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SECTION I

INTRODUCTION

The theory of thermoelasticity is concerned with predicting the thermomechanical be-
havior of elastic solids. As such, it represents a generalization of both the theory of elastic-
ity and the theory of heat conduction in solids. The development of the modern theory of
thermoelasticity began with Duhamel’s celebrated memoir of 1837 Reference 1, and has been
the subject of intense research in recent years. Extensive references to previous work can
be found in the survey articles in References 2, 3, and 4, and in the books of Boley and
Weiner, Reference 5, Nowacki, Reference 6, and Parkus, Reference 7,

Despite over a century of research on thermoelasticity, many problems of current
interest are intractable when solutions are attempted by classical methods. This fact has led
some investigators to consider numerical procedures for solving thermoelasticity problems,
and some attempts at finite element formulations of various problems of thermal deformation
have been made. Early applications of the technique considered the temperature distribution
of a certain body as a known function of time and the material properties of the body as being
given by empirical functions of temperature. Then incremental loading procedures were
used to predict a step by step response of the body due to successive temperature and load
increments. All coupling between thermal and mechanical effects was ignored in these
analyses. Finite element formulations of the heat conduction problem, without mechanical
coupling, are given in References 8 and 9 and finite~element solutions of a class of thermo-~
elastic problems are considered by Visser, Reference 10, who developed equations based on
Gurtin’s variational principles for linear initial value problems, Reference 11. Visser
confined his attention to uncoupled thermoelasticity. The first finite element formulation of
the coupled thermoelastic problem is apparently that given recently by Nickell and Sackman,
References 12 and 13, who, following Gurtin’s work, Reference 11, developed appropriate
variational principles for a class of linear thermoelastic materials. Nickell and Sackman
considered the one-dimensional initial boundary-value problem of the thermoelastic half-
space with boundary layer thermal conductance and the problem of a half-space subjected
to ramp heating at the surface boundary, We also consider this problem in Section IX of this

paper,

The present paper considers the development of general finite-element models for the
analysis of coupled thermoelasticity problems. The general dynamical theory is considered,

and the resulting equations are sufficiently general to include those previously presented
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as special cases, A significant feature of the analysis is that the finite element equations are
derived from general energy balances, thereby freeing the development of finite element
models from a dependency on the availability of suitable variational principles.

Following this introduction, the general field equations for thermoelasticity continua
are reviewed, and local and global forms of the first law of thermodynamics and the Clausius-
Duhem inequality are presented. It is assumed, as is customary, that the Helmholtz free
energy is a differentiable function of the instantaneous strain and absolute temperature;
but specific forms of this function are not introduced until later. Attention is then given to the
development of general finite-element representations of the displacement, velocity, and
temperature fields which are used in energy balances for typical finite elements. This results
in coupled equations of motion and heat conduction for such elements. It is then shown that
the notions of generalized nodal heat fluxes and entropy fluxes come about naturally in the
analysis. Several types of boundary conditions, including specified boundary temperatures,
heat fluxes, and those for convective heat transfer, are examined. Finite element equations
for general forms of the free energy are presented, but special emphasis is given to the

classical quadratic form for linear anisotropic solids. Numerical examples are included,
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SECTION II

THERMOMECHANICAL PRELIMINARIES

Consider a continuous body B under the action of a general system of external forces
and prescribed temperatures. To trace the motion of the body and the time variation of its
temperature, we introduce the time parameter T which is assigned the value zero in some
reference configuration C of the body. Preferably, we select some natural, unstrained state
under a uniform temperature T to correspond with the reference conﬁguration. In the
reference configuration, we estabhsh an intrinsic (embedded) coordinate system x- i=1,2,3)
which is etched onto the body and which, for simplicity, is assumed to be rectangular carte-
sian at T = 0. At some later time T=t, the body occupies another configuration C and the
rectangular cartesian coordinates of a particle in C which was initially xi in Co’ relative to a
fixed rectangular coordinate system in C are denoted Zj. The set of three functions,
Z, (x:l x2 x3, t) = zi(z,t) defines the motion of the body relative to the reference configuration.

We postulate that the behavior of a volume v of the body of surface area A is governed by
the following fundamental physical laws:

1. Balance of Linear Momentum

f,oouldv = [pF oy, + [ 5. (1
v A
(o} 8]
2. Balance of Angular Momentumn

fpe zudv fpe dev +f zSdA {2)

0

3. Conservation of Mass

f‘%dvo=fpdv (3)
v
4. Conservation of Energy

fpuudv +fpedv prudv +fSudA

VO 0

hd d (4)
+fpo vo +.};qini Ao )
v

0
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5. Clausius-Duhem Inequality

[rh 00, =[5 gay, = [ gnon
‘:) A

0

IV
o

{5)

The quantities appearing in these equations are defined as follows:

Py P
v = volume of the body in C0 and C

mass densities in configurations C0 and C, respectively

Ao’ A = surface areas of the body in C0 and C

u = 7 (x,t) - X, = components of displacement relative to X, in Co
Fi = components of body force per unit mass in C referred to X
Si = components of surface traction per unit ‘‘undeformed area’ (area in C O)

referred to X

n, = components of a unit vector normal to the surface A0

€ = internal energy per unit mass in the ‘‘undeformed configuration’’ C0
h = heat supplied per unit mass in Co from internal sources

q = components of heat flux per unit area in C0 referred to X

n = entropy per unit mass in Co

g = absolute temperature

The superposed dots (- ) in these equations indicate time rates and the entropy flux and
entropy source supply are assumed to be given by ql/Q and h/@ respectively. If ol are the
components of the stress tensor perunitundeformed area referred to the convected coordinate
lines x* in C, then

S; o™z (6)

where here a.nd in the following the comma denotes partial differentiation with respect to the
x (1eaz/ax ij)'

¥

Under suitable smoothness assumptions, the following local forms of Equations 1 through 5

can be obtained
o _ M e
Py u. =to zi,j),m+PoFi (7)

crij = ol (8}
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p, = PG (9)
g
Po € Yij t a5 TRk o)
N2 -+ (i
Here
Yij ='Ié[ui,j+”j,i +“k,i”k,j] (12)
is the strain tensor and
G = det (8, + 2y;;) (13)

We now introduce the specific free energy ¢ and the internal dissipation o defined by
(# = € —7)8 “4)
0'=o"j)'f”—po(q':) +n8) {15)

so that we have the dissipation inequality

|
a—gqie,i >0 (18
and Equations 10.and 11 become
. _ I' . _ 4 .
;:»0:.-#>-cl'l'y‘j po'r)a o (17}
,oOEH;=qi'.| tpht o (18)
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SECTION I

EQUATIONS OF THERMOELASTICITY

Fundamental assumptions of the theory of thermoelasticity are that the internal dissi-

pation is zero and that the specific free-energy is a differentiable function of only the instan~
taneous strain and absolute temperature:

o=0 (19)
¢ = $(7” , 8) (20)
Thus
. o 3 ;
T —y |
¢ d}f” y'} + a—g 6 (21)
and from Equations 17 and 18 we have
3¢
o,. =p —— (22)
i) o dylj
A
3¢
= - (23)
KT
PEN =q. .+ pn (24)

Equations 22 and 23 are constitutive équations for the stress and entropy. To these must be
added an independent constitutive equation for the heat flux q;- It is customary to take the
linear Fourier law of heat conduction as a first-order approximation:

q, =klj9,j (25)

where the kij are coefficients of thermal conductivity,

The basic equations of motion and heat conduction of coupled thermoelasticity are
obtained by introducing (22) into (7) and (23) into (24):

3¢ L
(aymjzi,i),m+PoFi 2 Pyl (26)
A
¢
PY K- R ah 7
pad,(aey {kija,j),i+ph (27)
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The classical linear equations are obtained by assuming further that
B(x,t) = T, + Tix,t) {28)

where T is a uniform reference temperature and T(x,t) is a temperature increase such that
| Tx.t) | << T and the displacement gradients u, i are sufficiently small that their products
with themselves and T{x,t) can be neglected in comparison with terms linear inu, i and T,

SECTION IV

FINITE-ELEMENT APPROXIMATIONS

We now undertake the construction of finite-element models of appropriate fields ap~
pearing in the basic thermoelasticity equations. In the present analysis, these are taken to
be the displacement field ui(g_c_ ,t) and the temperature field g (5 ,t) (or the temperature in-
crement field T(’i RAYE

Following the usual procedure, we consider the body to be approximated by an assembly
of a finite number E of discrete elements of relatively simple geometric shapes, connected
together at various nodal points in such a way that the collection of elements forms a con-
tinuous body, with no internal gaps and discontinuities other than those which appear in the
actual body it represents (Figure 1). Then, confining our attention to a typical finite element e,
we approximate the local displacement and temperature increment field over that element by
functions of the form

u1(5,11=¢N(1)uNi(H (29)

and
Tix,t) =y (0T (1) (30)

where the repeated nodal indices N are tobe summed from 1 to Ne, Ne being the total number
of nodes belonging to element e. In these equations, Uy are the components of displacement
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Figure 1

of node, N, TN is the temperature (temperature change) at node N, and the interpolating

functions -,[;N( X) = q;N © ( X ) for element e are defined as follows:

0 if x = xi does not belong to element e

wN(e ) (2!

if node M of element e with coordinates
ay = x'Mis identically node N of the

q’Nie)L’EM’ 3 element (3

O if otherwise
These properties, of course, are recognized as those of generalized lagrange interpolation
functions (generally taken to be polynomials) defined locally over each finite element. Later,
we shall affix labels (e) to the local fields u, and T of Equations 29 and 30 to distinguish those
associated with one finite element from those associated with another,
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The absolute temperature over an element is then
Bix,1) = T + Y21 Ty (32)
where dependence of TN on time is understood. Moreover, from Equation 12, the components

of strain in the element are

L
% ° 2[‘pN,i”Nj M T "’N,k“’m,k“m”mi] (331

where i, j,k=1,2,3 and M, N=1,2,... Ne' The last term on the right side of Equation 33

is surpressed in the case of small strain gradients.

The formal assembly of local displacement and temperature fields is accomplished by
means of the Transformations 14 through 17.
le)

Ui te) " LVAYA; {34
_nle)
Tater = EnATA (35)

where U Ai and T A are global values of displacement components and temperatures at node A
of the assembled system of elements and

| if node N of element e coincides
(e) _ with node A of the assembly of eiements

'Q'NA

(36)
0 i f otherwise

In (34), the repeated global node index A is summed from 1 to G, G being the total number of
nodes in the assembled system of elements. Equations 34 and 35 of course, represent a
mathematically formal procedure for assembling the local fields. In applications to linear

problems, simpler devices can be used.

The complete finite-element representations of the fields ui( X,b) and T(x,t) over the
body can now be written in the forms

E t(e)

TN =e>2‘ LAY Nie 1 BVA (37)
: o

Tixn=2 nAY N 2 TA (38}
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SECTION V

EQUATIONS OF MOTION AND HEAT CONDUCTION
OF A THERMOELASTIC FINITE ELEMENT

To develop finite element models of various physical problems, it is necessary that
means be available to translate a set of relations that hold at a point (local equations} info
relations that hold for a finite subregion (global equations), Customarily variational principles
are devised for this purpose, but any means of converting a local relation into a global one,
such as the local and global forms of the energy balances, can also be used. Indeed, a point
relation is to a continuum as the equations governing a finite element are to the discrete
model of the continuum.

With these observations in mind, we temporarily confine our attention to a typical finite
element of the body with local displacement and temperature fields given by Equations 29 and
30, and we return to the global form of the conservation of energy given in Equation 4.
Introducing Equations 14 and 29 into Equation 4

iy + fpo(d’ +n8)av,
v

e
= Py Uni +f (qi,i + ph - p@n)dvo (39}
Ve
where

Mam - f‘ooq"N%WM%)dvo (40)

v

e
i =fp°Fiprt,5)dvo +fsiq;N(ydA° (41)

Vo Ae

Here Vo is the volume of the finite element Ae is its surface area, My (N,M=1,2,..., Ne)
is the consistent mass matrix for the element, and PNi are the components of ‘‘consistent’’
generalized force at node N of the element. The repeated index N in Equation 39 is to be

summed from 1 to Ne‘
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According to the thermoelastic law of entropy production Equation 24, the last integral
in Equation 39 vanishes. Moreover, in view of Equation 23, the integral on the left side of
the equality sign can be reduced as follows:

fPo($+n8'1dvo = f[po ;d’ ijtetn +%)B]

ve Vg Yij

o9
= [ #, E/i_ij,k(Sik Vi g v, t42)

A .
The term Po a¢/ayi} i8 recognized as the stress tensor .‘:rlj of Equation 22, Thus, the

general equation of energy balance for a finite element of a thermoelastic continuum is

A

de
[ ™M fPo e Uk Bt Y i 19Y ~ Py ] Uy t43)

Since this equation must hold for arbitrary nodal velocities 0 Upyr We have the general equations
of motion for a thermoelastic finite element

A
. d¢
"rmi fPo ayij“’N LIPS WL (44)
v
e

A
Notice that no restrictions have as yet been placed on the form of the free energy function ¢
or on the order of magnitude of the displacements or displacement gradients.

Turning now to the total entropy product of the element, we observe that if Equation 24
is multiplied through by the temperature increment T and use is made of the identity

(Ta,),, =T, a, +Taq, (45)

we arrive at the local law

p T89=1Ta,),, ~ T, +pTh (46)
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To obtain the comparable global form of this law, we integrate both sides over the volume of
the element and use the Green-Gauss theorem to convert the integral of the first term on the
right side of the equation into a surface integral. Recalling Equations 1¢ and 28, we get

A
_ 4 9¢
Jp T, + i Shia +[1, 0,0y,
Ve Ve

=fp° Th dv, + {qunidAo (47)

Ve e

A A
For simplicity, we assume that IT| << To. Noting also that d ¢ / 28 =a¢/ 2T , we introduce
Equation 30 into Equation 46 and obtain

A
4 % - -
[- f% WN(LITO a1 37 99, +I¢N,i(5’qa dv_ qN]TN 0 (48)
Ve Ve
where
ay * fpoh ¢N(£)dvo+f¢N(L)qinidAo (49}
Ve Ae
Since {(47) must hold for arbitrary TN'
g 99
- —— ——d =
{\JJN’i(:lqldvo {potPN(:)To at 7', 9y (50}
e e

This result is a general equation of heat conduction for a finite element of a thermoelastic

confinuum,
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SECTION VI

LINEAR COUPLED THERMOELASTICITY

Equations 44 and 50 represent the general coupled equations of motion and heat con-
duction for any type of thermoelastic media. No restrictions have as yet been imposed on
the form of the free energy function, the order of magnitude of the strains or displacements,
or the constitutive equation for heat flux, Thus, these equations apply to the general, nonlinear,
coupled thermoelasticity problem. However, we shall postpone an exploration of various
nonlinear thermoelasticity problems to future investigations. In the present study, we shall
henceforth confine our attention to linear thermoelastic theory, which is characterized by a
free energy function which is a quadratic formin the strains and the temperature increments:

A . .
_ 1 ikl i | a .2

potf:—EE Vi tB T +E?0-T (51}

where Euk1 and Bl:i are arrays of material parameters which may be functions of T but which

are usually assumed to be constants for homogeneous hodies, and which have the symmetries

ijkl jikt ijlk ki
g 2 gl o TR gk (52)
- i
'l g (53)
In Equation 50, @ is a thermoelastic constant (see Section 9) and Iyij|=0 te) ,e’<<I,

As an additional assumption, we suppose that yij are given by the linearized strain-
displacement relations

24
yij E(ui,j-'-uj,i, (54)

According to Equations 22 and 23, the stress tensor and the specific entropy are given by

i ijkl (]
o’ =p, —a)’ij =E tBT (55)
3¢
| 1) a
ooz - +=T
) 3T ", By, T, } (56)
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Substituting Equation 55 into 44 and noting that because of the restriction to small
displacement gradients implied in Equation 54 the term (Sjk + ‘I[’M ,kqu) in Equation 44
reduces to simply sjk’ we arrive at general equations of motion of a linear thermoelastic
finite element

. im i -
oMt Onmn T B T Pii (57)
where
o™ = [ER™y g v (58)
NM N, k¥M,n %%
ve
"
BN -;fa Vs (59)
e

To obtain the accompanying coupled heat conduction equations for the finite element, we
assume that the linear Fourier law Equation 25 holds with kij B'j = kijT'j and introduce
Equations 25, 30, and 56 into Equation 50

KM~ ToPMAEME T Smm T 9N (60)
where
Knm = fkij t]/N'idtM'jdvo ©n
v
e
et _[aq;Nq:Mdvo (62)
e

If we denote by P A and Q A the global values of generalized force and heat flux corre-
sponding to (Equations 34 and 35), then

{e)
PAi ® %‘Q‘NA"M (e) (63)

{e)
RN =2 0uAan(e (64)

We therefore have for the general coupled equations of motion and heat conduction for an
assembly of linear thermoelastic finite elements,

. im i _
MAI‘UI‘| +AA1_,UPm + E’AI‘TF = PAi (65)

K - i - r =
APT T PATYE TCATTT "% il
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in which

and

"Ar'

AI"

AI‘

“Ar

Al"

(e) le) ~(e)
E:QNA NM‘Q'MI‘
z (el mﬂeiffe)

e

=24

e

=2 8
e

E.Q.

NATNM mI"

(e) ile)~le)
NA MN ‘QMF

(e) (e) (e)
¢
NA NM MT

{e) (e)n(e)
NA Nm O MD
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SECTION VII

BOUNDARY CONDITIONS

Following the plan of Becker and Parr (Reference 9), we point out three possible boundary
conditions involving the thermal variables qp and TN' Mechanical boundary conditions invoive
simply prescribing U Aj ©F P Aj at varicus boundary nodes.

1. Convective Heat Transfer

If T* is the temperature of the media surrounding the body, and T; is the temperature
across a surface boundary layer, then the convective heat flux is given by
9, = £ (T* - To*) (72)

where fi are film coefficients.

2. Specified Heat Flux

The heat flux may be specified on the boundary
q = a (73)
An important special case of Equation 73 is that of adiabatic behavior for which q = 0.
3. Specified Temperature

Temperatures are prescribed on the boundary by simply prescribing the nodal values
TN at appropriate boundary nodes.

Combining Equations 72 and 73, we have

o — - *
g9, © q, + fi {T TOJ {74)
80 that Equation 49 becomes
= g+ 6T (75)
INT WY T
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where
— *
z fpoh\PNdvo+f¢NniqidAo +f\lanifiTodAo (76)
v A A
e e e
and
fam fq; AR (77)

e

Thus, instead of Equation 60, we may use

— % - i . - . = %
R = T 7T To On M MM T IN (78)

Likewise Equation 66 becomes

T, T T

(79)
AT Ar''a Ar“r.”rr %

where

z (e) (eiﬂlel

(80)
FAT . NANM (1Y

(e) ,,.

g8
NA Nie) (81)

=28
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SECTION VIII

SOME SPECIAL CASES

The above finite element equations are valid for any type of finite-element represen-
tation for which the general, local interpolation Equations 29 and 30 are used. The equations
are considerably simplified, however, if the familiar simplex models for the local fields are
used. Then tetrahedral, triangular, or lineal elements with four, three, or two nodes are used
in three-, two-, or one-dimensional problems, respectively. Then the interpolating functions
4/N(x) of Equation 31 are given by the linear forms

\JJN(xI z aN+xiﬁiN (82}

where ay and ‘GiN are constants which depend only on the geometry of the finite element,
Physically, Equation 82 depicts the deformation of each element as being homogeneous and
the local temperature field of each element as being homogeneous (Reference 17).

In this case, the elemental mass, stiffness, coupling, and conductivity matrices of
Equations 40, 58, 59, 61, and 62 reduce to

: P

= ' i, ==& (83
T = Ot 29BN * BB T 2 S )
im _ ikmn 84
N ~Ye BenPunE (64)
knm = e Ki BiNBjM (85)
bl =L 8B (a + B, (86)

MN " P kN IM"e T Fjm

where me and v, are the mass and volume of the element, s) are the mass moments with
respect to the system xl, and iij is the mass-moment-of-inertia tensor of the element with
respect to the x'.
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Equations for the coefficients aN and BiN for the one~, two-, and three-dimensional

cases can be found in, for example, (Reference 17). In the two-dimensional case, for example,

T2 0 2]
¥2%37 %34,
L2 1.2
@y 2A, | X37%) %3 (87)
1.2 2.4
| ¥ ]
B 2 2 2 2
X X Xs KI XI 12
= L (88)
BiN 2Ao xl—xl xl-x| x'—x'
37" 3 %%

where Ao is the area of the element and xlg (N=1,2,3; a =1, 2) are the coordinates of
node N. For one-dimensional elements,

= = - = - =z - |/
@ =x,/L @, =-x /L BH BZ‘ /L (89)

where Xy and Xy are the x-coordinates of nodes 1 and 2 and LL = x2-x1.

It is interesting to note that if Equation 57 is ignored, the term 'Tobl\;N aMi is deleted,
and the values in Equations 87 and 88 are introduced in Equations 83 and 85 for the purpose
of calculating kNM and S’ then Equation 78 reduces to the heat conduction model of Becker
and Parr (Reference 9). If the two-dimensional simplex values of Equations 87 and 88 are
used_ in Equations 83 through 86, and if the inertia term mNMﬁMi and the coupling term
TDbl\"}NﬁMi
of the type considered by Visser (Reference 10) are obtained, Finally, if the one~-dimensional
model defined by Equation 89 is introduced into Equations 83 through 86, 57, and 60, the finite-

element formulation of Nickell and Sackman (Reference 12) is obtained.

are deleted from Equations 57 and 60 or 78, then uncoupled quasi-static equations
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SECTION IX

NUMERICAL RESULTS

In order to demonstrate the merits of the finite element representation developed in this
paper, several numericai examples are presented in this section. Solutions of the finite
element differential equations were obtained using a standard Rung-Kutta-Gill integration
scheme, The first examples consider a linear thermoelastic half-space subjected to ramp
heating on its stress-free bounding surface. This problem was first investigated by Sternberg
and Chakravorty (Reference 19) for the thermoelastically uncoupled case, The special case
of sudden step heating of the bounding plane had been studied earlier by Danilovskaya (Ref-
erence 20) for the thermoelastically coupled case and is included in this paper. Nickell and
Sackman (References 12 and 13) also investigated this problem using a one-dimensional finite
element model obtained through special variational principles.

It is customary to use the following nondimensional parameters:

2
£:=2 T=8y
5 -L ?zal)H-—Z#}u (90)
TO KBTo
where
= K 2 _ (X +2u)
PE,, P
2
T
B = a3\ + 2u) =__.___B 0 (o)
PC A+ 2p)

In the above equations %y is a characteristic length, t the real time, K the thermal conductivity,
Cv the specific heat at constant volume, A and p are the isothermal Lamé constants, and
a is the linear coefficient of thermal expansion. The quantity 8 in (Equation 91) is a thermo-
mechanical coupling parameter,

Now consider a linear elastic half-space (xi-,. 0) with bounding surface at Xy = 0 assumed
to be stress free. Let the bounding plane be subjected to a ramp surface heating of the form

e
= <
T' 'o t 0t < fo
(92)
= <
Ti TF fo <t
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where T1 is the surface temperature, T_ is the final surface temperature, and to is the

F
boundary temperature rise time,

Define the nondimensional rise time v o by

a 2
T, =K tO {(93)
The dimensionless boundary condition is
_r
BI = '_Fo- EIE O . Ta
(s4)
9[ = | T, £T

T
The quantity T-:F has been set equal to unity in Equation (93) for convenience.
o

The numerical results for the half-space are presentedin Figures 2 through 6. Figures 2
and 3 contain the dimensionless temperature 5 and displacement U at £ = 1,0 with coupling
parameters 8 of 0.0 and 1.0 as a function of dimensionless time T, for the case when
T, = 1.0, whereas Figures 4 and 5 are for the case when = 0.25, In these figures, the
number of elements between the free surface and § = 1.0 is denoted by NE, whereas the total
number of elements used in the analysis is denoted as TNE, The ‘“‘exact’’ solutions presented
in these figures were obtained by Nickell and Sackman (Reference 12}, using a numerical

Laplace Transform inversion procedure.

Excellent agreement between the ‘‘exact’’ solution and the finite element solution for the
temperature is seen in Figure 2. It is noted in Figure 3 that the displacement solution di-
verged when NE = 2 and TNE = 10. Increasing the number of elements, however, gave
improved results. The finite element solution for the temperature in the case of the higher
sloped ramp heating in Figure 4 also yielded good agreement with the ‘‘exact’’ solution. An
illustration of the rates of convergence characteristics of the finite element solution is
illustrated in Figure 5 for the uncoupled case.

Figure 6 shows the femperature distrilution through a portion of the half-space for the
case of a suddenly applied step temperature rise on the bonding surface. Exact solutions
were obtained by Boley and Tolins (Reference 21). It is noted that, as the time increases,
the finite element solution is lower than the exact solution for significant distances into the
half-space (& > 4.0). Since the total number of elements for this analysis is 48 and the
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number of elements from & = 1.0 to the bounding surface (&= 0.0) is 6, the “‘infinite’’ half-
space extends only to £ = 8.0. At the “‘infinity’’ point, the temperature and displacement
are prescribed as zero. The finite element solution, therefore, yields results which are low
in regions near the ‘‘infinity”’ point. An improved solution can be obtained by simply in-
creasing the total number of finite elements while maintaining the same number between
& =1.0 and the surface.
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