AFFDL-TR-67-10

BASIS OF A WELL CONDITIONED FORCE
PROGRAM FOR EQUILIBRIUM MODELS
VIA THE SOUTHWELL SLAB ANALOGIES

BAUDQUIN M. FRAEI]S DE VEUBEKE

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED



FOREWORD

This report was prepared by Aeronautics and Space
Laboratory, University of Liege, Belgium, under Contract
AF 61(052)-892, Project No. 1467, "Structural Analysis Methods",
Task No. 146705, "Automatic Computer Methods of Analysis for
Flight Vehicle Structures". The work was administered under
the direction of the Air Force Flight Dynamics Laboratory,
Research and Technology Division, by Mr. James R. Johnson,
Project Engineer, and through the European Office of Aerospace
Research (0AR), United States Air Force.

The work reported herein was conducted during the period
July 1966 through November 1966, This report was released
by the author for publication in November 1966. Professor
B. M. Fraeijs de Veubeke is the Technical Director for this
study.

This report has been reviewed and is approved.

Chief, Theoretical Mechanics Branch
Structures Division

ii



ABSTRACT

For the purpose of obtaining upper bounds to displacements
in a structural analysis into finite elements, the structure
must be subdivided into equilibrium models (see references 6 and
7.

It has already been noted that, while stiffness matrices
can be obtained for such elements, the use of a stiffness
program can be wasteful because the number of nodal displace-
ments can be considerably larger than with displacement medels,
On the contrary, the number of self-stressing states becomes
much smaller and a solution by a Force program would be
efficient, provided the coupling between self-stressing states
be kept to a minimum.

It seems that the analogies noted by Southwell (reference 5)
between displacements in the extension problem of a slab and
stress functions for the flexure problem of the slab on the one
hand, and between transverse displacements in flexure and the
Airy stress function for extension on the other hand, provide an
ideal set-up for a good force program in such two-dimensional
cases, The nodal values of the stress function(s) are really
force—type unknowns which define minimally coupled states of
self-stressing.

Considerable thought was given to the problem of introducing

body~force type external loading into the program, as well as
interface type external loads.
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LIST OF SYMBOLS

¢ (x,v) Airy stress function for equilibrium state of plane stress,

U(x,v) , V(x,y) Stress functions for equilibrium state of bending,
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bR xy vy
1 i o bending and twisting monments in bendine,

X ¥ xy ? y > -3 .
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n equivalent Kirchhoff transverse shear, defined by eq. (8).
bm column matrix of stress parameters of element m .
hn ditto but in equilibrium with body loads.

FFl with wvarious superscripts : flexlbility matrices of element
fo seneralized loads alonp comnecting boundaries of element m
9 associated peneralized displacements.
Py other generalized loads of element m .
r, associated generalized displacements,
Cm loads connection (incidence) matrix defined in eqs. (26).
o _ . , . . . (27).
(Bm » Gy Hm) submatrices of C_ defined in eq (27}
Kn stiffness matrix of element n .
Lm localizing (incidence) matrix for displacements defined
by eq. (34).

P incidence matrix for the Ppy loads.
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1, First Analogy,
Let ¢

xx * tyy and txy denote the normal force flows and shear flow
(products of stresses by the local thickness) in a state of plane stress
within a finite element,

If they derive from an Airy stress function ¢(x,y)

2 2 2
t = M t = M t = ﬁn—g— (l)
X 2 YY g2 xy X3y

they satisfy automatically the equilibrium equations

ot ot 3t ot
xx-}——%x.—.o —.—H-{-——ﬂ:o (2)
% 3y ox oy

Hence, provided we can also secure continulty in the stress transmission at
interfaces, we have the ingredients of an equilibrium model,

The first analogy will consist in showing that, if the Airy function is
identical to the transverse deflection w(x,y) of a conforming plate bending
element, the continuity of stress transmission at the interfaces is fulfilled,

Indeed, along a straight interface boundary,

—
A a
y tns Yoy ’
n
l\/ Fip.,1l.
> x
the normal load flow t . and shear flow tns are given by
2 2
t =.§-—Q— t -_-—-a_-i— (3)

ns angs

Now in a conforming plate bending element the transverse deflection w and

the normal slope 3w/3n are continuous across an interface. Hence the same is
1



true of their derivatives along the interface mw/3s , 32w/3s2  and

32w/53s9n . Thus if the Airy function is everywhere identical to the transverse

deflection, it follows from (3) that the flows t ., & t _ are continuously
transmitted across the interface,

This analogy provides a direct conversion from a conforming displacement model

for plate bending into an equilibrium model for plate stretching,

However one should observe that there is no room for the introduction of exter-
nal loading except at the boundaries of the assembled structure : there are no

body loads and no external interface loading modes. Those should be introduced

by superimposing to the equilibrium field generated by the Airy function a par-
ticular field in equilibrium with the desired body loading modes and interface

loading modes,

2. The second analogy.

Let the bending and twisting moments of a finite plate element be neénerated

by two stress functions U(x,y) and V{(x,y) as follows :

3V 3l 1 oV 23U
{ = A 2 m—— M R _—
Yx "3y Uy "ax Xy 7 (5% * 55 (4)

1 Fig. 2.

z axls upwards

Then, if the transverse shears Qx and Qy y defined in the same positive

sense as T, and Tyz * are generated by the equations

=Ll 33V _ 3t = -1 2 ¥ 23U
Qx 2 oy (ax ay] Qy 2 3x (ax g;ﬂ %)



the equilibrium equations for moments

M M aM al
X+ X_-q X+ Lag (6)
18 oy X X ay Yy

are automatically satisfied. Furthermore, the shear loads (5) verify the equili-

brium equation

5 |
= oy o ° 7

indicating that there is no transverse load applied to the element.
To obtain an equilibrium model for plate bending, In the framework of the
Kirchhoff theory, we must still secure continuity of transmission at an interface

of the bending moment M and the equivalent Kirchhoff transverse shear

K =Q + %; M (8)

where Qn is the resultant of the L shear stresses and Hns is the twisting

moment at the interface

Fig. 3.

z and Qn upwards

If (g,m) denote the direction cosines of the outward normal to the interface,
the change of orientation from the (x,y) axes to the {(n,s) axes introduces

the stress functilons



N=3g2U+nV S==m U+ gV {7

from which we find that

» = .a—s '
1 = s (10)

_1 a8, N |

Un = 73 [an as] ()
_1 2 (25 _am
% =% 335 G~ %s) (12)
and so, from (8), that

2
K =28 (13)
n 2

as

The second analogy consists in taking for the stress functlons U(x,y) and
V(x,y) the displacement components u{x,y)} and v{(x,y) of a conforming dis-
placement model for plate stretching. Then the property of conformity ensures
that U and V are continuous across an interface,

The same is true of the combinations (9) and of their derivatives in the s
direction. It follows then from (10) and (13) that the normal bending moment

M and the equivalent Kirchhoff shear locad Kn are continuously transmitted
across the interface.

Exactly as in the case of the first analogy there appears to be no provision for
external loads (except at the external boundaries of the assembled elements).
However, to complete the proof of this, it must still be shown that at a common
vertex the corner loads add up to zero. The proof follows easily from the analogy
itself, The corner load on a single element is produced by the jump in the value

of M_ ~as we turn around the corner (fig. 4).
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e (4)

Z (corner load positive upwards)

(=) =M

sn(+) ~ Msa(-)

Fig, 4,

P X

Now, from (l1) it appears that, except for a factor =~1/2 , the analog of the
twisting moment is the shearing strain Yen *

The jump in shearing strain, as we turn around the corner, 1Is equal to the reduc-
tion in the wedge angle of the strained element. Since it is obvious that, if the
vertex is an interior point of the structure, the sum of all the wedge angles of
the elements meeting there must remain equal to 2 7 , the sum of all the wedpe
angle reductions must be zero,

So then, by the analogy, is the sum of corner loads at an interior point,

The conclusion does not hold at a vertex on the boundary of the structure, the con-
centrated external load that must balance there the sum of the corner loads is part
of the boundary value elements of the problem,

Again, a particular stress field in equilibrium with external loading modes must be

superimposed 1f other external loads than boundary loads are contemplated.

3. Equilibrium model theory.

A general theory of equilibrium models, adapted to the use of direct stiffness
programs, was given in references 6 and 7, Cur purpose will be to develop a new
theory adapted to a force type program, because the topology of connections between
equilibrium models suggests better computational efficiency with redundant forces
as the basic unknowns, Also, as will appear later, the Southwell analogies provide
a direct approach to the best choice of redundancies. A better plcture will emerge
1f both theories are developed simultanecusly and the opportunity will be taken to

slightly modify and clarify previously used notations,

3.1 The stiffness matrix of an equilibrium model,

Let the subscript m denote a particular finite element of the structure, The
equilibrium stress field within the element is taken to be a linear superposition
of stress modes which fall Into two groups. In the first group the stress modes
satisfy homogeneous equilibrium equations at interior points (no body forces) and
at boundary surfaces b.s. which are not potential interfaces 1.f. (there are no

surface tractions there).
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In the case of our finite plate elements, in flexure or in extension, each assu-
med stress mode of the first group will thus generate no surface tractions except
on the cylindrical boundary with generators parallel to the =z axis,

In the second group the stress modes satisfy non homogeneous equilibrium equa-
tions, Thus each of them determines an external loading mode consisting ecither

in a given pattern of body forces, or in a given pattern of surface tractions on
b.s. or both.

The reason for the distinction is obvious : each loading mode of the second group
is alsoc an independent external loading mode of the assembled structure, while
the surface tractions applied to the interfaces will combine when the elements
are assembled to produce another type of external loading of the structure
(unless they are required to add up to zero).

With each stress mode suitably normed, the coefficients of the linear superposi-
tion or parameters of the fleld are grouped in a conventional sequence inte
column matrices, For the first group, whose parameters are denoted by Bi s the

transposed matrix will be denoted

bn'n= (31 ’ 32 ces )

For the second group, whose parameters are denoted

"3

r _
hm—(l]l .nz l!.)

The stress energy of the element can now be calculated and becomes a quadratic

homogeneous form in the parameters

) ,bb ' bh -L T hh
o Em bm + bm F - h + 2 h! F h (14)

= L
¥n "3 b m m mm m

m

The matrices sz . Fﬁh and Fxh are the flexibility matrices of the element,
One can also write
b ! b
g =1 | F m‘ (15)
m 2



with the complete, non-singular, flexibility matrix

£bb gbh
m m
P = = El (16)
phb b
m m
bbye bb bhyt hb hhyt hh
[Fm ] = F [Fm ) = F (Fm ) = F

Now, for each interface boundary, we specify a complete set of surface tractiom
modes. A linear superposition of these modes must be able to reproduce any sur-
face traction pattern generated by the parameters of the stress field, The
choice of the modes is largely governed by simplicity in the subsequent inter-
pretation of the stress output and physical significance of the corresponding
generalized loads, A generalized load A defined at an interface, is in fact

the coefficient in the expansion

p=1I v, P @7
S
of the surface traction ; at this interface in terms of the suitably normed
modes ?} . ‘
The corresponding generalized displacements K5 are interpreted by the virtual

work equation on this interface

f P.u dArea = % Yy f B..0 dArea = 1 Yy oKy
i.f. § 1.£, 3
Hence
k, = | P..u dArea 1s)
I Tae,

is in general a weighted average of the displacement field on the interface. In
exceptional cases there are generalized loads belonging to more than one inter-
face. A case in point is provided by the corner loads of the Kirchhoff plate

bending theory. Such a corner load is necessarily a generalized load and the

7



associated generalized displacement is obviously the local bending deflection.
All the generalized loads defined at the interfaces are grouped in a conven=
tional sequence in a column matrix denoted by oy 2 the corresponding generali-
zed displacements in a colunn matrix 9, The virtual work of loads on the

interfaces of the element is therefore

W B " By Gy 19

Since the interface modes are generated by the stress modes a linear relation-

ship is always available between the parameters and the generalized loads
g =B b +G h (20)
jul m m m m

Some important characteristics of the "load connection matrices" Bm and Gm
will become apparent later,

Ceneralized loads due to body forces and surface tractions on the b.s. bounda-
ries are necessarily linear combination of the ny parameters of the stress

modes of the second group, If we denote them by and their column matrix

"3
by P, » Ve shall have

p =H h (21)

with a non-singular matrix Hm » In most cases the second group of stress modes
can be so devised that the , parameters themselves are suitable definitions
for peneralized loads, the Hm matrix then reduces to an identity matrix, With

body forces

+
¥ = ' (22)
z 'lTj j
and surface tractions
- -

the virtual work equation

-+ + >
f X.u dVol + f p.u dArea = y LR
VO]. b.So

vields the Interpretation of the generalized displacements
8



> >
ps = f Xj.u dVol + Ib

> >
Qj.u dArea (24)
J Vol

oS

conjugate to the "j loads. The wirtual work is then, in matrix form

T - 1
r Py =P T, (25)
v L

with rm (pl 3 p2 csa )

B G
m m _
cC, = (27)
0 3]
m

The complementary energy principle will now be used to obtain the best compati-
biiity conditions. To this purpose we assume the generalized displacements

specified and determine the stress parameters giving to

\Pm_(ql;lgm-"rr‘npm)

its minimum value, With the stress energy expressed by (l4) and the generalized

loads by (20) and (21) in terms of the stress parameters, the minimum conditions

are
be b+ th h = B! (28)
m m m m m
hb hho, o, .
Fm hm * Fm hm Gl‘s'l qm * Hm rm (29)



Or, in equivalent form,

b 1,

4 = '

Pm Cm (30)
h by
m m

Solving for the stress parameters

= F 1 1 :
FLoc (31)

This, substituted into (26), gives the stiffness relations of the equilibrium
element

with the following stiffness matrix

kK =c Flc =k (33)
The load connection matrix is easily obtained, the only troublesome operation

in setting up the stiffness matrix is the inversion of the flexibility matrix.
For simple models this can be done analytically, for more sophisticated ones

it must be done numerically and some loss in accuracy is to be feared,
Furthermore, because in equilibrium models most of the interface connections

are between palirs of elements only, the number of nodal displacements for the
structure tends to be considerably higher than for a similar set of displace-
ment models, In counterpart there is the advantage of being able to use the same

computer program,

10



3.2 The external interface loads,

The interface boundary loads B of individual elements are added up in the
process of assembling the elements and should equilibrate the interface boundary
loads applied from the outside. This process can be described mathematically by

first expressing the geometrical conmnection between elements :

q, =L, ¢ (34)

Equations like (34) state that the generalized displacements defined at the
boundaries of the m—th element can be identified with certain nodal displace-
ments of the structure,

Those are listed in a conventional sequence in the column matrix q . If the
identification doean% involve changes of reference frame, the localizing matrix
Lm of the element is only composed of zeros and ones. In the more general case
vhere the local definitions of the T coordinates require transformation to a
commen reference frame at the structural level, the matrix of coordinate trans-
formation is incerporated in Lm .

The total virtual work of the loads g, must equal the virtual work of the

externally applied interface loads g , conjugate to q . Hence

Substituting equations (34) and noting that

' = o
(égml-m)q g'q

must hold for any set of nodal displacements

' = ﬂ'
g g L or
= t
g=1ILL'¢g : (35)

We now make use of the load connection matrices defined by (36) and (37) in

order to express the external interface loads in terms of the stress parameters :

= 4 1
g i Lm (Bm bm + Cm hm).

11



with h =H

so that

L' (B

-1
A (36)

m
The external generalized loads P do not add up in the assembling process.
We list them in a conventional sequence in a complete colurm matrix p for the

complete structure and write for each element the incidence relation

Hence Pm is simply an identity matrix with additional columns of zeros.

Finally (36) can be placed in the form

—— = '
o - Pp i Hm Bm bm 37)

where P=r1L'¢ ulop (38)
momomom m

3.3 The solution of the boundary value problem,
The major problem is the determination of the general sclution of equation
(38) for the stress parameters bn , the external loads g and p being consi-

dered as given, Of course the g and p loads are not independant but should

satisfy overall equilibrium, This is expressed by zero virtual work conditions
! + ' = = ] 2 tee 39
qug rﬂp o a 3 ( )

when 9, and r, represent a set of peneralized displacements corresponding

to a rigid-body motion. We note that such sets of qa and ra can be cbtained
by introducing a2 rigld body motion Ka into the interpretations of the generali-
zed displacements,

Suppose the problem solved and let

be =, (2 - P p) (40)

12



be a particular solution, and add the general solution of the homogeneous problem

IL'B b =o0

m B omom
in the form
b =X x
m m

where X 1is a column of independent unknowns,
Then

bm = (g =P p)+ X =

represents, together with

(41)

(42)

(43)

(443

the most general state of stress in the assembled structure, satisfying equili-

brium with the externally applied loads,

The corresponding stress energy is

1
¥ = =
2 g

with flexibility matrices

F =731 be I
g8 g mom m

-1 v _hh -1

pr ) g (Hm Pm) Fm (Hm P'm)
B - v obh =1 _ L -1 v _hb
2 P (é Hm Fm Hm Pm) 2 (E, (Hm Pm) Fm
bb

=L ' F H P -(ZII'be]'[)P
£p m M m n m W om m

i3

(g'" F__g+ ! Fpp p + x' Fxx x) + g' ng p+ g pr x+p' F

Hm) P

X

PX



F _=©rn'r X

F =15 (H P) F X
PX m m m m
- -E.. T 1 ?bb - al—- t vbb
PP E IR X)) -3 X T T

The principle of minimum of the complementary energy is then written in the form
s{ v-ad' g-r"p+Ixr ('q +p r)}=o0
o

Where the displacements ¢ and r are assumed to be specified and the equili-
brium constraints (39) added with laprangian multipliers to allow independent
variations on all elements of g and p .

The independent variations on the unknowns (redundant forces) x furnish

t rdd =
Fog X * ng g+ rpx P=o0 (45)

Hence the unknowns are determined in terms of the external loads by

1

X = =F
XX

(F;x oo+ F;x p) (46)

)

and the complete state of stress can be determined.

The independent variations on g and p furnish the generalized displgcements

= F r + T +F x+ 1% 47

CZ g PP Pgp P P X T L Ay 9y 47

r=F' o4+ T +F x+7% x r (48)
gp B 7 Tpp P T Tpx o o o

Once the unknowns x are substituted the displacements are determined except
for the undetermined rigid body modes, The scolution is in fact completed for the
case of an unsupported structure, Introduction of the support conditions and

determination of the reactions is a straight forward final step.

14



In practice it may be of advantage to group the external loads g and p in
a single column matrix and reduce to three the number of flexibility matrices

involved,

4, The help of the analogies in solving the major problem.,

We have seen in sections 1 and 2 that stress functions with continuity pro-
perties analogous to those of displacement type models can secure satisfaction
of equilibrium conditions within each element and continuity of stress trans-
mission at interfaces, However this procedure does not accept body loads and
does not generate interface external loads but only loads at the boundary of
the structure, This suggests immediataly that it provides at least a direct
answer to the problem of finding the general solution of equation (37) in the

homogeneous case g =0 and p =0 .

4.1 Interior values of the stress function(s) as intensities of minimal states

of selfstraining.

Let f  denote the colurn matrix of local values of the stress function(s)
for the mw~th element, corresponding to the local values of displacements in
the analogous displacement model. There is a linear relationship between the
stress parameters Bi of the equilibrium model and the stress function(s)

values :

bm = Am fm (49)
In the displacement model, linked by the analopy, the continuity of displace-~
ments is expressed by the use of localizing matrices }%1 (different from the

4l

previous Lm Y. So that continuity of the stress function iIs expressed by

= o
£ =M f (50)
where f is the set of local values of the stress function(s) at nodal points
of the structure. We shall have to distinguish in £ , the set of values x ,
defined at interior points of the structure, and the complementary set y ,
defined at points lying along a boundary of the structure.

Relation (50) will then be replaced by

f =" x+W y (51)
n m m
15



Naturally Hi Is identically zero for any element that has no boundary in

cormon with the structure (an interior element). Combining (49) and (51)

= lx ¥
bm (Am Jm) X + (Am Mm) ¥y (52)
Qur first observation is that we can, as the identity in notation suggested,

identify the set x with the internal load redundancies and consequently, by

reference to equation (42), adopt

L =8N (53)

Indeed (see figures 4aand 5), if y = o , the stress function(s) is (are) iden-
tically zero along the boundary of the structure which 1s then unstressed.

If at an internal point, a local stress function value X, is not zero, but
all other local values are taken to be zero, internal pseneralized loads are

penerated on those interfaces between the elenents which meet at that point,

‘ B (x,y)

Fig., 4a., Internal peneralized loads generated along the

interfaces betwecen elements 1, 2, 3 and 4.

16



Fig, 5, Internal generalized loads are generated along the

interfaces between clements 1 and 2 ,

It was shown that because of the continuity of the stress function(s) those
internal loads were reciprocal across each interface; no external generalized
loads are produced.

Consequently, each local value of a stress function at an interior peoint repre-

sents a state of self-straining, Furthermore this state is of a minimal type;

it induces self-equilibrating stresses in the smallest number of elements. This
property is extremely valuable since it decreases the coupling of redundancies
to a mininun and produces the best conditioned equations to solve,

In the case of figure 5, which is one of a lecal value defined at mid dilstance
of an interface, only two finite elements are stressed. Each peneralized load
along the common interface must already be statically equivalent to zero

(pinch type load).

4,2 Development of a particular state of stress due to an external load,

This problem, which is that of finding a Hm matrix for each element, is
also simplified by the analogies, i.e. by the introduction of local stress
function values,

As depicted on figure 6, we can select a chain of elements to transmit an
external load y wup to the boundary of the structure, Preferably we choose a
segiment of the boundary which is supported. Only the elements of the chain

will be stressed,

17



element n

1]
o

(a)

(v) (e)

Fig- 6.

Let us distinguish the partial.boundaries of the chain denoted by (a) , (b) ,
(c) and (d) . In the elements composing the chain, the stress parameters are

calculated by

b; = Am fn = Am M; z {(m belongs to the chain)
Where M; is a localizing matrix, a part of Mm,’ which expresses continuity
of the stress function(s) on the partial structure represented by the chain,
In fact z 1s the set of nodal local values on this chain., The values of the
elements ‘1 of the matrix 2z are taken as follows

) g, =o© along the boundary (a) including the end points.

This ensures that this boundary 1s unstressed,

2) Along the bhoundary (b), end points included, the Ly values form a ripid
body displacement mode of the stress function(s). Then, according to the
analogies, the boundary (b) is also unstressed.

3) At all nodal points interior to the chain we can take Ly =0

4) Independent arbitrary values are assigned at nodal points alonpg (c¢) and {(d)
which are not end points.

According to either one of the analogies there are 3 independent degrees of

freedom in a ripgid body mode, Hence the complete natrix z can be written in

the form

+ + + .
z.= 81 zl 62 z2 63 z3 £ Ci e1

where z1 s zz and z3 are rigid body type modes and the ey unit vectors for

the independent values assigned along (c) and (d).
18



Hence we have

b® =D t (54)
v =
‘fhere t (91 92 63 ann ci o-c)
z [~
and Dm = Am Mm (z1 22 za X ei .n.) (JS)

The t, pertaining to (d) generate only pinch loads aleonp (d), associated to
stress parameters in the last element of the chain only, Even then no loads are
generated along the other interfaces of this last element., Their determination
from compatibility conditions can be left to the final adjustment of houndary
conditions for the complete structure,

Hence we particularize further our particular solution by setting those Ly
values equal to zero and in Dm retain only the &y pertaining to (c).

Let m = ¢ be the subscript of the first element of the chain, adjacent to (c),
and denote by Gz that part of the loads connection matrix generating the
generalized loads 8(¢) along (c). The Ble) loads are, in our case, the
external interface loads to tramsmit statically along the chain, Then

o € e o o€
Bee) = Gc bC Gc D, t (56)

The matrix Gz Dc is non singular and
N -1
t= (6 D) " g

This inversion operation is not costly since the total number of generalized
loads along a single interface is not large. Ve finally cobtain the required
particular solution in all the elements of the chain in terms of the external

loads 8(c) as
o - Cc ~1
bm D, (Gc Dc) 8(c) (57)

Again this procedure is economical because the coupling between the particular
solution and the hyperstatic unknowns is reduced to a small number of elements,
We can deal in a similar fashion with external loads of type P, v For loads

of this type in the element m = ¢ we nust first determine the associated

reaction loads of g type in this element

19



We have, to this purpose, used equation (20) under the assumption that in this

element bc = o , [Hence in the element c¢ the stress parameters reduce to

The reaction loads R, are then considered as external interface loads applied

to the adjacent elements and transmitted by the previous procedure,
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