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FOREWORD

This report was prepared in the Materials Information Branch, Materials Applications
Divigion, of the AF Materials Laboratory, Research and Technology Division under
Project 7381, Task 738105, ‘‘Ceramicand Graphite Technical Information.’’ This report
was written to provide a summary of the principles influencing composites.
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ABSTRACT

The high strength of thin metallic and inorganic fibers, whiskers, and flakes can be
exploited if they are properly protected and bonded together by a suitable adhesive or
matrix material. The principles which appear to influence the strength of thin specimens
and their mechanical behavior in such a matrix are reviewed in this report. Qualitative
attention is given to series and parallel failure mechanisms in the fibers, to the de-
scription of brittle behavior, to bonding and the mechanisms of stress transfer, and to
testing methods and evaluations. Semi~quantitative relations are adduced to suggest op-
timization of mechanical properties, and composites containing SiC are discussed to
illustrate these relations.

On the basis of the principles discussed, suggestions are made for selecting future
composite materials and designing them for specific applications.

This technical documentary report has been reviewed and is approved.
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INTRODUCTION

Because of the success of glass fiber-reinforced plastics and the discovery of very
high strengths in metallic and ceramic filaments and whiskers (Reference 1), research
and development in the field of fibrous composites has increased greatly in the past ten
years.

It is perhaps unfortunate that so large a proportion of this effort until recently has
been confined to laminates of glass fibers in resin matrices. Although these composites
have now been developed sufficiently to exceed all other materials in tengile strength
to weight, the principles peculiar to them have too often been generalized and used to
measure the potential of other materials and other geometries. It is the purpose of this
report to review the status of materials knowledge in this field as a whole, so that
realistic plans can be made for developing improved composites for U. S. Air Force
applicaticons.

In a properly designed composite, each constituent performs a particular function
and modifies the environment to which other parts of the system are exposed. For the
purposes of this report, only those composite sytems will be discussed in which the
highest achievable strength (or elastic modulus) can be achieved constituent with minimal
density. Such pertinent criteria as refractoriness, chemical stability, and fabrication
techniques will be considered in discussing each type of composite.

BACKGROUND THEORY
The Peculiarities of Materials of High Strength or High Modulus

The elastic moduli of a solid substance are resultant from the forces holding its con-
stituent atoms together (bond strength) and the spatial arrangement of theses atoms
(structure), at, of coursge, certain conditions of temperature and pressure. For most
crystalline compounds, it is possible to calculate theoretical modulus values, and good
agreement with observed moduli has been noted with simple metallic and ceramic
crystals. With corrections for crystallite boundary characteristics and proportion,
reasonably good agreement has been noted even for some polycrystalline substances.

On the argument that a perfect crystal cannot be pulled apart until the imposed stress is
comparable to the bonding strength of the crystal, attempts have been made to predict the
“*ideal strength’’ of several materials. No experimental data can be offered to confirm
these high ideal strength values, however, since real specimens break at far smaller loads.
It has been observed, however, that the maximum measured strength for monocrystalline
whiskers and filaments approaches about five percent of the calculated Young’s modulus.
For this reason it has been suggested Reference 2) that the probability of being able to at-
tain the greatest possible tensile strength (in an ideal crystal) will be proportional to the
calculated modulus for the material.

Manuscript released by the author 8 April 1964 for publication as an RTD Technical
Documentary Report.
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Since the strongest interatomic bonds are the shortest bonds, and since the atomic
density of a material of a given structure is proportlonal to the mean atomic weight of
the elements in it, it follows that:

those substances having the highest potential strength to density
ratio will be those having the lightest possible atoms in the closest
possible packing.

The same criterion holds, of course, for maximum modulus to density ratio.

Caution must be used in applying this rule. The tensile strength actually obtained even
in a thin single crystal is subject to the weakening influence of pores, impurity and
vacancy sites, dislocations, and in some instances, locked~in residual stresses. Nor can
any solid body be divorced from the influence which its own surface must produce; the
surface atoms of a crystal must possess either unsatisfied valencies or chemisorbed
foreign ions, even when gross surface flaws are not present.

It can be stated with some assurance, however, that a “‘figure of merit’’ for most
materials can be computed which will serve to select the most promising candidates for
future work. This has been done for some compounds and for a few elements in Table 1
by dividing the ideal modulus of each by its atomic density.

Despite the difficulties of achieving ideal tensile strength in any real specimen, the
critical problem is that of exploiting the real strengths which have already been obtained.
These are amply high: graphite single crystals have exhibited strengths of about 4 x 10°
psi; Be0 and Al,0, nearly 2 x 10° psi; and glass ribbons resisting more than 10° psi
have been reported in axial tension.

Important considerations in the selection of materials involve correctly assessing the
ability of the material to be formed into a useful shape, and assuring that in this shape
it will exhibit the properties for which it was selected, and that in service it will be
exposed to the environment for which it was designed. It has been found that these
probabilities decrease as the size of the specimen, and its modulus, increase.

The Influence on Tensile Strength of Specimen Size

The observation that a filament of glass is stronger (in tension, torsion, and flexure)
than a rod, which in turn is stronger than a thick bar, illustrates one of the important
peculiarities of brittle behavior. That a thin specimen exhibits higher nominal strength
than a thick one is customarily explained by the greater probability that a critical flaw
(Reference 3) will exist in a larger gage volume (Reference 4).

The wide variation in nominal fracture strength usually observed in brittle materials
prevents any rigorous relation between gize and fracture stress values. The popular
theory of Weibull predicts that the relative tensile strengths of two specimens of identical
material should be:
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TABLE 1

CALCULATED MODULUS TO DENSITY RATING FOR SELECTED CRYSTALS

Crystal

diamond

3ALB 1 2SlC
B 4C
Be

SiC

TiB

wC

Steel

w C

Modulus
million psi

m -

170

75

66

45
71
51

94

46

76

31
72
64

35
S0

23
35

50
50
104

28

62
60

Density
Ib/cu.in.

.126

.091
.090

.065
115
.083

-162
087
.144

.108
177

.202

126

.180

.083

217

.246
.282
.580

.282

625
.6%6

Fig. of Merit Strength
million/in. million psi
1350 8.5
825 3.8
734 3.3
692 2.2
616 3.5
615 2.6
580 4.7
529 2.3
326 3.8
472 2.6
406 3.6
317 3.2
278 1.8
276 2.5
275 1.7
244 2.8
203 2.5
177 2.5
173 5.2
99 1.7
99 3.1
86 3.0
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where X is strength, V is volume, and m is the Weibull “‘flaw density factor’’ in the
equation:
-x-x "
F(x)=1-¢

X
o

where IXu is the highest imposed tensile stress at which the body will never break

(sometimes called the *‘zero strength’’) and XO is a normalizing factor (Reference 5).

This theory assumes that the flaw density m for a given material is constant and in-
dependent of size. If m is infinite, the material is classically perfect, and the value of
m has been used to indicate the brittleness of the material tested. Salmassy (Reference 6)
suggests the valuzs given in Table 2.

TABLE 2
FLAW DENSITY EXPONENTS

m
Glass fibers 1.3
Nickel~cemented TiC 7
Hydrostone plaster 15
Steel at liquid air temperature 24
Spark plug porcelain 35
Steel at room temperature 38

From the data given it can be seen that the value of m is not necessarily unique for a
given material; indeed, separate batches of brittle ceramic materials almost always show
different values of m.

It is not the writer’s intention tc review the many theories which have been advanced
to describe brittle fracture phenomena; this has already been well done (Reference 7). It
should be noted, however, that most of these theories presume that brittle fracture is
initiated by the concentration of stress at a critical flaw and that failure ensues by
propagation of one or more cracks issuing from this flaw, and that the propagating
energy is derived from elastic strain.

The *“‘strength’’ of a brittle material, then, depends not only on atomic cohesion but
upon the number and location of critical flaws in it and upon energy considerations in the
formation and extension of cracks. For this reason, it is highly improbable that any two
specimens of a brittle material will fail at exactly the same stress, and statistical methods
are used to describe the probability of fracture, rather than a2 mean or average strength
value.
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Unfortunately, a large number of specimens, identically treated, need to be broken to
obtain a reasonably accurate picture of the distribution of failure stress values and the
probability of fracture. The picture is further complicated by a situation which, in the
opinion of the writer, is important and not often recognized. This is the internal error
in the tests by which these values are obtained.

The Dependence of Strength on Testing Methods

To obtain the strength and/or the stress-strain relation for a material, it is necessary
to have some method of relating the load on the specimen to the stressesinit. In one of
the simplest of mechanical tests, that of a prismatic rod under axial tension, the physical
assumption given by Saint-Venant is made that, if the bar is sufficiently long, all stress
distributions on the ends of the bar will produce a uniform stress in the center of the bar.

With truly brittle materials, however, the applicability of this principle is open to
question for all specimens of reasonable length. Suppose that the material in question is
totally brittle, and possesses no mechanism for plastic deformation. In this event a
typical cylindrical rod specimen, gripped at its outer end surfaces, will be in tension
throughout, but the axial tension will be greater on its outer surface throughout than at
its core. This could be measured by applying strain gages to both inner and outer sur-
faces of an axially stressed cylinder, but this appears not to have been tried.

The axial stress at the center of such a tensile specimen will be lower than that at its
surface by an amount which:

increases with modulus,
decreases with specimen length, and
decreases with gage diameter.

How serious an error in calculating the stress imposed on tensile specimens this may
have been can be judged only after careful experimental work has been done with well-
characterized, high-modulus materials. It may well be sufficiently large to explain the ab-
normally high sensitivity of strength to the surface imperfections of some brittle materials,
and partially to explain the unusual increase in measured strength observed when these
materials are tested as thin whiskers, filaments, and ribbons.

A second problem arises from the difficulty of obtaining, in actual test, pure axiality
in tension without superimposed bending or torgion. The importance of axiality is great-
est with brittle materials; it can be shown that the proportion of increased stress pro-
duced is eight times the ratio of eccentricity to diameter for a circular rod specimen.

The problems relating to performing a satisfactory uniaxial tension test are formid-
able. Recent tests (Reference 8) have shown that increases of up to 20 percent in mean
nominal strength of brittle oxides are obtainable when “‘gas bearings’’ are employed in
the load train of a tensile test machine to minimize bending and torsion moments.

A moment of reflection on the importance of this observation is worthwhile. Obviously,
a change in testing technique does not make the material stronger or weaker, yet it can
make a significant change in the nominal stress value at which the material fails. The
answer must be, of course, in the ‘‘nominal’’ nature of the imposed stress.

5
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It has long been noted that when a bar of brittle material is broken in transverse
rupture, the calculated ‘‘ultimate fiber tensile strength’ is greater than the uniaxial
tensile strength for the same material. It hag often been suggested that his apparent
increase in strength is largely due to frictional forces which provide a resisting couple
and a consequent increase in the apparent strength of the specimen by ‘as much as 30
percent. Clearly this resistance due to friction, being proportional to the true fracture
loads, introduces a systematic error in the measurement.

Nevertheless, when the highest values of the refined uniaxial tension test are com-
pared with flexural loading test data obtained with roller supports or corrected for
frictional restraint, the values are commensurate. (Materials such as concrete or
polycrystalline graphite, which may exhibit compressive moduli appreciably different
from their Young's moduli, cannot be safely compared in flexural rupture with axial
tension).

Other methods of stressing specimens in tension have been developed which minimize
restraint and multiaxial stress. Two of these are the ‘‘brittle ring'’ test adopted by
Bortz et al., (Reference 9) and the Stanford Research Institute uniform internally
pressurized ring tension test (Reference 10). Both tests result, for a given material, in
higher computed mean tensile strengths than those obtained in uniaxial tension tests,
even with ‘‘gas bearings;’’ more importantly, both result in significantly smaller devia-
tions from the mean values of modulus and strength.

For a long time it has been assumed that the wide variation in strength observed with
all brittle materials is attributable to their inherent inhomogeneity. Since the tests re-
ferenced above were performed with a wide variety of brittle materials ranging from
graphite and brittle resins to polycrystalline oxide ceramics and in all cases produced
smaller deviations than those observed in axial tension and flexural tests, it would appear
that a large part of the apparent spread of strength values is, in fact, caused by localized
(or at least mathematically unresolved) stress concentrations induced by interactions
between the specimen and imposed stresses.

In the case of the brittle ring specimens, the imposed stress gradients (tangent to the
axis of compression) are so steep that critical flaws outside this area are no longer
critical; in consequence, the specimen acts like a specimen of smaller volume and con-
sequent higher strength. In the case of the SRI test, the internal stresses are equally
imposed upon the whole unrestrained thin-walled cylinder so that areas of different
strength may be most nearly compensated by elastic bending.

It appears, then, that the term ‘‘strength’’ when applied to brittle materials has a
meaning which must cautiously be applied. It is obvious illogic to expect a tension
member or transverse beam of a brittle material to digplay the same strength as that
of the same material ina highly refined test such as those described here. The illogic
of the converse statement, however - that the strength values obtained by ordinary
testing techniques are sufficientlyprecise or meaningful to serve to evaluate the
potential value of brittle materials or to serve the designer's needs ~ has yet to be
recognized.

Whether very thin specimens appear to be strong because they contain fewer flaws or
because they, like the SRI cylinder, can be more uniformly stressed remains to be es-
tablished by exhaustive studies of the testing techniques themselves. It may, however, be
argued that since thin specimens promptly lose virtually all of their great strength when

6
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they are restrained, the second explanation will be found to account for the observation
that filaments, whiskers, and ribbone increase in nominal tensile strength most rapidly
when one of their dimensions is smaller than about 10 microns.

The Parallel Model

The parallel model has received only a fraction of the attention paid to the series
““weakest-link’’ model. In the latter it is assumed that failure occurs when a stress
concentration occurs anywhere exceeds the ultimate tensile strength of the local
material, that this is most apt to occur at the site of a critical flaw, and that the
stored elastic strain in the material adjacent to this flaw is sufficient to supply the
energy required to enlarge the flaw and propagate it as a crack.

In the parallel model, one may visualize a bundle of n threads on which is imposed
a tensile load S. If this stress is equally distributed throughout the bundle, each thread
will feel a load S/n, and the bundle will not break so long as a number of threads k have
strengths exceeding S/k (Reference 11). This is a rather complex way of saying that the
strength of the bundle will be as great as the summation of its strongest fibers rather
than their mean.

It may be helpful to consider the parallel model as a means for explaining the failure
of the flaw-density relation to account for the very high strengths of very thin specimens,
using measured strengths and m values calcuated from the equation in section B for thin
ribbons of pyrex glass (Reference 12).

It is worthy of note that the widest deviations in observed strength values occurred with
the 4-micron ribbons (from 36,700 to 1,480,000 psi) and were somewhat smaller for
thinner and thicker ribbons. Higher strengths (averaging 17,000 psi for ribbons 4 microns
thick) and smaller deviations (from 97,000 to 317,000 psi) were observed for fresh soda-
lime glass ribbons.

Most notable in the tabled values is the significantly increased value of m, the flaw
density coefficient, for the thinnest flake. Although microscopic examination of these
flakes revealed many serious flaws (largely bubbles or holes and striae) in ail of them,
the increase in strength due to size reduction was greater than that predicted by the
theory of random flaw distribution. It must therefore be concluded that the greatly in-
creased tensile strength observed with very thin specimens must be attributable in part
to one or more other factors than that of flaw density. The reasons for this conclusion
are summarized below:

1. As specimen. thickness is decreased, all materials increase in nominal tensile
strength. The phenomenon is not, therefore, exclusively attributable to brittle materials,
but the increase in strength observed is more spectacular with substances of high modulus.
Nor is increased strength peculiar to glasses or single crystals; similar results are a-
chieved with polycrystalline filaments.

2. Very thin specimens fail in the fashion characteristic of brittle materials. whether
the bulk material is brittle or ductile; elongation and necking are seldom observed.

3. Axiality of loading is less critical with thin specimens than with thick ones; this is
demonstrated by the straightening of moderately curved specimens under load without
serious loss in strength.
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TABLE 3

STRENGTH OF PYREX GLASS RIBBONS

Thickness Mean Tensile Strength m
(microns) (psi) L
2 193,000 1.9 = 0.25
4 134,000 1.4 £0.2
6 100,000 1.3 £0.15
8 79,700 1.5 z20.1
12 61,000 1.35 % 0.05
80 15,000

4, Despite the relative increase in surface~to-volume ratic which must occur in
thinner specimens, the strength increase for ‘‘surface-sensitive’’ materials like glass
is as great as that observed with less sensitive materials (such as sapphire) as the
specimens are made thinner,

In order to provide an adequate background for discussing means of exploiting the
very high strength of thin filaments and fibers, it may be profitable to discuss these
observations as they relate to the parallel model.

The classically perfect, ductile substance can be visualized as a bundle of thin
specimens, each attached to its neighbors by bonding forces indistinguishable from
those in the filament itself. As a tensile load is applied, each filament supports a
portion of it, reached nearly at the same stress level. The outermost fibers, being
under somewhat greater stress, yield first (and this will be more notable in substances
of high elastic modulus or when surface imperfections exist). The elongation of the
outer fibers provides a shear component which is oriented toward the center of the
specimen and necking begins, terminating in the familiar double-cone or cup-and-cone
failure in shear.

For a flawed material, the ductile behavior is similar except that each flaw acts as a
point or volume of stress concentration about which the shear vectors for adjacent
fibers are centered, As a consequence, only the unflawed filaments can accept their full
proportion of the stress; thegse are strained to their elastic limit at a smaller load than
that of the ideal case. The presence of flaws (except of the kind which hinder dislocation
generation and movement) will thus reduce both the modulus and strength in proportion
to their number and size in the volume of the specimen.

As the elastic modulus of the (isotropic) substance is increased, a larger stress in
each filament is necessary to produce proportionate strain, and the mechanism of shear-
stress transfer is proportionately denied at the surface of the specimen. As a conseguence
the inward compressive vector is diminished, and necking becomes impossible at strain-
energy levels below those of the cohesive bonds in the filaments themselves. A similar

8
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weakening effect is observed near each flaw.

In substances which are brittle, then, the explanation for their brittleness lies in the
diminution or denial of the shear-stress mechanism of transferring stress from a
strained filament to those around it at energy levels safely below the bonding energy of
the material. (This definition of brittleness will be implied throughout this presentation.
It must be emphasized that a material is not necessarily brittle because its elastic
moduli are high, nor is a brittle material necessarily weak.)

Since the shear-stress mechanism requires mass diffusion (dislocation or twin
generation, dislocation movement and slip, or the formation of new phases) materials
of high bond-strength and structures in which such diffusion is restricted will tend to
be brittle at all ordinary temperatures. {The ductile-brittle transition temperature is
related to the energy threshold at which a principal diffusing mechanism can occur.)

Brittleness in the paraliel fiber model, then, will occur whenever the shear-stress
mechanism for transferring tensile stress is achievable only at strain energies com-
parable to the cohesive energy of the filaments themselves. Upon this basis, the reasons
why thin filaments of brittle materials are very strong is most easily understood through
recognition of the weakening influence of increasing size.

The finest imaginable filament is a single crystal (or molecular chain) of a length in-
finitely greater than its thickness. Such a crystal would everywhere resist tension with
the bond forces within it, and its strength, if it could be measured, would approach the
theoretical elastic moduli given in Table 1.

If this filament is surrounded by - and attached to - precisely similar crystals in
perfect array it would exhibit a similar strength if a method could be found for distri-
buting the tensile stress uniformly across its cross-section. To the extent that crystals
can be elastically distorted in three dimensions (such as cubic-rhombohedral distortion)
the strength would not be greatly diminished.

The presence of impurity ions or structural imperfections must of course reduce the
ability of these crystals to deform elastically or to resist throughout stresses compar-
able to their bond strength, and weakening would then be observed, even when the flaws
are far smaller than those regarded as ‘‘critical’’ by Griffith.

In a real crystal of finite size, as outer crystallites are deformed they attain energy
values which can be dissipated either by mass diffusion mechanisms or by the creation
of new surfaces, e.g., shear failure. As a consequence, there is a limit of strength
achievable by any monolithic material which is determined by the stress to modulus
ratio at which the monolith is just separated by shear forces into groups of crystallites
of nearly ideal structure. This limit appears to be equivalent to strength values vari-
ously estimated at from 3 to as much as 10 percent of the modulus (depending on the
elastic distortion permissible) in the ideal crystal. The values listed in Table 1 were
calculated on the common basis of five percent of the estimated moduli).

It should be noted that the ‘‘ideal filament’’ described here represents a ceiling value
for tensile strength based entirely upon principles which can be postulated from crystal
data. It remains to be decided whether strengths approaching those of the ideal filament
can be approached and whether certain materials are better candidates than others for
continued development.
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In the crystalline monolith under tension, separation of the crystallites adjacent to each
other into ‘‘packets’’ or mechanical domains achieves a reduction in strain energy by form-
ing boundaries in which mass diffusion can more easily and rapidly occur. These bound-
aries will tend to capture impurity atoms and vacancy sites and act as dislocation sources.
The stress which can be transferred across them will be safely less than the cohesion of
the crystals (Reference 13). That such domain boundaries do form is indicated by in-
creased gas diffusion through strained crystals.

These intercrystallite boundaries are the source of real strength of the material in
tension. Formed along directions of easiest shear (determined by crystallite orientation
and by tensile direction) they may, depending on the diffusion mechanisms available
to them, act to produce dislocations, extend to form slip planes, or serve as nuclei for
the formation of more favorably oriented crystals.

In any of these mechanisms, part of the tensile strain energy must be absorbed either
by transfer (as elastic strain) to an adjacent crystallite, or by diffusion of mass in a way
which is analogous to plastic flow.* The result in both cases is an elongation of the speci-
men under increased tension.

In a ductile material, the forces necessary to supply an inward pressure on the speci-
men are provided by dislocation movement and slip along shear planes. If this movement

-ig prevented (Reference 14) these forces are unable to act and mass diffusion can no

longer occur. **

It can be seen, then, that both ductile behavior and the achievement of maximum strength
capacity in any material depend upon diffusion mechanisms which permit elongation; if
diffusion is slowed to a rate less than that demanded by the rate of loading, the material
will fail in a brittle fashion.

Whether or not a material is really weakened by becoming brittle is not known with
certainty; it is certainly true that all ceramics are weakened at sufficiently elevated
temperatures, but the relation between their strength and modulus is, in the absence
of phase transitions, usually unchanged.

It would appear from these considerations that the problem of brittle behavior might
be more easily attacked if some care is given to the measurement of tensile strength
in metals at temperatures just above and below the ductile-brittle transitions. (There is
little advantage in choosing alloys for this work, since they are nearly as complex in
their atomic structure and microstructure as the polycrystalline ceramics; however,
the relative ease in forming and machining most metals makes them attractive for such
a study.)

*Dr. Weyl has, on a similar basis, adduced evidence to show that glasses also have
a 2-phase structure.
**This has been demonstrated in an ingenious way. By brazing closely spaced copper
washers around a mild steel tension specimen, Dr. Shanley was able to achieve brittle
failure at higher than normal ultimate strengths.

***]t should be noted that most brittle materials are (apparently) strengthened and more

ductile where they are broken in tension under sufficient isostatic pressure. The relation
of this observation to this discussion is self-evident.

10



ML TDR 64-85

In concluding this part of the discussion it should be pointed out that continued elonga-
tion without adequate radial diffusion constitutes triaxial tension. Unfortunately, it is diffi-
cult to design an experimental loading system capable of producing triaxial tension. It
appears, since many materials which are adequately ductile in uniaxial tension arz sub-
ject to brittle failure in biaxial tension near their transition temperatures, that triaxial
failure would be still more abrupt. Experience with thin pressure vessels would support
this contention.

It is concluded, therefore, that the increased tensile strength which can be achieved
in a sufficiently thin filament is the result of the following causal conditions:

1. Critical flaws are fewer in the thin specimen,
2. Biaxial and triaxial stresses are less apt to be obtained in a thin specimen,

3. The stress gradient across or through the thin specimen is necessarily smaller
in the thin specimen,

4. Locked-in or residual stresses are less apt to occur or are smaller in a thin
specimen, and

5. The thin specimen, since it is not restrained by external material of the same
modulus, can adjust itself along the line of tension so that minor eccentricities of load-
ing can be tolerated.

Considerations Influencing Composite Design

In the interests of brevity, this report will be limited to the application of high~-modulus
materials for structural purposes. The enormous potential strength and high modulus of these
materials, coupled with the low density of some ofthemn are attractive for struc-
tural applications. It has been shown that this combination of desirable properties can be
achieved in some of them if at least one dimension can be very small. It follows from this
that the best approach for exploiting these materials is that of combining thin fibers or
flakes with one or more other less brittle materials into a composite structure.

The structural applications for which these materials would be best suited are:

1. Tension members, requiring maximum strength per unit weight,

2. Stiffeners, requiring maximum rigidity per unit weight, and

3. Flexural or torsion members requiring both strength and stiffness.

Each of these applications will be separately considered here.
Composite Design for Maximum Tensile Strength

It has already been shown that the maximum tensile strength which could be achieved
would be that of a bundle of fine fibers. Unfortunately, filaments of brittle materials are so
sensitive to surface damage and to local flexure that they must be protected against contact
with each other. This is normally done by attaching a thin coating to the fibers or filaments

immediately after they are formed.

11
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For structural purposes, however, a yarn or rope of brittle filaments is neither
practical nor effective; no two filaments are identical in size or strength, and no end
attachment system has yet been devised which will distribute the stress among the
filaments either equally or in proportion to their strength.

The most practicable solution appears to be the formulation of a composite in which
the fibers are separated and protected in a matrix of a second material. (For conven-
ience, the symbol F will hereafter be used to indicate the fibers, flakes, or filaments
of the stronger, more brittle material and the symbol M for the matrix.)

Alternatively, the same system might be described as one in which M acts as an
adhesive or binder to join the fibers together. Whether it is regarded as a matrix or
an adhesive, it is obvious that material M must act as a stress transfer agent between
adjacent fibers, and provide thereby a way out of the difficulties involved in making the
fibers as long as the tension member, Indeed, if M possesses the proper characteristics,
it can provide for the distribution of stresses more equally among the fibers than would
be possible in any other way now known.

It should be possible, then, to postulate an ‘‘ideal’’ material M in terms of its role
in a fibrous composite. This role will require that:

M should have as high a shear strength as possible,
M should have as low a compressive modulus as possible and

M should bond tightly (or be capable of shear stress transfer by an other mechanism)
to material F.

These requirements are worthy of discussion in some detail, since they are not always
recognized and are often misunderstood.

The requirement for high shear strength is an obvious one, but is, by itself, easily
achieved. In measuring the very high tensile strengths of laboratory filaments, the techni-
que is frequently resorted to of attaching the ends of the filament to the loading bar with
an ordinary gummed label. If this attachment is sufficiently strong to break the filament,
it is obvious that adequate shear strength is being provided.

It should be remembered, however, that both the shear strength and the shear modulus
of any material appear to increase with decreasing thickness to a maximum value. This
thickness will hereafter be called the critical thickness; it will, of course, be different
for different F and M materials.

It will also be affected by the geometry of the system. In any bundle of cylindrical
fibers, the closest distance of approach between two fibers is along the plane through
their axes. If this distance is greater than the critical thickness of M, the full ability
of the adhesive to transfer stress between them is not realized; if this distance is
equal to the optimum thickness, maximum stress transfer will be realized along this
plane but nowhere else.

If the content of M is reduced and compaction increased, the M layer may be reduced
between fibers to a thickness smaller than the critical value. If this happens de-wetting
may occur, permitting contact, or the apparent modulus of the shear layer will rise to
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so high a value that each of the fibers restrains the other as in the monolithic structure.

The problem is inherent in the packing of the fibers, and can be attacked only by pro-
viding fiber cross-sections which can be so packed together that intervening layers of M
are essentially flat. The cross-sections which will permit this are the square, rectangle,
rhombus, hexagon, or flattened hexagon. In view of the serious stress concentrations
associated with acute-angled specimens, it is doubtful that the rhombus or square can be
considered; the flattened hexagon and the rectangle can be approached by ribbons, flakes,
and oval cross-section filaments.

The second requirement, for low compressive modulus, stemgs from the requirement
that each filament be as free as possible to adjust itself to its stress environment. This
requirement seems at first to be incompatible with the attainment of high shear stress
transfer for any isotropic substance.

The matrix or binder phase M, however, is in reality a thin film interposed between
parallel fibers; its compressive modulus is less affected by film thickness than its
shear modulus. In consequence, for any geometry and composition of fibers and matrix
there will be a well-defined optimum proportion for each constituent at which the
tensile strength will be highest in the laminate. In the absence of a third phase (pores,
fillers, etc.) the laminate proportion which exhibits the highest strength can be used to
calculate critical thickness values for M.

The first requirement for M is that its shear strength be as high as possible. In the
transfer of unit stress from one fiber to another, the relative elongation of the adhesive
film will be approximately inverse to the ratio of the Young's modulus of M to that of F.

If the matrix material is insufficiently strong to survive this elongation it will fail by
shear, and the high potential strength of the filaments F will not be exploited. The relation
of this requirement to the familiar ‘‘extensibility’’ of polymers or the *‘percent elongation’’
in metalg, is immediately apparent, but often oversimplified.

In transfer of stress, it is generally stated that F and M must be strongly bonded
together; from this many investigators have assumed that secondary valence forces at
least must be utilized in obtaining adequate bonding. Yet, McGarry (Reference 15) and
others have shown that most fibers in glass-fiber-resin laminates are held by mechanical
hoop forces exerted by the high-shrinkage resins; in many of the strongest laminates the
resultant hoop tension in the resin is sufficient to produce microcracks parallel to the
fibers. Since these cracks are normal to the planes of shear stress, they do not, in them-
selves, reduce the tensile strength of the laminate in the direction of the fibers with
which they are asociated, but it is obvious that they must reduce the mean resin strength
in other directions, and provide corridors through which moisture or other weakening
vapors may attack the fibers.

Similar frictional restraint is achieved in the mechanism by which concrete is re-
inforced with metal rods or mesh, and similar microcracking is observed. The purpose
of using knurled or roughened reinforcing metal is that of increasing friction.

It is unwise to assume, however, that very fine filaments can be similarly roughened;

attempts to accomplish this by etching fibrous glass and beryllium wire (Reference 16)
have resulted in serious degradation of the filaments themselves.
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It is equally unwise to assume that continued improvements in laminate strength can be
achieved with resins of maximum curing shrinkage (or metal matrices of maximum thermal
contraction on cooling). It is obvious that this shrinkage, while it results in a beneficial
compresgive stress upon the high-modulus fiber, must be accompanied by comparable
tensile strains in the matrix material itself. For a cylindrical fibrous system this might
not be too serious, but for ribbon or flake geometries, the tension in the matrix would
be biaxial, and hence would cause not only weakening of the laminate but bending moments
in the flakes.

It therefore is not always reasonable to expect laminates made with flakes or ribbons
to be improved in strength by pretreatments or coatings which have accomplished this
purpose on cylindrical fibers. By the same token, it is unreasonable to expect that flake
laminates can be as strong in one direction as fibrous laminates having the same pro-
portion of F to M,

A recapitulation of the role of the matrix or adhesive must include the following
principles:

1. The proportion of matrix to fibers (or whiskers, filaments, flakes) should be as small
as is consistent with the method of layup or fabrication; any further increase in matrix
proportion will result in reduced strength.

2. The matrix material, for a unidirectional bundle of fibers, should be capable of ad-
hering to the fibers firmly without being weakened by residual longitudinal stresses;
shrinkage stresses can be tolerated and may be relieved by microcracking with cylindrical
fibers and whiskers.

3. The matrix material should have the highest cohesive (shear) strength achievable
with low compressive modulus.

Composite Design for Maximum Rigidity to Weight Ratio

There are three ways of building rigid structures. The first involves the use of gross
geometries which insure that bending moments will be resisted by a maximum thickness
of material; I- or T- section beams and rigid foams cellular or honeycomb sandwich
structures are examples of this for bending loads, and cylinder or L-sections for torsion.

The second also involves geometrical considerations but includes the possibility that
two or more materials can be used. For maximum resistance to bending in a single direction,
the upper flange of the I-beam is under longitudinal compression only, and the substitution
in it of a material of higher compressive modulus will often permit a reduction in weight.

The third involves the use everywhere in the structure of materials having the highest
possible moduli (in the direction of imposed stress).

The simplest illustration might be the simple column under a pure compression load;
if a maximum load at the least weight is to be borne it would seem that a monolithic
column of one of the materials from Table 1 might be chosen on the basis of its figure of
merit. (In certain instances such as those when a diamond indenter is used for micro-
hardness measurement, this is done).
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For columns of fairly large size, the monolithic approach becomes untenable; the
compressive strength of brittle materials decreases with increasing specimen size
just as the tensile strength does. The reason is, of course, the shear vector of com-
pression, which in anisotropic material is resolved as tension along a surface in-
clined about 45° from the compression axis. Under compressive loading, relatively
tiny radial forces can produce shear failure or spalling. *

For any real monolith, another source of brittle failure is the tensile component of
thermal stress. This will be proportional to the modulus, thermal gradient, and thermal
expansion of the material; it results in a tensile stress which,when added to that pro-
duced by the shear component, decreases its apparent load-bearing strength.

If to these are added the stress concentrations of inhomogeneities-and residuals,
it will become obvious that the monolithic column in compression must be seriously
overdesigned to provide safe support of pure compressive loads. It will be equally
obvious that utilizing the high-modulus material to best advantage will require that the
material, thin in at least one dimension, be properly used in a composite.

While filaments, fibers, and ribbons have been shown to be best suited for uniaxial
tension, they are not so well suited for compression. This arises largely through the
interaction of the geometry of the filament with the geometry of packing.

Around each filament in a parallel bundle under axial compression, the shear vector
at the interface is one of radial tension. Thus each fiber is stressed in compression in
such a way that it tends to force all neighboring fibers away from it. Because no two
fibers are equally strong, equally stressed, or surrounded by equally distributed matrix
material, failure will finally occur by delamination, or by buckling of the fibers most
strongly stressed, or both,

This failure can be minimized, as in the case of the tensile specimen, by making
certain that all of the matrix is present in layers of optitnum thickness. This can per-
haps be done with hexagonal or square cross-section fibers; it can certainly be done
with flakes.

It has been stated that there is, for any matrix material, a critical thickness such
that its effective shear strength and modulus is highest for a given compressive modulus.
In a fibrous system, this thickness cannot everywhere be achieved.

In a composite composed of flakes, however, the parallel flakes ideally can be separated
by layers of matrix of the optimum thickness. As a consequence, a greater proportion of
the flake material can be used in a given volume of composite; since the flakes are the
high-modulus material, the moduli of the composite itself are thereby increased.

* The spalling failure of marble and granite columns can often be attributed to the
stresses imposed by weathered detritus in (initial) Griffith flaws near the top. Similar
effects are observed with glass columns in moist air or in rods exposed to freezing
and thawing.

15



Mi. TDR 64-85

In a parallel-flake laminate, then, the compressive modulus is increased in every
direction in the plane of the flakes and is minimal in the direction normal to that
plane. (A similar anisotropy on the atomic scale is perceived in the strongly-layered
structures of graphite, MoS o s BN, and somewhat less notably in the illite and mont-

morillonite clays, gypsum, and layered interstitials like M0812 and the higher borides).

That this anisotropy is significant cannot be doubted; a typical flake glass laminate can
be made in which the longitudinal Young’s modulus is close to six million psi while the
flexural modulus is less than half as much. A laminate of this kind in an L- or T-section
would certainly exceed the stiffness to weight ratio now available in metal if it can be
made with flakes of the better materials of Table 1.

It has been claimed that flake laminates, since they cannot achieve the tensile strengths
of which fiber laminates are demonstrably capable, deserve no further study (Reference
17). It should be noted, however, that most attempts to develop or improve flake glass
systems have been based on the pretreatments, coatings, compositions, and laminating
procedures which had been developed to produce maximum uniaxial tensile strengths
with fibrous materials. In addition, there has been relatively little attention paid to
parameters which are vital to the application for which the composite is intended.

[t seems important, therefore, to compare flake and fiber systems more fully in
order to demonstrate the probable virtues and faults of each. This can most easily
be done by examining the design of a structural material which is to be both strong and
rigid at minimum weight.

Maximum Strength and Rigidity at Mimimum Weight in Tension

Since it is highly improbable that diamond fibers or flakes will soon be available, the
candidate material for this example will be beta-SiC (silicon carbide), chosen because it
is refractory, oxidation-resistant, relatively inexpensive, and already capable of being
reproducibly formed in whisker, flake, and compound-fiber forms. Slightly heavier than
B or Be, its theoretical bond strength and achievable modulus are commensurately higher.

Since single crystals of SiC have demonstrated tensile strengths well above 2 million
psi, it will be assumed here that with future development, a practical strength average of
about 1 million psi can certainly be achieved. Other mechanical properties are: Young’s
modulus, at least 50 million psi, shear modulus 21 million psi, Poisson’s ratio 0.2,
bulk modulus about 14 million psi. (For comparison, the fibrous glasses approach one-
fourth of these moduli respectively with about half the strength; the Poisson’s ratio of
most glasses is close to .25.)

It is not so easy to report meaningful mechanical property data for the matrix. The
data shown in Table 3 illustrate the difficulty encountered.

16



ML TDR 64-85
Table 3 (Reference 18)

Tensile Strength of a Titanium AHloy Reinforced With Mo Fibers

Temperature (°F) Ultimate Tensile Strength (psi)
Ti-6A1-4V 20 Vol. % Mo wire Ratio
75 112,000 140,000 1.25
1000 70,000 93,000 1.35
1200 40,000 68,000 1.70
1400 15,000 42,000 2.80

It is apparent that the stronger, stiffer chopped molybdenum wire contributes only
slightly to the strength of the alloy at low temperatures. As the composite is heated,
however, the modulus and strength of the matrix diminish, and the molybdenum fibers
carry a greater proportion of the load.

In this example, however, both materials are metals of reasonable ductility. What would
happen if one of them were brittle? The answer {and perhaps some insight into the directions
best taken by future development) is contained in Table 4 and Figure 1.

Table 4
Tensile Strength of Silver Reinforced with Al 2O3 Whiskers (Reference 19)
Temperature (°F) Ultimate Tensile Strength (psi)
Silver Silver with 35 v/o Al 203 Ratio
£ /d =100 £ /d = 300
75 17,000 67,500 74,500 3.97,4.38
800 (8500) | = =mmee- 72,500 (8.55)
980 6300 45,000 |  ------ 7.14
1280 (3000) (43,500) (70,000 (14.5,23.4)
1400 2000 (42,000) (66,000)  |(21.0,33.0)
1600 (1000) 38,200 |  ------ {(38.2)
1690 (650) | mememe- 48,000 (73.9)
1700 (500) | @ emee-- 40,600 (81.5)
1720 | ~---- 25,000 | meeeen [ emmeeeee-

Note: parenthetic values obtained by graphical interpolation.

Figure 1 shows graphically the information given in Table 3. The lowest curve shows
the ultimate tensile strength of silver (Su Ag) as a function of temperature. Note that the

relation is linear to about 1250°F. (The temperature threshold of self~diffusion in pure
silver has been reported to be 1280°F.) Above this temperature the metal achieves a
measgure of plasticity at ordinary loading rates, and the plastic deformation increases,
with decreasing strength, to the melting temperature (1760°F). These temperatures and
the annealing temperature (400°F) are indicated at the bottom of the graph. The tensile
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Figure 1, Strength Relations in Composites of Ag-Ale3 Whiskers
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elongation of pure silver at room temperature is around 48 percent.

The intermediate solid curve shows the ultimate tensile strength of a composite of
pure silver with about 30-35 volume percent of single crystal alumina whiskers in it.
The whiskers were selected (by a flotation process) so that their aspect ratio (length
to diameter ratio) is close to 100.

At room temperature, this composite is almost four times as strong as silver itself.
Since the length of the tensile specimen is many times longer than that of the whiskers,
there is no doubt that this strength is contributed by the whigkers, stress among them
being transferred by shear through the silver matrix.

At any cross-section of the test specimen, the stressed area consists of about one-
third alumina and two-thirds silver. If each makes an additive contribution to the strength,
that of the shorter alumina whiskers at room temperature, 1000°, 1400°, and 1600°F would
be 157,000, 117,000, 116,000, and 109,000 psi, respectively. At the same tempexature
levels, the calculated strength contributions of the longer fibers are 181,000, 193,000,
192,000, and 167,000 psi, respectively.

Obviously the longer fibers are no stronger than the short ones. Nor is there a mechan-
ism operating within them which increases the strength of the longer fibers alone at
intermediate temperatures. The explanation for these observations must lie in the
effectiveness with which stresses are transferred by the matrix among the fibers.

Also on Figure 1 is shown the average measured tensile strength of carefully prepared
single-crystal Al 203 {sapphire) rods over this temperature range. It will be observed

that the curve closely parallels that of the short-fibered composite, decreasing to about
1000°F. Above this temperature it increases and is still increasing at the melting point of
silver. It may be asserted that the observed decrease in strength is in some way associ-
ated with flaws and residual stresses in crystalline Al 203; as thinner specimens are

used the minimum in the curve diminishes and it is not observed in very fine filaments

or whiskers. The similarity in the strength-temperature relation for the alumina rod and
the short-fibered composite is either sheer coincidence, or it results from some strength-
limiting mechanism in the short-fibered composite and the rod which is not reflected in
the composite containing the longer whiskers.

Any valid explanation for this behavior must account for: (1) an apparent increase in
the strength contribution of the long fibers between room temperature and nearly 1300°F
without a similar increase for the short fibers, (2) the relatively rapid decrease in
strength of the short-fibered composite to 1000°F and the far less rapid weakening above
this temperature, and (3) the ‘‘ratio’’ data shown in the lowest curves.

It might still be argued that the decrease in strength (with increasing temperature) of
these composites must be attributed to the decreasing strength of the silver matrix. If
this were s0, however, the strength of the composite must continue to decrease with
further heating. Since this does not occur, one must not only look for another explanation
for the flattening of the curve above 1000°F, one must also presume that an increase
in strength is occurring in the alumina to compensate for the continued weakening of
the matrix metal. (Note that no substantial increase in effective shear modulus of the
metal is possible when all the specimens contain nearly the same volume percentage of
ingredients.)
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Before proceeding to a detailed investigation of the Ag-Al 203 system, certain note-

worthy aspects of it should be mentioned. Since silver has a much higher thermal expan-

6

sion coefficient than Al 203(2,2 x10 " vs. 4x 10-6/" C), it might be argued that large

tensile stresses in the silver are caused by cooling. The annealing temperature of silver,
marked-at the bottom of the curve, is about 400°F; since there are no observable changes
in strength near this temperature it seems safe to expect that the residual strains are
quickly dissipated at temperatures higher than 500°F and are quite small at lower tem-
peratures. It is worthy of note that there ig a small change in the modulus-temperature
curve of silver near 750°F (Reference 20).

Self-diffusion begins in Al 203 at 1275°F:  this might be regarded as an annealing

temperature, but no inflection in the strength-temperature or modulus-temperature
curves are observed near it. Since the composites are formed above this temperature,
it is improbable that interface bonding or penetration of the whiskers by the silver is
greatly changed by the temperature of measurement. '

The rapid loss in strength of both composites near 1700°F is, of course, due to melting
of the silver which is complete at 1760°F. (For composites containing a larger proportion
of whiskers, this softening would occur at a higher temperature.)

The fibers are certainly no less restrained in the AF = 300 specimens at a given
temperature than in specimens with shorter fibers. Being, on the average, three times as
long, they are more certain to be paraliel than shorter ones. Since there are only one-
third as many ends in a given volume of long fibers as short ones, the probability of in-
troducing stress concentrations between two adjacent butt-joined fibers is reduced
significantly; it is almost certainly responsible for the small increase in strength ob~
served at room temperature. That thie effect should increase at elevated temperatures
is absurd, since the importance of stress concentrations (or other local flaws) must de-
crease with the decreasing moduli of both materials.

It has been pointed out that the apparent strength of alumina rods decreases to a minimum
near 1000°F and thereafter increases. This phenomenon might be attributed (Reference 21)
to a static fatigue effect; at sufficiently low temperatures the rate of ‘‘corrosion’’ re-
actions necessary to accelerate bond failure in alumina is too small to be observed at
any but the slowest loading rates, while at sufficiently high temperatures the corrosion
rate is so high that it is not influenced by added stress (Reference 22).

Somewhere near 1000°F, therefore, one can expect the rate-of-strain sensitivity of

A1203 to diminish; at or above about 1250°F, self-diffusion is sufficient to permit some

unpinning of dislocations and result in increased strength. This effect persists to about
3200°F, at which recrystallization and creep become significant.

MODEL OF A FIBROUS PARALLEL COMPOSITE

Knowing that the alumina fibers are sufficiently refractory and inert to be dehydrated
but otherwise unaffected by the heating necessary to infuse them with molten silver,
that little diffusion of silver into the alumina will occur at any lower temperature, that
no phase changes will occur in either of them over the range from room temperature
to the melting point of silver, and finally that the alumina whiskers in these composites
are sufficiently protected by the silver matrix from external corrosion so that minor

20



ML TDR 64-85

differences in rate of loading will not introduce systematic errors, it appears that this
system is an excellent choice as a model for attempting to evaluate the factors which govern
the modulus and strength of fibrous composites.

The Ideal Model

Most attempts to derive stress-strain relations in a model of fibers are based upon the
transfer of stress from a cylindrical fiber in an external cylinder of matrix (Reference
23), with the agsumption that each fiber is so situated and stressed, and that the butt-
joints between fibers are so staggered, that an analysis of tensile stress in the whisker
and of shear stress in the surrounding matrix is symmetrical from the center of the fiber.
Despite these simplifying assumptions, the mathematical solutions are ponderous and
imprecise.

The model sketched in Figure 2 is more amenable to analysis. It consists of a hexa-
gonal array of parallel hexagonal whiskers, all having a common ‘‘diameter’ or least
dimension d, length £, and separation by a common radial distance f.

If a horizontal plane is drawn at the end of any ‘A’ fibers, it will intersect three “‘B"’
fibers, spaced 120° around it, at two-thirds of their length (measuring down); it will also
intersect three ‘‘C”’ fibers, also at 120° around it, at one~third of their length. One may
say that each fiber overlaps three neighbors with’a common length of ¢/3, and three
equally distant neighbors with a common length of 2.//3.

Two other slightly rearranged cells like this can be used with it to form a solid body
in all directions.

The space between whiskers is filled with matrix. Tensile shear operates on that
portion of the matrix lying between the facing parallel sides of adjacent fibers; the shape
of the shear unit is a rectangular prism of width d/V3 and thickness f-d. (For convenience,
the shear prisms may also be divided into lengths of ¢/3 and 2.¢/3.)

The material spacing of whiskers f is determined by the volume of fibers in the com-
posite, If the unit cell shown is chosen, its width (to the centers of the fibers) is D and its
area A is 0.866 D?. Of this area there are one whole fiber and six one-third segments of
adjoining fibers of area 0.866 d°, and the relation between volume composition and the
interfiber spacing f is:

- 3ad® d?
Volume % fibers = 100 x — =100 x—= 100 V
D® £ f

The *‘unit cell’’ for this model is a triangular prism containing one-sixth of each of three
adjacent fibers, one-half of the three rectangular, shear prisms joining them, and a tri-
angular prism ~of matrix material among them of side (f-d). It is assumed that the material
in this triangle does not take part in the elastic behavior of the composite, but acts as a
regservoir of material to permit plastic flow when the elastic limit of any shear prism is
exceeded.

Since the overlap of the C fibers with the A fibers is onlyf/S, one would expect the
elastic limit of the three A-C prisms to be reached first. For fibers of length ¢ and
hexagonal cross-section a = 0.866d° , the interfacial unit area of stress transfer is
0.192d £ . The ratio of areas .192d.f/a =.221 0 /d. If ¢/d (the aspect ratio of the
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Figure 2. Ideal Whisker Packing
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whisker) is 100, this ratio is 22.2, for whiskers with an aspect ratio of 300, the area
ratio would be 65.5.

It is quite obvious that these area ratio values cannot be directly converted into the
more familiar modulus ratios for the same materials without taking into account the fact
that the ends of the fibers are incapable of being highly stressed by the matrix around
them. As a consequence, the effective length of the fibers is somewhat shortened by a pro-
portion which depends on their diameter, their true length, the matrix proportion, and,
of course, the moduli ratio of whiskers and matrix material.

It is nevertheless true that below the elastic limit of the matrix, the strains at the inter~
face between whisker and matrix must be equal, and one can therefore equate the moduli
ratio to the area ratio, solving for a new value of ¢, .

Table 5 gives the data necessary to do this; since the modulus of Al 203 changes with

temperature far less than that of silver, raising the test temperature has the effect of in-
creasing the modulus ratio Ef/Gm.
Table 5

Change in Elastic Constants with Temperature

Temp E P Em* Gm E f/Gm
F) (psi x 10'6) (psi x 10'6) (psi x 10'6)
75 55 . 11.5 4.1 13.4
1000 51 8.5 3.0 17.0
1400 49 6.6 2.4 20.4
1600 48 5.2 1.8 25.7
*(See Reference 27.}

From the equation:

E
__.L=0,221’ﬁ9§.
G d
m

one obtains, for 10-micron thick whiskers, values of 6054 at 75°F and 780/» at 1000°F.

Dow (Reference 23, 24) indicates a similar but somewhat smaller decrease in effective
length based on moduli ratio; Figure 3 is taken from this work. It shows that higher
efficiencies in stress transfer result from decreased Ef/Gm ratios and larger whisker or
fiber proportions.

The fibers in the real composites described in Figure 1 are neither perfectly aligned,
spaced, nor entirely of one size; it is probable that ag much of the lowered efficiency of
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elastic stress transfer is attributable to this as to the “‘ineffective length’’ phenomenon.
It will be recalled that at 1500°F the 1000ufibers exhibited an average strength of about
115,000 psi while the 30004+ fibers exhibited an apparent strength of nearly 180,000 psi.
On the basis of this model it can only be concluded that the orientation, spacing, and
thickness variations in the short-fibered composite collectively result in lowering the
effective strength of the shorter fibers from the computed value of about 140,000 psi.

As pulling continues, the strains along the shared length of the interfacial material
become larger at the ends than in the middle. In theory the very high interfacial shear
stresses in the matrix will at some point be relieved by yielding. For cases where the
shear strength of the matrix is low and its modulus is also very low, the second whisker
cannot acquire much stress because the elastic strain in the binder is too small to
stretch it appreciably. If the binder beging to yield, however, ‘‘the load is transferred to
the filament in a relatively short distance, perhaps 16 to 20 filament diameters even when
the binder ig massive compared to the filament. The shear stresses produced near the end
of the filament are of the same order of magnitude as the tensile stresses applied to the
binder’’ (Reference 24).

On this basis, the difference between the behavior of the 1000-micron and the 3000-
micron compogites is readily understood. The former are simply too short for effective stress
transfer at low temperatures; shearing stresses are therefore induced in the silver
matrix which are so high that failure occurs in the relatively few whiskers capable of
‘carrying the load or at the interface along them. The effect, while large, is comparable
to increasing the modulus of the matrix rather than to true fiber reinforcement. This will
be discussed more fully in a later section of the memorandum.

At higher temperatures, the ratio E f/GIn is substantially increased, and plastic shear

begins in the matrix before many of the whiskers break. As a consequence, the whiskers
tend to accept a proportion of the load over a longer proportion of their length; in the
hexagonal ideal model, the load begins to be picked up elastically between shared two-
third segments when the E f/Gm ratio reaches about 23. In the 1000-micron whisker

composite above about 1000°F and the 3000-micron composite at all temperatures, and
as the temperature continues to increase, E f/Gm increases and ultimately becomes so

large that the composite fails through shear-tensile yielding in the matrix. It is important
to note, however, that both composites exhibit respectable ultimate strengths at 98
percent of the melting temperature of silver; elongations at failure are of the order of
two percent.

It follows that efforts to develop high-strength fibers will not be particularly effective
unless:

1. The fibers are very thin,
2. The fibers can be evenly distributed in the composite,

3. The fibers are sufficiently long to accept stress at the lowest E f/Grn ratio en-

countered, and

4, The matrix used is sufficiently low in shear modulus for effective stress transfer,
but sufficiently strong in shear to withstand loads approaching the failure load of the fibers
in unrestrained tension.
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Deviations from the Ideal in Real Composites

In the ideal composite pictured in Figure 2, it is assumed that the load transferred be-
tween adjacent fibers is wholly transferred by the prism of matrix material between them.
In a real composite this stress condition may be approached on the average, but local
areas must exist where misalignment or poor distribution of fibers are such that an un-
balanced bending moment is exerted on certain fibers. Under such conditions, the fibers
near this discontinuity act as if they are weaker than they really are.

In the ideal model, all fibers are assumed to be equal in cross-section and in strength.
In practical fiber manufacture or composite fabrication these conditions will not be satis-
fied. To compensate for the inevitable range of fiber diameters and strengths, it is necessary
to consider the probability that any fiber will exceed or fall below the ‘‘average’’ fiber
strength. This can be done by exhaustive, repetitive tensile testing of representative
fibers, but for the present a multiplier which accounts for misalignments, discontinuities,
and strength deviations can be used for semi-quantitative evaluation of experimental

composities. In some of the Al 203-Ag composites above, this multiplier is about 0.8;

about 80 percent of the strength of the alumina whiskers is realized.

A more serious defect in real composites arises from variation in diameter among the
whiskers or fibers used. A thicker whisker must be appreciably longer than the others to
carry its proportionate share of the load. It is less able to do so because it will, on the
average, be weaker, Still more important is the physical impossibility of obtaining the
same ‘‘critical’’ binder thickness in a composite containing fibers of different dimensions.
This will be amplified later.

Finally, it will be apparent that while it is possible to make a real composite in which
the length of all fibers is identical, it is highly improbable that ali or most of them can be
arranged so that joint discontinuities are well distributed. It should be pointed out, how-
ever, that thig objection is not overly serious when all of the fibers are initially long
enough so that when they break, the remaining portions will have an aspect ratio in ex-
cess of the critical value computed for the E f/Gm ratio. This is well shown by a simple

experiment performed by Rosen, Dow, and Hashin (Reference 23) in which a number of
glass filaments were bonded parallel to each other in a thin sheet of modified epoxy
resin. Figure 4 shows how, as these filaments break, the total load supported continues
to rise, the relation becoming approximately linear after about half of the filaments
have broken at least once.

The art of binding high~strength fibers together in a matrix of lower rigidity, then,
consists of balancing the mechanical properties of each and the geometry of the composite
50 that each fiber will carry as much of the load as it can, and when the weakest fiber
breaks, the stresses across the break will be transferred to other fibers in the most
effective way.

The answer to the perennial question, ‘‘How long should reinforcing fibers be for
optimum strength?’’ is one which is dictated principally by the ratio of the modulus of
filament to that of binder, and is limited by the strength of the latter. In a properly de-
signed composite, the answer is that longer-than-optimum fibers do no harm (except
where they may limit techniques of fabrication or the placement of other fibers).
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Throughout this discussion it has been presumed that the mechanical properties of the
fibers and of the matrix are truly those of the bulk material. It will be noted that the
Young’s modulus of 55 x 10° pei for bulk Al 203 (single crystal or polycrystalline cor-

rected to zero porosity) has been used rather than the static modulus measured on the
fibers themselves, in excess of 65 x 10° psi. In the same way, the shear modulus for
silver was calculated from its Young's modulus and Poisson’s ratio.

There, 1s no doubt that this oversimplification will lead to error if one of the con-
stituents, but not the other, is significantly changed by its conversion to a fiber or its
use as a binder.

For example, fine glass fibers are less dense, lower in modulus, and less hard than
annealed glass of the same composition. When they are heated they tend to increase in
density, modulus, and hardness; these changes are accompanied by a serious decrease in
strength. It would be a serious source of error, therefore, to predicate the properties of
glass fibers upon tiose of bulk glass. A similar decrease is observed when work-
hardened metal fibers are annealed.

The problem is made more acute by the difficulties inherent in accurate measurements
of the elastic properties of very thin specimens. Changes in dimensions, flaws, and varia-
tions in structure and surface musrt be observed by microscopic scanning. If flexural
modulus is determined by observing the fiber as a cantilever beam, the average of de-
flections measured when the fiber is turned over should be used. The accuracy of
measurement of the smallest dimension is, of course, critical.

Even when the fiber or whisker is in all other respects identical to the bulk material
(as is the case with most metals and non-glassy substances), it is noted that the elastic
constants of the fiber or whisker are higher. In some cases this effect is real; an ex-
ample is the increase in modulus of steel wool or drawn metals due to work hardening.

A classical example of potential error in estimating elastic constants for fibers and
flakes is inherent in their high surface to volume ratio. Where the surface properties
can or do differ sharply from those of the bulk of the material, care must be taken to
make certain that the surface condition of a fiber or flake is the same at the time of
measurement as it will be in the composite. Siliceous glasses, for instance, tend to
acquire a coating of chemically-bound water or hydroxyl ions very quickly after draw-
ing; as a consequence, glass fibers are weakened appreciably with age (unless stored in
a dry atmosphere), and this weakening effect is physically irreversible. When the glass
fibers are combined with resins in a laminate, the water generated by condensation tends
to be chemisorbed at the glass surface. Since this water film is far lower in modulus than
the glass, it acts to reduce the stress transfer between particles by the resin.

To minimize this unwanted effect, the glassfibers may be treated, immediately after
drawing, with a silicone or metallic coating; a second hydrophobic coating may also be
used (vinyl resins and aluminum metal are examples). In such cases, the error in
applying moduli based on the glass alone is appreciable.

A more congistent approach is that of rendering the fiber less sensitive to surface

reactions. The familiar “E'’ glass owes much of its worth to its unusually low free-
alkali content, and glasses in which relatively unreactive magnesium, strontium, or
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barium have been substituted for alkali elements are appreciably stronger in laminate
form. In the grinding wheel industry, free lime or other dehydrating agents are com-
bined with resins to absorb water which would otherwise attack the glass fiber rein-
forcement.

A similarly absorbed water layer forms on many oxide surfaces. On Al 203 and

Zx0 9 however, this water layer can be driven off at temperatures insufficient to
weaken the fiber; it is largely for this reason that the Al 2()E,)-Ag system has been
used here to illustrate the elastic-plastic requirements of a high~strength laminate.

The Concept of Critical Binder Thickness

The fibrous ingredient of the laminate is not the only feature which should be scrutin-
ized, however,. It has been pointed out that the shear modulus of any substance appears

to increase with decreasing thickness. (There is little doubt that A1203-Ag composites

containing more than about 50 v/o of alumina would be both stronger and more brittle,
but that the temperature at which they would still support some load would be still
higher than for those discussed here.)

This increase in shear modulus must be taken into account whenever the geometry
of the composite is such that the matrix or binder cross-section ig locally thin. While
it is not presently possible to predict its magnitude, it is necessary to recognize its
importance.

In classical mechanics, the shear modulus of an isotropic solid is given by:
G=E/2l +.)

where G is the modulus of rigidity in shear, E is the modulus in tension, and_ce
is the Poisson’s ratio.

In the case of an adhesive layer bonding two plates of more rigid material, it is
invariably found that both the strength and the rigidity of the joint are maximum for
a given ‘‘critical”’ thickness of the adhesive layer. Thinner layers apparently do not
adequately fill the joint oxr wet both mating surfaces, while thicker layers are limited
by the strength and cohesion of the softer material.

This effect has been observed not only with organic adhesives but with glass-to-
metal seals, brazing alloys, solders, and refractory mortars. A familiar instance is
the excellent adhesion obtained between gage blocks or polished glass plates with a
thin water film.

The most widely accepted explanation is one which recognizes the interfacial energy
of wetting between the adhesive and the substrates. In a thick film the adhesive can de~-
form in response to axial tension or shear on the plates, and its response to tensile
stress will be dictated by its tensile and shear moduli. If the plates are plane and
parallel, the thick adhesive layer will deform by a process comparable to necking.

As the adhegive fiber is made thinner, a point is reached at which the restraint
against inward movement of the adhesive provided by its bond to the plates is suffi-
cient so that necking cannot occur. The plastic flow associated with necking is thereby
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denied, and the adhesive exhibits a higher modulus and strength than are apparent in the
thicker joints. A somewhat more complex explanation is required to explain the similar
sensitivity of sealing glasses to thickness in the bonding of ceramics to each other or to
high-modulus metals because of the requirement that the glassy layer be sufficient to
wet and to dissolve both ceramic and metal oxide to establish an adequate interfacial
bond, but the same general trend of increasing strength and apparent modulus is ob-
served as the thickness of the glassy layer is reduced.

In essence, then, a very thin layer of material can be so modified by attachment to
adjacent surfaces that it no longer behaves in an isotropic way. Under these conditions,
Poisson’s ratio ceases to have a real meaning, the shear modulus approaches the tensile
modulus value, and the adhesive layer breaks in a brittle fashion in tension.

It is not generally recognized that the strength and apparent modulus of a composite can
be so drastically increased by thinning the adhesive; the reason for this lack of recogni-
tion is readily apparent if one looks at the geometry of the laminates with which most in-
vestigators have worked.

In an assembly of close-packed uniform cylinders, the void volume is 9.3 percent of
the total volume, ragardless of cylinder diameter. In a perfectly packed system of uni-
form glass fibers and binder, then, the fibers will just touch each other when they
occupy 90.7 percent of the bundle volume. At this level of binder (if it can be achieved),
the binder thickness is certainly lesg than the critical depth necessary for stress
transfer.

An increase in binder content can be regarded as adding an annulus of binder around
each fiber. If d. is the fiber diameter and D-—df is the distance between them, then:

f
' Vf = 0.907 dfa J/DP
from which the ‘“‘minimum binder film thickness’’ D—df can be calculated for different

composite proportions and different fiber sizes. The results are shown in Figure 5 for
all compositions of 2, 10, and 20-micron fibers.

Suppose that the ‘‘critical’’ binder film thickness is, for a given combination of fiber
and matrix materials, close to 7 microns. It can be seen that for bundle composites of
20-micron fibers this is approached at Vf = 50 v/o, for 10-micron fibers at 31 v/o,

and for 2-micron fibers at less than 10 v/o. In terms of establishing a similarity of
binder behavior, then, the tendency toward comparing a number of laminates contain-
ing fibers of different sizes is unrealistic. More importantly, the report ‘‘strength’’
contributions made by the fiberg will be systematically in error.

In most real bundle laminates, both the ideal hexagonal model and the close-packed
cylinder model give inexact solutions, the first overestimating the stress-transfer

matrix volume, the second underestimating it. For the Al 202-Ag composites, the hexa-

gonal model is quite exact because most alumina whiskers are hexagonal in cross-section.
For 10-micron fibers, the hexagonal model gives a binder thickness of 6.9 microns;

the cylinder model 7.4 microns. The error is not large, and can be corrected for. It

is completely overshadowed by the larger errors introduced when composites of

differing fiber diameters are compared without recognition of the profound influence

of binder thickness on stress transfer and strength.
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It should be noted that changes in fiber length can be made without introducing
similar errors, even when the fiber length is only slightly more than that dictated by
the E f/Gm ratio.

It cannot be said that a bundle lJaminate has yet been made which optimizes the
potential strength of the fibers or whiskers now available. It has been shown here

that the AlZOS-Ag laminates possess a more favorable balance of elastic properties

at about, 1000°F than at room temperature; at that temperature, however, the silver is
beginning to weaken. To provide thinner silver stress-transfer volumes requires
finer whiskers or lesser proportions of silver in the matrix; either or both of these
should lead to the development of stronger composites. The substitution of Ni for Ag
will, of course, improve high-temperature strength but will add to low-temperature
brittleness.

A similar situation exists in most fibrous glass-resin laminates, in most of which

the E f/Gm ratio is even less favorable than that of the Al 203-Ag system. In most

instances, the inordinately large resin proportion is recognized, and intensive work
has been done to develop ‘‘high-modulus’ resins to achieve more favorable Eg /Gm

ratios. Since most of these resins are relatively more viscous than those of lower modulus,
the results have not been encouraging. It seems reascnable, therefore, to pursue an
opposite course by working with resins of minimum viscosity in laminates containing
smaller resin proportions if maximum strength is to be achieved together with high
modulus.

Desgign of a Laminate using SiC Fibers or Flakes

Starting with the knowledge that the Young's modulus of beta-gilicon carbide (the
most easily vapor-deposited form) is nearly 70 x 10° psi at room temperature and
about 60 x 10° pei at 2000°F, one can postulate that whiskers or flakes of it having any
dimension smaller than about 12 microns should be capable of developing tensile
strengths comparable to that of the 10~-micron alumina whiskers - about 10° psi.
Thinner whiskers or flakes should, of course, be stronger, but more difficult to handle.
The advantage of SiC over Al 20 3 is, of course, its higher potential strength to weight

ratio.

In selecting a suitable matrix material, the processes of mixing, forming, and curing
must be congidered. Silicon carbide after long exposure to air is normally coated with
a thin film of amorphous SiOz. This can easily be removed by washing with dilute HF

solution. Other pretreatments may be suggested according to the matrix material used.

In view of the fragility of the whiskers or flakes, it would appear that the latter
might best be handled from a slurry or suspension of volatile fluid. For shapes of re-
volution a centrifugal casting process can be used; for complex shapes vacuum form-
ing or slip casting in a porous mold would appear to be appropriate. In all cases, the
flake geometry will insure parallel deposition if the rate of evaporation of the suspend-
ing fluid is balanced properly with the rate of flake deposition so that bubbles or blisters
do not form.
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For whiskers or fibers, a means of insuring parallelism is needed. Mechanical
orientation by transferring them from a longitudinally stretched belt to a tacky surface
may be required. Longer whiskers will be more easily aligned.

Forming the laminate must involve methods which will permit optimum packing with
minimum breakage. Parallel tape layups and screen or film transfer techniques can be
used for whiskers; the flakes may be combined with resin or with inorganic colloid
binders from the slurry stage.

The importance of curing shrinkage and thermal coefficient of expansion has already
been discussed. The latter increases in influence with increases in modulus and, of
course, with broadening of the range of temperatures to which the composite will be
exposed.

The selection of the matrix material is critical; the criteria to be considered must
include the following:

1. The mechanical properties of the matrix must be such that the high strength and
modulus and low density of the fibers or flakes will be exploited. This criterion involves
theoretical and experimental examination of the matrix to establish its modulus to
temperature relation and its modulus to thickness relation (see later discussion of
evaluation techniques).

2. The chemical characteristics of the matrix must be guch that it will survive the
necessary processing steps, will wet and adhere strongly to the aggregate material with-
out undue interdiffusion at maximum temperatures anticipated, and will maintain its
characteristic properties under storage and service conditions.

3. Candidate matrixmaterials should be considered on the bases of density, avail-
ability, cost, and processing requirements.

For use with SiC, a variety of matrix materials are worthy of consideration. The
listing below is not exhaustive but is intended to indicate such a selection process.

a. Materials of maximum refractoriness: Refractory metals (other than Mo and
W), SigN & BN, SiC foam, carbon and graphite, mullite, alumina hydrate colloids,

zirconia colloids, reconstituted micas, Au, Pt, etc.

b. Materials of maximum modulus to density ratio; beryllium, magnesium, and
aluminum alloys and light-metal intermetallics, titanium and vanadium alloys, carbons,
graphite, BN, AIN, AlP, etc.

¢. Materials for maximum strength to density ratio composites: Cr, Si, Co, Ni, Ti,
V, Rh, Ag, Pt, Au, Al, Mg (doubtful) alloys, over-cured polyesters, fused silica, FA re-
sins, glasses (CaO.FeO.SiOz), keratin proteins, polyamide-epoxides, reconstituted pro-

teides, polyimides, phenolics, etc.
It will be obvious that the application for which the composition is intended will bear
most strongly upon the selection of candidate matrices. The list can further be shortened

by eliminating materials which can be emplaced only by techniques which would damage
the aggregate material, SiC in this instance.
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Having selected several candidate matrix materials, experiments to establish wetting,
adhesion, interdiffusion, and mixing, forming, and processing techniques may be applied
as required.

TESTS AND PROPERTY DATA FOR COMPOSITES

For the simplest structural applications, the evaluation of critical properties is
usually performed through well-established testing techniques. Of these perhaps the
best-known are tests for tensile, flexural, compresgive, and torsional strength and
modulus values. Somewhat more complex tests for creep, fatigue, notch toughness,
impact-resistance, thermal-stress resistance, and hardness have been developed as
needed.

In almost all cases, these tests have been developed for and applied to relatively
ductile substances. It has only recently been recognized that, unless applied with great
care, these tests (and the calculated results from them) are of doubtful value. (It is
understandable, for instance, that the strength of a brittle material should be sensitive
to size effects, but the finding that elastic moduli are also affected by size suggests that
either the finding, or the concept of modulus, should be reviewed)

The importance of stress relaxation mechanisms (mass diffusion, dislocation genera-
tion and movement, stress-induced polarization, vibration coupling, and thermal effects}
has been recognized in connection with strain-rate sensitivity, fatigue, and notch tough-
ness. The absence of many of these mechanisms in brittle materials is not so widely
recognized.

It is often assumed, since virtually all structural composites consist of high-modulus
members or aggregates joined by material of lower modulus, that the composite can be
treated as if it were homogeneous and ductile. The discussion earlier in this report will
have served its purpose if these assumptions are hereafter questioned.

There appear to be no easy, shortcut approaches to obtaining an understanding of the
mechanical behavior of these composites. Attempts to obtain meaningful measurements
of such properies as elastic moduli and dengity can be justified for preliminary screen-
ing, but the uninhibited use of these property values for evaluation among materials of
different structure has undoubtedly obscured some of the principles discussed here.

A single test can be used to illustrate this. Perhaps the most common procedure for
measuring the strength of brittle materials is the familiar ‘‘modulus of rupture’ or
‘‘bend”’ test.

This test, hereafter called the flexural test, consists simply in loading a bheam of the
material at one or more points between two supports. The maximum stress at fracture
is defined as the ‘‘flexural strength’’. This maximum stress is defined as:

Mc
Srnax -
1

where M is the bending moment at the point of rupture, c the distance from the extreme
fibers (where failure is initiated) to the ‘‘neutral axis ' of the beam, and I is the moment
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of inertia of the crosgs-section about the neutral axis. For a rectangular beam of thickness
d and width b supported over a span L the formula:

_3PL
2bd?

S
max

is frequently used, P being the failure load imposed at the midpoint of the specimen.
It is not always recognized that this formula presumes the following:

1. The original transverse plane of the specimen from which moment calculations are
made remains a plane, normal to all longitudinal fibers during bending. This assumption
is justifiable only if deflection at failure is very small.

2. The material of the beam follows Hooke's law of linearity between stress and strain
80 that the stress distribution is linear across the bent beam, and is everywhere directly
propertional to the distance from the neutral axis. This asgumption cannot safely be made
for inhomogeneous materials and is certainly invalid for the anelastic behavior of the
matrix material.

3. The stresses on the beam are pure bending; that is, neither shearing, torsional, nor
tensional forces are additionally applied. It can be shown that unresolved shearing forces
exist as a wedging action in ordinary mid-point loading, that torsional forces exist unless
unusual care is taken to insure against them, and that tensionforces on the loaded surface
are introduced by frictional restraint, introducing a bending moment oppoging that being
applied and measured. While any or all of these non-bending stresses can be more or less
compensated for, the ‘“‘corrected’” values are always open to some question and are
seldom reported in the literature. In some cases the corrections are large; for a co~
efficient of friction between beam and supports of 0.4, a correction of 12 percent should
be applied to the ultimate fiber stress for 3-point loading, and for 4-point loading the cal-
culated stress should be reduced by 16 percent.

4. The material behaves equally under tension or compression; its compressive and
tensile elastic moduli are equal. It is in this respect that most fibrous composites do not
accord with the idealized, homogeneous, isotropic substances for which the flexural
strength equation was developed.

It is not the writer’s intention to suggest that flexural testing be discontinued; indeed,
bend testing is frequently the most practical and direct way of comparing a variety of
solid materials with each other. It is strongly recommended, however, that bend tests in
which the deflection at failure is several times the thickness dimension of the specimen
be regarded with suspicion, and that ‘“‘ultimate fiber strength’’ values obtained in bending
(after correction for wedging and friction) which are much larger than the highest uni-
axial tensile strengths for that material should be a cause for reappraisal of the testing
technique used.

It has been noted earlier that in composites, each of the components is likely to affect
the other, leading to “‘residual stresses’’ affecting the stress situation at the time of
testing. It has been shown (Reference 25), for instance, that in a glass-reinforced resin
composite, the curing shrinkage of the resin is opposed by the high-modulus glass, lead-
ing to residual tension in the resin layer adjacent to it. In a uniaxially stressed bundle
composite, the superimposed tension load will be added to this longitudinal residual stress,
and the bundle may be weakened.
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In flexure, however, the axial compression on the loaded side of the specimen will
act in the same direction as this residual stress; the combined compression along the
fibers may introduce bending moments in them sufficient to cause buckling and delamina-
tion,

The danger, then, in applying conventional mechanical tests to laminates lies not in
the data obtained but in the possibility of application of principles and interpretations of
doubtful validity, Until an adequate body of knowledge can be applied to such data they
should be acquired with unusual care and applied with extreme caution.

SUMMARY

It is doubtful that the state-of-the-art of the macrolaminates discussed here will benefit
from increased theoretical studies in micro-mechanics. In the simplest of systems, a
longitudinally reinforced ideal beam, the application of a bending load can be shown to
introduce stress and strain distributions in fibers and matrix which are presently beyond
rigorous mathematical solution. The fibers are multiple elastic inclusions in the elastic-
plastic matrix, and are subjected to load only because of their interaction with it. The
leads upon them, and their contribution to the elastic properties of the beam, depend on
their elastic properties, their size, number, distribution, shape, and length as well as on
the elastic properties of the matrix and of the bond between them.

An attempt has been made in this discussion to show that many of the principles needed
to isolate and define the most important parameters for composite development can be
obtained by precise experimentation with carefully selected materials. It is strongly re-
commended that such work continue to be supported.

It has been amply demonstrated that brittle materials are less forgiving toward minor
errors in alignment, finish, dimensional tolerance, and discriminating care in selection,
handling, and mechanical loading than are ductile ones. It is strongly recommended that
the whole practice of mechanical testing (and the calculating and reporting of property
data) be critically reviewed both for brittle materials and for composites containing them.
As a part of this critical review, certain techniques and practices should be advanced as
tentative standards.

It cannot be too strongly emphasized that the probability of achieving an optimum com-
posite system will be greatly improved through recognition of the following principles:

1. A designed composite consists of two or more materials which, in interacting with
each other, permit the whole to achieve some property or properties not possible with
either material separately. It follows that any composite must and should be tailored to-
ward the performance of a specific tagk; it also follows that there ig little probablllty of
optimizing any compogite system for a wide variety of applications.

2. The simple laws of volume proportionality, although applicable for characterizing
such properties as density and elastic moduli, are not applicable to composites in which
the shape, size, size distribution, and/or the orientation of either or both components
can be varied. It follows that each of these must be adequately defined and controlled.

3. Interactions between the two or more components of a composite may be sufficiently
important to negate or reverse the behavior expected on the basis of bulk behavior. It is
only infrequently true, for instance, that the mechanical behavior of a brittle polycrystalline
solid can be predicted from or related to the mechanical properties of the single crystal.
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4. For achieving maximum strength, the high-modulus material must itself exhibit
great strength. This is greatest when one or two of its physical dimensions is as smalil
as possible, certainly less than 12 microns (one-half mil).

5. To exploit the high strength of the strong component, it must be evenly distributed
in a matrix with which it is chemically and physically compatible. A principal require-
ment for the matrix is that it can be formed or shaped in the presence of the strong
component.

6. Geometrical considerations in any laminate may dictate the system to be employed
for optimized properties. For example, no system will exceed the well-packed fiber bundle
for uniaxial tensile strength, but if high shear strength or biaxial strength is required, a
flake laminate (or combined flake and fibrous laminate) will be better.

7. The illogic of expecting a laminate to develop higher strength in two or more
dimensions than in one must be recognized.

8. As the proportion of matrix material is reduced the effective shear modulus of the
matrix increases. It follows that great benefits can be derived from decreasing the matrix
proportion as well as from developing matrices of higher modulus.

9. Techniques for aligning fibers, whiskers, and flakes require development if opti-
mum composite structures are to be achieved. The infiltration of these with matrix will
always be difficult. Efforts should be made to precoat the aggregate with matrix prior to
consolidation to insure optimum matrix film thickness, and efforts to obtain fibers,
whiskers, and flakes of optimum and controlled dimensions are vital.

10. The “‘ ideal’’ composite will undoubtedly be achieved when the aggregate fibers or

flakes can be precipitated or grown in situ in the laminate. Mechanical working of the
mixture to obtain proper aggregate shape and alignment will undoubtedly be required.
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