ty = -T 8in Ar Cos ¢ (L.6)
T, = T 8in ap Sin ¢p

where Ty, Ty, and T, are the components of thrust in the vehicle body-axes
system. (A positive T produces a positive U.) These forces will introduce
mements,

L

it

T, (¥ - &ve.g.) - Ty (zy - 22¢.q.)
Ty (2§ - feg,q,) - Tz (xy - &¢g,q,) (4.7)

Np = Ty (xy - &g .g.) - Ty (yy - &yvg.g.)

Where Ly, My, and Np are the thrust moments about the vehicle x, y, and z body
axes respectively; XN, yN, and zy are the distances of the point of swivel of

the nozzle from the reference center of gravity and &¢,g,, &vc,¢., and feg,.q,
represent the shift in the center of gravity from the reference location. In

the Six-Degree-of-Freedom Flight-Path Study computer program, consideration

of the movement of the center of gravity will be confined to transglation along
the x-axis. This reduces the moment egquations to the following form.

Mp

Lp = Ty - Tyzy
MII = TXZN - TZ(XN - Zk““c-{}-) (ll-'a)
Np = Tylxy - &¢g,g.) - Tyiy
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If more than one engine is used, or if a single engine with more than one exit
nozzle is used, then the sum of the individual forces and moments must be
obtained. In this case:

T, = Ty

% 1t Typ + eovveevenennannes + Ty, (4.9}

and similarly for 'I'y and T,.

LT = LTl+LT2+-u»-o--ccc-----c- +IfI‘n
Mp = Mp, +MIo + cevenenaieenaan. + Mpy (4.10)
NT = NT1+NT2+.."....“...."I +NTn

The functional flow diagram to incorporate a multiple engine configuration into
the Six-Degree-of-Freedom Flight-Path Study computer program is outlined in
Figure (L.4). However, the present subprogram will be limited to accounting
for single-engine, single-nozzle operation only. DMore than one engine can

be accounted for if the combined effects can be grouped into a single “effect-
ive" engine. Reassembly of the program deck will be regquired for multiple

engine arrangements.

4.2.3 Error Constantg - The use of error constants, designated by the
symbol €4, to modify the thrust and fuel flow characteristics is shown in
Figures &.3 and 4.k, A detailed explanation of these error constants and
their use is given in Section 4.5,

4.3 Physical Characteristics - The methods to be employed for the intro-
duction of wvehicle physical characteristics into the Six-Degree-of-Freedom
Flight-Path Study computer program are outlined in this section. A table
lock-up and interpolaticon technique 1s used to determine those parameters
which are variable. A provision 1s made for the introduction of error constants
into several of the parameters.

4.3,1 Categories of Physical Characteristics - Physical characteristics
are introduced into the computer program in two groups: (a) characteristics
used in the general solution of the equations of motion, and (b) characteris-
tics used only in specific, or auxiliary, subprograms. The physical charac-
teristics used in the auxiliary subyprograms (e.g. nese radius, wedge angle,
skin thickness, skin density, and thermal conductivity used in the aerodynamic
heating subprogram, Section 7.) will be specified as input data along with
the introduction of the specific subprogram. The following items will be
defined in the general vehicle characteristics subprogram:

(a) Initial mass of the vehicle ("),

(b) Reference area (S),

(c¢) Reference lengths (dy, do),

(a) Reference center-of-gravity location (Xg,G.p.ep)s

(e} Rotating wachinery pitch angle (&),

g2
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(f) Rotating machinery angular rate (w.),

(g) Rotating machinery moments of inertia (Iy., Iy., Iz.),

(h) Vehicle center-of-gravity location (xp.a.),

(1) Vehicle moments of Inertia (Iyy, Iyys Izzs Ixys Ixzs Iyz), and

(j) Reference jet-damping lengths (ly, 1z, 13, ly, ln)-
Items (&) through (g) will be constant throughout any stage. Items {h) through
(j) will be variable during the stage due to the variation in mass caused by
fuel consumption. Figure L.5 presents a functional flow diagram defining the

manner in which these characteristics are introduced intoc the cowmputer program.

IL,3,2 Reference Weight - The instantaneous mass is used in the corputa-
tion of the body motion. The reference weizht is obtained by:

Wp = am (32.174) (4.11)

%4.3.3 Error Constants - The use of error constants, desiznated by the
symbol €;, to mcdify the general vehicle physical characteristics is showa
in Figure L.5. A detailed explanation of these error constants and their use
is given in Section k.5.

L.4 Stages and Staging - A problem common to missile performance analyses,
ané encountered frequently in airplane performance work, is that of stagini or
the release of discrete masses from the continuing airframe. The effect of
dropping a booster rocket or fuel tanks is often great enough to require that
the complete set of aerodynamic data be chanzed. O8taze changes at constant
weight, such as extending drag brakes or turning con afterburners, may also
require revising the aerodynamic or physical characferistics of the vehicle.
Another use of the staging technique is possible with the present computer
program which dogs not invelve physical changes to the configuration; this
technique may be used to revise the asrodynamic descriptors as a function of
aerodynanic atfitude or Mach number., With this use of the staze concept,
accurate descriptions of the forces and moments acting upon vehicle may be
maintained over wide attitude ranges if required. Other applications of this
stage technigue are possible. Normally it is not practical to stop the com-
ruter and menually insert a new set of data. A hetter approach is to have
the computer do this automatically. The lcading of new data will be done
automatically by the computer on the basis of whether a specified wvariable
has exceeded or become less than a pre-selected value. For generality, it
is possible to test on four values in each direction.

~ When the new data are read in, the conditions representing the last tirme
step will be read in as initial conditions for the next stage. This avoids
the discontinuity that would result from an infinite rate of change of
center-of-gravity location. It also will cause the integration routine to
be started over which will reduce the computer-induced transients due to
staging.
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DATA CONSTANTS

mo, S, dl, d2, Brj wr) I}Q_“’ I'y'r) IZI" XC-GoRef

(

TABULAR LISTING
Xe,g. = Tlm) + €19 Iyy = T0m) + €5
Iyx = T0m) + €19 Iy, = £(m) + €5
Iy = fim) + g Iy = flm) + ¢
I, = f(m) + ¢y

TABULAR LISTING
1, = f(Xe.q.) 1, = f(%a.g.)
1, = f(Xe,q.) 1y = £(Xc.q.)
1n = f(X¢.g.)
/
TABULAR LISTING
Iex = I{tg) Iyy = fltg)
Iy = fltg) I, = £ltg)
Li“ = £(tg) Iy, = f(tg)

‘QXC-G- = XC-G- - XCOGIRef

f
CONTINUE PROBLEM |

FIGURE 4.5 VEHICLE PHYSICAL CHARACTERISTICS SUBPROGRAM
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4.5 Error Analyses - The Six-Degree-of-Freedom Flight-Path Study computer
program will incorporate a provision for conveniently performing flight-path
error and dispersion analyses by trajectory computation. This problem involves
the determination of flight-path dispersion due to deviations of input guan-
tities from their predicted nominal wvalues. The usual approach to this type
of problem requires that a series of trajectories be computed in which standard
deviations, or errors, are systematically introduced for each parameter while
the remaining parameters are held at their nominal values. These results are
then combined to determine the" probable™ dispersion. This approach will be
implemented in the Six-Degree-of-Freedom Flight-Path Study computer program
by providing a simple and efficient method of introducing the deviations.

The capability of modifying a nominal value by either an error constant
multiplier or an additive error constant is provided for many of the parameters
as outlined below. The provislon of these error constants will reduce sub-
stantially the number of tabular data listings that must be changed for an
error analysls, thereby reducing the work of the analyst. The determination

of the standard deviation of each of the parameters and the method of combining
the trajectory variations are left to the analyst in view of multiplicity of
combinations possible.

4.5.1 Aerodynamic Data - The provision to modify the aerodynamic co-
efficients through the use of error constants, €j, 1s outlined in Section 4.1,
The constants are applied as follows:

ng = (& Cy + €0)a*sS

a = (e3Cy + €),)g*s

y = (esCy + €gla*s (L.12)
1 = (er(cl + €g)g¥S &y

m = (e9Cm + elo)q%S &

n = {eC, + €10)0*S do

These error constants allow the total aerodynamic coefficient to be modified
to account for configuratlion modification, experimental or analytical error,
or misalignments.

L.5.2 Thrust and Fuel Flow Characteristics - The provision to modify the
thrust and mass characteristics, through the use of error constants, is out-
lined in Section 4.2. The constants are introduced as follows:

T

€13Tyac + €14 - Phe

(4.13)
m

#t

ft
My + @5 + tg o, at

An error-constant multiplier 1s not provided for the vehicle mass due to com-
plications discussed in Paragraph 4.5.5.
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4.5.3 Vehicle Physical Characteristics - The provision to modify some of

the vehlele physical characteristics through the use of error constants is
outlined in Section 4.3. The constants are applied as follows:

xc.g. = f(m)
Ixx = flom)
I,y = f{om)
I, = f(m)
Iy = fim)
Iy, = f(m)
Iy, = flm)

+

+

+

+

e

+

+

4,5.4 Autopilot Functions - Error

which serve to modify nominal values.
following way:

€18
519
€20
€1
€2p
€03

€21

(k.1k)

constants associated with an sutopilot
will necessarily be defined by the choice of autopilot. Section 6 presents a
description of a typical control system which will be programmed for the Six-
Degree-of -Freedom Flight-Path Study computer program. Although the constants

are referred to as bias and drift constants, they are, in effect, error constants
These constants are applied in the

Bias on Contrgol Surface Deflection and

Rate of Control Surface Deflection

50

Il

1
51‘1

It

5. + B
7 lhn

t .
[ Baatesy
o]

(k.15)

O

Bias and Drift on Attitude Sensors

2

it

Pi

Vo

Bos

Op + B16 + Bth

¢p +Byp + Bygt

Bias on Rate Gyros

(4.16)

p' =

q!

rt

P+B20

q+B21

r + BEE
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In the application of error constants in the above equations, cauticn must be
exercised to insure that the units are consistent. Each of the error constants
will be assigned a hominal value which will be used when no other value is
speclfied. The constants which are multipliers will have a nominal value of
unity, while those that are additive will have a nominal value of zero.

4.5.5 Additional Errors - Not all of the system input constants can be
medified for error analysis studies as indicated above. In certain cases, it
may be found unrealistic to modify the input data through the use of error
constants because the actual deviation would not appear as simply a constant
increment or percentage change. An example of such a case would be the change
in thrust-time history of a rocket due to temperature changes of the propellant
since such a change affects both thrust level and burning time. For an accurate
representation of such a case, 1t would be necessary to modify the entire
tabular listing accordingly.

4.5.6 Atmospheric Density Error - An error constant has been incorporated
in the computation of the atmospheric density in Option & only. The constants
are applied as follows:

p' = Eogpt €26 (4.18)
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5, VERICLE ENVIRONMENT

The models for simulating the enviromment in which a vehicle will copersate
are presented in this section. This environment includes the atmospheric wind,
and the gravity field conditions associated with the planet over which the
vehicle is moving. The shape of the planet and the conversion from gecdetic
to geccentric latitudes are also considered. In ihe discussions which fcollow,
the deseriptions of vehicle environment pertain to the planet Earth. The
environmental simulation may be extended to any planet by replacing appropriate
constants in the describing equations.

5.1 Atmospheres - The concept of a model atmosphere was introduced many
years agc, and over the years several models have been developed. Reference
{11) outlines the historical background of the gradual evolution of the ARDC
model. The original (1956) ARDC model has been revised to reflect the density
variation with altitude that was obtained from an analysis of artificial
gatellite orbit data. This revision 1is the 1959 ARDC Model Atmosphere.

The advantage of & model atmosphere is that it provides & common reference
upon which performance calculations can be based. The model is not intended
to be the “final word" on the properties of the atmosphere for a particular
time and location. It must be realized that the properties of the atmosphere
are quite variable and are affected by many parameters other than altitude.

At the present time, the "state-of-the-art™ is not adwnced to the polnt where
these parameters can be accounted for and it may he several years before the
effects of some parameters can be evaluated.

5.1.1 1959 ARDC Model Atmosphere - The 1959 ARDC Model Atmosphere is
specified in layers assuming either isothermal or linear temperature lapse-
rate sections. This construction makes it wvery convenient to incorporate
other atmospheres, elther from specifications for design purposes or for
other planets. The relations which mathematically specify the 1959 ARDC Mcodel
Atmosphere are as follows {Reference {12):

The 1959 ARDC Model Atmosphere is divided into 11 layers as noted in the table
helow.

Layer Hy ~Lower Altitude Upper Altitude
(Geopotential} (Geopotential)
Meters Meters
1 0 11,000
2 11,000 25,000
E ES,OOO 47,000
7,000 53,000
5 53,000 79,000
6 79,000 90,000
7 40,000 105,000
8 105,000 160,000
9 160,000 170,000
10 170,000 200,000
11 200,000 700,000
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For layers 1, 3, 5, 7, 8, 9, 10, and 11, a linear molecular-scale temperature
lapse-rate is assumed and the following equations are used:

.3048h

Hgp = T 4 .30L8n/6356766 Meters (5.1)
Ty = (TM)b [1 + Kl(HgP - Hbﬂ OR (5.2)
T o= Ty (A - B tan-l (EERD_'_] °R (5.3)
P o= Py %1 + Ky (Hyp - Hb):]'KE Ib. /Ft.? (5.4)

o = by ;1 + Ky (Hgp - ) :,-(l+K2) Slugs/Ft.3 (5.5)
Ve = 49.020576(Ty)L/2 Ft./Sec. (5.6)
v = 0.0226988 x 100 [TT:I%%%;ETE] Ft.2/Sec. (5.7)

For the isothermsl layers 2, 4, and 6, the following changes are made in the
above equations:

it

P = B, eK3 (Hgp - Hy) (5.8)

o Py e K3 (HEP - Hb) (5.9)

Values of the temwperature, pressure, density, and altitude at the basge of each
altitude layer are listed below along with the appropriate values of Ky, Xo,
and K3.

Quantity 1 2 3 L 5 6
Ky -.225569-k 0 .138h66=4 ) ~.159202-k 0
Ko -5.25612 - 11.3883 - -7.59218 -
K3 - 1576893 - .120869-3 - 2062343

Ty, 518,638 389.988 389,988 508.788 508,788 295,188
Py 2116.21695 UL72.73 51.979 2.5155 1.2181 2.,1080-2
on 2.37692-3  7.0620-%  7.7650-5 2.88046 1.39468-€  4.1189-8

Hy, 0 11000. 25000. L7000, 53000. 79000,



Quantity 7 8 9 10 11

K3 .241ks8-k  .886289-%  ,7s5u3L1-5  .350715°5  .22212975
Ko 8.54120 1.7082L 3.41648 6.83296 9.76137
K3 - - - - -
Ty 298.188 L06.188 2386.188 2566.188 2836.188
Py 2.1809-3  1.55627%  7.5578-6  5.89546  2.9759-6
oy 4.26179 2.232710  j.845-12  1.338712  6.113713
Hy, 90000 . 105000, 160000, 170000. 200000.

Values of the appropriate constants to be applied in the temperature equation
(Equation (5.3)}) are listed below.

Hgy(Km) A B C D
0-90 1, 0. - -
90-180 .759511 Jd7k16h 220 25
180-1200 .935787 . 273966 180 140

5.1.2 Limitations - The validity of the 1959 ARDC model is limited to
altitudes below 700 kw., although the program is arranged to extrapolate the
reletionships to greater altitudes if desired. Extrapolaticn to greater
altitudes 1=z accomplished by altering the cutoff altitude.

At an altitude of 90 km (approximately 300,000 ft.) the subprogram nor-
mally ceases to calculate kinematic viscosity and speed of sound and assigns a
value of zero to each of these parameters as an indication that the computation
has stopped. This is done for the following reasons: {a) the molecular com-
position of the atmosphere is unknown, (b) the variation of the ratio of specific
heats above 90 km. is not known, and {c) the numerical value of the speed of
sound has little physical significance. The validity of Sutherland's empiricel
formula for viscosity is alsc reduced because of the extremely low pressures
which exist.

5.1.3 Accuracy - Due to a lack of knowledge of the rounding-off proce-
dures used to evaluate the constants in Reference (ll), it was impossible to
cbtain exact agreement between the subprogram and the values tabulated in
Reference (11). A comparison of the results over an altitude range of
0 - 1,000,000 ft. revealed that the deviation of the computed from the reference
values never exceeded one tenth of one percent and in most cases was less than
one half of this value.
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5.2 Winds Aloft - The winds-alofi subprogram provides for three separate
methods of introducing the wind vector - as a function of altitude, a function
of range, and a function of time. This will facilitate the investigation of
wind effects for the conventional performance studies. The wind vector will Dbe
approximated by a series of stralght line segments for each of the methods
mentioned @bove. Statistically derived profiles of the type presented in
Reference (13) can be represented by this approach and it is presumed that the
analyst will resort tc sources of this type ic obtain the wind input data.

The present subprogram will not be particularly concerned with the method used
to determine the wind vector, as this is a separate problem outside the scope
of the Six-Degree-of-Freedom Flight-Path Study computer program.

Four options will be used to define the wind vector in the SDF computer
program. The three components of the wind vector in a geodetic horizon coor-
dinate system will be specified as tasbular listings with linear interpclations
(curve reads) in the following options.

Wind Option (0) - In this option the wind vector is zero throughout the
problem. This will allow the analyst the option of evaluating performance
without the effects of wind. This option causes the winds-aloft subprogram
to be bypassed in the computational sequence.

Wind Option (1) - In this option the components of the wind vector will
be specified as a function of time for the estimated cruise altitude. Wind
speed will be specified in feet per second and time will be specified in
seconds.

Wind Ovtion {2} - The three components of the wind vector will be intro-
duced as a functicn of altitude in this option. Wind speed will be specified
in feet per second and alititude will be specified in feet.

Wind Opticn (3) - In this option the cowponents of the wind vector will
be introduced as a function of range for the estimated cruise altitude. Wind
speed will be specified in feet per second and range will be specified in
nautical miles. The range utilized in this computation will be the great-
¢ircle range.

By staging of the wind option, it will be possible to switch from one
method of reading wind data to another during the cowputer run. Care pust be
exercised in thils operation, however, as the switching will introduce sharp-
edged gusts if there are sizeable differences in the wind vector from one
cption to another at the time of switching. This effect should be avoided
except In cases where gust effects are being studied.

Figure (5.1) presents a functional flow diagram of the winds-aloft sub-
program. Note that the inertial components of the wind are not deterwined
in this subprogram. This wind, which is due to the rotaticn of the atmosphere
with the planet, is determined in the winds-aloft resolution, Only local-
geocentric components of wind, as noted by an observer at a fixed location,
are considered by the winds-aloft subprogram.
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Wind effects will be included in the formulation of the six-degree-of-
freedom, the three-degres-of-freedom longitudinal, and the three-degree-of-
freedom lateral options. The reduced degrees of freedom of the latfter two
options will allow the deletion of unnecessary components of the wind vector.
Since wind effects are not normally of interest in the point-mass opticn, the
winds~aloft subprogram will be bypassed automatically when this option is
selected.

5.3 Gravity - This section presents the egquations necessary for the in-
troduction of the gravity components into the equations of motion. These
components were determined by taking partial derivatives of the gravity potential
equation. The potential equation adopted has been recommended for use in the
Six-Degree-of-Freedom Flight-Path Study computer program by AFCRC. Constants
for the potential equation were determined from References (14), (15) and (16).

Spherical harmonics are normally used to define the gravity potential
field of the Earth, References (17) through {20). Each harmonic term in the
potential is due to a deviation of the potential from that of a uniform sphere.
In the present analysis the second-, third-, and fourth-order terms are con-
sidered. The first-order term, which would account for the error introduced
by assuming that the mass center of the Earth is at the origin of the geo-
centric coordinate system, is assumed to be zero. With this assumption

2 3 L
J(R g1 (R K (R
v - %[“5(-5?) SHONDR 16 P“"'] (9:20)

where Po, P3, and Py are Legendre functions of geocentric latitude ¢L expressed as

Pp = 1 -3 sin® g
Py = 3 sin @ - 5 sind ¢ (5.11)
P, = 3 -30sin? ¢ + 35 sink ¢

The gravitational acceleration along any line 1s the partial derivative
of U along that line. At this point, it should be noted that the three
mutually perpendicular directions in the spherical coordinate system are
identical (other than sign) to those in the local-geocentric-horizon coordinate
system which is defined in Section 3.1.5. Thersfore, the acceleration in the
@1, direction is identical to g%, and the acceleration in the R direction is
identical to '8Zg' Or in the eduation form:

2 Iy
gz = -.BU = - E - .2_"1 Re .3_}i Rg P - B.EE Re P
& SR R[ 3\gr3) 2" 5 (R 3°3\g5)
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(EE (-6 sin @, cos ¢1.)
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) (3 cos @1, - 15 sin? ¢, cos @)
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EE) (-60 sin ¢L cos @, + 1k0 sin3 ¢r cos ¢L) (5.13}
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Collecting terms:

- 2 3 L
R R R
8g = # l+J(R—e-) P2+%H(§-e-) P3+% R—e) Ph] (5.14)
i Re ) Re V3 Rg\ *
eXg = R}‘_E -EJ(—R-E) P5+2—H(ﬁ-§-) Pg +§2[—{(R_e) P7] (5.15)
where
Pg = sin ¢, cos @,
Pg = cos @, (1L -5 sin® %) (5.16)

Py = sin @, cos @, (-3 + 7T sin? ¢1)

Equations (5.14) and (5.15) are used in the gravity subroutine with the follow-
ing values recommended for the constants.

po= 1.b0T7698 x 1016 rt.3/sec.?
Re = 20,925,63L. ft.

I = 1623.41 x 1076

H = 6.04 x 2070

K = 6.37 x 10-6

It should be ncted that these counstants and equations pertain to the planet
Earth; however, 1t 1s possible to use these same equations for any other planet.
For this reason, the values of these constants will be programmed as an input
to the program so that the applicable constants may be inserted for the planet
under consideration. Due to limited knowledge of the gravitational fields
of other planets, it is probable that zero values would be assigned to some
of the harmonic coefficients when the program is used for entry studies on
other planets.

The above equatlons are applicable to a non-rotating planet as the centri-
fugal relieving effects caused by the planet's rotation are included in the
equations of wmotion. In addition, the effects of local anomalies must be
added if it is desired to make a weight-to-mass conversion based on a measured
weight.
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5.4 Local -Geocentric to Geodetic Coordinates - Positions on the planet
are specified in terms of geodetic latitude and altitude (for a given longitude)
while the motion of the body is computed in & planetocentric system which is
independent of the surface. In the central program, the flight-path angle 7
and the heading angle o are calculated with respect to the local-geocentric
cocrdinates. By definition ¥ and o are angles measured with respect to the
local geodetic. Although the maximum difference that can exist between the
two cocrdinate system is 11 minutes of arce, it may be desirable to know 7 and
g more accurately than is obtained when measured from the local geocentric.

54,1 Latitude - It will be necessary to resolve the geocentric latitude
to geodetic latitude for an accurate determination of position. Figure (5.2)
presents the geometry required for describing the position of a point.in a
meridian plane of an oblate spheroid.

Figure 5.2 Planet-Oblateness Effect on Latitude and Altitude

It is apparent from this figure that the most significant difference between the
geocentric referenced position ané the geodetic position is the distance AB

on the surface of the reference spheroid. This distance can be defined by a
knowledge of the angle ¢L, the geocentric latitude; ¢g, the gecdetic latitude;
the corresponding radii; and the distance CC.

The relationship between the geocentric and geodetic latitude of a point on
the surface of a planet which is an oblate spheroid is obtained as follows:
The equation for the surface in a meridian plane is

X2 | gz?
E;ﬁ + E;g = 1 (5.17)
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The tangent of the geodetic latitude can be found by determining the negative
reciprocal of the slope of a tangent to this ellipse. The expression for this
tangent is

2
_ 1 B Re” Zp
e le T T T RE 58
ax p 7B
B

Ncte that Zg is a negative number in the northern hemisphere.

The tangent of the geocentric latitude of point B ig
ZB
Tan = - .
Substituting Bquation (5.19) into Equation (5.18) gives the required relation

2
Tan Qg = Z=. Tan frq (5.20)
P2

The expression for the radius of the planet at point B in {terms of the zeccentric
latitude of the point and the equatorial andé polar radii is obtained by the
rectangular to polar coordinate transformation

-Zg = Rgy Sin Org (5.21)

n

Xg Rng Cos ¢Lg (5.22)

and, sclving for R¢Lg by substituting Equations (5.21) and (5.22) into Equation
(5.17), gives

Re RE __ (5.23)
Rfry =VRp? Sin® frg + Re® Cos® fr, 5.23

T@e distance R¢g is determined in terms of RaLg’ ¢Lg) and ¢g using the law of
sines to be

Rg, = Rgp, (S%E—giﬁ) (5.24)

The distance OC is calculated by subtracting the projections con the X-axis
of R¢Lg and Rgg.

et

o = R¢Lg Cos P, - R¢g Cos Qg (5.25)

The point P represents the vehicle position for which 1t 1s desired to determine
the gecdetic latitude, knowing the gecocentric latitude and distance from the
center of the planet. Expressing the Cartesian coordinates of the wvehicle in
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terms of _the geodetic latitude, altitude (h)}, and the chearacteristic dimensions
R¢g and OC defines the required relation between the geocentric latitude and

geodetice latitude to be

-Z (Rgy + h) Sin ¢
Tan ¢, % (Bg, + 1) Cos fg + OC
or
(Rgg + h) Sin ¢z
Tan ¢, = T Cos Py + R¢Lg Cos @z (5.26)

This equation, being transcendental, is inconvenient for the solution of
geodetic latitude when the geocentric latitude is known. Although solution
iz possible, the complication involved would be uneccnomical in view of the
fact that the calculation is a small correction to the werking coordinate,
the geocentric latitude. The solution is relatively simple when the geodetic
is taken as the independent variable. The results of such a computation are
presented in Figure (5.3) for the planet Earth where the maximum difference
between the two latitudes is shown to be on the order of 11 minutes of arc at
the surface of the spheroid at 45 degrees latitude. This amounts to approxi-
mately 11 nautical miles error which should be accounted for. The results of
Fizure (5.3) have been approximated by e curve fit of the form

Jg - fn = £ = (kg + kyn¥ + %ph*2 + k3n*3) Sin 2g (5.27)
h?!
where n* = 1,000,000
and kg = 11.501437 Sec. or ko = .1931906 Deg.
k1 = -.5h061508 Sec. /Ft. k] = -.009010251 Deg./Ft.
ko = 020308362 Sec./Ft.° kp = .000338472  Deg./Ft.2
k3 = -.0003723074 Sec./Ft.3 k3 = -.00000621179 Deg./Ft.>

The error incurred by the use of Equation (5.27) instead of the exact solution
of Equation (5.26) is shown by the symbols in Figure (5.3). (The maximum
error is on the order of .0O4 minute.) The solution has been extended to
20,000,000 feet aliitude, or approximately one Earth's radius., This altitude
is sufficient Tor the problems to be consldered by the SDF computer program
for the planet Earth. Greater altitudes than this must consider such other
effects as solar radiation pressures, planetary perturbations, and the effects
of the orbital properties of the planet and wmay, therefore, be handled by
other prggrams such as an interplanetary trajectory program discussed in

< ztion o,
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FIGURE 5.3, DIFFERENCE BETWEEN GEODETIC AND GEOCENTRIC LATITUDES
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5.4.2 Flight-Path Angles - Knowing geodetic latitude for any geocentric
latitude and locel-geocentric components of velocity it ig posgible to get
the components of velocity in local -geodetic coordinates Xgl, Ygl’ and Zgl,
(See Figure (5.4).)

-2

Figure 5.4 Relation of Geodetic and Geocentric Horizons

The transfermation is given by:
[ . | .
g f Cos (¢, - 1) 8in (g, - ¢r) ! Xg
| 0 1 0 Y, (5.28)

cos (B - ) | Zg |

@]

PR

Zay Sin (fg - 1)

<

As noted above, the maximum difference between the geodetic latitude and the
geocentric latitude is 11 minutes of arc, which occurs at 45 degrees geodetic
latitude. The small-angle approximation is valid and

Sin (@, - ) = @ - ¥ in radians (5.29)

Cos (¢g - &)

1 (5.30)
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and substituting Equations (5.29) and (5.30) into matrix (5.28) gives:

T ; [

| Xgy 1 0 (fg - PLirad. | | X
A o 1 0 Y, (5.31)
Zg, I-(gzig - ¢, )rad. 0 1 Zg

The flight-path angle and heading angle corrected to the local-geodetic
latitude are computed by

7 = Sin7l oo sintf {Zp - Ralgs - g) raal (5.32)
Vgl Vg

since the magnitude of vector Vg, is equal to the magnitude of vector Vgl'

.

and .

y Y
Y~

‘ _ .o =]
> = S3in

—_— g —
+ Yglg ﬁg + Z.ug(¢g-¢L)I‘ad. }? + Ygg

(5.33)

&

The angles 7 and ¢ way be computed in local-geacentric coordinates by
Eguations (3.69 and 3.T70).

y = 8in-1 :éﬁ
Ve
and
o ¢
¢ = &in igg . ig

or by setting (¢g - #1,) equal to zero in Equations (5.32) and (5.33).

5.4.3 Geodetic Altitude - The geodetic, or true altitude (h), will be
approximated by the altitude (h') by the relation (reference Figure (5.2)).

nw

h n' = R - Ry (5.34)

The error incurred by this approximation has been investigated and determined
to be of the order of 1 - cos €. Numerical evaluaticn of the error using the
relations of Byuation (5.34) and the exact sclution is summarized below.
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True Altitude (h) ! Error (h'! - h)

in feet i to the nearest foct
50,000 i 1
100,000 1
150,000 : 1
200,000 ; 3
250,000 j 3
500,000 ! I
1,000,000 ! 6
2,000,000 1 11
3,000,000 16
4,000,000 20
5,000,000 e
10,000,000 39
20,000,000 : 59
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6. AUTOPILOTS AND FLIGHT-FLAN PROGRAMMERS

The autopilot and flight-plan programmer are mechanisms by which the vehicle
motion or trajectory are regulated or controlled. For use in the SDF computer
program, an autopllot is defined as that portion of the program which deter-
mines the vehicle control-surface or thrust vector deflections. This definition
applies for computation options which permit any combination of the rotational
degrees of freedom. This portion of the program may range in sophistication
from simple curve-read functions of control surface deflection with time to
a linear-differential-equations simulation of a multiloop autopilot containing
corrective networks, serve systews, gyros, etec. which is commanded by steering
equations developed from an inertial navigetion system. A flight-plan pro-
grarmer is a device, similar in operation to an autopilot but restricted to
computation options which exclude the rotational degrees of freedom. This is
done becausge, for the most part, flight-plan programmers arbitrarily assign
rotational attiltude.

6.1 Typical Autopilot - Since the autopilot for a particular vehicle is
a8 highty specialized device, formulation of a library of autopilot subprograms
will not be attempted. Rather, a typical vehicle autopilot is treated in the
following section which employs most of the elements normally used in this
device. This autopilot is conslidered as an example formulation to demonstrate
the techniques required in the digital simulation of autopilot networks in general.

6.1.1 Description of Flight Control Sys%em - The flight-control system
(See Figure {6.1)) to be progremmed for the SDF computer program has three
control channels: piltch attitude, azimuth attltude, and roll rate. The
pitch and azimuth attitude control channels each contain inner and outer feed-
back loops. The inner atititude rate loop is used to improve the damping
characteristics of the missile and to provide dynamic stability. The body
angular rates, ¢ and r, are sensed by body-mounted rate gyros and are roll
resolved to obtaln the pitch and azimuth attitude rates required in the inner
feedback loops of the pitch and azimuth control channels respectively. During
a certain portion of the flight, the inner feedback loop signal 1s obtained
by resolving the sum of corresponding components of the acceleration and
angular velocity measured by the rate gyros and body-mounted accelerometers.
The forward portion of each inner loop contains a lag (or lead, depending on
the constants used) network to improve dynamic stability and a notch filter
to attenuate the aerocelastic osclllations sensed by the rate gyros. The
outer feedback signals of both the azimuth and pitch control channels are the
attitudes obtained from a servo repeater driven by the platform gimbals. The
yaw-and pitch-attitude commands are summed with the appropriate repeater output.
The resultant error signal 1s multiplied by a constant gain to provide the
inner-loop rate command. The total pitch-attitude command 1s the sum of a
predetermined attitude program and the ocutput of a pressure control loop.
The pressure control loop generates a pitch attitude error signal proportional
to the difference in the stagnation-pressure command and the measured stagna-
tion pressure. The effects of temperature limiting may be incorporated in a
manner analogous to the pregsure control loop. A temperature control loop
has been devised which will determine the change in pitch and/or azimuth
attitude required to avold a criticel heating condition. The computation of
this command modification is discussed in Section 6.3.
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The roll-control channel consists of a feedback from a body-mounted roll-
rate gyro which is summed with the roll-rate command. The resultant error
signal is passed through a network which improves the loop transient response
and from thence to the control surfaces. There are four independently actuated
control surfaces mounted 90° apart. The roll-resolved outputs of the pitch
and azimuth channels are presented to the appropriate pair of diametrically
cpposed control surfaces. The cutput of the roll-control channel is to each
of the four control surfaces. Opposing control surfaces move as a unit for
pitch and azimuth control and differentially for roll control.

6.1.2 Control System Input Data Simulations - The flight data measured
by the gyros, repeaters, and accelerometers must be calculated or obtained
from other sections of the program. The functional block diagram (Figure
(6.1)) 11lustrates the sources of input data for the control system computer
simulation. The steering functions provide the steering signals {commands)
for the control system. For this particular application, the commands are
determined from several two-dimensional curve read-ocut subroutines where time
is the independent variable. The steering functions must also specify the
changes in computations corresponding to the position of the switches A-B-C-D.
These switches are used to modify the control system for various phases of
the flight, and the position of the switches is dependent on a time reference.

The platform portion of the fixed program computes the missile attitude
angles (Section 3.2) in a coordinate system representing a stable platform.
The platform gimbals for this application are arranged in the yaw-pitch-roll
sequence ané the platform will be aligned initially with the local gecdetic
vertical. The platform will be inertially fixed in its orientation at the
time of launch. {See Section 3.2 for the coordinate transformations.)

The rigid-body angular rates, p-q-r, that would be measured by the body-
mounted rate gyros, are calculated in the equations of motion. If the effect
of aeroelasticity on the control system is to be investigated, the appropriate
normalized bending modes, demping ratios, and natural frequencies must be
supplied tc the aercelastic computational block which in turn computes the
aeroelastic body-bending angular rates, rp and gp. These aerogelastic body
rates will then be summed with the appropriste angular rates from the rigid-
body equations of motion to provide the rate gyro signals. Appendix Six
presents & method by which the aeroelastic body-bending rates may be simu-
lated by a second-order differential equation.

The indication of two body-mounted accelerometers whose sensitive axes
are aligned with the body y- and z-axes must also be determined for this
program. These accelerations may be taken directly from the summation of
the forces and moments subprogram.

6.1.3 Pitch Control Channel - A stagnation-pressure command generated
in the steering functions tabulation will be compared with the pressure
behind a normal shock wave (PgT), and the difference multiplied by the gain
factor KA« The gain, Kjp, is a predetermined function of time and is cobtained
from & curve-read subroutine. Thus,

(Pop_ - Pop) Ko = By (6.1)
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The total pressure behind & normel shock may be approximated by the relation
Pop = (.455 + 1.29 My®) P (6.2)

The error signal, Ej, is modified by a compensation network whose trans-
fer function is:

T_'L_S + 1 = _@_]_:_‘ 6.
E+ DGE T B (6.3)

This transfer function is converted to differential egquation form by the method
outlined in Appendix Five; Transfer Function Number (3) of Table 5.1. The
solutions of the following first-order differential equations for ©r; and @pp

are required for the digital simulation of the pressure loop cowpensation network.

ér 12 + Gr = El
ot t (6.4)
brp T3 + Orp = E1

The output of the compensation network is calcwlated by summing functions
of Orl and GrE

7 - T T3 - T
= —_— = +
Sr To - 13 er Ty - T2 gre (6.5)

The pitch attitude of the vehicle, (OP) with respect to platform coordin-
ates, is obtained from the platform subprogram. It may be desirable to invest-
igate the effect of drift on the attitude sensors. This drift may be simulated
by adding B16 + B17t to the pitch attitude, Qp, calculated in the platform
subprogram

QE') = O, +Byg ¥+ Bl_(t (6.6)

A pitch repeater is used to develop an electrical signal proportionsal to the
angular dilsplacenment of the pertinent gimbals. The transfer function repre-
senting this repeater 1ls a second-order system; the repeater output may be
obtained by solving the following differential eguetion, Transfer Function
Number (1) of Table 5.1.

GIE + wy +6p = 8 (6.7)

The pitch-attitude command generated by the steering functions is summed
with -8p, =0y, and Op (87 is a temperature limiting attitude command, see
Section 6.3} and the sum is multiplied by a constant gain Kp. For switch D
in the closed position

(6g + 67 - O, - O, )Kg = Eo (6.8)
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If pressure control is not required during a part of the flight, switch D is
opened for that portion of the flight. For gwitch D open, the summation of
Equation (6.7) reduces to:

(Gé + e - gm)KB = Ep (6.9)

The Limiter may be represented by a simple logic element. If Ly is the
limiting value, the logical guestions are:

Ir |Ep| < lLl‘ Then . = Ep

(6.10)
Ir  |Bp| > ILll Then  ©, = Ly
where the sign of limit must correspond to the sign of O,.

The error signal E3 depends upon the position of the switch A. If switch
A 1s closed,

(6. - @)k, = Es (6.11)
and if switch A is open, the signal Ej is simply
K, = Eg (6.12)
(The generation of the attitude rate, 6H, is discussed in Paragraph 6.1.5.)}
The signal E3 is modified by a simple leg (or lead) network. The equations

required to compute the output of this network are given in Appendix Five,
Transfer Function Number (2).

1g By +Ey = Ej (6.13)
T
P

The output of the lag network is directed to the notch filter which may be used
to attenuate a certain aeroelastic body-bending frequency band. The output of
this filter may be represented by the differential equations of Transfer Function
Number (7) Table 5-1. The output, Eg, is:

Eg = Ej - EELL2 + 2E43 (6.15)
where Ehg and Eh3 are determined from the solution of the following differential

equations:

16 éhg + By, = By (6.16)

rfg Eu3 + 219¢ éu3 + Eq3 = Ej (6.17)
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6.1.4 Azimuth Control Channel ~ The elements of the azimuth control channel
are identical to those of the pitch control channel with the single exception
that the azimuth channel contains no pressure control loop. The equations re-
presenting the azimuth control channel are analogous to Equations (6.6) through

{6.17) and are presented in a corresponding order below.

Biasg
L
Repeater
ql;m Efl ‘I’m
2t et T
w 1 p
Quter Loop Summaticn
(lljé + ‘JIT - Wm)KD = E6
Limiter
Ir  |Eg| < |Le| (¥ Cos 8), = Eg
It |Eg| > |Lo] (¥ Cos ©), = ILp
Inner Loop Summation
[(¢ Cos O)C - (¥ Cos an] Kg = E7 Switch A Closed
(-¥ Cos @), Kg = Eq Switch A Open

Lag Network

E E = E
T'—( 81 -+ 81 T

Eg = T6F T7 - %
8T =t L =
7 7
Kotch Filter
E9 = Eg - 2E82 + 2E83

16 F}82 + E82 = E8

2 e »
Ys E83 + 2116 E83 + E83 = E8
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The roll attitude of the missile is required to resolve the body components
of anzular velocity to pitch and azimuth attitude rates. The roll attitude
simulated by the platform subprogram is modified to include a bias and a drift.

g5 = Oy +Bro +Bygt (6.25)

This modified roll attitude is converted to an electrical signal by an
attitude repeater similar to the repeaters used in the pitch and yaw channels.
The output of the repeater 1s determined from the solution of the following
differential equation.

Ie |, 20
le 7] 1

+ gm = ¢l; (6.26)

The pitch and azimuth servo commands E5 and E9 are roll resclved to obtain
body components of the servo commands.

Bgc Eg Cos @y + Eg 8in ¢y
Eg Cos @y - Eg Sin ¢y

6.1.5 Body Angular Rates and Accelerations - The body angular rates,
P, 4, and r, sensed by the three body-mounted rate gyros, are calculated in
the equations of motion. A bias on the rate gyros will be included by adding
a. constant to each of the calculated rates,

(6.27)

5I‘C

p' = p + By
a' = q + By (6.28)
r' = r +Bsp

to simulate physical imperfections in the instrument. If the effect of aero-
elasticity on the stability of the control system is to bhe investigated, the
additional motion of a rate gyro due to body bending is computed in the aero-
elastic modification cperation and summed with the rigid-body rates calculated
in Equation (6.28) to simulate the total signal generated by the body rate

gyros, {q," and r,').

If switch B is placed in the closed position, an additional signal is
sumued with gqp' and rp'. This signal is developed from the output of two
body-mounted accelercmeters whose sensitive axes are aligned with the y- and
z-body axis. The y- and z-components of acceleration may be obtained from
the body cowponents of the externally applied forces.

(6.29)
F
8z % _%% - Bg
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where Fy and F, are body components of the summation of the externally appl.-2
forces and the welght. The output of the accelerometer is obtained by modify-
ing the true body components of acceleration with a transfer function that
deseribes the behavior of the accelerometer. The error signal Ejp 1s then
obtained by multiplying the accelerometer output by the constant gain Kp.

The differential equations are

Bio | 2{E10 . .
= a
w22 W 10 F 8g
Ny . (6.30)
Ejy 2ok
+ + B = KXp a
m22 w 11 F =y
For the switch B closed, the input to the resolver is:
1
qQy = 9m - Eyp
(6.31a)
Ty = I'[:] + E11
whereas 1f switch B is open:
dn = 9m
m
(6.31b)
r, = rf

The resolutions of the body components of Inertial rotation to attitude
rates would be wmechanized in the actual control system by a roll resolver
and is simulated by

6y = ag Cos @y - ry Sin Py

. (6.32)
(¥ Cos @)y = 1y Cos @y + ay Sin g,
These attitude rates are then summed with command signals in the pitch
and azimuth control channels described in Paragraphs 6.1.3 and 6.1.k.

6.1.6 Roll Rate Channel - The roll-rate command generated by the steer-
ing functions subprogram is compared with the measured roll rate as computed
in the equations of motion and biased according to Equation (6.27). A time-
varying gain, Kg, 1s developed by a two-dimensional curve-read subroutine.
The error signal, Ej2, 1s given by

E1p = (pe - p")Kg (6.33)
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The frequency characteristics of Ejp are modified by a network in order
to improve the transient response of the closed loop. The output of the net-
work, Bpe, 1s given by Transfer Function Number (5), Table 5-1, as

Bpc = A3 Bpe, + B3 Bpe, + C3 Bpey (6.34)

where: 5pcl, EPCE’ and ﬁpc3 are determined by solving the following differen-
tial equations.

13 BPC]_ * 5PG]_

it
=

[

n

Tk E'pce + apc2 = Eyp (6.35)

»

5 Opeg + Bpey ¥ Er2

and the coefficients are defined as:

by - (n3 - n1)(w3 - 1)
(113 = ) (w3 - m5)

By = %Tlh - m)m - m2) (6.36)
- T13) (7 - Ts)

c; = {ms - wllns - 1o

(75 = 713)(m5 - 74

6.1.7 Control-Surface Deflections - For switch C in the closed position,
the control-surface commands developed in the pitch, azimuth, and roll-rate
channels are sunmed to provide the control-deflection commands for the four
surfaces.

Blc = Bge * Ope
Boe = B + Bpe
(6.37)
B30 = -Sgc + ¥pe
Bhe = Bpe + Bpe

The servo response will be represented by a first-order lag network, and
the actual control-surface deflectlons are given by the solution of the follow-
ing equations.

Tlo 6n + 5n = ﬁnc
or (6.38)
é]:1 = l_ (5nc - 611)
Mo
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There is 2 limit on the rate of control-surface deflection due to the physical
limitations of the control-surface servo system. There also may be a bias, By} ;
on the rate of control-surface deflections. The effects described above will
be simulated by the following equations.

z:7n - [ Ope - 5n] + Bk
T10
If tén{ < IL3‘ .ﬁ = én (6.39)
Ie &) > 13 5 = I3

where the sign of L3 corresponds to the sign of Bhe The integraticn of the
four deflection rates defined in Equation (6.39), for n = 1,2,3,k is performed
for each of the four control surfaces. These computed deflections must be
linited, since the actual missile control-surface has some maximum possible
displacement, L. There also may be a bias on the control-surface deflections
due to wechanical misalignment, bno. The control-surface deflections are given
by the fellowing equations.

t
1
Sn = J &y dt + 6110

re|sl} < |y By = B (6.40)

If ]65[ > |1y | 8, = Ly

The four control surface
deflections calculated above
must be rescolved intc the three - = Control
effective control deflections BP, .. Surface _J:::::;__
By, and 8. The deflections , L
computed above are defined in terms .5
of their position with respect to ' oL

body axes as shown in Figure (6.2). - -

The positive direction of each e [:::::)
surface would produce a rotational _ -
velocity vector into the missile, Control: Control

Surface Sur{ace

’

The effective rolling moment

deflection i1s the average of the P - L/“///

four ®'s computed above. '-ww/gaﬁgggé
2
5p = (1/4)(8&1 + B + B3 + 8Y)
2

8q and B, are defined as positive
rotations about axes parallel to Figure 6.2 Control-Surface Arrangement
the body y and z axes respectively. and Definition of Surface Deflections
Therefore, from Figure (6.2),

aq = (53 - 51)(1/2) Op = (64 = 52)(1/2)
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6.1.8 Computational Flow Diagram - The equaticns representing the typical
control system have been derived in Paragraphs 6.1.3 through 6.1.7 by tracing
the channels of the control system functional diagram (Figure (6.1)). Since
the indicated numerical cperations must proceed sequentially in the digital
computer, the same equations have been arranged in a chrenological order in
the computational flow diagram of Figure (6.3).

6.2 Flight-Plan Prcgrammer - A flight-plan programmer subprogram has
been incorporated into the SDF computer program which allows a selection of
several types of Tunctions for trajectory control of the point-mass reduced-
degrees-of-freedom options. The flight-plan control sequences outlined in
this section permit a selection of 6 control options, with b of these having
a selection of 3 independent variables against which to program the control
functions. Five of these programmers are contained in one subprogram; the
other is contained in an alternate subprogram {Section 6.2.3).

6.2.1 Flight-Plan Programmer Control Commands - The flight-plan programmer,
es defined for the SDF cowmputer program, is the means by which the trajectory
is contreolled for the point-mass options. This feature of the point-mass
problem corresponds to the steering functions for an autopilot used in the
options which permit the rotaetional cegrees cf freedom. Use of the flight-
plan programmer is restricted to the point-mass options since it permits
vehicle motion without regard 4o rotational inertia (e.g. absolute specifica-
tion of angle of attack versus Mach number or time). Since there are several
flight-plan methods that are used extensively during preliminary design and
development of a particular vehicle, a number of contrcl methods have been
selected as a preliminary library of flight-plan programs of the SDF couputer
program. As such, these methods of control are avallable at the option cof
the analyst by appropriate specification of input data. The flight-plans
that will be included are:

(1) Programmed 1ift coefficient Cp, side-force coefficient Cy, and
drag coefficient Cp.

(2) Programmed =ngle of attack @, and/or angle of sideslip, B.

(3) Programmed body-axes attitude angles ¥ and 6 (local Euler angles),
with a dynamic pressure feed-back.

(4) Programmed wind-axes normal load factor, n

and ng, with thrust
included.

7

(5) Programmed flight-path angle ¥, versus altitude h, with B = 0.

The first four flight-plan commands will he curve-read functions of the inde-
pendent variables time t, Mach nuwber My, or airspeed V. Flight-plans (1),
(2), and (3) represent "exact" flight-plan control commands in that the forces
acting upon the vehicle are dictated by the programmed control. (Flight-plan
(3) has a feed-back loop but is considered an exact flight-plan control.)
Flight-plans (4) and (5) approximate the action of an autopilot by employing
an error function and a gain to alter the forces acting upon the body. This
results in a trajectory that approximates the desired trejectory depending

on the Form of the command terms and the value of the zain factor selected.
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Under normal conditions this method will give a realistic flight-path that
follows the commanded velues very cleosely. A preliminary analyses has been
performed to determine how closely the computed load factors follow the
commanded values {Flight-plan (4)) and is discussed in later paragraphs to
show the comparison. This method is considered preferable to an iteration
procedure to get a simultanecus convergence of several quantities since it
results in a substantial saving of machine running time to solve the problem.

6.2.2 Discussion of Selected Flight-Plen Sequences - Flow diagrams for
the 5 flight-plan control programs are shown in Figure (6.4). Individual ex-

planations of the data required and the seguence of operations are given below.

Flight Plan (1) Programmed Lift, Drag, and Side Force Coefficients - This
flight-plan is the simplest considered and is intended for use with gliding
or coasting bodles withcout thrust. The data required for this control program
are the parameters time, Mach number, or airspeed, one of which will be used
as the independent variable for the command functions. Also required is the
dynamic pressure, g¥, and the reference area, 8. The technique is to obtain
CLes CYq, and Cp, from linear interpolations of tabular listings, and calculate
the forces L, ¥, and D by multiplying by g*S. The problem 1s continued
without entrance to the zerodynamic data subprogram. A control word is set
up by the executive program such that when thig flight-plan program is used,
the aero subprogram will be bypassed. This control method way be used for
cbtaining the glide trajectory Tor a vehicle, the decay trajectory of a
satellite, or the re-entry trajectory of a ballistic missile.

Flight Plan (2) Programmed Angle of Attack and Sideslip - This flight-
plan is similar to Plan (1) above with the exception that the attitude of the
body, with respect to the trajectory, is known (i.e. specified). Such
knowledge allows the inclusion of thrust forces and a determination of thrust
components parallel and normal to the flight path. The data required for ithis
control mode are the parameters time, Mach number, or airspeed against which
the command functions of angle of attack, ¢, and sideslip, Pp, are programmed.
The commands Qe and Be are introduced as tabular listings of the desired
parameter. With cp and Be given the problem is continued in the normal manner.
The aerodynamic forces are computed in the aerodynamic subprogram and the
rotion is then determined on the basis of these forces. This flight-plan
programmer may be used for the ballistic trajectory by programming o, and
Be equal to zero. This is deone automatically within the flight-plan programmer
subprogram initialization subroutine such that if using the point-mass option
with no flight programmer specified, it implies that ¢ and B, are zero, or
that the trajectory is ballistic. A particular lift-to-drag ratic may be
followed by programming the appropriate angle of attack and/or sideslip.

Flight Plan {3) Programmed Body-Axis Attitude Angles, ¥ and ©, With
Dynamic-Pressure Feed-Back - This flight-plan program provides feedback loop
control which is especially useful in the analysis of certain boost-phase
trajectories and hypervelocity glide trajectories. This control is accom-
plished by modifying the attitude command according to the difference between
the computed and desired dynamlc pressure corrected for planet rotation effect.
The desired dynamic pressure is specified in terms of the desired altitude-
velocity profile, In the case of glide trajectories, the feedback locop provides
a method of controlling the skips which occur if the correct flight-path angle
is not selected at the start of the computation.
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The following quantities must be computed prior to beginning the flight-
plan programmer calcuwlations: altitude, h, dynamic pressure, ¢¥, inertial
velocity, V, radius from the center of the planet, R, local radial gravita-
tional attraction, gz,, horizontal and vertical flight-path angle ¢ and 7,
and time, airspeed, oF Mach number, whichever is to be considered the inde-
pendent variasble for the body-attitude angles, ¥ and 8. The body-attitude
angles Tor the specified manesuver and the velocity-altitude profile desired for
a nen-rotating planet condition are introduced as tabular listings. The com-
putation proceeds as follows: From the commanded altitude, h,, the density,
pe, 1s determined from the atmosphere subprogram. This altitude and density
are the desired quantities the vehicle should have at the computed airspeed
if no planet rotaition existed, (i.e., the centrifugal relieving effect being
computed using airspeed, Vg, which is also the inertial speed, V, under these
conditions). Planet rotation changes the situation, making the airspeed
grester or less than the inertial speed (depending on the azimuth direction)
with Vs in general being greater than V when the vehicle is moving against
the planet rotation (westward in the case of the Earth). The method used to
correct this Is as follows:

Assume that equilibrium flight existed over a non-rotating planet. Then

2
'
oL 1/2 pe Vg© = Wp | 1 - == (6.41)
Bz R
&
For the same airspeed, and assuming the same Ci, is wanted, the condition
existing if the planet were rotating would be,
2 ve
cr, 1/2 Pog Vo© = Wp jl - = (6.42)

g

Solving the above equations for pe,, which is the desired density in terms of
the commanded density pp obtained %rom the h, versus V5 curve, results in,

g R - Ve
Pey = Pe gz R - Vag (6.43)

The commanded dynamic pressure is therefore
¥ = 1/2 e 6.4
q‘C - l/ pcl Va ( . )
end is used to revise the pitch attitude by 4@ , determined as
£G, = Cg* (a% - q.*) {6.45)
The commanded attitude 1s then wodified by

Sy = O + Al (6.46)
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The value of the gain coefficient, Cgx, must be determined empirically according
to the configuration being considered; however, studies on a low-1ift wvehilcle
have indicated a value of 0.02 degrees per unit &g* is of the correct order

of magnitude. The vertical flight-path angle is resolved to the pitch plane

of the vehicle by

Tan ¢ = ol (6.47)
Y Cos (-¥, + 0)

from which the aerodynamic angle of attack is computed as

o = Gcl - (6.48)

The angle of sideslip, B, is computed from the same resolution as above by

~ Cos 7 8in (¥, + 0)
Ten B = 553 7 Cos B¢, Cos {<¥o + o) + Sin 7 Sin ey (6.59)

With the aerodynamic angles, & and B, known, the serodynamic forces are com-
puted in the normal manner and used in the solution of the equaticns of motion.

If it is desired to eliminate the feedback control, the value of Cg¥ is
specified as zero. The corrected pitch attitude, Ocl: may also include an
attitude correction based upotr the equilibrium stagnation temperature or
thin-skin temperature computed by the temperature monitoring subprogram,
Section 6.3. A great-circle trajectory which is unaffected by lateral aero-
dynamic forces may be computed by making V. = o,

Flight-Plan (4) Programmed Wind-Axes Normal Load Factors, n, and ng, With
Thrust Included - The data reguired from the preceding part of the program
are the parameters, time, Mach number, or airspeed, against which the commanded
vertical wind-axes normal load factors, ny, and ngg, are programmed, and the
computed values of ny, ng, lift L, and side force ¥. The thrust T and mass
are also required. The analyst will also specify the upper and lower limits
which will be allowed for angle of attack and sideslip. To start the program,
initial values of ¢ and P will be specified which are compatible with the
initial ny, and ng, commanded. The load factors are introduced as a tabular
listing versus the parameters time, Mach number, or airspeed. The Cy and
Cp galns are computed using the equations specified which are derived as
follows: The wind-sxes normal load factor, ny, is defined as

1 CLg a g%
n. = L f T Sin @ _ o2 qg*¥S + T Sin & (6.50)
" gref 7 Bref

The derivative of ny With respect to o is

any CLy g*s . T
doy %! Bref 7% Eref

Cos o (6.51)
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Assume that CLQ can be expressed as

CL,
~ 2 .52
CLOZ = (6 5 )
Then
C
oy . vL grs + T Cos «&
doe m grer @ . Bref
= —L 4 z Cos (6.53)
7 Bpef & " &pef
1
The gain factor Cy 1s therefore Eﬁ; or
Q
M Bref
C = L (6‘5]"')
a = 4+ T Cos &
Using a similar technique for Cﬁ
-7
CB = Y ?J_gref (6'55)
- E + T Cos 8

The corrections to the angle of attack and sideslip, Ag and AR, are computed
using the gains Cy and Cg multiplied by the difference between ny. and ny,
and nge, and ng, respectively.

This technique of control has been investigated as to the stability of
the solution and the accuracy with which the commanded load factor is followed.
The results(l) are shown in Figure (6.5), for two typical command functions.
Considering the fact that one-second time increment was taken as the computa-
tion interval, the results are consldered in good agreement with the commanded
values. The advantage of this wmethod of' control, compared to the normal
iterative sclution, is the reduction in computing time required since every
cycle through the computation advanced the vehicle along the trajectory.

(1) It should be noted that this investigation was run on a supplementary
program with typical inertia and aerodynamic characteristics of an airframe.
Very large time increments were used to test the stability of the solution.
Results of actual computations using the SDF computer program should be greatly
improved gover those shown.
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Flight Plan (5) Programmed Flight-Path Angle ¥ Versus Altitude h, With
Sideslip Angle B Egual to Zero. - The data reguired from the central program
are altitude, vehicle mass, thrust, 1ift, and instantanecus value of the
vertical flight-path angle and its time derivative. Also required for this
program are the upper and lower limits which the angle of attack may have.

To start the program an initial angle of attack a will be specified which is
compatible 1) with the 7, versus h profile desired. A tabular listing of

the 7¢ versus h profile desired is the command input. The problem is to find
the angle of attack which will provide the necessary forces to follow the
cormanded flight-path angle at the altitude computed. From the relation

m VgL = TSna+Lyd- arer Cos ¥
the expression

T8ina + Ly, & ~ 77 gref Cos 7

4 r— (6.56)
is cbtained. Differentiating with respect to the angle of attack gives

dy _ T Cos a + Ly

do (6.57)

Vel Vg

and the change in angle of attack required to correct for an error in commanded
flight-path angle rate of change is

Vg
AO!-} = TCos& + L g (7e - 7) (6.58)

Changes in flight-path angle are produced by timewise application of flight-
path angle rates according to the relation

dy = } dt
Therefore
o aq at (6.59)

and substituting the expression previously cobtained for dy/da gives the result

A T Cos O + L
=z =[ :Qvg "'] At (6.60)

(1) Agtually any initial @ will suffice, however, the nearer to that
actually required the more exactly the resulting flight path will follow that
commanded since this is an approximaticn program.
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Therefore the change in flight-path angle for a given change in angle of attack
is proportional to the same factor as the time rate of change of flight-path
angle and

Ac,, =( i T ) (7, - 7) (6.61)

T cos ¢ + La

The total change in angle of atback may be obtained by

Vg .
MG =\ T oos @ ¥ Ly g (e -7+ (2e=-7 (6.62)
where g is a gain factor on the time rate of change.

The new angle of attack may be cowmputed from a2 knowledge of the existing angle
of attack and the increment A@ defined above. An investigation in which the
characteristics of an airframe were approximated has been wade and the results
are presented in Figure {6.6) which shows the solution using the above feed-
back corrections to be stable and to approximate closely the desired flight-
path angle.

6.2.3 Flight Plan Programmer 10 - Prozrammed Torquing Commands to Pitch
Rate Gyro with Drift and Bias - Flight Plan Programmer 10 is an alternate
subprogram which permits the calculaticn of dispersion associated with gyro
errors and winds for vehicles employing three single-axis, rate intesrating
gyrog as the basic attitude reference. This flight plan programmer was
designed for the execution of a dispersicon analysis cf a boost and zlide
missicn. The pitch attitude of the vehicle during boost is specifisd by a
stored gyro tordque prograw; the pitch rate integrating gyro is deleted during
the glide phase. Yaw and roll torque preograms which nominally maintain
sideslip and bank angle zero are simulated. This flight plan programmer
develops the angle of attack, angle of sideslip and bank angle associated
with non-nominal winds and errors in the rate integrating gyros.

In develcoping the flight plan programmer, the following basic assumptions
were made.

2. The vehicle follows the rate integrating gyro error signal immediately.
This implies a perfect control system and a vehicle with no moment of
inertia.

b. The instrument errors and winds which introduce changes in the angle
of attack, angle of sideslip, and bank angle are small so that the
total angular change is the sum of the effects of the individual
perturbing errors.

¢. The %z body plane coincides with local vertical plane and contains
the relative wind velocity vector during the nominal (no errors)
flight.
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Winds - The effect of winde can be considered in the point mass cptions
if the vehicle attitude is specified by z control system. The vehicle is
thereby restrained from reaching a trim condition, and the resulting angles
of attack and sideslip can be ascertained. An expression for the angle of
attack, o, and the angle of sideslip, Py, 1s obtained belaow.

In Figure 6.7, ¢ and'7 qre'the flight path angles relative to the unper-
turbed wind coordinates XA-YA-Za. The angles gp and 73 define the airspeed
vector and the perturbed wind coordinates Xp¥aZa. Applying the law of sines to
triangle xN-Zg-M glves an expression for the angle of sideslip due tc winds.

sin {op - 6) _ sin d (6.63)
gsin By cos @

The angle d can be expressed in terms of known parameters by applying the law
of cosines.

cos & = -sin {op - o) sin @

The feasibility of utilizing the approximation sin ¢ = 1 in equation (6.63)
will be investigated by determining the maximum value of oA - o which causes
sin d to differ from unity by one percent. The value of cos d (.139) which
corresponds to sin d = .99 is Iinserted in the above equetion with sin 6 at
its maximum value of unity. The results indicate that a o4 - o of eight
degrees or less will initroduce an error of cne percent or less in Equation

£.63.

Applying this approximation to Bquation 6.63, the following expression for
fyw is obtained.

by = Sin=l [ cos @ 8in (op - o)) (6.64)

The angle of attack can be determined by applying the law of sines to the
spherical triangle yy-Xa-A

Sin y* _ Sin f

Sin 74  Cos (op - o)

Utilizing the approximetion sin f = unity and solving for ' in the above
equation gives the following result.

Lo=1 Sin 7a
Y sin [ Tos Tor = E)] (6.65)

The angle of attack is obtalned by subtracting 7' from the pitch attitude 8
specified by the control system. Thus

_ -1 Bin yA
@ = @ - 8in [COS (or ™ U)} (6.66)

When the pitch-rate-integrating gyro is deleted from the control system (at end
of boost), the angle of attack is assumed to equal its trim value, modified to
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GEOMETRY USED TO DETERMINE EFFECTS
OF WIND AND PITCH GYRO ERRORS

FIGURE 6.7
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include any deviations from its expected value. The nominal trim angle of
attack (ab) is introduced as a function of Mach number in a tabular listing
(FTABO2). Deviations in trim sngle of attack (a) are obtained by varying
Ke6 from its nominal value of one where

a = Kog O (6.67)
The pitch attitude is obtained by solving for 6 in Equation (6.66).
Pitch Rate-Intezrating Gvro - The piteh sttitude of the vehicle is con-

trolled by torguing the pitch rate integrating gyro at some prescribed rate,
de- The pitch attitude error is given by:

g = Jt (g, - ) dat

However, in this program, it is assumed that the above error 1s corrected in-
stantaneously by the control system. Therefore, the pitch attitude at any time
may be written as

L
e = ginl'tlal + j qC dt (6-68)
Q

where ge is a table (FTABOl) of pitch rate cowmands as a function of time.
Errors in the pitch program and/or errors Iin the rate integrating gyro are
introduced by including error constants in Equation (6.68) as shown below.

RNTP

8 = ®ipitial * Ojt Kpp Qe dt + Kpp + Kpiy + Kpg © + Koz~ (6.69)
vhere Kp1 = torque constant, nominal value of one

Kpo = piteh gyro bias, degrees

Ko, = error in initial pitch alignment, degrees

Kgs = pitch gyro drift rate, degrees/second

Kz3z = one half pitch dead-band width, degrees

gggi = direction of perturbing pitch force due to misalignment of thrust

and/or asymmetric aerodynamics

Yaw Rate-Integrating Gyro - The yaw rate integrating gyrc errors will cause
a rotation of the wvehicle about the body z axis and thus introduce a sideslip
angle. The resultant force acting on the vehicle will alter the direction of
the velocity vector so as to reduce this sideslip angle. The geouwetry involved
is presented in Fizure 6.7. The nominal orientation of the body axis is
Xn¥nZn; XAN 18 the nominal velocity vector. The azimuth angle betwesn the
¥nZn plane and the local geocentric system (¥,Y¥.Z,) is the nominal azimuthal
vehicle attitude, V5. An error in the yaw ra ediﬁtegrating gyro introduces
a rotation, §, aboul the bedy z axis as defined below.

§ = Ky) +¥j7 +Kipt +X;5  (RNTY/| RNTY}) {(6.70)
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where K11 yaw gyro bias, degrees

K17 = error in initial yaw alignment, degrees

K12 = yaw gyro drift rate, degrees/second

K18 = one half yaw dead-band width, degrees
RNTY _ direction of perturbing yaw force due to misalignment of thrust
|RNTY| and/or asymmetric aerodynemics

The contribution to { associated with imperfect zero torquing of the gyro
required to maintain zero angle of sideslip is neglected. This contribution
can be approximated as an equivalent gyro drift.

The change in azimuth flight path angle associated with wvehicle lateral maneuver-
ing reduces the resulting angle of sldeslip by &, that is

Br = & - ¢ (6.71)

where £ can be obtained as follows from the geometry of Figure 6.3. By apply-
ing the law of sines to the spherical triangle Zg-M-xn one obtains

Sin & _ Cos ®
Sin (o - ¥y) Sin 4

Again for small P, the sin of d is approximately unity as shown in the dis-
cussion of the effect of sinds. The above expression then simplifies to

Sin £ = Cos @ Sin (o - ¥,) (6.72)
where Y, 1s tabulated versus time and is equal to ¢ of the nominal trajectory.

Roll Rate-Integratling Gyro - A similar investigation of the lateral dis-
placements due to the roll rate integrating gyro errors is presented below.

The reoll angle is developed from the expressioun:

g = K13 + Kig + K14 t + Ko (RNTR/JRNTR\ ) {6.73)
where K13 = roll gyro bias, degrees
Ki1g = error in initial roll alignment, degrees
K1 = roll gyro drift rate, degrees/second
Kop = omne half roll dead-band width, degrees

RNTR _  direction of perturbing roll force due to misalignment of thrust
|RNTRI and/or asymmetric aerodynamics

The contribution to ¢ asgocliated with imperfect zero torquing of the gyro re-
quired to maintain zero angle of sideslip and bank angle is neglected. These
contributions can be approximated as an equivalent gyro drift. The roll angle
erising from the roll gyro error will in general introduce a bank angle Ba and
a sldeslip Bp. The geometry involved is given in Figure 6.9. The velocity

¥p is located 1n an arbitrary position to simulate lateral departures from
nominal which have previously accrued, The bank angle can be expressed in
terms of the angles b and ¢ as follows:

f

By = ¢ =D (6.74)
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GEOMETRY USED TO DETERMINE EFFECT
OF YAW GYRO ERRORS

FIGURE 6.8
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GEOMETRY USED TO DETERMINE EFFECT OF ROLL GYRO ERRORS

....................
- e

L

FIGURE 6.9
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The angle ¢ may be determined by using the law of sines on the spherical triangle
ZgXpxn
51 Sin (g -
—= = (6.75)

Cos @ Sin amp

In order to specify the correct quadrant of the angle ¢, the tangent of c is
also required. The cosine of ¢ is needed and is:

-5in @ + Cos QT Siq_z (6.76)

Cos ¢ = -
Sin ap Cos 7

Dividing (6.75) by (6.76), the desired tangent function is obtained.

Sin (g - ¥,) Cos © Cos 7

Tan ¢ -5in @ + Cos Ol 8in 7 (6.77)
The angle b is found in a similar manner from triangle ZpXpxn

Sin b = Cos @ Sin (a + @) (6.78)

Cos b = -8in @/Sin ap (6.79)
and finally:

Tan b = Sin (a +¢) Cos a8in o (6.80)

~3in ¢

The angle a is needed in (6.80) and agein the tangent function must be used.
The sine and cosine of a are required and are determined from triangle XnXAZg as:

-Sin 7 + Cos Qp Sin @

Cog a =
© Sin Qo Cos © (6‘81)
Sin a = 08 78in (0 - ¥o) (6.82)
Sin ag

Dividiny (6.82) by (6.81), the tangent of a is obtained.

Cos 7 8in (o - wo) Cos @ (6.83)
-3in ¥ + Cos Op Sin 6 '

Tan a =

When the total angle of attack is zero, angle a is undefined and the bank angle
equals the roll angle. When this occurs, the computation sequence is directed
te bypass the bank angle computations presented above, and the bank angle is
set equal to the roll angle.

The angle cof sideslip associated with vehicle roll is determined from
triangle Xp-M-xy,.

130



The angle d is again assumed to be 909, Using this approximation, the
expression for B, 1is:

Sin Bp = Sin op Sin b (6.84)

The total angle of sideslip due to winds, as well as the roll and yaw gyro
errors, is:

B = By +PBp+Bp (6.85)

This completes the development of the flight plan programmer which provides
expressions for angle-of-attack, angle of sideslip and bank anzle which are
associated with specified winds and instrument errors. A functional flow
diagram of the flight plan prozrammer is shown in Figure 6.10.

6.3 Structural Temperature Limiting - A subprogram is formulated which
will override or modify the commanded functions from an autopilot or flight-
plan programmer according to computed structural ftemperatures and thus alter
the trajectory to relieve the aerodynamic heating. The temperature control
function is of the form:

Total command = programmed command + Zcommand corrections due te temp-
erature + Lcomwand corrections due to temperature time rate of change.

The command parameters may be any term that can be controlled by either the
autopilot or flight-plan programmer, but must have the capability to increase
(or decrease} the altitude, change the attitude, or to decelerate the vehicle.
Several temperatures may be usad, each contributing its effect to change the
trajectory and relisve the local heating. BSilnce the trajectory change to
provide a relief of the tewperature at one local point may, in many instances,
aggravate the temperature at some other point, the trajectory cobtained with
the temperature limit functions will represent a compromise between the
several controlling temperatures used.

6.3.1 Temperature Limiting Problem Formulation - The method for accom-
plishing a tewperature limiting control, while computing the trajectory, is %o
modify the command functions generated by the autopilot or flight-plan pro-
grammer by incremental commands which are functions of a temperature, or its
time derivative. Asgsuming that pitch attitude is the flight parameter to
be controlled, a typical block diagram of the flizht-plan programmer {or
stesring functions for an autopilot) may be as shown on the following

page:
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FUNCTIONAL FLOW DIAGRAM
FLIGHT PLAN PROGRAMMER 10
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Figure 6.11 Typical Steering Command
Function Mcdified by Dynamic Pressure
Error and Structural Heating Limit Feedback

Here, the desired program of @ versus time 1s modified by an error in dynawic
pressure and a temperature limiting functiocn which is the subject of the present
analysis. The tewperature limiting subprogram ls, therefore, a feecback loop
which overrides a programmed cormand function. The gain factors C1{Ts), Co(Ts),
€1(Te), a2nd Co(Te) are empirical functions of the structural or equilibrium
stagnation temperature which increase in maznitude as the limiting temperature
is approached. The values of the gain factors are selected so that the temp-
erature-limiting subprogram exercises no control when the teumperatures are

not critical but completely overrides the basic pitch-attitude command, together
with the corrections due to errors in dynanic pressure, when the tenperatures
are close to the limit. The total pitch-atiitude command is given by

Bc = 8¢ + Mgy +c, = B¢y + Cgx (% - gc¥) + C1(Ts) Ty

+ Cp(Tg) és + C1(Te) Te + CQ(TE) Te (6.36)

For the example case, it is assumed that © must be reduced to lower the
structural temperature, Tg. It is further assumed that increasing © to get
the missile to a higher altitude will reduce the stapgnatican-point tewmperature,
Tas
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The gain factors are introduced into the program as tabular listing of
temperatire. The form and magnitude of these gain factors will be considered
in the discussion of an example problem, Paragraph 6.3.2. The temperatures,
and their time derivatives, used as intelligence for the temperature limiting
loop are computed in the temperature monitoring subprogram which is described
in Section T.

The control guantities which can be modified by the temperature limiting
subprogram may be any parameter which, when altered by the flight-plan pregrammer
or the autopilot, will change the trajectory to relieve the temperstures. Typ-
ical command parameters may be

{a) Angle of Attack, o

(b) Lift Coefficient, Cr,

{¢) Aerodynamic Roll Angle, ¢A

(d) Pitch Control-Surface Deflection, &y

as well as the pitch attitude example used in the explanation above. The value
and form of the gain factor functions selected will depend upon the parameter
which they are modifying and, until more experlence is gained with this type of
control, will have to be determined experimentally. It should be further noted
that several gtructural or eguilibrium stagnaticn-point temperatures may be
used to compute the temperature limiting correction instezd of only one, as
used in the original explanation. Each temperature would have its own gain
factors in this case.

Figure (6.12) presents a functional flow diagram of the tevmerature-
limiting subprogram computation for the flight-plan programmer shown in
Figure (6.11). The computation of the dynamic pressure feedback correction is
not considered part of the present analysis and is, therefore, omitted. It is
further assumed, for the diagram of Figure (6.12), that lateral aercdynamic
forces are to be kept very small and that the body yaw angle is commanded to
be the instantaneous azimuth angle. The operation of the flight-plan programmer
is explained in Section 6.2.

6.3.2 Exawple Formulation - An example formulation of a temperature
limiting program, as applied to a body-attitude-angle flight-plan programwer,
is now presented with particular attention given to the method of determining
the gain factors Cq, Cp, etc. The values of the gain factors should be such
that, as Tg approaches the allowable upper Limit, the commanded angle of attack
(related to the pitch angle, ©) should go to zero. Also, as Te approaches its
upper limit, angle of attack should be increased to give a climb into less
dense atwmosphere. The corrections provided by these two temperatures are in
opposition to each other and will, therefore, produce a pitch command which
will hunt for a compromise attltude angle. Since 8 is related to & through
the flight-path angle, 7, an instantaneous change in & effectively changes Q.
Assuwe, for example, that the allowable structure and equilibrium stagnation
temperatures are 1000°R and that the maximum angle of attack anticipated
from the commanded pitch attitude is on the order of 10 degrees. 4 typical
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INPUT DATA FOR TEMPERATURE LIMITING SUBPROGRAM
T4, T FROM THIN SKIN PROGRAM

Te, To FROM EQUILIBRIUM STAGNATION TEMP-
ERATURE PROGRAM

TABULAR LISTING OF C3(Tg) AND Co(T4) A4S £(Tg)

TABULAR LISTING OF C;(Tg) AND C2(T,) 48 £(T,)

COMPUTE A8 ¢,

A6, = C1(Tg)Tg + Ca(Tg)Ty +
C1(T)Te + C2(T)T,

i
{TRANSFER TO FLIGHT PROGRAMMER |

COMMAND

8c, = f(t, My, or Vg)

‘l!c =

NO DYNAMIC FRESSURE FEEDBACK

COMPUTE  6¢

{ COMPUTE @ |

CONTINUE
PROBLEM

FIGURE 6.12 FUNCTIONAL FLOW DIAGRAM - TEMPERATURE LIMITING PROGRAM
COMBINED WITH COMMANDED BODY ATTITUDE ANGLES FLIGHT PROGRAMMER
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example of the form of Cy(Ty) is shown in Figure (6.13).

-.015 F L\

| Allowable Tg

-.010 }
cl(Ts) |
-.005F |
|
o i 1 i ] { i i |
0 200 LOO 600 800 1000 1200 1hk0O
T ©R

Figure 6.13 Gain Factor C1(Tg) as a Function of Tg

The gain factor Cl(TS) shown here has the property that as the skin tempera-
ture reaches 8509R, the attitude angle starts decrezsing propertional to C1(Tg)xTg,
and is reduced by 10 degrees as the allowable structural temperature is approached.
Frowm then on, the decrease is directly proportional teo the temperature, Tg. The
sain fector C1{Te) wight have a similar form as shown in Figure (6.14).

cl( Te ) '\
oobl | Allowable Te
L
002 i
|
i
O 1 L i L i i 1
0 200 hLoo 600 800 1000 1200 1koo

Te R

Figure 6.14% Gain Factor C1(Te) as a Function of Ty

This gain factor functicn would increase the attitude angle by 3 dezrees as
the allowable equilibrium stagnation temperature 1s approached,

The form of the gain factors that multiply the temperature derivatives
are similar to the factors discussed previcusly, but are slightly wmore compli-
cated to derive. These factors, in effect, must anticipate the temperature
gradient and start corrective action that will take into account the response
time required to provide a relief. Assume that 10 seconds are required for
corrective action to be felt by the vehicle and that the maximum temperature
rate to be expected is on the order of 20 degrees per second. At this rate,
in 10 seconds, a temperature rise of 200 degrees would occur. Therefore, if
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this rate is encountered when the temperature 1s already 800 degrees corrective
action must be occurring. Assuming further that only about a 3 degrees change
in angle will be sufficient t¢ start the corrective zction, typical CQ(TS) and
C»(T,) sain fucctions would be as shown in Figures (6.15) and (6.16).

-2 20
=151+ A5 -
Co(Tg) CE(Te)

--lO o llO I~
--05 = '05 T

ol 4 L l i i 0 Jr I l | ]

0 hoo 600 800 1000 0 koo 600 800 1000
Tg OR Ta ©R
Figure 6.15 Gain Factor Co{Tg) Fizure 6.16 Gain Factor Co(Te)

6.3.3 Discussion - I% should be noted that the preceding explanation is
only an exauple of the vroblem solution philosophy to be used. The actual
form of the gain-factor functlons will have to be determined empirically and
will depend upon the asrodynamric, thermodynamie, and inertia characteristics
of the vehicle, the control used, and the anticipated flicht path.

The temwperature cocaputation subprogram of Section 7 is an approximate
solution of the thin-skin tempersture of a two-dimensional flat plate ané of
the equilibrium stagration-point temperature, Thnis computation is used in
lieu of a2 wmore exact program due Lo machlne storage limitations and computation
tire., 8Since the temperatures computed are not exact, the allowable iemperature
used in specifying the gain factors should asccount for the approximzations
involved.

Special flight conditions and/or particular combinations of sllowable skin
and stagnation-point temperatures may preclude tempersture limiting by the
method outlined. An example situaticn may occur when the vehicle is in a
vertical climb with the equilibrium stagnation-pcint temperature reaching its
allowable Rlimit. In such a case, the normal correction comnand would be to
increase the angle of attack, but the particular flight attitude is such that
the maximum relieving action may be occurring. Unless the increase in angle
of attack produced a substantial increase in draz, and therefore a deceleration,
the corrective action given by the present prograwm way not produce the desired
results. Another situation which may occcur is when the allowable temperatures
are specified so low that, resardless of the maneuver of the vehicle, the
limiting temperatures will be exceeded. It is necessary, therefore, to examine
the physical situaticon of the flight and the control requested before the
temperature limiting program is used.
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7. AERCDYNAMIC HEATING SUBPROGRAMS

The SDF computer programn includes a subpregram to monitor a characteristic
structursl temperature or aerodynamic heating rate, In addition to providing a
knowledge of the heating parameter, or temperatures, the aercdynamic heating
subprogram also provides input information for an alternate flight-path control
program so that the degree of heating may be pertially controlled, The aero-
dynemic heating subprogram may also provide a reference temperature to the aero-
dyramic data input subprogram for use in meodifying aerodynamic coefficients for
the effects of structural tenperature on static aercelasticity.

To satisfy the auxiliary requirements of the aerodynamic heating program
requires a problem formulation which will account for the variation in local
flow properties with angle of attack, boundsry-layer type, Mach number, alti-
tude, and type of structure. However, the problem of aerodynamic heating is a
complicated one and a detalled analysis of the temperatures in an actual
structure recuires an extensive computation. In view of the extensive computa-
tions asscciated with the SDF computer program, it is necessary to simplify the
aerodynamic heating subprogram as much as pogsible while retaining those features
of the solution required for the rest of the program.

The aerodynamic heating subprogram formulation outlined in this section is
made up of two parts; one of which computes the thin-skin temperature of a flat
surface at angle of attack assuming two-dimensional flow with an attached shock
wave; and the second which computes the equilibrium stagnation temperature on a
hemispherical, or hemicylinder, nose. The combination of these two problem
formulaticns provides ftemperatures with the required properties which are of
sufficient accuracy for the menitoring and control purposes of this program.
More exact analyses of the heating of particular structures must, of course,
be performed with mcre sophisticated heating problem formulations which are
beyond the scope of this analysis.

7.1 Thin-Skin Temperature of Arbitrary Wedge at Angle of Attack. - The
computation of the thin-skin temperature of a two-dimensional flat surface at
angle of attack, as applied to the aerodynamic heating subprogram of the SDF
ccmputer program, is developed as follows:

Ignoring cornduction into the structure, the basic heat energy-balance
equation for an element of skin is:

Qc - QI‘ = QS (7-1)

which states that the hezt energy stored in the skin is the difference between
the convective heat input and the heat radiated to space. Basic definitions of
the three quantities involved may be expressed as:

h

Qc == (Hyy - Hg) (7.2)
‘p

Qr = oeg(Ty¥ - T4 (7.3)

QS = SSDSCPSTS (7 lt})
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Although relatively simple in appearance, the resulting differential equation has
non-linear coefficlents thereby complicating the soluticn when classical methcds
are used, However, the predictor-corrector integration subroutine used in the
SDF camputer program allows the problem t¢ be solved with a reasonable amount of
computation effort.

Solving for Ty gives

© h g Eg I 4
Tg = Hzw - H - e {T - T .
5 m ( W S) 58 pSCps ( 5 T ) (7 5)

where cp . and €g are properties of the skin material and surface coating, and h,
Cps and ﬁs are properties of the air flowing over the peint on the body under
consideration, both of which are functicns of Tg, the skin temperature.

The auxiliary tunctions defining the properties noted above will now be
defined. The method of defining the heat transfer properties is based upon the
reference enthalpy method outlined by Eckert in Reference (21). The convective
heat input to the skin depends upon the heat iransfer coefficient, which is
defined by Reference (21) as:

nl Y
Nu = Efl = Ky(Ryt) T (pyir) /3

The notaticn (%) signifies that the quantities are based upon the reference
enthalpy. Letting K = cp*gg*/Pr* and solving for the heat transfer coefficient,
h, gives

#* -
h = KECPWF g H (pxy=2/3 (7.6)
g
The polynomial
H =Dy + DaT + DT (7.7)

approximates, the curve of enthalpy as & function of temperature given by Keenan
and Kaye, Reference (22). The constants are:

Dy =-94.38

Dg = 0.2331

Dy = 8.4 x 107
Equation (7.7) may be used to compute the enthalpy of the air at the skin
temperature, Tg, or the enthalpy of the flow outside the boundary layer corres-
ponding to the local flow temperature, T;. The inverse relation between enthalpy

and temperature is given by:

T = Dy, + DsH + Dgh° (7.8)
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where
Dy, = 400
Dg = 3.829
Dy = -1.978 x 107

Equations (7.7) and (7.8) are valid for the Keenan and Kaye enthalpy
temperature variation to approximately 8000°R but disregard the effects of
dissccietion or ionization. These real gas effects become apparent at approx-
inately LOOO®R, see Figure (7.1). However, within the range of temperatures
(either local or structural) which are tolerable by aircraft of the foresee-
able future, the effects of dissociation are negligible and the Keenan and
Kaye curve is considered valid. For this reason the effects of pressure are
omitted from the releztions for enthalpy, Eguaticns {7.7) and (7.8). The
reference enthalpy is empirically defined in Reference (21) as:

Bt = Hy + 0.5(Hg - Hp) + 0.22(Hgy - Hp) (7.9)
The adiabatic wall temperature is given by
< 2
Va? ryV
Hoy = Hp + JH'Z = py 4 H'2 (7.10)
2J8per 5.,012x10%

The constants K, and Yy, used in Equation (7.6) and the recovery factor TH»
used in Egquation (7.10), depend upon the local Reynolds number of the point
on the surface under consideration. If Ry, is less than Bleritical? the flow
is assumed tc be laminar and the constants have the values:

Ky = 0.332

Ty = 0.500

ry = 0.850
If Ry, is greater thén RNcriticaé’ the flow is assumed to be turbulent and the
constédnts are accordingly revised to

Ky = 0.0296

Yy = 0.800

ry = 0.900

The heat capacity and emissivity characteristics of the skin are funections of the
skin temperature, so that

€g = 11(Tg) (7.11)

and
cpg = £2(Ts) (7.12)

will be introduced as two-dimensional interpolaticns of tabular listings.
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The wiscosity veriation with temperature has been taken as Sutherland's
relaticn

716 H 3/2

7
T #4216 / 500

(7.13)

we = 1,18 x 1077

which zlso neglects the effects of dissociation.

The temperature Ty* may be computed by Egquation (7.8) when H is H*. The
local flow parameters, based upon the reference enthalpy, are defined by

%
p* . 1;2 (7.14)
» TH_:{-
#*Vnl
RN% = f__ﬁ_i;_ﬁ (7.15)

L functional flow diagram ocutlining the sequence of computations to perform the
entire analysis, including the computation of local flow conditions discussed in
Section 7.3, is shown in Figure 7.2.

The thin-skin temperature computation formulated in this section is probably
limited to angles of attack less than 30 degrees because of inadequacies in the
computation of the convective heat transfer coefficient and the limit at which the
shock wave is attached. At higher angies of attack the coefficient computed by
the present method is considered to be too low. However, it is the purpose of the
present analysis to provide a program to the SDF computer program which will
(a) monitor the gross effects of aerodynamic heating, (b) implement the sercthermo-
elasticity tie-in of the aerodynamic characteristics, and (c¢) provide a tempera-
ture feedback reference for the corrective action portion of the autopilot progranm.
Detailed aercdynamic healing computations may be performed by more sophisticated
metheds using the present formulation as an indication of trajectories on flight
conditions for which aerodynamic heating consideraticns are important.,

7.2 Equilibrium Stagnation-Peoint Temperature. - The stagnation-point
equilibrium temperature is cobtained by equating the convective heat flux to the
heat flux radiated teo space. The heat flux to the stagnation-point of a hemisphere
can be predicted by the empirical method of Reference (23) which is based on the
analytical solution of Reference (24) and has been successfully correlated wit?
test data. Use of the methed of Reference (23) results in heat transfer rates 1)
which are slightly higher than those predicted by the theory of Reference (24)
for Mach numbers less than 1#, and is employed because of its simplicity.

(1) The heat transfer coefficients predicted by Reference (23) are approx—
imately 6 per cent higher than those given by the theory of Reference (24) for
Mach numbers on the order of 9 and ror the altitude range of 100,000 to 25C, 000
feet.
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The method assumes conditicns of equilibrium dissceiation behind the normal shock
wave and expresses the stagnation-point heai-flux rate by the following empirical

eguation:
_ 17600 va \2+1° [ Hr - He (7.16)
pSL 26000 HT - Hper

where Hg is given by Equation (7.7) substituting Te for the temperature and
Hp is given by

v 2
HT = HO -+ . ____a (?ol?)
5.012x104
The heat flux radiated to space 1is
Qr = O€g (Teh - T, &) (7.18)

so that a guartic equation is obtained for the equilibrium temperature. A closed
solution exists for the roots of this eguation but the manipulations are rather
tedious, involving the extraction of both cube and square rcots. If a linear
veriation of the emissivity, €os is assumed, the equation is of fifth-order and
golvable only by iterative techniques. For this reason the following linear-
ization is adopted. (An approximation for the emissivity, €5, is also made

later in the anzlysis.) If the equilibrium temperature for the current instant
of time is related to a previcus sclution by

Tep = Te,_1 + AT (7.19)
then the quantity
Tep = (Te_; + ATe)¥

can be expanded to a polyncmial in the equilibrium temperature. The expansion
gives

Te = Toy " + 4Te,_1° 8T + 6Te, 12 BT¢2 + 4To | &3 + AT
which may be approximated by

Teh:Te

3
n & 4 UTe, 1° AT

n-1
sinee the change in equilibrium temperature is small compared to the temperature
itself. The heat radiated may then be approximated by

Qr = € (ATey > Te, - 3Te, 1% = Tp¥) (7.20)
(n-1)

where €g is approximated by the value at the last known temperature T,. This
equation, linear in the equilibrium temperature, may be used in the sclution of
the problem. Since the change in eguilibrium temperature is small compared to
the absclute value of the temperature from the last soclution, the above approx-
imation results in only a small error in most cases. If an iteration is used in
conjunction with this linearization, the error is further reduced.
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An alternate equation will be obtained for the enthalpy, since the curve
fit of Equation (7.7) is other than linear, thereby complicating the solution
for Tg. Therefore

He = Hgp_1 + AHe

but, by definition,
Th

Hb - Ha = f Cp dT
Ta
Therefore, if Ep is the average specific heat between T, and 4OO°R, then
He = Tp (T - 400)

wnere the constant 400 is included to adjust the absolute value of the enthalpy
at a given temperature. This constant is consistent with the reference enthalpy
curve of Reference (22) and Figure (7.1).
Then

Hen-l = Epn—l (Ten—l - 400)

and

He, = Cpy (Te, - 400)

n
The enthalpy variation with temperature is nearly linear, so that
®pn-1 T ®Pn

when AT is small., Then the enthalpy may be written
Ho, = __enzl _ (Te, - 400) (7.21)
n 400 n
(Te,,_y~400)

Bquating Equations (7.16) and (7.20), substituting Equation (7.21) for enthalpy
and solving for Te,, the relat%on

400 2
+D5T T
1760 r[ 3.15 | Hr+ T q-400 (P1+D2Ten_1+D3Te, ;) o, (ome; lMTr“)
psL 26000 HT - Href Ty -
Tep .
3.15

17608 o [ Va ] (D1+D2Tep,14D3Ten_1°) ‘b o .

V’n Vp SL 26000 (HT - Hpes )(Ten_l-ipOO) ®n-1 “ep.7
is cobtained. (7.22)
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A funeticnal flow diagram outlining the sequences of computations required
is shcwn in Figure (7.3). The values of the constant parameters have been com-
bined with the empiriczl constants in the convective heat flux equation. Note
that an interetion loop is provided to improve accuracy if considered necessary
by the analyst.

This computation may be made applicable tec the stzgnation line of a yawed
hemicylinder, approximating a swept-wing leading edge, by suitably altering
Equation (7.22) for the rev%sed definition of convective heat input, Equation
(7.16), to the following:\

W15 e =
_ 17600 iry-Hle ‘/3_ COSLLE (7.23)
V sL 26000 b

Hp ~-Hrer
where
Hp, = By - (Hp-E)(Ll-ry) sin‘h g
or
iy = Hp = 0.15(Hp-H) sinh

7.3 Local Flow Conditions. - Sections 7.l and 7.2 describe the skin
temperature conputation except for the determination of the lcecal flow condi-
tions - Pp, P oy Ty, My,, B, and Ryp. These parameters must be computed using
trajectory quantities cbtained from the remainder of the program. The two-
dimensional pressure on a wedge with an attached shock wave (Reference (25) is
correlated by the similarity parameter My Sin (®y) as shown in Figure (7.4).
Alsce shown in this figure is the pressure predicted by the Tsien hyperscnic
sinilarity relation given in Reference (26), Page 263, which is

op = zx; 06+ [u36 + 2o (7.21)
(uy om)?

where C, i1s defined as the pressure coefficient for the pressure ratic across
the oblique shock wave and O is the total angle of attack of the surface
(i.e., the sum of the angle of attack and the surface wedge angle),

P - P
Cp = —L 5 [ 2 ] (7.25)
0.7 MN P
@y =Dy + Q (7.26)

(2) At the higher Mach numbers the variation of Q, with sweep back is
more nearly proportional to 0053/2 A
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PRESSURE RATIO, P5/Py
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The pressure ratio is therefore

P2 =Gy 0.7 My + 1 (7.27)

jav)

The density ratio across the shock can be expressed as & function of the pres-
sure ratio using the Rankine-Hugoniet relations and is, for air,

6 -Iig-)+ 1
P2 =]_A\PF (7.28)
e 6+ P2
P
The temperature ratio follows directly from the equation of state
T
2 = Po/P (7.29)

T DZ/D

To find V, recuires the computations of MN2 from the relation, for air,

My = 2 1/2 1 7.30
N2 [6(132/13)—1] [Sin{s-aﬁ)] ( )

The shock wave angle can be determined from

B =s5in~d| My (7.31)
My

where My is the free€strean Mach number and My, is the component of the free-
stream Mach number normal to the shock wave. R relation between the pressure
ratio across a normal shock and the Mach number normal to the shock is given by

2
P 7 My -1
RO (7.32)
P 6

fer air, which may be solved for Myy, - Substituting Equation (7.32) into
Equation (7.31) gives

Sin B = Y (6 Po/P + 1)/7 (7.33)
My
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With the shock-wave angle imown, the local Mach numoer may be calculated from
Equatien (7.30) and the local flow velocity Vo may be calculated

Uy =My, T2 49.1 (7.34)

The coefficient of viscosity, k5, and the local Reynolds number RN2 ray be comi-
puted by

3/2
B, = 1eao™ (716 ) T2 (7.35)
T, + 216 )| 590
and '
Va 1
RNQ_ - M (7-36)
Ha
respectively.
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8. INTERPLANETARY TRAJECTORY COMPUTATIONS

The SDF computer program may be used in conjunction with interplanetary
trajectory computer programs to continue the trajectory of a space vehicle
following its arrival at close proximity to a planet, or to determine the near-
planet trajectory injection conditions for interplanetary flight. Interplanetary
trajectory computer programs usually consider the planets as point masses, posi-
tioned by the published ephemerides, and possessing gravitational fields which
may be expressed by gravitational potential functions. From these data the
resultant magnitude and direction of the gravitatlonal field are computed at the
position of the space vehicle. When the trajectory comes close to the surface
of a planet, the effects of the atmosphere and planet's oblateness must be
considered and the positicn and velocity relative to a point on the surface of
the rotating central body may be desired. Tor these reasons the SDF computer
program has been designed to perform the following computations in coordination
with interplanetary computer programs.

{a) Determine the boost-phase trajectory for a vehicle embarking upon a
space flight.

(b) Determine the re-entry and landing maneuver for a vehicle returning
from a space flight.

{c) Calculate that portion of space flight which is near enough to the
surface of the central body that those effects of atmosphere or planet's oblate-
ness which are not included in the interplanetary trajectory computer program
may be considered if necessary.

These computations way be performed with either the six-degree-of-freedom or
three-degree-of-freedom polnt-mass options. Coordination of the two programs
is effected by a semimutomatic tie-in. When transferring from the SDF computer
program to the interplanetary trajectory computer program, a deck of cards is
punched which may be used to prepare the input tape for the interplanetery
computer program. The SDF computer program will accept simllarly prepared
cards when the transfer is from the interplanetary trajectory program.

The ccordinate transformetion required to transfer from one program to
the other 1s included in the ZSDF computer program. A derivation of the trans-
formation is given in Section 3.4. The computations and data input necessary
to initialize the SDF computer program from an interplanetary trajectory
computer program are contained in Part II of this report.

Transfer from cne progrem to another is made on an altitude criterion. The
transfer altitude specification is left to the analyst. Figures (8.1) and (8.2)
show the accelerations due to aerodynamic drag, gravitetional perturbations of
the sun and moon, radiation pressure (for a vehicle loading of one slug per
square foot of radiated area), and the Earth's oblateness. At an altitude of
600,000 feet the accelerations due to airloads (in this case drag) are reduced
to the order of the perturbation eccelerations produced by the sun and moon
which 1s approximetely one part in one million.
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Accelerations due to oblateness are on the order of 0.025 feet per second per
second at 600,000 feet which is a considerable error. A suggested criterion
for transfer is based on the mexlmum accuracy of existing accelerometers which
is on the order of 3..’:’.‘){10"lL feet per second per second. Figure (8.2) shows
that the effect of Earth's oblateness reduces to this value at approximately
90,000,000 feet altitude. If the interplanetary trajectory computer program
used has conslidered the effects of oblateness then the lower altitude may be

used without accumulating this error.
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9. AT{ILIARY CGUPUTATICHD

el

R ition to the -computations wihich can e made from Lhe problem forumla-
‘tj()r:_ ns nresented 10 other saetieong, seoeral other covpubted quantities are

Licoal onifovlotions:

-
1
i
o
pr
T
u
5]
[

P

: FY oo = The total distance traveled over
of tqe Jdlpt is cannutcd a5 the integrated surface range. IT the
aveled qy the vehicle over a given nortion of the trajectory is:

tr

1

then the curvilinear planet surface referenced range is

p = v cos v oat (2.2)

The flisht-nath angle, ¥, may boe
referencad o locel-geocentric
coordinates or corrected for the
Trajectory difference between loczl geoocentric
and local geodetic latitudes (see
Paragranrh 5.4) Tor this computa-
tion. When the mobtion is assumed
to occur over o Tlat, non-rotating
planet, the quantities Ry and 3
in Toustion {Q.EJ are undefined
and the surface-relerence range
mst be re-delined as

e

t
fy= [ 7V Cos ydt  (9.3)
B

tion Totween

jﬂctorv and Bur- 9.2 Crect~Cirele Rangz. -
need Range great-~cirele distance from
launch noint to the instan-
taneous vehicle position, 3, way also be required. Expressions for this

e

distance are dsrived as Tollovs:

Pigure .1 Relas
Tstance Along Tra
Foeo-"elersn

Ty svherical triponouetry, (sce Tigure (9.2))

Cos R = Cos(ﬁO—ﬁL)Cos(SO«ﬁib) + Sin(QOuﬁL)Sin(go-ﬁLo)(Cft{@L T b (2.4
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Figure 9.2 Croat-Cirele Dange

Howevesr, since the plancts ave gonerally oblate srhevoids, P do not 2 constant
radiuve. An approximation may be obtained by averaging the plauct's radius ot
the lsunch point and at the wvehicle's position. Thercfore, deline the sveroge
radius, 1Y, os
Ap. F g
T (6.7)
2

and the surface-referenced grest-circle range from the lounch peint to the
vehicle is
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G = By, TR CosTT ) sin £, sin fr + Cos ¢ Cos Tos (6r-gy ) (3.3)
—_ ) |— 1, ?lLO Ft = ¢LO i, LO

o 2

For the {lat-planet option the range From the launch point must also be re-
defined (sce explanation preceding Zouation (9.3)). Thercfore

R o= N =+ ({¥.,.Y O,

9.3 Dowm and Cross Range -~ To determine at any time the lateral distance
from the initial great circle, an optionzal computation can be made in the three-
degree point mass optlon and in the full six-degree-of-freedom trajectory over

an oblete earth. The initial great circle is defined by the initial heading at
the initial latitude and longltude. Then the crossrange of a particular
trajectory peoint is defined as the perpendicular distance from the point to the
initial great cirele. The downrange is then the distance along the initial great
cirele from the initial point to the point at which the crossrange 1s measured.
Irom the spherical triangle, Figure 9.3, the great cirele range, IF, to the

point T, iz corputed by Equation (9.8). The heading, { , of this great circle

at the initial point is computed from the spherical trlangle, L-1I-F.

in (&, - & c c
sin (6 Lo) os iy Cos ¢Lo
sin Py - sin ﬁLO Cos LF

(¢.10)

tan £

The right snherical triangle LPF is then solved for the domrange, XIP and the
crossrange, Yp.

-1 { Cos IT
= Rt .
Xp=R! cos ( Cos (sin~t(sin IF sin E))) (9.11)
Y =R' sin”" (sin IF sin §) (5.12)
where
£ =¢- o,

Rt is defined by Equation (9.7)
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- Initial
Great Circle

LF = Great Circle
Range, RY,
from initial
point L to
point F.

FPigure 9.3 Downrange and Crossrange Ceometry

.4 Theorsticel Purnout Velocity and Losscs. - Tor trajactory and nerforponce
optimization studies 1t is convenient to know the theorctical Turnout velocity
possible and the velocity losses due to gravity, serodymamic deag, and atmospheric
bock pressurc upon the engine nomzle. These cuantities way be computed as follows:

Theoretical Velooity

to
V‘theo = ~/f Tyac

ty

Velocity loss Due o Cravity

ts
‘grav & A -gzg Sin 7p A% {o,18)
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Velocity Loss Due to Aerodynanmic
rag

t

8,
Vp = f‘
t

1

at (9.15)

Jigm

Veloci%y Loss Due to Atmospheric
Bock Pressure Unon The Fngine Hozrzle

ty .
P, - Ze at (9.15)
17

The resultant velocity V& is obtained Ly adding the components cowmputed,

Vé = Veneo * Vgrav *iptVp (9.17)

and should compare closely to the surface-referenced speed, V_, obtained from the
trajectory computation, when any initial speed 1s included inthe theoretical
velocity,
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10. INITIALIZATION AND COMPUTATION

Beginning & calculation with the generalized computer program requires
not only the Introduction of certain initial conditions and the necessary
tabular values of the vehicle characteristics but also special machine compu-
tations to prepare the initial conditlons data for use in the subsequent
solution. The initial conditlons as introduced by the analyst must be in a
form which are readily available and not redundant.

Initial data which must be specified for every computation is of three
types: (1) identification (remerks, case number, security classification,
stage); {(2) integration (integration time interval, integration method,
print interval, initial time); and (3) atmospheric and gravitational refer-
ence data. In addition, the position, velocity, and vehlcle attitude and
angular rates must be specified. However, the form of this data is dependent
upon the option calculation being made. For the convenlence of the analyst
certain auxiliary calculations can also be made if specified by input data,
Because of the multiple possibllities available, a detailed listing of the
Input data is contained in the User's Manual. To simplify the preparation
of the data cards, nominal values have been assigned to all input data except
that which requires symbolic nemes as data and for tabular listings. The
computational flow diagrams of the various calculetions are also contained
in the User's Manual.
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11. REVERSE OPTION

A reverse option of computation is incorporated into the SDF computer program
vhereby known irajectory and motion information may be introduced into the program
to compute unknown assrodynamic forces and moments.

11.1 Trajectory Date from Fixed Radar Station and Messured Body Rates. - The
Six~Degreea-of-Freedom reverse-option prograam computation wequence is constructed
as follows: Considering first the method to be used vhen the trajectory position
data are referenced to a fixed radar station, the data are assumed to be in terms
of a Cartesian coordinate system oriented at sowe point on the earth. Signify
these data bY Xy, ¥p, Ty, 8Ud Xy, ¥u, 804 Zy for position and velocity, respect-
ively. The origin of this systew iz located at the longitude of the radar refer-
ence point, (which is algo the inftial longitude of the inertial X-axis), at the
geocentric latitude of the radar reference point, and at an altitude, h,, above
the reference ellipsoid.

The geocentric latitude of the location of the origin of the mecagured data
(#1,), the altitude of the origin sbove the reference ellipsoid (ho), and the
azimuth angle (A) of the xy-axis are specified for the problem, FPigure 11.L
Next the calculation of the inertial-axis position of the origin of the measured
data is made. The analysis of Section 5.4 discusses the acceptable approximation
that the geocentric altitude is equal to the geodetic altitude, h,. Preparatory
to the transformation of the weasured trajectory data from the earth-reference
axes system to the inertial coordinate system, the a-b-c get of direction cosines
are computed. The trangformation matrix vhich orients a platform axes to the
inertial axes (see Section 3.2) is directly spplicable to the required transfor-
mation providing the inertial angle Bp is set equal to -wpt. The measured posi-
tion and linear velocity data (or specified data, if the reverse progras is being
used as a design problem) are introduced in the earth-referenced coordinates and
transformed to inertial coordinates.

This completes the portion of the solution sequence peculiar to the use of
sarth-reference trajectory data such as radar data. 7The measured inertial compo-
nents of position and velocity, referenced to the inertial cocrdinate system,
are the standard form required for all methods of operating the present reverse-
option progras. Alternate wethods of operation are discussed in Paregraph 11.2.

Since the equations of motion, of necessity, are solved in a body-axes
coordinate system, the inertial components of inertial velocity must be trans-
formed to body components of inertial velocity. This transformation is made by
the 1-m-n set of direction cosines, see Section 3.1. (This transformation matrix
is computed by tvo methods depending upon vhether the problem is baing computed the
first time or has been rumning for several steps. In the discussionwhich follows,
it will be assumed that the problem 1s being initialized. The solution sequence
will lead to the alternate procedure through the time up-dating technique.) The
geocentric latitude and longitude are computed along with the radial position
from the center of the planet and the inertial angle B. The i-j-k direction
cosines, vhich transform quantities in local-geocentric-horimon coordinates to
inertial coordinates, are computed for subsequent use.
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The measured body angular rates are introduced. From here the problem
proceeds along the sequence marked "first time only". The initial values of
@, 9, and § are introduced, from vhich the d-e-f set of direction cosines are
cowputed, see Section 3.2, The required initial values of the l-m-n directiomn
cosines, the original meassured trajectory information is transformed from the
inertial components to the required body-axes components.

This completes the first initializing pass through the problem, having
obtained the initial body angular rates, Pwm, qm, &nd rp; and the body components
of velocity, uy, vy, and wyx. The problem leads through the up-dating operation
snd thence for the second time through the computation for B up to the computa-
tion of the l-m-n direction cosines. The l-w-n set of direction cosines are now
obtained allowing transformation to body components of velocity to be pade and
goes through the up-dating loop a second time. The third cycle is identical to
the second cycle through the calculation of the body-axes cowponent. The body
components of acceleration at point (n-1), using the average slope between the
n-2 and n data points, are then computed. To allow this computation to proceed
requires the n-2 point, which was the reason for the initializing passes through
the first part of the problem. It should be noted, then, that the subsequent
computation applies to the (n-l), or proceeding, time step.

The mesaured wvind date are introduced into the computation, transferred to
inertial wind components, and thence i¢ body components. The eirspeed is computed
by the normal definition (e.g., see Section 3.3),

The gravitation terms are computed and transformed to body-axes componenta. The
measured atmospheric properties, or the stendard values, are introduced. Mach num-
ber and reference dynamic pressure are computed. Other forces and moments, given
as functionas of time, in body coordinates, are introduced together with the vehicle
physical data.

This leads the problem sequence to the equations of motion, which solves for
the forces and moments using the body components of escceleration, velocity, and
angular rates obtained from the preceeding analysis. These forces and moments are
reduced to the serodynswic coefficients, C,, Cys Cn, 01, Cp, and Cn. After compu-
ting the angles of attack and sidesllip, the sequence again up-detes the time and
starts the yrogram solution of the next known point.

11.2 Alternmate Methods of Data Imput and Solution. - Several alternate methods
of operating the reverse program option may be deviged depending upon the trajectory
information vhich is available. Some of these techniques are considered in the
following paragraphs. It ghould be noted, however, that only the formulation of
Section 1l1.] has been prepared in the computer program.

Vhen measured acceleration data, obtained from accelerometers mounted on an
inertial platform oriented to the launch point vertical and flight azimuth, are
used in place of measured radar data, the computations indicated in Figure 111 would
be replaced. The alternate computation would begin with the orientation of the
inertial platform, the initial conditions, and proceed to the main sequence the
first-time through. The problem re-enters the acceleration seguence vhere the
trajectory acceleration data are stored. Resolving the measured acceleration
data, to inertial axes deta and subtracting that due to gravity, provides the
inertial acceleration. Integrate at time steps equal to the time intervals of
the measured dats and the solution sequence continues as before.
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Other pethods of operating the reverse option program could employ posi-~
tion data obtained from radar obgervations and the linear velocities from
platfore mounted accelerometers. In this case parts of both of the data imput
programs discussed above would be used to introduce the known trajectory. Also
accelerometer data may be introduced from an inertial platform which has been
torqued according.to a particular program. In this case the torquing program
would be incorporated along with the coordinate transformations, see Section 3.2.
In some cases measured body inertial angular rates ry) Way not be avail-
able, An alternate pethod of introducing the requir ’ohéntation would dbe to
observe the Euler angles of the body from photographlec records as a function of
time and differentiate to get the Pn, %, and r, Also date mey be obtained
from an ipnertisl platform, in which cage the information required to compute
l-p-n get of direction cosines is available directly.

11.3 Non-Rotating Body Axes Coordinate Systewm - The aerodynsmic coefficients
(Section 11.1) are referenced to a rotating body-axes coordinate system. However,
if the body is rolling as a function of time and an incorrectly measured roll
rate, p, is used, the body attitude and consequently, aerodynamic forces compu-
ted on the rolling vehicle, will be in error. The coefficient of the force which
is actually supporting the vehicle may be continuing in a well behaved fashion
and may be quite accurate. Thus the following siwple coordinate transformation
converts all the force coefficients to a non-rotating body axes coordinate sys-
tew which removes errors in the roll attitude of the vehicle. Errors in plitch
and yew do not introduce the type of errors noted mbove and hence are not congi-
dered in the present transformation.

Assuning a yaw-pitch-roll rotation sequence to define the local-geccentric-
referenced body Euler angles y -9-J, respectively, the roll angle may be deter-
mined from

tan ¢ =11 13 +mpjy3 + m3k3_
hl 13 + ne'j3 + n3k3 (11-1)

The values of my | n, 1, ja and ks are available at the appro-
priate times in ﬁhzaﬁrogie:l i’rc;‘?n’th;’ 1—25 gﬁd the I-J-k direction cosines. The
derivation of Equation (11.1) is obtained according to the procedure outlined
in Sections 3.2.2, 3.2.3, and 3.2.4. The force coefficients will be transformed
as follows:

CA‘V = CA
Cy, = Cy cos $ +Cysing

Cy, =CqCB Y -Cysing

or in matrix form (11.2)

Ca, 1 0 0 Cp
Cy | =0 cos § sin g Cy

cﬂv_J 10 -sin § cos @[ |Cy

-

¢Local Qeocentric
Vertical Plane
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The momwent coefficients are transformed by

C1y [ ]
oy | = 1#) |
-cn' -Cp (11.3)

where [ ¢ ] is the transformation matrix defined in Equation (11.2). The
aerodynapic angles, o, and &, are consistent with transformed aerodynamic
force and momwent coefficients, and are defined as follows:

ten O = (v-wy)y and tan /5v - (veovyly

(11.%)
since (“'“w) = {u-uy)y
The required velocity components are calculated by
[ (ueu,)y, (u-u,)
(vwaly | = (91| (vow)
(v, )y S (11.5)

The functional flow diagram for the coordinate transformation is showm in
Figure 1l1.l.

11.4 limitations on Reverse Option - There are several aspects of the
reverse program option vhich should be noted since they limit the applicability
of the method.

(a) The reverse-program option may be generally applied only to the six-
degree-of -freedom analysis. The three-degree-of-freedom longitudinal motion may
be considered, but analysis iz restricted to motion in the planet's equatorial
plane or 1o a non-rotating spherical planet. Reverse options could be get up
using other equations of motion, however under somwe conditions (e.g., the point
mass trajectory analysis with thrust forces) the normal trajectory informstion
aveilsble is ingufficient for a reverse option solution.

(b) All input data should be corrected for gzero shift, instrument error,
etc., and should be smooth. The smoothing of the data must actually portray the
peth of the vehicle. Swmoothing flight-teat data by a least squares method or a
direct polynominal fit might not be adequate, and further smoothing by inspec-
tion or by more powerful mathematical methods may be required. The aerodynamic
force data obtained will, of course, be only as good as the trajectory data
introduced.

{¢) The radar data coordinste system orientation on the earth (usually
the launch point) is required. The positive x, axis will be meagured along
the firing azimuth, the positive z, axis down along the geccentric radius, and
the positive y, axis vill be measured to the right to meke a right-hand Carte-
sian system,
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(4) The body engular rates, Py, Gy Tn, should De obtained by direct
measurement..

(e) All data other tham aerodynemic forces and woments required in the
equations of motion should be givern. This includes the mass and inertia
characteristics, and engine forces and moments.

11.5 Aerodynamic Derivatives -~ The aerodynamic coefficients computed by
the reverse option are related to the aerodynamic derivatives. Omne method of
determining the relationship between several independent variables and a depen-
dent verisble 1z the multiple regression technique, Reference { 27 ), Section
7.3; Reference ( 28 ), Section 37.3; and Reference ( 29 }. If the aerodynamic
coefficients are assumed to be summations of the products of independent vari-
ables and the corresponding aerodynamic derivatives, then the aerodynsmic equa-
tions as shown in Table 1 may be written in the form:

Y‘v = CO + clx1 + CQXQ + see ¥ Cix;[ sas + Cka (11-6)

vhere:
Y" denotes the dependent varisble as computed from Eq. {11.6)
Xy denotes the independent variable
C4 denotes the corresponding aerodynamic derivative
Y denotes the measured dependent variable (aerodynamic coefficient)
subscript v denotes the index of the set of values (v = 1,2, .... n)
subscript 1 denotes the particular independent variable (£ = 1,2, «c.. k)
subseript j demotes an independent variable different from i

The solution of this type of equation is done by the method of least squares,
Reference ( 27 ), p. 130. The maximum likelihood estimates of the constants,
Cy, sre the values which minimize the sum of the squares of the residuals,

n
z (Y, - Y'v)a , where the regression equation 1s evaluated
vl

in the form:
74
vhere:
Xy = xiv - X3
X; =1 n
t n £ v

The coefficients of equation 11.7 are related to the original aerodynawic
derivatives of equation 11.6:

ool - Pt -t - AT R (10.8)
C:l:/‘gj_

The maxiwum likelihood estimates, denoted by an asterisk, are determined
by the solution of the normal equations, Reference { 27 ), p» 131, or by
Cramer's Rule, Reference ( 28 ), p. 552.
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TABLE 1

ABRODYNAMIC EQUATIONS

2 2 4
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+ + 2 2 + J 5
/Al AR AN I <1, B2 Uy L
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1-1 Loy L1y (1=1,2, ... k) (11.9)

v=1
n

oy=53 2. WX
v=1

Yo=Y - X

L =111 s e 1}k

lkl LR lkk

Lij = cofactor of lij = (-1)1 +J lminorij‘
Iminor1J‘ is formed by
striking out the 1 row

and j column of the L
determinant

The desired aerodynemic derivatives are obtained by evaluating equation 11.8
with the results of equation 11.9.

The standard deviation, s, of the curve-fit is defined (Reference 28,Eq. 37.3.3):

2 n
e =1 2 (2, (11.10)
v=l

where:
zZy = (Yy - Y'y) = residual

11.5.1 Superfluous Terms - The form of the regression curve, equation 11.6,
nust be known to compute the aerodynamic derivatives. The aerodynamic equa-
tions presented in Table 1 are the equations used in the basic SDF program.
However, gome of the povwer terms and cross-coupling terms are not necessgary
for particular serodynamic configurastions. Thus, for simplicity, this computer
program has been formulated to use the linear terms plus those other terms
specified by the analyst for individual probleme, However, for program sim-
plicity, it is necessary to add the terms in blocks, i.e.: +the rate terms,

the szquare terms, the cross-coupled terms and the center of gravity terms.

In the event of doubt of the need for a specific block of terms, an analysis
of the veriance may teat the significance of the additional terms, Reference
(29 ), p. 403. The data must be fitted twice: (1) by the regression equation

without the additional terms and (2) with the additional terms. The F-distribu-
tion ratio can then be obtained from the computation:
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p = Rean square of additional variance due to added terms
mean square of variation around regression with sdded terms

1|9 p 2
= 12‘1 (cy El Yy Xy) - 12,1 (cy f‘_l Vv "17)] (11.11)
1 = 2
2540 @k )

vhere: m-k = number of added terms

Comparison of the F-ratio with a F-ratio distribution, Reference ( 29 ),
Table 23.5, provides a test of the probability that the added terms provide

a significantly better fit of the data than the initial regression equation.
The numerator has m-k degrees of freedom and the denominator has n-m-1
degrees of freedow. The computation of the F-ratio is included in the com-
puter program as an optional feature. The significance 1s then left to the
analyst to determine. If the computed P-ratio is larger than the tabular
distribution, then the probability is less than 1 percent (or 5 percent) that
the regression of yleld upon the additional terms in the universe were really
gero. Or, more simply, if the computed F-ratio is greater than the tabulated
distribution, the sdditional terms provide a significantly beiter representa-
tion of the relationship between the aerodynawic coefficients and the aerodynamic
derivatives than the reduced equation.

11.5.2 Autocorrelation - To determine if a trend in the data exiets which is
gradually shifting the meel.l:lé the mean square successive difference, 52, i
conpared to the variance, sg<, of the data including the effect of the trend,
Reference 30 . Thls ratio is computed:

2 n-1
S sl F (agy - %)
32 =)
(11.12)
1 "2_ 2
2 Zy

The computed value, § 2/52 is then cowpared to a significance table for

Von Neumann's ratio, Reference { 29 ), Table 20.5, for a particular probabi-

1lity, chosen here as 5 percgnt. As an exsmple, if n (puwber of observations in
the sample) = 18, the $2/s° must fall between XK = 1.3405 and K' = 2.89i8

to reject the hypothesis that the residuals are significantly autocorrelated.

If the computed ratio is less than the critical value, K, it is indicative

of positive autocorrelation. For flight test data, this might mean, for example,
that the Mach effect on the aerodynamic derivatives is appreciable within the
sagple. The apparent solution to such an undesireable situstion is to divide

the originsl sample into two pamples with different mean values, and repeat the
computations of the sercdynamic derivatives and Von Neumann's ratio for the
swaller geamples. This subdivision of the sample cannot be continued when the num-
ber, n, of observations in the sample becomes so small that the degrees of freedon
reduce below one, and should not approach this 1limit too closely since the confi-
dence interval of the basic calculations will become excessive. The degrees of
freedom are n-k-l; therefore:
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B > k42 (11.13)

For the convenience of the analyst, the computer program will provide
alternate cholices for the gelection of the initial sample size, i.e.,
(1) Mach segment; pre-selected Mach segments by the analyst or (2) maxti-
waw fixed sample size.

11.5.3 Confidence Limits - The confidence interval on an individual aerodynamic
derivative can be obtained in the following manner, Reference { 28 ), Sec. 37.3:

t = (n—k-l)mﬂ__ (A" - A (11.14)
]

vhere t is the value of the Student's t distribution, Reference 28,
Table 4, with n-k-1 degrees of freedom for a specified confidence
coefficient.

From Fq. 37.3.4, Reference { 28 ):
2. L
I T (11.15)

Thus by substitution of Equations 11.5 and 11.10 into Equation 1l.l4 and
rearranging, the confidence interval may be evaluated in the following relation-
ship:

N t
AT+ Ty 8 = /45;.1;1-1“5 Ar - )2 84 (11.16)

11.5.% Multiple Correlstion - The coefficient of multiple correlation (R.)
indicates the degree of the variance of the dependent variable that is explsined
by the k terms of the regresaion equation. A value of one for the coefficient
would denote perfect correlation of all the independent variables with the
eatimated values.

Coefficient of multiple correlations, Reference ( 29 ), p. 191:

n n P
Rya - Iﬁl* (‘E-l yvxlv)"' /g’ (‘él yvxev) + see +/5k*(v{-1¥vxkv)

né_ 2
Y.
s I (11.17)

A functional flow chart of the aerodynamic derivatives computations is
shown 1in Figure 11.2.
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AFPENDICES

Appendices One through Seven have been added to this report in order that
a certain amount of detall may be lncluded for particular porticons of the prob-
lem formulation without interrupting the overall developument being considered.
The following toplcs are dlscussed in the appendices vhich follow.

Appendix
Appendix
Appendix
Appendix

Appendix

Appendix

Appendix

One

Two

Three

Four

Five

Six

Seven

Derivation of Jet Dampling Force and Moments
Rotating Machinery Terms in the Equations of Moticn
An Orthogonality Constraint

A Method of Including Aerothermoelasticity

The Method of Converting Complex Transfer
Functions to Real-Time Differentlial Equations

A Second-Order Simulaticn of the Effects of
Aercelasticity on Autopilot Behavior

Geophysical and Engineering Constants for

the Six-Degree-of-Freedowm Flight-Path Study
Computer Program.

174



APPENDIX I

DERIVATION OF THE JET-DAMPING FORCE AND MOMENT

Introduction - This appendix presents the derivation of relations for the
Jet-damping forces and moments caused by the expelling of the burnt fuel under
conditions of angular rotation (References (One-1), (Cne-2), and {One-3)). The
equations derived are applicable to & rocket, ram=jet, or turbo-jet engine.
However, the contributions derived for a ram-jet or turbo-jet are only part of
the engine flow forces since the change in mowmentum of the air flow, in addition
to the fuel flow, muist be considered. This contribution 1Is assumed here to be
accounted for in the aerodynamics of the body.

The equations are derived for a vehlcle symmetrical about the x-z plane

with motion restricted to this plane. These equations are then extended to
congideration of motion in the horizontel plane using the same assumptions.
This neglects the cross-coupling terms between planes, but since the jet-damping
terms are small corrections to the general equaticns of motion, the omission of
these effects 1is considered permissible in view of the cowmplication required for
their inclusion.

Jet Damping Force - A particle of fuel AYY|within the missile is ejected
out the nozzle in At time (reference Figure (l)).

FAY A4
e Xp —— >
I
dl
N

C.G.

Figure 1 - Beody Geometry for
Thrusting Rocket
With Changing Mass

The increment of force in the x direction is:
AFy = A-m':':'P (1.1)
where Xp is the distance from the center of gravity to the particle AmM. This

force is the thrust term which is considered on the left side of the equations
in the sum of the forces, and hence need not be considered here.
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The increment of force in the z-direction due to the motion of a ANL
particle of fuel is:

DFpp = -20Mx, g - AMxp g (r.2)
which is obtailned from the general expression for acceleration, Equation (2.6},
given in Section 2 of this report by assuming the particle of fuel travels only

in the x-direction and the motion of the body is restricted to the x-plane.
Summing over the total particles ejected

Fap = -2 L AMX, q - ?amjxp a (1.3)
J

Since X q will be large compared to a only the first term in the above
equation will be retained. Now writing &AM as

Am= plxph (I.4)
we have

Fzp = -2q xf Af pdeAd.xP {I.5)

Assume all particles at a given X, are moving at the same velocity and have
the same density so that

Fzp = -2 pr ip axy, (1.6)
X

Also assume that ?%} partlcles being expelled originate from the same point in

the body (say 1j) so that
» [ ]
pPAXp =m (1.7

Then 1o

Fzp = -2q T f ax,

1

or

Fop = -2qm(12 - 11) (1.8)

(1) For solid-propellant radially-burning rockets, 1; coincides with the
center of gravity of the propellant grain. For end-burning rockets 1) is a
varisble with time being the location of the reacting surface. For liquid
propellant rockets, 1] may be approximated as the location of the propelliant
free~-surface center of area in the tank where a weighted average of fuel and
oxidizer locations must be used.

176



It should be noted that the " term is the mass flow rate of the particles
leaving the body and is equal to the negative of the body mass rate of change
with time. Also the distances assoclated with x, have a negative value measured
aft of the center of gravity and the effectlve distance traveled by the parti-
cles 18 designated 1y representing a characteristic distance. The term to add
to the F; term due to Jjet damping is therefore

Fzp = 2Ma 1, (1.9)

is the rate of change of mass of the body and 1 is & characteristic distance
perpendicular to the z-axis along the x-axis, negative 1f extending aft of the
center of gravity. In wost cases, the change in wass will be the fuel flow and,
from the definition of the vehicle mass given in Section 8.2.

dy = - mf (1.10)
at

Using the same analysis in the yaw plane, the jet damping term becomes;
M is the rate of change of mass of the body and ly is the characteristic
distance perpendicular to the y-axis, along the x-~axis, negative i1f extending
aft of the center of gravity.

Jet Damping Moment - Assume that the mlssile is pitching about the instan-

taneous center of gravity. The moment of the incremental force ﬂFzD described
above is

Mp = 2AM¥, Xy q - OMx § (1.12)

Making the same assumptions and following the same genersl development as used
to determine the jet-damping force glves
. 2 2

My = -7na (ly, - lg) (1.13)

Similarly for jet damping about the yaw and roll axes, the moments are

Ip = - ™M (132 - li_) P
» L2 2 (1.14)
Np = - m (ln2 - lnl) r
Let
23 -
1‘312 - 1[2;1 = 12
15, - 18, = 12 (1.15)

where 17, 1y, and 1, are considered characteristic distances wlth the exponent
retained &s an aid to identification. The substitution 1s wmade to conserve
machine storage space,
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APFENDIX II

ROTATING -MACHINERY TERMS IN THE EQUATICNS OF MOTION

This eppendix presents a derivation of the moment contributions due to
the gyroscoplc effects of rotating machinery asbosrd the flight vehicle. An
accounting of such moments, In completely general terws, is exceedingly com-
plicated and lengthy such that & number of simplifying restrictions are
entirely justified. Tor this reason the principal gyroscoplc moments which
will arise for several types of rotating machinery are derived here with an
explanation of the approximations made. The three types of vehicles to which
this derivation is applicable are:

(1) A conventional turbojet or propeller driven aircraft.

(2) A convertiplane in which the engine or propeller is rotated during
transition from verticel to forward flight (or vice versa).

(3) A satellite in which motors are being started and stopped (by proper
selection of coordinate systems).

The general derivation of the rotating-machinery contributions is cutlined for
reference should a particular future applicatlon regquire inclusion of the terms
omitted in the present application.

Figure {1) aids in the description of the rotating-machinery axes system.

Figure 1 - Rotating-Machinery Axes System
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Let the axes system of the rotating machinery be designated as X,.-yr-2,
where Xy is along the shaft and yy, 2z, are perpendicular to X, in & normal
right-handed menner so that y, crossed into zy describes a positive rotation
vector in the positive Xp-direction. The shaft is canted with respect to the
body x-axes at an angle Vp in the x-y plane and pitched at an angle Oy which is
perpendicular to the body x-y plane. A positive ¥, rotation is clockwise when
viewed in the positive z~-directlon. Positive 6, rotation is nose up. The
angle @ is the rotation angle of the shaft and is equal to

t
g. = _g w,dt
where wp is the rotation rate of the shaft.

In matrix notation {see References {Two-l) and (Two-2)) the coordinate
transformation from the body axes to the rotating-machinery axes is:

Xy '
Yp | T $r or ¥r Y (IT.1a)
zp z

or, transforming from the machinery axes back to the body asxes

X xr
y | = |, l-or ‘ )-¢r ! Vp (II.1b)
2 4

r

Moments in the body-axes system due to moments in the rotating-machinery
axes system can be expressed &as:

L Ly
M| = I -V, -8, |-¢r l My (I1.2)
N N,

However, moments of the engine Ly, My, and N are functions of the total shaft
rates, Pp, Qps; and rp and their derivatives pr, GQr, rr.

The total shaft rates are functlions of the body rates, rotational speed of

the shaft, and rotation of the shaft axes system with respect to the body. The
rotation is
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q + 6. Cos ¥y (11.3)

The components, L, M, and N due to the rotating machlnery can be obtained by
substituting the expressions for pr, Gy, Tys; Prs; 4p» &nd Iy into the general
equations for Ly, My, and N, and then performing the indicated coordinate
transformation into the body axes. However, this procedure can be simplified
somewhat by an examination of the physical situation. Any machinery which has
a moment of momentum which is large enough to produce significant gyroscopic
moments will probably be dynamically balanced and the products of inertia will
be zero. The motor or engine shaft will have a fixed mass and geometry so that
all time rate of change of inertia terms will also be zero. Due to the symmetry
of the rotating mass the inertias I, and I,, will be equal. Further, because
of the restrictions of the bearing system the rotation of the shaft in the
machinery axes will all occur about the X, axes as noted In the coordinate
transformation above. With these simplifications the contributions of the
rotating machinery are:

Le = Ixr Pr
Mp = I dp + (I - Ipp) ppry (II.4)
Np = Izr Tp+ (Iyp - Iyxp) Prar

Ixrs Iyr, and Izy are moments of inertia in the Xy, yp, and zp.-axes. The
moments in gﬁe body axes due to the rotating mechinery are:

L = Ly Cos Op Cos ¥y + Mp(Sin f,. Sin 6, Cos ¥ - Cos P, Sin V¥y)
+ Nyp(Cos @, Sin 6, Cos ¥, + Sin #,. Sin V)
M = Ly Cos ©r Sin ¥y + Mp(Sin @y Sin 6y Sin ¥y + Cos Py Cos V¥y) (11.5)
| + Np(Cos @y Sin Oy Sin ¥y - Sin @p Cos ¥y)
N = -1 Sin 6. + My Sin P, Cos @p + Np Cos P, Cos @,

Expanding Equaticn (II.3) for the total turning rates of the rotaeting wmachinery
gives

Pr =@ + p Cos ©p Cos ¥p + q Cos Op Sin ¥ - (r + &r) Sin @y
qy = (p Cos ¥, + 9 Sin ¥,) Sin 6, Sin $r + (¢ Cos ¥, - p Sin ¥;.) Cos

.

+ 08, Cos @.+ (r + %r) Sin @, Cos O,

g
n

- (p Cos ¥, + q Sin ¥.) Cos P, Sin 9. + (p Sin ¥, - q Cos ¥,.) Sin g,

ér Sin ¢r + (r + irr) Cos ¢r Cos Qr (]:I.6)
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Significant simplification of these relations can be made by considering
the relative magnitudes of the several terms. In general the cant angle V¥, is
very small and, except for some problems in dynamic aeroelasticity where the
geometry of the aircraft is not fixed, the rate of turning, %r, is zero., The
present analysis will assume that V¥, and its derivatives are zero. The Op-
terms have been retained to account for the moments generated by & converti-
plane during transition from vertical to forward flight (or vice versa). Also,
the rotational rate of the machinery will be much greater than the body rates
P, 4, and r. Within the limitations of these assumptions, the following
expressions for the rotational rates are obteined. It should be noted that the
relative magnitude of Q. and rp is much smaller than pp.. Therefore, to obtain
reasongble approximaticns for these rates requires the retention of terms which
are negligible for py.

Pr ~ wr

gy =~ pSin @, Sin 6p + (q + 6r) Cos $r + r Sin @r Cos Oy (II.7)

rp & p Cos Pr Sin Op - (g + Op) Sin Pr + r Cos Py Cos Op

The derivatives of the total rotational rates pr, qr, and rp are also
required. The Equation (II.6) should be used for this operation. The deriva-

tives are presented assuming Y and its derivatives to be zero.

N « .
Gp + P COS Op - P @p Sin ©p - r Sin 6, - r O Cos O,

Pr

L] - - L]
ar p @ Sin 6y Cos P + (p 6, + ») Sin P Cos 6y + (p - r 6p)8in 6, Sin @,

- (g + br) br Sin @. + (q + 5}) Cos . + r ﬁr Cos @, Cos ¢fII 8)

Iy -p @, Sin Op Sin @, + (p &, + r) Cos f. Cos Op + (p - r 6p)Sin 6, Cos P

- (q + Op) Pr Cos P, - (g + br) Sin @y - r Py Cos ©, Sin Pr

n

However, ér is W, and by the same reasoning which resulted in the simplifica-
tion of Equation Set II.6 to Equation Set II.7, the differentials are
reasonably approximated by

. . ’
Pr sxWwp + ﬁ Cos @y - p ©p Sin 6, - r Sin 6, - r 0 Cos Op
>
Gr =~ M Sin Oy Cos P - (q + 0,) wy Sin @ + r w, Cos @, Cos @,

)
= p o S 0 5 - (0 B0 o o B - o oG B

The moments in the machlinery axes are cbtained by substituting Equations (11.7)
and (II.9) into Equation (II.hW)

- L] » »
Ly = Iyr (Op + D Cos ©p - p Oy Sin 6, - r Sin Oy - r 6, Cos &)
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L ]
My = Iyrl-p wp Sin Op Cos Py -(q + Or) wy Sin Py + r wy Cos Op Cos ﬁr]

.
(Ixr - Izr) Wy [p Cos ¢I‘ Sin Gr -(q_ + 01‘) Sin ¢I‘ + r Cos ¢I‘ Cos gI‘]

+

=1
#

r = lagp I-p wy Sin O, Sin P -(q + Op) wy Cos P - r wy Cos @, Sin ¢r]

+

(Iyr ~ Iyp) Wy [p Sin @, Sin 0, + (q + ér) Cos @ + r Sin @Pp Cos Or]

(I1.10)
Substituting the expressions of Equation (II.10) into the coordinate transfor-
mation of Equation (II.5), the moments L, M, and N are obtained.

L = Iyp(ty + p Cos O - p Op Sin O - T Sin 6y - r O Cos Op) Cos @,
+ Iy Lp wp Cos @y Sin? O, Sin Pr -(q + Op) wp Sin® B, Sin o
r wye Cos @, Cos G Sin . Sin o%] +(Ixp-Tzr) wr[? Cos @ Sin® O Sin @,

+

(q + 0p) Sin® Pr Sin 6. + r Cos Py Cos &, Sin Pr Sin 9{]

+

Izr[}p wy Sin @, Sin? 6, Cos fr - (q + 6p) Wy Cos® ¢r Sin Oy

r w, Sin . Cos Oy Cos @, Sin 9?] + (Iyp = Ixr) wrl% Sin §. Sin2 6, Cos .

(q + 8p) Cos? Py Sin 6p + r Sin $, Cos 6r Cos P, Sin O,

+

As noted earlier, the inertias Iyr and I,,. will be assumed to be equal, therefore
[] [ L)
L = Iyp(Wp + D CoS Op - D O Sin 6 - r Sin Op - r O, Cos 6;) Cos O

- I, wp (g + 6p) Sin 6,

xr

and similerly for M, and N

M= Iy we (pSin 6 + r Cos ©) (II.11)

]

fi

» L} [ 4 » .
N=-Iyp (Wp + 2 CoS Op = p Op Sin @ - r Sin @ - r 6, Cos ©p) Sin o,
-Ixr ( q + gr ) wr CDS Gr

The predominate terms of this contribution are:

M = Ixr wp (p Sin Gp + r Cos 6,)
N = -Ixr ( q + gIv ) wr Cos Or

and are the terwms normally considered for the types of aireraft considered in
the present derivation. These contributions are programmed into the SDF com-
puter program for normal operation. The derivation of the lesser terms has
been indlcated, however, and may be extended in greater degrees of sophistica-
tion by the user should the particular application require them.
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APPENDIX IIT

AN ORTHOGONALITY CONSTRAINT

Introduction « The direction consines relating body coordinates and inertial
coordinates will be evaluated by solving the nine simultaneous differential equa-
tions noted in Equation (3.12), Section 3.1l. The numerical integration of
Equation (3.12) will produce errors in the resultant direction cosines which in
turn will cause the resolved components of a given vector to be non-orthogonal.
This appendix presents the constraint equations that may be used to improve the
orthogonality of the transformation between beody and inertisl ccordinates. The
results of a dlgital computer study, designed to evaluste the constraint equa-
tions, are also presented. The constraints developed in the following asnalysls
were suggested by the memorandum of Reference (Three-l).

Computation of the Direction Cosines - The directlon cosines to be considered
relate body end inertial coordinates and are defined by Equation (3.1) from
Section 3.1.

X 1, m ny x
Y| = |1 m, n, y (I11.1)
Z 13 w3 n3 z

The direction cosines in Bguation (ITI.1) are given by the solution of the
following nine simultaneous differential equations (see Equation (3.12), Section
3.1 for derivation),

11 = rm - g

ia = rmg - gng

13 = rm3 - qn3

L

m = pny - rll

B, = pop - rly (111.2)

By = gn3 - rlg

no= 4l -y
np = glp - Py
n3 = q13 - pm3

Let the matrix of dlrection cosines eveluated at & given time, by the numericsal
integration of Equation (3.12), be defined as the A, matrix;
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13, m, nlg
A = |1z, wp, mnp (111.3)

13, ®3e n3,

The true orthogonal matrix of direction cosines at the same time will be
defined as the A matrix;

ll ml nl
A = ]1lp wm np (TIT.4)
13 m3 n3

Since A 18 orthogonal, the value of A, as & determlnant, is unity, and each
term in A 15 equal to 1te cofactor. For example,

ml = 13!12 - 12113

Constraint Bquations - A method of preventing divergence in the numerical
integration of the nine direction cosine rates will be developed. Only errors
that tend to cause dlvergence will be considered. It is assumed that a constant
error, Q, is introduced at every time step such that each direction cosine 1is
modified by 1 + &, thus

Ae = (L+a) A (II1.5)

It will be shown that this type of error may be greatly diminished by averaging
the watrix of calculated direction cosines with the transposed inverse of the
matrix of calculated direction cosines.

The Inverse of the computed matrix, A,, is equal to the reciprocal of the
determinant of A, times the transposed cofactors of Az, Recalling that each
term in the orthogonal A matrix is equal to its cofactor and that the determinant
of A is unity, the inverse of A, is written from Equation (III.5)

At = 1 (IT1.6)

l+«

where the superscript -1 indicates the inverse of a matrix and the subscript T
denctes the transpose of a matrix, For ¢ << 1 the Maclaurin serles expansion
of 1/(1 + ) converges rapidly, and terms of order two and higher may be neglected.

1l = - 2_
—=— 1-a+d -@5+.. (III.7)

Substituting Equation (III.7) into Equation (III.6) glves:

184



A = (1 - a) A (111.8)

c
The transpose of Equation (III.8) is:

AE; =(1-a)A (111.9)

-1
The average of corresponding terms in the ACT and Ay matrices eliminates
the assumed error, silnce

1/2[11.;,]1', +Ac] =A[l_.é_a_. + ;__%_g] = 4
(III.10)

Other types of errors are Introduced through numerical integration which are
not necessarlly eliminated by this averaging process. Therefore, this con-
straint 1s not intended to improve the accuracy of the direction cosines but
rather is used to prevent divergence and meintain an orthogonal transformation.

The computer equations required to wmechanize the constraint are presented
below., The determinant of A. is:

A = llc mgc n3c + 13c mlc n2, + lgc w3, n]_c (111 1)
- 13g mp, mp, - 1p, m, 03, - 11, @3, np,

The inverse of the transpose of A, is

(mgc n3, - ng, m3c) (nac l3c -—12c n3c) (12c w3, -mac l3c)

-1
hop =% |(my, w3, -wm m3) (1, n3, -my 13) (m, 13, -1, mg)
(m, mae -m, m) (m, 1z, -mp, Li)) (g e T M la)
(II1.12)
-1
For convenience let Agn Dbe written as

4 t 1

ll my ny

"l t ¥
Aep= |12 m b (III.13)

[} L) [

3 ® Mg

-1
Then 1/2(Aecp + Ac), the matrix of direction cosines with the error, a,
attenuated, may be written as
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' ' '
(l]_c + 1) (mlc + ml) (nlc + )

A=1f2 (12c + 15) (mgc + mé) (ngc + né) (TII.14)

(13, + lé) (m3c + m;) (n3, + né)

Equations (III.1l) through (III.1L) are required to employ the orthogonality
constraint. The matrix of Equation (III.1l4) contains the corrected direction
cosines relating body and lnertial coordinates.

Evaluation of the Constraint - To evaluate the effectiveness of the con-
straint, Equation (III1.2) was solved simultaneouly using Modified Euler inte-
gration with a time step of 0.0l second. The body angular rates, p, q, and r,
were selected so that the body coordinates were rotated at one revolution per
second about an axis fixed with respect to lnertial coordinates. Therefore,
at the end of each second, the direction cosine matrix relating the two coor-
dinate systems is a unit matrix. The accuracy of the individual direction
cosines may easily be determined at the end of each second.

The criterion used to evaluate the orthogonality of the direction cosines
is to multiply the computed matrix of direction cosines by its transpose. For
an orthogonal transformation, & unit matrix ls the correet result of this
mltiplication. The elements of the product of the computed matrix with its
transpose 1s compared with corresponding elements of a unit matrix. This
comparison is used as a criterion for evaluating the orthogonelity of the
computed matrix of direction cosines with 1ts transpose produced a matrix iy
with nunbers along the maln diagonal that differed from unity by about 3 x 107 .
The off-diagonal numbe:s which should have been zero were about 6 x 10-6, After
the same number of revolutions with the conastraint developed above employed,
the product of the computed matrix with its tranapose Eroduced numbers along
the main diagonal which differed from unity by 2 x 10-Y. The off-diagonsl
nunbers were about 8 x 10-10. From these results we may conclude that the
orthogonality of the transformation is markedly improved by using the constraint
with Modified Euler integration.
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APPENDIX IV

A METHOD OF INCLUDING AEROTHERMOELASTICITY

Aerothermoelastic Effects - The effect of static aerctherwoelasticity on
the aerodynemic coefficients will be accounted for in some of the aercdynamlc
subprograms. This effect results from the deflection and distortion of the
heated structure under loading. Considerable theoretical work has been devoted
to the problem of static aerocelasticlity. Typical examples are References (Four-
1}, (Four-2), and (Four-3)}. The magnitude of effects is dependent upon the awount
of deflection of the structure which is, in turn, a function of the structural
rigidity.

A development of the statle aercthermoelastic terms to be Included in the
program follows. Let F represent any one of the orthogonal components of asro-
dynamic force or moment acting on & rigid alrframe at a given flight condition,
and let F' represent the force or moment acting on the elastic airframe under the
same conditions. Then:

F' = F + ) AF (1Iv.1)
where AF§{ represents the incremental force (or moment) contribution of the i-th
member of the airframe due to its structural deflection, &, under load. Assuming
linear deflection-load characteristics,

&F, = aFf B (Iv.2)
a5y

The i-th member will deflect in a given plane due to both inertia loads, n, and
aerodynamic loads, N, on the member in that plane so that

L]
By = ggi n + g%i Ny (Iv.3)
and since
Ny = Ny + d¥y B (IV.h)
ddy
we have

08 ob
. Rt M (Iv.5)
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Substituting Equations (IV.2) and (IV.5) into Equation (IV.l), and noting that
n = §'/Wp, we obtain

ob N_' + B N
F' = F + VdFy ﬁi Wip &% 1 (1v.6)

or

F'=F+N'Z[Eﬂaﬁi (Iv.7)
1

ang 9
N' = N + N dé Iv.8
+ :Z: - 16 ( )
“ON
and
aNg o8y dNy
NN = (158 5%:‘“‘ (Iv.9)
L - 96L dNi

=
&

It is normally more convenlent to work with coefficlents, rather than forces or
moments, therefore

dF = dCp go*s (Iv.10)
dd, asy
dFf = 4Cpy q*s (Iv.11)
dd4 a8y

The effect of a change in the modulus of elasticity from the reference-tempersture
value, Ey, can be introduced in the following way:

81 = (9 E V.12
() (3 )
Q

i
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Introducing these expressions into Equation (IV.9), we obtain
() &), (), 2
(.05, (B)
() (55, (7], &
1- (S—f}i‘) ;. (%Q)i (g%:’-) (q*s)

N'/N =

o84

on

" (3, (B),

1 +§:

L

1=y

ad4

i |

-

(1v.13)

(Iv.14)

An analysis of the structure under the influence of various temperature distri-
butions will yleld the parameters necessary to evaluate the above eguation for a
constant dynamic pressure. Repeated spplications, with varylng dynamic pressure,
will result in the functional dependence of the (aerocelastic/rigid) load ratio upon
the temperature distribution and dynamic pressure. A couplete analysis would require
that the effect of each of the independent variables considered in the determination
of the aerodynamlc coefficients, (a, B, &E, Bqs Br, My, Ts), be evaluated. However,
the scope of such an analysis is beyond that gesired for this program. A program
which coculd accomplish this analysis would require wmore machine space than that
requlred by the SPF computer program,

It therefore becomes necessary to make certaln simplifying assumptions in
the sbove analysis. Since the primary object of the SDF computer program is to
evaluate performance snd not highly specialized design problems, these assumptions
are justifiable. This philosophy is conslatent with that followed in the aero-
dynamic heating program, where the calculations are limited to 2 or 3 monitoring
temperatures. The determination of the temperature distribution throughout the
structure is beyond the scope of the program.

In view of thiz, let us make the followlng assumption,

(&), (8

It is now possible to group some of the terms in Equation (IV.1h) into constants
(for a particular Mach number), and the equation becomes

e Y [
R [T R ]

(Iv.15)

(IV.16)
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where
ANy (1Iv.17)

Ko = Eg 5 g% %_gxiu (Iv.18)

K3 = Eq S%—g-bi!i?r?} %—5 (1v.19)
Equation (IV.16) may be written in the followlng way:

N'/N = 1+x (Iv.20)

1-3
The denominator may be expanded by the binomial theorem to give
T } 5 = -y te1+y+P@P+3 +0une (Iv.21)

which is approximately given by

1{y = 14y (Iv.22)
when y is small relative to unity. Then

NM/N = (1L+x)(1L+y) (1v.23)
or, again retaining only first-order terms in x and y,

NM/N=1+x+y (Iv.24)
Now

X = 952 K3 (Iv.25)

E LdT - Kp(q*/E)

If this equatlon is also expanded in & binomiel series, and only the first-order
terms retained, we obitain:

X = _q__*z:Kl (1 + Kog* ) (Iv.26)
E 3
Similarly
y = g* §:K3(1+M ) (Iv.27)
E E
Substituting Equations (IV.26) and (IV.27) into Equation (IV.2k4)
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t/N = EE Ko _g* E Ko g*

N = g .28
/N=14+ E* [ Kl 1+ = ) o+ K3 (1 + = {] (1Iv.28)
or

The term (q*/E) may be represented in the following way

a*t . g Eo
E E, E (Iv.30}

Making this substitution into Equation (IV.29), we obtain
» \2 (B, \P(1V. 31)
N/N=1+( YK + 21(3)(%_)(%9) + ( TKikp + T Kskp) (—%—) (EQ)
o [+]

Typlcal examples of the (EO/E) ratloc for verious materials are presented as a
function of temperature in Figure (1). In this subprogram an (Ey/E) ratio will

be input as & function of a reference structural temperature. The ratic is to be
representative of the entire structure, as indicated in Equation (Iv.15). The
reference structural temperature variation will be determined in the aerodynamic
heating subprogram. Utilizing the interpolated (Eo/E) ratio, Equation (IV.31) may
be expressed as

N'/N = 1+ Ajg* (g—Q) + Ayq*® (%‘Q)a (1v. 32)

vhere
A = (XK + T K3)/E, (1v.33)
a = ( KK, + ¥ KeKp)/Eo (1v.34)

Equation (IV.34) will be evalusted for the following force and moment derivatives:

A typlcal example is

! E 2 [ Eo\2
Chy = Chy [ L + Ajq* (ﬁn) + Aog* (E—°) (1v.35)

Figure (2) gives an indication of the dynamic pressure effect on the elastic
control derivative, CMg,, at various Mach numbers. The points denoted by symbols
have been computed by tHe "exmct" method which accounts for the load and tempera-
ture distribution through an actual structure. The so0lid line is a second-degree
curve it of these polnts which demonstrates very acceptable accuracy. The first-
order approximation to the second-order curve fit and a straight-line least-squares
curve fit are alsco shown 1n this figure. In certain cases the straight-line curve
fit gives smell incrementsl errors, but large percentage errors because of the
magnitude of the derivative. For this reason the second order term will be retained
in the above equations. With these assumptions and limitations, the serothermo-
elastic effects are introduced as indicated by the equation flow diagram. It will
be required to input one curve of (Eo/E) versus temperature, and twenty-four curves
conslsting of an individual curve versus Mach number for each of the A values.
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APPENDIX V

THE METHOD OF CONVERTING COMFPLEX TRANSFER FUNCTIONS
TC REAL TIME DIFFERENTIAL EQUATIONS

The transfer functions representing control-system corrective networks,
filters, servos, ete., are usually specified as functiona of the complex frequency,
8. A transfer function may be illustrated in block-diegram form as:

ei(s)——-a-‘ f{8) |~— eo(s)

£(s) = §§%§§ (v.1)

The above notation indicates that the frequency spectrum of the input signal
ej(s) is modified by the transfer function f(s) to describe the output, ey(s).
Since computations in this digital progresm are performed in the time dowain, it
will be necessary to determine the transient response by solving the differential
equations representing the pertinent transfer functlons.

which 1s interpreted as:

Transfer functions containing only poles are easily converted to differen-
tial equation, form by recalling that multiplication by s in the frequency domain
corresponds to differentiation in the time domain when initisl conditions are
zero. (See Transfer Function 1, Table V-1), However, if zeros are present in
a transfer function, a solution for the output will involve a derivative of the
input signal. This derivative would have to be evaluated by a programmed differen-
tiation operation. This undesirable operation may be avolded by first expanding
the transfer function into partial fractions. Each partial fraction represents
8 simple first-order differential equation; the ocutput of a glven transfer func-
tion may be determined by summing the solutions of each of the first-order equations,
according to the partial fraction expansion, The differential equations representing
a8 transfer function with two real zeros and two real poles will bhe developed as an
example.

eal{B) - (r1s41) (108+l) (v.2)
e; (s (13s+lj'(rhs+l)

The partial fraction expansion is obtained by using the procedures outlined
in Reference (Five-l).

&8 _mwm o, C + D (v.3)
es(8) T3 T 198+l rhs+l
where
¢ = AT3-TIINTI-T D= (ay-19 ) (1 -1p) (v.1)
13{13 ~ T . {Ty-73)

194



S R TR LN estasy, wstiesy o w I+ Shi4 5€) 13
hy 4 B+ By =5 Ph 4 P - 2oL [T te gy 3171 —_—— o 2
g FTRE A sy .._wnbwc_.eﬂr o:m._‘.b\_v .nm_\ EM. Lz W 3 7 nk\ 1) mﬁmlk %) {+5%+ Sl
$hm\+ahm‘u I5=% ) a mh+ n.%.kml.mk mm aswiovzy Loy uQ+va+ I1+5.4 - ._ﬂm YRy S/ 4 ¢4 w.huu w N.
o= 2h40%h ¥ g Aastriy naiqy i P
(o =R -2 )%
. B b nh ) TN Y (12X, rtsx,
) 9 C2L—SIXRL- 50D % L SOUIR TRy © e WTEST Y resy) I,
M+ At , 2 ? 24 . (rrsUHSRXesY) Jo
yot SRS Icx e or Ru NI 7 SN BSOS § o=y 2 7 ol
B+ et 29 = A 4 4 h (BN DY, ” AL
LAl g * R (- 200%- 201 7D
23 0= £ g b (U -UXNH-U) .
2= the 't X2 7 Gt 5210 50
- -s 3 SANI+S)1+sH) =
Y S 15 . s 9 (u-s)cs) ||atsy sy 1#S 2s| sousz way 7| U2 o) 2.
CACAREAE 2= 2h+ 2% TDLD 7|75 7T T B sy mayg] | IO P
3 = nh 4 whnh ﬁwhfw&wﬁ\w\.-ﬂ\uulﬂ
) (RN D
€, tfny LY o 9. th+ WR) (ywsy o (LS8 ) i#SH, 1#SE AE B sousz vvny T (r+sEp(1+88) 2o
9T I e R A e T (#=aXiTsD 5|V
£f 2B, 15 = Sh 4 A H-¥ 2% I+SH 1+S% _ 72| owaz tvay Cr+sEX+s%) o}
g e o Regyh| X-X i § TV T n| sery w2 722/ B0
' 2 L2 M| ) . ’ E F) z 1o oIS TN /) [ ASY ).
mk-w& reyTY ‘9. ke 7h QIHIETY LN AFW&U\N%JTMHN‘. Iy TEY [/ /+57 o3 g
mw‘.qt\kuhﬂ..iugq 4 P EY [e2Pz, 2P & SrTF ON L83yt yy stttk ST S 1 .
e _..u__s.w\hwu%.hh\ﬂﬂm 7"t g +...+a.nﬁ|ﬁk+ﬂﬂ»|1k\ IIHOORY N VY LW Y3 TG) 2O THT / o dWw 4
LOALN)  [NOILwaST TUILNPDAA (T S s - zoiwmww\z twwwm.q wosmoszT|  MorLomny azzsnvay|oy

SNOILYND3 TTVILN3I¥344Iq

AWIL TV3Y¥ OL SNOILDNNA ¥IASNVYL X3ITdWOD 40 NOISHIANOD
‘L-A 378VL

195



and the term 7112/T3Th is the value of the transfer function as s approaches
infinity.

The output of thls transfer function way be written as:

eo(s) = {"]3'%%— ei(B) +C YE(S) +D Y3(5) (Vv.5)
where y, and y3 are defined as followa:
y,(s) = %’3—?}—1 (V.6)
eils
y3(e) = ﬁHT

The differential equations represented by Equation (V.6) are:
3 &Q(t) + ¥alt) = eg
7, ¥3(t) + y3(t) = ¢ (v.7)

The output of the transfer function 1ls given by substituting the values
of yo(t) and y3(t) into the following time-domain equation:

eo(t) = f;fﬁ ey(t) + C y,(t) + D y,(t) (v.8)

A representative group of transfer functions and the corresponding time
domein equations have been developed in a similar fashion and are tabuleted in
Table V-1.
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APPENDIX VI

A SECOND-ORDER SIMULATION OF THE EFFECT
OF AEROELASTICITY ON AUTOPILOT BEHAVIOR

A method of approximating the effect of aseroelasticity on the dynamiec behavior
of an sutopilot in the SDF computer program will be developed in this appendix. The
computations required for the simplified aercelastic study are presented in order
that they may be incorporsted into a particular sutopilot subprogram if such a study
is desired. Such ar sercelastic modification was indicated in the typical autopilot
formulation. However, these corrections have not been included in the computer
program assembled to demonstrate the operation of that autopilot.

The purpose of this analysis is to generate an expression for the aercelastic
vibrations that would be sensed by body-mounted rate gyros. The equations are
developed with the following assumptions.

1. The vibratione are excited only by control forces.

2., Only longitudinel and lateral vibrations are considered.

3. The amplitude of & glven point may be represented by a second-
order differential equation.

L4, The aeroelastic angular rates at a given point may be directly
superimposed upon the rigld-body angular rates.

The input data required for this study are:

1. The normalized lateral and longitudinal body-bending mode shapes
for the first, second, and third modes.

2. The natural frequency and structural damping ratio of each mode.

3. Generalized force inputs, 24 and Y;j, for the i-th mode in the
*x-2 and x-y planes respectively.

The complex frequency expression for the instantaneous deflection of the point
to which the normalized body bending curve is referenced may be written as:

zg = 2 (VI.1)

82 4+ Hgy Wzq + wzi2

197



vhere: ;zi’ ;yi Structural damping ratio x-z and x-y planes respectively.

mzi, wyi Natural freguency, x-z and x-y planes respectively.
Zis ¥y Displacement of point to which the mode shape 1s normalized,
%~z and X-y planes respectively.

The deflections z4 and ¥j are obtained by solving the differential equations
corresponding to (VI. l% and (VI.2)

The derivation which follows is based on the analyses of Reference (Six-1).
Two body-mounted rate gyros have been arbitrarily located on the typlcal normalized
body bending mode shapes of Figure (1). The objective of the derivation are to
determine an expression for the aeroelastic body angular rates at the rate gyro
body statlon. This will be accomplished by first determining the slope of the
normalized bending curve at the rate gyro station. The actual slope at any lnstant
is then obtaeined by the normalizing factors zi and yi. The rate of change of the
actual slope is approximstely equal to the aeroelastic body angular rate at the
rate-gyro station.

Y
I
, A”’//’ x
1 \‘ .
g |~
O | NNy Normalized Slope
@ ith Mode
e}
n oz )
o g
: HE
=] )
: \ g2
v 0
% 5|
m E
X
I
z1Sn
1 _L /
e Xy _*___315‘:::f‘w”ﬁ Normalized Slope
Ny 1th Mode

Figure 1 - Normalized Body-Bending Shupes
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and Yign represent the normalized displacement of the gyro body station
in the §Nz and x-= y planes respectively. The instantaneous deflection of the gyro
body stetions may be determined by mmltiplying the normalized displacements by the
deflection of the reference point as computed in Equations (VI.1) and (VI.2).

Z = z z vi.
ig 1y %1 (v1.3)
Yig = Yigy i (VI.4)
The slope of the normelized bending curve at the gyro station is:
x
Y

Zi

ey, = & (VI.6)

Z

The msctual slope at any instant is obtained by combining Equations (VI.3) with
(VI.6) and (VI.h) with (VI.S5).

= Ee o=y ¥ (VI.T)
X i
Y
4
= _.g = Z
§i p" gNi 1

The rate of change of the actual instantaneocus slopes is:
i = qu 5;1 (VI.9)

& = &y 2 (VI.10)

For small amplitudes of osclllation, the slope of the tangent is approximately
equal to the angle the tangent makes with the reference x-axis. Therefore, the
aercelastic angular body rates at the rate-gyro stations are:

a, = £y (VI.11)

Tay =0y (VI.12)
The output of the rate gyros are determined by adding the aeroelastic rates
glven in Equaticns (VI.1l1l) and (VI.12) to the respective rigid-body angular rates,
qgand r
i_=3
ag=a+ 2 SNz (VI.13)
i=1
i=§ .
Tg = I + )_ T]Ni ¥y (VI-lLI')
i=1
The computational flow sequence for the aeroelastie study is shown in Figure
.{2) on the following page.
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APPENDIX VII

GEOFEYSICAL AND ENGINEERING CONSTANTS FOR THE
SIX-DEGREE-OF-FREEDOM FLIGHT-PATH STUDY COMPUTER FROGRAM

The gecophysicel and general engineering constants which have been incorporated
in the SDF computer program design are summarized in the following table. References
for these constants are also presented. Specific constants which are associated
with a particular subprogram are discussed with that subprogram.

TABLE VII-1
ITEM AND SYMBOL VALUE UNITS REFERENCE

Mathematical Constants

x 3.14159265 - Seven-l

e 2.71828183 - Seven-1
Radian Measure

x/180 0.01745329 Radian/Degree Seven-1

180/x 57.295T795 Degree/Radian  Seven-l
Length

International Nautical Mile 6076.1 Feet Seven=2

Statute Mile 5280,0 Peet Seven-2

1-Foot 0. 3048 Meters Seven-2

1 Meter 3.28083333 Feet Seven-3

Properties of Planet Earth -5
Rotational Angular Velocity = wp 7.29211508x10 Radian/Second Seven-3

Equatorial Radius = Rem 20,925,631. Feet Seven-3
Effective Radlus at Latitude
hg°32033" 6,356,766.0 Meters Seven-2
Properties of Reference Spherold
Equatorial Radius = Re 20,926,428 Feet Seven-1l
Polar Redius = Rp 20,855,965 Feet Seven-1

Gravitational Constants
Reference Gravitational

Acceleration = gpep 32,174 Peet/Second®  Seven-2
Geocentric Gravitational 16
Constant = 1.407698x10 Feet3/Second2 Seven-3
Second Harmonic Coefficient = J 1623.k1x10-6 - Seven-3
Third Harmonic Coefficient = H 6. 0lx10-6 - Seven-3
Fourth Harmonic Coefficlent = K 6.37x10-0 - Seven-3
Misacellaneous Constants 12
Stefan-Boltzman Constant = g 14758x10" BTU/(Sec-°R¥-Ft2) Seven-1
Degrees Rankine . °K Seven-2
1 Astronomical Unit 9.289742538x107  Statuge Miles
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