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Originally, we were interested in minimizing, by a damping treatment, the vibration and 
acoustical response of a plate-like structure (such as a railroad bridge) to a dynamic force 
applied at a single point. Often, in practice, a damping treatment is applied to the entire 
surface of such a structure. We were interested in evaluating the effect of providing 
selected damping treatments on selected surface areas of the plate-like portions of the 
structure in order to maximize reducing the responses with minimal amounts of selectively 
located damping treatment. If infonnation of this kind was available, the cost of applying a 
damping treatment to a large structure could be reduced. Before we proceeded to the 
practical problem of treating an actual structure, we sought first to obtain infonnation on the 
responses of a simple structure, such as a circular thin plate, to damping treatments applied 
selectively to its surface area. We studied the first three axisymmetric modes of vibration 
of a thin circular plate by a finite-element approach. The elements of the plate were 
modeled in terms of their mass, loss factor and flexural rigidity. The measured Q factor for 
an untreated plate vibrating in its third mode was 425. When 15 percent of the surface area 
of the plate was covered with a damping treatment, the measured Q factor of the treated 
plate in the same mode was 40. In general, there is good agreement between the computed 
and experimental frequencies, mode shapes and motion amplitudes of the untreated plate. 
As the treated area of the plate was increased, the agreement between computed and 
experimental results deteriorated, particularly with respect_to the motion amplitudes of the 
higher modes at and near the antinodes. Based on the results obtained from these tests, we 
have concluded that it should be possible to optimize the amount and location of a surface 
damping treatment on a large plate-like structure in order to obtain reductions in the acoustic 
and vibration responses that approach those which can be obtained by applying a damping 
treatment to the entire structure. 

Introduction 

Structural vibrations cause noise radiation which can be excessive and objectional under 
cenain circumstances. This occurs particularly when a structure goes into resonance. At 
this condition, the amplitudes of vibration are large, and must be reduced to a safe level. 
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The most common means of controlling structural vibrations is by applying damping. If a 
damping treatment is properly applied, it can prevent the structure from failing, perhaps, 
catastrophically. 

Usually, the form of application of the damping treatment depends on the type of the 
structural system. It is well known that the response of a coupled lumped-mass system at 
resonance can be reduced significantly, using viscous dampers in the form of dashpots; 
while a plate vibrating at resonance in more than one mode should be treated with a 
continuous damping layer. 

The analysis of damped structures is relatively simple if the application of damping is 
proportional, that is, if the damping matrix is a linear combination of the mass and stiffness 
matrices. This formulation assumes that the structure is fully coated and the coating is 
uniform. In this study, a viscoelastic material which provides only damping is used, in 
which case the term characterizing dry friction damping in the inertial matrix, will not 
appear. The damping matrix is still a linear function of the stiffness matrix, and the 
undamped modal matrix may be used to uncouple the equations of motion. The damping 
parameter is introduced only to calculate the response of the structure. 

However, the search for light-weight, rigid structures requires that the external damping 
treatment be minimized. Then, only selected areas must be treated and, since the damping 
layer is of the free type, it must be applied to regions of large vibration amplitudes where 
tensile stresses are highest. This will result in a case of nonproportional damping, because 
the stiffness matrix will contain real and complex elements pertaining to untreated and 
treated structural elements, respectively. This type of problem is complex and the response 
of the corresponding system can not be found from the eigensolution containing no 
damping. 

A numerical model of a circular plate clamped at its center is considered. The plastic is 
partitioned into annular elements, and only axisymmetric modes are allowed. 

Formulation of the Problem 

Elastic structures can be analyzed by classical mode superposition methods after evaluating 
their mass, stiffness and damping matrices. The equation of motion of an n-degree of 
freedom system with hysteretic damping is 

[M] {q} + [[K] + f [H]] {q} = {Q}. (1) 

The damping matrix [H] can be linearly related to [K], depending on the configuration of 
the coating. If the entire structure is treated, then 

[H] = / Tl [K], (2) 

where Tl is a proportionality constant, referred to as the loss factor of that structure. 
Introducing Eq. (2), Eq. (1) becomes 

[M]{q] + (1 +/Tl) [K] {q} = {Q}. (3) 

Assuming a solution in the form { q(t)} = { q0 } sinrot, the classical eigenvalue problem is 
obtained. The response in the case of a nonproportionally damped system, as expressed by 
Eq. (1), is [1] 
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{qo} = :t {q}{q}T(Q} 

r=l oi-co2 (4) 

where the square of cor is the rth eigenvalue in the solution of the eigenproblem 
corresponding to Eq. (1). Both the eigenvalue and the associated eigenvector are complex. 
In the case of pro}Xlrtional damping, Eq. (4) takes the form 

{qo} = t (q}(q}T(Q} 
r=l cfi(l +/ 1l)-co2 

where, now, the eigenvalues and eigenvector are real. 

(5) 

In the above, the stiffness matric is a function of the equivalent complex modulus of 
elasticity of the structure, E* = (1 + / 11) E. In turn, the latter is determined 
experimentally at given frequencies and temperatures. Therefore, the introduction of 
hysteretic damping in the equations of motion does not necessarily imply that the damping 
material used has hysteretic properties. Thus, in general, these equations are only valid at 
the conditions under which the measured quantities are obtained. In this respect, the 
complexity of frequency dependence of the treatment material is irrelevant, as long as a 
different eigenvalue problem would have to be solved at each frequency of interest. 

The Damping Model 

Among the energy-dissipating mechanisms which have been considered for the design of 
damped structures, hysteretic damping has been the most widely exploited; particularly in 
structural configurations incorporating viscoelastic materials, capable of dissipating 
relatively large amounts of energy. The dissipating capacity of a given material is 
characterized by the loss factor, defined as the ratio of energy dissipated during one cycle to 
the total energy stored in the system for the duration of that cycle. 

Some viscoelastic materials and most metals possess stress-strain characteristics which 
deviate from the elliptic shape, exhibiting a nonlinear property. In these cases, compromise 
is necessary and a linear approximation is used, unless the deviation is unacceptably 
excessive. The best compromise appears to maintain the loop areas and the amplitudes of 
the stress and strain [2]. 

Mathematical models developed to evaluate parameters of linear damping have been 
reviewed by Bert [3]. Because of their complexity, some of these have no immediate 
implementation in the general sense. Others are limited in their range of application. A 
comparison of the various models shows that the difference between them lies only in the 
way the respective loss factor is expressed in terms of the input variables, such as 
frequency and temperature. 

The work done on the dynamics of beams and plates incorporating continuous damping 
treatments is well documented [l]. In these models, attempts are made to duplicate the 
dynamic characteristic of the treated plate using an equivalent angle plate, with the loss 
factor, the mass and the flexural rigidity remaining constant. These conditions may be 
expressed as follows, see Fig. 1. 
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( a ) 

Tl= Tlo, 

pt = p 1 q + p2t2 , 

EI= E1I1 + E2I2. 

p E1 
Tl, t 1-----__,., 

~=:::t:=!: 

( b) 

Fig. 1 Transformation of (a) the plate into 
(b) a singular equivalent plate. 

(6) 

(7) 

(8) 

In Eq. (6) it is assumed that the damping of the base plate is negligible. The unknown 

quantities here being p, t, Tl and E, a fourth equation is required. Since the mass moment 
of inertia is a function of the material density and the geometry of the composite, it can be 
used here. 

Three of the four unknowns may be calculated using the geometry of the coated plate as 
shown in Fig. 2, using Eqs. (7) through (9). 

N N 

~------------~~ 4 N _, ----------! --4- -.-.·.-.·.-.·.-.·.-ct · -- .-. ·r-· _, -- ---------------------------- ----- ----- --'O <l 

Fig. 2 Cross section of a coated element. 
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The equivalent loss factor may be determined using different approaches [ 4,5]. The model 
due to Cremer et al. [4] is used, yielding the following expression for 11-

(10) 

Now the four unknowns which define the model of the treated plate completely can be 
calculated for given a material and thickness of the base plate and the coating. The values 
of E2 and 112 in Eq. (10) arc determined experimentally, using the resonant beam method 
[6]. The inertial and complex matrices of Eqs. (1) and (2) are evaluated from the equivalent 
parameters obtained for a circular plate clamped at its center. The plate is partitioned into 
ten annular elements and allowed to vibrate only in its axisymmetric modes. 

Experimental Work 

The experiments performed in this work may be grouped into two parts. The first part is 
concerned with the measurement of the loss factor and the storage modulus of the damping 
material. The resonant-beam technique was used, whereby a carefully machined cantilever 
beam was coated with a commercial damping material, Type GP-2 supplied by SoundCoat, 
Inc., New York. The test beam, made of aluminum 66-60, was machined with its root in 
block to observe the clamped condition. 

The coated-beam experiments yielded loss factor values of 0.259 at 76.0 Hz, 0.420 at 
136.0 Hz and 0.418 at 758.0 Hz. The two latter frequencies correspond to the second and 
fourth modes of the composite beam, respectively. According to the recommendations put 
forth in the measurement method based on its acceptance as ASTM E 756/83, reliable 
measurements were obtained only if the beam was vibrated at higher modes whose shapes 
exhibit half wavelengths. The first value of the loss factor was obtained accordingly at the 
second mode, with a concentrated mass attached to the free end of the beam to lower its 
resonance frequency to 76.0 Hz, 0.420 at 136.0 Hz, and 0.418 at 758.0 Hz. The two 
latter frequencies correspond to the second and fourth modes of the composite beam, 
respectively. According to the recommendations put forth in the measurement method 
based on its acceptance as ASTM E756/83, reliable measurements are obtained only if the 
beam is vibrated at higher modes whose shapes exhibit half wavelengths. The first value 
of the loss factor was obtained accordingly at the second mode, with a cenentrated mass 
attached to the free end of the beam to lower its resonance frequency to 76.0 Hz. The 

respective values of the storage modulus were found to be 2.50, 2.74 and 2.82 GNm-2. 

Damping due to air resistance was verified by driving the untreated beam into resonance in 
vacuo. The pressure in the vacuum chamber was gradually increased from 18.0µmHg to 
ambient pressure. At 30.0Hz, the loss factor was found to be 0.0050 at ambient pressure, 
and 0.0048 at 18 µmHg. At 216.0 Hz these values were 0 .00095 and 0.00086, 
respectively. 

The second part of the experiments consisted in measuring the plate response with different 
damping treatments. The experimental set-up is shown in Fig. 3, showing a plate, 1.2 mm 
thick and 286.0 mm in diameter, excited by seven electromagnets placed equidistantly 
around the circumference. The exciting force was kept constant by fixing the value of the 
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current in the coils to 200.0 Ma. This value was chosen to avoid saturation of the circuit 
cores, and to obtain a response large enough to be measured in the cases of heavy 
damping. The various positions of the damping patches and their areas as a fraction of the 
total plate area are shown in Figs. 4 and 5 for the second and third mooe, respectively. 

The plate was first fully coated, then it was gradually uncovered according to Figs. 3 and 
4. In the case of the first mode, the damping material was removed from two elements at a 
time, starting from the circumference. 

Since the damping layer is of the free type, the areas to be treated are those in the 
neighborhood of a displacement antinooe, where strain energy is maximal. If the wave 
neighborhocxl of a displacement antinooe represents also the point with the smallest radius 
of curvature, where stress and strain are both high. However, in situations where the 
deformed shape is not symmetri~. the treatment is applied in the area with small radii of 
curvature. 

~~ference 
Orobe Femte core 

Fig. 3 Experimental set-up for the plate model. 

Results and Discussion 

The resonance frequencies of the untreated and fully coated plates are given in Table 1. 

Mooe 1 

Mooe 2 

Mooe 3 

C.alculated 
Measured 
C.alculated 
Measured 
C.alculated 
Measured 

Untreated 

56.3 
55.0 

329.7 
3336.5 
955.9 
1016.8 

Fully treated 

55.8 
54.5 

330.7 
3332.0 
959.3 
997.7 

Table 1 Natural frequencies of the circular plate (Hz). 

The measured resonance frequency of the first mooe is lower than the calculated value for 
both the treated and the untreated case. This is consistent with the principle by which the 
Rayleigh quotient overestimates the natural frequency of a system. In the second and third 
mode, the measured values are higher. Since the Rayleigh quotient is applicable only to the 
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fundamental mode, it can not be used to justify this result. However, we believe that the 
numerical model did not predict the proper ratio of the added mass and stiffness. Also, the 
damping layer in the experimental model is not constrained at the boundaries. The 
assumption that the coating does not undergo shear deformation, and the invariance of 
Poisson's ratio in the calculation of the flexural rigidity of the composite plate have 
contributed to these discrepancies. These will also affect on the amplitudes and mode 
shapes. 

The Q factor of the plate evaluated at element node 4 is shown in Figs. 6 and 7. The 
measured and the predicted curves are in good agreement. However, this comparison can 
not be made for the outer region of the plate described above as it will be seen later in the 
discussion. 

The displacement response for the first three modes is shown in Fig. 8 through 13. A 
curve fit was performed on each set of data for presentation clarity. A detailed comparison 
was made between the calculated and experimental results for each damping case. The 
response of the undamped plate was predicted with an error of less than 1 %, evaluated at 
the free edge. A close agreement is also obtained with coverages up to 36% of the plate 
surface area. The error at 36% coverage is 8%, while that for a full coating is 6%. This 
discrepancy, which increases as the treated area is reduced, can be attributed to the 
unconstrained boundary elements. These, being at the edge of the treated area, are not 
subject to tensile forces, as is assumed in the numerical model. As the treated area is 
reduced, the surface area of the boundary element becomes relatively high, and its 
contribution to the damping of the plate appears to be less significant. An error of 32% 
was recorded in the 4% and 16% coverage cases. 

The results for the second mode are presented in Figs. 10 and 11. The damped waveform 
exhibits two regions of interest. The first is the region within the nodal circle where the 
measured values are greate than the predictions. This is consistent with the argument on 
the boundary element as explained above. The error varies from 28% at 27% coverage to 
3% for full coating. The second region of concern is that between the nodal circle and the 
edge, which behaves simply as an annular plate, simply supported at the inner diameter and 
free at the outer edge, oscillating without undergoing flexural deformation. The induced 
tensile stresses in this region are small and, as a consequence, the damping treatment has 
little effect. The vibration amplitudes are controlled by the inertia of the annular region 
which may have contributed to an observed progressive shift of the nodal circle in the 
coating cases above 40% coverage of the plate area 

This behavior is more promounced in the third mode, shown in Figs. 12 and 13. The 
results agree in the area within the first nodal circle, where an error of 22% was recorded 
for a 15% coverge. This error drops to 8% for the fully coated plate. Although the flexing 
motion of the region located outside the first nodal circle is pronounced, the local antinode 
is heavily damped. 

Conclusion 

The dynamic response of a circular plate incorporating patch damping is investigated using 
a finite-element approach, with only axisymmetric modes being allowed. The predicted 
response was in reasonable agreement with our experiments at low frequencies, or in the 
regions where half wavelengths are described. A flexing motion of the outer part of the 
plate is observed which the numerical model failed to predict. 
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Fig. 4 Different damping treatments in mode 2. 
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Fig. 5 Different damping treatments in mode 3. 
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Fig. 6 Calculated Q factor. 
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Fig. 7 Measured Q factor 
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Fig. 9 Mode 1, measured response. 
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Fig. 10 Mode 2, calculated response. 
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Fig. 11 Mode 2, measured response. 
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