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ABSTRACT

Formulae for the mechanics of flexing of laminates of a viscoelastic
material, such as an elastomer, and an inextensible material, such as
steel, have been derived and compared to experiment. 1In particular,
equations for the profile, stiffness and partition of energy between
elastomer and metal are given.

The effect of an axial load on the lateral stiffness of laminar struts
is investigated both theoretically and in experiments on free
oscillation. As the axial load approaches the buckling load, the
apparent damping level to lateral oscillations becomes very large.
Conversely for an axial tension the lateral stiffness is enhanced and
the damping to lateral oscillations is diminished. Other examples of
this phenomenon, which is not peculiar to the laminates, are given.
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1. INTRODUCTION

A characteristic of rubber springs is that they have relatively high
damping, and within limits the rubber compound can be chosen to give the
required level of damping. Each type of conventional rubber spring has
a characteristic force-deformation behaviour which may be convenient for
a particular application. 1In this work the properties of an
unconventional rubber spring will be described, which lends itself to
control of the damping level, and may have other advantages for some
applications. The spring consists of a sandwich structure of metal and
rubber (Figure 1). Attention will be concentrated on the flexing mode
of deformation (analogous to that of a leaf spring).

The mathematical expressions for the mechanical properties of the
laminate are relatively simple, so the properties can be readily
calculated. While this is a desirable state of affairs for an
engineering component, it also means that physical insight is not
obscured by mathematical complexity. For example, not only is the
effect of an axial load on the stability and apparent damping level (to
lateral oscillations) easy to investigate for the laminates, but the
effect also helps provide insight into a general phenomenon.

2. MECHANICS OF FLEXING OF RUBBER-STEEL LAMINATES
It is assumed that:

(1) there is no strain normal to the plane of flexure (so all forces
etc. will be taken per unit breadth of laminate)

(ii) the rubber is incompressible.

Thin, inextensible metal layers

Then, if the further assumption is made that the metal layers are
inextensible and much thinner than the rubber layers (t<<h), it follows
that the state of deformation of the rubber is simple shear and the
metal layers deform to have a common centre of curvature. This is
demonstrated in Figure 2, from which it may be readily concluded that
the volume of the element PQRS is constant provided:

6v = hée (1)
which is the condition of inextensibility.
Since the element PQRS is not necessarily initially in a state of gzero
shear, &v may be identified with the increase in shear movement of one
metal layer relative to the other. Thus the angle of shear Y is related
to the slope 8 of the laminate by:

d(tanv)/d8 = 1 (2)
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Equation (2) may be integrated and for the case that the deflection y of
the laminate is small so that all the angles are small, simplified to
give:

tan v = 8 + constant = dy/dx + constant (3)

where the co-ordinates (x,y) are defined in Figure 2. Throughout the
rest of this paper the choice of co-ordinates allows the constant term
in {3) to be dropped, since it can in each case be seen that tanr=0 when
dy/dx=0. Only in relating 8 to dy/dx has the assumption of small angles
(and hence large radius of curvature of the laminate and small strain in
the rubber) been made, equations (1) and (2) being of more general
validity.

The shear in an element of rubber imposes an increment &F in compressive
force per unit breadth on one metal layer and a corresponding increment
in tensile force on the other layer:

6F = G &x.tany {4)

where G is the shear modulus of the rubber. Integration of equation
(4), using appropriate boundary conditions, yields the compressive (or
tensile) force F as a function of x.

The differential equation describing the profile of the flexed laminate
can be derived by consideration of the forces on an element, as depicted
in Figure 3. The total shear force S per unit breadth borne by the
laminate is distributed between the shear force S, borne by the rubber
layer and the shear forces S1 and 82 borne by the metal layers.

8 = Sl + S2 + SR (5)
Relating S, to the shear in the rubber and S, and 32 to the curvature
gradient ig the metal (S, = -dMl/dx, S, = &Mz/dx where M, and M, are
the bending moments in tke metal layers%, equation %5) can bé writtgn as

8 = Ghtanr - d(Ml + Mz)/dx
- Ghtany - K({d°y/dx°) (6)
where it has been assumed that the radius of curvature is large compared

to the laminate thickness and K is given by

3 3
K = k1 + k2 = (Eltl + E2t2 y/12 {7)
where k,, k. are the bending stiffnesses of the metal layers, E,, E, are

their Y%ungzs moduli and t,, t2 are their thicknesses (in the  rest of

this paper E, = E,, t, = tl a6 that the subscripts will be dropped).
Inserting (3} intg (6% givgs :
§ = Gh{dy/dx) - K{d y/dx]) (8)
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which is applicable for the case that t<<h and the metal layers are
inextensible.

The local strain energy density in the rubber is just O.SG(tam')2 80
that the total strain energy (per unit width) UR stored in the rubber is

U, = 0.5Gh/(dy/dx)%dx (9)
where use has been made of equation (3).
The energy stored in the metal layers can similarly be calculated as

U, = 0.5kf(dy/dx?)%ax (10)
The total energy stored is U_ + U

R M

Geometric effect of thick metal layers

If the metal layers have an appreciable thickness the assumption that
t<<h must be relaxed. However, to a small angle approximation
assumptions (i) and (ii) are satisfied if the deformation is such that
the central lines of the metal layers have a common centre of curvature.
The rubber is not then just deformed in simple shear but suffers some
compression and extension on the surfaces bonded to the metal in regions
of curvature. However, the effect is still an increment &v to the shear
movement, given this time by:

év = {(h + (tl+t2)/2)68 (11)
Thus equation (3) becomes:

2h+tl+t2
tany = —oh (dy/dx)

A further modification required for thick metal layers is that the shear
stress in the laminate falls from Gtant in the rubber to zero across the
thickness of the metal layers, so that the shear term SR in equation (5)
becomes:

SR = Gtanr(h + (tl+t2)/2)

Thus equation (8) becomes:

(2het st} dy oy
s - e——2— — _k— (12)
4h dx dx

Equation (12) has the same form as equation {8) but the geometric effect
of the thick metal layers enhances the magnitude of the shear term from
the rubber core. Hence in most of the work below the results are derived
from (8), but the results gre valid for thicker metal layers provided Gh
is replaced by G(2h+tl+t2) /4h,
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Effect of extension of the metal layers

Under the actions of the forces given by equation (4) the metal layers
will suffer some longitudinal extension. The neutral axes will no
longer coincide with the centre lines, and equations (1) and ([11) will
not be accurate. Mead and Markus™ have allowed for this effect by means
of an additional term involving the longitudinal extensions. This leads
to an additionsl differential equation to their analogue of equation (8)
or (12). Elimination of the longitudinal extensions from the pair of
differential equations yeilds a fifth order differential equation
analogous to (8) or (12).

This complication is not addressed in our work. As a consequence, the
limits as h»0 (but G is kept fixed) correspond to metal layers which are
allowed to slip at the interface, instead of metal 1layers which are
bonded at the interface (which then becomes the common neutral axisj.
Thus there is an implicit assumption that as h is reduced to zero, so G
is reduced to 2zero. A criterion for the validity of our equations is
derived below.

3. THREE-POINT BEND GEQOMETRY
Profile

The three point bend geometry, shown in Figure 4, is a convenient
deformation for experimental measurement of the dynamic properties of
the laminate on a servohydraulic test machine. It is necessary to treat
the laminate in two parts, 0<(x<% which covers the central region, and
-8<x<0 which covers the overhanging region. It can be shown that in the
two extreme cases of G=0 and of K=0 that the overhanging region does not
influence the force-deflection behaviour, but it does have to be
considered in the general case.

The profile will be symmetrical about x=%, so it is only necessary to
solve the problem for x<%.

Considering first the portion of the laminate for 0<x<%, the bending
moment B exerted on a portion of laminate to the left of the point (x,y)
is given by

B = -Wx {13)
B is related to the shear force S in the beam by

§ = -dB/dx (14)
inserting (14) into equation (8), and making use of (13) gives

W = Gh(dy/dx) - K(d°y/dx]) (15)

The differential equation describing the profile in the region -a<x<0 is
the same as (15) but with W set to zero.
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These differential equations are required to be solved subject to the
boundary conditions

(i) at x = -a, dzy/dx2 = 0 since the bending moment in the metal here
must be zero as it is a free end

(i1) at x = 0, y = O while dy/dx and d°y/dx? must be the same for both
equations

(iii) at x = &, dy/dx = 0 as required by symmetry.
The solutions are
for -a(x<0, y = A, (e®*-1) + Bz(e_ax—l)

for O(x¢% y = A (e¥%-1) + Bl(e'ax-l) + Wx/Gh

where a2 = Gh/K
- q2®-1-2pg2 -
Al {W/aGh) 2(1+p2q?) | (16)
A2 = Al + (W/2aGh)
Bl = p(Alp + W/aGh)
2
82 = —Az/q
p = eaz' q - o2

It has been reported previously2 that equation (16) is in good agreement
with experimental observation of the profile. The deflection Y at x = &
can be found from (16) and this leads to an expression for the stiffness
of the laminate in the 3-point bend geometry:

(2W/Y)(%/2Gh) = ———202(1+p2q?) (17)
2a%(1+p2q2)+(1-p)(3-q2-p+3pq?)

The quantity 2/2Gh represents the compliance in the limit of af + », and
is equal to that of a rubber spring undergoing simple shear. The
quantity % is a non-dimensional measure of the relative importance of
rubber and metal, and it is convenient to express all the results as
functions of af (as in equation (17)).

KAC-6

Confirmed public via DTIC Online 02/25/2015
|



From ADA309667 Downloaded from Digitized 02/25/2015

Stored enerqy in 3-point bend

Inserting equation {16) into the integral expression (9) the energy
stored in the rubber is given by

Gh o) 2
URl overhang = ;— fa {dy/dx)"dx

Gha

D1 2, 42 2

= ] {Az(l-l/q )—Bz(l-q )—4aaA282} (18)
) 2

U,., central section = — J"(dy/dx)}"dx
R2 5 O

Gha
2,2 2 2
= —;— {Al lp -1)-Bl(l/p -l)-4a2AlB1

+ 2(W/Gh)22/a+(4W/aGh)(Alp+Bl/p-Al-Bl)} (19)

Since the energy loss associated with deforming rubber (per unit of
stored energy) greatly exceeds that of metals (for strains below the
yield point) the energy loss associated with deforming the laminate will
be proportional to U, = U +UR . Aplot of U /(UR+U ) versus af is
given in Figure 5 wiBh vaEﬁes gf a/f as a paramgter. Ig is apparent that
that the overhang region {-a¢x<o) only makes an appreciable difference
for values of af such that the total energy is fairly evenly partitioned
between rubber and metal. This effect is investigated further in Figure
6 where U_,/(U_+U,) is plotted against af with a/% as a parameter. At
small vagaes gf 52 the simple theory predicts a significant fraction of
the deformation energy to be stored in the rubber in the overhang
region. This is a manifestation of the effect of a constrained layer on
the damping of panels since it suggests that a constrained layer
covering a large region of a panel will have a useful damping effect on
a local deformation.

Forces in the metal layers

It follows from equations (4) and (11}, and from the fact that the axial
force in the metal layer at x = -a is 2ero, that the compressive force
per unit width in the top metal layer is

2h+t, +t

F = 6—5—2 (y-Y,) (20)

where Ya = y(x= -aj).
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It is apparent from (20) that F rises to a maximum value of F=G(Y+Y_)
at x=%. If this maximum value is sufficiently large the metal layer cin
buckle in a manner similar to an Eulerian strut, (althgugh the
constraint of bonding to the rubber must be taken into account®). This
has the effect of limiting the permissible deflection Y.

The force in the bottom metal layer will, according to the boundary
condition, be equal and opposite to that in the top layer. A further
significance of these forces is that the resultant strain in the metal
layers may lead to a departure from the assumption of inextensibility
which was used to derive equation (1).

The condition of inextensibility of the metal layers may be expressed as

fe dx <0.5 v = 0.5{h+(t;+t,)/2)(dy/dx) (21)

max
where the left hand side is the change in length of one metal layer due
to its axial strain and the right hand side is the shear displacement
predicted by equation (11} {(reduced by a factor of one half since it is
‘shared' between the metal layers). The axial strain € is just F/Et,
which using (20) gives

G (2hst sty
€=~ 2n  ¥Y) (22]

For the extreme case of large a, y={x/%)Y (with y=0 in the overhang) so
that (21) becomes

6/E <¢ ht/s? (23)

while for the extreme case that af is small, y-(W/2K)(22x-x3/3) (with
dy/dx constant in the overhang) so that {21) can be recast as

G/E<<ht/(a%;ma+522/6) (24)

For rubber G &~ 1MPa while §9r steel E = 210GPa, so the left hand side of
(23) or (24) is about 5x10 . This means that provided the 1length to
thickneas ratio of the laminate is less than 100, a ratio of up to 100
between t and h is allowable. Thus for the system studied here
equations (8) or (12) have a very broad range of validity. They may
also be applicable to many cases of composite beams with a core layer of
viscoelastic material other than rubber.

4, LAMINAR STRUTS SUBJECTED TO AN AXIAL FORCE
Profile |

Interconnecting the metal layers of the laminate depicted in Figure 7
leads to the following boundary conditions:

at x=0 y=0

at x=0,% dy/dx=0 L} (25)
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where the second condition expresses the fact that the radius of
curvature of the metal layer is finite.

The total bending moment B applied by the laminate on the right hand
side of position x to the laminate on the left hand aide is

B = M#W({%-x) + P(Y-y) | (26)
where Y is the deflection at y=2.
Proceeding as for the three-point bend geometry then leads to

W = (Gh-P)dy/dx - K{d’y/dx") (27)
Integrating the equation once gives

d%y/dx® - o%y = -Wx/K + C (28)
where 02 = (Gh-P)/K

Since a is imaginary for P>Gh it is convenient to express the solution
of {28) in hyperbolic functions rather than exponentials:
Wx

Ka2

c
y = Asinhax + Bcoshax - t (29)
a

Using the boundary conditions (25) to find values for the integration
constants A, B and C gives

Yy = W/Ka3 [pcoshax - sinhax + ax - p] }

where a® = {Gh-PB)/K ) (30)
p = tanh{a%/2) }

Stiffness

The stiffness W/Y may be found from (30) by setting x=2. Algebraic
simplication then leads to

W _Gh P ,, a8
v~ g (1- Eh'”——az-zp) (31)

The quantity Gh/% has been isolated in equation {31) because it is the
value that W/Y takes for zero P and infinite af, and is equivalent to a
rubber siQple shear spring. A plot of (W/y){%/Gh) for P=0 versus aoz
{where @, =Gh/K) is given in Figure 8. '
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The effect of P on the stiffness is of interest. When P>Gh, equation

{31) becomes
W _GhP B
Y " % lon “tlhgee! (32)

where B2 = (P-Gh)/K
q = tan(B2/2)

Using equation (31) when P<Gh and equation (32) when P>Gh, the
non-dimensional stiffness (W/Y){R%/Gh) can be plotted against the
non-dimensional normal load P/Gh, The results are given in Figure 9,
with aoz as a parameter,

Stability

As B » 7, g¥» so that, from equation (32), the stiffness falls to zero.
This is the point of instability, and the stability criterion may be
expressed as

b 4
> g*za-Gg(l+(n/a 212) , (33)
[o]

For Gh = 0, this reduces to the usual Eulerian buckling relation.

Elastic energy stored in the flexed laminate

Equation (30) may be used to evaluate dy/dx and hence UR’ using equation
{9}). Thisg gives

Uy = (Ghw2/2k%e®) {3a%/2 - 3p - p2a%/2} (34)

Substituting for W2 using equation {31) gives

2 16Gh,. 1. 2 ot 2
Up/Y" = 51370 op (302/2-3p-p“aR/2} (g% (35)
In the case the P>Gh, {35) becomes
2 16Gh, 1 2 B 2
U/¥" = 5lg ) gy (38%/2-3q+q°BR/2} (5o 50 (36)

The term 0.5(Gh/%) may be identified as the energy stored in a rubber
simple shear spring at unit deflectiog {ie. the limit as a02+m). A plot
of the non-dimensional energy UR/(Y Gh/2%) versus P/Gh™ is given in
Figure 10 with aoz as a parameter., For P/Gh=1 the profile will be
independent of "¢ %, thus explaining why all the plots in the Figure
coincide at that p8int. since the energy in the rubber (U,) depends on
the profile. In all cases U, exceeds the value for rugber in uniform
simple shear (GhY2/2L). This ig because the profile departs from a
straight line configuration, for which the shear energy in the rubber is
a minimum, when K is non zero.
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It is also of interest to consider the ratio E, of the energy stored in
the rubber to the work done by the lateral Force in deflecting the
strut:

ER = UR/O.SWY
A plot of E8 versus P/Gh is given in Figure 11 with ¢ % as a parameter.
The magnitude of Eq determines the degree of dampin8 experienced by

lateral oscillations, as discussed below.

Forces in the metal layers

There are three contributions to the axial loading F in the metal - the
imposed axial load P, the imposed moment M and the contributions &F from
the shear in the rubber (equation (4})}. This makes the domain of

validity of the equations less broad than implied by equations (23) or
(24). However, the values of P and M applied in the experiments were so
modest as to not greatly affect the earlier conclusions regarding
validity.

5. EXPERIMENTAL

ExperimenEas checks of some aspects of the theory have been reported
prevously ’" and where appropriate these results have been entered as
points on the diagrams, thus allowing comparison with the theory.

Of particular interest here are the experimental measurements of the
fraction of energy stored in the rubber, U /(UR+UM) {(Figure 5). The
dynamic behaviour of the laminates was measureg using a servohydraulic
test machine, There were initial problems regarding the method of
support of the laminate in three point bend configuration, since the
metal layer tended to slide over the supports as the laminate was bent,
causing frictional energy loss. This was overcome by bonding to the
supports small resilient rubber pads which could deform very easily in
shear, but themselves dissipate very little energy. In this manner a
reliable measurement of the loss angle &8, of the laminate could be made.
The fraction of deformation energy of t%e laminate stored in the rubber
can be found from 62 and an independent measurement of the loss angle 6r
of the rubber:

UR/(UR +UM)- siné‘g/smﬁr {37)
where it has been assumed that the loss in the metal is negligible.
Further experimental work has now been undertaken to check the theory
for the effect of axial load on the stiffness and damping of struts
consisting of laminates with the metal layers interconnected at each

end. These laminates were constructed by bonding (during vulcanization)
nominal 0.25mm spring steel strips to each side of an unfilled natural
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rubber compound. The spring steel layers were separated at each end by
mild steel blocks, through which bolts passed which served as both a
means of attaching the struts and to prevent relative shear
displacements (at the ends of the strut) between the metal layers. The
shear modulus of the rubber was measured using a separate testpiece
(double shear) on a servohydraulic machine, giving a value of G =
0.52MPa. The logarithmic decrement of the rubber was determined from
free torsional oscillation of the double shear testpiece at 9.3Hz. This
gave a value of 0.0729, and there was very little frequency dependence.
The pertinent laminate dimensions were % = 257mm (measured from the
inside edges of the mild steel end blocks), width of rubber = 44mm,
width of spring steel = 57mm, K = 0.74Nm (calculated from the measured
thickness of steel, 0.27mm, and adjusted according to the excess width
of steel).

The axial load was applied by means of weights as depicted in Figure 12.
The stiffness W/Y and damping of the combined laminates were calculated
from the frequency f and logarithmic decrement A of the natural
oscillations of the structure according to

W/Y = M{2nf)2 (38)
zn(An/Am)
Aos (391

where A is the amplitude of the nth cycle. M is taken as the mass of
the we?ghts plus that of half of the total {unladen) structure, since
the structure was symmetrical about the mid point of the laminates. For
tensile axial loads the structure was hung from the top board and
weights were placed on the lower board.

On the assumption that only the rubber is responsible for energy
dissipation, A may be related to UR by

A = mtans(U./0.5YW) (40)

since the fraction of energy lost on a full cycle (positive and negative
shear strains) is 2mtané for low to moderate values of the loss angle 6.

The results are compared to the predictions of the theory in Figures 13
and 14.

6. DISCUSSION

It has been shown here that provided ¢ R is sufficiently large then most
of the deSormation energy is stored in the rubber. It has been shown
elsewhere” that provided o % is neither large nor too small the springs
can undergo larger deflectfons than conventional metal leaf springs of
the same length, a compromise value of a_ % being around 10. It thus
appears that the laminated springs have uSeful characteristics and are,
in essence, rubber springs. The sole function of the metal layers is to
constrain the deformation of the rubber to be simple shear.
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An additional feature of the spring is that by using a multilayer
construction, rubbers of different levels of damping can be used
together in a parallel deformation. This may allow layers of very high
damping elastomer to be used, as analogues to oil-filled dampers, in
combination with a layer of highly elastic rubber. Elastomers with very
high damping are seldom used in conventional rubber springs because, on
their own, they generally suffer from unacceptably high creep. Most
conventional rubber springs do not lend themselves to parallel
deformation of two sepsrate elastomers,

The effect of axial load on lateral stiffness, stability and damping of
the laminar struts is close to that predicted. Considering that there
are no fitting parameters available (all parameters having been
determined by independent experiments) the agreement may be taken as
gatisfactory.

Figure 14 suggests that in fact the predicted load for instability is
slightly in error, which may be due, for example, to some uncertainty in
the rubber modulus. The deviation of the experimental results below the
theoretical values for tensile P may arise from imperfections in the
clamping at the ends of the struts, which might progressively come to
resemble pin joints as the tension increases. This would act to reduce
the lateral stiffness towards P/%. The theoretical result in Figure 14
can, in fact, be interpreted as the provision by the flexing stiffness
of the strut of an almost constant extra lateral stiffness, of magnitude
Gh/%, over and above the axial force term (for a pin-jointed rod) of
P/2.

As the axial load approaches the buckling load the apparent level of
damping to horizontal vibrations increases asymptotically. The
explanation of this phenomenon is that the apparent damping is
determined by the ratio of the energy dissipated in a lateral deflection
{of the given magnitude) to the energy required to achieve the
deflection. The dissipated energy depends primarily on the deflection
and is comparatively insensitive to the axial load (see Figure 10). In
particular, the dissipated energy remains finite at the buckling load.
However, the energy required to deflect the strut laterally falls
towards 2zero as instability is approached, so that the ratio rises
asympototically.

This phenomenon is quite general, and hag geen reported previously for
conventional laminated rubber bearings.”’ Such bearings are used as
building mounts to achieve isolation from seismic accelerations.
Substantial damping is an essential requirement for base isolation
mounts, because some excitation of the natural frequency of the building
on the mounts invariably occurs. It appears that enhancement of damping
could usefully be contrived by designing the system such that some of
the bearings are loaded close to their point of instability. These
bearings will make little contribution to the lateral restoring force,
but will make a useful contribution to damping.
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The sensitivity of the lateral stiffness and the damping to the axial
load also has significance for the measurement of material properties.
For example, the apparent damping level of a taut strip of rubber
undergoing lateral vibrations is much lower than the true level of
damping of the material. This phenomenon is exploited to good effect in
stringed musical instruments, but may cause some test methods to give
misleading results for material properties (Thomas, work to be
published).
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Figure 5

Fraction of energy {U,/(U_+U,)) stored in the rubber in three point bend
deformation as a functiog oF the non-dimensional parameter a%= /Gh/R%

U /(UrU)

Figure 6

Fraction of energy (Up /(U +U )) stored in the rubber in the overhang
for the three point bohd dBfoFmation
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Figure 7
Laminar strut geometry (note that the metal layers are interconnected at
the ends).
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Figure 8

Lateral stiffness of laminar strut (with zero axial load) versus the
non-dimensional parameter « % (equal to /Gh/R%)
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Figure 9

Effect of axial load P on the lateral stiffness of laminar struts
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Reduced axial load (P/Gh)
Figure 10

Effect of axial load P on the energy stored in the rubber for a laminar
strut (at unit lateral deflection)
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Reduced axial load (P/Gh)
Fiqure 11
Effect of axial load P on the damping of lateral oscillations of laminar
struts
capacitance
displacement probe
mass
®
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Figure 12

Arrangement for measuring the effect of axial load on the lateral
stiffneass and damping of laminar struts
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o 13 Reduced axial load (P/Gh)
qure

Experimental check of the effect of axial load (P) on the stiffness of
laminar struts

Reduced logarithmic decrement
(log dec/wtand)
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Figure 14 Reduced axial load (P/Gh)

Experimental check of the effect of axial load (P) on the logarithmic
decrement of lateral oscillations of laminar struts
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