

AFFDL-TR-67-6

Cleared March 8th, 1972

Clearing Authority: Air Force Flight Dynamics Laboratory

SELF-REGULATED OXYGEN CONCENTRATOR

G. L. Mrava

*** Export contro R_s A_{ra} W_{r} v_{ee} v_{ra} removed ***

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Air Force Flight Dynamics Laboratory (FDFE), Wright-Patterson Air Force Base, Ohio 45433.

FOREWORD

This report was prepared by the TRW Equipment Laboratories, TRW Inc., 23555 Euclid Avenue, Cleveland, Ohio 44ll7 under USAF Contract No. AF 33(615)-3392. This contract was initiated under Project No. 6146, "Atmosphere and Thermal Control," Task 614614, "Supply of Atmospheric Gases."

The program was administered under the direction of the Air Force Flight Dynamics Laboratory, Research and Technology Division, Mr. David A. Geiger, FDFE Task Engineer.

This report covers research completed between January 1966 and January 1967, inclusive.

Dr. Richard A. Wynveen, Section Manager, Mr. Gene L. Mrava, Principal Engineer, and Mr. Keith M. Montgomery, Engineer, were the principal project engineers for TRW Inc.

The authors acknowledge the assistance of the following TRW consultants:
Mr. Russ Englehaupt and Mr. Steve Gittinger, Designers; Mr. Warren F. Wade and
Mr. Richard G. Huebscher, Principal Engineers; and Mr. C. Nelson Hoedt, Technician;
all of the TRW Equipment Laboratories als have been removed ***

The manuscript was submitted by the authors in February, 1967 for publication as an RTD technical report. Report number ER-7043 was assigned to the report by the contractor, prior to Government approval.

The distribution of this report or its abstract is limited because it covers an area of technology that is embargoed under the Department of State International Traffic in Arms Regulations and U. S. Export Control Act of 1949.

This technical report has been reviewed and is approved.

Chief, Environmental Control Branch

Vehicle Equipment Division

ABSTRACT

A program to design, fabricate and test a model of an oxygen concentrator employing a method of control termed "self regulation" was successfully conducted. The stack assembly consists of three cells, wherein oxygen is electrochemically separated from the air, sandwiched between two humidifier chambers. Self-regulation of the unit results from the thermal equilibrium that exists between the heat generated in the electrochemical cells during the O₂ concentrating process and the evaporative cooling in the humidifiers due to the air humidification process. This mode of operation eliminates external humidifiers and associated thermal controls previously used on apparatus of this type. As a laboratory model, the three-cell unit demonstrated oxygen delivery rates up to 0.045 lb/hr while displaying oxygen purities at a level of 100%. Wide-range parametric testing conducted on the unit covered cell operating temperatures of 100-175F, air inlet pressures from 5-90 psia, air flow rates from 2-5 times theoretical, and current densities up to 166 amps/ft. The program was culminated with two test runs totaling 201 hours, which successfully demonstrated the self-regulating characteristics of the unit. As a final conclusion, the data and analyses were used to specify an advanced 0.2-lb/hr oxygen concentrator utilizing self-regulation in addition to size optimization. With additional development the design will be capable of being incorporated into an aviator's oxygen supply system.

This abstract is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Air Force Flight Dynamics Laboratory (FDFE), Wright-Patterson Air Force Base, Ohio 45433.

*** Export controls have been removed ***

TABLE OF CONTENTS

SECT	NOIT				PAGE	
I	INTRODUCTION					
		BACKGR			1	
	_	OBJECT: APPROA			$egin{array}{c} 1 \ 2 \end{array}$	
IT	-			G OXYGEN CONCENTRATOR	3	
**					3	
	_			S USED IN SELF-REGULATION ULATING CONDITIONS	3	
				OF PARAMETERS	5	
III	DESIGN AND FABRICATION					
	1. (CONCEN	TRA	ATOR STACK DESIGN	6	
	_•			ATOR CELL DESIGN	9	
	3.	CONCEN	TRA	ATOR FABRICATION	14	
IV	EXPERIMENTAL RESULTS					
	1.	TEST RI	G		27	
				RY EVALUATIONS AND CONSIDERATIONS	29	
	3,	PARAME	TR	IC TESTING AND RESULTS PRESSION rols have been removed ***	36	
					47	
	5. (OXYGEN	PU	RITY	48	
V	THE 0.2-LB 0 /HR DESIGN ANALYSIS AND RECOMMENDATIONS					
	1.	DESIGN .	AN A	ALYSIS	99	
				APPROACHES TO SELF-REGULATION ON OF THE 0.2-LB 0 ₉ /HR SELF-REGULATING	101	
	(CONCEN	TRA	ATOR	102	
	4.	FABRICA	ATIO	ON PROCESSES	110	
VI	SUMMA	RY			115	
	APPENI	DIX	I	DETERMINATION OF SELF-REGULATION		
				OPERATING EQUILIBRIUM	119	
	APPENI	DIX	П	EVALUATION OF THE 32-MIL GAS DUCTS	123	
	APPENI	DIX I	II	TEST DATA TABULATION	127	
	APPENI	DIX I	V	AIR-OXYGEN FLOW RELATIONSHIP	175	
	REFERI	ENCES			177	

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Theoretical Equilibrium Map	4
2	Three-Cell Self-Regulating Model	7
3	Air Direction Paths Across Electrode Field	12
4	Concentrator Cell Components	15
5	Concentrator Bipolar Plates (Cathode Side)	17
6	Concentrator Bipolar Plates (Anode Side)	18
7	Concentrator Unipolar Plates	19
8	Temperature Versus Vapor Pressure (KOH Solutions)	21
9	Humidifier Wick Plates	22
10	End Plate Cross Section	23
11	Assembled Self-Regulating Oxygen Concentrator	24
12	Concentrator End Plates	25
13	TRW Test Rig Panel	28
14	Cell 1 Performance in Three-cell Unit (Prefiminary Evaluation)*	30
15	Cell 2 Performance in Three-Cell Unit (Preliminary Evaluation)	31
16	Cell 3 Performance in Three-Cell Unit (Preliminary Evaluation)	32
17	Effect of Cell Moisture Balance	33
18	Measured Pressure Drop Across Self-Regulated Oxygen Concentrator	34
19	Flow Pattern	35
20	Wick Installation	45
21 thru 64	Reduced Data Plots (See Table IV for interpretation)	51 thru 94
65	Self-Regulation 59 Hour Test Run	95
66	Self-Regulation 142 Hour Test Run	97
67	Modified Approach to Self-Regulation	103
68	Current Density and Electrode Area Versus Number of Cells	107
69	Specific Humidity Versus Pressure and Temperature	108
70	Cooling Load Versus Voltage	109
71	Rectangular Duct	114

AFFDL-TR-67-6

XI

LIST OF ILLUSTRATIONS (CON'T.)

FIGURE			
0.2-Lb/Hr Oxygen Concentrator	117		
Simulated Port and Duct Hole Bipolar Plate Test Fixture	124		
Plating Thickness Results	125		
LIST OF TABLES			
	PAGE		
Operating Design Parameters for The Three-Cell Unit	8		
Geometrical Design Parameters for The Three-Cell Unit	10		
O Concentrator Test Program	37		
A Tabular Guide To Reduced Data Plots	39		
Cell IR Loss and Resistance x Area	42		
Compression Data Controls have been removed ***	49		
Coulomb Measurements of Oxygen Purity	50		
Design Parameters for the 0.2-Lb/Hr Oxygen Concentrator	104		
Comparison of Bipolar Plates	106		
Geometrical Design Parameters for 0.2-Lb/Hr Unit	111		
	Simulated Port and Duct Hole Bipolar Plate Test Fixture Plating Thickness Results LIST OF TABLES Operating Design Parameters for The Three-Cell Unit Geometrical Design Parameters for The Three-Cell Unit 2 Concentrator Test Program A Tabular Guide To Reduced Data Plots Cell IR Loss and Resistance x Area Compression Data Controls have been removed *** Coulomb Measurements of Oxygen Purity Design Parameters for the 0.2-Lb/Hr Oxygen Concentrator Comparison of Bipolar Plates		

112

Comparison of Concentrator Electrodes

*** Export controls have been removed ***

SECTION I

INTRODUCTION

BACKGROUND

The requirement to provide a reliable source of breathing oxygen for aviators flying at high altitudes has traditionally been met by placing a sufficient amount of oxygen on board each flight prior to takeoff. Provisions for the production, storage and transportation of aircraft oxygen at air bases levy a significant cost in servicing, maintenance and personnel training. Storage and maintenance of quantities of high-pressure or cryogenic oxygen on board aircraft result in logistic and safety problems.

A technique has been developed at TRW that extracts oxygen directly from atmospheric air at the time and place it is needed. This technique seems well-suited to aircraft application in that the source of oxygen could be cabin air, and the logistics and servicing associated with the pressurized gas or cryogen liquid systems would be avoided.

The concept is based upon electrochemical technology. It utilizes a design that is inherently lightweight and compact, and its operation is independent of orientational or gravitational forces. Applying electrical power to the device as air is being fed into it results in the separation of oxygen from the inert gases (nitrogen, argon, etc.) and impurities found in the air.

A program to design, fabricate, test and deliver a laboratory or experimental model of the oxygen concentrator was successfully conducted under Air Force Contract AF 33(615)-1856. The model has a 0.2-lb/hr oxygen capacity rating. It consists of 26 series-connected cells and could, for short time periods, operate at three times the normal rated capacity. It was shown to function over an air feed pressure of 6.5 - 15.5 psia. The percentage of oxygen removed from the air passing through the device ranged from 20 to 50%. The oxygen purity was shown to exceed 99.5%.

Associated with the experimental model delivered under AF 33(615)-1856 was a test rig used to characterize the model's performance over a range of operating parameters. A separate humidifier and cooling system were used to allow for independent control of the air conditioning process and to control the operating temperature of the device. Such independent regulation allowed for greater versatility in evaluating the response of the device to changes in operating parameters. It did not, however, make use of the evaporative cooling which occurs in the humidifier to remove heat generated during the oxygen concentrating process.

2. OBJECTIVE

A program was initiated under Air Force Contract AF 33(615)-3392 for the design, fabrication, and test of an electrochemical oxygen concentrating unit which employs

self-regulated internal humidification and evaporative cooling. The primary technical objective was to demonstrate that the controls and the electrical power and cooling air requirements associated with the external humidifier and air-cooled fins employed on the concentrator defined in reference 1 could be eliminated.

Secondly, size and weight were to be minimized and performance was to be improved by design changes which reduced cell voltage, increased current density, and increased the percentage of oxygen concentrated from the inlet air.

3. APPROACH

A three-cell self-regulating oxygen concentrator was designed, fabricated and tested. The unit consisted of three cells sandwiched between humidifier compartments. Electrode areas were 20 square inches each.

Testing of the device was completed to demonstrate the principle of self-regulation and to obtain additional data on variations in the concentrator's power requirements as a function of operating parameters. The self-regulating concept was demonstrated to be feasible, with performance following the pattern predicted by the design calculations.

The cell size and weight were reduced by minimizing flange dimensions, reducing bipolar plate thickness, and optimizing the end plate configuration. Additional reduction in design size and weight of a unit with a given exygen output was effected as a result of improvement in cell performance. This was realized through (a) reduced cell voltage at a given current density, (b) increased current density at a given voltage, and/or (c) an increased percentage of oxygen concentrated from the incoming air stream.

SECTION II

SELF-REGULATING OXYGEN CONCENTRATOR

In the oxygen concentrating system delivered under AF 33(615)-1856, independent humidification and cooling system controls were provided to allow for broader experimental evaluation of operating parameters. It was recognized, however, that these controls would not be required on a flight unit. It appeared that a simple and compact control system could result if the humidifier were integrated with the concentrator itself. In this way, the heat used to evaporate the water during air humidification would be provided by the heat produced in the process of generating the oxygen. By carrying this idea one step further it seemed possible, under certain conditions, to remove the entire heat load of the concentrator by the evaporative cooling produced during the air humidification process. In such cases the temperature of the concentrator would increase until the heat input was balanced by heat losses, with the majority of the cooling resulting from evaporation of water for air humidification.

1. PRINCIPLES USED IN SELF-REGULATION

The heat input to the concentrator is a function of the operating current and voltage. The heat loss, in turn, is the sum of the heat loss to the surroundings, heat loss to the gases, and evaporative cooling during humidification of the inlet air. The self-regulated concentrator design that allows for the simplest controls is based upon the concept that the concentrator temperature will rise until the heat input is just balanced by the heat losses. The operating environment expected for an aircraft oxygen system is one where the temperature of the surroundings and the temperature of the air inlet feed can vary over a wide range. The importance of basing the control concept on a technique that is effective, in spite of such changes, is significant.

2. SELF-REGULATING CONDITIONS

The equilibrium temperature attained by the self-regulating oxygen concentrator is dependent upon inlet air flow rates, operating current densities, cell voltages, and inlet air pressures. The expressions used to relate these parameters, while the concentrator is operating in the mode of self-regulation, are detailed in Appendix I.

Considering a typical single-cell potential of 1.0 volt allows the computation of predicted data for various air multiples of stoichiometric requirements, pressures, and equilibrium temperatures. The results are presented in Figure 1, the Theoretical Equilibrium Map. This map indicates the predicted temperature equilibrium that will result under self-regulation when the unit is operating at the pressure and air flow multiples specified by the coordinates. This plot serves to focus on the fact that self-regulation is a low-pressure process. While operating at an air flow of five times stoichiometric (denoted as 5T) or less, increases in pressure beyond 25 psia would be expected to result in equilibrium temperatures in excess of 200F. Should this level



Figure 1 Theoretical Equilibrium Map

of pressure be desirable, auxiliary cooling would be needed to minimize material constraints which might be imposed by increased temperatures. Figure 1 serves as a design guide when considering the effect of parameter variations.

3. VARIATION OF PARAMETERS

The Theoretical Equilibrium Map has been plotted with scales corresponding to single cell potentials of 0.9 and 1.0 volt. If, however, parameters are varied such that a voltage different from these is needed to deliver a given oxygen flow rate, the ordinate scale is modified merely by multiplying it by the actual voltage. For example, if the cell voltage requirement to deliver a specified amount of oxygen decreases from 1.0 to 0.8 volt, the ordinate scale at 1.0 volt is multiplied by 0.8. A 5T flow now becomes 4T, thus indicating a 20% reduction in flow rate necessary to maintain an equivalent cell temperature at a specified pressure. If the flow is adjusted back to 5T, at the same pressure, one traverses up the ordinate to this point (originally 6.25T on the scale corresponding to 1.0 volt) and finds that the cell equilibrium temperature has decreased. Within the assumptions set forth in Appendix I, this map will hold true for any desired oxygen flow rate. To quantitatively evaluate the ordinate in pounds of air per hour, simply specify an oxygen requirement and solve equation (10) in Appendix I.

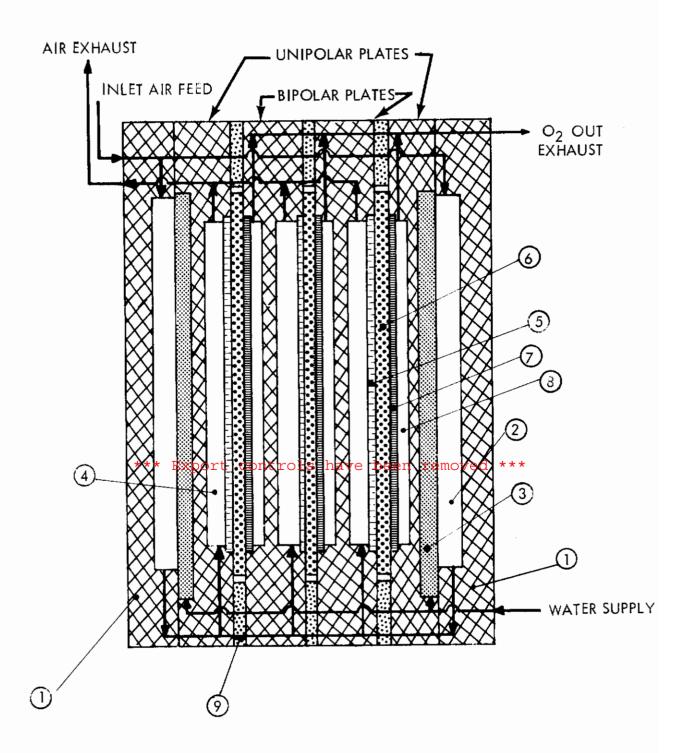
*** Export controls have been removed ***

SECTION III

DESIGN AND FABRICATION

1. CONCENTRATOR STACK DESIGN

A self-regulating oxygen concentrator featuring internal humidification eliminates the need for elaborate system controls, an external humidifier and an externals means of cooling the cell assembly. Based on heat and moisture balance calculations, using performance data obtained with cells and humidifiers previously operated at TRW, the concentrator was designed to consist of three cells with humidifiers on each side. Numerous cell-humidifier groupings were evaluated before arriving at the 3:1 ratio; including 5:1, 4:1, and 2:1. The temperature differential existing between the center cell and the humidifier at the end with the 5:1 and 4:1 configurations would be too large to allow attaining a satisfactory moisture tolerance. In addition, the 5:1 configuration would overload the wicking rate capacity of the humidifier. With the 2:1 ratio, the number of humidifiers would increase beyond those actually necessary for humidifying the air and removing the heat load, resulting in extra weight because of the overdesigned humidifier capacity.


The experimental model for the program was designed and built to have a "half" humidifier on each side **Inparatual prototype concentrator, each humidifier will handle the heat load from three cells, meaning 1-1/2 cells on each side. Since the model was designed to have only three cells, the humidifiers on the outside only had to handle the heat load from 1-1/2 cells. Figure 2 is a schematic of the model design illustrating the configuration and gas and water flow paths.

The water fed to the humidifiers was designed to be transferred to the individual wicks in much the same manner as was used with the external humidifier delivered under contract AF 33(615)-1856. This configuration allows for operation independent of gravitational fields. Automatic water control is provided by the wicking system which transports only the required make-up water to maintain a stable system under the operating conditions. Wicking principles ensure there will be no flooding problem under steady-state operation; the wicks will transport water to only those areas that become less than saturated.

The feed air passes through the humidifiers into the concentrator air compartments, and exhausts from the unit. Once outside the concentrator, the gases pass through a condenser where the water is removed. In actual application, this reclaimed water would be returned to the humidifier feed system. This method duplicates the approach that could be used to transfer the concentrator's heat load to the aircraft cooling system. The operating design parameters for the three-cell unit are presented in Table I.

The cell size and weight were optimized by minimizing flange dimensions, reducing the bipolar plate thickness 25% below that used in the model delivered under AF 33(615)-

- (1) WICK PLATES
- (2) HUMIDIFICATION COMPARTMENT
- (3) HUMIDIFIER WICK
- (4) AIR COMPARTMENT
- (5) CATHODE

- (6) MATRIX HELD ELECTROLYTE
- (7) ANODE
- (3) O2 COMPARTMENT
- (9) GĀSKET

Figure 2 Three-Cell Self-Regulating Model

Table I Operating Design Parameters for the Three-Cell Unit

Current Density Range, ASF *	to 100		
Effective Electrode Area, ft ²	0.14 (3.5 x 5.8 in.)		
Current, amps *	to 14		
Number of Cells, Series Connected	3		
Voltage per Cell, volts	0.9 @ 40 ASF		
Concentrator Temperature, F	70 to 200		
Air Pressure, psia	2.5 to 90		
Air Feed Flow Rate **,	<u>lb/hr</u>	$\underline{\mathbf{SCFM}}$	$\underline{\text{SLPM}}$
Theoretical, lb	0.119	0.0246	0.70
2 x Theoretical (2T)	0.238	0.0493	1.40
3 x Theoretical (3T)	0.357	0.0739	2,09
4 x Theoretical Export controls have	been remo	oved985 *	2.79
5 x Theoretical (5T)	0.595	0.123	3.49
Oxygen Output Flow Rate*	0.0275	0.0051	0.144

^{*}During testing, unit was actually operated at current densities as high as 166 ASF, with the corresponding increase in current. See Section IV for discussion of these results.

^{**}At 100 ASF in units of pound/hour, standard cubic feet/minute (SCFM) and standard liter/minute (SLPM), dry.

1856 (see page 23). Optimizing and weight-saving techniques were used in the design only to the point where performance, along with sound structural characteristics, was not sacrificed for further weight savings. Table II presents a summary of the geometrical parameters of the design. The design point was 40 ASF at 0.9 volt with 25% of the oxygen in the cathode compartment air being concentrated. This represented an improvement over the AF 33(615)-1856 design, where the nominal performance level was 35 ASF at 1.0 volt, with only 20% of the oxygen being separated.

A difficult problem in designing the self-regulating oxygen concentrator was the need for a configuration capable of demonstrating the self-regulation concept. At the same time, the concentrator design had to be sufficiently flexible to enable measuring the effect of changes in the configuration and operating parameters. The change in configuration encompassed a threefold change in matrix thickness. The anticipated variations in control operating parameters included temperatures ranging from room temperature to 200F, pressures from 2.5 to 90 psia, and current densities to beyond 100 ASF at air flow rates of 2 to 5T.

2. CONCENTRATOR CELL DESIGN

a. Air Distribution

Configurations I through V shown in Figure 3 were considered in designing the mode of air distribution to be used in the cathode compartment. Designs Land III assured uniform gas distribution across the field but, because of the number and size of the gas entrance ducts required, the pressure drop through the ducts was too high. These designs are satisfactory, however, when high pressure air is available. Design IV adds excess weight in the flange area because ports on both ends of the field necessitate wide flanges at both ends.

Design V considers the fact that air entering the field is high in oxygen concentration but is depleted in oxygen content when leaving the field. By making each successive baffle pass smaller, the Reynolds number in each compartment of the field is increased. The higher the Reynolds number, the more turbulent the gas flow, and more gas mixing is experienced in the compartment. This increased mixing tends to reduce nitrogen stagnation layer build-up on the electrode surface. However, the flow rates necessary to achieve turbulance (Reynolds numbers > 2000) within the gas compartments are in excess of 100 times the theoretical air flow. This is in contrast to the desired maximum of 5 times theoretical air flow.

b. Baffles

Concentrator assemblies in reference I used baffles consisting of Teflon spaghetti tubing inserted between rows of pins on the bipolar plates. Subsequent evaluation of baffle effectiveness, after the plates were in use, indicated that air leaked under the baffles thereby reducing the amount of active electrode area exposed to the air stream. To prevent this from happening, the baffles in the self-regulated concentrator consisted

Table II Geometrical Design Parameters for the Three-Cell Unit

Cell Matrices

Material Johns Manville Fuel Cell Asbestos

Area Dimensions, in 4.1 x 6.4

Uncompressed Thickness, mil 10, 20, 30

Electrolyte

Weight % KOH 32

Loading, g/g dry matrix 1.0 to 2.25

Electrodes*

Type American Cyanamid AB-1

Area Dimensions, in 3.7 x 6.0 Effective Area Dimensions, in 3.5 x 5.8

Bipolar Plates

Material Magnesium ZE-10

Plating Thickness, mil

Nickel 1.3

Gold* Export controls have bee93 removed ***

Area Dimensions, in 5.38 x 8.62

Pin Height, in

Air Compartment 0.052
Oxygen Compartment 0.052
Duct Diameter, in 0.042
Total Thickness, in 0.140

Insulating Gaskets

Material Neoprene, Fairprene
Thickness, in 0.009 with 10 mil matrices
0.016 with 20 mil matrices

0.030 with 30 mil matrices

O-Rings

Material Ethylene-Propylene

Wicks

Material Polypropylene

Uncompressed Thickness, in 0.030 Electrolyte, wt % KOH 23

^{*} See Table XI for details on electrodes

Table II Geometrical Design Parameters for the Three-Cell Unit (cont.)

Support Screens		
Material	Nickel	
Thickness, in	0.005	
Three Cell Assembly Weight, dry, lb	4.57	
End plates, 2, including fittings	4.57	
Wick plates, 2	0.88	
Unipolar plates, 2	0.66	
Bipolar plates, 2	0.65	
30 mil matrices w/2 electrodes		
each, 3 sets	0.13	
Wicks and support screens, 2 sets	0.05	
Fasteners, set	0.33	
Gaskets, O-rings, set	0.13	
Total	7.40	
External Dimensions, in Volume, in Export controls have be	2.25 x 5.38 x 8.62	

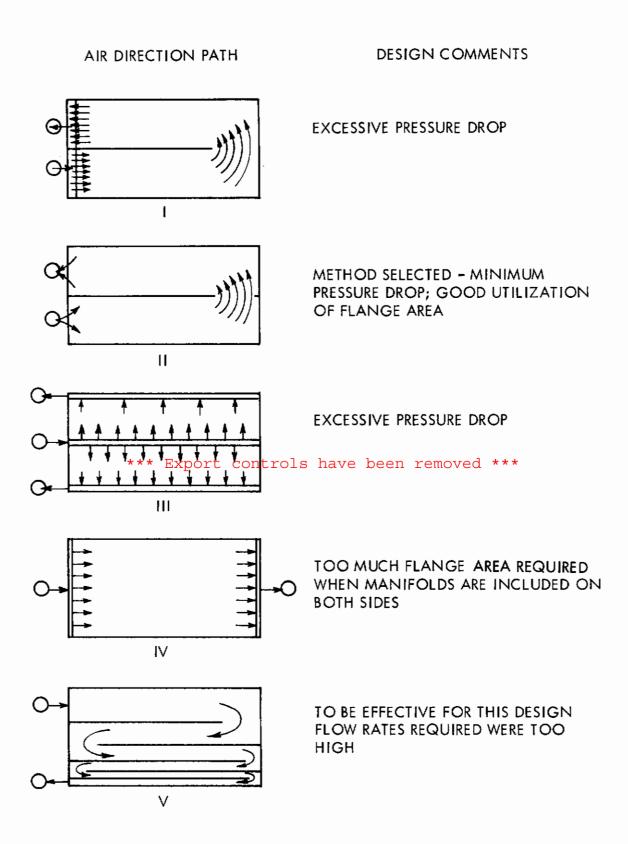


Figure 3 Air Direction Paths Across Electrode Field

of cut rubber O-rings fitted in linear grooves to provide improved sealing and better air distribution.

c. Gas Ports and Ducts

All port and duct passages were designed to resist clogging and maintain a uniform gas flow throughout the entire system. This was accomplished by specifying that the pressure drop down a duct passage be one hundred times or more than the pressure drop down the accompanying port passage. (2) It was decided that external duct cleanouts should not be included since duct clogging had not been a problem in concentrator operation. Also, it would be virtually impossible to seal the cleanout holes against internal pressures several times that of atmospheric. The ports were 3/8 inch diameter, while the ducts were 0.042 inch diameter.

d. Electrode Support

The face of each plate was in the form of a pin pattern to supply sufficient area for heat transfer, electrical current paths, and necessary electrode support while incorporating the required gas cavity. Pins 1/16 inch square located on 1/4 inch centers were used.

e. Plating

*** Export controls have been removed ***

The self-regulating concentrator design was initially prepared using 120-mil bipolar plates, 42-mil gas compartment heights and ducts 32 mils in diameter. Prior to commencing fabrication of the unit, the plating subcontractor's ability to plate inside the 32-mil ducts was questioned. The plating subcontractor was reluctant to guarantee the thickness of the plate inside ducts of this size. They recommended a sample be tried first since their experience indicated the results would be marginal. A special drill was required to prepare a sample plate containing several 32-mil diameter holes which, after plating, could be cross-sectioned to determine the resulting plate thickness inside the ducts. This special drill was not immediately available. Because of the wait required for the drill and for the sample plating, it was decided that the design would proceed using 140-mil magnesium (42-mil ducts) for the bipolar plate. In addition, it was decided that when the drill was received, the sample plate containing several 32-mil ducts would still be submitted to the plater for evaluation. This sample plate would then be cross-sectioned to determine if the 32-mil diameter ducts could be used in future designs.

A 13% saving in weight results if the 120-mil model of the self-regulated concentrator is used instead of the 140-mil model. It was subsequently determined, from cross-sectioning of the test sample, that 32-mil gas ducts can be successfully plated inside. A complete description of the sample analysis is included in Appendix II. The design recommendations presented later (page 111) in Table X utilize the 120-mil plates with either 32-mil ducts or rectangular slots.

3. CONCENTRATOR FABRICATION

A basic concentrator cell consists of two porous electrodes separated by an electrolyte solution of aqueous potassium hydroxide. The electrolyte is held in an absorbent porous matrix designed to prevent the solution from leaking through the porous electrodes and to serve as a gas impermeable barrier between the air and the pure oxygen that is generated. Bipolar plates separate the individual cells in the series.

A photograph of the components used to make up an individual cell is shown in Figure 4 and illustrates the manner in which a cell is assembled. First, the insulating rubber gasket and anode electrode are placed on top of the bipolar plate. Next, the matrix is positioned. It is then handloaded with electrolyte. On this the cathode electrode is located, and then the next bipolar plate is placed on the top of this assembly. This procedure is repeated for as many cells as are required in the concentrator stack.

a. Electrodes

The three-cell assembly was fabricated with electrodes having an effective area of 20 square inches (3.5 x 5.8 inches). The actual geometrical dimensions were 3.7 x 6.0 inches which allowed for a 0.1-inch overlap at the cell edges. The final dimensions were selected to comply with the desire to retain a reasonable height for the wicks in the humidifier. The difficulty in wicking increases rapidly with height. Prior experience with humidifier designs has shown that a practical height limitation is four inches. Beyond that height, the effectiveness of the wick becomes questionable.

The electrodes consisted of a porous layer of platinum black and waterproofing agent supported by a 100-mesh nickel screen using 2-mil wire. The electrode thickness is 4-5 mils and designated as an American Cyanamid Type AB-1 electrode.

b. Electrolyte and Electrolyte Holding Matrix

The electrolyte used was a 32-weight percent aqueous solution of potassium hydroxide. The concentrator was designed so that 10, 20 and 30-mil electrolyte absorbent matrices could be used. This versatility required that the design be able to handle various gasketing thicknesses. The porous matrix used to contain the electrolyte between the cell electrodes is a high-purity form of asbestos. It provided a separation of the electrode and held the electrolyte in proper contact with the electrodes regardless of their orientation relative to gravity or acceleration. Previous experimental studies showed that decreasing the matrix thickness decreased the cell internal resistance; however, the change is not linear with change in thickness. For example, the difference in measured resistance between a 30- and 20-mil matrix is more than the resistance change measured in going from a 20- to a 10-mil matrix. Resistance, however, is only one aspect of the design which varied with change in matrix thickness. Other changes which occurred and affected cell performance included the stability to pressure differentials and the ratio of electrolyte held in the electrodes to that held in the matrix (see Section IV).

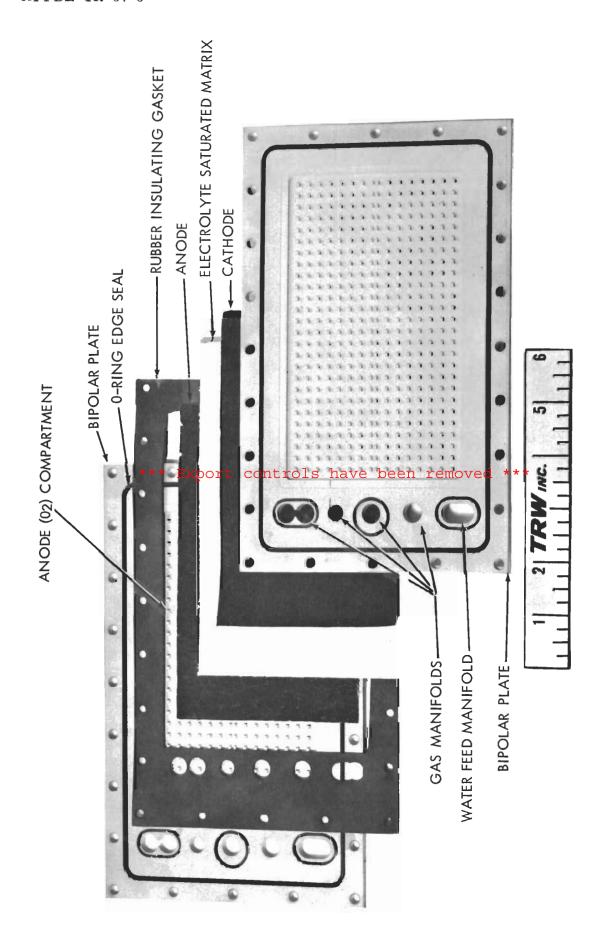


Figure 4 Concentrator Cell Components

c. Bipolar and Unipolar Plates

The material chosen for fabrication of the bipolar and unipolar plates was Dow ZE-10 magnesium. The plate thickness was 140 mils with 52-mil gas compartment heights on both the air and oxygen sides. Following machining of the plates, they were plated first with 1.3-mil nickel and then with 0.03-mil gold to prevent corrosion. (3) A 3-mil recess in the flange area on the air and oxygen sides was used to retain the cell electrodes.

Pictures of the cathode and anode sides of a bipolar plate are shown in Figures 5 and 6, respectively. The manner in which a section of an O-ring was made to serve as a gas baffle in the cathode is shown in Figure 5. A baffle is not required in the anode, or oxygen, side. Both photographs show the O-rings in place. The O-rings prevent gas leakage in the individual manifolding compartments, as well as exterior leakage from the electrode field to the outside of the cell. The gas ports and ducts are also indicated.

The term "unipolar plate" is used to describe those plates of the three-cell stack that have a humidification compartment on one side. The other side of the plate is either the anode or cathode gas compartment for a single cell of the three-cell assembly. Figure 7 is a photograph of the unipolar plates showing the sides that face the electrochemical cell electrodes. The plate on the left shows the oxygen, or anode, compartment. The plate on the right shows the air, or cathode, compartment. The backs of these plates fit against the wick contained in the wick plates shown in Figure 9 described below.

d. Seals and Insulation

Ethylene-propylene O-rings were used to seal the concentrator from external leaks under the anticipated operating pressures of 2.5 and 90 psia. Materially similar O-rings were used to seal the ports in the bi- and unipolar plates. A rubber gasket framed the matrix, thereby serving to control the matrix compression. The gasketing was made from either Neoprene or Fairprene, a Buna N-nylon combination. The Fairprene, although not as resistant to the electrolyte as Neoprene, was selected to be used in the assembly when testing the l0-mil matrix, since Neoprene of the required thickness was not available to fit the program scheduling.

e. Humidification and Self-Regulation

A continuous water feed mechanism using wicking principles was built into the self-regulated design. As shown in Figure 2, a humidification section is located at each end of the three-cell unit. The air entering the cell is manifolded in a manner that divides the air, with half flowing through each humidifier compartment. Previously completed experimental work demonstrated that the water transport mechanism using the wicking process does work. Each wicking compartment was 72 mils thick. This was to allow future experimental versatility in that a range of wicking materials and thicknesses can be tested.

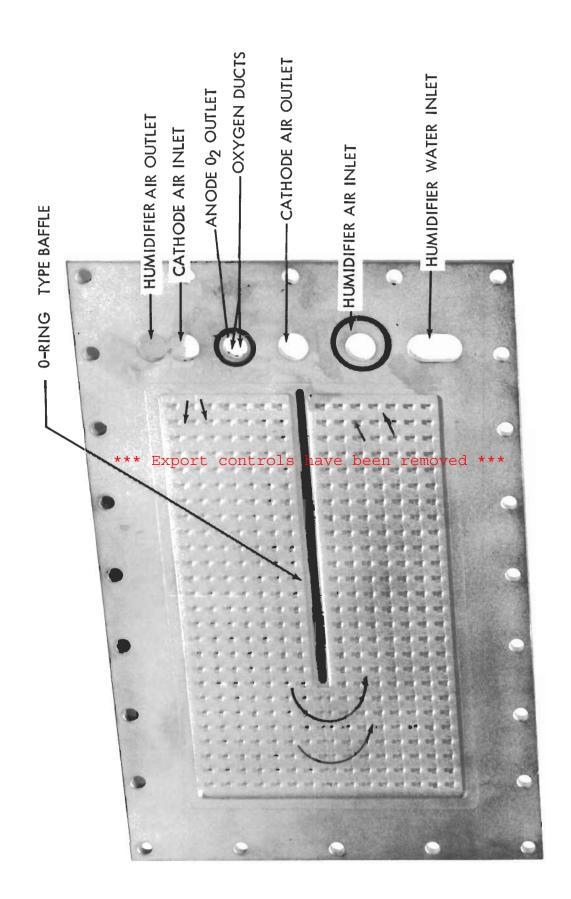


Figure 5 Concentrator Bipolar Plate (Cathode Side)

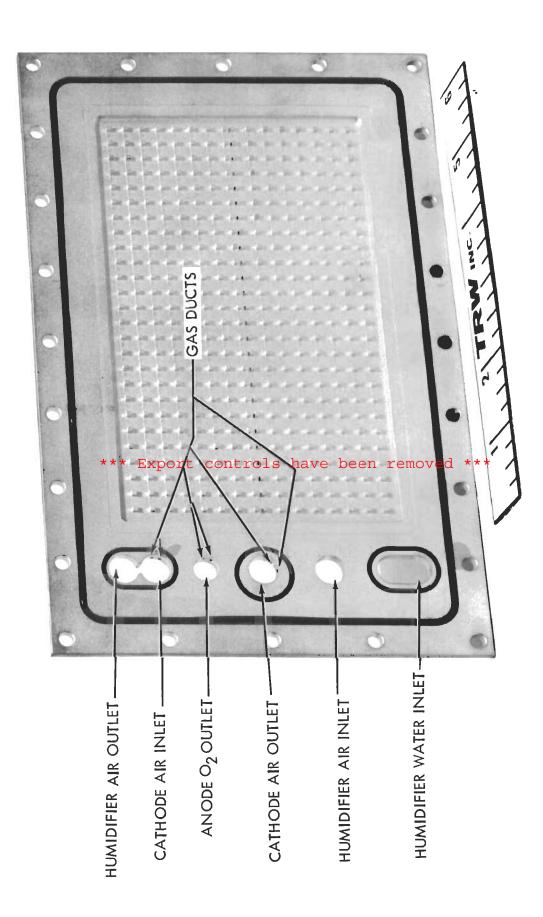
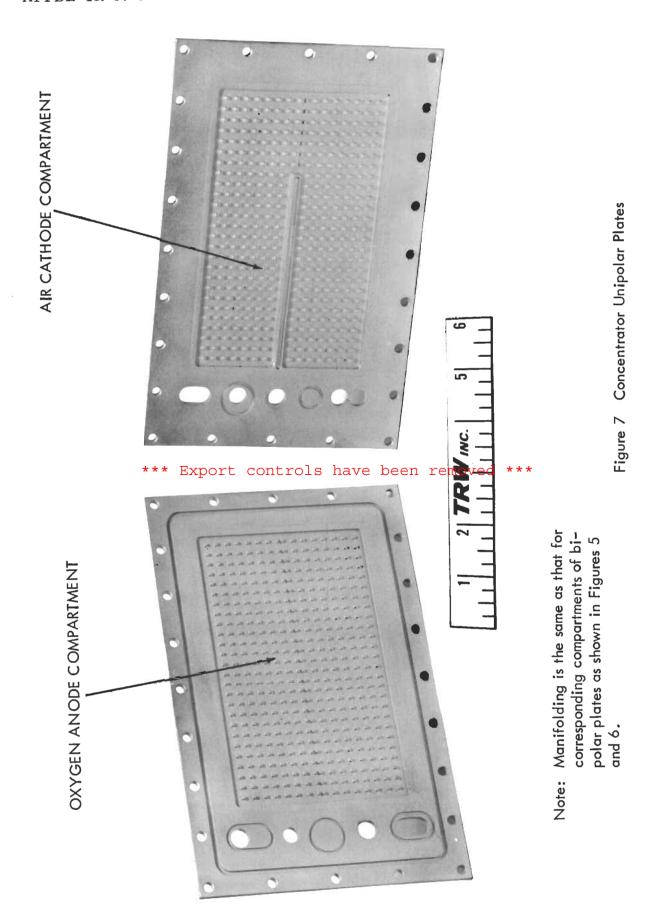



Figure 6 Concentrator Bipolar Plate (Anode Side)

1224D

18

12270

19

A thermal analysis was conducted to predict cell equilibrium temperature profiles under self-regulating conditions. Effects of various air pressures and flows were predicted. This allowed the specification of the vapor pressure requirement in the humidifier compartments. The result indicated compartments that were some ten-to-fifteen Fahrenheit degrees cooler than the operating cell temperatures. Since the partial pressure of water within the humidifier must be equal to that of the cell, the solution chosen to saturate the wicks had to have a vapor pressure characteristic correspondingly higher than the 32% KOH used in the matrix. A reduced percentage solution of KOH meets these requirements. However, the Dacron wicking material, which has proven successful in previous water transport schemes, was not compatible with KOH.

For this reason, initial self-regulation tests were conducted with Dacron wicks saturated with a 25% Na SO solution. Later, a polypropylene wicking material, compatible with KOH and possessing similar water transport properties, was substituted for the Dacron. With this, a 23% KOH solution was used for the humidification solution. The relationships of vapor pressure versus temperature of various solutions are shown in Figure 8.

The wick plates are shown in Figure 9. These cavities were recessed so that both the wick and an expanded nickel metal screen could be placed into the compartment. The screen was necessary to compact the wick and keep it from completely filling the cavity and blocking the gas flow path in the accompanying unipolar plate. The backs of the wick plates are flat and made to fit flush against the cooling water gavities of the end plates.

In the external humidifier delivered under AF 33(615)-1856, a reservoir of Solka-Floc saturated with water was built into the bottom of the assembly. In the self-regulated model, water is transported directly to the wicking surface through a side port rather than to a reservoir under the cell stack. This resulted in a considerable weight savings since a water-saturated Solka-Floc compartment does not have to run under the entire unit. It was anticipated, however, that the technique might limit the wicking rate into the humidifier. For this reason, an additional fitting was incorporated into the middle of each end plate, whereby auxiliary water could be supplied to the two half-humidifiers (see Figure 9).

One additional feature was incorporated into the self-regulated model design but was never actually used. It consisted of a porting system in the humidifier compartment whereby the humidifier fluid could be made to flow behind the wick materials. This technique was included in the initial design to allow for the possibilities of better water distribution throughout the wick material and supplemental cooling of the humidifier fluid.

f. End Plates and Bolts

The series stack, of three cells and two humidifiers, shown in Figure 2 was sandwiched between two structural end plates. Calculations were made to determine an optimum

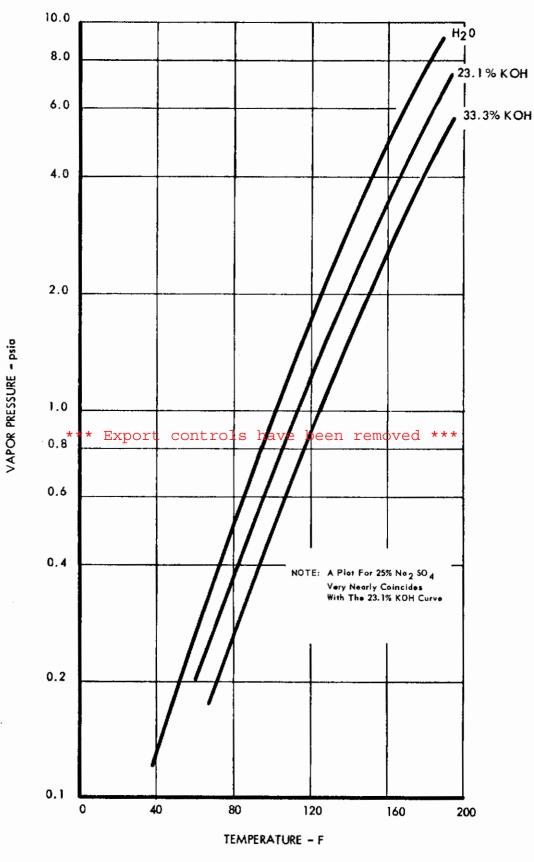


Figure 8 Temperature Versus Vapor Pressure

21

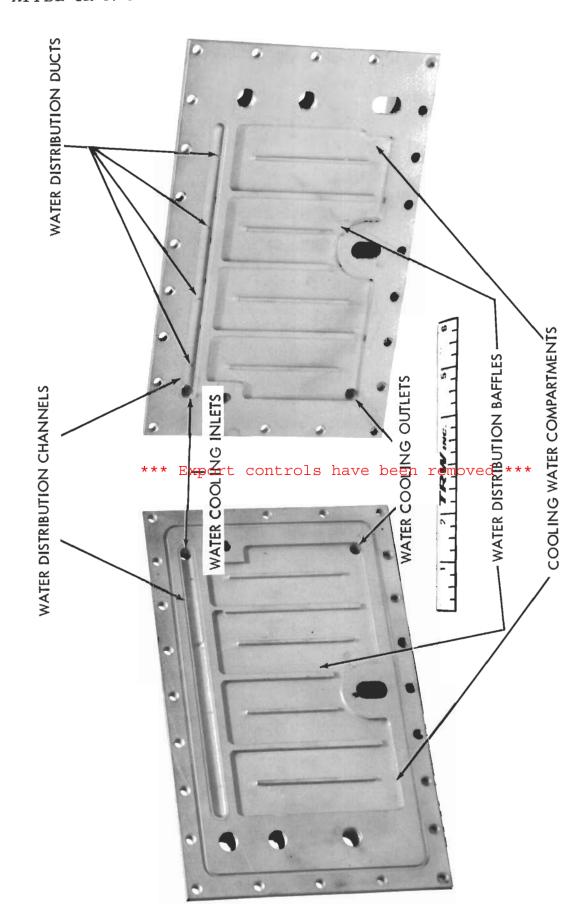
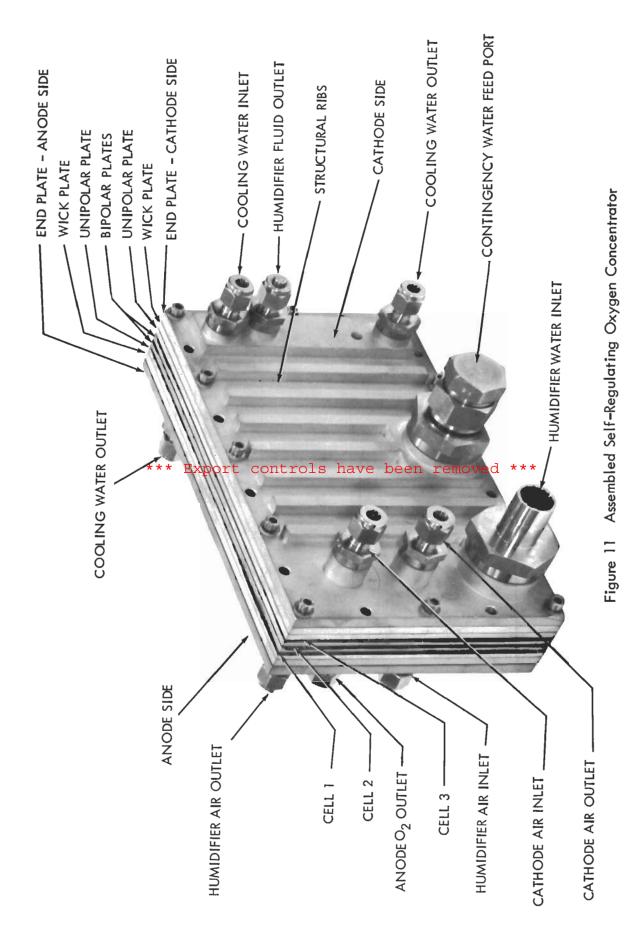


Figure 12 Concentrator End Plates

thickness and shape of the end plates. To withstand a 90 psia internal pressure, a 3/8 inch thick slab with a rectangular cross-section was necessary. Rather than use this configuration, a ribbed end plate of the cross-section shown in Figure 10 was selected. The ribs extended the width of the plate, not along the longitudinal direction.

Figure 10 End Plate Cross-Section


This geometry resulted in an end plate that was 7% less in weight but had the same rigidity characteristics as the 3/8 tinch rectangular cross-sectional piece. Further optimizations, by extending the ribs in both the length and breadth dimensions or by using geometrical configurations other than ribs, could be accomplished. An optimization study of this nature should be performed on prototypic units. A photograph of the actual self-regulating concentrator is shown in Figure 11. It clearly indicates the ribbed structure used to provide rigidity.

The design calculations indicated that twelve 8-32 stainless steel bolts would supply sufficient strength to prevent leakage when the assembled cells were internally stressed with 90 psia pressure. Twelve bolts were used in the assembly as shown in Figure 11, although a contingency factor was incorporated by making provisions for twenty-four bolts. Helicoil thread inserts were built into one end plate eliminating the need for nuts. Additional weight savings and optimization of the end plate could have resulted by cutting away excess metal between the bolt holes.

g. Supplemental Heating and Cooling

Since a wide range of conditions were to be tested, supplementary cooling and heating subsystems had to be included to allow parametric studies at nonequilibrium points of operation. These were used only as testing tools and would not be required on a prototype unit. The eventual choice for cooling the concentrator stack was to circulate cooling water through the end plates. The cooling water sides of both end plates are shown in Figure 12. Cooling water enters the top channel of the plate and is distributed evenly into each of the ribbed cooling channels by means of orifice ducts leading from

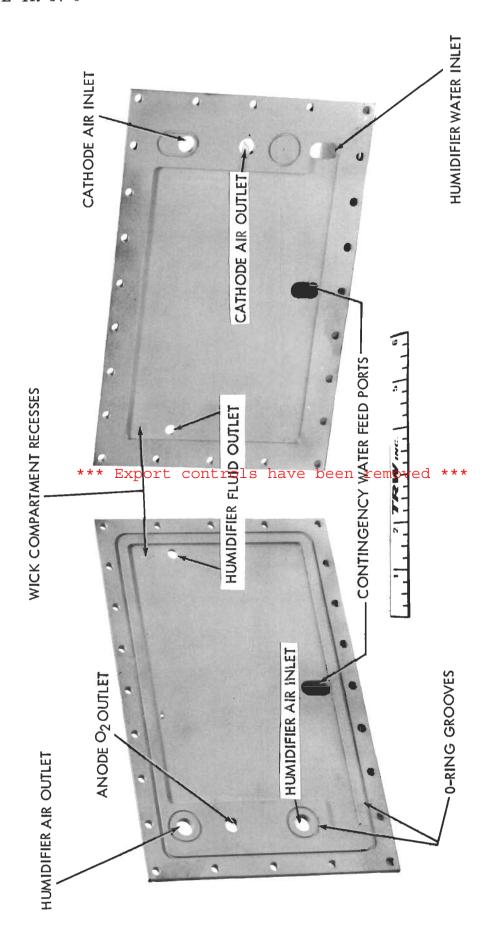
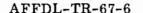



Figure 9 Humidifier Wick Plates

the top channel. The openings in the bottom corner of the cooling fields are drains that direct the water out of the cell. The large opening in the corner of the right end plate is the water inlet port leading to the humidifiers. The openings in the lower center of the plates are the contingency water feed ports.

*** Export controls have been removed ***

SECTION IV

EXPERIMENTAL RESULTS

During the fabrication, assembly and initial evaluation of the three-cell concentrator, several checks were made to verify certain aspects of the design. These included verifying the structural integrity of the unit and its ability to hold internal pressures with no gas leakage, verifying water manifold effectiveness and wicking capabilities, establishing that the humidifier compartments and cells themselves presented minimal pressure drops, and evaluating plating techniques (see Appendix II). The cell stack was subjected to a series of tests to provide relationship of performance to such parameters as current density, air flow rates, cell temperature, gas compartment pressures, pressure differential across the matrix, matrix thickness, and matrix compression. Finally, the ability of the unit to operate under self-regulation was established.

The test time on the unit totaled approximately 235 hours. The breakout was some 34 hours for parametric runs which included a mixture of three-cell and single cell operation, and two (59-hour and 142-hour) continuous three-cell, self-regulation runs totaling 201 hours.

1. TEST RIG

*** Export controls have been removed ***

A photograph of the test rig panel is shown in Figure 13. The assembly has the capability of monitoring and regulating gas pressures in both the anode and cathode compartments. A fifteen-point thermocouple temperature selection system was also available to monitor temperatures of the cells, humidifiers, and auxiliary components. Air flow rates to five times the theoretical stoichiometric quantity could be controlled and monitored at current densities up to 200 ASF over an inlet pressure range of 2.5 to 90 psia. A cell temperature controller with two set points for ON-OFF temperature control, a band temperature control, or a limiting ON-OFF temperature control was also included. By using a Kordesch-Marko Bridge, cell voltage relationships could be measured both with and without internal resistance. (4, 5) This data is presented in Table V and Figure This data is presented in Table V and Figures 30, 31 and 64 and is discussed under Parametric Testing and Results of this section. Not shown in the photograph, but included as a portion of the test rig, was the supplementary external humidification equipment. The cell temperature control loop and humidification equipment were necessary because of the wide range parametric data requirement. A characteristic of self-regulation is that the cell will seek some equilibrium temperature, dependent upon the other variables of the system. To keep the cell temperature constant while changing other parameters, which would be a point of nonequilibrium, a heating-cooling temperature control loop was required for the stack. It was decided, therefore, to include an external humidifier to facilitate parametric testing over the wide range of conditions.

During the testing phase, the apparatus successfully operated at current densities up to 166 ASF, cell temperatures to 175F, air and oxygen pressures ranging from 5 to 90

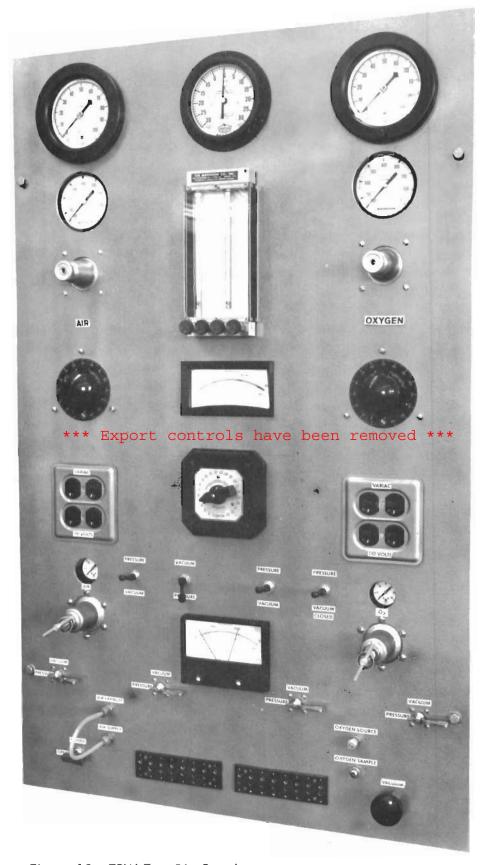


Figure 13 TRW Test Rig Panel

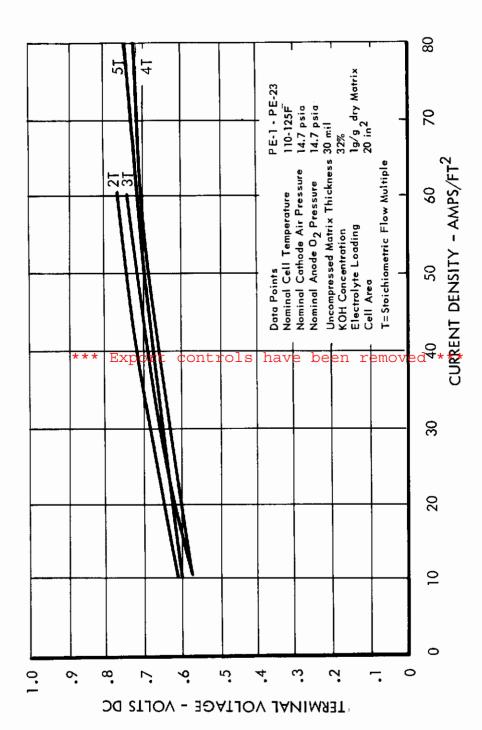
psia, and pressure differentials of 5 psia, in either direction, across the matrices. The range of parameters covered during the testing is fully discussed in the Parametric Testing and Results section and tabulated in Table III.

2. PRELIMINARY EVALUATIONS AND CONSIDERATIONS

a. Concentrator Performance

The three-cell stack was assembled and given a brief trial run prior to establishment of a detailed test program. It further served as a check on the test rig itself. This evaluation was conducted with a three-cell stack, but with external humidification of the inlet air. The internal humidifiers were not used at this time. The data taken is tabulated in Appendix III under points PE-1 to PE-23. The set of curves resulting from this initial effort are presented in Figures 14 through 16. The performance of Cells 1, 2, and 3 was nearly identical over the current density range studied at the flow rate of five times stoichiometric. In addition, Cells 1 and 2 were very nearly equal at flow rates of two, three, and four times stoichiometric. Cell 3, however, was sensitive to flow rates less than five times theoretical. The apparent reason for this difference was insufficient air flowing through the cathode compartment of Cell 3 when the flow rate decreased below 5T. When the unit was disassembled the gas ducts leading to Cell 3 were cleaned out. Some minor particles were found; however, no gross blockage was in evidence at the time of disassembly.

*** Export controls have been removed ***

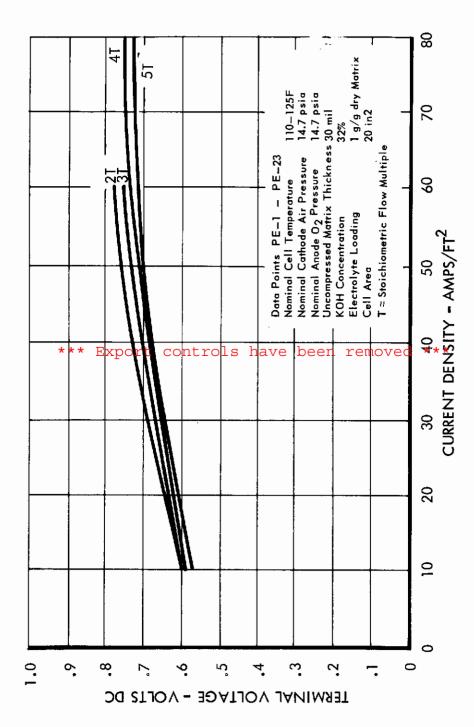
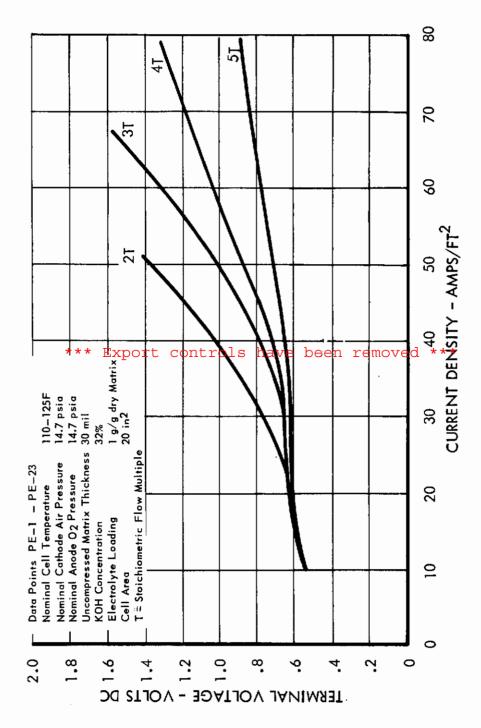

It is possible that the poor performance of Cell 3 was due to improper moisture balance. Data taken on a smaller oxygen concentrating cell is included in Figure 17 to show the effect of an improper cell moisture balance upon performance and thereby illustrate the importance of correct moisture balance. Curves 1 through 5 were taken sequentially on the same cell. Curve 1 was the initial performance obtained while the cell had proper moisture balance. Curve 2 was obtained after the cell had been desiccated, i.e., the cell had been run for some length of time with the water content of the incoming air less than that required to match the vapor pressure of the electrolyte. Curves 3, 4 and 5 illustrate the improvement in cell performance as the cell was brought back to its initial moisture conditions. It is evident from these curves that for a cell to attain its best performance, the moisture balance must be optimum. Otherwise, as shown, the cell voltage requirement will increase, especially at higher current densities.

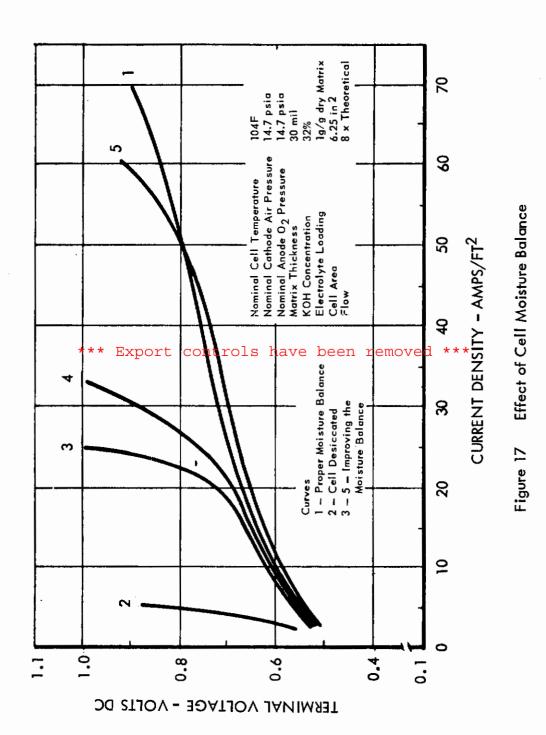
b. Pressure Drop Measurements

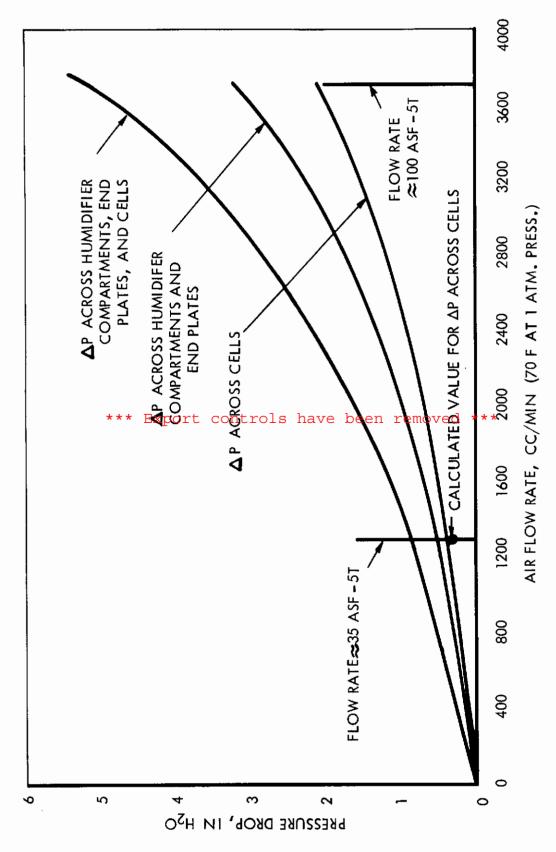
The data presented in Figure 18 represents the measured pressure difference between the air entrance and air exhaust when:

- 1) air was passed only through the humidifier compartments of the concentrator, and
- 2) air was passed through both the humidifier compartments and the three cells of the concentrator.

Cell 1 Performance in Three-Cell Unit - Preliminary Evaluation Figure 14


Figure 15 Cell 2 Performance in Three-Cell Unit-Preliminary Evaluation



Cell 3 Performance in Three-Cell Unit - Preliminary Evaluation Figure 16

Measured Pressure Drop Across Self-Regulated Oxygen Concentrator Figure 18

The difference between items (I) and (2) is the pressure drop across the cells in the concentrator. To better explain this, the flow pattern is presented schematically in Figure 19.

At an air flow rate of 1300 cc per minute, corresponding to a 5T flow at 35 ASF, a pressure drop across the cells of 0.38 inch of water was experimentally measured. The calculated pressure drop for the same air flow rate and temperature was 0.32 inch of water. The close agreement between the two numbers indicates that the gas flowing through the concentrator does so according to predictable fluid calculations. Further, the low pressure drop experienced indicates an attractive characteristic of both the humidifier and cell, and allows projection of these configurations to units of larger capacity without undue air compression requirements.

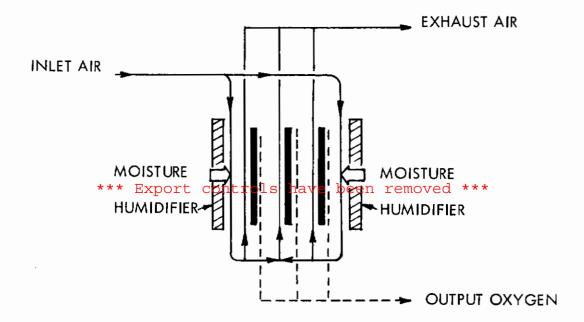


Figure 19 Flow Pattern

c. Pressure Differential Stability

During structural integrity tests, the cathode side of the 30-mil matrix was pressurized to 10 psig, and a line from the anode side was immersed in water to determine if gas leakage was occurring across the membrane separating the two compartments. No leaks were observed. This result was in agreement with earlier studies which indicated that the bubble pressure was around 19 psig for the 30-mil matrix. During the early phases of parametric testing, the corrosion (discussed under Atmosphere Performance) that took place as a result of a cooling water leak reduced the unit's ability to support similar pressure differentials. During subsequent testing, therefore, pressure differentials could not be increased above 5 psi without experiencing intercell leakage.

3. PARAMETRIC TESTING AND RESULTS

Following the initial check points, a detailed five-phase test program was prepared, which was designed to evaluate the effects of current density, air flow rate, temperature, pressure and differential pressure, matrix thickness, and self-regulation characteristics. This program is delineated in Table III. The testing was conducted in such a manner that the initial and final portions were run with a three-cell stack, while a single cell was used for some of the parametric testing. This is noted in Table III.

The reason for conducting the testing in this manner was twofold. First, an attempt was made to prevent compromise of the results by corrosion damage which occurred during the preparations for the first phase of parametric testing. The details of that damage are discussed in the Atmospheric Performance section. A second benefit of using only one cell was the reduced time for assembly and disassembly when changing matrices. As shown in Table III, the first four phases of testing, being parametric in nature and corresponding to thermal nonequilibrium with respect to self-regulation, were conducted with external, rather than internal, humidification. During the fifth phase, which resulted in over 200 hours of self-regulating operation, the unit was allowed to perform without external constraints, utilizing its internal humidifiers, and to attain the corresponding thermal equilibrium.

The tabulation of data taken appears in Appendix III. This information was then converted to Figures 21-66-for comparison of the various parameters of To aid in interpreting this series of plots, Table IV, A Tabular Guide to Reduced Data Plots, is included. This table reveals the relationship between the basic test program, data points plotted, and the range of parameters covered by each plot. The discussion of these figures appears in the corresponding test section.

a. Atmospheric Performance

During initial setup for atmospheric testing, the complete three-cell stack, gas compartments included, became flooded with water. Assessment of the problem indicated a cooling water leak. Upon opening the unit, it was observed that corrosion had taken place in the end plates and adjacent wick plates, thus allowing leakage of cooling water into the gas passages. Specifically, water was allowed to leak from the coolant passages through corroded O-ring grooves in the contingency water feed ports (see Figure 9 for location of these ports) and fill the humidifier chambers. From there, the water eventually flooded the entire three-cell stack through the gas ducts and ports. Some of the gas ports displayed corrosion to the point of affecting the O-ring grooves. No corrosion was observed in any of the anode or cathode compartments where KOH was in intimate contact with the gold- and nickel-plated magnesium structure. Experience related by the plating subcontractor indicated that similar problems had been encountered where gold-plated magnesium was in contact with water. The corroded areas were coated with an epoxy adhesive to prevent further damage to the exposed magnesium areas. This was done after the Preliminary Evaluation previously discussed, but before any of the data points listed in Table III were obtained. The three-cell stack was reassembled and data points 1-64 were taken.

	Run Time Hrs.	9.6	0.6	6.1	8,8	1.9	1, 1	12.5
	Current Density - ASF @ Flow-xT	(10, 20, 40, 60, 80, 100 @ 3T and 5T 20, 60, 80, 100 @ 2T	35, 65, 100, 150 @ 2T, 3T, 4T, 5T	(15, 35, 50, 65, 80, 100 @ 5T (15, 35, 65, @ 2T and 3T	15,35,50,65,80,100 @ 5T 15,35, 65, @ 2T and 3T	15, 35, 50, 65, 80, 100 @ 5T 15, 35, 65, @ 2T and 3T	15, 35, 50, 65, 80, 100 @ 5T	15, 35, 50, 65, 80, 100 @ 5T 15, 35, 65, @ 2T and 3T
Oxygen Concentrator Test Program	Cell Pressure Cathode/Anode psia	14.7/14.7	14.7/14.7	14. 7/14. 7 10. 0/14. 7 14. 7/10. 0	$ \left\{ \begin{array}{c} 5.0/5.0 \\ 7.5/7.5 \\ 10.0/10.0 \end{array} \right\} $	$\left\{ \begin{array}{c} 5.0/5.0\\ 7.5/7.5 \end{array} \right\}$	$ \left\{ \begin{array}{c} 7.5/7.5 \\ 10.0/10.0 \end{array} \right\} $	10. 0/14.7 14. 7/10.0 14. 7/14.7 30. 0/25.0 30. 0/25.0 30. 0/35.0 45. 0/40.0 45. 0/40.0 45. 0/55.0 60. 0/55.0 60. 0/56.0 60. 0/66.0 75. 0/70.0 75. 0/70.0
Oxygen Conce	Cell Temp. F	* 125 125 125 125 125 126 126 126 126 126 126 126 126 126 126	o <u>x</u> t	co <u>n</u> tro	s gave	\$ e∈	ng r∈	moved ***
Table III	No. Of Cells	က	1 (No. 1)	1 (No. 3)	1 (No. 3)	1 (No. 3)	1 (No. I)	. (No. 3)
	Electrolyte Loading g/g dry matrix	1. 25	1.75	1, 25	1. 25	1.25	1.75	1. 25
	Matrix Thickness Mils	30	30	$\left\{\begin{array}{c} 20\\10\end{array}\right\}$	30	30	30	98
	Data Point Nos.	1-64	565-580	65-136	137-172	137A-160A	553-564	173-352
	Test Phase	Atmospheric Performance		Matrix Comparisons	Vacuum Operation			Pressure and Pressure Dif- ferential Operation

	Run Time Hrs.	2.5	1.1	59	142	
	Current Density - ASF @ Flow-xT	60 @ 4 T	15, 35, 60, 100, 144, 166 @ 4T	Variable to 35 @ 5T Nominal	Variable to 60 @ 4T Nominal	
Table III Oxygen Concentrator Test Program (cont.)	Cell Pressure Cathode/Anode psia	14. 7/14. 7 20. 0/14. 7 20. 0/20. 0 30. 0/30. 0 45. 0/45. 0 60. 0/55. 0 60. 0/65. 0 60. 0/65. 0 75. 0/70. 0 75. 0/70. 0 75. 0/70. 0 90. 0/85. 0	30,0/25.0	10.0/10.0	14.7/14.7	
gen Concentrato	Çell Odx∰emp.	r g controls have b	e <mark>g</mark> n	Contigued	Controlled	*
Table III Oxy	No. Of Cells	1 (No. 1)	1 (No. 1)	က	е .	
	Electrolyte Loading g/g dry matrix	2, 25	2, 25	1. 25	1.75	
	Matrix Thickness Mils	30	30	30	30	
	Data Point Nos.	526-543; 552	544-551	353-525 59-br. run	581-636 142-hr. run	
	Test Phase	Pressure and Pressure Differential Operation		Self- Regulation		

Table IV A Tabular Guide to Reduced Data Plots

No.		TOTOT T		(Samuel of Comments)	in the same to the			
12	Atmospheric	1-6	30 Mil;	1. 25 g/g dry matrix;	Three-Cell Performance;		100F;	5T; 14.7 psia/14.7 psia
	Pressure				*			
22	=	17-22	=	 -	±′ * 1	••	125F;	= ::=
23	=	33-38	:	:	=	٠.	150F;	: ::
24	=	49-54	:	:	: E		175F;	= ::
25	=	1-16	 E		Cell 2 Performance	••	100F;	2T, 3T, 5T; 14.7 psia/14.7 psia
26	=	17-32	:		;		125F;	=
27	=	33-48	=	-	: or		150F;	=
28	:	49-64	:	£	: t		175F;	=
29	:	1-6; 17-22;	=	:	: C	-	100F.	190F, 125F, 150F, 175F;5T; 14.7 psia/14.7 psia
	• •	33-38;49-54			(0)			
30	=	33-38	 E	 =	<u>.</u> nt	••	150F;	5T; 14.7 psia/14.7 psia
					ır			
31	=	565-568;	 =	1.75 g/g dry matrix;	Ocell 1 Performance		125F;	2T, 5T; 14.7 psia/14.7 psia;
		577-580			Ω			Terminal & IR Free Voltage
32	Matrix	65-76	20 Mil;	1.25 g/g dry matrix;	Cell 3 Performance		125F;	2T, 3T, 5T; 14.7 psia/14.7 psia
	Comparisons				₹V			
33	Ξ	77-88	: =	:	:		 :	'' ; 10.0 psia/14.7 psia
34	=	89-100	 =	:	:		 =	"; 14.7 psia/10.0 psia
35	9	65-70;77-82	:	:	: De		 =	5T; 14.7 psia/14.7 psia, 10.0 psia/
					e:e:		••	14.7 psia, 14.7 psia/10.0 psia
36	Ξ	101-112	10 Mil;	 =	: n		 :	, 5T
37	=	125-136	:	:-			 :	"; 14.7 psia/10.0 psia
38	=	101-106;	:- =	:-	: rer		 :	5T; 14.7 psia/14.7 psia, 14.7 psia/10.0
		125-130			mo			psia
39	. 1	7-22;65-70; 1	0, 20, 30 M	17-22;65-70; 10, 20, 30 Mil; 1. 25 g/g dry matrix;	: ve		 =	"; 14.7 psia/14.7 psia
		101-106			d			
40	Vacuum	137-148	30 Mil	1.25 g/g dry matrix ;	*Cell 3 Performance	••	125F;	2Т, 3Т, 5Т; 5.0 рна/5.0 рвіа
	Operation				*			
41	Ξ	149-160	:		:		;. :	••
42	=	161 - 172	:	:-	=		 :	••
43	:	137A-148A	 E	··	:		:	••
44	E	149A-160A	:- :	:	=		 =	' ; 7.5 psia/7.5 psia
45	=	553-556	 =	1.75 g/g dry matrix;	Cell 1 Performance	••	;- :	5T; 7.5 psia/7.5 psia
	•		:	=	=		:	11 . 10 0

Table IV A Tabular Guide to Reduced Data Plots (cont.)

Figure No.	Test Phase	Data Pts. Plotted	Matrix	; Electrolyte Loading	Range of Pertinent Parameters No. of Cells; Temp.; Flow; Ca	rameters Flow; Catho	Range of Pertinent Parameters Nc. of Cells; Temp.; Flow; Cathode Pressure/Anode Pressure
7.	Pressure & Pressure Dif- ferential	209-220	30 Mil	1. 25 g/g dry matrix ;	Cell 3 Performance **		125F, 2T, 3T, 5T; 30.0 psia/25.0 psia
48	11	221-232	:	:	: E:	.,	: 10.0 psia/30.0 psia
49	ŧ	233-244	:	=	×ŗ		=
20	: .	209-214	.=	=	=	<i>:</i> 	; 5T;
		221-226			rt		30.0 psia, 30.0 psia/ 35.0 psia
51	=	245-256	Ξ	:	: C	-	: 2T. 3T. 5T: 45, 0 psts/40, 0 psta
52	=	257-268	:	=	:	,	
23	=	269-280	:		: nt		:
22	=	245-250	=	:	=		; 5T; 45.0 psiz
		257-262			ol		45.0 psia, 45.0 psia/50.0 psia
	:	269-274	1				,
22	=	281-292	:			÷,	; 2T, 3T, 5T
99	=	293-304	:	:	ະ ha		:
57	:	305-316	:	:		:	; ; 60.0 psta/65.0 psia
58	:	281-286	:	:	: e		; 5T;
		293-298			k		60.0 psia, 60.0 psia/65.0 psia
		305-310)e		
59	=	317-328	:	=			; 2T, 3T, 5T; 75.0 psta/70.0 psta
9	=	329-340	=	=	: 1		; 75.0 psia/75.0 psia
19	=	341 - 352	:	:		:	=
62	:	317-322	=		: er	-	; 5T; 75.0 psia/70.0 psia, 75.0 psia/
		329-334 341-346			mov		75.0 psta, 75.0 psta/75.0 psta
63	=	17- 22 209-353	٤.	:	O Single-Cell Perform	nance Bands	0. Single-Cell Performance Bands; 125F; 5T; 14.7-75.0 psia/14.7-80.0 psia
64	Ŧ.	545~551	=	2.25 g/g dry matrix;	*Cell 1 Performance; 125F; 4T; 30, 0 psia/25, 0 psta; * Terminal & IR Free	e; 125F; 4T;	30, 0 psia/25, 0 psta; Terminal & IR Free Voltage
65	Self-Regulation (59-hour run)	353-525	30 Mil ;	1.25 g/g dry matrix;	Three-Cell Perfor	nance; Varia	Three-Cell Performance; Variable; Nominal 5T; 10.0 psia/10.0 psia
99	Self-Regulation	581-636	:	1.75 g/g dry matrix;	=		; 4T, 5T; 14, 7 psia/14.7 psia

This phase of testing shows the variation of performance with respect to cell temperature while operating under atmospheric conditions. Figures 21-24 indicate the performance of all three cells at a flow five times stoichiometric (5T) as a function of temperature. Cell 3 did not perform as well as either of the other cells. The gas ducts were checked both before and after testing and found to be clear, indicating correct air flow. Cell 2 was selected for individual cell comparisons as a function of flow and temperature. These are shown in Figures 25-29. Clearly indicated in Figure 29 is the fact that the cell voltage requirements are reduced as temperature is increased. The internal resistance of the cell as a function of current density is shown in Figure 30. Finally, in a single-cell test conducted on Cell 1 with a higher electrolyte loading (1.75 g 32% KOH/g dry matrix as opposed to 1.25 g 32% KOH/g dry matrix) improved performance is indicated to current densities of 150 ASF. This is shown in Figure 31. Note that the internal resistance is less than that displayed in Figure 30. This would seem to indicate that electrolyte loadings above the minimum of 1.0 g/g dry matrix as quoted are required for improved performance.

In Table V are presented the IR voltage losses for the three cells taken as a function of temperature and air flow at 100 ASF (data points 1-64). As would be expected, the IR loss is essentially independent of flow rate since it is concerned with the electrolyte and its conductivity. Note that the IR loss increases with temperature. This is contrary to normal expectations since the electrolyte conductivity increases with temperature. Cells 1 and 2 display nearly equal characteristics, while Cell 3 shows an abnormally high internal resistances may have been caused by matrices that were on the low boundary of recommended electrolyte loadings.

b. Matrix Comparisons

Since it was felt that 125F represented a likely possibility for eventual cell operation under the self-regulation mode, it was selected as the operating temperature at which the comparison of other parameters would be made. It was under this condition that the performance of a single cell with 20-mil matrix was assessed. As noted in Table III, the cell was operated at atmospheric pressure with nearly a 5 psia differential in each direction. The results are presented in Figures 32-35. Figure 35 indicates that the cell operated best when no pressure differential was present. This effect would be expected of the cells operating at low levels of electrolyte loading. At low loading levels the effect of pressure differential would be to shift the limited amount of electrolyte from the electrode on the high pressure side to the low pressure side. This would, in turn, cause excessive electrode polarization.

In a manner similar to the previous test, a cell containing a 10-mil matrix was evaluated. Due to internal cell leakage, data points 113-124 were not obtained. The leak was apparently caused by undue gasketing constraints which did not allow the matrix to be compressed to the desired degree. Figure 38 again indicates that cell performance was somewhat better with no pressure differential present across the matrix. In the matrix comparison, Figure 39, it can be seen that the cell performed best with a 20-mil matrix.

Table V Cell IR Loss and Resistance x Area

IR Loss @ 100 ASF - volts						1
		1 4	Air Flow			Avg.
Cell	Temp. F	2T	3 T	5T	Avg.	ohm-cm ^{2**}
1	100	0.125	0.12	(0,15)*	0.122	1.13
	125	0.11	0.13	0.13	0.123	1.14
	150	0.13	0.14	0.125	0.132	1. 23
	175	0.20	0.20	0.182	0.194	1. 80
2	100	0.11	0.11	0.14	0.120	1, 11
	125	0.10	0.12	0.11	0.110	1.00
	150	0.135	0.14	0.135	0.137	1. 27
	175	0.19	0.19	0.18	0.187	1.74
3	100	port cont 0.10	rols ha	ave been re 0.14	emoved ** 0.117	1.09
	125	0.165	0.15	0.12	0.145	1, 35
	150	0.19	0.19	0.19	0.183	1.70
	175	(0.27)*	0.33	0.325	0.327	3.04

Taken From Data Points 1-64

Electrolyte Loading - 1.25 g/g dry matrix

^{*}These data points not used in computing average IR loss.

^{**}This is equal to the average IR loss/current density, and hence becomes a measure of cell internal resistance which is independent of current density.

Normally, due to lower internal resistances, it would be expected that the 10-mil matrix would provide superior results. However, it is possible that the same factors which resulted in internal leakage tended to impair cell performance as well. Further, since a thinner matrix offers reduced reservoir action in relation to moisture balance, this also may have been a performance deterrent.

c. Vacuum Operation

The data taken during this phase served to focus upon the more difficult water management problem at reduced pressures. At low pressures, the specific humidity (mass of water vapor/mass of air) required to keep the cell in proper moisture balance is higher than at elevated pressures. For example, attempting to run at a total inlet pressure of 2.5 psia at a 125F cell temperature would result in over two-thirds of the total flow consisting of water vapor. With the air flow rates required, this water requirement was beyond the capabilities of the external humidifier.

During the first attempt at data points 137-172, a malfunction of the temperature control loop allowed the cell to overheat and the matrix to dry out. During an attempted rerun (points 137A-160A), a line between the external humidifier and the cell was insufficiently heated, thus causing moisture condensation from inlet air before it reached the cell, resulting in cell desiccation. Therefore, data points 137-172 and 137A-160A, which resulted in Figures 40-44, are not representative of cell performance under balanced humidity conditions. Contained in these figures is the cell desiccation variance with time. Shown in Figures 45 and 46 are the results of a third and more successful attempt (data points 553-564) at vacuum operation. These were taken at a higher electrolyte loading (1.75 g/g dry matrix) which served as a deterrent to rapid desiccation. However, at the higher current densities the voltage again showed a tendency to rise. Since the external humidifier was being taxed beyond its capacity, it was obvious that prolonged operation under these conditions would have resulted in performance similar to data points 137-172.

d. Pressure and Pressure Differential Operation

Conversion of the test rig for pressure operation included the replacement of the here-tofore glass humidifier by a smaller stainless steel container. A flow separator was placed at the inlet to allow dispersion of the entering air and a screen at the outlet to eliminate unwanted liquid carryover due to violent bubbling. The assembly and all lines were carefully wrapped with heater tapes and insulated. After having run through the first few data points (209-232), it became apparent that the humidifier was not saturating the air passing through it. This was indicated by the low dew point of the exhaust air stream – a sign that the cell was beginning to desiccate.

From data points 233-352, therefore, the procedure was to heat the humidifier considerably above the normal saturation temperature in an effort to allow the partial saturation to increase the specific humidity to more acceptable levels. This resulted in an increased downstream dew point reading more in keeping with that in earlier successful

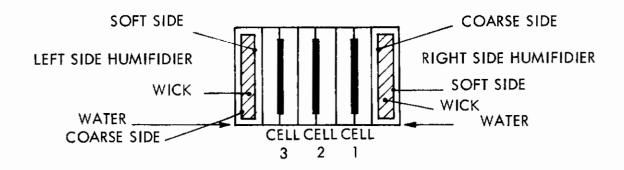
testing. Particular trends are difficult to ascertain from this phase of testing. The cell required its lowest voltage when the cathode/anode pressures were nominally 60.0 psia/55.0 psia and its highest voltage when they were 45.0 psia/40.0 psia. During both the 30.0 and 45.0 psia testing, the cell operated best with no pressure differential, while a differential pressure of 5 psia (cathode > anode) provided the lowest voltage requirement during 60.0 and 75.0 psia testing. Figures 47-62 cover the results.

Since at increased cathode air pressures the partial pressure of oxygen is increased, it was expected that cell performance would show improvement at elevated pressures. This was not experienced, however. Figure 63 shows a comparison of the spread in data obtained with Cell 3 at points 209-352 (125F), and the performance obtained under atmospheric conditions with Cells 1 and 2 (125F). The performance demonstrated by both Cells 1 and 2 is superior to the best pressure data for Cell 3. As mentioned, this is contrary to expected operation. A later single-cell test using Cell 1 (data points 526-552) indicated performance superior to that previously obtained with Cell 3 (points 209-352). It should be noted that the heavier electrolyte loading (2.25 g/g dry matrix) was used at this time. During assembly, this seemed excessively moist. Once more, no significant performance improvement was realized as a function of increased cathode air pressure (up to 90 psia). However, cell voltage requirement was always less when the cathode air pressure exceeded the anode oxygen pressure (see data points 526-552, Appendix III). An extended current density plot taken during this run is shown in Figure 64.

*** Export controls have been removed ***

e. Self-Regulation

Consideration of the response times of temperatures and voltages, while operating in the self-regulation mode, ruled out complete wide-range performance evaluation. Several long-term runs would be required to obtain wide-range performance data. The equilibrium temperature attained by the concentrator is dependent upon air flow rate and pressure, current density, and voltage.


The analysis of thermal equilibrium previously described in Section II was used as a basis for selecting the operating pressure for the first self-regulation run. The desire was to keep the pressure high enough to minimize water consumption rates, yet low enough to maintain reasonable cell temperatures, while operating with no supplementary cooling. Based upon these considerations, a pressure of 10 psia was chosen. To establish the required vapor pressure during preliminary evaluation of the self-regulation principle, Dacron wicking material saturated with a solution of 25% Na SO was used. The Na SO was necessitated because of Dacron's incompatibility with KOH. Ideally, the required vapor pressure would be established by humidifier wicks saturated with KOH solution of lower concentration than that used in the cell matrix. Since it seemed advisable not to have a two-chemical system, the wicking material was later changed to polypropylene, which is compatible with KOH. Therefore during the long-term, self-regulation test, the wicks were saturated with a 23% KOH solution.

An important point to note is the manner in which the wicks were installed in the stack. One side of the polypropylene is somewhat softer than the other side. In order to

evaluate any difference in performance, dependent on method of wick installation, the wicks were installed as illustrated in Figure 20.

It later became apparent that the wick installed adjacent to Cell 1 provided superior operation. Figure 65 covers the running information of selected parameters during the testing which lasted 59 hours. Data points 353-525, included in Appendix III, provide all data taken during the run. Also included in this data log are notations which indicate adjustments made during the run.

*** Export controls have been removed ***

The run proved that the principle of self-regulation does work. When held in proper moisture balance, the cells performed quite well. Note from Figure 65, that between the running hours 9-13 and 26-45 several extended stable periods were displayed by the cells. Two problems, both centering on moisture introduction, were encountered leading to eventual shutdown of the stack. The first problem was due to the method of water transport from a reservoir to the internal humidifiers. (This was needed to replenish the water vapor carried overboard in the exhaust air. In a final application, water would be condensed from the air, collected and returned to the humidifiers, thus replacing the reservoir.) The second problem encountered during testing was the inability to maintain a consist ent reference pressure on the water's surface, so that the required rate of water could be fed to the humidifiers.

Several pressure references were tried before starting the long-term test, but none appeared to have fail-safe characteristics. An increase of the reference would cause the humidifier to flood with water, while a decrease would allow the air to flow out of the humidifier water feed port rather than through the cell. Finally, it was decided to inject water periodically by allowing atmospheric pressure to force water from the reservoir into the 10-psia humidifiers. The need for water was detected by monitoring the dew point of the exhaust air.

The humidifier adjacent to Cell 1 appeared to function properly, but the humidifier adjacent to Cell 3 did not accept water correctly. The water appeared to flow too freely

through this humidifier, without correct wicking, and flowed into the Cell 3 cathode compartment. As a result, Cell 3 became very sensitive to moisture balance. Figure 65 shows several times where all three cells, particularly Cell 3, experienced various degrees of overwet conditions. This resulted in high cell voltages. The introduction of excessively large amounts of water eventually would also affect Cell 2; this can be noted in the plot. From these results, it was concluded that the wicks are best installed with the soft side facing the water entrance port.

When flooding of the cell (or cells) occurred, air flow was increased to aid in lowering the moisture content. This usually resulted in lowering the voltage requirements. After traversing through alternate cycles of drying and flooding, as a result of periodic water injection, Cell 3 failed to recover. At this point, Cell 3 was removed from the electrical circuit. But prior to this, namely during running hours 9-13, the entire three-cell stack operated quite stably under self-regulation. Coincident with the latter hours of testing, a micrometer valve was calibrated and inserted in the water line between the reservoir and humidifiers, thereby allowing make-up water to be fed at selected rates. The valve was successfully integrated near the cessation of testing. By this time however, Cells 2 and I, having gone through several wet and dry cycles, did not respond to recovery techniques intended to restore the proper moisture content to the matrices. Shortly after 59 hours of continuous running, the unit was shut down. Several periods of stable, self-regulated operation, however, had been experienced. Upon cell disassembly, it was discovered that the packs were quite dry. In fact, electrolyte crystallization was present over some portions of the electrode which tended to minimize the effective area. This crystallization was very likely progressive in nature as a function of alternate wetting and drying and eventually responsible for the unit's inability to recover to previous performance levels. The bipolar plates appeared almost as clean as when originally assembled.

A second attempt at operation under the self-regulation mode proved a good deal more successful. The three cell stack was operated for 142 continuous hours which culminated the testing program of over 235 hours (see Table III). During this run, current densities of 60 ASF were achieved, with all cells requiring less than 0.9 volts terminal voltage. The results of the run are plotted in Figure 66 (three cell voltages with representative temperatures) with the complete data being covered by points 581-636 in Appendix III. Note the very stable voltages displayed in Figure 66. Two items made this test more successful than the 59-hour run. First, an improved, although far from optimum, water feed system was installed which allowed continuous, rather than periodic, water injection to the humidifiers. Second, the wicks were installed in the manner that appeared optimum based on the 59-hour test, that is, the soft side facing the water inlet port. A third item which may have contributed to the success was the fact that the electrolyte loading was 1.75 g/g dry matrix. However, it is felt that insufficient data has been accumulated to allow this judgment.

Although the water feed was improved, it was not prototype in nature, and its inadequacies resulted in both over and under water feed at various times. This led to eventual stack shutdown and is so noted on Figure 66. Generally, the problems that were

encountered took place during unattended operation when hourly data were not taken and adjustments could not be made, or when pressure transients apparently occurred in the shop air supply (used to supply the cathode) causing varying water feed. This is noted at the seventh hour of operation when a decrease in supply pressure allowed excessive water to enter the humidifier chambers. Such transients have apparently permanent deleterious effects. However, in spite of testing difficulties, the successful display of self-regulation lends substance to the projected design of the 0.2-lb O_2/hr unit discussed in Section V.

Upon disassembly of the unit, it was found that the packs were quite moist. Cell I anode showed signs of having been flooded with liquid, which occurred during the last unattended operation (see Figure 66). These signs included some small, but rather wet, coagulations of platinum separated from the electrode, and a pack that was overly wet compared to Cells 2 and 3. In general, the other plates appeared as they had prior to assembly, except that one area in a wick plate which had been previously corroded and repaired with epoxy showed signs of shedding its epoxy patch. Although the principle of self-regulation has been established, it is recommended that this same hardware be subjected to several additional long-term self-regulation tests to amplify life data while providing more insight into the design and operation of a prototype water system.

f. Test Conclusions

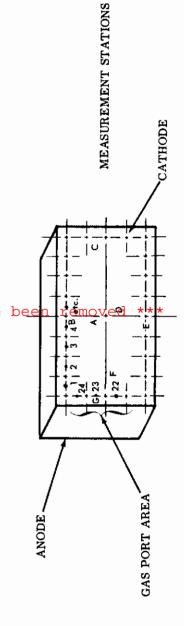
The desired result of a parametric test program of the nature undertaken is that sufficient evidence is gathered which gives guidance to allow projection of the hardware design into the next phase of performance. This includes establishing the strong points of the design, opening areas for possible additional investigation, as well as identifying the pitfalls which should be avoided. It is believed that these goals have been achieved. It is felt that the principle of self-regulation has been shown to be feasible and a foundation for a higher capacity unit incorporating this design feature has been laid. Specifically, the test program served to indicate the distinct performance improvement with temperature; the difficulties of water management when high specific humidities are required; the lack of performance improvement with increasing pressure, pointing to a possible limit in cell performance to be found elsewhere, as yet unidentified; the care that will have to be taken in designing a water feed device for the self-regulated concept; the possibility of additional electrolyte loading investigation; and finally, the desirability of more life testing while operating under self-regulation.

4. CELL COMPRESSION

During the initial assembly of the concentrator, the thickness of the eight-piece stack was measured after successive tightenings of the bolts from 6-to 30-lb-in torque. At 6-lb-in torque, a bowing of the assembly was observed, evidenced by the fact that the thickness of the stack was 1.584 inches along the ends and 1.627 inches at the center. After tightening the bolts to 30-lb-in torque, the end thickness was 1.565 inches and the middle thickness was 1.573 inches. The degree of bowing had been reduced from 43 mils to 8 mils.

Leak tests made at different torque loadings on the bolts showed that the cell assembly was leak-free at the low-torque as well as at the high-torque loadings. A major result from the increased torque on the bolts was a lowering of the ohmic resistance of the individual cells. Specifically, the three cell stack resistance decreased from 4.3 to 3.1 ohm square centimeters when increasing the stack bolt torques from 20 to 30 lb-in. The net effect is a 28% power reduction during cell operation.

In Table VI are summarized the cell thickness measurements as taken at various stations throughout the test program. Note that the cell stack was always thickest at station F. This station is in line with the porting arrangement and associated O-rings of the stack, and the extra thickness at this station is probably due to compressive resistance of the O-rings.


During the final compression measurements taken on the three-cell assembly used for data points 526-552 (see Table VI) a "clay plug" gasket compression measurement was also conducted. Small holes of 1/16-inch diameter were punched in one of the gaskets between each bolt hold (24 holes in all). During assembly a small clay plug was inserted in each hole. The object was that the plugs would deform to match the gasket compression during assembly and could be measured upon disassembly to determine operating compressions. The sketch in Table VI indicates the location of the plugs. Starting in the upper left corner and traveling clockwise, they were numbered 1-24. Upon disassembly, it was found that plugs 1-22 measured in the range of 25-29 mils, with the majority being 26 and 27 milst thus indicating av 2 to 4 mil compression. However, plugs 23 and 24 measured 32 and 31 mils, respectively, which indicated no compression in this area. This coincides with the largest outside dimension readings at stations F and G. If such assemblies had been consistent throughout the test program, this may have contributed to the inability to consistently hold pressure differentials above 5 psia. Future concentrator designs must consider this aspect carefully.

5. OXYGEN PURITY

Initial oxyger purity measurements were made by performing Coulomb balances. By measuring the current used to power the concentrator, and the time over which the current was applied, theoretical oxygen output was calculated with the aid of Faraday's Laws. Comparing this number to the experimentally measured volume of oxygen generated during this time is a measure of the purity of the generated gas. Typical results of these measurements are presented in Table VII. Moisture, temperature, and pressure corrections were made in the measured data.

The difference in the calculated and measured volumes is approximately 1%. This indicates that the generated gas is only oxygen and that impurities, either from leaks through the membrane or generation of gases other than oxygen, probably had not occurred. These initial measurements were later supplemented with analyses from a Beckman E-2 analyzer. For example, during an initial one-and-one-half hour test run, after a cell reassembly, six data points indicated a gradual increase in output stream oxygen purities ranging from 99.11 to 100.00%. The collected and calculated volumes

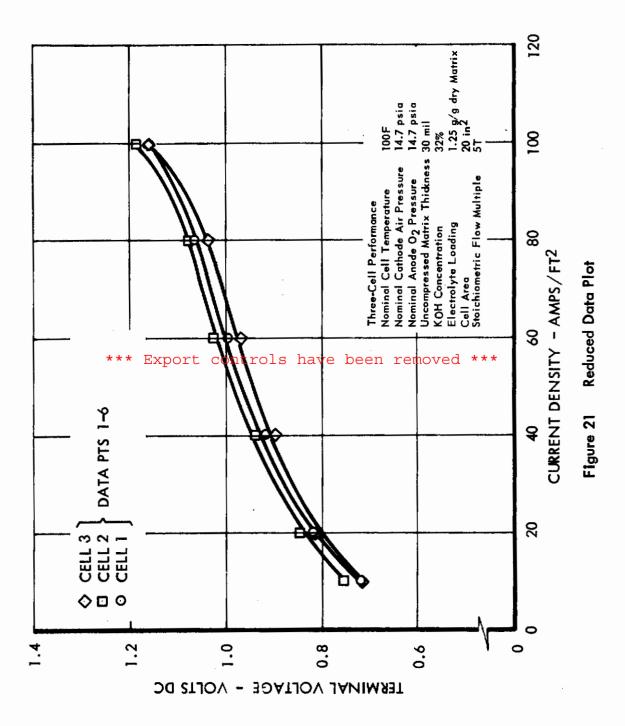
526-552 1 (l) 30/30 22/30 0.8360.8360.833 0.8360.8320.8200.837—: જાં સ. 4. 353-525 $\frac{3}{30/30}$ 22/30 1.5561,5501,5601,5521.5531.564 1,558T 22 85 44 173-352 - Outside Dimensions (in) 1 (3) 30/25 18/34 0.8250.8290.8120.824 0.8240.8220.830Table VI Compression Data ન ડાંસ. 4. 2. 1 (3) 3.* 30/30 4.* 18/35-40 I. 137-172 18.00 18.00 18.00 18.00 % have xport xport 0.827 000 0.831 Assembled Stack 1. 101–136 2. 1 (3) 3. 10/9 4. 18/30 808.0 0.806 0.8170.8120.8120.818 0.817 1 (3) 20/16 19/40 0.8180.8160.8230.8240.823 0.8260.825. 2. 2. 4. 3 30/30 13/40 1.5531.5401.5621.5561.5521.5571. 1-64 2. 3 3. 30/30 1.567 Station В $^{\circ}$ M 1 Ö

Test data points covered with stack assembly

Number of cells in stack (Cell No.)

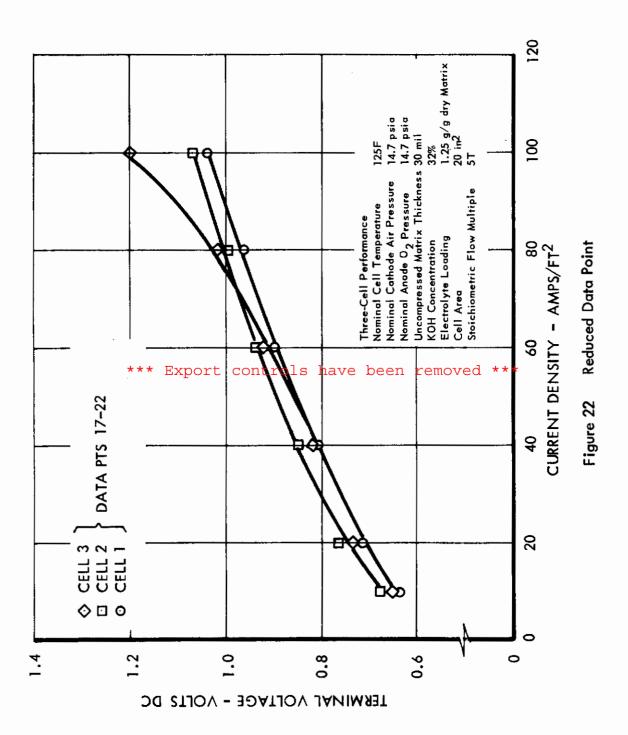
Uncompressed matrix thickness (mils)/uncompressed gasket thickness (mils) લંસ. 4.

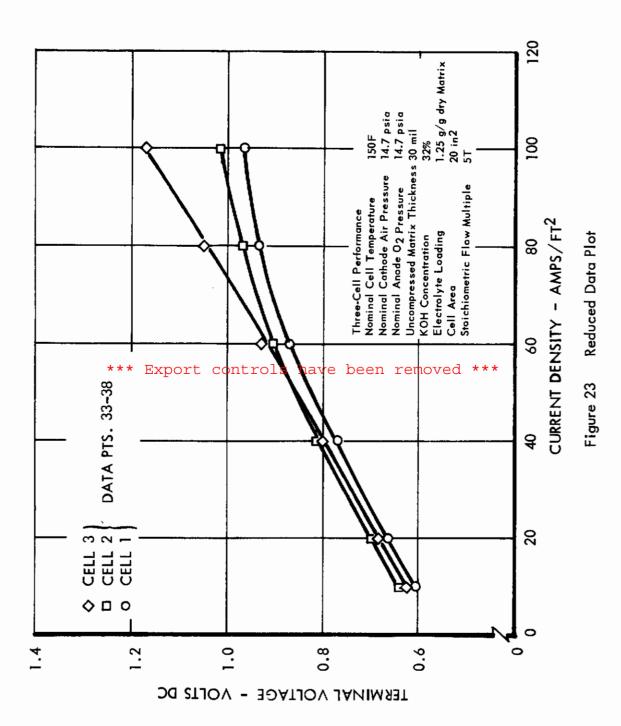
Number of bolts/Bolt torque (lb-in)


Table VII Coulomb Measurements of Oxygen Purity

Applied Current	Collection Time	Experimental Collected Volume	Calculated Volume
(Amps)	(Seconds)	(cc)	(cc)
5	300	305	308
2	600	250	247

of oxygen generated within this same time period agreed within 0.1% of the other. Repeated measurements taken during initial trials showed that the output stream always had an oxygen purity greater than 99%. Following the corrosion problem encountered during the parametric testing, the oxygen purity readings became erratic as a result of intercell leakage and thus failed to provide meaningful data.


*** Export controls have been removed ***


51

52

53

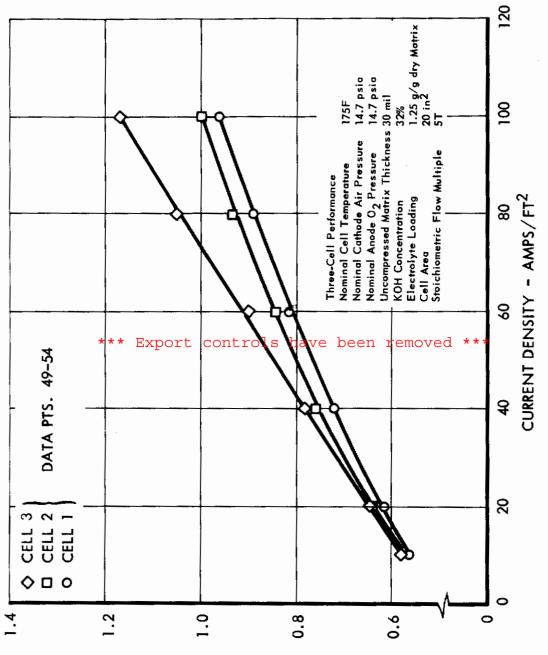
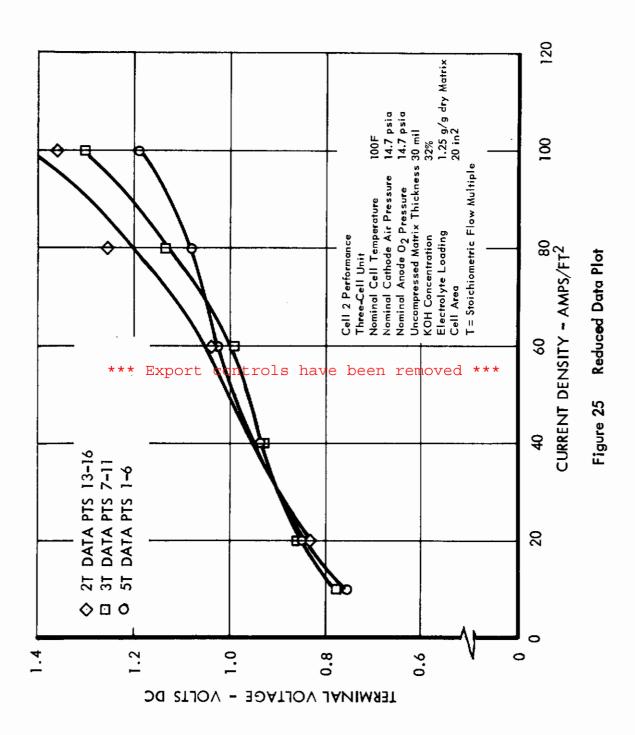



Figure 24 Reduced Data Plot

TERMINAL VOLTAGE - VOLTS D C

55

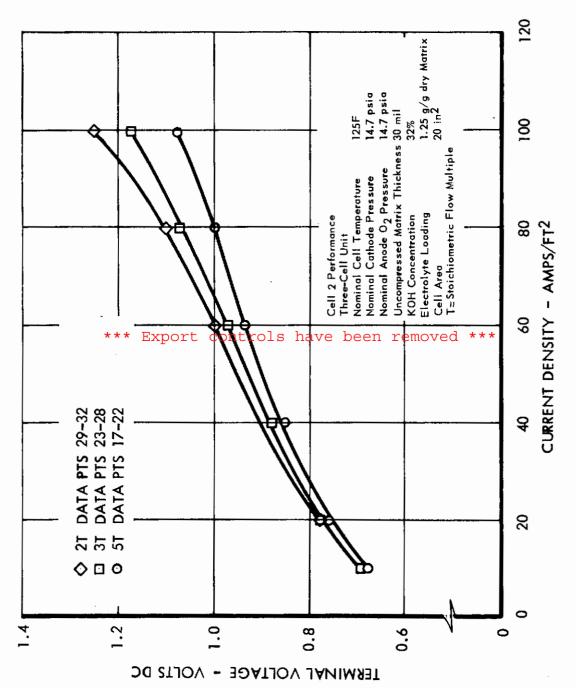


Figure 26 Reduced Data Plot

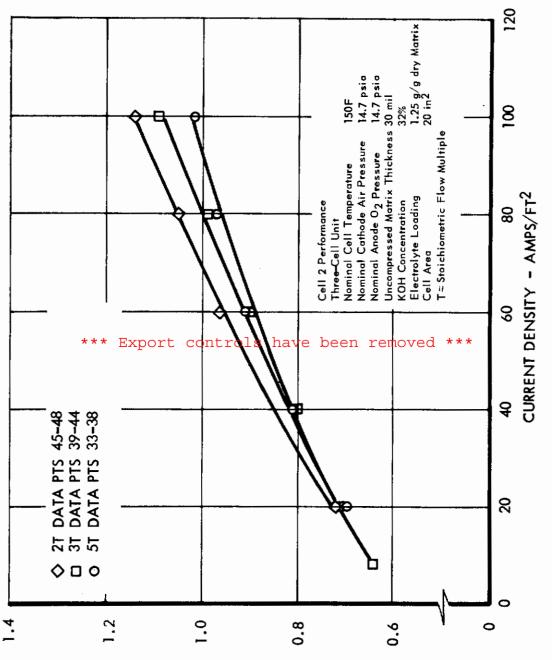


Figure 27 Reduced Data Plot

TERMINAL VOLTAGE - VOLTS DC

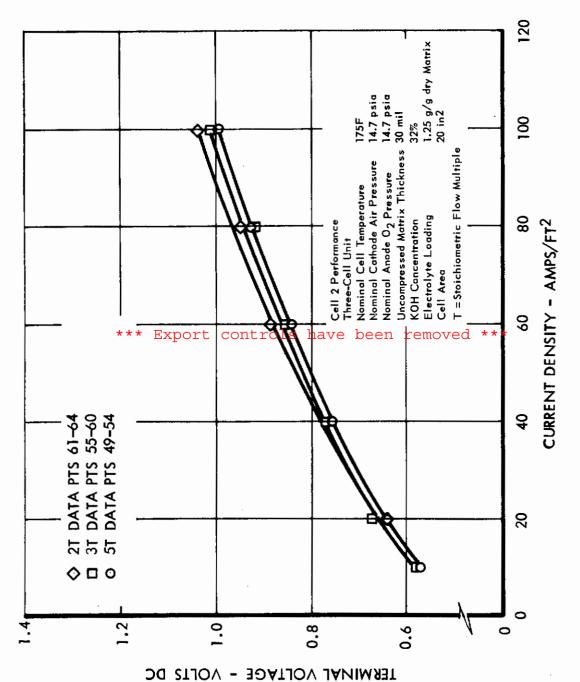


Figure 28 Reduced Data Plot

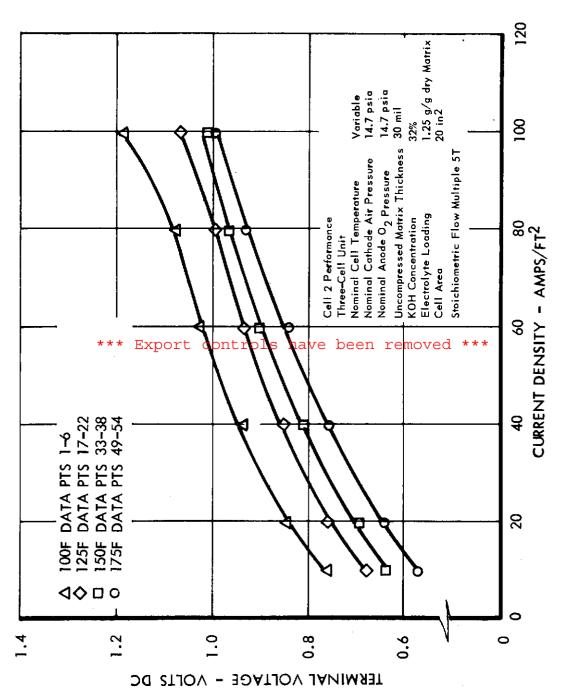


Figure 29 Reduced Data Plot

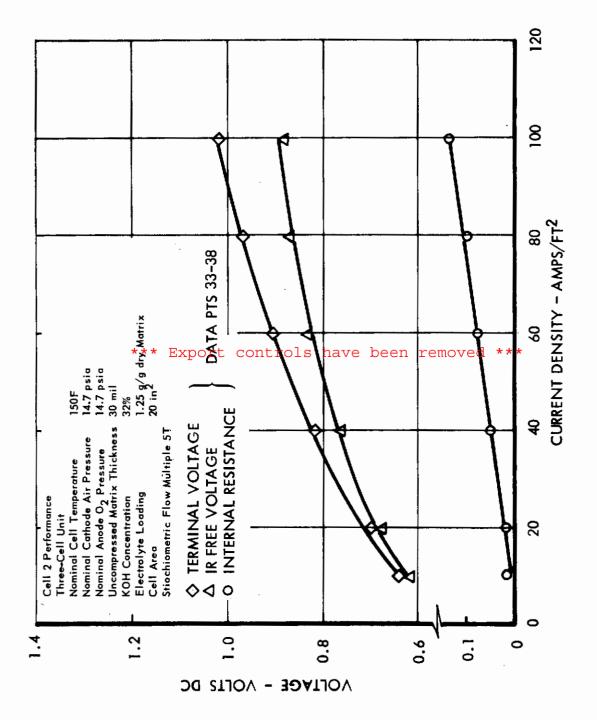


Figure 30 Reduced Data Plot

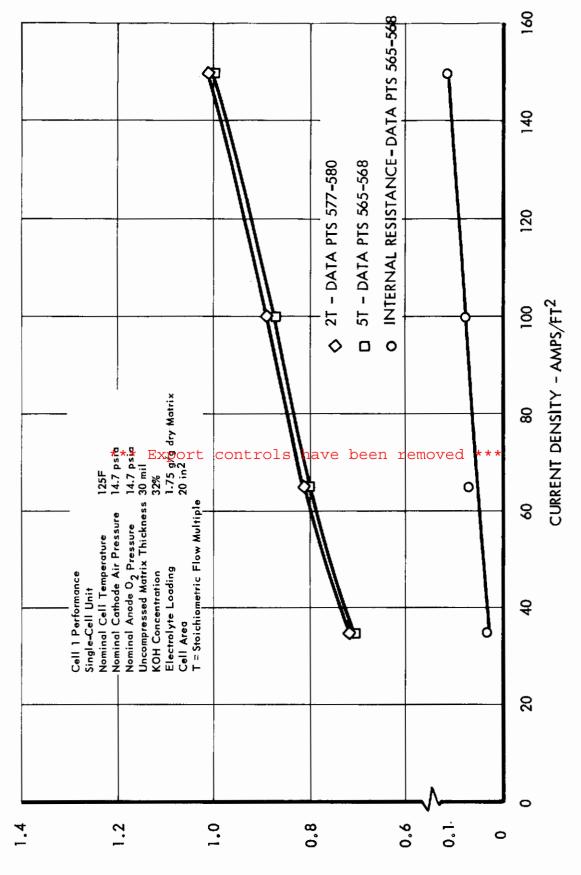


Figure 31 Reduced Data Plot

TERMINAL VOLTAGE - VOLTS DC

61

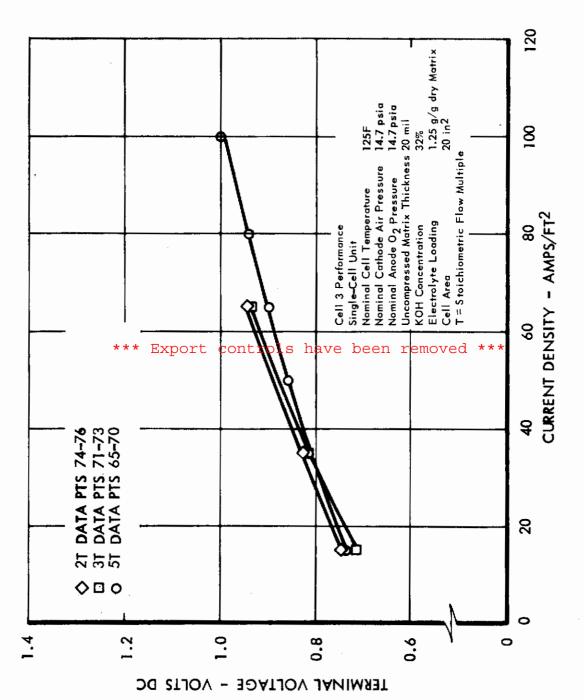


Figure 32 Reduced Data Plot

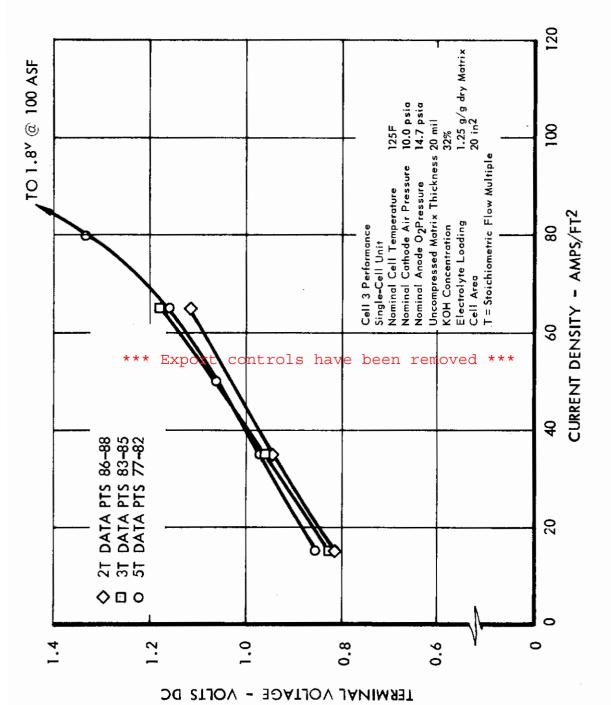


Figure 33 Reduced Data Plot

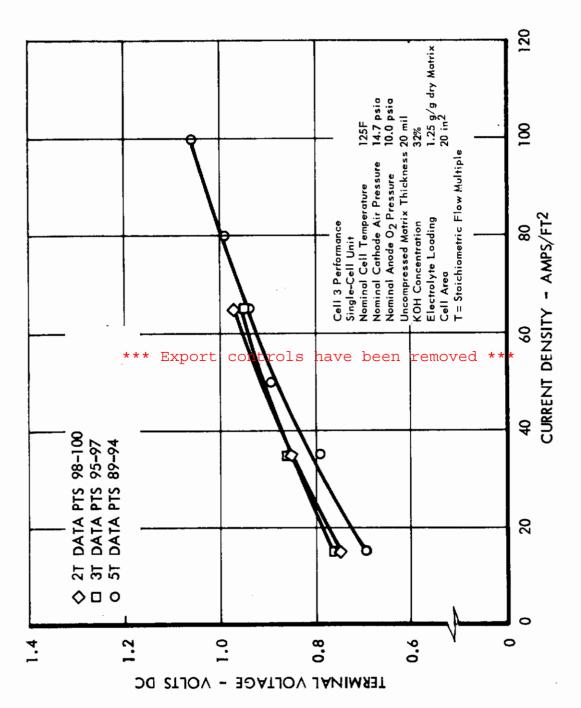


Figure 34 Reduced Data Plot

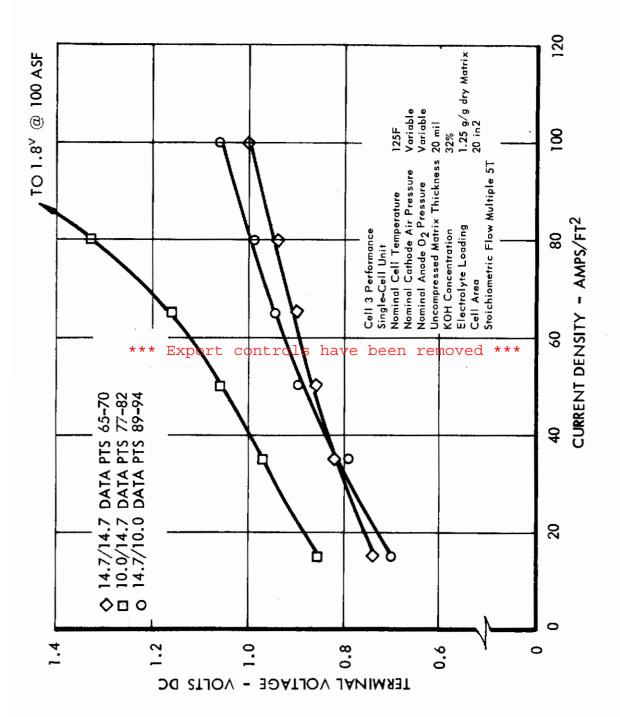


Figure 35 Reduced Data Plot

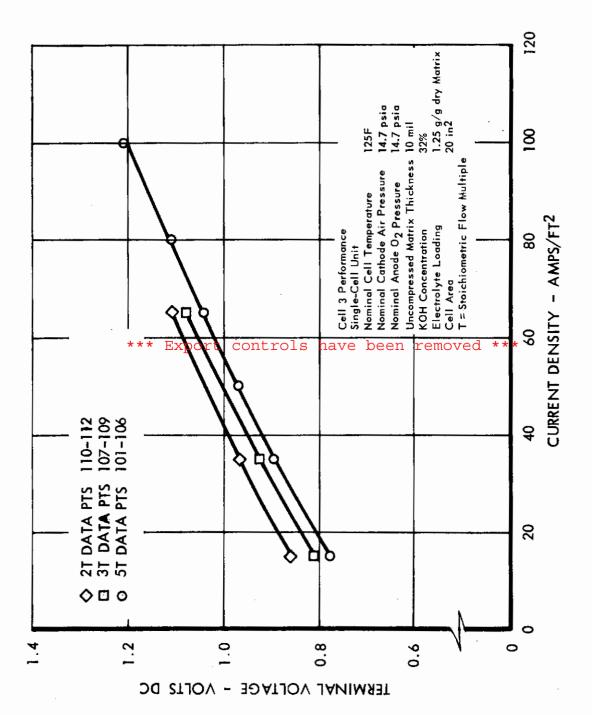


Figure 36 Reduced Data Plot

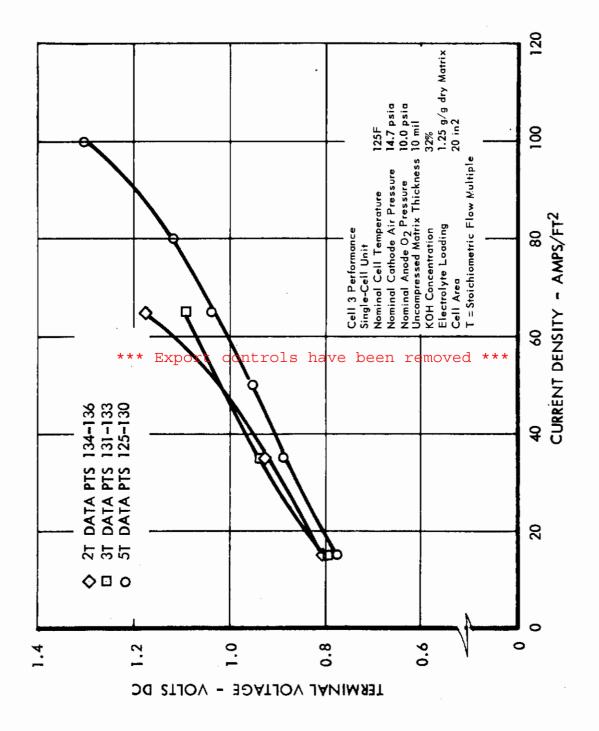


Figure 37 Reduced Data Plot

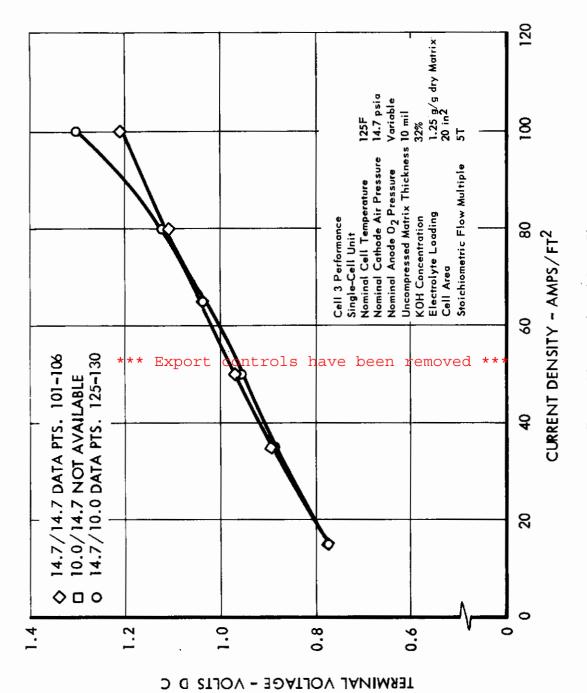


Figure 38 Reduced Data Plot

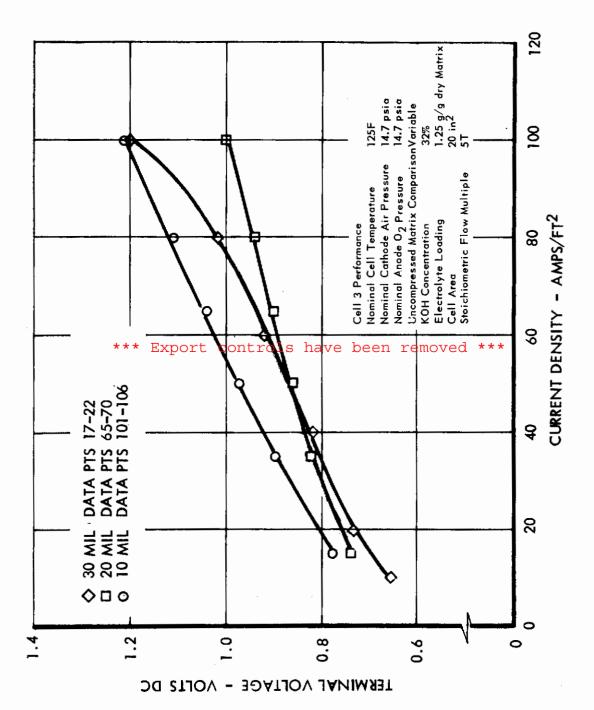


Figure 39 Reduced Data Plot

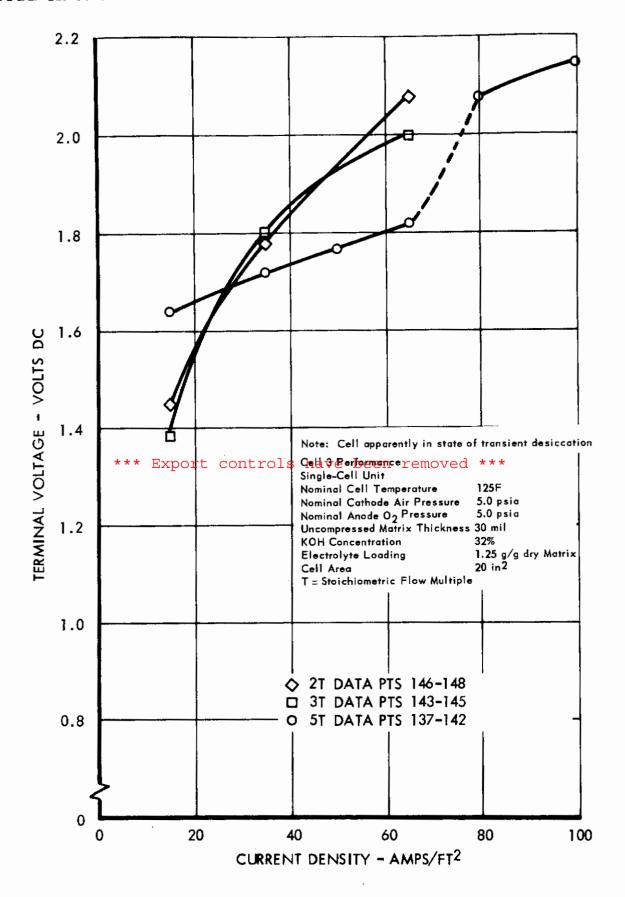


Figure 40 Reduced Data Plot

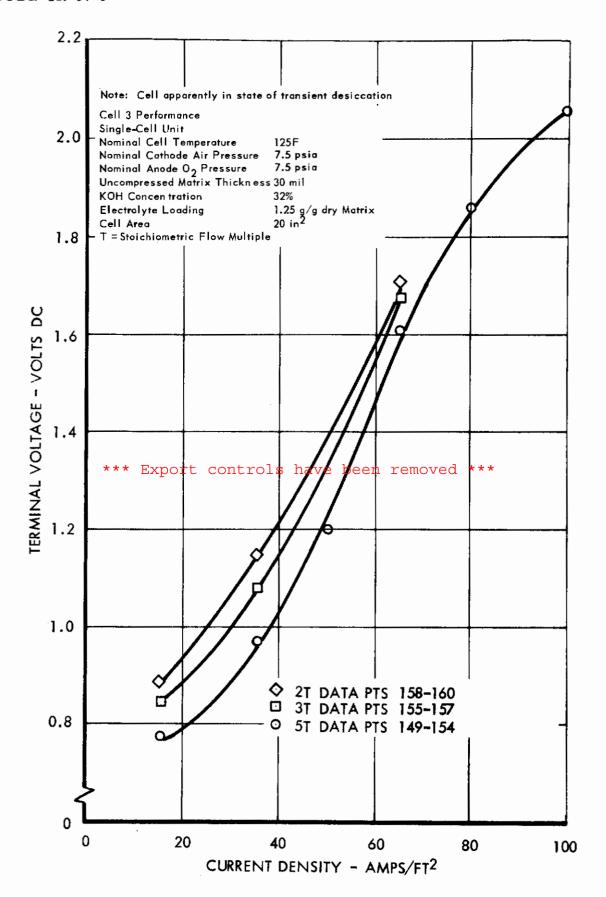


Figure 41 Reduced Data Plot

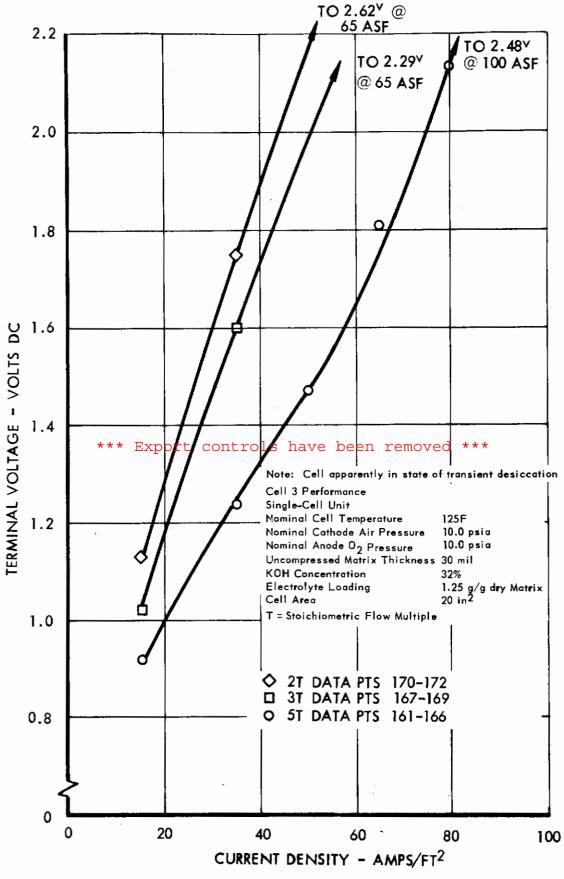


Figure 42 Reduced Data Plot

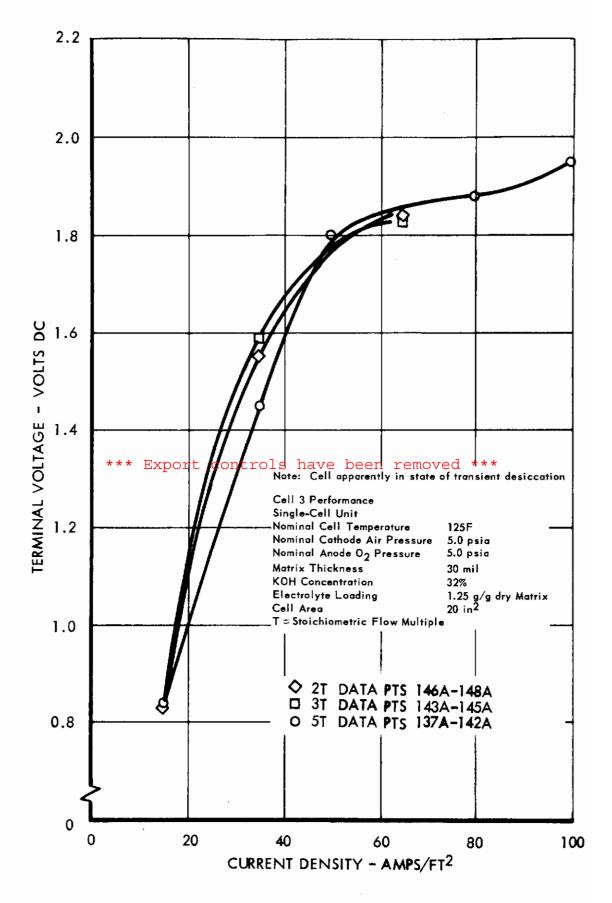


Figure 43 Reduced Data Plot

73

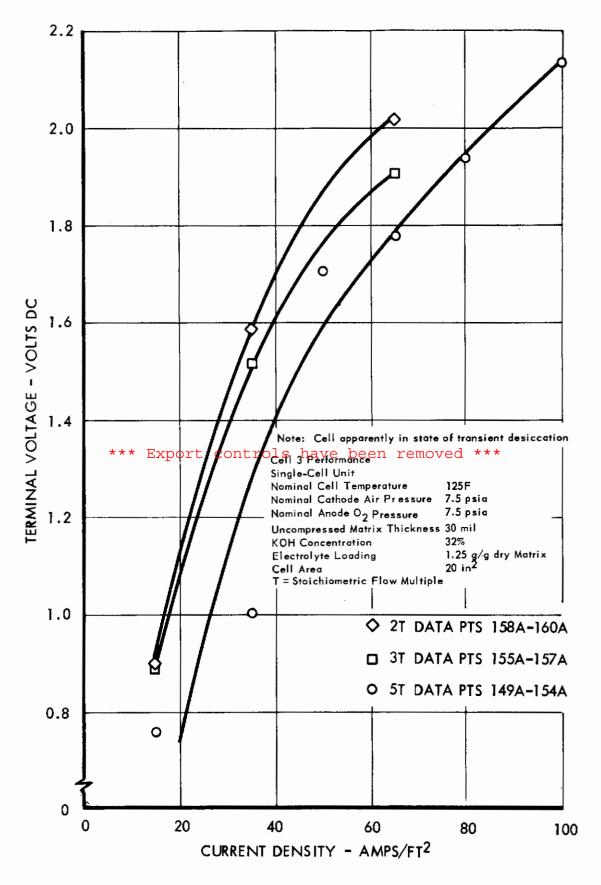
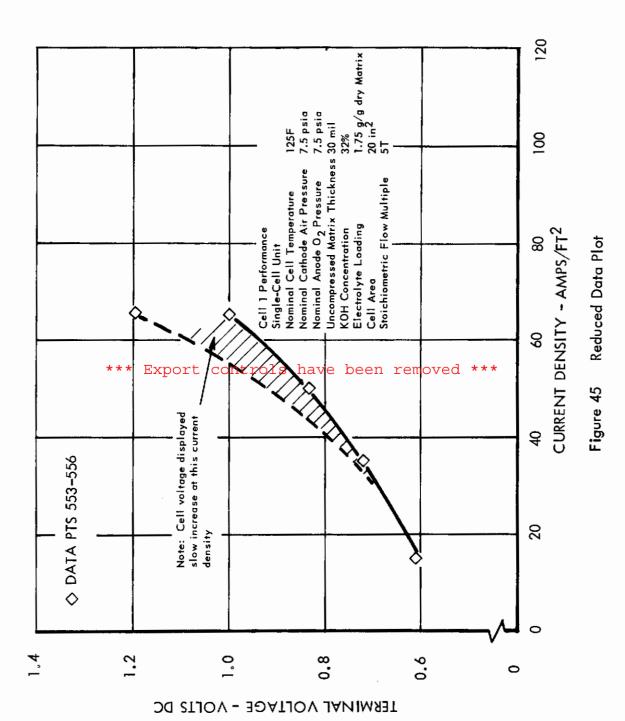



Figure 44 Reduced Data Plot

75

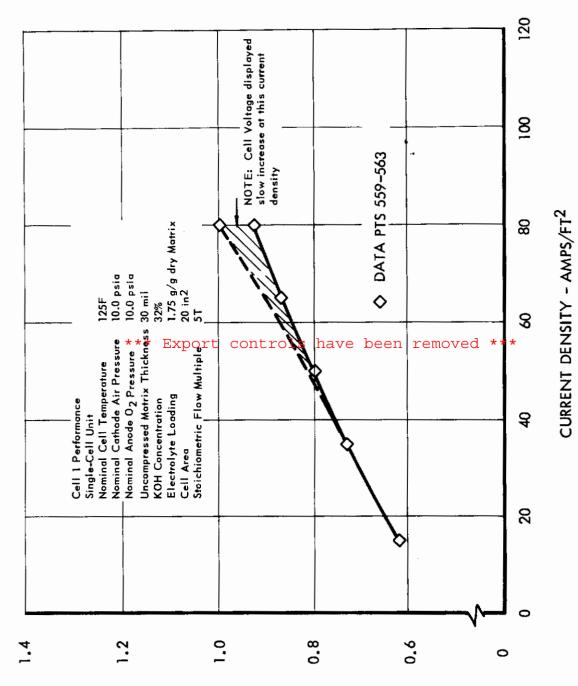
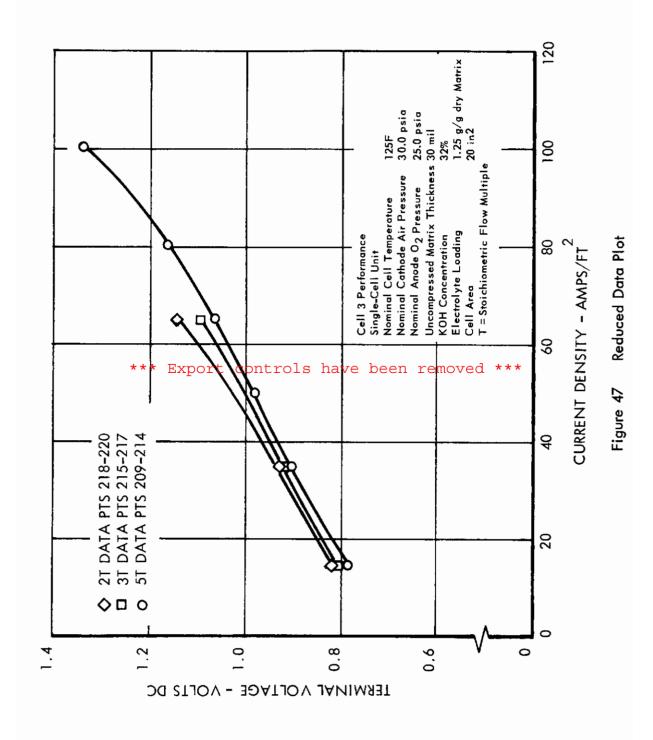



Figure 46 Reduced Data Plot

76

TERMINAL VOLTAGE - VOLTS DC

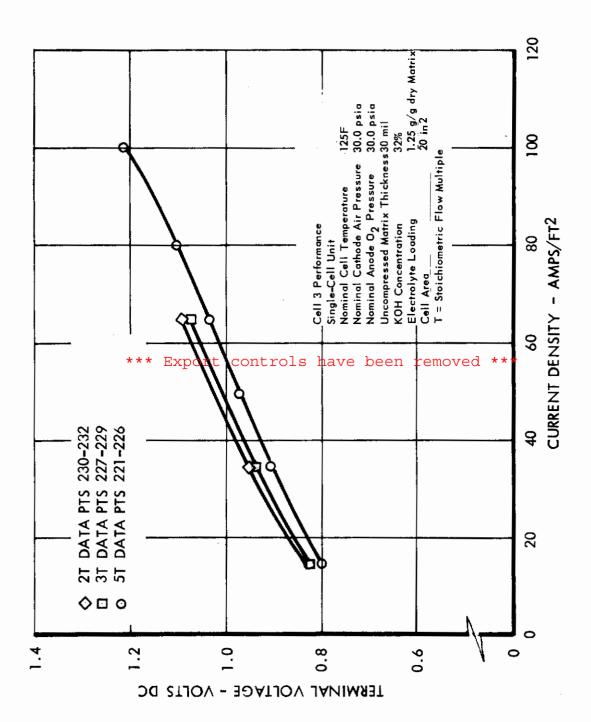


Figure 48 Reduced Data Plot

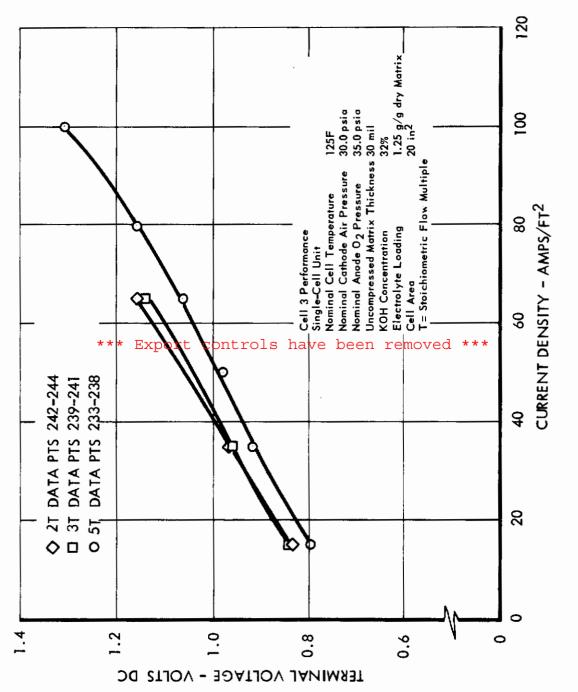


Figure 49 Reduced Data Plot

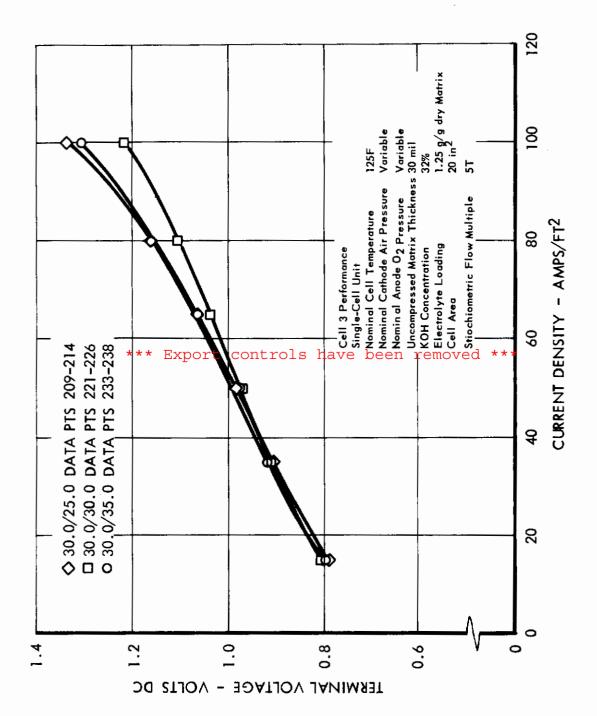


Figure 50 Reduced Data Plot

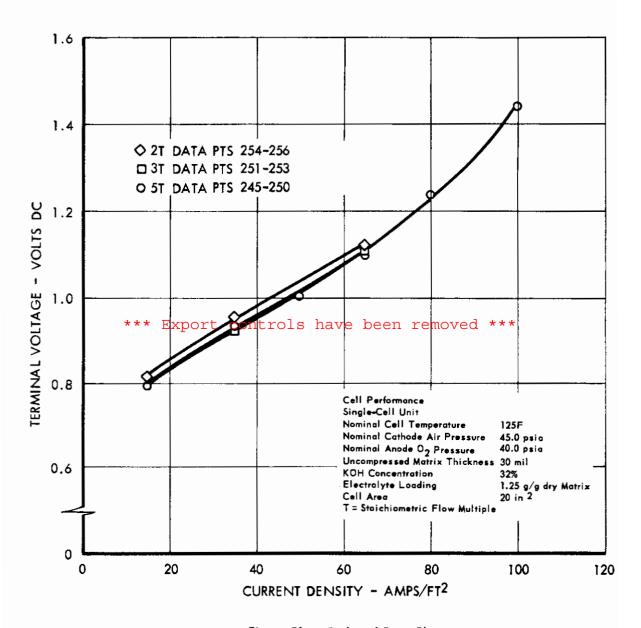


Figure 51 Reduced Data Plot

81

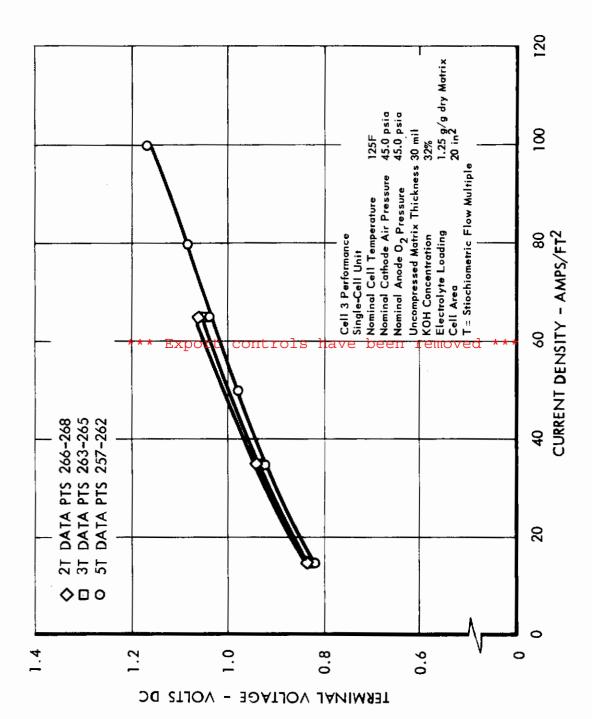


Figure 52 Reduced Data Plot

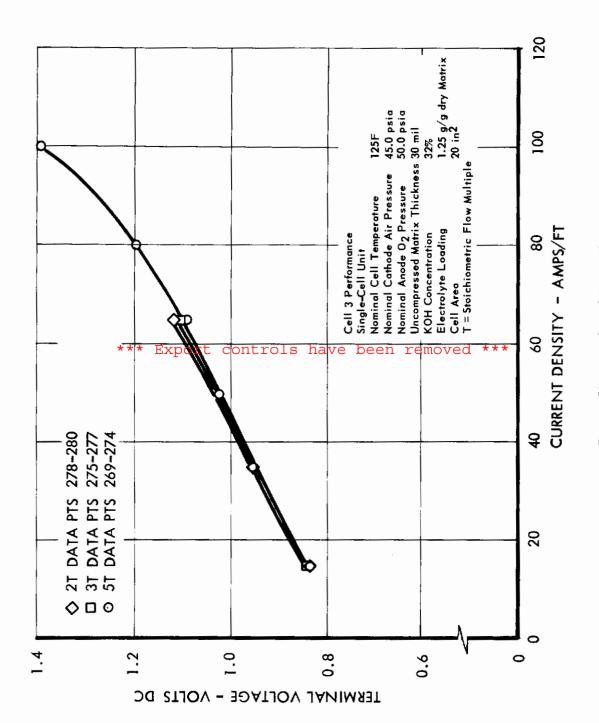


Figure 53 Reduced Data Plot

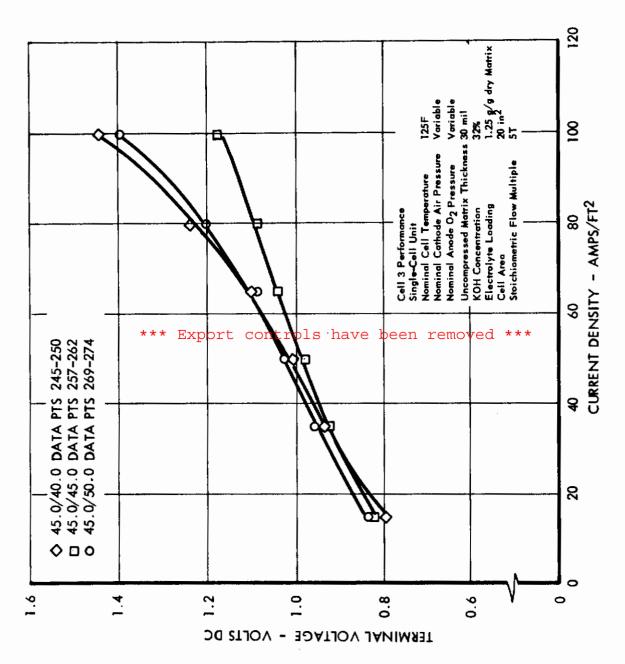


Figure 54 Reduced Data Plot

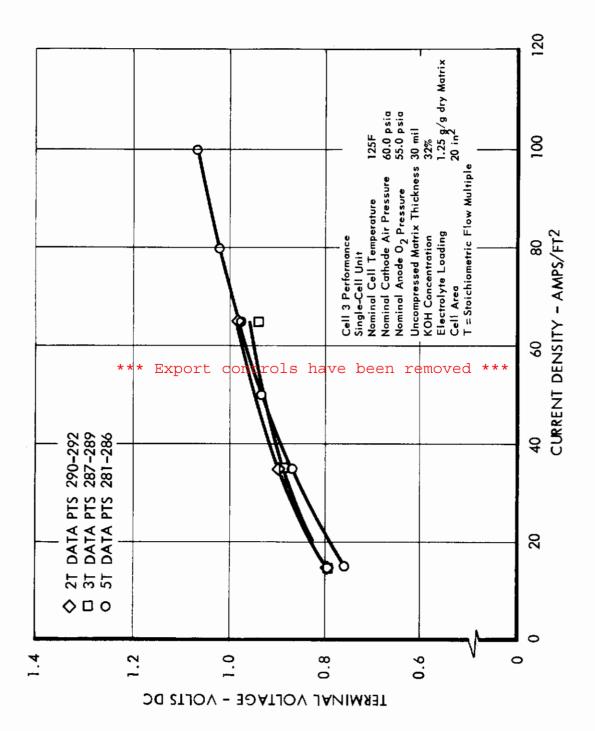


Figure 55 Reduced Data Plot

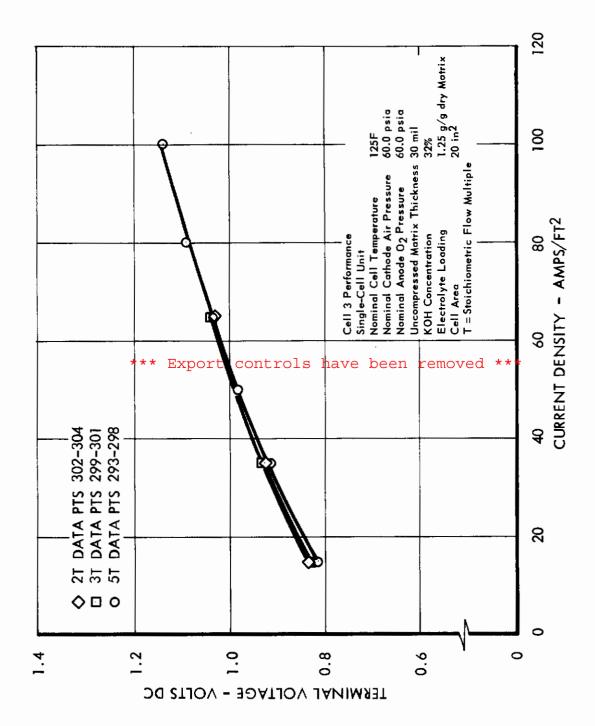


Figure 56 Reduced Data Plot

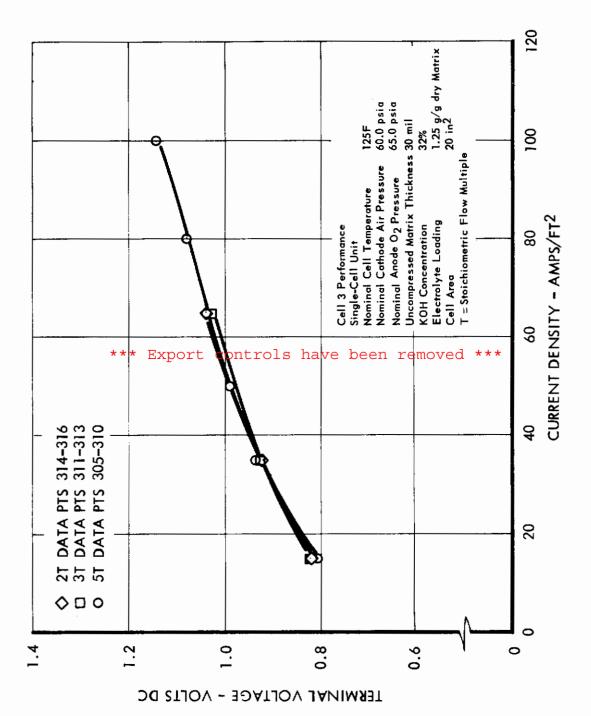


Figure 57 Reduced Data Plot

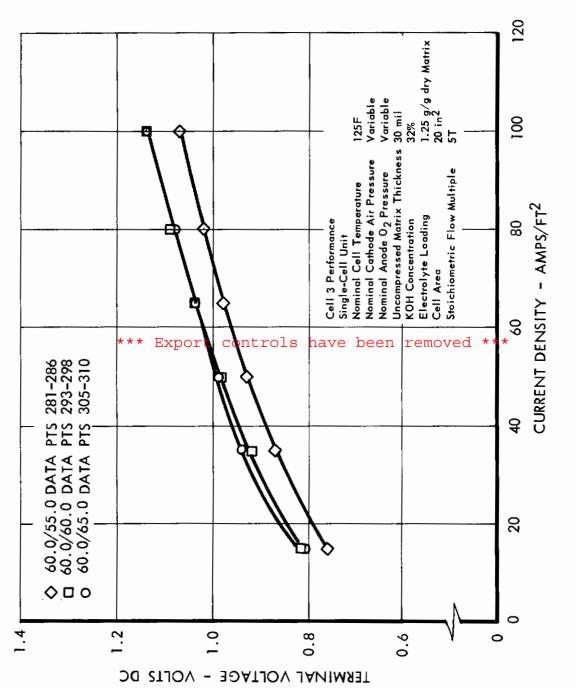


Figure 58 Reduced Data Plot

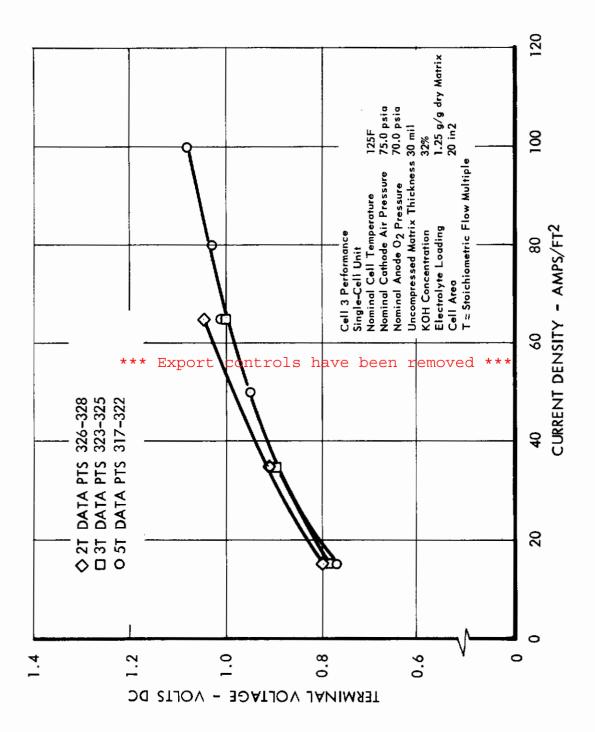
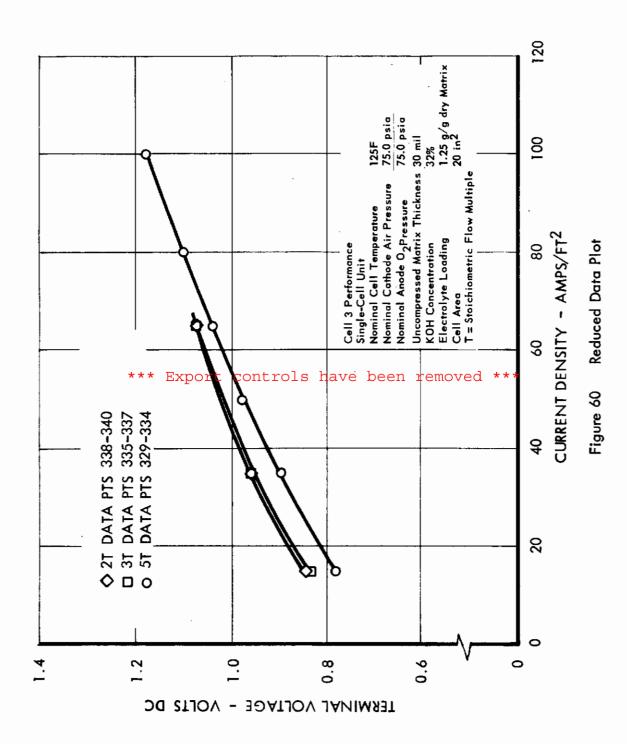



Figure 59 Reduced Data Plot

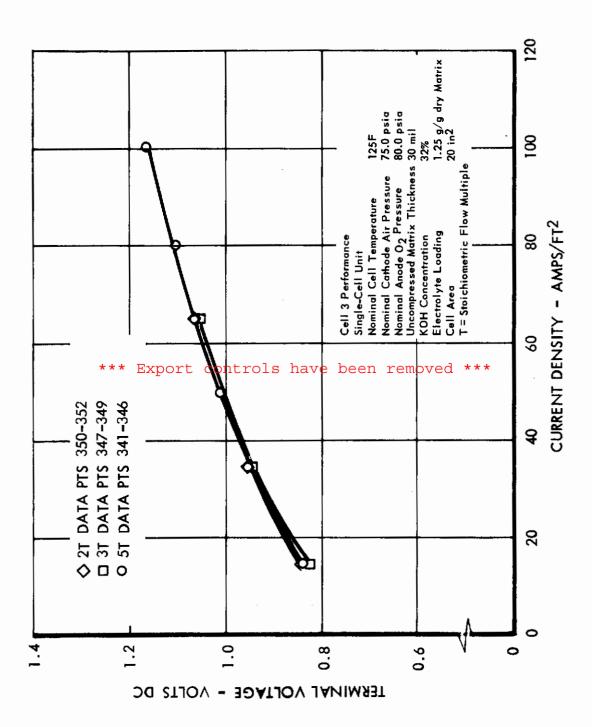


Figure 61 Reduced Data Plot

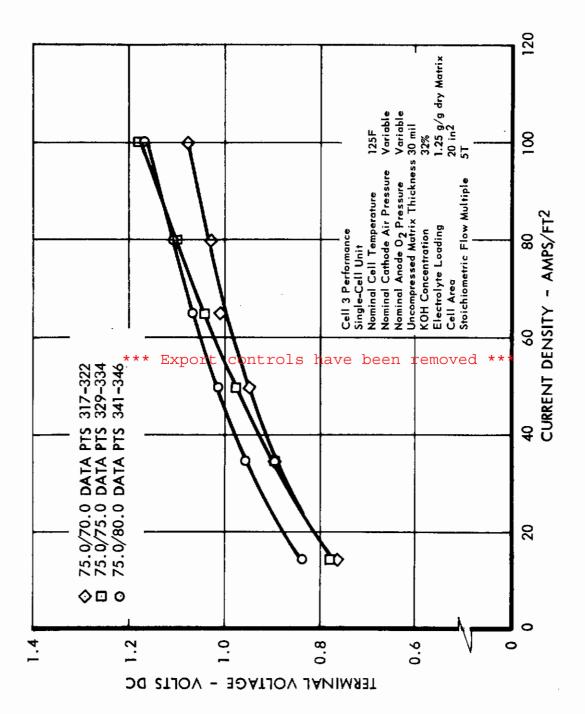


Figure 62 Reduced Data Plot

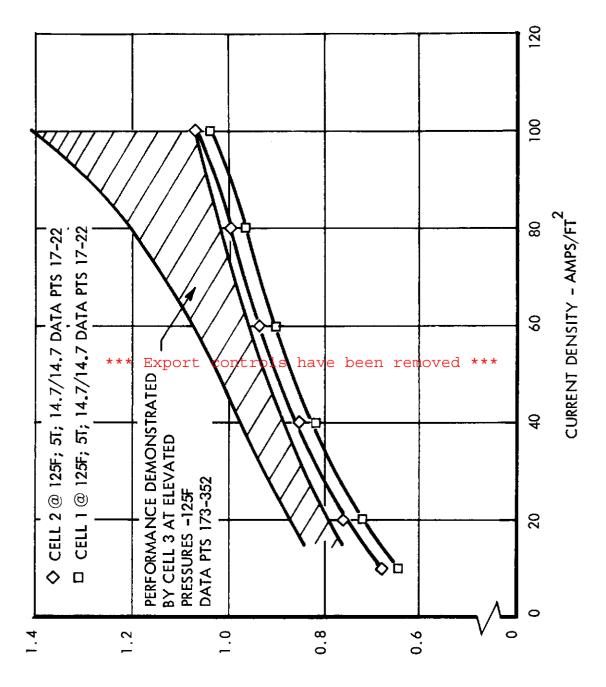
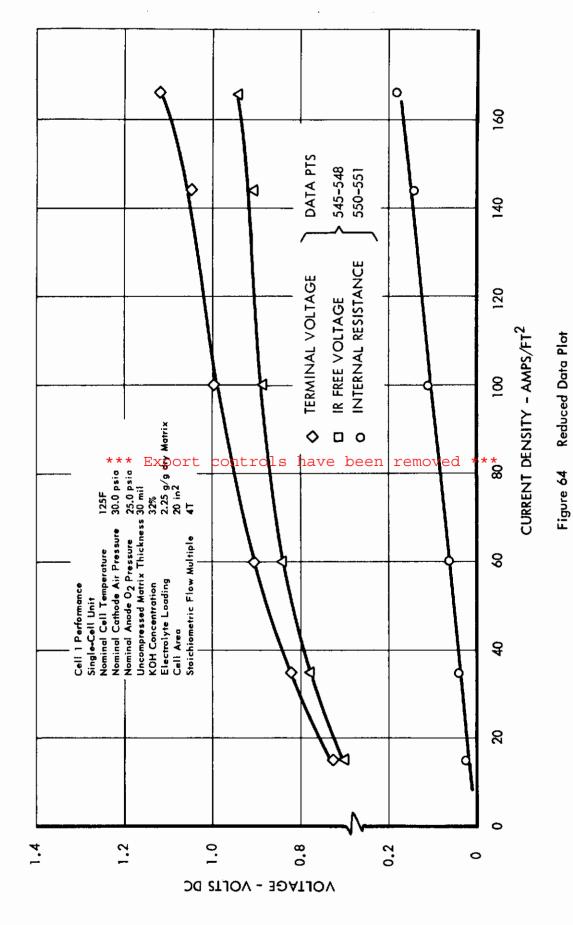



Figure 63 Reduced Data Plot

TERMINAL VOLTAGE - VOLTS DC

94

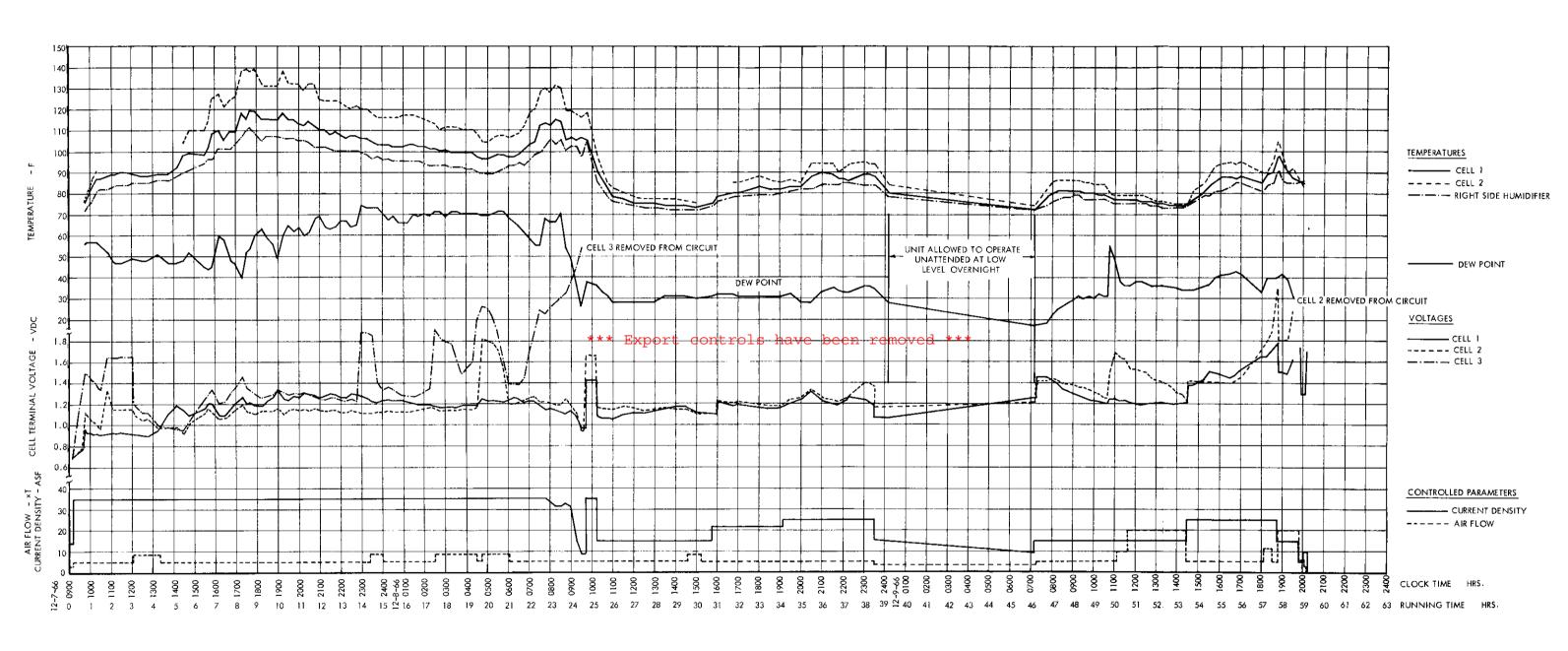


Figure 65 Self-Regulation 59 Hour Run

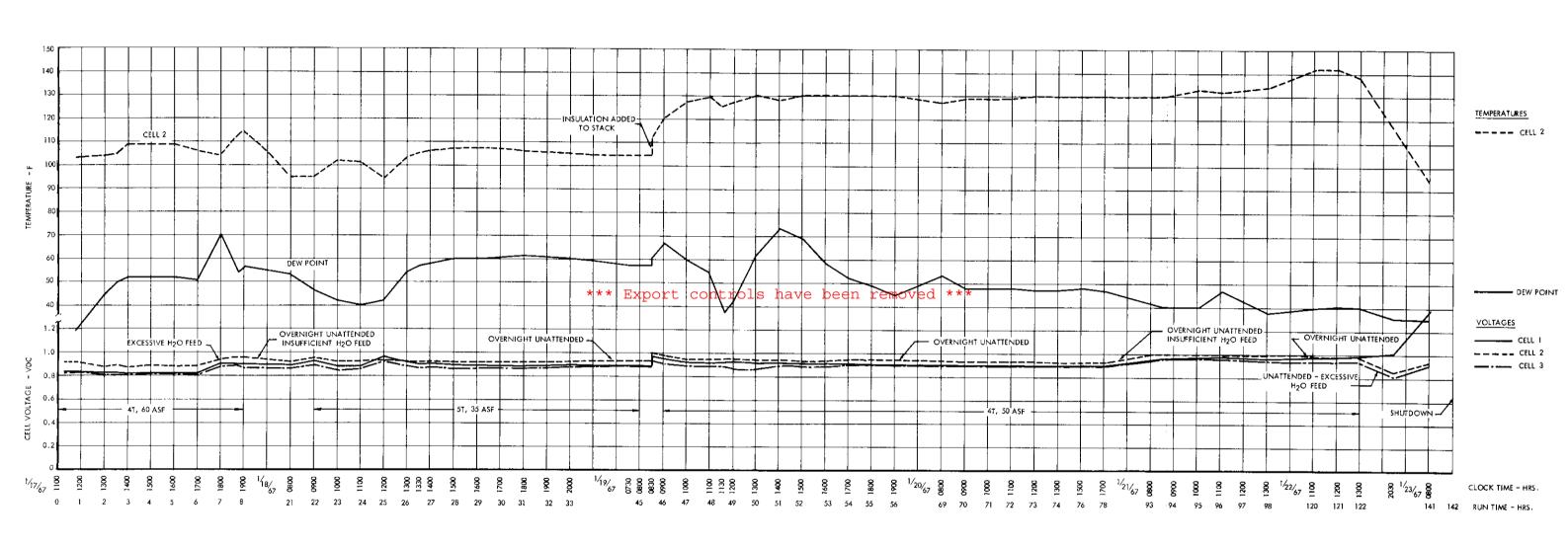


Figure 66 Self-Regulation 142 Hour Run

SECTION V

THE 0.2-LB $\mathrm{O_2}/\mathrm{HR}$ DESIGN ANALYSIS AND RECOMMENDATIONS

1. DESIGN ANALYSIS

Since initial conception of the oxygen concentrating scheme in 1962, TRW has analytically and experimentally evaluated various approaches to simplifying its operation and control. Applying this concept to the requirement for supplying oxygen to aviators added a new dimension in design criteria, namely, operation independent of gravitational forces and under all degrees of rotation. In addition to self-regulation, many other cell designs were considered, including:

- a) circulation of electrolyte between the cell electrodes using (l) dual-porosity electrodes to prevent electrode flooding, and (2) the dual-membrane cell construction;
- b) circulation of the electrolyte through the anode compartment followed by external cell separation of the evolved oxygen from the electrolyte;
- c) circulation of a liquid coolant through hollow compartments incorporated in the cell bipplar plates trols have been removed ***
- d) providing each individual cell with its own wick for humidification eliminating the need for a separate humidifier; and
- e) use of static water-feed mechanisms based upon the osmotic transfer of water across a water-feed membrane, or water-vapor distillation through a porous feed matrix, with matrix materials consisting of either metal, asbestos or synthetic felts.

Each of these methods had certain advantages making them attractive and certain disadvantages limiting their applicability. In a broad sense all of the above, except (c) encompass the idea of self-regulation since the result of these techniques is a stack thermal equilibrium incorporating air humidification internal to the concentrator. As such, the evaporative cooling load can be applied to remove the heat generated during the oxygen concentrating process.

Selection of the most appropriate design depends upon the time and engineering effort (man-hours) available for its development. The more advanced the design concept, the more difficult the development. For present purposes, the term "advanced design concept" refers to a design capable of handling all environmental conditions experienced by an oxygen concentrator installed aboard actual aircraft.

The self-regulating oxygen concentrator concept, the subject of the present contractual effort, was directed toward the advanced version. It offers the advantage of eliminating

the circulation of coolants or electrolyte and the associated mechanical and electromechanical accessories. The design requires only one humidifier for every three cells, is amenable to zero-gravity operation, does not require separation of the generated oxygen from a circulating electrolyte stream and has the optimum design for lightweight packaging.

Designs tested and evaluated by TRW requiring electrolyte or coolant circulation cannot be made as compact and lightweight as cells employing a matrix-held electrolyte and a wick-type humidifier. The former designs had limitations imposed upon their physical size as a result of fluid manifolds allowing for small pressure drops that enabled the auxiliary pump weight and power to be kept at an acceptable level. Systems circulating hot, concentrated potassium hydroxide or an acid solution through the concentrator, seemed to add an unnecessary hazard to the personnel breathing the generated oxygen, although they do allow for ease of control.

As a result of the analysis completed, it was decided that the proposed 0.2-lb/hr oxygen concentrator design should allow for ultimate simplicity in operation and minimization in size (weight, power and volume). As such, the self-regulating design, (subject of the present contract), still appeared most applicable. Before it can be termed ready for field application, however, additional engineering effort must be devoted to further define its mode of operation.

The control concept is inherently simple is no controls are needed. Air is simply fed into the concentrator. The concentrator, in turn, striving to maintain thermal equilibrium, automatically adjusts its temperature to remove the heat generated in the oxygen concentrating process by the evaporative cooling provided by the water being introduced to the air stream in the humidifiers (see Section II and Appendix I). The air exhaust is then passed through a condenser whereby the concentrator's heat load is rejected to the aircraft cooling system. The water condensed, in turn, is wicked back into the humidifier chambers of the concentrator, and the cycle continues as long as desired. The attractiveness of this control method is that the concentrator inherently corrects itself for variations in such difficult-to-control parameters as temperature of the surroundings and variations in electrode activity over the unit's operational life.

This program provided the following information. First, the idea of self-regulation was proven feasible. A control system can be developed that will be independent of auxiliary heaters, coolers, fluid circulating pumps, thermal controls, etc. Secondly, the program demonstrated where additional effort must be expended. Specifically, additional consideration must be given to (a) a reliable mechanism for feeding water into the humidifier compartments, and (b) a detailed analytical evaluation of the cell's moisture tolerance followed by experimental demonstration.

The water feed system used was too sensitive to fluctuations in the cell operating parameters of air flow rate and air feed pressure. The water reservoir requires a pressure reference in the concentrator, and since the cell responds faster to changes in these

operating parameters than the water feed system, a rapid decrease in air flow rate, or increase in air pressure, resulted in flooding of the humidifier compartment. (a)

Several aspects of the concentrator's moisture tolerance still remain to be considered. Moisture tolerance is important for several reasons. If the cells become too dry, gas crossover is experienced. If the cells become too wet, electrode flooding is first experienced which, in turn, results in aerosol formation. If the flooding becomes excessive, electrolyte accumulation occurs in the cell gas compartments. This leads to two potential problems. First, since electrolyte has been leached from the matrix, the electrolyte concentration will be diluted when the electrolyte volume is returned to design level. Secondly, electrolyte blockage of the gas ducts may occur.

To be determined are the optimum electrolyte volume, electrolyte concentration, and ratio of matrix to electrode pore volume to permit continuous moisture (and thermal) balance over the anticipated range in operating temperatures. Knowledge of these relationships must be integrated with the effects such ranges in temperature have upon the temperature differentials of the three cells located between the humidifiers. The effect these differentials have upon maintaining a balanced moisture level must be tied to the available electrolyte concentration and ratio of total quantity of electrolyte to that available in the electrodes.

Consideration should also be given to the fact that the unit must retain a moisture balance despite the gradual degradation in performance expenienced during the operating life. This effect, and any other causes which tend to increase the power required to concentrate the oxygen, means cell moisture tolerance design must be capable of also handling gradual increases in heat loads (increases in operating temperatures).

Before describing the 0.2-lb/hr oxygen concentrator design, it is appropriate to note that several modifications could be made in the design, serving as intermediate steps leading to the ultimate self-regulating design.

2. MODIFIED APPROACHES TO SELF-REGULATION

The concept of self-regulation, from an applications viewpoint, is best adapted to concentrator operation with low-pressure feed air. As noted previously, it was under these conditions that the quantity of water evaporated (cooling capability) was sufficiently high to keep the concentrator operating temperature low. The relationship of the amount of water vapor required to satisfy conditions of equilibrium as a function of cell supply pressure and temperature is readily synthesized by consideration of equation (7) in

⁽a) Experimental results indicate this can be curtailed if a proper amount of resistance is included in the water transport line between the water reservoir and the humidifier within the concentrator.

⁽b) Fine bubbles (aerosol) of electrolyte being carried out with evolved oxygen.

Appendix I. A low cell operating temperature means that system startup and shutdown processes are simpler, that moisture vented with the evolved oxygen is less^(a), and that cell tolerances to moisture balance are less critical.

At least three modifications in design concept are possible, wherein supplemental cooling could be used to allow for concentrator operation at high air feed pressures (higher self-regulating cell temperatures). In one case, excess air could be recirculated through the cathode at ten-to-twenty times theoretical. This modification is illustrated in Figure 67. The effect would be to lower cell operating temperature.

In the second case, a liquid auxiliary cooling loop could be added. Thus, when the operating conditions become such that the heat input is greater than the cooling available at a desired self-regulating temperature, the excess heat load would be removed with the auxiliary coolant. This would prevent the cell temperature from exceeding the design temperature.

In the third case, a combination of cooling by water evaporation and auxiliary coolant is made possible when the fluid used to moisturize the feed air is circulated through the humidifier compartments. Excess heat is then removed from the fluid in an external heat exchanger. This approach has been shown to be effective but yields a design with weight and volume penalties.

3. DESCRIPTION*OF THE OCC - LBnOz HR SELVE-REGULATING CONCENTRATOR

In light of the above considerations, the oxygen concentrator model proposed is one using 120-mil magnesium stock for the bipolar plates and will be termed Model 120. The design parameters for the 0.2-lb/hr concentrator are summarized in Table VIII. The design parameters of the unit incorporate the best features based upon TRW's past experience and engineering evaluation of the analyses and testing conducted on this program.

a. Electrical Power Requirements

The current density-voltage point selected was based on performance data obtained during the test program (Figure 29). The effective electrode dimensions were 4x9 inches, selected to match the 4-inch height best suited to wicking technology and the preferred number of cells, in light of the voltage output available from an aircraft's

⁽a) If a concentrator having a 33.3% KOH solution as the electrolyte operates at a temperature of 200F at a design point of 0.2 lb of oxygen per hour, it will vent approximately 0.084 lb of water per hour along with the 0.2 lb of oxygen if the oxygen is being delivered at atmospheric pressure. For a twelve-hour flight, about 1.0 lb of water would be required.

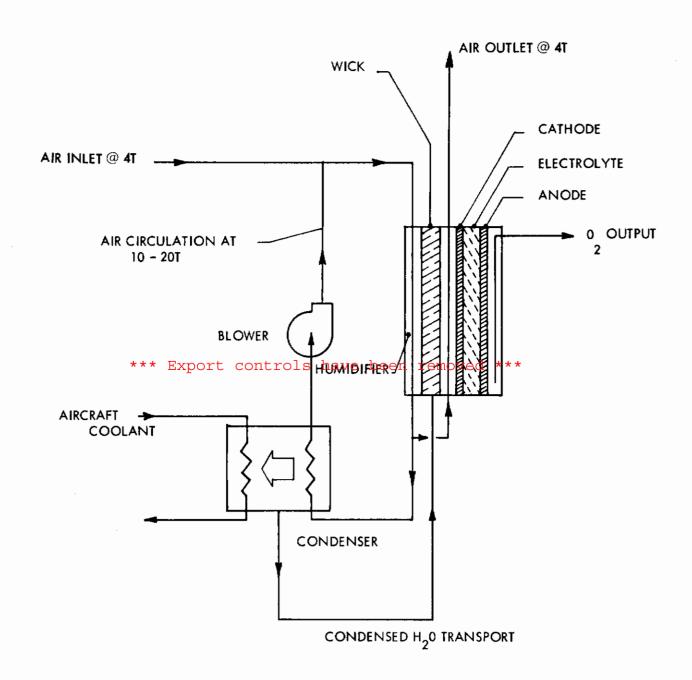


Figure 67 Modified Approach To Self-Regulation

Table \mbox{VIII} Design Parameters for the 0.2 Lb/Hr Oxygen Concentrator

Current Density, ASF	60
Cell Voltage, volts	0.9
Effective Electrode Area (per cell), ft ²	0.25 (4.0 x 9.0 in)
No. Cells, Series Connected	20
Concentrator Current, amps	15
Concentrator Voltage, volts	18
Electrolyte, wt. % KOH	33.3
Air Mass Flow Rate, lb/hr, @4T	3.46
Percentage Oxygen Removed, %	25
Operating Temperature; wort controls have be	q80 removed ***
Operating Pressure, psia	15.7
Specific Humidity, lb H ₂ O/lb dry air	0.23
Evaporative Cooling Load, watts	270

power supply. The merits of selecting a larger effective area are obvious. For two bipolar plates of a given thickness, the larger one will display a lower ratio of plate weight/effective area. This results in a lighter overall stack assembly. This is caused by the fact that for the smaller plate, there is more flange area/effective area, and hence a relatively heavier plate. This is illustrated when comparing the bipolar plates fabricated on the present contract with those from contract AF 33(615)-1856 (see Table IX). Note that the larger plate, even though thicker, displays a lower weight/area ratio.

Figure 68 illustrates the effect other selections of current density and electrode area would have on the number of cells required to generate 0.2 lb of oxygen per hour.

b. Air Feed Requirements

Two-tenths of a pound of oxygen per hour requires 3.46-pounds of air per hour at a flow of 4T. A definition of the relationship of oxygen output to air flow requirements is presented in Appendix IV.

c. Operating Temperature

Based on an operating air flow rate of 4T (i.e., 25% of the oxygen in the air is being concentrated) and a cell voltage of 0.9 volt, the self-regulating temperature will be 180F when the operating pressure is 151.5 psize. Discressits from the data presented in Figure 1 for the condition where the cell voltage is 0.9 volt. For a 33.3 weight percent KOH solution as the electrolyte, the specific humidity of the air feed is 0.23-lb water per pound of dry air. Figure 69 aids in obtaining the specific humidity for alternate conditions of total pressure and self-regulation temperatures.

The cell cooling load is approximately 270 watts, the product of stack current (15 amps) times the stack voltage (18 volts). The stack voltage is the product of the individual cell voltage (0.9) times the number of cells (20). The effect of other cell voltages on the cooling load is shown in Figure 70.

d. Design Optimization

During fabrication and test of the concentrator system, consideration was given to various modifications in the design to further optimize and simplify its construction and operation. In carrying out the design analysis, one aspect occurred repeatedly — should the recommended design improvements be directed toward the ultimate configuration of the concentrator model, or should recommendations be specified for an incremental improvement (optimization) in the model configuration. The particular model selected, intermediate or ultimate, has a decided effect on the approach taken toward design modifications. For example, for an incremental improvement in the model design, the gas ducting technique recommended would be one in which the 42-mil gas ducts are replaced in Model 120 with 32-mil ducts, or a 20x86-mil rectangular slot with 20 mils being the slot height. The ultimate configuration would require a completely new approach to the

Table IX Comparison of Bipolar Plates

	AF 33(615)-1856	Present Contract
Thickness, in	0.188	0.140
Flange Width, in	0.438	0.375
External Dimensions, in	15.0×6.5	8.62×5.38
Duct Diameter, in	0.042	0.042
Port Diameter, in	0,438	0.375
Air Compartment Height, in	0.063	0.052
Oxygen Compartment Height, in Export controls ha	o.062	*** 0.052
Nickel Plate, mil	1, 2	1.3
Gold Plate, mil	0.02	0.03
Effective Electrode Dimensions, in 2	ll. 8 x 4. 2	3.5×5.8
Effective Electrode Area, in ²	49.6	20.3
Weight, grams	353	149
Bipolar Plate Weight/Effective Electrode		
Area, g/in ²	7.1	7.5

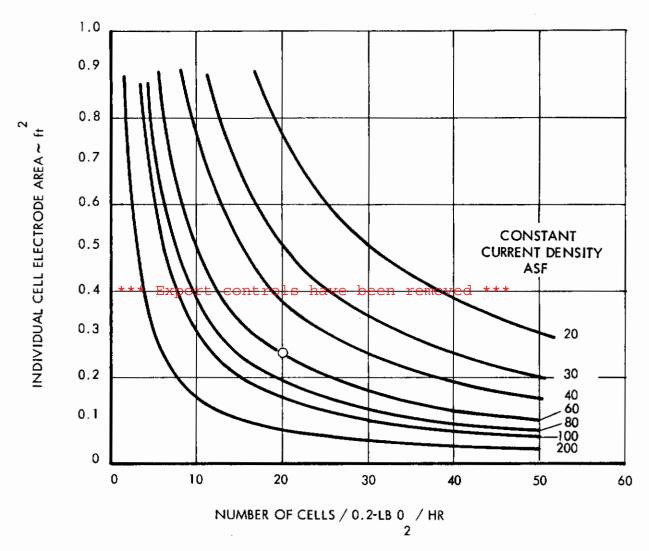


Figure 68 Current Density And Electrode Area Versus No. Cells

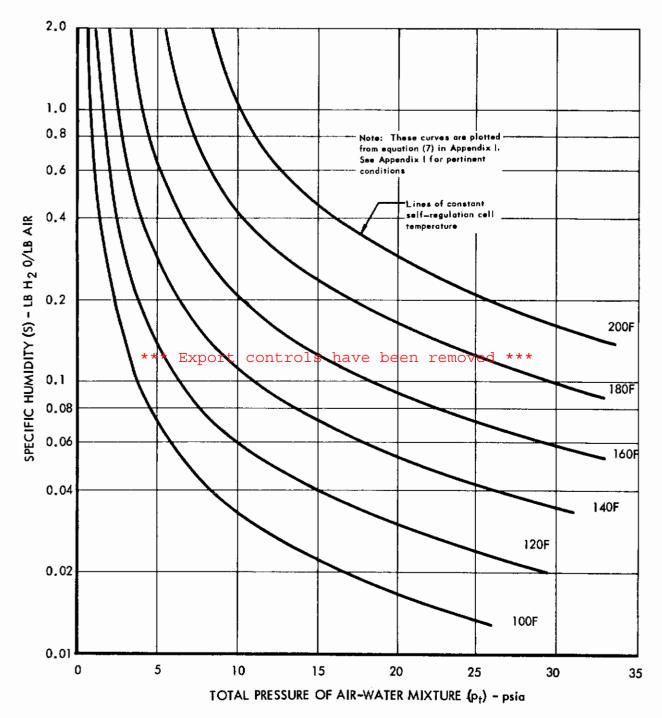


Figure 69 Specific Humidity Versus Pressure And Temperature

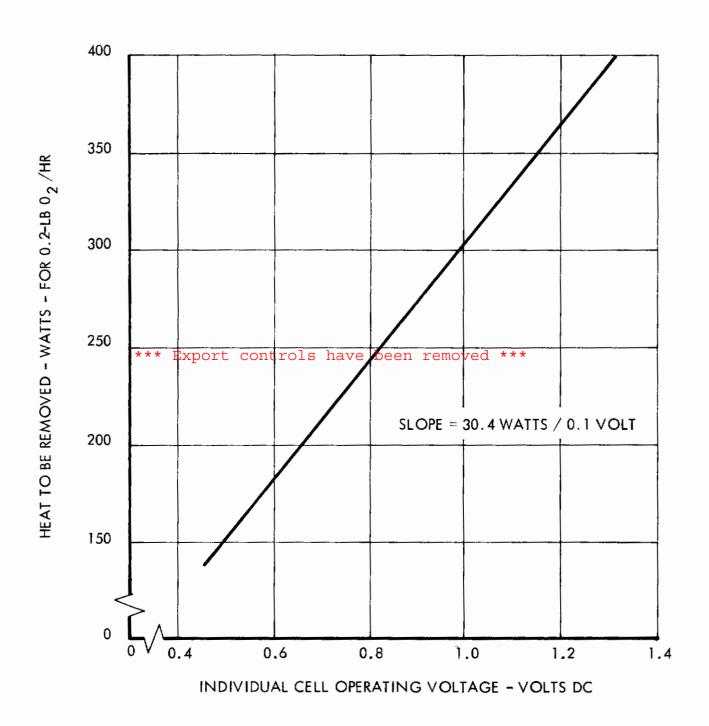


Figure 70 Cooling Load Versus Voltage

gas ducting (manifolding) design. In addition, use of the O-ring edge seal would be eliminated. Going from Model 140 (42-mil ducts) to Model 120 (32-mil ducts) for example, results in a 13% weight savings in the 0.2-lb/hr concentrator stack assembly. Going from Model 140 to Model 75, however, results in a 40% weight reduction.

A description of the recommended component materials and configurations is presented in Table X. The concentrator design is inherently a lightweight, compact configuration because of the thin geometry of the electrode-matrix-electrode "pack". With the proposed design, the electrode-matrix-electrode "pack" is 40 mils. This could be decreased to 30 or 20 mils if the 20- or 10-mil matrix, respectively, were used.

A trade-off analysis was made between electrode types AB-l and AB-6. (a) Table XI summarizes the comparison between electrode properties. The thicker electrodes, type AB-6, have an electrode density approximately 90% greater than the AB-l electrodes used in the concentrator delivered under the present contract. For the forty electrodes required in the 0.2-lb/hr design, the total electrode weight is 0.7 lb with the AB-l type, 0.6 lb less than with the AB-6 type. The AB-6 electrodes would add an additional 0.316 pound to a 0.2-lb/hr unit because of thicker bipolar plate flanges required to accommodate the greather electrode thickness.

The AB-I electrodes have essentially the same performance characteristics as the AB-6 type. An advantage of the AB-6 electrodes over the AB-I type is that they are easier to handle during the assembly and disassembly discussed prototype unit will not be disassembled once the concentrator is ready for use, this handling advantage in itself does not seem to justify the choice of the AB-6 over the AB-1. Type AB-I electrodes, therefore, were selected for the design.

4. FABRICATION PROCESSES

To ensure that the bipolar plates do not buckle following fly cutting to size, it is necessary that even amounts of magnesium stock are removed on each side. The 42-mil duct passages were made with specially purchased aircraft extension drills. These drills could not be obtained with a 32-mil diameter except by special purchase. Prior to the time the smaller diameter drills arrived, it was determined that an ordinary 32-mil drill, silver-soldered to a stainless steel welding rod, was a suitable substitute. The 32-mil diameter ducts were drilled into the sample with this "assembled" drill. This technique, therefore, permits fabrication of duct passages of almost any size without the need for purchasing special tools and eliminates the inherently long (six to eight weeks) delivery time associated with the special purchase.

When Model 120, or more compact versions are fabricated, duct diameters of 32 mils or smaller may be necessary. An alternate to drilling these is to use an electrical dis-

⁽a) Electrode designations of the supplier, American Cyanamid Company

Table X Geometrical Design Parameters for 0.2-lb/hr Unit

Cell Matrices

Material Johns Manville Fuel Cell Asbestos

Area Dimensions, in 4.6 x 9.6

Uncompressed Thickness, mil 30

Electrolyte

Weight % KOH 33.3 Loading, g/g dry matrix 1.5

Electrodes*

Type American Cyanamid AB-l

Area Dimensions, in 4.2 x 9.2 Effective Area Dimensions, in 4.0 x 9.0

Bipolar Plates

Material Magnesium ZE-10

Plating Thickness, mil

 Nickel
 1.3

 Gold
 0.03

 Area Dimensions, in
 6.1 x 11.8

Pin Height, in Export controls have been removed *** Air Compartment 0.032

Air Compartment 0.032
Oxygen Compartment 0.032

Duct Diameter, in 0.032 max. or 0.020 slot

Total Thickness, in 0.120

Insulating Gaskets

Material Neoprene Thickness, in 0.030

O-Rings

Material Ethylene-Propylene

Wicks

Material Polypropylene

Uncompressed Thickness, in 0.030 Electrolyte, wt % KOH 23

Support Screens

Material Nickel Thickness, in 0.005

*See Table XI for details on electrodes

Table XI Comparison of Concentrator Electrodes

Electrode

Property	<u>AB-1</u>	<u>AB-6</u>
Wetproofing Agent	Teflon	Teflon
Catalytic Material	Platinum Black; 9.0 - 0.5 mg/cm ²	Platinum Black; 10.2 - 1.1 mg/cm ²
Screen Material	Nickel	Gold-Plated Nickel
Mesh Size	100	70
Wire Size, mil *** Export controls	2 have been removed	4.5
Thickness, mil	4-5	8-9
Electrode Weight (nominal), mg/in ²	220	420
Limiting Temperature, F	190	212

charge machining process. By this technique duct passages, in the form of rectangular slits, can be machined into a bipolar plate surface in the manner shown in Figure 71. One opening fabricated by this technique serves the same purpose as several circular duct passages lying side by side. Such ducts would be easier to make and would be more resistant to clogging.

Care must be taken to ensure that if Neoprene gaskets thinner than 30 mils are used that their electrical insulating property is checked. In measuring the resistance of some samples of 15-mil Neoprene, it was observed that not all samples were insulators. Upon checking with the supplier, it was determined that occasional batches of Neoprene can conduct electricity, particularly when the stock is very thin. This results from an electrical bridge of carbon used in its fabrication which extends from one face of the Neoprene to the other.

*** Export controls have been removed ***

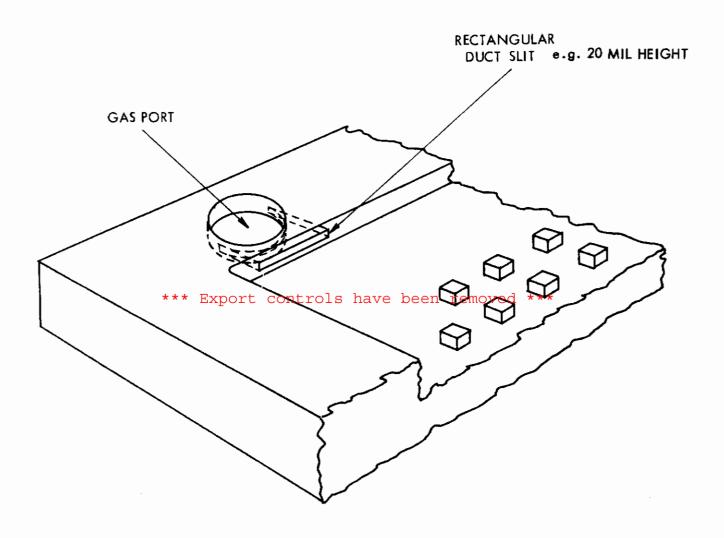


Figure 71 Rectangular Duct

SECTION VI

SUMMARY

A self-regulating, electrochemical oxygen concentrator for separating pure oxygen from air has been designed, fabricated and tested. The unit consists of three cells sandwiched between air humidifiers.

Compared to former models, size and weight have been reduced by minimizing flange dimensions, reducing bipolar plate thickness 25%, and optimizing the end plate configuration to allow for a 7% weight reduction over non ribbed configurations (see Figure 10). Additional size and weight reductions, compared to the unit in reference 1, resulted from the improved design point (a 10% decrease in cell voltage, a 14% increase in current density, and a 25% increase in percentage of oxygen concentrated from the incoming air stream).

Varying configurations were considered in designing the unit such as air distribution patterns, improved gas baffles, alternate gas ducts, an electrode trade-off evaluation, increased nickel-and gold-plate thickness for added corrosion protection and an ability to operate using 10-, 20-, and 30-mil electrolyte holding matrices.

The concentrator utilized 20 sq. in. electrodes, 5 mils thick. A 32% (by weight) KOH solution was held in a porous matrix that is able to retain the electrolyte in proper position regardless of gravity, orientation, or acceleration. The cell stack was constructed of a series of magnesium plates that were in turn plated with 1.3 mils of nickel and 0.03 mils of gold required for corrosion protection and electrical and thermal conductivity. Ethylene-propylene O-rings were used to effect a leak-free construction when operating on internal pressures up to 90 psia, and pressure differentials of up to 10 psia across cell matrices. Although Dacron and polypropylene wicks were used in the self-regulating process, only the polypropylene material proved effective against deterioration by the KOH humidifier fluid. Supplemental heating and cooling, not required of a flight unit, were included in the fabricated unit to allow for testing over a wide range of conditions.

The unit was tested in an instrumented rig at flow rates from two to five times the theoretical stoichiometric air flow rate (denoted at 2T, 5T, etc.) required for the oxygen being separated (concentrated), at current densities to 166 ASF, at cell temperatures from room temperature to 175F and at pressures from 5 to 90 psia. Performance data was taken with and without the cells' internal resistances being included in the terminal voltage measurement. Measurements were made which showed that when the unit was operating at 35 ASF and 5T, the pressure drop across the cells was only 0.4 inch of water. During initial testing the unit's stability to pressure differentials exceeded 10 psi. Early in the program cooling water created an unexpected corrosion problem which prevented further meaningful stability and oxygen purity tests. The problem was a result of the supplimentary cooling system and not, therefore, of direct concern to a

flight system. Prior to the cooling system failure, oxygen purity measurements showed the generated gas to be 100% oxygen when corrected for the water present. Parametric tests demonstrated the improvement possible as a result of high (175F) temperature operation. A 20-mil cell matrix gave better performance than either the 30- or 10-mil matrices. Internal resistance losses were low, 0.2-volt/cell or less (less than 1.8 ohm-cm²) at the 100 ASF and 175F point. It was unexpectedly observed that the internal resistance fell with decreasing temperature, demonstrating a value of 0.12 volts per cell (1.1 ohm-cm²) at the 100 ASF and 100F point. Under "dry" cell conditions internal resistances were observed to increase by a factor of two or three times the normal operating level. In general, it appeared as if the cell performance improved as the electrolyte loadings were increased from 1.0-1.25 g 32% KOH/g dry matrix to the 1.75-2.25 g 32% KOH/g dry matrix range. The testing program was culminated in two successful tests under self-regulating conditions, totaling over 200 hours.

A full-scale 0.2-lb/hr concentrator design analysis was carried on simultaneously with the testing program. Incorporated into the design recommendations were the best results obtained from testing and analytical evaluations. A self-regulating design was recommended consisting of 20-series-connected cells containing 7 humidifier units (one unit located between every third cell), with single cells outboard of the last humidifier units at each end of the stack. An exploded view of the unit is shown in Figure 72. The preferred electrode area was 4 x 9 inches, commensurate with the existing wicking technology. The design employs 120-mil-thick magnesium for the bipolar plates and represents an intermediate step toward the ultimate configuration. Note is made of the fact that additional analytical and testing experience must be obtained with the self-regulating system before the concept will reach its full potential of simplicity in control, i.e., no controls required at all. However, some modifications to the self-regulated design will permit its application prior to the time of ultimate development.

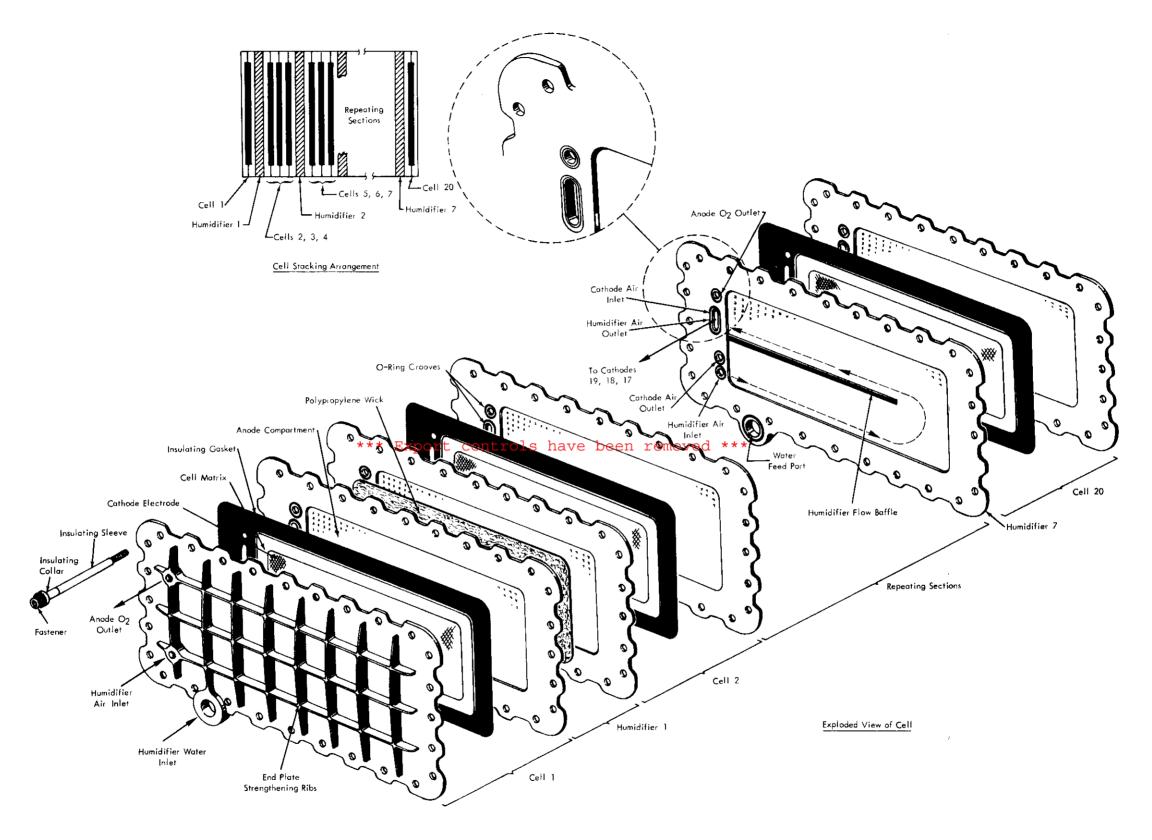


Figure 72 0.2-Lb/Hr Oxygen Concentrator

APPENDIX I

DETERMINATION OF SELF-REGULATION OPERATING EQUILIBRIUM

Determination of the conditions under which the cell self-regulates is concerned with the thermal balance between the heat generated during the oxygen concentrating process resulting from the application of electrical power and the heat removal by various means. The term ''self regulation'' implies that these means will be natural, i. e., no auxiliary heating or cooling is used. The rate of heat input, or power in, is defined by:

$$P_{i} = Q_{i} = EIN$$
 (1)

where:

Q; = rate of heat input, watts

E = individual cell potential requirement, volts

I = current, amps

*** Export controls have been removed ***

N = number of cells in the stack

Further, according to Faraday's Law:

$$W_{o_2} = 6.58 \times 10^{-4} \text{ IN}$$
 (2)

where:

W_{o₂} = mass flow rate of oxygen generated, lb/hr

Therefore by solving equations (1) and (2), the rate of heat input to the unit can be expressed as:

$$Q_{i} = \frac{E W_{o}}{\frac{2}{6.58} \times 10^{4}}$$
(3)

The resultant cell conditions which balance this heat load then define self-regulation equilibrium. This rate of heat removal is expressed by:

$$Q_{0} = Q_{1} + Q_{p} + Q_{a} + Q_{e}$$
 (4)

where:

Q = total rate of heat removal, watts

 Q_1 = rate of heat lost by conduction, convection, and radiation, watts

 $\mathbf{Q}_{\mathbf{p}}$ = theoretical resistance - free power required to pump oxygen across the cell, watts

 Q_{α} = rate of heat required to raise temperature of inlet air, watts

Q = rate of heat required to humidify incoming air, watts

Thermodynamically, it can be shown that \dot{Q}_p is theoretically quite small since the application of only a small voltage (on the order of 0.01 vdc/cell) is sufficient to pump the oxygen in the air into a compartment of pure oxygen. Therefore, if a nominal cell total potential of 1.0 volt is assumed, the \dot{Q}_p term will be on the order of 1% of the total load and will be neglected for this calculation. Further, in an effort to determine the highest possible self-regulation temperature, the rate of heat loss, \dot{Q}_1 , will be neglected. The expression for the remaining terms are given by:

$$\dot{Q}_{a} = W_{a} c_{p} (T_{c} - T_{a})K$$
 (5)

where:

 $W_a = mass flow rate of air input, lb/hr$

 c_p = specific heat of air, 0.242 BTU/lb-F

T_c = cell temperature, F

 $T_a =$ ambient temperature, assumed 70F

K = conversion factor, 0.293 watt hr/BTU

and:

$$\dot{Q}_e = W_a S \left(h_g - h_f \right) K \tag{6}$$

where:

S = specify humidity required to maintain cell moisture balance, lb $\rm H_{2}0/lb$ air

 h_g = enthalpy of saturated water vapor at cell temperature, T_c , BTU/lb

 $h_f^{}$ = enthalpy of subcooled water as supplied to humifidier at ambient temperature, $T_a^{}$ (38 BTU/lb @ 70F)

K = conversion factor, 0.293 watt hr/BTU

and the specific humidity requirements dictated by the cell are:

$$S = \begin{bmatrix} p_{V} \\ p_{t} & p_{t} \end{bmatrix} r$$

$$\text{have been removed ***}$$

where:

 $p_{_{YY}}$ = vapor pressure of cell electrolyte (33.3% KOH), psia

 p_{t} = total pressure of air-water mixture, psia

r = ratio of molecular weights of water/air, 18/29

Since self-regulation, under the conditions specified, is defined by:

$$\dot{Q}_{i} = \dot{Q}_{0} = \frac{E W_{0}}{6.58}$$
 (8)

⁽a) Values for h and h used in the calculations noted above were obtained from: Keenan, J. H., and Keyes, F.G., "Thermodynamic Properties of Steam," First Edition, John Wiley and Sons, Inc., New York, p. 28.

combining equations (3), (4), (5), (6), and (7) gives:

$$\frac{E W_{o_2}}{6.58} 10^4 = W_a K \left[e_p (T_c - T_a) + S(h_g - h_f) \right]$$
 (9)

Further, in Appendix IV it is shown that the air required to generate a specified amount of oxygen is:

$$W_a = K_1 W_{0_2} xT$$
 (10)

where:

 $K_1 = \text{conversion factor, } 4.32 \text{ lb air/lb } 0_2$

xT = stoichiometric multiple

If equations (9) and (10) are solved for W_a and equated and solved for xT, the result is:

*** Export controls have been removed ***
$$xT = \frac{E}{6.58 \text{ K K}_{1} \left[c_{p} \left(T_{c} - T_{a}\right) + S \left(h_{g} - h_{f}\right)\right]} 10^{4}$$
(11)

Hence an expression, independent of a specific oxygen generation rate, has been developed which defines conditions of self-regulation. Now, by specifying various total pressures and temperatures, the equation can be evaluated. The Equilibrium Map, presented in Figure 1, Section II, defines performance of self-regulation based on this data. Values for S in equation (7) are plotted in Figure 69 as a function of pressure and temperature.

APPENDIX II

EVALUATION OF THE 32-MIL GAS DUCTS

The three-cell, self-regulating concentrator was initially designed to be a version of concentrator Model 120. This design required 32-mil gas duct diameters. Since the plating subcontractor was unable to guarantee that the interior of these small diameter ducts could be plated, the concentrator model was changed to 140. It was decided that a specially designed test piece would be constructed to determine if bipolar plates having 32-mil diameter ducts can be fabricated and plated. This sample was then to be nickel- and gold-plated to determine if there would be sufficient plating buildup on the inside of the ducts. A copper layer was to be applied as a base for nickel plate, since nickel cannot be plated directly onto magnesium.

Figure 73 shows a sketch of the test piece designed to simulate the 32-mil duct passages that would exist in a bipolar plate of a concentrator having the gas flow rate requirements specified in the contract. A series of 42-mil ducts was also included for comparison purposes. The test piece was designed to test two parameters that affect the thickness of the plating inside duct passages of a given diameter, port diameter and length of the gas ducts leading from the electrode field (gas compartment) to the port.

Leading from the field are duct passages of a constant length (1/4 in.) with port diameters varying from 1/8 to 3/4 inch. A second test, at the opposite end, consisted of constant 1/4-inch gas port diameters. The 32- and 42-mil duct passages of lengths varying from 1/16 to 11/16 inch led from the ports to the simulated field.

The ZE10 magnesium test sample was nickel- and gold-plated according to the normal procedure. After being plated the piece was cross-sectioned at several different points, and the thicknesses of the copper, nickel and gold deposits were determined.

Figure 74 shows the results of the thickness measurements and the positions where the cross-sections were made.

The plating depth on the exterior surface of the sample was iniformly 0.75 mils of copper, 1.75 mils of nickel, and 5-6 microns of gold. The plating thickness in the duct passages, however, varied considerably depending upon the length of the duct, its diameter, and the diameter of the gas port. The following general comments can be made in regard to the results obtained:

a) The smaller duct holes had, for the most part, less plating in them than the larger duct holes. Because of their smaller size, less plating solution circulated through them. The irregularities resulted from gas entrapment in the passages.

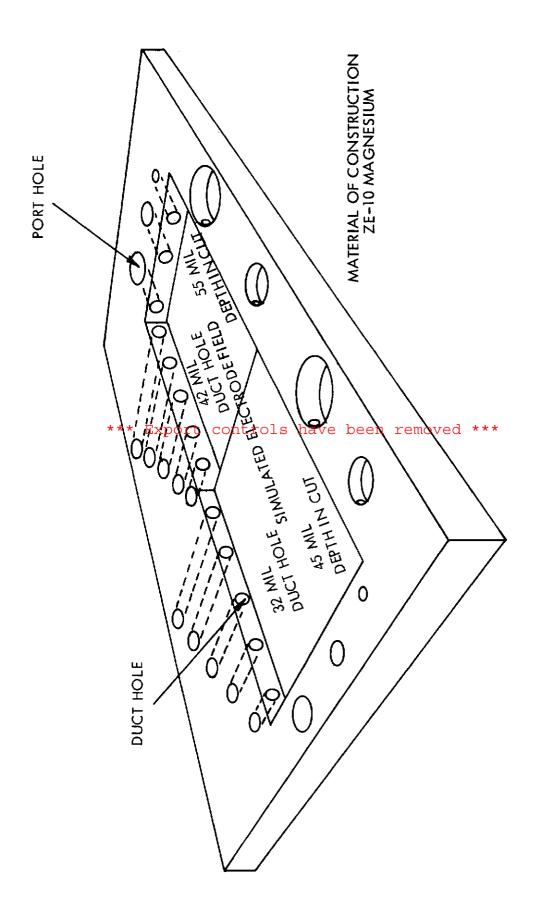
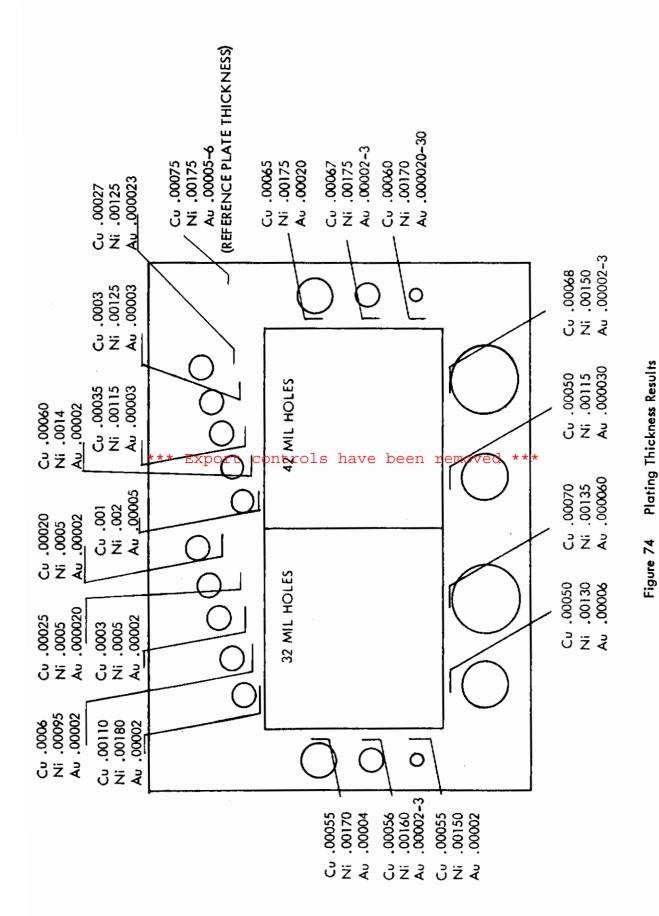



Figure 73 Simulated Port And Duct Hole Bipolar Plate Test Fixture

125

- b) Copper plate thickness varied with duct size, port size and distance from the simulated electrode field. In general, the larger the duct size and the shorter the duct length, the thicker the deposits of copper.
- c) Both the nickel and gold deposits varied with change in geometry in the same manner as the copper deposit, but the magnitude of the variation was less.

It can be concluded from these tests that gas ducts having a 32-mil diameter can be successfully plated. For an equivalent plating time, however, there will be less deposit in the 32-mil duct than in the 42-mil duct. In using a 32-mil duct, the length from the port to the electrode field (gas compartment) should be kept as short as possible and the port diameter as large as possible.

*** Export controls have been removed ***

APPENDIX III

TEST DATA TABULATION

Included in the following pages are the data taken during the experimental test program discussed in SECTION IV - EXPERIMENTAL RESULTS.

*** Export controls have been removed ***

Cell 3 E 0.7600.8900.5600.6080,6500.7300.8900.5500.7201,0201.320Voltage - Terminal 0.5800.5700.6080.6400.6700.6900.7030.7400.6400.6700.7300.7600.790Cell 2 E₂t 0.700 $^{0}_{2}$ Concentrator test data - preliminary evaluation 0,690 0,790 0.605 0.640 0.660 0.7150.570Cell 1 0.6400.700 0.760continuo Temp. 110 110 110 113 105119 118 118 118 118 120 123110 123118 ols have been removed 14.7 psia 14.7 psia 110 - 12530 mil 32%Temp. ſΉ 118 110 109 110 114 123 120123125111 120 120 Current Density 41.0 50.359.479.010.8 21.631,6 41.0 50.359.479.010.8 ASF Uncompressed Matrix Thickness. Electrolyte Loading $_2$ No. of Cells @ 20 in Each. . KOH Concentration Nominal Cathode Pressure Nominal Anode Pressure Flow $\mathbf{x}\mathbf{T}$ Nominal Cell Temp. PE-10 PE-14 PE-15 PE-16 PE-13 Data Pt. PE-11 PE-12 PE-17 PE-8 PE-9PE-5 PE-6 PE-2PE-3 PE-4 PE-7

	Cell 3 E 3t 0. 800 1. 280 0. 550 0. 800 1. 400
N (Con't.)	Voltage - Terminal Cell 2 E _{2t} 0. 680 0. 720 0. 590 0. 680 0. 680 0. 740
VALUATIC	Cell 1 E1 E1 0. 670 0. 720 0. 590 0. 660 0. 760
ELIMINARY E	Cell 3 Lemp. Temp. Tem
ATA - PR	Cell 1 Temp. F 120 124 124 124 124 124
0 ₂ CONCENTRATOR TEST DATA - PRELIMINARY EVALUATION (Con't.)	Current Density ASF 41.0 50.3 59.4 10.8 31.6 50.3
CONCENT	Flow xT 3T 3T 3T
0	Data Pt. No. No. PE-18 PE-20 PE-21 PE-22 PE-22 PE-23

O2 CONCENTRATOR TEST DATA

Nonmission Autonome Presente Autonome Autono	al (Nominal Cell Temp	sure		100F 14.7 psia	ia :	* *						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Anode Pressu ssed Matrix	ire Thickness		14.7 psia 30 mil	ia	۲ *]						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	its			13		Exj						
32% each. 1.25 g dry Matrix each. 3 Current Humidifier Cell 1 Cell 2 Cell 3 Cell 1 Cell 1 Density Temp.	Ş.	an			40 lb. ii	ä	po						
each. 3 9 carch. 3 9 Current Density Temp.	ğ	entration .			32%	dmy Matri							
Current Humidifier Cell 1 Cell 2 Cell 3 Cell 1 Cell 1 ASF F F F F F F E1t Cell 1 ASF F F F F F F E1t Cell 1 ASF F F F F F F E1t E1t E1t 10 82 100 107 108 106 0.725 0.715 40 82 100 108 106 0.820 0.784 100 82 107 105 107 1.000 0.980 100 82 107 106 1.000 0.980 0.980 100 82 100 109 1.000 0.740 0.715 20 82 101 109 1.00 0.80 0.80 40 81 108 100 1.00 0.820 0.80 80	င် င်		each	· · · · · · · · · · · · · · · · · · ·		113 111011	CC						
Current Density Humidifier Temp. Cell 1 Cell 2 Cell 3 Cell 1 Ett							n						
Current Density Temp.			Current	Humidifier	Cell 1	Cell 2	Cell 3	Cell 1	Cell 1	Cell 2	Cell 2	Cell 3	Cell 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Flo		Density	Temp.	Temp.	Temp.	Temp.	Voltage	IR Free	Voltage	IR Free	Voltage	R Free
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	хŢ	Amp	ASF	শ	Ŧ	ų	54 l	$_{ m E1t}$	$\mathbf{E}_{\mathbf{1f}}$	$\mathbf{E}_{2\mathbf{t}}$	E_{2f}	E3t	E _{3f}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5T	1,39	10	82	100	107	ıæ	0.725	0,715	0.760	0,750	0.720	0,705
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.78	20	82	100	108	100	0.820	0.784	0.850	0.820	0.815	0.784
8.35 60 82 107 105 100 0.930 11.1 80 82 107 100 1.000 0.930 13.9 100 82 109 95 1.00 1.010 2.78 20 82 101 105 1.00 0.820 0.800 5.55 40 81 103 105 1.00 0.820 0.800 8.35 60 80 110 1.00 1.00 0.900 0.910 13.9 100 80 110 1.00 0.900 0.900 8.35 60 80 100 100 0.795 0.765 8.35 60 80 100 100 0.795 0.950 11.1 80 80 110 110 1.105 1.100 13.9 100 110 100 1.10 1.105 1.100 11.1 11.1 80 80 110 110 1.10 1.100		5,55	40	82	104	105	<u>10</u> 3	0.920	0.880	0.940	0.900	0.900	0.865
11.1 80 82 107 100 107 100 0.970 13.9 100 82 109 95 109 1.160 1.010 2.78 20 82 101 105 100 0.740 0.715 2.78 20 82 101 105 100 0.910 0.860 8.35 60 80 110 100 110 0.960 0.910 11.1 80 80 110 100 110 1.090 1.140 13.9 100 80 115 100 1.140 1.140 11.1 80 80 100 100 0.795 0.765 8.35 60 80 110 100 101 1.195 1.100 11.1 80 80 110 111 1.195 1.195 13.9 100 100 111 1.195 1.195		8.35	09	82	107	105	192	1,000	0.930	1.030	0.945	0.970	0.910
13.9 100 82 109 95 $\frac{10}{190}$ 1.160 1.010 2.78 10 82 100 109 $\frac{10}{190}$ 0.740 0.715 2.78 20 82 101 105 $\frac{10}{10}$ 0.820 0.800 8.35 60 80 108 100 108 0.960 0.910 11.1 80 80 110 100 1.60 1.090 1.140 2.78 20 80 100 100 0.795 0.765 8.35 60 80 100 100 0.795 0.950 11.1 80 80 100 107 1.025 0.950 11.1 80 80 110 111 1.195 1.100 13.9 100 80 110 111 1.195 1.195		11.1	80	82	107	100	107	1,070	0.970	1,080	0.995	1,040	0.960
[1,39 10 82 100 100 199 10 130 0.740 0.715 2.78 20 82 101 105 100 0.820 0.800 5.55 40 81 103 105 105 0.910 0.860 8.35 60 80 110 100 110 0.960 0.910 11.1 80 80 110 100 115 1.090 1.140 2.78 20 80 100 100 100 0.795 0.765 8.35 60 80 100 100 100 107 1.025 0.950 11.1 80 80 80 110 100 111 1.195 1.105 1.195 1.100 13.9 100 80 115 100 116 1.315 1.315 1.315 1.195	-	13.9	100	82	109	95	109	1.160	1,010	1.190	1.050	1.160	1.020
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 T	1.39	10	82	100	109	<u> </u>	0.740	0.715	0.780	0.760	0.740	0.720
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	2.78	20	82	101	105	100 100 100 100 100 100 100 100 100 100	0.820	0.800	0.860	0.840	0.824	0.803
8.35 60 80 108 100 108 0.960 0.910 11.1 80 80 110 100 11.090 1.020 13.9 100 80 115 100 1.260 1.140 10 2.78 20 80 100 100 0.795 0.765 8.35 60 80 106 100 107 1.025 0.950 11.1 80 80 110 111 1.195 1.100 13.9 100 80 115 100 116 1.195 1.195		5.55	40	81	103	105	1 92	0.910	0.860	0.935	0.880	0.900	0.860
11.1 80 80 110 100 $1\frac{5}{15}$ 1.090 1.020 13.9 100 80 115 100 1 $\frac{5}{15}$ 1.260 1.140 2.78 20 80 100 100 107 1.025 0.765 8.35 60 80 106 100 107 1.025 0.950 11.1 80 80 110 111 1.195 1.100 13.9 100 80 115 100 116 1.315 1.195		8,35	09	80	108	100	108	0.960	0.910	0.990	0.950	0.960	0.900
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		11.1	80	80	110	100	1,40	1,090	1.020	1.130	1.075	1.060	1,000
2.78 20 80 100 100 100 0.795 0.765 8.35 60 80 106 100 107 1.025 0.950 11.1 80 80 110 111 1.195 1.100 13.9 100 80 115 100 116 1.315 1.195	-	13.9	100	80	115	100	$1\overline{1}5$	1.260	1.140	1,300	1, 190	1.240	1.130
35 60 80 106 100 107 1.025 0.950 1 80 80 110 100 111 1.195 1.100 9 100 80 115 100 116 1.315 1.195	2 T	2.78	20	80	100	100	100	0.795	0.765	0.835	0.815	0.800	0.780
1 80 80 110 100 111 1.195 1.100 9 100 80 115 100 116 1.315 1.195	_	8.35	09	80	106	100	107	1.025	0.950	1.040	0.975	1.005	0.940
9 100 80 115 100 116 1.315 1.195	_	11.1	80	80	110	100	111	1.195	1, 100	1.255	1, 170	1.145	1.055
	-	13.9	100	80	115	100	116	1.315	1,195	1.360	1,250	1.280	1.180

O2 CONCENTRATOR TEST DATA

	Cell 3	IR Free E3f	5	0.640	0, 715	0.780	0.860	0.930	1.080	0.650	0, 725	0.810	0.915	1,080	1,270	0.725	0.940	1, 110	1,375
	Cell 3	Voltage E ₃₊	3	0,655	0, 735	0.820	0.925	1,020	1,200	0.660	0,750	0.860	0.990	1, 190	1.420	0.750	1.030	1.220	1.540
	Cell 2	IR Free $_{\Sigma_{2f}}$	i	0.670	0.745	0.810	0.865	0.910	0.960	0.680	0.755	0.835	0.900	0.970	1.050	0.750	0.930	1,015	1.150
	Cell 2	Voltage E ₂₊	1	0,675	0.765	0.850	0.935	0.995	1.070	0.685	0.780	0.880	0.970	1.070	1.170	0.780	1,000	1, 100	1.250
	Cell 1	IR Free $_{1f}$		0.635	0, 705	0.770	0.830	0.875	0.910	0.640	0, 705	0,785	0.855	0.920	0.980	0.708	0,880	0.955	1,050
	Cell 1	Voltage E _{1f}		0.640	0.720	0.815	0.900	0.965	1.040	0.650	0.730	0.830	0.930	1.030	1.110	0.740	0.960	1,050	1.160
125F 14. 7 psia ** 14. 7 psia ** 30 mil ** 40 lb. in. dd 32% the state of the	Cell 3	Temp.	lav	₩	124	8	127	158	å	7 <u>7</u>	1 27	176	2∕	189	136	125	125	130	135
ia ia n. g dry Ma	Cell 2	Temp. F		135	135	125	125	125	125	135	135	125	125	130	128	128	128	128	128
125F 14. 7 psia 14. 7 psia 30 mil 13 40 lb. in. 32% 1. 25 g/g d	Cell 1	Temp. F		126	125	128	127	128	129	127	126	126	126	129	135	124	125	130	133
	Humidifier	Temp. F		103	103	104	103	103	104	105	104	104	104	104	104	104	104	104	104
ssure Thickness	Current	Density ASF		10	20	40	09	80	100	10	20	40	09	80	100	20	09	80	100
Temp. node Press de Press ed Matrix ration . cading @ 20 in		Current Amp	:	1.39	2.78	5. 55	8.35	11.1	13.9	1,39	2.78	5, 55	8.35	11, 1	13.9	2.78	8.35	11.1	13.9
Nominal Cell Nominal Cath Nominal Ano Uncompresse No. of Bolts Bolt Torque KOH Concent KOH Concent		Flow		5T		<u> </u>			-	3.T					-	^{2}T			-
Nomi Nomi Unco Unco No. (Bolt KOH Elect	Data	¥ 8		17	18	19	20	21	22	23	24	25	56	27	58	59	30	31	32

	Cell E	\mathbb{R} Free	E		0.730	0.800	0.830	0.860	0.870	0.925	0,705	0.800	0.900	0.745	0.805	0,905
	Cell	Voltage	E _t		0.740	0.820	0.860	0.900	0.940	1,000	0.715	0.820	0.940	0.750	0.830	0.950
	Cell	Temp.	ᅜᅺ		126	125	124	125	125	125	125	125	125	125	125	125
*** Expo ! t cont	Humifidier	s Temp.	آ ن ha	.ve		103			104			* 106	* 105	105	105	104
. 125F . 14.7 psia . 20 mil ** . 19 ** . 40 lb in ** . 32% . 1.25g/g drd matrix . 1 (No. 3) O	Current	Density	ASF		15	35	50	65	80	100	15	35	65	15	35	65
kness	Current	Amp			2.08	4.86	6.95	9.02	11,1	13.9	2.08	4.86	9.05	2.08	4.86	9.05
Nominal Cell Temp	Flow	хT			2 T					-	3T	_	-	2T		
Nominal Cell Temp Nominal Cathode Pressure Nominal Anode Pressure Uncompressed Matrix Thic No. of Bolts Bolt Torque KOH Concentration Electrolyte Loading 2 No. of Cells @ 20 in each	Data Pt.	No.			65	99	29	89	69	70	7.1	72	73	74	75	92

⋖	
DATA	
~	
\vdash	
r .	
_	
(3)	
2	
TEST	
*	
Ξ.	
\mathbf{C}	
\vdash	
-	
14	
H	
-	
∹	
Ξ.	
\sim	
>	
=	
\cup	
CONCENTRATOR	
_	
ွ်	
\circ	
_	

ZHZHZGZZZ	Vomir Vomir	Nominal Cell Temp Nominal Cathode Pre Nominal Anode Pre Uncompressed Mat. No. of Bolts Bolt Torque KOH Concentration Electrolyte Loading No. of Cells @ 20 in	Nominal Cell Temp Nominal Cathode Pressure Nominal Anode Pressure Uncompressed Matrix Thic No. of Bolts Bolt Torque KOH Concentration Electrolyte Loading No. of Cells @ 20 in each	Nominal Cell Temp		150F 14.7 psia 14.7 psia 30 mil 13 40 lb. in. 32% 1.25 g/g d	150F 14. 7 psia 14. 7 psia 30 mil 13 40 lb. in. 32% 1. 25 g/g dry Matrix 3	*** Export con						
I	Data			Current	Humidifier	Cell 1	Cell 2	Cell 3	Cell 1	Cell 1	Cell 2	Cell 2	Cell 3	Cell 3
_	 F. 5	Flow	Current	Density ASE	Temp.	Temp.	Temp.	Temp.	Voltage F	IR Free	Voltage	R Free	Voltage	IR Fre
ı	 -	¥1	dmv	ASE	4	٠	4	, h	r. It	$^{\rm L}_{1f}$	^E 2t	$^{L}2f$	₂ 3t	73.
33	33	5T	1.39	10	126	152	158	-11 -26 -	0.605	0.595	0,640	0.620	0.625	0.605
	34		2.78	20	127	152	154	151	099.0	0.645	0,695	0.675	0.685	0.660
	35		5. 55	40	127	148	154	1	0.770	0.722	0.812	0.764	0.804	0,750
	36		8.35	09	127	146	159	- - - - - - -	0.870	0.790	0.905	0.830	0.930	0.840
	37		11.1	80	127	153	166	153	0.935	0.830	0.970	0.870	1,050	0.930
	38	-	13.9	100	127	159	160	169	0.965	0.840	1,015	0.880	1, 170	1.000
	39	3T	1.39	10	127	150	155	ig c	0.610	0.600	0.640	0.620	0.630	0.610
	40		2, 78	20	127	147	160	14	0.660	0.640	0.700	0.680	0.690	0.655
	41		5, 55	40	127	153	165	1	0.760	0.700	0,805	0,745	0.815	0.735
	42		8.35	09	127	155	162	155	0.850	0,775	0.900	0.820	0.945	0.835
	43		11.1	80	127	155	157	156	0.945	0.830	0.990	0.880	1.130	0.980
	44	-	13.9	100	127	157	157	159	1.040	0.900	1,090	0.950	1.440	1.250
	45	2T	2.78	20	127	146	165	145	0.670	0.640	0.720	0.680	0.700	0.650
	46		8,35	09	127	154	165	152	0.915	0.815	0.962	0.862	1,040	0.900
	47		11.1	80	127	161	155	161	1,000	0.880	1,050	0.930	1,230	1.070
	48	-	13.9	100	127	159	155	162	1,070	0.940	1,140	1,005	1,490	1.300

 o_2 CONCENTRATOR TEST DATA

	Cell 3	-	_3f		0.550	0.580	0.660	0.725	0.815	0.900	0.550	0.610	0.670	0.730	0, 795	006.0	0,585	0.770	0.835	0.945
	Cell 3	Voltage E	_3t		0.580	0.645	0.780	0.900	1,050	1.170	0.585	0.680	0.800	0.925	1.055	1.230	0.655	0.990	1.100	1.270
	Cell 2	IR Free E	_2f		0.550	0.595	0.680	0,730	0.780	0.815	0.560	0.625	0.685	0.725	0, 760	0.800	0.605	0, 760	0.790	0.830
	Cell 2	Voltage E	_2t		0.570	0.640	0.760	0.845	0.930	0.995	0.580	0.670	0.770	0.850	0.925	1.010	0.640	0.890	0.950	1.040
	Cell 1	IR Free F	_1f		0.530	0.575	0.650	0. 700	0.740	0.780	0.550	0.600	0.650	0.695	0, 730	0,770	0.580	0.725	0.750	0.800
	Cell 1	Voltage E	_1t		0.560	0.610	0.720	0.815	0.890	0.962	0.565	0.640	0.730	0.805	0.885	0.970	0.620	0.855	0.920	1,000
*** Export co	Cellin	Temp.	50-	ha	173	17	176	17	$17\frac{9}{9}$	182	178	17	178	185	185*	188^{\star}	170	177	185	188
175F 14. 7 psia 14. 7 psia 30 mil 13 40 lb. in. 82% 1. 25 g/g dry Matrix 3	Cell 2	Temp. F			185	185	185	185	185	185	185	192	192	192	185	185	192	192	185	185
175F 14. 7 psia 14. 7 psia 30 mil 13 40 lb. in. 32% 1. 25 g/g	Cell 1	Temp.	,		171	173	175	175	176	177	169	170	175	183	182	182	170	175	182	183
	Humidifier	Temp. F	•		151	151	151	151	151	151	151	151	151	151	151	151	151	151	151	151
ssure Thickness	Current	Density ASF			10	20	40	9	80	100	10	20	40	09	80	100	20	09	80	100
regression rix		Current			1.39	2.78	5, 55	8.35	11.1	13.9	1.39	2.78	5, 55	8.35	11.1	13.9	2.78	8.35	11.1	13.9
Nominal Cell Temp Nominal Cathode Promominal Anode Pre Uncompressed Mat. No. of Bolts Bolt Torque KOH Concentration Electrolyte Loading No. of Cells @ 20 in		Flow			$_{2}$ T					+	3T					-	2T	_		+
Nomi Nomi Unco No. c Bolt KOH Elect No. c	Data	Pt.			49	20	51	52	53	54	22	99	22	58	59	09	61	62	63	64

	•	Cell E	IR Free	Ħ Ť		0.830	0.940	1.000	1,100	1.230	1.690	0.815	0.920	1.095	0.795	0.905	1.045
		Cell	Voltage	ы Т		0,855	0.970	1.060	1.160	1.330	1.800	0.825	0.960	1,180	0.815	0.945	1,115
FA —		Cell	Temp.	ᅜ		125	125	125	125	125	125	125	125	125	125	125	125
O CONCENTRATOR TEST DATA	125F 10.0 psia 14.7 psia 20 mil ** 19 ** 40 lb in X 32% Od 1.25g/g drX matrix 1 (No. 3) Od pignor in the signor in thes	dumifidier Aumifidier	n Temp.	မ် ha	ve		0 104		10 4			, .	* 104	* * 104	104	104	104
CONCENTR	. 125F . 10.0 psia . 14.7 psia . 20 mil . 19 . 40 lb in . 32% . 1.25g/g d	Current	Density	ASF		15	35	20	65	80	100	15	35	65	15	35	65
0 2	ckness	Current	Amp			2.08	4.86	6,95	9.05	11.1	13.9	2.08	4.86	9, 02	2.08	4.86	9.02
	Temp ode Pressure le Pressure de Matrix This ration	Flow	хT			$_{ m r}$					•	$^{3}\mathrm{T}$		-	2T -		-
	Nominal Cathode Pressure Nominal Anode Pressure	Data Pt.	No.			7.7	48	46	08	81	82	83	84	82	98	28	88

0 CONCENTRATOR TEST DATA

						Cell E	${ m IR}$ Free	E f		0.685	0.765	0.850	0.895	0.930	0.980	0.745	0,820	0.905	0.735	0.830	0.920
						Cell	Voltage	Ē		0.695	0.790	0.895	0.945	0.990	1.060	0.755	0.855	0.950	0.750	0.850	0.970
						Cell	Temp.	F		125	125	125	125	125	125	124	125	125	125	125	125
	***	Ex	xpc	ry matrix	cont	Humifidier	Temp.	۲. ha	ave			104 en		105 em				* 105	105	103	104
. 125F . 14.7 psia	20 mil	. 40 lb in	. 32%	. 1. 25g/g dry matrix . 1 (No. 3)		Current	Density	ASF		15	35	50	65	80	100	15	35	65	15	35	65
	kness	• • •	•			Current	Amp			2.08	4.86	6.95	9.02	11,1	13.9	2.08	4.86	9.02	2.08	4.86	9.02
Temp,	d Matrix Thic		ation	\mathfrak{d} 20 in each.		Flow	хT			$^{5}\mathrm{T}$					-	3T		-	^{2}T		~
Nominal Cell Temp Nominal Cathode Pressure	Uncompressed Matrix Thickne	Bolt Torque	KOH Concentration	Electrolyte Loading $_2$ No. of Cells $@$ 20 in		Data Pt.	No.			88	06	91	92	93	94	95	96	26	86	66	100

0 CONCENTRATOR TEST DATA

	Cell E	IR Free	Ę		0.755	0.840	0.900	0.945	0.995	1.060	0.790	0.875	0.990	0.840	0,910	1.050	
	Cell	Voltage	' 1		0.775	0.895	0.970	1.040	1, 110	1.210	0.810	0.925	1,080	0,860	0.970	1,110	
	Cell	Temp.	Ā		125	125	125	125	125	125	125	125	125	125	125	125	
*** Export contr	Rumifidier	ⁿ Temp.	டி hav	re		104 er		103				** 104	* 104	104	104	104	
125F 14.7 psia 14.7 psia * 10 mil ** 18 30 lb in dd 32% 1.25g/g dry matrix 1 (No. 3) 20	Current	Density	ASF		15	35	20	65	80	100	15	35	65	15	35	65	alfunction
ckness	Current	Amp			2.08	4.86	6,95	9.02	11.1	13.9	2.08	4.86	9.02	2.08	4.86	9.02	Not Obtained Due To Malfunction
cemp de Pressure . Matrix Thicl	Flow	хT			5T					-	3T -		-	2T		-	Not Obt
Nominal Cell Temp. Nominal Cathode Pressure Nominal Anode Pressure Uncompressed Matrix Thickno No. of Bolts Edit Torque KOH Concentration Electrolyte Loading No. of Cells @ 20 in each.	Data Pt.	No.			101	102	103	104	105	106	107	108	109	110	111	112	113-124

 $^{0}_{2}$ CONCENTRATOR TEST DATA

	Cell E IR Free	A T	0.765	0.845	0.895	0.945	1.050	1.120	0.780	0.860	0.960	0.780	0.850	0.950
	Cell Voltage	T ₁	0.775	0.890	0.955	1.040	1.120	1.305	0.800	0.935	1.095	0.805	0.930	1.180
	Cell Temp.	£	125	125	125	125	125	125	125	125	125	125	125	125
*** Expost cont	Umifidier Fremp.	⊢ hav∈			n 104				o 104		* 104	104	104	104
. 125F . 14.7 psia . 10.0 psia . 10 mil ** . 18 ** 30 lb in X . 32% od . 1.25g/g dry matrix . 1 (No. 3)	Current Density	ASF	15	35	50	65	80	100	15	35	65	15	35	65
ckness	Current Amp		2.08	4.86	6, 95	9.02	11.1	13.9	2.08	4,86	9.02	2.08	4.86	9.03
remp	Flow xT		$_{ m 2T}$					-	3T		-	2T		-
Nominal Cell Temp Nominal Cathode Pressure	Data Pt. No.		125	126	127	128	129	130	131	132	133	134	135	136

 $^{0}_{2}$ CONCENTRATOR TEST DATA

	Cell E	IR Free	E	1 690	1.000	1.690	1.720	1,750	1,900	1.940	1.360	1,700	1.880	1.400	1.700	1.900
	Cell	Voltage	E	1 640	010.1	1.720	1,770	1.820	2,080	2.150	1,380	1.800	2.000	1.450	1,780	2.080
	Cell	Temp.	Ē4	125	2 .	125	125	125	125	125	125	125	125	125	125	125
*** Export Acontro	Humifidier	Temp.	မ် iave	10						104 ed	* 104	** 104	104	104	104	104
125F 5.0 psia ** 5.0 psia ** 30 mil ** 18 35-40 lb ind 32% 1.25g/g dry matrix 1 (No. 3) 0	Current	Density		15	36	35	20	65	80	100	15	35	65	15	35	65
skness	Current	Amp		2, 08	90 1	4.80	6, 95	9.05	11.1	13.9	2.08	4.86	9.05	2.08	4.86	9.02
emp	Flow	хT		5T	-					-	3T.		~	2T		-
Nominal Cell Temp. Nominal Cathode Pressure Nominal Anode Pressure Uncompressed Matrix Thickness No. of Bolts Electrolyte Concentration Electrolyte Loading No. of Cells @ 20 in each	Data Pt.	No.		137	138	100	139	140	141	142	143	144	145	146	147	148

	Cell E IR Free E,	0.815 1.410 1.730 1.780 1.790 1.830 0.805 1.510 1.740 0.805 1.730
	Cell Voltage E.	0.835 1.450 1.800 1.840 1.880 1.950 0.825 1.590 1.830 0.825 1.550
	Cell Temp. F	125 125 125 125 125 125 125 125 125
x matrix *** Expost con	Mumifidier Temp. F	nave been removed ***
125F 5. 0 psia 5. 0 psia 30 mil 4 18 35-40 lb in 32% 1. 25g/g dr 1 (No. 3) 1 (No. 3)	Current Density ASF	15 35 50 65 80 100 15 35 65 35
ckness	Current Amp	2. 08 4. 86 6. 95 9. 02 11. 1 13. 9 2. 08 4. 86 9. 02 2. 08 4. 86
Temp ode Pressure	Flow	3T
Nominal Cell Temp. Nominal Cathode Pressure Nominal Anode Pressure Uncompressed Matrix Thickness No. of Bolts Electrolus KOH Concentration Electrolyte Loading No. of Cells @ 20 in each.	Data Pt. No.	137A 138A 139A 140A 141A 142A 144A 145A 145A 146A 146A

⋖	
Н	
⋖	
DAT	
ŭ	
${ m TEST}$	
H	
2	
O	
ĭ	
•	
~	
\Box	
5	
=	
¥	
χ	
CONCENTRATOR	
V	
	¢

	Cell E	IR Free	H t	0.740	0.880	1.075	1.360	1.620	1.750	0.780	0.940	1.410	0.825	1,000	1,400
	Cell	Voltage	E	0.775	0.970	1.200	1,610	1.860	2,060	0.845	1.080	1.680	0.890	1.150	1,710
	Cell	Temp.	Ħ	125	125	125	125	125	125	125	125	125	125	125	125
125 F 7. 5 psia * 7. 5 psia * 30 mil * 18 35-40 lb inx 32% 1. 25g/g dry matrix 1 (No. 3)	Humifidier	^o remp.	have		104		104				* * 104	* 104	104	104	104
. 7.5 psia *	Current	Density	ASF	15	35	20	65	80	100	15	35	65	15	35	65
kness	Current	Amp		2.08	4.86	6,95	9.02	11.1	13.9	2.08	4.86	9.05	2.08	4.86	9.02
Temp, ode Pressure . e Pressure . d Matrix Thicl ation	Flow	$\mathbf{x}\mathbf{T}$		5T					-	$\dot{3}$ T		-	2,T	_	>
Nominal Cell Temp. Nominal Cathode Pressure Nominal Anode Pressure Uncompressed Matrix Thickness No. of Bolts Elettrolyte Electrolyte Loading No. of Cells @ 20 in each No. of Cells	Data Pt.	No.		149	150	151	152	153	154	155	156	157	158	159	160

0 CONCENTRATOR TEST DATA

	Cell E	IR Free	E I	0.740	0.930	1.600	1,640	1.780	1,910	0,840	1.430	1.700	0.850	1.470	1.790
	Cell	Voltage	Ξ	0.760	1,000	1.710	1.780	1.940	2.140	0.895	1.520	1.910	0.900	1.590	2.020
	Cell	Temp.	[±,	125	125	126	126	126	129	125	123	126	120	121	124
*** Export cont	Kumifidier	Temp.	۲۰ ha		104				$\stackrel{\circ}{<}$ 104			* 106	108	108	109
125F 7.5 psia 7.5 psia 30 mil 18 35-40 lb in 32% 1.25g/g dry matrix 1 (No. 3)	Current	Density	ASF	15	35	20	65	80	100	15	35	65	15	35	65
ckness	Current	Amp		2.08	4.86	6,95	9.05	11, 1	13.9	2.08	4.86	9.02	2.08	4.86	9.02
Temp	Flow	хT		5T				. •	-	$^{3}\mathrm{T}$		-	$^{2\mathrm{T}}$		•
Nominal Cell Temp Nominal Cathode Pressure	Data Pt.	No.		149A	150A	151A	152A	153A	154A	155A	156A	157A	158A	159A	160A

		Cell E	IR Free	Ęţ	0,835	1.020	1.120	1.310	1.450	1.500	0.840	1,120	1.340	0.905	1,150	1,340	
		Cell	Voltage	Бţ	0.920	1.235	1.470	1.810	2.140	2.480	1.020	1.600	2.290	1.130	1.750	2.620	
Į.		Cell	Temp,	Ħ	125	125	125	125	125	125	125	125	130	120	120	120	
2 CONCENTRATOR TEST DATA	125F 10. 0 psia * 30 mil * 35-40 lb ind standard stand	<mark>k</mark> umifidier	Temp.	မြ ave	be 104	104	104	104		ed 104		* 104	104	104	104	104	
CONCENTRA	. 125F . 10.0 psia ** . 30 mil ** . 35-40 lb ind . 32% . 1.25g/g dry . 1 (No. 3)	4	Density	ASF	15	35	50	65	80	100	15	35	65	15	35	65	alfunction
0 2	ckness	Current	Amp		2.08	4.86	6.95	9.05	11,1	13.9	2.08	4.86	9.02	2.08	4.86	9.02	Not Obtained Due To Malfunction
	Temp ode Pressure le Pressure d' Matrix Thic	Flow	хT		5T					-	3.T		-	2T		-	Not Ob
	Nominal Cathode Pressure Nominal Anode Pressure Nominal Anode Pressure Uncompressed Matrix Thicks No. of Bolts Bolt Torque KOH Concentration Electrolyte Loading No. of Cells @ 20 in each.	Data Pt.	No,		161	162	163	164	165	166	167	168	169	170	171	172	173 - 196

Nominal Cell Temp. . .

Cell E TR Free	E F		0,775	0.850	0.895	0.960	1.040	1,210	0.785	0.875	0.985	0.815	0.915	1,245
Cell Volta oe	E _t		0.790	0.885	0.945	1.020	1.115	1.305	0.815	0.910	1,060	0.830	0.945	1.320
Celi Temn	F		124	124	127	125	126	130	121	122	127	122	124	130
Fumitidier O Temn	ols	ha									* 104	* 104	104	104
			15	35	50	65	80	100	15	35	65	15	35	65
Current Amn	1		2.08	4.86	6,95	9.02	11.1	13.9	2.08	4.86	9.05	2.08	4.86	9.02
Flow			$^{-5}$ T					-	3T		-	2T		•
Data Pt. No			197	198	199	200	201	202	203	204	205	206	207	208
	Flow Current Current Fumitidier Cell Cell xT Amn Density Town Town Voltage	xT Amp Density OTe	riow Current Humitidier Cell Cell xT Amp Density o'Temp. Temp. Voltage ASF w F F E E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

AFTI	DL-TR-67-6																
		Cell E	IR Free	Ef		0.765	0.860	0,915	0.980	1.060	1.220	0.780	0.870	1.010	0.795	0.885	1.065
		Cell	Voltage	Ē		0.790	0.905	0.985	1.070	1.165	1.340	0.807	0.920	1.095	0.820	0.930	1.150
TA		Cell	Temp.	Ή.		125	123	125	125	127	127	123	124	123	122	124	127
$^{0}_{2}$ CONCENTRATOR TEST DATA	×** Expor∱ contr	fumifidier	\mathbf{I}_{ϵ}	ا hav	re	104	104			105			* 105	* 104	105	104	104
CONCENTRA	. 125F . 30.0 psia . 25.0 psia * . 30 mil * . 18 . 34 lb in XX . 32% contact of the contac	Current	ity	ASF		15	35		65	80	100	15	35	65	15	35	65
0	kness	Current	Amp			2.08	4.86	6.95	9.02	11.1	13.9	2.08	4.86	9.02	2.08	4,86	9.02
	Temp	Flow	хT			2 T				-	-	3 T	_	-	$^{2\mathrm{T}}$		> -
	Nominal Cathode Pressure Nominal Anode Pressure Uncompressed Matrix Thickness No. of Bolts KOH Concentration Electrolyte Loading No. of Cells @ 20 in each	Data Pt.	No.			209	210	211	212	213	214	215	216	217	218	219	220
			1	L 4 5													

	Cell E	IR Free	त्र _†		0.780	0.865	0.905	0.960	1.003	1.085	808.0	0.880	0.980	0,805	0,895	1,015
	Cell	Voltage	EL T	,	0.800	0.908	0.978	1.040	1.105	1.215	0.825	0.940	1,075	0,830	0.955	1,095
	Cell	Temp.	ഥ	,	121	124	122	124	125	127	123	123	126	124	126	126
xx matrix *** Exp <mark>o</mark> rt con	Humifidier	OTemp.	i h	av			105		104 re				* 105	* 104	104	105
125F 30.0 psia 30.0 psia 30 mil 18 * 34 lb in 32% 1.25g/g drg matrix 1 (No. 3) A	Current	Density	ASF	,	15	35	20	65	80	100	15	35	65	15	35	65
ckness	Current	Amp		6	2.08	4.86	6,95	9.02	11,1	13.9	2.08	4.86	9.02	2.08	4.86	9.02
cemp de Pressure Pressure Matrix Thi	Flow	хT		Ę	2	-		_		-	3 T		-	2T		-
Nominal Cell Temp Nominal Cathode Pressure	Data Pt.	No.			221	222	223	224	225	226	227	228	229	230	231	232

		Cell E	IR Free	ম J		0.775	0.860	0.910	0.962	1.045	1.150	0.810	0.895	1.040	0.805	0.910	1.083	
		Cell	Voltage	Ξ ¹		0.795	0.915	0.980	1.062	1,160	1.305	0.840	0.960	1, 140	0.835	0.975	1,160	
Α.		Cell	Temp.	ĬΞ		125	124	126	126	127	127	125	127	125	125	125	126	
O2 CONCENTRATOR TEST DATA	125F 30. 0 psia 35. 0 psia 38 mil ** 38 mil ** 34 lb in 32% 1.25g/g dry matrix 1 (No. 3) 0	Aumifidier		* & hav	е	be	eer	1 1	cer	nor	ve	d	* *	*				
CONCENTRA	125F 30.0 psia 35.0 psia 30 mil 18 34 lb in 32% 1.25g/g d	Current	Density	ASF		15	35	20	65	80	100	15	35	65	15	35	65	
0 2	e	Current	Amp			2.08	4,86	6,95	9.02	11.1	13.9	2.08	4.86	9.02	2.08	4,86	9.02	
	Temp ode Pressure le Pressure	Flow	хT			1 2				;	-	3 L	:	-	2 <u>T</u>		-	Λ
	Nominal Cathode Pressure Nominal Anode Pressure	Data Pt.	No,			233	234	235	236	237	238	239	240	241	242	243	244	*See Section IV

	Cell E IR Free E _f	0.775	0,865	0.930	1.000	1,120	1, 290	0.775	0.870	1.020	0.790	0.890	1.030	
	Cell Voltage E	0.795	0.935	1,002	1,100	1.235	1.440	0.795	0.925	1,105	0.815	0.955	1.120	
	Cell Temp. F	123	125	126	128	127	130	123	125	125	122	122	124	
125F 45.0 psia 40.0 psia 30 mil 18 34 lb in 32% 1.25g/g dry matrix 1 (No. 3)	dumifidier s r F *	have	e b	ee	n	re	emc	ΟVΘ	ed	*	* *			
125F 45.0 psia 40.0 psia 30 mil 18 34 lb in 32% 1.25g/g d 1 (No. 3)	Current Density ASF	15	35	50	65	80	100	15	35	65	15	35	65	
mess	Current Amp	2.08	4.86	6.95	9,02	11.1	13.9	2.08	4.86	9.02	2.08	4.86	9.05	
emp	Flow xT	5T					-	3T		→	2 T		-	
Nominal Cell Temp Nominal Cathode Pressure	Data Pt. No.	245	246	247	248	249	250	251	252	253	254	255	256	*See Section IV

		Cell E	IR Free	E	0.795	0.865	0.905	0.955	0.980	1.040	0.800	0.880	0.960	0.815	0,895	0.970	
		Cell	Voltage	E	0.820	0.925	0.980	1.040	1.085	1.170	0.830	0.935	1,055	0.835	0.940	1.065	
¥ 1		Cell	Temp.	ഥ	125	124	124	126	128	129	126	128	125	123	122	124	
0_2 CONCENTRATOR TEST DATA	125F 45. 0 psia * 30 mil * 30 mil * 34 lb in dd 32% ho 1. 25g/g dry matrix 1 (No. 3) 0	Aumifidier Humifidier	Temp.	* have	be	en	. r	em	101	ле (1 7	* * :	*				
ONCENTRA	125F 45.0 psia 45.0 psia 30 mil 18 34 lb in 32% 1.25g/g d 1 (No. 3)	Current	Density	ASF	15	35	20	65	80	100	15	35	65	15	35	65	
0 ² C	skness	Current	Amp		2.08	4.86	6.95	9.02	11.1	13.9	2.08	4.86	9.02	2.08	4.86	9.02	
	Temp ode Pressure	Flow	$\mathbf{x}\mathbf{T}$		$_{5T}$		_		<u> </u>	~	3 T	<u> </u>	*	$_{ m ZT}$		+	Λ
	Nominal Cathode Pressure Nominal Anode Pressure Uncompressed Matrix Thickness No. of Bolts Electrolyte Loading Electrolyte Loading No. of Cells @ 20 in each.	Data Pt.	No.		257	258	259	260	261	262	263	264	265	266	267	268	*See Section IV

 $^{0}_{2}$ CONCENTRATOR TEST DATA

	Cell E	IR Free	Ħ Î		0.810	0.900	0.958	1,010	1,100	1.240	0.810	0.905	1.022	0.810	906.0	1.030	
	Cell	Voltage	_†		0.835	0.955	1.022	1.095	1,200	1.395	0.840	0,955	1.110	0.835	0.958	1.120	
	Cell	Temp.	F		124	122	122	125	126	128	123	125	126	124	124	125	
125F 45.0 psia 50.0 psia 30 mil 18 * 34 lb in 32% 1.25g/g ddd matrix 1 (No. 3) d	Humifidier	C Temp.	° F*	nav	<i>т</i> е	be	ee:	n	re	mo	ve	:d	* *	·*			
125F 45.0 psia 50.0 psia 30 mil 18 34 lb in 32% 1.25g/g d	Current	Density	ASF		15	35	50	65	80	100	15	35	65	15	35	65	
skness	Current	Amp			2.08	4.86	6,95	9.02	11,1	13.9	2.08	4.86	9,02	2.08	4.86	9.05	
e Pressure Pressure Matrix Thick Common Comm	Flow	ХX			$_{ m c}$	-				-	3,T		•	$_{1}^{2}$	<u> </u>	-	
Nominal Cell Temp Nominal Cathode Pressure	Data Pt.	No.			269	270	271	272	273	274	275	276	277	278	279	280	*See Section IV

⋖
Ξ
⋖
DATA
TEST
TOR
Ą
ONCENTRA
Ξ
Z
闰
Ü
ONC
\Box
ŏ
_ c
$\overline{}$

	Cell E	$ m IR \ Free$	Ħ Ĥ		0.735	0.825	0.865	0.900	0.920	0.950	0.765	0.845	0.875	0.770	0.845	0.905	
	Cell	Voltage	EI T		0.760	0.870	0,935	0.980	1.020	1.070	0.795	0.890	0.945	0.795	0.895	0.965	
	Cell	Temp.	ſ Σ ι		127	125	126	126	126	129	124	125	126	125	126	125	
60. 0 psia 55. 0 psia ** 30 mil ** 18	Humifidier	Temp.	* F	0	be	en	r	rem	nov	<i>r</i> ec	d ,	* * :	*				
. 125F 60.0 psia 55.0 psia 30 mil 18 34 lb in 32% . 1.25g/g d	Current	Density	ASF		15	35	20	65	80	100	15	35	65	15	35	65	
ckness	Current	Amp			2.08	4.86	6.95	9.02	11.1	13.9	2.08	4.86	9.02	2.08	4.86	9.02	
femp. de Pressure Pressure Matrix Thic reference ation ation 20 in each.	Flow	хT			2					>	3T		~	2 <u>T</u>		-	>
Nominal Cell Temp. Nominal Cathode Pressure Nominal Anode Pressure Uncompressed Matrix Thickness No. of Bolts Electrolyte Electrolyte Loading No. of Cells @ 20 in each.	Data Pt.	No.			281	282	283	284	285	286	287	288	289	290	291	292	*See Section IV

151

	Cell E	IR Free F	T T	0.790	0.870	0.920	0.960	0.985	1.030	0.795	0.890	0.960	0,805	0.880	0.950	
	Cell	Voltage	r t	0.815	0.920	0.985	1.040	1.090	1,140	0.820	0.930	1.040	0.835	0.925	1.035	
	Cell	Temp.	±4	126	124	124	127	126	127	122	124	124	123	126	127	
	Humifidier	₩.	have	e k	oe e	en	r	em	ov	ed	. *	* * *				
125F 60. 0 psia 60. 0 psia 30 mil 18 34 lb in 32% 1. 25g/g c 1 (No. 3)	Current	Density	ASF	15	35	50	65	80	100	15	35	65	15	35	65	
ckness	Current	Amp		2.08	4.86	6.95	9.02	11.1	13.9	2.08	4.86	9.02	2.08	4.86	9.02	
e Pressure Pressure Matrix Thic Comparity Thic Comp	Flow	хT		2					>	3T		-	2 T		-	
Nominal Cell Temp. Nominal Cathode Pressure Nominal Anode Pressure Uncompressed Matrix Thickness No. of Bolts Electrolyte	Data Pt.	No.		293	294	295	296	297	298	299	300	301	302	303	304	*See Section IV

DATA	
TEST	
RATOR	
CONCENTRATOR	
ວິເ	

	Cell E	IR Free	ਸ •		0.795	0.885	0.920	0.955	0.990	1,020	0.795	0.880	0.950	0.795	0.880	0.950	
	Cell	Voltage	E E		0.810	0.940	0.990	1.040	1.080	1.140	0.820	0.930	1.035	0.820	0.925	1.040	
	Cell	Temp.	F		123	127	123	124	122	125	123	124	125	125	123	125	
125F 60. 0 psia * 30 mil * 18 * 34 lb in A 32% H 1. 25g/g drý matrix 1 (No. 3) O	Humifidier	Temp.	* & hav	e	be	er	1 1	cer	ron	ле (d :	* *	*				
125F 60.0 psia 65.0 psia 30 mil 18 34 lb in 32% 1.25g/g d 1 (No. 3)	Current	Density	ASF		15	35	50	65	80	100	15	35	65	15	35	65	
kness	Current	Amp			2.08	4.86	6.95	9.03	11.1	13.9	2.08	4.86	9.05	2.08	4.86	9.02	
emp,	Flow	хT			ΣŢ					-	3T		-	2T		-	
Nominal Cathode Pressure Nominal Anode Pressure Uncompressed Matrix Thickne No. of Bolts	Data Pt,	No.			305	306	307	308	309	310	311	312	313	314	315	316	*See Section IV

153

0 CONCENTRATOR TEST DATA

	Cell E	IR Free	Ħ Ħ		0.750	0.840	0.880	0.910	0.925	0.950	0,750	0.840	0.910	0.770	0.850	0.910	
	Cell	Voltage	БŢ		0.770	0,895	0.950	1.010	1,030	1,080	0.775	0.895	1,000	0.800	0.910	1,050	
	Cell	Temp.	Ē		122	126	126	127	128	128	126	125	128	124	124	126	
125F 75.0 psia 70.0 psia 30 mil ** 34 lb in 32% 1.25g/g dry matrix 1 (No. 3)	Humifidier	Temp.	* F4 5 h	av	e :	be	en	ır	rem	nov	лес	d :	* *	*			
125 F 75.0 psia 70.0 psia 30 mil 18 34 lb in 32% 1.25g/g db 1 (No. 3)		Density			15	35	20	65	80	100	15	35	65	15	35	65	
kness	Current	Amp		:	2.08	4.86	6,95	9.02	11.1	13.9	2.08	4.86	9.02	2.08	4.86	9.03	
de Pressure Pressure Matrix Thic ation ading 2	Flow	хT			5T					~	3T		-	2T		-	1
Nominal Cell Temp Nominal Cathode Pressure	Data Pt.	No.			317	318	319	320	321	322	323	324	325	326	327	328	*See Section IV

	Cell E	IR Free	EJ J		0.750	0.855	0.910	0.965	1,000	1,050	0.815	0.905	0.985	0.825	0.905	0.985	
	Cell	Voltage	ыţ		0.780	0.895	0.980	1.045	1.100	1.180	0.835	0.960	1.070	0.845	0.960	1.075	
	Cell	Temp.	Ħ		124	120	125	126	123	126	123	125	125	123	123	123	
*** Expost cont	Humifidier	ortemp.	* L	ve	e b	ee	en	re	emo	ΟV€	ed	*	**				
125F 75.0 psia 75.0 psia 30 mil ** 18 34 lb in 32% 32% 1.25g/g drymatrix 1 (No. 3)	Current	Density	ASF		15	35	20	65	80	100	15	35	65	15	35	65	
kness	Current	Amp			2.08	4.86	6.95	9.02	11.1	13.9	2.08	4.86	9.02	2.08	4.86	9.02	
emp de Pressure Pressure . Matrix Thic	Flow	хT			$_{ m i}$					-	$^{3}\mathrm{T}$		-	2.T		-	
Nominal Cell Temp Nominal Cathode Pressure	Data Pt.	No.			329	330	331	332	333	334	335	336	337	338	339	340	*See Section IV

	Cell E IR Free E _f	0.820 0.905 0.950 0.980 1.005 1.045 0.810 0.900 0.980 0.980	
	Cell Voltage E	0. 840 0. 960 1. 015 1. 070 1. 110 0. 830 0. 955 1. 060 0. 845 0. 960 1. 070	
	Cell Temp. F	121 123 126 125 130 128 125 123 123 123	
125F 75.0 psia 80.0 psia 30 mil 18 ** 34 lb in 32% 1.25g/g dr 1 (No. 3)	dumifidier S Temp.	nave been removed ***	
125 F 75.0 psia 80.0 psia 30 mil 18 34 lb in 32% 1.25g/g c	Current Density ASF	15 35 50 65 80 15 35 65 65	
ckness	Current Amp	2. 08 6. 95 9. 02 11. 1 13. 9 2. 08 4. 86 4. 86 9. 02	
e Pressure Pressure Matrix Thic Lion ding 2	Flow	2T ← 3T ← 5T	
Nominal Cell Temp. Nominal Cathode Pressure. Nominal Anode Pressure. Uncompressed Matrix Thickne No. of Bolts. Electrolyte. Electrolyte Loading. No. of Cells @ 20 in each.	Data Pt. No.	341 342 343 344 345 347 349 350 351	*See Section IV

	(T_{10}) Right Side Humidifier (T_{5})		13	E3f						1,440	1,430	1,400	1.345	1.315		1.620	1.620
			Cell	E 3t		0.700	1.360	1.500	1.480	1.480	1.440	1,420	1.370	1,330		1.650	1.640
	±		1 2	E2f						1.070	1.020	1,000	0.960	0.960		1.295	1.140
5 5	T ₁₂ C ₁₃ C ₁₄ C ₁₅ C ₁ C ₂ C ₂ C ₂ C ₂ C ₃ C ₄ C ₅ C ₆ C ₁ C ₁ C ₁ C ₁ C ₂ C ₁ C ₂ C ₁ C ₂ C ₁ C ₂ C ₂ C ₃ C ₄ C ₆ C ₆ C ₇ C		Cell	Est		0.690	0.790	1.130	1.130	1.090	1.050	1.020	0.990	0.970		1,330	1.150
JON TO	Therm the of air		11	E 1‡						0.915	0.905	0.900	0.890	0.890		0.900	0.900
59-HOUR SELF-REGULATION LOG	The Teft Side Humidifier dew point of exhaust air		Cell	E		0.700	0.780	0.960	0.940	0.930	0.930	0.920	0.920	0.910		0.920	0.925
LF-RE	[F4] T			T_{dp}		ole			26	24	57	22	22	55		52	48
JR SE	T. Gg			T ₁₂		Shorted Thermocouple			ı	t	ı	I	i	١		1	ł
10Н-69	×	\$S - ₽	· l	Toeen	rem	Thern	ed	*	92 *	78	85	84	87	87		88	88
1	psia psia lil lil lil lil lil g/g dry matrix gy gry matrix	ratur		T	. I Cili	orted	eu		92	42	83	87	91	Ø		ß	=
T DA	psia psia il . in. g/g d	rempe		T		= Sh			ß	=	=	£	=	=		ω	=
R TES	10.0 psia 10.0 psia 30 mil 22 30 lb. in. 32% 1.25 g/g 23%			T		s:			72	74	92	48	81	82		82	83
RATO				T_4		Note:			73	92	82	80	83	84		84	82
CONCENTRATOR TEST DATA			Flow	Т×		က	£	=	ഹ	E	E	=	E	£	H_2O	വ	E
0 ₂ CC	essure. sure. ix Thickne cells). cells). wicks).	Current	Density	ASF		15	35	=	=	=	£	Ξ	=	=	Add $10cc H_2O$	35	=
	Nominal Cathode Pressure Nominal Anode Pressure Uncompressed Matrix Thickness No. of Bolts Bolt Torque KOH Concentration (cells) Electrolyte Loading KOH Concentration (wicks) No. of Cells @ 20 in² each	Time After	Start	Date/Time	9	$0908 \; \mathrm{hrs}.$	0940	0945	0947	0953	1003	1010	1020	1030	1040	1050	1105
	Nominal Cat Nominal Anc Uncompress No. of Bolts Bolt Torque KOH Concen Electrolyte KOH Concen No. of Cells	Data	Pt.	No.	12/7/66	353	354	355	356	357	358	359	360	361		362	363

59-HOUR SELF-REGULATION LOG (Cont.)

			$\frac{3f}{}$	069	070	620	620		165	110	105	086			940	920		920			120		125	990	085		105	120		120	282
		Cell 3	띄	-	Ϊ.	- i	 i		5 1.	5 1.	0 1.	0 0.	ion		0	5 0.				0 1.	0 1.		ιύ ~i	5 1.	0 1.		0 1.	55 1.		55 1.	1
	(e)	ŭ	E3t	2	1.040	1.650	1.650		1.195	1.125	1.120	1.000	osula		0.980	0.965		1.040	1.030	1.250	1.300		1.345	1.205	1.220		1.310	1.365		1.465	1 260
- vdc	IR Free)	5	$\mathbf{E}_{2\mathbf{f}}$	6	1. 135	1.140	1.140		0.990	. 025	1.040	0.955	stack; add insulation		0.940	0.930		0.960	0.950	1.030	1.055		1.025	0.970	0.980		0.980	1.000		0.990	0.940
SS SS	1	=	\mathbf{E}_{2t}	i.		150	. 155 1		.010	1.045	1.060 1	0.970 (stack		0.980 (980			1,015 (1, 165			090	020		1.105 (1.150			195
Λο	(Terminal		Ì		JO I	05 1	895 1		90 1	875 1	870 1		1.9 to	7	040 0	100 0.		060	025 1		090 1			995 1	000 1			045 1			995
	٢	1.1	$\mathbf{E}_{1\mathrm{f}}$		0.88.0	0.905	0.8	'ing	0.890	0.8	0.8	0.910	ple T		1,0	1. 10		1.0	1.0	1.065	1.0		1.055	0.9	1.0		1.025	1.0		1.0	0
		Cell	$\mathbf{E}_{\mathbf{1t}}$	000	0.820	0.930	0.920	aid drying	0.910	0.900	0.895	0.945	add thermocouple		1.100	1.190		1.140	1.090	1.160	1.205		1.200	1.090	1.090		1.155	1.205		1.265	1 200
			$^{ m T}_{ m dp}$	ţ	4.1	47	48	.5T to	49	48	49	51	dd the		47	47		48	52	45	44		45	09	28		48	46		40	c u
			$^{\mathrm{T}}_{12}$		ı	ι	ı	v to 8.	ı	1	ı	ı	5T;		90	93		66	101	103	105		111	116	113		114	116		121	105
	S - F		T_{10}	,	20 20	90	90	over wet; increase air flow	68	88	88	83	air flow to		89	92	l.	86	66	98	mo 101		8010	* 110	*10e		109	109		118	1. 17
	ature		-8 H	^ ^	oo Oo	E :	xp :	$ease_{F}^{G}$	ß	CC	ont E	: :		S .		ve :	D	1080	110	110 r	114) V (125	127,	121		124	126		138	190
	Temperatures	•	$_{6}^{\mathrm{T}}$		w	:	:	t; incr	Ø	:	:	:	return		Ø	:		Ø	:	:	:		ß	:	:		σΩ	:		ß	:
	Ţ		$^{\mathrm{T}}_{5}$		84	84	84	er wei	98	85	85	98	vered;		98	88		90	91	94	96		96	101	101		101	103		107	110
			$_{4}^{\mathrm{T}}$		86	98	98		85	84	84	84	y reco		98	88		91	92	95	26		100	103	103		104	105		107	100
		\mathbf{F} low	хТ	•	വ	:	:	med t	8.5	:	:	:	iciently		ស	:	О'Н	νıΩ	:	:	:	H_2O	S	:	:	H_2O	ıG	:	H_2O	വ	:
	Current	Density	ASF		35	=	:	Cells assumed to be	35	:	:	:	Cells sufficiently recovered;	to stack	35	:	Add 15cc	35	Ξ	Ξ	:	Add 15cc	35	:	:	Add 8 cc	35	:	Add 8 cc	35	:
	\fter	4	Time																												
	Time After	Start	Date/Time		1115	1130	1145	1200	1205	1230	1245	1315	1320		1345	1410	1412	1430	1445	1530	1540	1545	1550	1610	1625	1640	1643	1700	1715	1718	1790
	Data	Pt.	No.		364	365	366		367	368	369	370			371	372		373	374	375	376		377	378	379		380	381		382	600
														11	- 0																

59-HOUR SELF-REGULATION LOG (Cont.)	_
R SELF-REGULATION LOG	Cont.
R SELF-RE	
R SELF-RE	TION
R SELF-RE	BULA
2	
59-HOUR	3
	59-HOUR

				201				1011	200	COURS:)							
												(Te	Voltages (Terminal -	s - vdc - IR Free)	(ee)		
Data	Time After	Current			. 7	rempe	Temperatures -	3S - F									
Pt.	Start	Density	Flow								Cell	1.	Cell	2	Cell	1 3	
No.	Date/Time	ASF	хT	${ m T_4}$	$^{\mathrm{T}}_{5}$	$^{\mathrm{T}}_{6}$	T_8	$^{\mathrm{T}}_{\star}_{10}$	${\tt T}_{12}$	$^{ m T}_{ m dp}$	E _{1t}	$\mathbf{E}_{\mathbf{1f}}$	$\mathbf{E}_{\mathbf{2t}}$	$\mathbf{E}_{2\mathbf{f}}$	E_{3t}	$^{ m E}_3$	
								**									
384	1739	35	c	108	111	Ω	138	119	125	54	1.215	1.000	1.120	0.940	1.335	1.095	
	1745	Add 18cc	H ₂ O t	o righ	t side l	side humidifier	ifier	xŗ									
385	1754	35 5 108	ıro	108	109	ß	139	919	124	09	1.185	0.985	1.100	0.935	1.300	1.100	
386	1813	:	:	105	105	-	132	1 15	121	63	1.180	1.015	1.130	0.995	1.260	1.100	
	1825	Add 12cc H ₂ O	H_2O					C									
387	1828	35	വ	104	107	Ø	131	115	120	59	1.225	1.020	1.125	0.980	1.270	1.115	
388	1845	=	:	104	107	:	131	115	119	99	1.265	1.025	1.130	0.975	1.290	1.120	
389	1900	:	:	109	107	:	131	$\frac{\mathbf{q}_{15}}{\mathbf{q}_{15}}$	119	49	1.335	1.030	1.155	0.965	1.335	1.125	
	1902	Add 18cc	H_2O					S									
	1913	Add $10cc H_2O$	$\overline{^{1}}$					ha									
390	1915	35	വ	107	106	Ø	138	¥18	123	09	1.250	1.050	1, 100	0.935	1.305	1.110	
391	1930	:	:	106	106	:	133	115	121	65	1.235	1.035	1, 140	0.995	1.290	1.120	
	1943	Add 16cc H ₂ O	H_2O					oe e									
392	1945	35	വാ	104	106	Ø	132	115	120	62	1.275	1.050	1.150	1.000	1.300	1.135	
393	2000	:	:	104	105	:	132	1 13	119	64	1.265	1.045	1.140	1.000	1.290	1.130	
394	2015	:	:	103	105	:	129	3 112	118	09	1.305	1.060	1.150	1.000	1.305	1.140	
	2020	Add 16cc H ₂ O	H_2O					VC									
395	2030	35	വ	103	104	Ω	132	0 14	118	62	1.290	1.045	1.130	0.980	1.290	1.120	
396	2045	-	<u>:</u>	102	102	:	132	112	118	89	1.280	1.080	1.155	1.025	1.275	1.125	
397	2100	:	:	101	102	112	125	‡ 10	115	69	1.255	1.085	1.135	1.020	1.250	1.120	
	2110	Add 16cc H ₂ O	H_2O														
398	2115	35	īrū	101	102	112	124	110	114	64	1.280	1.100	1.130	1.015	1.245	1.120	
399	2130	:	:	101	101	110	124	108	114	63	1.300	1.105	1.140	1.020	1.260	1.120	
	2131	Add $16cc H_2O$	H_2O														
400	2145	35	ıc	100	100	110	124	109	113	64	1.290	1.105	1.135	1.020	1.260	1.120	
401	2200	:	:	100	100	111	123	108	113	29	1.260	1.100	1.120	1.015	1.240	1.115	

_
(Cont.)
TOG
ATION
REGUL
ELF-F
59-HOUR S

												(Ter	Voltages - vdc (Terminal - IR Free)	s - vac IR Fre	3e)	
)ata	Time After	Current				Tempe	Temperatures	S - F			;			d	9 [[0]	c
Pt.	Start	Density	Flow								Cell 1		eII	N		
No.	Date/Time	ASF	хT	$^{\mathrm{T}_4}$	${f T}_{5}$	$^{\mathrm{T}}_{6}$	T. 8	$^{\mathrm{T}_{10}}$	T_{12}	$^{ m T}_{ m dp}$	E1t	$\mathbf{E}_{1\mathbf{f}}$	E ₂ t	$\mathbf{E}_{2\mathbf{f}}$	E 3t	$^{E}_{3f}$
								**								
	2202	Add 16cc H ₂ O	, H ₂ O					*			,	,	1	,	•	-
402	2215	35	ល	66	100	109	121	90 ₽ ×	112	29	1.260	1.105	1.115	1.020	1.230	1. 110
	2226	Add $18cc H_2O$	H ₂ O					pc						,		
403	2230	35	១	66	100	107	120	101 101	113	64	1.300	1.140	1.135	1.030	1.245	1.112
404	2245	:	:	66	100	107	121	107	111	65	1.290	1.130	1.125	1. 025	1. 225	стт т
	2250	Add $16cc H_2O$	3 H ₂ O					CO1				,	1	,	1000	012
405	2300	35	ı.s	66	66	105	120	90t	110	74	1.270	1.120	1,105	1, 015	1.880	L. (10
406	2315	:	:	66	86	121	120	906	110	73	1.250	1.120	1.105	1.030	1.880	1.710
407	2330	:	Ξ	97	96	120	118	104 104	109	73	1.220	1.115	1.105	1.040	1.860	1.690
	2335	Cell 3 apparently over wet;	parentl	у оvет		increa	increase air		flow to 8.5T	l to ai	to aid drying				,	0
408	2345	35	8.5	96	26	123	115	ह्य (हु	108	73	1,210	1.110	1.115	1.045	1.410	1,330
	2350	Add 10cc H ₂ O to right side humidifier	H20 t	o righ	t side	humic	lifier	re				,	•		1	
409	2400	35	8.5	95	96	125	115	€ 103 103	107	20	1.230	1.120	1.120	1.045	1.325	1.245
99/6/61	e e							en								
/0 /71	81							r								
	0001	Cell 3 sufficiently recovered, return air gow to 5T	fficient	ly rec	overe	d, ret	urn aiı	Μο Θί π	to 5T							
	8000	Add 10cc H ₂ O to right	c H ₂ O t	o righ		side humidifier	lifier	ov					,	i.	0	0
410	0015	35	l CO	97	96	125	115	၉၀ ed	107	29	1.245	1.130	1.130	1.050	1,360	1.270
411	0030	Ξ	:	98	95	125	116	10 ₂	107	69	1.230	1.120	1.120	1,050	1.330	1.230
	0035	Add 10cc H ₂ O to right	c H20 t	o righ	t side	_	lifer	* *					,	,		
412	0045	35	വം	66	92	115 116	116	102	107	99	1.230	1.125	1.125	1.045	1.295	1.185
	0020	Add 10cc H ₂ O to right	c H ₂ O t	o righ			lifier				(•	,	,	000	100
413	0100	35	ເດ	66		125	117	102	108	99	1.230	1.130	1.120	1. 040	1.280	T. 100
	0105	Add 16cc $\mathrm{H}_2\mathrm{O}$ to right	$c H_2Ot$	o righ	~-		lifier	6	1		•	7		070	1 970	150
414	0115	35	5	96		130	117	103	108	99	1.210	1. 120		1.040	1.4.10	1. 100
415	0130	=	:	97	92	130	117	103	108	20	1.200	1.115	1.130	1.060	1.270	1. 155
	0135	Add 18cc $\mathrm{H}_2\mathrm{O}$ to right side humidifier	c H ₂ O t	o rigl	ıt side	humi	difier									

59-HOUR SELF-REGULATION LOG (Cont.)

		Cell 3	$\mathrm{E}_{3\mathrm{f}}$	1.170	1, 200) 	1.240	1.820			1, 750))	1. 720	1, 700)	1.550)	1 400				1,480	1.510	1	1,900			2,020		2.010
[c	ree)	Ce	${ m E}_{3t}$	1,275	1,300))	1.345	1,900			1.820		1, 790	1, 780)	1,630	; ;	1 480	2			1.540	1.580		1.970			2, 120		2.100
Voltages - vdc	(refillial - In rree)	11 2	$\mathrm{E}_{2\mathrm{f}}$	1.080	1.090		1.100	1.095			1.075		1,070	1,080		1,080		1,085				1,080	1,085		1.090			1.640		1.640
Voltag	ermina	Cell	$\mathbf{E}_{2\mathbf{t}}$	1.140	1.155		1.165	1.155			1.130		1.135	1.135		1.130		1.140				1, 140	1, 135		1.160			1.810		1. 790
٢		Cell 1	E_{1f}	1, 110	1.115	idifier	1.115	1, 110			1.095		1.090	1.100		1, 100		1.105				1, 110	1.115		1.120		nidifier	1, 180		1.160
			E _{1t}		1.190	56 H,O to left side humidifier	69 1.190	1.180			1.160		1.160	1.165		1.160		1.175				1.180	1.175		1.180		ide hun	1.240		1.220
			$^{\mathrm{T}_{\mathrm{dp}}}$	69	20	eft si	69	71	H		7.1		69	71		71		20				20	20		20		left s	69		69
			T_{12}	106	106	,0 to 1	$\frac{2}{105}$	105	flow to 8.5T		104		104	103		103		102		uess	8.5T	102	102		100		I,O to	66	8.5T	66
	es - F		$^{\mathrm{T}_{10}}$	*	105 105			101	ir flow	on'	2	ol	Γ_{00}	66 ha	ve	66	ee	66 H	re	5T to assess degree of aryness	owcto	ed	6 6 ×	* *	97		10cc F	96	flow to	96
	Temperatures		T ₈	116	115	difier;	114	113	ease ai	difier	110	difier	111	111	difier	111	difier	129 110	difier	legree	turn fl	110	110	difier	108		difier;	104	se air	104
	Temp		T ₆	115	113	humi	110	110	incr	humi	119	humi	121	124	humi	126	humi	129	humi	ess d	y, re	130	130	humi	120		humi	145	creas	146
			\mathbf{T}_{5}	95	94	t side	93	93	y wet;	t side	93	t side	93	92	t side	92	t side	92	side	to ass	tly dr	91	91	side	90		side	89	in, in	83
			T_4	96	96	to righ	96	95	arently	to righ	95	to right	94	95	to right	95	o righ	95	o right	to 5T	ıfficier	93	93	o right	92	to 5T	o right	91	vet aga	91
	,	Flow	xT	2	ß	06H :	າເວ	:	ain app	. H,O	8. 5	. H,O		:	0,H	8.5 5.5	H ₂ O 1	ა .ა	H,01	ir flow	t yet su	8.5	:	: H ₂ O t	8.5	ir flow	H ₂ O t	លេ	ears v	8.5
	Current	Density	ASF	35	35	Add 14cc H ₉ O to right side humidifier;	35	=	Cell 3 again apparently wet; increase air	Add 14cc H ₂ O to right side humidifier	35	Add 10cc H,O to right side humidifier	35	:	Add 10cc H _o O to right side humidifier	35	Add 10cc H ₂ O to right side humidifier	35	Add 14cc H ₂ O to right side humidifier	Reduce air flow to	Cell 3 not yet sufficiently dry, return flow to 8.5T	35	:	Add 18cc H ₂ O to right side humidifier	35	Reduce air flow to	Add 14cc	35 5 91 89 145 104 96 99 69 1, 240 1, 180	Cell 3 appears wet again, increase air flow to 8.5T	35
,	Time After	Start	Date/Time	0145	0200	0207	0215	0230	0232	0237	0245	0255	0300	0315	0322	0330	0338	0345	0348	0350	0352	0400	0415	0417	0430	0431	0432	0445	0447	0200
ı	Data	Pt.	No.	416	417		418	419			420		421	422		423		424				425	426		427			428		429
													1	61																

59-HOUR SELF-REGULATION LOG (Cont.)

		3f	940	290	200	290		1.260		220		220	1.260	270			380	730	780			780	840	850	1.900	000		2.080
	11 3	H	1.	ij	1.	H		1		Ι.		⊢;	- -i	1			1.	1.	ij.			1.	- -	1.		αį		
ee)	Cell	E3t	2,020	1.860	1.590	1.395		1.380		1.380		1.440	1.700	1,850			2.080	2.050	2.110			2.150	2.200	2.250	2.350	2.500		2.680
ss – vdc – IR Fr	2	E _{2f}	1. 700	1,640	1.500	1.120		1.120		1.120		1.110	1.110	1.105			1,070	1.100	1.105			1,050	1.050	1.115	1.075	0.945		0.840
Voltages - vdc (Terminal - IR Free)	Cell	E2t	1,770	1.700	1.550	1.200		1.195		1.210		1.230	1.250	1.260			1.220	1.220	1.210			1.190	1.190	1.240	1.185	1.100		0.940
(Te	. 1	E _{1f}	1.160	1.150	1.145	1.145		1.170		1.150		1.110	1.110	1.110			1.080	1.070	1,060			1.060	1.080	1.025	1.065	0.965	idifier	0.885
	Cell	E_{1t}	1. 225	1.220	1.210	1.225		1.260		1.240		1.210	1.220	1.220			1.180	1.140	1.150			1.140	1.120	1.100	1.130	1.080	side humidifier	0.965
		T	70	71	71	89	$_{ m 5T}$	99		64		61	58	55			55	89	99			99	20	54	49	36	left s	56
		T_{12}	100	101	101	101		101		103		105	109	111			117	119	121			121	121	112	114	114	13cc H ₂ O to	1111
ಸ 1 1		T ₁₀	₽	%	o Ex	рс 2	turin flo	97	cor	00 10 10	ro:	101	103 1103	90 4	e	be	1 12	113	2 15	nor	ve	Π_5	‡ 14	105	106	105	13cc F	106
Temperatures		T ₈	106	107	107	106	ice, re	107	humidifier	108	humidifier	112	118	120	difier	fier	128	130	128	fier	humidifier	131	130	119	119	117	humidifier;	116
empe'	1	\mathbf{T}_6	150	156	155	132	balar	132	humi	121	humi	126	140	139	humi	umid	142	146	141	umid	humi	140	141	130	126	119		114
T		T_5	88	90	91	93	ıtly in	93	t side	94	t side	93	95	98	H ₂ O to right side humidifier	$\overline{\mathrm{H}_2}\mathrm{O}$ to left side humidifier	86	102	106	side humidifier	t side	103	105	100	102	102	t side	26
		\mathbf{T}_{4}	92	93	95	91	oparer	91	o right	95	o righ	86	102	103	o righ	o left	105	106	107	o left	o righ	107	108	100	105	105	o righ	102
	Flow	хT	8.5	:	:	:	ture at	5	H ₂ O to rig	2	H ₂ O t	വ	:	:	H_2O t	$\overline{\mathrm{H}_2\mathrm{O}}$ t	5	:	<u>:</u>	H ₂ O to left	$^{\circ}$ H ₂ O t	2	:	:	=	Ξ	H ₂ O t	5
Current	Density	ASF	35	:	:	Ξ	Cell moisture apparently in balance, return flow to	35	Add 8cc	35	Add 12cc H ₂ O to right	35	:	Ξ	Add 8cc	Add 8cc	35	:	33	Add 8cc	Add $10cc H_2^2O$ to right side	31	31	32.4	31	14.4	Add 10cc H ₂ O to right	8.2
Time After	Start	Date/Time	0515	0530	0545	0090	2090	0615	0620	0630	0632	0645	0 2 0 0	0715	0718	0725	0730	0745	0800	0801	6080	0815	0830	0845	0060	0915	0925	0860
Data	Pt.	No.	430	431	432	433		434		435		436	437	438			439	440	441			442	443	444	445	446		447

			13	E 3f		ı				ı	ı		ı	1	ı	ı	ı	ı	ı	ı	ı		ı			ı		,	ı	ı
	6		Cell	E3t		ı				ı	ŧ		ı	ı	ı	ı		ı	ı	ı	1		ı			ı		ı	ı	ı
	s – vdc IR Fre		2	$^{\rm E}_{2{ m f}}$		1.180				1.010	1.040		1.050	1.050	1.070	1.060	1.055	1.060	1.090	1.080	1.080		1.050			1.045		1.130	1.110	1.115
	Voltages – vdc (Terminal – IR Free)		3]]	\mathbf{E}_{2t}		1.650 1				1.170	1.150		1.150	1.140	1.170	1.160	1.130	1.140	1.160	1.150	1.150		1.115			1.105		1.225	1.205	1.220
	(Te		1 1	E_{1f}		1.420 1.170	60 H,O to left side humidifier			0.1.050	000 1.		0 1.000	0 1.005	0 1.040	0.1.060	090 1.	0.01000	0.1.120	1.130	0.1.130		7 1.080			5 1.065		0.1.160	1.125	0.1.125
_			Cell	E _{1t}		1.42	le hum			1.080	1.060		1.060	1.050	1.090	1.110	1.110	1.130	1.150	1.170	1.170		1.117			1.105		1.220	1.180	1, 190
59-HOUR SELF-REGULATION LOG (Cont.)				$^{\mathrm{T}}_{\mathrm{dp}}$		38	eft sid			36	33		31	28	28	28	28	28	31	31	31		30			31		32	32	31
LOG				T_{12}		107	,0 to 1			88	84		42	77	92	75	74	74	73	73	73		73			75		78	80	81
ATION		ا ښ		T_{10}	cui t	1105	600 H.	or	t	<u>6</u>	99 PP	rc	27 2 0	8 [4]	ra Na	o V V	4 5	<u>е</u>	14 -	44	4	νe	eg eg	*:	* *	75		78	80	80
EGUL	,	Temperatures		L _∞	remove from circuit	118				26	91		85	82	80	28	22	22	22	22	92		75			ß	ASF	ß	85	85
LF-R		emper		$^{\mathrm{T}}_{6}$	ve fro	94	humid		5 ASF	90	85		81	78	77	75	75	75	22	75	74		72			75	21.6/	7.7	43	80
UR SE		Ĭ		T_{5}		105	ght side humidifier;	from cell	y to 1	85	85		78	92	75	74	73	73	72	72	72	. 5T	72			74		92	48	78
59-HO				\mathbf{T}_{4}	nding,	9.5	to righ		densit	98	83		78	92	75	74	73	72	73	73	73	w to 8.	71		to 5T	73	nt dens	75	92	77
			Flow	XT	respo	D.	H,01	nsulati	urrent	5	:	, H ₂ O	1ro	:	:	:	:	:	:	:	:	air flo	8.5	H ₂ 0	ir flow	2	currer	2	:	:
		Current	Density	ASF	Cell 3 not	35 5 97	Add 12cc H ₂ O to ri	Remove insulation	Reduce current density to 15	15	:	Add 12cc H ₂ O	15	:	:	:	:	:	:	:	:	Increase air flow to	15	Add $10cc H_20$	Reduce air flow to	15	Increase current density to	21.6	Ξ	:
	i	Time After	Start	Date/Time	0943	0945	0920	0955	1015	1015	1030	1040	1045	1100	1130	1200	1230	1300	1330	1400	1430	1436	1500	1503	1515	1545	1545	1600	1645	1700
		Data	Pt.	No.		448				449	450		451	452	453	454	455	456	457	458	459		460			461		462	463	464
															163	3														

59-HOUR SELF-REGULATION LOG (Cont.)

														Voltage	Voltages - vdc		
I	Data	Time After	Current			I	Cempe	Temperatures	ر ا آ				T)	erminal	(Terminal - IR Free)	(ee)	
	Pt.	Start	Density	Flow								Cell	11	Cell	2	11	က
	No.	Date/Time	ASF	хT	T_4	$^{\mathrm{T}}$	$\mathbf{T}_{\widehat{6}}$	$^{\mathrm{T}}_{8}$	$^{\mathrm{T}_{10}}$	T_{12}	$^{\mathrm{T}}$	$\mathrm{E}_{1\mathrm{t}}$	\mathbb{E}_{1f}	E_{2t}	$\mathbf{E}_{\mathbf{2f}}$	E_{3t}	E_{3f}
ł		1706	Add 10cc H ₂ O	О,Н					***								
	465	1800	21.6	nری	43	42	83	88	83	83	31	1.165	1.120	1,195	1.105	ı	ı
	466	1830	:	:	43	79	82	98	X1 82 23	82	31	1.155	1.105	1.185	1.090	ı	ı
	467	1900	Ξ	:	42	80	82	85	18 87 27	83	31	1.160	1.105	1.180	1.100	ı	ı
		1910	Increase current	curren		density to 2	25 ASF		ct								
	468	1930	25	ഥ	80	81	82	98	28 3	85	32	1.200	1.140	1.240	1.140	ı	ı
	469	2000	:	=	82	82	83	85	eg Ro	85	28	1.240	1.165	1.260	1.140	1	ı
		2010	Add 27cc H ₂ O	H ₂ O					tr								
	470	2030	25	2	83	82	87	94	ő ő	87	28	1.320	1.205	1.330	1, 170	•	1
	471	2100	:	:	84	84	88	94	06_{Ω}	90	33	1.235	1.150	1.265	1.135	ı	1
64	472	2130		:	84	84	88	94	66 Ma	90	35	1.200	1.130	1.240	1.110	ı	ì
	473	2145	:	-	83	84	98	90	200 1√0€	88	34	1.195	1.135	1.220	1, 110	ı	I
-	474	2200	:	2	83	85	85	92	87	88	33	1.220	1.140	1.235	1.115	i	1
٠	475	2210		:	83	85	86	93	980	88	33	1.240	1.155	1.250	1.120	ı	I
	476	2215	:	:	83	85	98	94	98	88	33	1.270	1.175	1.270	1.140	ı	ì
		2235	Add 40cc H ₂ O	H_2O					re								
,	477	2303	25	ប	84	84	87	95	€ em	88	36	1.240	1.165	1,400	1,310	ı	ı
•	478	2315	:	:	84	84	87	94	68 0 ♥	89	36	1.220	1.135	1.400	1.305	ı	ı
•	479	2330	:	Ξ	84	84	98	94	ed ed	88	35	1.185	1.120	1.375	1.285	ı	1
		2330	Reduce current d	rrent	density to	7 to 15	ASF;	air flo	flow to 3	. 5T							
	12/9/66	99							* *								
		0010	Add $13ec H_2O$	H_2O													
•	480	0010	15	3.5 5	48	78	80	84	80	80		1.070	1,040	1, 170	1.120	ı	i
•	481	0110	9.4	:	72	72	72	74	72	72	17	1.260	1.190	1.220	1.140	ı	I
		0715	Increase air flow	air flov		'; incr	ease c	to 5T; increase current density to 15 ASF	densi	ty to 1	5 AS	Į.					
		0730	Add $25cc H_2O$	$^{\mathrm{H}_2\mathrm{O}}$													
				t													

59-HOUR SELF-REGULATION LOG (Cont.)

	Cell 3	$\mathbf{E}_{3\mathbf{f}}$	'	•	ı	ı	ı	ı		ı	I	ı		ı	1	1		ı	1		ı	ı		1	I	1	ı	ı
ree)	Ce	E_{3t}	,	ı	1	ı	ı	1		ı	1	ı		ı	ı	1		ı	t		,	1		ı	I	1	ı	ı
Voltages - vdc (Terminal - IR Free)	1 2	${ m E}_{ m 2f}$	1 260	1 960	1.250	1.230	1.240	1.235		1.220	1.225	1.210		1.200	1.200	1.170		1.410	1.600		1,580	1.550		1,490	1.480	1.470	1,440	1.390
Voltages erminal -	Cell	\mathbf{E}_{2t}	1 420	1 440	1.430	1,400	1.390	1.390		1.360	1.360	1.340		1.320	1.295	1.255		1.470	1.690		1.640	1.630		1.530	1.530	1.510	1.500	1,450
Ð	1 1	$\mathbf{E}_{1\mathbf{f}}$	1 290	1 280	1.255	1.220	1.210	1.200		1.180	1.180	1.160		1.150	1.145	1.130		1.180	1.210		1.190	1.180		1.160	1.160	1.155	1.150	1.160
	Cell	E 1t	1 450	1 430	1.395	1.340	1.320	1,300		1.270	1.260	1.235		1.230	1.220	1.200		1.240	1.250		1.230	1.230		1,210	1.200	1.190	1.195	1,200
		T_{dp}	<u>~</u>	66	25	26	28	29		31	30	31		30	32	31		55	47		38	36		36	38	38	37	36
		${f T}_{12}$	76	62	80	80	81	81		81	80	80		80	80	80		77	92	10T	77	22		22	77	92	92	75
i E		$^{\mathrm{T}}_{10}$	82					81		81	80	80		80	42	42		78	77	ow to	22	22		22	22	92	92	92
ature		т 8	* *			or 98		86 0	nt	ro 98	ls cs	82	ıav	8 4 97		84 61	n :	re 08	mo 62	air	d 62	* *	*	43	43	43	82	22
Temperatures -		$^{\mathrm{T}}_{6}$	76	5.6	08	80	81	81		80	80	80		80	42	42		77	22	rease	77	77		77	2.2	92	92	75
L		\mathbf{T}_{5}	74	76	2.2	48	78	43		62	22	22		22	77	22		92	75	too wet, increase	75	75	Ľ	75	75	75	75	74
		$\mathbf{T_4}$	74	76	77	48	78	42		62	78	82		82	2.2	77		92	75	too w	75	75	, to 20T	75	75	75	75	74
	Flow	хT	ιc	:	:	:	=	:	06H	លខ	:	:	OcH :	<u>س</u>	:	:	06H	വദ	:	arently	10	:	air flow	20	:	:	:	:
Current	Density	ASF	15	:	÷	=	:	:	Add 18cc	15 5	:	:	Add 22cc H ₂ O	15	:	:	Add 22cc	15 5	:	Cells apparently	15	:	Increase air flow	15	:	:	:	:
Time After	Start	Date/Time	0745	0800	0815	0830	0845	0060	0904	0915	0860	0945	0920	1000	1015	1030	1040	1045	1100	1108	1115	1130	1140	1145	1200	1215	1230	1245
Data	Pt.	No.	482	483	484	485	486	487		488	489	490		491	492	493		494	495		496	497		498	499	200	501	502

59-HOUR SELF-REGULATION LOG (Cont.)

	က	E3f	1	1	1	i	ı	1		ı	1		ļ	ŀ	ı	1	ı	ı		ı	2	1	ı		ı		ı	1
(ee)	Cell 3	E _{3t}	ŀ	ı	ı	1	1	1		ı	ŧ		ı	ı	ı	ı	ı	ı	our	ı	w to 11	ı	ı	2 5T	ı	to 20T	1	ı
s – vdc – IR Fr	2	$\mathbf{E}_{2\mathbf{f}}$	1.370	1.355	1.300	1.250	1.235	1.155		1.320	1.280		1.275	1.260	1.260	1.260	1.280	1.320	H_2O/hc	$1.\overline{4}20$	e air flo	1.480	1.500	r flow to	1,650	ir flow	1.450	1,470
Voltages - vdc (Terminal - IR Free)	Cell	$\mathbf{E}_{2\mathbf{t}}$	1.430	1.420	1.360	1.310	1.295	1.215		1.415	1.410		1.410	1.405	1.405	1.400	1.430	1.460	rate of approximately $10 { m cc}~{ m H}_2{ m O/hour}$	1, 710	increase air flow	1.790	1.910	H ₂ O; reduce air	2.280	ASF; increase air flow to 20T	1.800	1.810
(Te	1 1	E _{1f}	1.170	1.190	1.160	1.160	1.165	1.117		1.300	1.310		1.340	1.330	1.315	1.310	1.330	1.380	oximate	1.420		1.410	1.410	H ₂ O; re	1.440	ASF; inc	1.270	1.300
		E _{1t}	1.205	1.210	1.200	1.200	1.205	1.210		1.375	1,435		1.510	1.500	1.490	1.450	1.480	1.520	of appr	1.650	stop H ₂ O feed;	1.660	1,710	of desiccation; add 15cc	1.790	7 to 15 /	1.500	1.490
		$^{\mathrm{T}}$	36	36	35	35	34	34	to 5T	34	36		37	40	41	42	43	42		33		40	40	on; ac	40	ensity	42	39
		T_{12}	75	75	74	74	74	74	flow	92	81		84	98	88	89	89	90	at the	87	condition;	90	91	iccati	86	ent d	26	93
es - F		T_{10}	* * 4	\$ 75	£3 74	(b)	7. 74	22	luce air	22 nt	01 81	ols	184 184	8 1a	88 7e	88 b	28 ee:	88 n	feding		assume over wet	68 d	06 **	ı ö f desi	97	reduce current density to 15	94	90
ratur		T 8	92	92	75	22	22	75	F; rec	81	85	ifier	83	93	94	95	94	95		90	me or	90	92	; sign	105		97	90
Temperatures		$^{\mathrm{T}_{6}}$	75	75	74	74	74	74	25 ASF	22	80	humidifier	83	85	87	88	98	88	connected;	98		90	90	rapidly;	96	to H ₂ O	93	90
L		T_5	74	73	73	73	73	74	density to	92	42	t side	79	81	81	83	85	85	system	81	to H_2O ;	84	85		90	iding t	98	85
		T_4	74	73	73	72	72	72		74	2.2	o right	80	81	82	84	85	85	eq	84	ing	98	89	ncreas	91	respor	90	87
	Flow	xT	20	:	:	:	:	:	curren	വ	=	c H ₂ O t	വ	:	:	:	=	:	10 H20	ı I	respon	11.5	:	tages in	ıc	lls not	20	Ξ
Current	Density	ASF	15	Ξ	Ξ	=	:	Ξ	Increase current	25	=	Add 21cc H ₂ O to	25	Ξ	Ξ	Ξ	Ξ	Ξ	Automati	25 5	Cells not respond	25	Ξ	Cells voltages increasing,	25	Again cells not responding	15	£
Time After	Start	Date/Time	1300	1315	1345	1400	1415	1430	1430	1445	1515	1523	1530	1545	1600	1630	1645	1700	1745	1800	1808	1815	1830	1831	1845	1850	1900	1915
Data	Pt.	No.	503	504	505	206	507	208		509	510		511	512	513	514	515	516		517		518	519		520		521	522

Voltages - vdc

59-HOUR SELF-REGULATION LOG (Cont.)

	į	i										E.	ermina	(Terminal - IR Free)	ree)	
١.	Data Time After Current	Current				Temperatures - F	rature	SS 1 F								
	Start	Density Flow	Flow								Cell 1	1 1	Cell 2	1 2	Cell 3	ر د
	Date/Time	ASF	хT	T_4	$T_{\bar{5}}$	$^{\mathrm{T}_{6}}$	Т8	T	${\color{red}{T}}_{10}^{T}$ T T T T dp		E _{1t}	$\mathrm{E}_{1\mathrm{f}}$	$\mathbf{E}_{2\mathbf{t}}$	$\mathbf{E}_{2\mathrm{f}}$	\mathbf{E}_{3t}	E_{3f}
	1930	15	20	85	85	88	92	282	90	31	1. 620	1,360	31 1.620 1.360 2.080 1.640	1.640	1	
	1955	Cells again show signs of being too dry; add 25cc H_2O ; reduce flow to 6T; reduce current density to 5 ASF	ain shov	v sign	e of be	ing toc	dry;	add 25 10	сс H ₂ (); red	uce flo	w to 67	; reduc	e currei	ıt densi	ty to
	2000	2	9	83	98	84	84	85	88	18 1.290	1. 290	1	3.250 2.600	2.600	ı	ı
	2005	Cell 2 removed from circuit due to high voltage; cell not performing properly	moved	from	circuit	due to	high	valtage	; cell	not pe	rform	ing pro	perly			
	2010	10	က	ı	ı	1) I	o n it	ı	· ``	1.700 1.300	1.300	, ,	1	,	1
	2010	System shut down after 59 hours 10 minutes of operation	shut do	wn aft	er 59 l	ours 1	l0 min	o sagnı	opera	ttion						
								s								
								have								
								been								
								removed								
								f								

0 CONCENTRATOR TEST DATA

	$\begin{array}{c} \text{Cell E} \\ \text{IR Free} \\ \\ \text{E}_{\text{f}} \end{array}$	0, 790 0, 775 0, 835 0, 920 0, 930 0, 950 1, 000 0, 980 1, 000 0, 885 0, 980 0, 885 0, 980
	Cell Voltage E	0.835 0.820 0.820 0.960 0.950 0.845 1.100 1.055 1.055 0.970 0.970
	Cell Temp. F	124 123 125 130 125 126 127 128 124
125F 30 mil 22 30 lb in * 32% * 2. 25g/g dxy matrix 1 (No. 1) d 4T	Cell Pressure	14. 7 44. 7 20. 0 44. 7 20. 0 30. 0 30. 0 30. 0 45. 0 45. 0 60. 0 35. 0 60. 0 35. 0 75. 0 70. 0 75. 0 75. 0 90. 0 95. 0 75. 0 70. 0 75. 0 75. 0 75. 0 75. 0
	Current Density ASF	99
Nominal Cell Temp	Current Amp	8.35
Nominal Cell Temp. Uncompressed Matrix Thickn No. of Bolts. Bolt Torque. KOH Concentration. Electrolyte Loading. No. of Cells @ 20 in each. Stoichiometric Flow Multiple	Data Pt. No.	526 527 528 530 531 533 538 538 538 539

0 CONCENTRATOR TEST DATA

Cell E IR Free E	1 005	0.830	0,865	0.885	0.780	0.840	0.905	0.900	0.940	0.700	0.890			
Cell Voltage E	1.065	0,900	0.925	0.995	0.820	0.905	1.050	1.040	1, 120	0,725	0.960			
Cell Temp. F	125	123	118	117	129	123	125	135	125	128	125			
Cell Pressure psia Cathode Anode	0.00 Expos	60.0/55.0	$30.0/\frac{2}{2}$ 5.0	30.0/25.0	30.0/25.0	30.0/25.0	30.0/25.0	30.0/85.0	30.0/82.0	30.0/85.0	14.7/14.7	removed	***	
Current Density ASF	09		→	100	35	09	144	144	166	15	09			
Current	8,35		-	13.9	4.86	8,35	20.0	20.0	23.5	2.08	8.35			,
Data Pt. No.	541	542 543	544	545	546	547	548	549	550	551	552			

Note: Controlled parameters (temp., matrix thickness, etc.) identical to those on page 168.

0 CONCENTRATOR TEST DATA

Nominal Cell Temp	Nominal Cell Temp		125F 30 mil 22 30 lb in * 32% 1. 75g/g dry matrix 1 (No. 1) 5T	×	Lea	C Lea
Data Pt. No.	Current Amp	Current Density	Cell Fressure psia	Cell Temp.	Voltage	Cell E IR Free
		ASF	Cathode Manode	Į.	د ر ۱	ਜ ਜ
553	2.08	15	$7.5/7_{25}$	128	0.610	0.600
554	4.86	35	ee	126	0.720	0.690
555	6.95	20	en	127	0.830	0.800
556	9.02	65	re	125	$1.0 \rightarrow 1.2$	0.980
557	11.1	80	emo	ı	>1. 2	ı
558	13.9	100	⊃V€ ⊁	i	>1.2	i
559	2.08	15	10.0/1 0	125	0.615	0.605
260	4.86	35	*	124	0.730	0.700
561	6.95	50	**	126	0.800	0.750
562		65		127	0.870	0.820
563	11.1	80		126	0.92 + 1.0	0.870
564	13.9	100	*		>1. 0	ı

	Cell E	R Free	Ħ T		0.680	0.730	0.795	0.890	0.680	0.735	0.795	0.870	0.690	0.755	0.810	0.890	0.680	0,760	0.810	0.880
	Cell	Voltage	ы		0.710	0.800	0.870	1,000	0.710	0.780	0.880	0.990	0.720	0.805	0.880	1.000	0.720	0.810	0.890	1.000
125F 14. 7 psia 14. 7 psia 30 mil * 22 * 30 lb in 32% d 1. 75g/g dry matrix 1 (No. 1)	d Current	Density	ls l	ha		92 k	100	150		9	100	150 ed	35	¢ **	100	150	35	65	100	150
	Current	Amp			4.86	9.02	13.9	20.85	4.86	9.02	13.9	20.85	4,86	9.02	13.9	20.85	4.86	9.02	13.9	20.85
mp	Flow	Т×			5T			-	$^{4}\mathrm{T}$			-	3T			•	2.T		_	-
Nominal Cell Temp Nominal Cathode Pressure	Data Pt.	No.			565	266	292	268	569	570	571	572	573	574	575	576	577	578	579	580

O CONCENTRATOR TEST DATA-142-HOUR SELF-REGULATION LOG Nominal Cathode Pressure	kness			Current Temperatu	Start Density Flow	Date/Time ASF xT T $_4$ T $_5$ T $_6$ T $_8$ $_9$ T $_1$ T $_2$ T $_4$ E $_1$ E $_1$ E $_2$ E $_2$ E $_2$	s hav	1100 Start	1117 60 4 90 72 88 s $\frac{9}{10}$ 91 91 1 0.840 0.770 0.920	1150 '' '' 105 88 98 103 $\frac{9}{2}$ 103 103 29 0.840 0.810 0.920 0.860 0.840	1300 '' '1 120 102 105 $104_{11}118$ 117 45 0.830 0.790 0.880 0.815	1330 '' '120 104 102 $105\frac{0}{3}117$ 118 50 0.830 0.790 0.890 0.810	$1400 \qquad \text{``} \qquad \text{``}$	1500 '' '1 123 105 106 109 0120 120 52 0.830 0.795 0.885 0.830 0.820	1600 '' '1 118 106 107 $109 + 98$ 98 52 0.825 0.790 0.880 0.818	1700 '' '' 122 103 111 106 120 120 51 0.825 0.800	589 1800 '' '' 116 95 109 104 114 113 71 0.905 0.845 0.935 0.865 0.880 0.820	590 1845 '' '' 114 95 113 116 111 54 0,905 0,850 0,960 0.890 0,890 0,830	591 1900 '' '' 121 96 115 115 119 115 56 0.900 0.845 0.960 0.895 0.875 0.830	$\frac{18/67}{}$	0800 35 4 95 78 94 95 95 91 53 0.890 0.800 0.920 0.865		Uncompressed Matrix Thicl No. of Bolts	ity ity			T T 2 88 88 88 88 88 88 88 88 88 88 88 88 8	14.7] 14.7] 30 mi 32 mi 32 mi 32 mi 32 mi 32 mi 32 mi 1.75g 23 mi 1.75g 21 mpe 23 mi 1.05g 23 mi 1.05g 21 mpe 24 mi 25 mi 26 mi 27 mi 28 mi 28 mi 29 mi 20 m	sia osia li	*** Export countrols have been removed *** 110 111 111 111 111 111 111 111 111		T dp 1 1 29 52 52 52 54 55 55 55 55 55 55 55 55 55 55 55 55	* Ther as 59- as 59- L1t Cc Cc 0.830 0.830 0.830 0.825 0.925 0.905 0.905	mocouphour run hour run (T = 11	le Locar n Voltage erminal Ce E2t Ce S90 0.920 0.880 0.885 0.885 0.885 0.885 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.985 0.960 0	- dc dc dc	- $ -$	** . **
---	-------	--	--	-------------------	--------------------	---	-------	------------	---	---	---	---	---	--	---	---	--	--	--	------------------	--	--	---	---------	--	--	---	--	---	---	--	---	--	---------------------------------	--	------------	---------------	---------

_
٠,
(Con
LOG
TION
Ϋ́
GUI
₹.
SELF-I
42-HOUR
-

			•	77.1	1			114	1							
C+0C	Triest A the sur	,				E	1	* :	r.			Ę	Voltage	je – vdc m E		
Date Pt.	Ilme Aller Start	Current Density	Flow			ı emp	H	esa	±.		Ç	(L) Cell 1	(lerminai – IK free) Cell 2	- IK F 11 2		Cell 3
No.	Date/Time	ASF	хT	T ₄	T 5	$^{\mathrm{T}}_{6}$	Т8	T_{10}	T ₁₂	$^{\mathrm{T}}_{\mathrm{dp}}$	E _{1t}	$\mathrm{E}_{1\mathrm{f}}$	E _{2t}	E2f	E_{3t}	E _{3f}
594	1000	35	က	103	85	100		101	97	42	0.880	0.805	0.920	0.830	0.845	0.790
595	1100	:	:	101	85	100	101	100	100	40	0.885	0.810	0.925	0.820	0.860	0.795
596	1200	Ξ	Ξ.	94	22	93	93		92	42	0.960	0.855	0.935	0.825	0.920	0.825
297	1300	÷	:	101	85	101	103		103	54	0.915	0.820	0.920	0.820	0.880	0.800
598	1330	:	:	105	88	103	105		105	57	0.900	0.810	0.915	0.810	0.870	0.795
599	1400	=	Ξ	105	88	105	106		106		0.905	0.820	0.920	0.820	0.870	0.800
009	1500	:	:	107	90	105	107		107		0.890	0.815	0.910	0.820	0.865	0.800
601	1600	፡	:	105	90	105	107		107		0.890	0.810	0.910	0.820	0.865	0.800
602	1630	:	:	106	06	105	107	106	106	9	0.890	0.810	0.915	0.820	0.865	0.800
603	1810	:	:	106	90	104	106	102	106	61	0.880	0.815	0.915	0.825	0.860	0.800
604	2000	=	:	103	68	102	105	195	105	09	0.890	0.820	0.920	0.835	0.875	0.815
								ave								
1/19/67	27							e k								
605	0730	35	2	101	98	103	104	192	101	22	0.890	0.820	0.925	0 840	0.875	0.815
909	0800	:	:	102	87	103	104	142	102	22	0.890	0.815	0.925	0.840	0.870	0.820
209	0830	20	4	111	92	111	112	170	112		0.975	0.870	1,000	0.880	0.935	0.860
809	0060	:	:	119	100	119	120	<u>m</u>	123		0.950	0.830	0.970	0.835	0.910	0.835
609	1000	:	:	127	107	125	127	1 <mark>2</mark> 5	132		0.915	0.820	0.940	0.830	0.880	0.810
610	1100	:	:	128	107	127	129	55	133	54	0.910	0.820	0.940	0.825	0.875	0.810
611	1130	:	:	121	103	121	124	120	125	37	0.910	0.820	0.950	0.830	0.885	0.810
612	1200	:	:	125	106	125	127	$1\frac{2}{2}$ 4	129	42	0.920	0.820	0.950	0.835	0.880	0.820
613	1300	:	:	128	110	128	130	126	132		0.915	0.820	0.940	0.820	0.875	0.810
614	1400	:	=	128	108	127	128	125	132	73	0.920	0.825	0.940	0.820	0.895	0.815
615	1500	:	:	130	111	127	130	129	137		0.910	0.810	0.930	0.815	0.890	0.805
616	1600	:	:	131	110	127	130	129	134	58	0.910	0.810	0.930	0.820	0.890	0.805
617	1700	-	:	130	110	126	130	129	133	52	0.910	0.820	0.940	0.830	0.900	0.820
618	1800	Ξ	:		111	126	130	129	134	49	0.910	0.825	0.950	0,830	0.910	0,825
619	1900	Ξ	=	129	110	125	130	129	132	45	0.910	0.825	0.940	0,835	0.905	0.825

$(Con^{1}t.)$
) 50'
I NOI
LA1
REGU]
SELF-
JUR S
42-H(

							Temp	Temperatures*-F	9 S *-∓				(Te	Voltage (Terminal -	ge - IR Free)	(əe	
D I	Date Pt.	Time After Start	Current Density	Flow	${f T}_{f 4}$	$\frac{1}{5}$	$^{\mathrm{T}}_{6}$	$_8^{\rm T}$	$^{ m T}_{10}$	T_{12}	$\mathbf{T}_{\mathbf{dp}}$	Cell E _{it}	111 1 E _{1f}	Cell E _{2t}	11 2 E _{2f}	E _{3t}	Cell 3 E _{3f}
1/2	1/20/67	2							***		i						
9	620	0800	20	4	128	110	115	127	EX125	129	53	0.900	0.810	0.935	0.820	0.900	0.820
79	621	0060	=	=	130	110	116	129	0127	113	48	0.895	0.810	0.930	0.810	0.900	0.815
39	622	1000	•	:	130	110	117	129	127 م	ı	48	0.895	0.810	0.930	0.810	0.900	0.820
65	623	1100	:	:	129	110	117	129	0127	•		0.895	0.810	0.930	0.810	0.895	0.820
39		1200	:	:	129	111	117	130	0128	1	47	0.900	0.810	0.930	0.810	0.900	0.810
9		1300	# *-	:	129	110	117	130	1127	ı	47	0.900	0.810	0.930	0.810	0.900	0.820
39		1500	-	:	130	112	118	130	0128	ı	48	0.900	0.815	0.930	0.810	0.900	0.820
79		1700	=	=	130	110	118	130	s128	ı	47	0.900	0.820	0.930	0.815	0.900	0.830
	/21/67	.							hav								
ì	/	. 1							·e								
79	628	0830	20	4	130	118	125	130°	} 28	ı	40	0.965	0.885	1.010	0.890	0.965	0,885
79	629	1000	:	:	134	123	130	133	30	ı	40	0.970	0.880	1.005	0.890	0.965	0.880
9	630	1100	:	=	133	122	130	132	1 30	ı	47	0.980	0.880	1.000	0.885	0.965	0.880
9	631	1300	:	:	135	125	133	134	30	ı	38	0.965	0.875	0.995	0.880	0.950	0.870
									mo								
1/;	1/22/67	7							ve								
9	632	1100	20	4	142	130	145	142	140	ı	40	0.980	0.895	0.980	0.880	0.945	0.870
9	633	1200	:	=	141	126	144	142	, 40	1	41	0.975	0.880	0.975	0.860	0.935	0.845
9	634	1300	:	=	130	130	140	138	1 35	ı	40	0.980	0.870	0.950	0.860	0.940	0.850
9	635	2030	15	13	113	110	115	115	85	i	24	1,050	0.850	0.840	0,790	0.815	0,780
1/2	1/23/67	~1															
9	636	0800	15	13	91	83	93	93	72	ı	7	1.380	1.030	0.940	0.885	0.900	0.850
		0060	Syster	Systems Shutdown	down	After	142 H(142 Hours of Overation	l Ooera	ation							

APPENDIX IV

AIR-OXYGEN FLOW RELATIONSHIP

Consider an oxygen concentrator where the oxygen output, W $_{0}$, is specified in lb/hr. It is desirable to readily determine the air flow rate $_{0}$ 2 required to produce the specified amount of oxygen. First, it is necessary to convert the specified oxygen mass flow rate to a volume flow:

$$Q_{0_2} = W_{0_2} V_{0_2}$$
 (1)

where:

 Q_{o_2} = volumetric flow rate of oxygen, ft³/hr

 W_{o_2} = mass flow rate of oxygen, lb/hr

V_o = specific volume of oxygen, ft³/lb

*** Export controls have been removed ***

Where the specific volume of oxygen is determined by the perfect gas equation:

$$V_{o_2} = \frac{R T_{o_2}}{32P_{o_2}}$$
 (2)

Now, the volume flow rate of air containing the oxygen, as specified, can be determined by knowing that 21% of air, by volume, is oxygen. Therefore:

$$Q_{a} = \frac{W_{o_{2}} V_{o_{2}}}{0.21}$$
 (3)

or

$$Q_{a} = \frac{W_{o_{2}} R T_{o_{2}}}{32 P_{o_{2}}} \frac{1}{0.21}$$
(4)

This volume flow rate of air is converted to mass flow by again considering the perfect gas equation:

$$W_{a} = W_{o_{2}} \frac{{R T_{o_{2}}}}{{32 P_{o_{2}}}} \frac{1}{0.21} . \frac{29 P_{a}}{R T_{a}}$$
 (5)

where:

 W_a = mass flow rate of air, lb/hr

If the temperature and pressure of the oxygen are equal to that of the entering air, the equation can be reduced to:

$$W_a = \frac{29}{32} \cdot \frac{1}{0.21} \cdot W_{0_2}$$
 (6)

or

$$W_a = 4.32 W_{o_2}$$
 (7)

This is the air mass flow rate that contains the amount of oxygen, W or one times theoretical (IT). Therefore, the factor xT can be added to the 2, equation which allows evaluation of the air flow rate as a function of the anticipated theoretical air flow rate that is desired, as shown in equation (8).

$$W_a = 4.32 W_{0_2} xT$$
 (8)

REFERENCES

- (l) Wynveen, R. A., and Montgomery, K. M., Experimental Oxygen Concentrating System, AFFDL-TR-65-32, USAF Contract No. 33(615)-1856, April, 1965.
- (2) Richardson, D. R., "How to Design Fluid-Flow Distributors," Chemical Engineering, May 1, 1961, p. 83.
- (3) Hepfer, I. C., "Plated Finishes for Magnesium," Products Finishing, June, 1965, p. 51.
- (4) Kordesch, K. V., and Marko, A., "Sine Wave Pulse Current Tester for Batteries," Journal of the Electrochemical Society, 107, 1960, p. 480.
- (5) Pollnow, G. F., and Kay, R. M., "A Transistorized 60 CPS Sine Wave Commutator for Resistance and Potential Measurements," Journal of the Electrochemical Society, 109, 1962, p. 648.
- (6) Haldeman, R. G., et al, Research and Development of High-Performance Light-Weight Fuel Cell Electrodes, NASA CR-54171, NASA Contract NAS 3-2786, Third Quarterly Report, May 1 July 31, 1964, American Cyanamid Company.
- *** Export controls have been removed ***
 (7) Mitchell, Jr., W., Fuel Cells, Academic Press, 1963, p. 35-40.
- (8) Young, G. J., Fuel Cells, Reinhold, 1960, p. 67-69.

*** Export controls have been removed ***

UNCLASSIFIED Security Classification

DOCUMENT CO (Security classification of title, body of abstract and indexi	NTROL DATA - R&D ng annotation must be entered w	hen the overall report is classified)
1. ORIGINATING ACTIVITY (Corporate author)	2 a. R	EPORT SECURITY C LASSIFICATION
TRW Equipment Laboratories	<u> </u>	NCLASSIFIED
TRW, Inc.	2 b G	ROUP
23555 Euclid Ave., Cleveland, Ohio 4411	(
Self-Regulated Oxygen Concentrator		
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)		
Final Technical Report, January 1966 thr	ough January 1967	
S. AUTHOR(S) (Last name, first name, initial)		
Wynveen, Dr. Richard A.		
Mrava, Gene L.		
6. REPORT DATE	78 TOTAL NO. OF PAGES	75. NO. OF REFS
March 1967	177	8
84 CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT	
AF 33(615)-3392		
b. Project No. 6146	TRW ER-7043	
c Task No. 614614	S. OTHER REPORT NO(S)	Any other numbers that may be assigned
	AFFDL-TR-67-6	
d. 10. AVAILABILITY/LIMITATION NOTICES — This docum	ont is subject to spe	aial avnort controls and
each transmittal to foreign governments of	-	-
,	-	•
approval of the Air Force Flight Dynamic Force Base, Ohio 45433.	ive been removed	, * * * I Bit I attor Boil III
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY	
		Dynamics Laboratory
	Wright-Patterson	Air Force Base, Ohio
13. ABSTRACT - A program to design, fabricate	e and test a model of	an oxygen concentrator
employing a method of control termed "se		
The stack assembly consists of three cell		_
separated from the air, sandwiched between		_
regulation of the unit results from the the		
generated in the electrochemical cells dur		
evaporative cooling in the himidifiers due		u -
operation eliminates external humidifiers		-
on apparatus of this type. As a laborator		
oxygen delivery rates up to 0.045 lb/hr w	-	
Wide-range parametric testing conducted		-
of 100-175F, air inlet pressures from 5-9		-
ical, and current densities up to 166 amps	- n ·	
200 hours of testing which successfully	0 -	_
of the unit. As a final conclusion, the dat		
0.2-lb/hr oxygen concentrator utilizing se	-	
With additional development the design wi		-
aviator's oxygen supply system.	Tarrana an waste	
This abstract is subject to special export	controls and each tre	ansmittal to foreign govern-
ments or foreign nationals may be made o		
Dynamics Laboratory (FDFE), Wright-Pa		
DD 150RM 1473		•
		UNCLASSIFIED Security Classification

UNCLASSIFIED

Security Classification

14	LIN	KA	LIN	кв	LIN	K C
KEY WORDS	ROLE	WΥ	ROLE	₩Ť	ROLE	₩T
Electrochemistry Electrochemical Cells Oxygen generation, Oxygen concentration Oxygen supply systems Aviator's oxygen						

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 Example 18
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, burnmary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the spansor), also enter this number(s).
- AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through

have the state of this report directly from DDC. Other qualified users shall request through

(5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

UNCLASSIFIED