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Abstract

A numerical method is presented for the optimum selection of the
magnitude(s) and location(s) of from 1 to N viscous dampers, out of (N2 + N)/2
possible absolute and relative dampers, for a freely vibrating discrete N
degree of freedom systems consisting of masses and springs. The optimization
algorithm combines iterative application of a pattern search in damper space
over all possible damper configurations, along with numerical integration of
the coupled equations of motion, in order to minimize an objective function.
The objective function used is the integral of time multiplied by the squared
error (ITSE), where the squared error is the sum of the squares of the
displacements and velocities of the masses. The method does not require the
solution of the eigenvalue problem. The method can accommodate constraints on
the magnitudes and locations of dampers, as well as the motion of the masses,
and is also applicable for optimum selection of damper in order to minimize
the total response of driven systems. Results are presented for 2 and 3
degrees of freedom systems.
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1. INTRODUCTION

The optimum design of dynamic vibration absorber(s) has received
considerable attention since the publication of the analysis of the dynamic
vibration absorber by Ormondroyd and Den Hartog!' and the optimization of
dynamic absorber design contained in Den I-la_rtog’s2 classic text. Rccgnt
efforts include analytical and/or numerical techniques for the optimum design
of linear and nonlinecar dynamic absorber(s) for the passive damping of the
steady state response of harmonically driven discrete®S and continuous®®
‘mechanical systems. L L

The optimal desitgn of dynamic vibration absorbers for minimizing the
transient response of freely vibrating discrete mechanical systems has
received considerably less attention. Nagaev and Stepanov!? obtained an
analytical expression for optimum damper parameters for an undamped primary
system, and Rowbottom!! developed an analytical method for optimum damping of
electrical transmission lines. Ebrahimi'? developed a numerical algorithm for
optimizing dynamic absorber design for a damped primary system using two
different time-domain objective functions, i.e., the logarithmic decrement of
the combined system and the real part of the roots of the characteristic
equation.

In this paper a numerical method is presented for the optimum selection
of the magnitude(s) and location(s) of from 1 to N viscous dampers, out of
(N>+ N)/2 possible absolute and relative dampers, in order to minimize the
transient response of a discrete N degree of freedom system consisting of
masses and linear springs. The method involves the iterative application of a
pattern search in damper space over all possible configurations of dampers,
along with direct numerical integration of the coupled equations of motion, in
order to minimize an objective function. The method is equally applicable to
minimizing the total response of harmonically driven systems and can handle
constraints on damper type and magnitude, as well as constraints on the motion
of one or more of the masses.

2. DESIGN PROBLEM FORMULATION

A three degree of freedom system containing the maximum number of
nonredundant viscous dampers, i.e., three absolute and three relative dampers,
is shown in Fig. 1. A double subscript notation is employed for the dampers
in order to specify their location. Equal subscripts (d,,, d,, and d,,)
signify absolute dampers between masses 1 through 3 and ground, rcspectivefy.
Unequal subscripts signify relative dampers between the masses identified by
each of the subscripts, e.g., d,; is a relative damper between m, and m,.

Assuming that the values of the masses and the stiffness of the springs
are known, the problem of optimum selection of dampers for such a system will
depend on the design constraints, e.g., the number ND of absolute and/or
relative dampers permitted, comstraints on the magnitude of one or more of the
dampers, constraints on the absolute or relative motion of the masses, etc.
For example, the design problem can vary from determining the magnitudes of
the three absolute dampers which will produce maximum damping, to determining
the location(s) and magnitude(s) of one or two dampers which will minimize the
motion of the masses. In order to keep the problem general in nature, the
approach used in this paper is to iterate over all possible configurations of
dampers for the number of dampers ND over the range: 1 < ND < N.
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Figure 1. Three degree of freedom system with maximum number of
nonredundant dampers.

The complete set of nonredundant dampers for the three degree of freedom
system of Fig. 1 can be written as a 3x3 array with zero elements below the
diagonal:

Generalizing to an N degree of freedom system, the complete set of
nonredundant dampers is given by a N x N array containing (N? + N)/2 non-
zero elements or nonredundant dampers. Alternately, the system damping can be
dpscrit;)ed by an (N> + N)/2 element vector, which for the system of Fig. 1 is
given by:

d
d
d
_ 13
d=|4 4
d
d

For ND = 3, there are twenty possible configurations of the three non-zero
dampers. The number of combinations C% of r items from m items, where the
order of selection is not important, is given by'%:

C': = m!/[(m - 1)! r!]. 2

For ND = 2 or ND = 1, there are fifteen or six possible combinations of
dampers, respectively, for the 3 degree of freedom system.

The equations of motion for the system in Fig. 1. can be written in
matrix notation as:
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Mi(t) + Cxt) + Kx(t) =0 (3)
where
(m 0 o0 &+ k) -k, 0
M=|0 m, 0|, K= -k2 (k2+ k3) -l(3 ,
_ 0 0 m, | _ 0 -k3 (k3+ k‘) _
and
[ ) ] ; -
(du+ dxz+ dla) du dl3 X
C = -dn (d12 + dz2 + d23) -dz3 , X = X,
4 "4 @, +4d, + dss)J %5 ]

The x;’s are the displacements of the three masses relative to their
equilibrium positions.

The coupled equations of motion of eqn. (3) are given by:

mx + (d, + du+d13)x1 -d X, - dx, + k + k)x - k21|(2 =0

mx - dxle + (d12+ d22+d23)x2 - d23x3 - kle + (k2+ 1(3)11{2 -
: 4)

k3x3 =0

mxX, - dwxl - .dnx2 + (d13+ d23+ d”)x3 - k3x2 + (k3+ k‘)x3 = (.

Given the initial conditions, i.c., x,(0), x,(0), x3(0), x,(0), x,(0) and
x3(0), and the values of the masses, springs and dampers; the coupled
equations of motion, eqn. (4), can be numerically integrated to yield the
displacements, velocities and accelerations of the masses as a function of
time without solving the eigenvalue problem. Application to higher order
systems is straight forward. However, the values of the dampers are not know.
The optimization process described in the next section is used to determine
the optimum damping space vector d, i.c., the magnitudes and locations of the
ND dampers, which will minimize the transient motion of the system.

3. OPTIMIZATION

The damping optimization problem may be viewed as a determination of the
damping vector d which gives the coordinates of the extremum of an objective
function in damper space. The objective function used to quantify the motion
of the system is the integral of time multiplied by the squared error
(ITSE)Y, i.e.,
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N
OF = [td®mdt = Z izltk [xf(tk) + if(tk)] 4. (5)

The coordinates in damper space of the minimum of the ITSE objective function
give the optimum damper values for the given combination of dampers, 1.¢., for
the mon-zero elements of the damping vector d. o .

An advantage of using ITSE as the objective function is that it does not
require that the eigenfrequencies of the system be determined.  Also,
constraints can be placed on the objective function so as to weight the motion
of the individual masses, or limits can be imposed on the maximum
displacement, velocity or acceleration of one or more of the masses.

The method used to determine the minimum of the objective function in
damper space is the Hooke-Jeeves!® pattern search. A step increment size i
a step reduction factor a and a termination parameter & are defined. An
initial guess is made for the non-zero elements of d, the C matrix of eqn. (3)
is formed and the equations of motion are integrated to determine the value of
OF. Next, an exploratory search is conducted by incrementing each non-zero
component of d by + J; and a new OF is calculated. If the exploratory search
is successful, i.e, the new value of OF is less than the previous value, then
the following pattern move is made:

a®*) = g® 4+ @® - a*), 6)

The procedure is continued until there is no further reduction in OF and then
the step increment size is reduced by dividing it by a. The process continues
until the reduction in OF is less than the termination parameter E. The value
of d at the conclusion of the search defines the location of the minimum of OF
in damper space. Numerical examples are present in the following section.

4, NUMERICAL EXAMPLES

Numerical examples are presented for both two and three degree of freedom
systems. In order to keep the design problem gencral in nature, the results
of application of the optimization algorithm to all possible combinations of
damper for 1 < ND < N are presented.  This iterative approach allows
comparison of the effectiveness of optimum damping for all possible damping
configurations.

For the two degree of freedom system shown in Fig. 2, the following
values are assigned for the masses, springs and initial conditions: m,= 4.,
m=1., k= 3., k=1, x0 = 2., %0 =-2. and x,0) = x,0) = 0. The
undamped time historty of the displacements of the masses is shown in Fig. 3.

The results of application of the optimization algorithm to all
configurations of dampers for both ND = 2 and ND = 1 are presented in Table 1.
For purposes of comparison, the value of the objective function for each
configuration is normalized with respect to the minimum value of the objective
function for ND = N. Review of Table 1 shows that optimum damping, i.e., OF
= 1. and DN = 2, requires two absolute dampers whose values are d;; = 6.33
and = 2.46. Application of the optimization algorithm to the over design
case of ND = 3 yields optimum damper values of dy, = 6.26, d;;, = 0.05 and
dy; = 2.37 and an OF which is identical to that of the optimum ND = 2
configuration previously discussed.  For the configuration of an absolute
damper on m, and a relative damper between m, and m,, optimum damping occurs
for damper values of d;;= 4.40 and d;;= 1.37. This damping configuration
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yields an OF = 1.07; whereas changing the location of the absolute damper from
m; to m, yields an OF = 17.08 for optimum damper values of d;; = 1.67 and
d, = fg6 The time histories of the displacements of the masses for all
three ND = 2 cases are shown in Fig. 4.

A AV A A

Figure 2. Two degree of freedom system with maximum number of
nonredundant dampers. :
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Figure 3. Time history of undamped displacements x; of masses m, for
two degree of freedom system: m; = 4., m, = 1.k, = 3. and k, = 1.

A contour plot of the objective function in damper space, i.e., OF versus
d,, and d,, for the optimum case is shown in Fig.5. The minimum value of OF
is 7.94 with coordinates d,, = 6.33 and = 2.46. This minimum value of OF
is used to mormalize all &-‘ values in Table 1.

The effects on the time histories of the displacements of the masses by
alternately changing d,; and d,, by + 2.0 from the optimum damping values are
shown in Figs. 6 anci 7, respectively. Increasing and decreasing d,, by 2.0
results in OF values of 1.24 and 1.34, respectively; whereas increasing and
decreasing dj; by 2.0 results in OF values of 2.41 and 8.53, respectively.
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TABLE 1
Results of optimization for two degree of freedom system with two
or one dampers; system parameters: m, = 4., m =1, k =3,
and k2 =1
NUMBER DAMPER MAGNITUDES NORMALIZED*
OF OBJECTIVE
DAMPERS d“ dxz dzz FUNCTION
2 4,40 1.37 - 1.07
2 6.33 - 2.46 1.00
2 - 1.67 2.56 17.08
1 2.78 . - 51.19
1 - 0.44 - 91.40
1 - 0.88 35.65

* Objective function divided by minimum value
of objective function with number of dampers
equal to the number of degrees of freedom

Using a single damper in the two degree of freedom system under consider-
ation, optimum damping occurs with an absolute damper on m,, ie., d,, = 0.88,
with an OF = 35.65. If the location of the absolute damper is changed from
m, to m,, the magnitude of the damper required for optimum damping is slightly
more than tripled with an OF = 51.19. The least effective ND = 1 damping
configuration occurs with a relative damper between m; and m, of magnitude
d;, = 0.44 with an OF = 91.40. The time histories of ti:e displacements of the
masses for these three ND = 1 cases are shown in Fig. 8.

For the three degree of freedom system shown in Fig. 1, the following
values are assigned for the masses, springs and initial conditions: m; = 2.,
m=1, m=1, k=3, kK =2, k=1, k, = 0., x(0) = 1., x,(0)
= 0., x,(0) = - 2. and x,(0) = x,(0) = x;(0) = 0. The undamped time history
of the displacements of the masses is shown in Fig. 9.

The results of application of the optimization algorithm to the twenty
possible configurations of dampers for ND = 3 are presented in Table 2. For
ND = 3, optimum damping is achieved by an absolute damper on m, and a pair of
relative dampers between m; and m,, and m, and m,, respectively. The optimum
values of the dampers are: d,, = 2.83, d;;, = 1.26 and d;; = 1.76. The
configuration of an absolute damper on each mass yields ogtimum damper values
of: d;, = 4.44, dy, = 5.37 and d;; = 1.60 and an OF = 1.06. Review of Table 2
indicates that there are nine other configurations of optimum dampers that
will result in OF values which are less than 2.0. However, three of these
configurations require unrealistically large absolute dampers on m,. The
least effective ND = 3 damper configuration is for three relative dampers,
ie., d, = 0.88, d;; = 0.0 and 1}3= 1.29, with an OF value of 21.28.
Unfortunately, this configuration of all relative dampers is the configuration
available in many space applications. Note that the optimum value for d,; is
zero. Time histories of the displacements for the most and least effective
configurations for ND = 3 are shown in Fig. 10.

The results of application of the optimization algorithm to the fifteen
configurations of dampers for ND = 2 and the six configurations for ND = 1 are
presented in Table 3. Review of the ND = 2 data in Table 3 indicates five
damper configurations which will result in normalized OF values which are less
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than 5.0. The best ND = 2 case consists of an absolute damper on m, and a
relative damper between m; and m,. The optimum damper values are d,, = 1.61
and d,; = 1.34 with OF = 2.53. The least effective ND = 2 congguration
~consists of an absolute damper on m, and a relative damper between m, and m,,
i.e,, dy; = 1.06 and d;; = 0.34, with an OF = 49.65. Time histories of the
displacement of the masses for the most and least effective ND = 2 damper
configurations are shown in Fig. 11.
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Figure 4. Time histories of the displacements x; of masses m, for
system of Table 1 with optimum damping configurations: (a) d,, = 6.33
and dnz ;-62.46, () d;; = 4.40 and d;; = 1.37, and (c) d;; = 1.67 and

dx
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If a single damper, ND = 1, is used for the three degree of freedom
system under consideration, optimum damping occurs with an absolute damper on
m, of magnitude 2.29. This damping configuration results in an OF = 24.56.
If only relative dampers are available, optimum damping occurs with a damper
between m, and m, of magnitude 0.72 with an OF which is 15% higher than the
previous case. Tshc least effective single damper configuration 15 a relative
damper between m; and m, of magnitude 1.98 with an OF which is over forty
times greater than the most effective ND = 1 configuration. The time
histories of the displacement of the masses for the most and least effective
ND = 1 configurations are shown in Fig. 12.
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Figure 5. Contour plot of objective function (ITSE) in damper space
for system of Table 1. Minimum value of OF = 7.94 at coordinates
d;; =633 and dy, = 2.46. Contour values: 1 = 10,2 = 15,3 = 20,
4 = 30 and 5§ = 50.

5. CONCLUSIONS

A numerical method is presented for the optimum selection of dampers for
minimizing the transient response of discrete N degree of freedom systems.
Application of the algorithm in an iterative mode to all damper configurations
for N dampers yields the magnitudes and locations of the N dampers, out of (N
+ N)/2 possible dampers, which will minimize the motion of the system; as weﬁ
as the minimum value of the objective function. Further application of the
algorithm in an iterative mode to all damper configurations for ND dampers,
over the range 1 < ND = (N-1), yields the magnitudes and locations of optimum
dampers for all possible damping configurations of the system. The
effectiveness of ecach possible damping configuration of the system in
minimizing motion can be compared and ranked by comparison of the respective
objective functions which are normalized by the minimum objective function for

the ND = N configurations.
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Figure 6. Effects of (a) increasing and (b) decreasing the value
of d;; by 2.0 on system performance shown in Figure 4.(a).

Numerical examples are presented for both two and three degree of freedom
systems. In the folfowin discussion, the objective functions are normalized
by the minimum value of the objective function for the ND = N configurations,
and the magnitude of the optimum damper values for each conﬁguration are not
stated. In thé two degree of freedom example, application of the algorithm
yields the expected results that optimum damping occurs with absolute ampers
on each mass. However, the configuration of an absolute damper on m, and a
relative damper between m, and m, results in a objective function of 1.07,
whereas changing the location of the absolute damper to m, results in an
objective function 17.08. If only a single damper is used, the most effective
system damping configuration is an absolute damper on m, with an objective
function of 35.65. An absolute damper on m, results in an objective function
of 51.19 and the least effective configuration is a relative damper between m,
and m, with an objective function of 91.40. Application to the algorithm to
the over design case where three dampers are used also results in an objective
function of 1.00.

In the three degree of freedom example, the most effective damping
configuration is an absolute damper on m, and two relative dampers between m,
and m; and between m; and m,. The configuration of an absolute damper on each
mass i:as an objective function of 1.06. Nine other configurations of three
dampers have objective functions which are less than 2.00, but three of these
require unrealistically large dampers on m,. The least effective three damper
configuration is three relative dampers with an objective function of
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Figure 7. Effects of (a) increasing and (b) decreasing the value
of dy, by 2.0 on system performance shown in Figure 4.(a).

21.28, however the optimum value of the relative damper between m; and m, is
zero. If two dampers are used, the most effective configuration is an
absolute damper on m; and a relative damper between m, and m; with an
objective function of 2.59. The least effective two damper configuration is
an absolute damper on m, and a relative damper between m, and m, with an
objective function of 49.65. Lastly, if only a single damper is used, the
most effective configuration is an absolute damper on m, and the least
effective is relative damper between m, and m, with objective functions of
24.56 and 1044.51, respectively.

The major advantages of the method are that both the magnitudes and
locations of optimum dampers for all possible damping configurations of the
system are determined, the evaluation and ranking of alternative damping
configurations such as type of dampers (absolute and/or relative) and number
or location of dampers is easily accomplished through comparison of the
respective objective functions, and the solution of the eigenvalue problem is
not required. The method is also applicable for system constraints such as
limits on the motion of one or more of the masses. Also, the method can be
applied to optimum damper selection for driven systems or systems involving
nonlinear springs. The method is general in nature in that other objective
functions which degend on the motion of the masses can be used and other
optimization algorithms can be used to determine the extremum of the objective
function in damper space.
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Figure 8. Time histories of the

system of Table 1 with optimum damping configurations: (a)

0.88 (b) d“ = 2.78 and (C) dlz

displacements x; of masses m, for
2
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Figure 9. Time history of undamped displacements x; of masses m; for
three degree of freedom system: my = 2., m, = 1, m, = 1.k, =3,
k, = 2. and k; = 1.

TABLE 2

Results of optimization for three degree of freedom system with
three dampers; system parameters: m; = 2., m; = 1, my =1,
kl =3.,.k2 = 2. and k3 = 1.

NUMBER DAMPER MAGNITUDES NORHALIZED*
OF OBJECTIVE
DAMPERS dxa du L dzz 4, d, FUNCTION
3 4.16 2.11 0.58 - - . 1.2
3 3.3 3.16 - 0.00 - - 4.99
3 2.83 1.26 - - 1.76 - 1.00
k] 5.13 1.28 - - - 1.33 1.11
3 3.30 . 0.87 2.06 . - 1.36
3 3.07 - 0.53 - 0.83 - 1.1
3 5.48 . 0.21 - - 1.35 2.89
3 3.03 - - 3.14 2.37 - 1.28
3 4.44 - . 5.37 - 1.60 1.06
3 4.26 - - . 0.76 1.07 1.38
3 - 5.75 0.77 4000.91 - - 1.32
3 - 0.88 0.00 - 1.29 - 21.28
3 - 0.56 0.47 - - 0.48 16.34
3 - 5.16 - 3284.19 1.41 . 1.05
3 - 5.16 - 3505.00 - 1.41 1.05
3 - 0.64 - - 1.72 0.89 9.75
3 - - 0.66 2.11 0.00 . 4.82
3 - - 0.66 2.11 . 0.00 4.82
3 - - 0.42 - 1.53 1.08 12,22
3 - - - 0.83 0.39 1.01 11.37

* Objective function divided by minimum objective function with
number of dampers equal to the number of degrees of freedom
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Figure 10. Time histories of the displacements x; of masses m, for
the system of Table 2 for (a) most effective damping configuration:
d;, = 2.83, d;, = 1.26 and d); = 1.76; and (b) for least effective
damping configuration: d;, = 0.88, d;; = 0.00 and d,, = 1.29.
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TABLE 3

Results of optimization for three degree of freedom system
or two dampers; system parameters: im; = 2

kK, =3, k=2 and k, = 1.

Downloaded from

.9

m, = 1,
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with one
m, = l.,

NUMBER DAMPER MAGNITUDES

OF
DAMPERS 4 d d d

NORMALIZED™
OBJECTIVE
FUNCTION

o
(-]
o
~
-
-

2.01 - - -

i DRRNRNNNNNRNNRORORN

0.72

1.29

212.

* Objective function divided by minimum objective function with
number of dampers equal to the number of degrees of freedom
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Figure 11. Time histories of the displacements x; of masses m, for
the system of Table 3 with ND = 2 for (a) most effective dampin
configuration: d;; = 1.61, d;, = 1.34; and (b) for least effective
damping configuration: d,, = 0.34 and d;; = 1.06
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Figure 12. Time histories of the displacements x; of masses m; for
the system of Table 3 with ND = 1 for (a) most effective damping
configuration: d, = 2.29 and (b) for least effective damping con-
figuration: d, = 1.98.
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