FOREWORD This report was prepared by the National Bureau of Standards under Air Force Order No. AF 33(616)59-4. The contract was initiated under Project No. 7381 "Materials Application" Task No. 738103 - "Data Collection and Correlation." The work was administered under the direction of the Directorate of Materials and Processes, Deputy for Technology, Aeronautical Systems Division with Mr. R. E. Wittman as project officer. This report is an interim report and covers the modulus of rupture and Young's modulus determinations obtained from January 1956 to December 1961. The mechanical testing was performed in the Glass Section under Mr. C. H. Hahner, the Section Chief. The statistical analysis was made by J. M. Cameron of the Statistical Engineering Section. #### ABSTRACT The ASD program to obtain useful, statistically sound, design criteria on optically transparent window materials of a brittle nature and suitable for military air vehicle applications, is summarized. Several factors associated with the determination of Young's modulus and the modulus of rupture for seven commercially available glasses are presented and interpreted. The practical strength of plate glass is dependent on several factors including surface finish, thermal conditioning, cutting techniques and composition. Effects of these variables together with long and short time elevated temperature strength capabilities are shown. This report has been reviewed and is approved. W. P. CONRARDY Chief, Materials Engineering Branch Applications Laboratory W. P. Comardy Directorate of Materials & Processes ## TABLE OF CONTENTS | \mathbf{P}_{0} | ag | |--|------------| | INTRODUCTION | 1 | | APPARATUS, SPECIMENS AND PROCEDURE | 2 | | PART I, PRELIMINARY PROGRAM | 7 | | PART II, MAIN PROGRAM | 17 | | Modulus of Rupture Determined at the Maximum Testing Temperature | 44 | | Amount of Temper in Specimens | 46 | | Loss of Temper | 49 | | Young's Modulus Determined at Elevated Temperatures | 51 | | Young's Modulus Determined at 75°F Before and After Heating for 500 Hours at Various Temperatures | . . | | | 53 | | | 55 | | PART III, ADDITIONAL DATA | 56 | | Effect of Cut Edges on the Modulus of Rupture 5 | 56 | | Comparison of the Effect of Temperature on
the Modulus of Rupture of Sandblasted and
Ground and Polished Specimens | 58 | | Effect of Different Sandblasting on the Modulus of Rupture | 5 0 | | The Effect of the Rate of Loading on the Modulus of Rupture | 31 | | Modulus of Rupture of LOF Plate Glass Determined on Survivors of the Stress-Rupture and Creep Testing | 37 | ## TABLE OF CONTENTS (CONT'D) | | Page | |----------------------------------|------| | Distribution of Strength Results | 64 | | Mirror Size | 70 | | CONCLUSIONS | 77 | | BIBLIOGRAPHY | 80 | ### **TABLES** | | | Page | |-------|---|------| | Table | | | | I. | Glasses Tested | 4 | | II. | Summary of Results From All Laboratories | 8 | | III. | Inter-Laboratory Comparisons | 10 | | IV. | Average Modulus of Rupture Determined With and Without the Porcelain Rod in Contact With the Specimen | 11 | | V. | Average Modulus of Rupture by Fracture Origin | 13 | | VI. | Summary of Young's Modulus Results From All Laboratories | 15 | | VII. | Modulus of Rupture for Annealed,
Sandblasted, LOF Plate Glass Specimens | 25 | | VIII. | Modulus of Rupture for Semi-Tempered,
Sandblasted, LOF Plate Glass Specimens | 26 | | IX. | Modulus of Rupture for Tempered,
Sandblasted, LOF Plate Glass Specimens | 27 | | Х. | Modulus of Rupture for Annealed,
Sandblasted, PPG 3235 Glass Specimens | 28 | | XI. | Modulus of Rupture for Semi-Tempered,
Sandblasted, PPG 3235 Glass Specimens | 29 | | XII. | Modulus of Rupture for Tempered,
Sandblasted, PPG 3235 Glass Specimens | 30 | | XIII. | Modulus of Rupture for Annealed,
Sandblasted, PPG 6695 Glass Specimens | 31 | | XIV. | Modulus of Rupture for Semi-Tempered,
Sandblasted, PPG 6695 Glass Specimens | 32 | | xv. | Modulus of Rupture for Tempered,
Sandblasted, PPG 6695 Glass Specimens | 33 | ## TABLES (CONT'D) | | | .Page | |---------|--|-------| | Table | | | | XVI. | Modulus of Rupture for Annealed,
Sandblasted, CGW 1723 Glass Specimens | 34 | | XVII. | Modulus of Rupture for Semi-Tempered,
Sandblasted, CGW 1723 Glass Specimens | 35 | | XVIII. | Modulus of Rupture for Tempered,
Sandblasted, CGW 1723 Glass Specimens | 36 | | XIX. | Modulus of Rupture for Annealed,
Sandblasted, CGW 7740 Glass Specimens | 37 | | XX. | Modulus of Rupture for Semi-Tempered,
Sandblasted, CGW 7740 Glass Specimens | 38 | | XXI. | Modulus of Rupture for Annealed,
Sandblasted, CGW 7900 Glass Specimens | 39 | | XXII. | Modulus of Rupture for Semi-Tempered,
Sandblasted, CGW 7900 Glass Specimens | 40 | | XXIII. | Modulus of Rupture for Annealed,
Sandblasted, CGW 7940 Glass Specimens | 41 | | XXIV. | Test Groups that had Edge Fractures | 43 | | • VXX | Modulus of Rupture at Maximum Testing Temperature | 45 | | XXVI. | Range of Temper in Glass Specimens | 47 | | XXVII. | Correlation Between Strength and Amount of Temper for Semi-Tempered and Tempered Specimens | . 48 | | XXVIII. | Change in Amount of Temper After Heating for 500 Hours at Various Temperatures | . 50 | | XXIX. | Change in Young's Modulus After 500
Hours Exposure at Various Temperatures | . 54 | | XXX. | Poisson's Ratio Determined at 75°F | . 55 | ## TABLES (CONT'D) | | | Page | |---------|---|------| | Table | | | | XXXI. | Effect of Cutting on the Modulus of Rupture of Annealed LOF Plate Glass Ground and Polished Specimens | 57 | | XXXII. | Effect of Temperature on the Modulus of Rupture of Annealed LOF Plate Glass Specimens | 59 | | XXXIII. | Effect of Different Sandblasting on the Modulus of Rupture of Annealed LOF Plate Glass Specimens | 60 | | XXXIV. | on Sandblasted LOF Plate Glass Specimens that Survived the Static Fatigue and | | | | Creep Testing | 63 | ## FIGURES | | | Page | |-----|--|------| | 1. | Summary of Results from All Laboratories | 9 | | 2. | Modulus of Rupture of Sandblasted, LOF Plate Glass Specimens at Different Temperatures | 18 | | 3. | Modulus of Rupture of Sandblasted, PPG
3235 Specimens at Different Temperatures | 19 | | 4. | Modulus of Rupture of Sandblasted, PPG
6695 Specimens at Different Temperatures | 20 | | 5. | Modulus of Rupture of Sandblasted, CGW
1723 Specimens at Different Temperatures | 21 | | 6. | Modulus of Rupture of Sandblasted, CGW 7740 Specimens at Different Temperatures | 22 | | 7. | Modulus of Rupture of Sandblasted, CGW 7900 Specimens at Different Temperatures | 23 | | 8. | Modulus of Rupture of Sandblasted, CGW 7940 Specimens at Different Temperatures | 24 | | 9. | Young's Modulus at Elevated Temperatures | 52 | | 10. | The Effect of the Rate of Loading on the Modulus of Rupture of Annealed, Sandblasted, PPG 3235 Specimens | 62 | | 11. | Distribution of Modulus of Rupture of Sandblasted Group A Assuming Normal Probability Distribution | 66 | | 12. | Distribution of Modulus of Rupture of Sandblasted Group B Assuming Normal Probability Distribution | 67 | | 13. | Distribution of Modulus of Rupture of Ground and Polished Group C Assuming Normal Probability Distribution | 68 | | 14. | Distribution of Modulus of Rupture of Ground and Polished Group D Assuming Normal Probability Distribution | , 69 | ## FIGURES (CONT'D) | | | P a ge | |-----|--|---------------| | 15. | Modulus of Rupture Versus Mirror Size for Plate Glass | 71 | | 16. | Modulus of Rupture Versus Mirror Size for PPG 3235 | 72 | | 17. | Modulus of Rupture Versus Mirror Size for CGW 1723 | 73 | | 18. | Modulus of Rupture Versus Mirror Size
for CGW 7940 | 74 | | 19. | Modulus of Rupture-Mirror Radius Curves
for Four Types of Glass | 76 | #### INTRODUCTION This project was initiated at the National Bureau of Standards by the Aeronautical Systems Division with the objectives of: 1) developing test methods suitable for measuring the effect of temperature on some of the physical properties of glass, and 2) determining several properties of some presently available commercial glasses that appear to be suitable for aircraft glazing at elevated temperatures. The need for the project is reflected by the discordant strength-temperature results presented in the literature, or as Stanworth (1) says, "The effect of temperature is not at all clearly understood, and it is quite easy to pick out of the literature experimental data showing that the strength increases, decreases, or remains constant with increase in temperature from room temperature upwards." This report primarily summerizes the results obtained for the modulus of rupture and Young's modulus on the glasses in the program, but also presents other data obtained that is considered pertinent to the testing or utilization of glass. Some of the results obtained or conclusions drawn have previously been reported by other investigators, but because information to support these conclusions have resulted from this project they are reported here, also. Reference is made to some other literature to make this work more useful. The data obtained in the program have been previously reported in detail in the annual summary reports, "Properties of Glasses at Elevated Temperatures", WADC Technical Report 56-645, Parts I through VI, 1956-1962 (2, 3, 4, 5, 6, 7). The report is divided into three parts: Part I is the
preliminary program consisting chiefly of the testing of plate glass by four different laboratories. Part II is the main program and presents the data obtained on the seven glasses tested at the National Bureau of Standards. Part III presents other data, or analyses of data, obtained in conjunction with the main program. Manuscript released by the author May 1962 for publication as a WADC Technical Documentary Report. ### APPARATUS, SPECIMENS, AND PROCEDURE The apparatus used for the modulus of rupture testing fulfilled the requirements specified in ASTM Designation C 158-43 "Flexure Testing of Glass (Flat Glass)", with the exceptions that two point loading over a two inch span was used in place of the single point loading specified, and the entire apparatus was made of Inconel, including the knife edges which ASTM states should be made of brass or mild steel. All modulus of rupture testing was conducted in an electric furnace that was mounted on the testing machine table. The testing temperature was maintained within ±5 °F. Root-mean-square errors in the modulus of rupture data were estimated to be under three-quarters of one per cent. During some of the early work the static Young's modulus was determined during the modulus of rupture test by using a commercially available deflectometer that employed a motion transformer. A porcelain rod passed through the bottom of the furnace, contacted the specimen, and transmitted the deflection to the deflectometer. In later work Young's modulus and Poisson's ratio were determined by a dynamic method. The root-mean-square errors for the static Young's modulus determinations were estimated at 1.3 per cent and for the dynamic Young's modulus at less than one-half of one per cent. The apparatus for determining the modulus of rupture and the static Young's modulus were previously reported (2), and the apparatus for determining the dynamic elastic properties was reported by Spinner (8). Specimens were made from commercially available glasses and were cut from 1/4 inch thick sheets of glass into 10 inch by 1-1/2 inch specimens, the size recommended by ASTM. No preparation of the edges was given to any specimen, the "as-cut" edges remained on the specimens tested. The surface opposite to the surface with the scored edges was tested in tension. Some specimens had this surface abraded. This abrasion was done by blowing sand against the surface of the specimen. For the testing reported in Part I a 2-1/2 inch by 1 inch rectangular area was abraded on the surface of the specimens. For the testing reported in Part II a uniform weight of graded sand was blown against the specimens from a constant distance with the same amount of air pressure. This produced an abraded circular area approximately 1-1/4 inches in diameter in the center of the tension surface of the specimens. Specimens referred to as "ground and polished" had no surface abrasion but were tested with the original surface produced by the polishing operation. For the testing reported in Part I the plate glass was tested in the annealed and tempered conditions. For the testing reported in Part II all seven glasses were tested in the annealed condition and in the semi-tempered and tempered conditions when obtainable. The semi-tempered and tempered CGW 1723 specimens were warped and a number of the CGW 7900 semi-tempered specimens had small cracks. The semi-tempered CGW 7900 specimens had a considerable formation of alpha cristobalite on the surfaces after heating for 500 hours at 1420°F, while the annealed specimens were not noticeably affected. Table I lists the seven glasses tested, the manufacturer, the coefficient of expansion, and strain point of each. Table I. Glasses Tested | Glass | Manufacturer | Coefficient
of
Expansion | | Strain
Point | | |-----------------------------|----------------------------------|--------------------------------|-----|-----------------|--| | | | 10 ⁻⁷ °C | °C | ۰F | | | Soda Lime
Regular Plate | Libbey-Owens-Ford (LOF) | 92.0 | 517 | 96 3 | | | PPG 3235
Borosilicate | Pittsburgh Plate Glass Co. (PPG) | 62.0 | 493 | 920 | | | CGW 7740
Borosilicate | Corning Glass Works
(CGW) | 32.0 | 515 | 959 | | | PPG 6695
Aluminosilicate | Pittsburgh Plate Glass Co. | 49.0 | 660 | 1220 | | | CGW 1723
Aluminosilicate | Corning Glass Works | 42.0 | 672 | 1242 | | | CGW 7900
96% Silica | Corning Glass Works | 8.0 | 820 | 1508 | | | CGW 7940
Fused Silica | Corning Glass Works | 5.6 | 990 | 1814 | | ASTM Designation C 158-43 was followed during the modulus of rupture testing; however, the ensuing steps not specified by ASTM were followed: - 1) Specimens were stored at 75°F ±5 °F and 50% ±10 % relative humidity. - 2) After specimens were measured and readied for testing, they were held under the above conditions for at least 48 hours before testing. This includes specimens tested at elevated temperatures. - 3) Specimens tested at 75°F were tested under the above conditions of temperature and humidity. - 4) Specimens tested at elevated temperatures were first placed in a laboratory oven and heated to 200°F. They were then placed in the furnace and heated to the testing temperature, held at this temperature for five minutes and then tested. Total time in the furnace for heating, arriving at temperature equilibrium and testing was always under one hour. - 5) Some specimens were heated, in annealing furnaces, at the testing temperature for 500 ±2 hours. These specimens were slowly cooled to room temperature and then conditioned and tested in the same manner, and along with, the specimens not heated for 500 hours. The static Young's modulus was determined on at least three specimens from each test group in Part I during the modulus of rupture determination. Young's modulus and Poisson's ratio were determined by the dynamic method at 75°F on five specimens from each test group in the testing reported in Part II, before and after heating the specimens for 500 hours. Young's modulus was also determined on three specimens, not previously heat treated, of each glass with increasing temperatures up to the strain point of the glass. The strain (temper) was measured at 75°F as birefringence at the center of all specimens. The strain was measured before and after the specimens were heated for 500 hours. The fracture faces of all of the specimens broken in the modulus of rupture testing in the main program were saved and when possible the origin of fracture was located. Fractures were classed as edge when they occurred on one of the edges of the tensile surface and as surface when they occurred on the surface at any place other than the edge. When possible the size of the mirror surface was measured. The above discussion applies to the testing conducted at the National Bureau of Standards. The testing reported in Part I conducted at the other three laboratories was done in a similar manner. #### Part I #### PRELIMINARY PROGRAM The modulus of rupture and Young's modulus were determined on LOF Plate Glass specimens in the annealed and tempered conditions at four different laboratories. These were: Libbey-Owens-Ford Glass Co. (LOF), Pittsburgh Plate Glass Co. (PPG), Wright Air Development Center (WADC), and the National Bureau of Standards (NBS). Three of the laboratories conducted tests at 75°F, 400°F, and 550°F; the fourth laboratory conducted tests only at 75°F. The modulus of rupture results obtained by the four laboratories are presented in Table II which gives: the number of specimens tested, the average modulus of rupture, the standard deviation, and the number of edge and surface fractures. Figure 1 is a floating bar chart that pictures for each of the test conditions in Table II, the average modulus of rupture (heavy horizontal line), a standard deviation on either side of the average (hatched areas), and the maximum values obtained (top and bottom horizontal lines). Comparing the results obtained by the four laboratories for each test condition shows that there is some lack of agreement among the laboratories in the ground and polished test groups, but among the sandblasted test groups the agreement is generally good. To determine whether there was any laboratory bias, a count was made of the number of times in the fourteen test conditions that the modulus of rupture at one laboratory was higher than another. The results are presented in Table III and show that there is no laboratory bias. The apparatus used to measure the deflection for determining Young's modulus by the static method employed a porcelain rod in contact with the center of the tensile surface of the specimen under test. In order to determine whether this rod affected the strength of the glass, the average modulus of rupture for which the Young's modulus was determined and for the specimens for which it was not determined are compared in Table IV. A one-sided sign test (9) of the values in Table IV indicates that the average modulus of rupture was significantly lower at the 5 per cent level in two laboratories when the Young's modulus was determined by the static method. LOF did not measure Young's modulus at elevated temperatures with a rod in contact with the tensile surface of the specimen, so their results would not be expected to be affected. The above analysis indicates the rod in contact with the tension side of the specimen acted as a stress raiser and weakened the specimen. *Now Aeronautical Systems Division Summary of Results from All Laboratories Table II. | Laboratories | LOF WADC PPG | f.o. x S.D. n f.o. x S.D. n f.o. x S.D. | - | .8S,12E 15930 2937 28 23S,7E 13540 3062 30 18S,9E 15100 4091 | 4E 14740 2897 8 55,2E 13140 | 6S, 9E 33540 4540 30 10S, 3E 29020 | 5195 10 - 30630 2387 | 26400 6265 10 - 28877 | E 16390 3067 10 55.4E 10330 | E 15300 3547 30 175,10E 10190 | 24270 3789 10 . 27050 | 4E 24530 4937 30 - 23220 | 6S, 4E 9690 743 29 22S, 7E 10130 955 30 19S, 11E 10340 134 | 7S 23650 1031 30 16S
24500 1002 30 29S 1E | 6S,4E 10530 871 29 19S,10E 9980 1675 | 101950 1950 1981 1981 1981 | |--------------|--------------|---|------------|--|---------------------------------------|--|----------------------|-----------------------|-----------------------------|-------------------------------|-----------------------|------------------------------------|--|---|---|----------------------------| | | ADC | | 8 0 | | | | 306 | 288 | | | | 232 | 101 | 245(| _ | 9 | | u | | • | | 300 | က် | ကြ | 1 | 1 | | | . 1 | 1 | 23 | 03 | SS. | ٠, | | 1 | | ជ | | | | | | | | | | | | | | _ | | rato | - 1 | Ū. | psi | | | | | | | | | | | | | | |) de l | | ı× | psi | 15930 | 14740 | 33540 | 26750 | 26400 | 16390 | 15300 | 24270 | 24530 | 0696 | 23650 | 10530 | 21.350 | | | | | | 18S,12E | 6S, 4E | 16S,9E | | ı | 6S, 4E | 25S, 4E | , | | ,
(S) | 3 | 26S,4E | 248 | | | L | Ľ | | 30 | 10 | 30 | 10 | 10 | 10 | 23 | 10 | 30 | 30 | 99 | 30 | 30 | | | | S.D.4/ | psi | 4424 | | 4.7 | | 4 | ر.پ | 4 | 4 | ر ب | 909 | 1169 | 1382 | 1549 | | | NBS | _ek
Ki | isd | 14650 | 10260 | 30330 | 29280 | 30320 | 13610 | 14410 | 33390 | 25000 | 10070 | 23270 | 0966 | 20750 | | | N
 | f.0.a/ | | 10S,13E
6S.4E | 7S, 3E | , | 1 | | 5S, SE | • | • | ' | 19S, 5E | • | 25S,4E | • | | | | 14 | | 24
10 | 10 | 24 | ם
די | 2 | 70 | 30 | 07 | စ္တ | 24 | 24 | စ္တ | 30 | | Test | No. | | | 72 | က - | 411 | ი (| ا ف | | ∞ (| တ (| ם
די | r=1 (| 12 | က
H • | 14 | Number of specimens tested. Fracture origin. Sindicates fracture originated on the surface of the specimen; Eindicates fracture originated on the edge of the specimens. اھ اہ Average modulus of rupture. w| 4| Standard deviation. FIGURE I SUMMARY OF MODULUS OF RUPTURE RESULTS FROM ALL LABORATORIES Table III. Inter-Laboratory Comparisons | Laboratories | Number of Tests in Which the Average
Modulus of Rupture is Greater | |--------------|---| | WADC > NBS | 7 | | NBS > WADC | 7 | | NBS > LOF | 5 | | LOF > NBS | 9 | | LOF > WADC | 8 | | WADC > LOF | 6 | Table IV. Average Modulus of Rupture Determined With and Without the Porcelain Rod in Contact With the Specimen | | ŊВ | S | WADO | ; | |----------------------|--------|-----------------------|-------------------|-----------------------| | Test/ Rod in Contact | | Rod Not in
Contact | Rod in
Contact | Rod Not in
Contact | | | psi | psi | psi | psi | | 1 | 10,760 | 15,950 | 13,670 | - | | 2 | 10,880 | 11,300 | 11,060 | 11,620 | | 3 | 10,210 | 10,320 | 13,500 | 12,780 | | 4 | 29,490 | 30,750 | 28,760 | 29,850 | | 5 | 27,740 | 30,810 | 29,140 | 32,110 | | 6 | 32,520 | 29,380 | 28,740 | 28,970 | | 7 | 12,660 | 14,560 | 10,290 | 10,370 | | 8 | 7,790 | 15,740 | 10,500 | 10,030 | | 9 | 33,750 | 33,030 | 27,020 | 27,070 | | 10 | 22,090 | 25,580 | 23,170 | 23,240 | | 11 | 9,980 | 10,100 | 9,770 | 10,510 | | 12 | 22,260 | 23,770 | 24,330 | 24,630 | | 13 | 8,480 | 9,860 | 9,870 | 10,040 | | 14 | 18,760 | 21,150 | 21,350 | 22,320 | ^{1/} Same numbers as used to identify tests in Table II. The modulus-of-rupture values, obtained without prior involvement with measurements of Young's modulus presented in Table IV were used to study the relationship with temperature. Strength-temperature trends were often shown in two of the laboratories only to have the third laboratory show no trend or the opposite effect. There was rarely complete agreement among all laboratories in showing a definite trend in strength-temperature results. The only statistically significant difference in strength for all 3 laboratories was between tempered specimens tested at 550°F after heating at this temperature for 500 hours and tempered specimens tested at room temperature. The specimens tested at 550°F were weaker. The annealed specimens tested after heating for less than one hour showed a tendency to have a lower strength at 400°F. Table V presents average modulus of rupture data on annealed glass classified as to fracture origin (surface or edge) determined on specimens not used for static Young's modulus determinations. The results show that for specimens whose fracture originated on the surface, the average modulus of rupture was larger than the average modulus for specimens whose fracture originated on the edge in 18 cases and lower in 4 cases. This difference is significantly different by the sign test at the 5 per cent level. Table V. Average Modulus of Rupture by Fracture Origin | Test, | LO | F | NBS | | WA | DC | PP | G | |-------|-------|--------------|-------|-------|-------|-------|-------|-------| | No.1 | E2/ | 5 <u>2</u> / | E | S | E | ත | Е | S | | | psi | 1 | 15290 | 16300 | 15490 | 16020 | - | 10100 | 14680 | 14700 | | 2 | 8180 | 13390 | 13180 | 10040 | 7770 | 12580 | - | - | | 3 | 12470 | 14670 | 9850 | 10440 | 11000 | 11320 | - | - | | 7 | 20150 | 14090 | 16080 | 13540 | 9400 | 9930 | - | - | | 8 | 16870 | 15140 | 13320 | 14520 | 8680 | 10380 | + | - | | 11 | 9260 | 9950 | 9460 | 10280 | 10390 | 10550 | 9190 | 11000 | | 13 | 9080 | 10800 | 8700 | 10060 | 9030 | 10560 | - | - | ^{1/} Same numbers as used to identify tests in Table II. S - indicates the fracture originated on the surface of the specimen. E - indicates the fracture originated on the edge of the specimen. Table VI gives the Young's modulus as determined by the static method, the number of specimens tested, and the standard deviation for all the test conditions for the three laboratories that determined the modulus of elasticity during the modulus of rupture tests. The static modulus of elasticity determination on plate glass showed: - 1) Sandblasting does not change the modulus of elasticity or reduce the standard deviation of the measurements. - 2) The modulus of elasticity of tempered and annealed specimens differed significantly at two laboratories but the results from the third laboratory failed to show a difference. This is an indication of the lack of sensitivity in the static test as employed and because of this lack of sensitivity this test method was not pursued further. - 3) One of the laboratories had a significantly higher measurement error than the other two and also had results that were lower than the other two. Table VI. Summary of Young's Modulus Results from all Laboratories | Test/ | | | | alxorator | ratories | | | | | | |---|----------------|--|--|-----------|---|---|---|--|---|--| | MO * | | LOF | | | NBS | | | WADO | ; | | | | <u>n</u> 2/ | <u>-</u> ₃/ | S.D.4/ | n | x | S.D. | n | x | S.D. | | | | | 10 ⁶ psi | 10 ⁶ psi | , | 10 ⁶ psi | 10 ⁶ psi | | $10^6 \mathrm{psi}$ | 10 ⁶ psi | | | 1
23
4
5
6
7
8
9
10
11
12
13
14 | 55555555555555 | 10.83
10.53
10.63
10.19
10.04
9.93
10.27
10.56
10.09
9.14
10.62
10.25
9.15
9.07 | .117
.225
.145
.082
.165
.085
.101 | 2 | 10.20
10.31
10.21
10.44
10.10
9.73
10.34
10.38
10.13
10.13 | 0.246
.191
.097
.284
.105
.074
.127
.105
.105
.084
.269
.127
.147 | 27
5
4
23
5
3
4
9
4
4
15
10
9 | 10.70
10.28
10.11
9.80
9.61
9.30
10.25
9.84
9.64
9.66
10.36
9.83
10.46 | 0.336
.365
.173
.364
.270
.221
.104
.169
.096
.397
.358
.163
.303
.222 | | ^{1/} Same numbers as used to identify tests in Table II. ^{2/} Numbers of specimens tested. ^{3/} Average Young's modulus. ^{4/} Standard deviation. The following conclusions concerning the strength of glass were derived from the Preliminary Program Testing: - 1) Difference in strength results can be expected when glass is tested in different laboratories under the same conditions. The laboratories can so show no bias and still produce results different from one another. - 2) Sandblasting reduces the average strength and the standard deviation and increases the sensitivity of the modulus of rupture test. By using 10 sandblasted specimens differences of 2000 psi can be detected at the 5 per cent level whereas with 30 ground and polished specimens differences of only 3800 psi can be detected at the 5 per cent level. - 3) The deflectometer rod in contact with the tensile surface of the specimen lowered the strength of the specimen. - 4) Specimens that had fractures originating on the edge of the specimen were weaker than specimens that had the fracture originating on the surface. - 5) Effect of temperature on the strength would be masked if small samples of ground and polished specimens were used. #### PART II #### MAIN PROGRAM The modulus of rupture results presented were obtained, except when noted, on sandblasted specimens. The average modulus of rupture values are presented in Figures 2 through 8. The points plotted in the figures are average values for surface fractures only. The average values of the modulus of rupture, radius of the mirror surface, and the
respective standard deviations for these values are presented in Tables VII through XXIII. The mirror radius was determined by measuring the distance between the stippled areas that bound the mirror. This was considered the mirror diameter and dividing by two gave the mirror radius. The measurement was made along the edge of the fracture face that was on the surface of the specimen broken in tension. FIGURE 2 MODULUS OF RUPTURE OF SANDBLASTED, LOF PLATE GLASS SPECIMENS AT DIFFERENT TEMPERATURES | Table VII. Mo | Modulus of Rup | Rupture for An | Annealed, | | Sandblasted, L | LOF P1 | Plate Glass | Specimens | |---------------|-----------------------|----------------|-----------|-------------------|----------------|--------|-------------|-------------------| | Testing | Exposure ¹ | Location | Mod | Modulus of | Rupture | M | Mirror Size | (6 8) | | Temperature | |) f of of | /원 | / ₊ × | S.D. 5/ | u | ı× | S.D. | | ٥F | Hours | breaks- | | psi | psi | | Inches | Inches | | 75 | ~ | ഗ | တ | 0069 | 579 | 6 | 0.064 | 0.012 | | • | | ы | 9 | 5030 | 779 | 9 | 0.198 | .04 | | 757/ | Н | യ | 12 | 13 | 2400 | 12 | 0 | 0. | | | | ш | 18 | 11310 | 2724 | 18 | 0.0.0 | 0.019 | | 300 | | മ | 10 | 0299 | 634 | 10 | 0 | 0 | | | | ш | S | 6120 | 202 | လ | 0.152 | 0.064 | | 400 | 7 | വ | 13 | 6330 | 790 | 13 | 0.079 | 0.037 | | | | ш | 82 | 5300 | 283 | 2 | 0.174 | 0.074 | | 550 | r-I | യ | 15 | 5870 | 480 | 14 | 0.081 | 0.033 | | | | កា | 0 | ! | t | 0 | I. | ! | | 700 | - | တ | 13 | 6550 | 544 | 13 | 0.064 | 0.018 | | | | ш | N | 5200 | 424 | 7 | 0.220 | 0 | | 200 | 200 | മ | 15 | 7260 | 280 | 15 | 0.052 | 0.022 | | | | ы | 0 | ! | 1 | 0 | ! | ŀ | | 870 | П | ഗ | 12 | 66 | 417 | 10 | • | 0 | | | | ш | က | 6470 | 874 | က | 0.136 | 0.038 | | 870 | 200 | ഗ | 14 | 7980 | 614 | 14 | • | 600.0 | | | | ш | ٦ | 0069 | • | ٦ | 0.079 | 1 | | 963 | H | ഗ | 11 | တ | 1238 | 10 | .057 | .012 | | | | Ε | 4 | 5325 | ł | • | | , | One hour indicates specimens were tested after less than one hour exposure at the indicated testing temperature. Five hundred hours indicates that specimens were heated at the test temperature for 500 hours, cooled slowly to room temperature, and then tested in the same manner as the one hour specimens. Sindicates fracture originated on the surface of the specimen. edge of the specimen. a l n indicates number of specimens tested. 0 4 0 0 1c 1 surface. S.D. indicates standard deviation. Radius of the smooth portion of the fracture face. These specimens were not sandblasted but had the original ground and polished | Test- Expo-/ Location ing surely Breaks²/ Temp. Hours Sreaks²/ 75 1 Sreaks²/ 300 1 Sreaks²/ 400 1 Sreaks²/ 400 1 Sreaks²/ 550 1 Sreaks²/ 550 1 Sreaks²/ 550 1 Sreaks²/ 550 Sre | Mod
115
125
135
135 | ö _ joj | Rupture | × | or | Size*/ | £ | Biref | Birefringence | v | of Center
After He | er | |--|---|----------------|--------------|----------------|---------|--------|-----|------------|---------------|-------------|-----------------------|-----------------| | Sur 9-4, Breaks 2/8 Hours Breaks 2/8 1 B B B B B B B B B B B B B B B B B | \$ 00 00 00 00 00 00 00 00 00 00 00 00 00 | | - | | | | (| 1 | 11-14-50 | | After | | | Hours 1 1 1 200 500 500 500 500 500 | 00 00 00 00 | | S.D. 5 | Ľ | -
!× | S.D. | 집 드 | Delored In | S.D. | 2 | - | Heating
S.D. | | 2/
1 1 H W H H W H W W H W W H W W H W W H W W H W W H W W H W W H W W H W W H W W H W W H W W H W W H W W M M M M | 5
0
0
1
1
0
0
0 | 13410 | psi | | he s | Inches | : | mu/in | mu/1n | | mu/in | - 5 | | 2
1 1 2
200 200 HW HW HW HW HW | 97 SO SO | , | 747 | 15 | 0.046 | 0.005 | 15 | 1776 | 1.7 | | | | | 200
1 1 200
1 200
1 200
1 200
1 200
1 200
200
200
200
200
200
200
200
200
200 | 0000 | 21070
25000 | 2686 | 18 | 0.018 | 0.007 | 26 | 1808 | 59 | | | | | 500
1 200
500 mw mw mm | | 13680 | 1225 | 15 | 0.047 | 0.004 | 15 | 1817 | 44 | | | | | 200
1
500
800
800
800 | , | 12650 | 519 | 15 | 0.049 | 0.005 | 15 | 1786 | 92 | | | | | 500
800
800
800 | 15 | 15610 | 928 | 14
0 | 0.031 | 0.007 | 15 | 1801 | 17 | 15 | 1785 | - | | 500
E | 15 | 13040 | 910 | 14 | 0.048 | 0.004 | 15 | 1809 | 7.8 | | | | | _ | 15 | 14180 | 641 | 15 | 0.035 | 0.004 | 15 | 1786 | 7.8 | 15 | 1597 | 29 | | | 15 | 13570 | 414 | 15 | 0.041 | 0.005 | 15 | 1775 | 73 | | | | | , | 11.4 | 11280 | 1542 | 11 | 0.036 | 0.017 | 11 | 1813 | 83
107 | L 4 | 830
799 | 59
101 | | | 44
44 | 13990 | 795 | בר | 0.030 | 0.004 | 14 | 1776 | 74 | | | | | 870 500 S | 28 | 11510 | 1796
1816 | 9 | 0.021 | 0.005 | 4 | 1767 | 95
72 | 7.8 | 55
55 | 1 # | | 963 1 E | 250 | 12800 | 1488 | 10 | 0.033 | 0.005 | 10 | 1786 | 56 | ŀ | 1 | 1 | One hour indicates specimens were tested after less than one hour exposure at the indicated testing temperature. Five hundred hours indicates that specimens were heated at the test temperature for 500 hours, cooled slowly to room temperature, and then tested in the same manner as the one hour specimens. Sindicates fracture originated on the surface of the specimen. E. " edge " " " edge ٦) edge in indicates number of specimens tested. X indicates average. S.D. indicates standard deviation. Radius of the smooth portion of the fracture face. These specimens were not sandblasted but had the original ground and polished surface. Thirty specimens were tested but the location of the fracture origin could not be determined on three specimens. | i | | | | | | | | | - | | | | | ì | |------------------------|---------------|----------------|---------|----------------|-------|-------|---------|-------|---------------|--------------|-------|----------------|-------|-------------------| | Specimens | Or
Hoating | S.D.
mu/in | | | | | | 80 | | 21
28 | | • • | 1 1 | 9 | | | of Center | mu/in | | | | | | 2889 | | 1339 | | 80 | 1 1 | at the | | 80 | | ជ | | | | | | 15 | | 13 | | 10 | 1 1 | l I | | Plate Glass | Birefringence | S.D.
mu/in | 170 | 128 | 125 | 115 | 79 | 109 | 116 | 110
95 | 06 | 106 | 131 | ir exposure | | IQF | Biref | | 3534 | 3548
3605 | 3554 | 3515 | 3460 | 3491 | 3536 | 3526
3398 | 34.27 | 3518
3512 | 3607 | one hour | | Ď | ď | នឹជ | 15 | 26 | 15 | 15 | 1.5 | 15 | 15 | 13 | 15 | 10 | 14 | | | Sandblasted, | Size" | S.D.
Inches | 0.003 | 0.007 | 0.003 | 0.004 | 0.002 | 0.002 | 0.004 | 0.010 | 0.004 | 0.004 | 0.007 | ess than | | Tempered, San | Mirror S | x
Inches | 0.034 | 0.021 | 0.034 | 0.039 | 0.036 | 0.033 | 0.038 | 0.035 | 0.026 | 0.017 | 0.027 | tested after less | | Per | M | r. | 14
0 | 17 | 15 | 13 | 14
0 | 14 | 14
0 | 10 | 15 | 10 | 12 | 70 | | | Rupture | S.D. 5/
psi | 681 | 2826 | 2920 | 1519 | 771 | 619 | 1685 | 857
212 | 1135 | 1186 | 3230 | 1 | | upture | us of | x=/
ps1 | 21990 | 29600
34800 | 24010 | 20820 | 20840 | 19820 | 21180 | 13310 | 19370 | 11580
10580 | 15200 | enectimens were | | of | on Modulus | _n²√ | 15 | 36
1 | 15 | 15 | 15 | ST O | 15 | 13
2 | 150 | 20 | 15 | | | Modulus of Rupture for | Location | oraka' | លម | ωщ | ΩM | ωш | ΩЫ | លកា | ល្អ | ΩH | លម | ωщ | ΩE | indicates | | Table IX. | Expor, | sure- | 1 | rl | н | - | - | 200 | r-I | 200 | н | 200 | r-1 | 1 1104 | | Ta | Test- | Ing
Temp. | 7.5 | 757 | 300 | 400 | 550 | 550 | 700 | 200 | 870 | 870 | 963 | 1 / 1 | One hour indicates specimens were tested after less than one hour exposure at the indicated testing temperature. Five hundred hours indicates that specimens were heated at the test temperature for 500 hours, cooled slowly to room temperature, and then tested in the same manner as the one hour specimens. Sindicates fracture originated on the surface of the specimen. n indicates number of specimens tested. Thickness average. S.D. indicates
standard deviation. Radius of the smooth portion of the fracture face. These specimens were not sandblasted but hed the original ground and polished surface. Thirty specimens were tested but the location of the fracture original could not be determined on three specimens. -1 27 | | | | | | | | | | _ | | | |---|---------------------|----------------------------|-----------|---------------|--------------|-------|---------|--------------|-------|-------|---------| | ecimens | Size ² / | S.D. | 0.011 | 0.015 | 0.020 | 0.021 | 0.032 | 0.012 | 0.014 | 0.015 | 0.006 | | 3235 Specimens | Mirror S. | x
Inches | 0.088 | 0.028 | 0.098 | 0.085 | 0.100 | 0.069 | 0.073 | 0.073 | 0.089 | | PPG | | ដ | 15 | 9 | 14
1 | 15 | 15
0 | 13
22 | 15 | 15 | 14 | | dblasted | Rupture | S.D.5/ | 347 | 2991
2199 | 611 | 880 | 7.39 | 476
919 | 504 | 546 | 830 | | ed, San | lus of | x*/ | -
0899 | 11140
9310 | 6270
6700 | - | 6380 | 6990
6350 | 7000 | 02.29 | 0009 | | nneal | Modulus | ्रह्मा | 15 | 21 | 14
1 | 15 | 15 | 13 | 15 | 15 | 15
0 | | ture for A | Location | of
Break ² / | លក | ល្ងម | លកា | លក | លក | លក | លកា | ល្អអ | លមា | | dulus of Rup | Exposure / | Hours | T | п | - | 200 | rd | 200 | r | 500 | П | | Table X. Modulus of Rupture for Annealed, Sandblasted | Testing | Temperature
°F | 75 | 7.57/ | 400 | 400 | 700 | 700 | 830 | 830 | 920 | room temperature, and then tested in the same manner as the one hr specimens. One hour indicates specimens were tested after less than one hour exposure at the indicated testing temperature. Five hundred hours indicates that specimens were heated at the test temperature for 500 hours, cooled slowly S indicates fracture originated on the surface of the specimen. indicates number of specimens tested. indicates average. Radius of the smooth portion of the fracture face. These specimens were not sandblasted but had the original ground and S.D. indicates standard deviation. 0 4 0 0 1-1 polished surface. 28 | Table XI. Modulus of Export Location Modul sure | Ď | | Modulus | ptur
of | for
uptur | in A | 8 8 | | B B | Sandblasted,
e/ Biref
Before F | ted, PPG 3235
Birefringence
ore Heating | | Cent
fter | ens
er
Heating | |--|------------------|-------------------------|---------|------------|--------------|------|-------------|----------------|-----|--------------------------------------|---|----|--------------|----------------------| | Bre | sa/ na/ x4/ S.D. | / x ⁴ / S.D. | S.D. | • | | ជ | x
Inches | S.D.
Inches | Ħ | | S.D.
mu/in | Д. | x
mu/in | S.D.
mu/in | | S 15 13380 | 15 13380 | 13380 | 80 | 682 | | 15 | 0.058 | 0.005 | 15 | 2564 | 135 | | | | | | 1 | 1 | | 1 | | 0 | 1 | , | 0 | • | | | | | | 1 S 30 19830 2951 | 30 19830 | 19830 | စ္တ | 2951 | | 26 | 0.027 | 0.011 | တ္ထ | 2577 | 89 | | | | | · 0 · · · · · · · · · · · · · · · · · · | - 0 | • | | • | | 0 | | • | 0 | • | 1 | | | | | 1 S 15 13220 1299 | 15 13220 | 13220 | 20 | 1299 | | 15 | 090.0 | 0.007 | 15 | 2541 | 105 | | | | | | - | • | 1 | | | 0 | | , | 0 | 1 | • | | | | | 500 S 15 14430 682 | 15 14430 | 14430 | 4430 | 682 | | 15 | 0.054 | 0.006 | 15 | 2554 | 88 | 15 | 2503 | 80 | | | - | • | | ı | | 0 | ı | • | 0 | t | | 0 | • | ı | | 1 S 15 14400 651 | 15 14400 | 14400 | 400 | 651 | | 15 | 0.047 | 0.004 | 15 | 2576 | 88 | | | | | | | • | • | t | | 0 | 1 | 1 | 0 | ı | • | | | | | | 13 11520 | 11520 | 20 | 402 | | 13 | 0.043 | | 13 | 2550 | 73 | 13 | 1227 | 36 | | E 2 10300 1 | 2 10300 1 | 10300 | | 1839 | | 7 | 0.092 | 0.081 | 8 | 2628 | 88 | 2 | 1205 | _ | | 1 S 15 14420 884 | 15 14420 | 14420 | 420 | 884 | | 15 | 0.043 | 0.008 | 15 | 2527 | 53 | | | | | | - 0 | 1 | 1 | • | | 0 | 1 | 1 | 0 | ı | ŀ | | | | | 500 S 14 9710 1076 | 14 9710 | 9710 | 10 | 1076 | | 14 | 0.037 | 0.010 | 14 | 2585 | 99 | 14 | 40 | • | | 1 73 | 7 300 | 7 300 | 000 | ı | | - | 0.098 | 1 | ~ | 2495 | 1 | 7 | 40 | ı | | 1 S 15 12900 1698 | 15 12900 | 12900 | 00 | 1698 | | 15 | 0.049 | 0.002 | 15 | 2404 | 52 | 1 | ı | ı | | | | 0 | | | | | | | | | | | | | One hour indicates specimens were tested after less than one hour exposure at the Five hundred hours indicates that specimens were indicated testing temperature. Five hundred hours indicates that specimens were heated at the test temperature for 500 hours, cooled slowly to room temperature, S indicates fracture originated on the surface of the specimen. and then tested in the same manner as the one hour specimens. 2/ Sindicates fracture originated on the surfa E " " edge 3/ n indicates number of specimens tested. in indicates number of specimens tested. $\frac{4}{x}$ indicates average. $\frac{5}{x}$ S.D. indicates standard deviation. $\frac{6}{x}$ Radius of the smooth portion of the fraction of these specimens were not sandblasted but Radius of the smooth portion of the fracture face. These specimens were not sandblasted but had the original ground and polished surface. | H | Table XII. | I. Modulus of | is of | Rupture | for | educ | Tempered, Sa | Sandblasted, | ed, | PPG | 3235 Spe | Specimens | ens | | |--------------|------------|---------------|-----------|----------------|--------------|----------|--------------|--------------|----------|----------|------------|-----------|--------------|---------| | Test- | Expo- | Location | Modulu | lus of | ptur | <u> </u> | l | Size . | | Biref | ringenc | 9 | 0 | er | | ing
Temp. | sure- | of
Break-7 | \ell_{10} | \
 \
 \ | S.D.6/ | - | I× | , c | <u>۔</u> | Before E | Heating A | Af | After He | Heating | | °F. | Hours | | | ps1 | psi | | Inches | Inches | • | mu/in | mu/in | | mu/in | mu/in | | 75 | - | യ | 15 | 21770 | 823 | 15 | 0.047 | 900*0 | 15 | 4916 | 162 | | | | | _ | | ជ |)
) | į | ı | | ı | 1 | ⊃ | 1 | ı | | | | | 757/ | а | លកា | 21 | 28910
28120 | 2845
3755 | 15 | 0.025 | 0.004 | 21
9 | 4865 | 129
162 | | | | | 400 | п | ល្អម | 15 | 21900 | 929 | 1.5
0 | 0.047 | 0.003 | 15 | 4861 | 161 | | | | | 400 | 200 | លកា | 15 | 22860 | 1591 | 15 | 0.042 | 900"0 | 15 | 4797 | 06 | 15
0 | 4666 | 76 | | 700 | н | ΩM | 15 | 22110 | 609 | 15 | 0.039 | 900.0 | 15 | 4787 | 195 | | | | | 700 | 200 | លកា | 10 | 12590
11560 | 866
688 | 10
5 | 0.039 | 0.005 | 10 | 4827 | 261
102 | 10 | 2568
2647 | 768 | | 830 | Н | លក | 15 | 17350 | 3438 | 15 | 0.036 | 0.008 | 15 | 4948 | 122 | | | | | 830 | 200 | លកា | 10 | 8900
7280 | 1736
1998 | 10 | 0.043 | 0.017 | 10 | 4942 | 113
89 | 10
5 | 160 | 1 1 | | 920 | 1 | S | 15 | 15700 | 3321 | 14 | 0.036 | 0.002 | 15 | 4867 | 141 | ı | 1 | . 1 | indicated testing temperature. Five hundred hours indicates that specimens were heated at the test temperature for 500 hours, cooled slowly to room temperature, and One hour indicates specimens were tested after less than one hour exposure at the then tested in the same manner as the one hour specimens. اہ of the specimen. Sindicates fracture originated on the surface n \overline{x} indicates number of specimens tested \overline{x} indicates average. S.D. indicates standard deviation. 0 4 0 0 F Radius of the smooth portion of the fracture face. These specimens were not sandblasted but had the original ground and polished surface. Table XIII. Modulus of Rupture for Annealed, Sandblasted, PPG 6695 Specimens. | Test- | Expo-/ | Location | Modul | us of | Rupture | N | Mirror S | ize ⁶ | |---------------------|-----------------|----------------|--------------|----------------|----------------------------|----|-------------|------------------| | ing
Temp.
°F | sure1/
Hours | of
Breaks=/ | n <u>³</u> / | x4/
psi | S.D. ⁵ /
psi | n | x
Inches | S.D.
Inches | | 752/ | 1 | SE | 21
9 | 12184
10751 | 4362 | 20 | 0.055 | 0.049 | | 75 | 1 | S
E | 12
3 | 7059
6633 | 2085 | 10 | .126 | .024 | | 400 | 1 | S
E | 15
0 | 6240 | 6 74 | 15 | .157 | -04 8 | | 400 | 500 | S
E | 11
4 | 5887
5312 | 7 37 | 11 | .157 | .039 | | 700 | 1 | S
E | 14
1 | 6082
5748 | 696 | 14 | .144 | .033 | | 700 | 500 | S
E | 13
2 | 5956
5077 | 582 | 12 | .144 | .031 | | 915 | 1 | S
E | 15
0 | 6256 | 593 | 15 | .121 | .044 | | 915 | 500 | S
E | 15
0 | 6850 | 367 | 15 | .081 | .024 | | 1130 | 1 | S
E | 12
0 | 7027 | 645 | 12 | .069 | .037 | | 1130 | 500 | S
E | 11 | 7614
7470 | | 11 | .084 | .037 | | 1220 | 1 | S
E | 15
0 | 5796 | 852 | 15 | .115 | .041 | | 1220 | 500 | S
E | 15
0 | 6532 | 747 | 15 | .072 | .023 | | 1256 ⁸ / | 1 | S
E | 12 | 7900 | 888 | 15 | .069 | .027 | One hour indicates specimens were tested after less than one hour exposure at the indicated testing temperature. Five hundred hours indicates that specimens were heated at the test temperature for 500 hours, cooled slowly to room temperature, and then tested in the same manner as the one hour specimens. S indicates fracture originated on the surface of the specimen. 3/ n indicates number of specimens tested. 4/ x indicates average. 5/ S.D. indicates standard deviation. Radius of the smooth portion of the fracture face. 7/ Specimen surface ground and polished, not sandblasted. E/ Tested in a shorter time than other specimens. One hour indicates specimens were tested after less than one hour exposure at the indicated testing temperature. Five hundred hours indicates that specimens were heated at the test temperature for 500 hours, cooled slowly to room temperature, and then tested in the same manner as the one hour specimens. Sindicates fracture originated on the surface of the specimen. Eindicates fracture originated on the edge of the specimen. Findicates average. The specimens tested. The indicates average. Subjudicates standard deviation. Radius of the smooth portion of the fracture face. Specimen surface ground and polished, not sandblasted. Tested
in a shorter time than other specimens. 7 32 | | Table XV. | | 18 of | Modulus of Rupture for | e for Te | E C | Tempered, Sandblasted, | indblast | þ | P.BG | 6695 Specimens | ᄗ | bens | | |--------|------------|-----------|--------------|------------------------|---------------|-----|------------------------|----------------|-----|----------|----------------|-----|-----------------|-------------| | Test- | Expo-, | Location | Modulus | of | Rupture | | Mirror S | Size#/ | | Biref | Birefringence | ð. | • | er | | ing | sure- | of , | - | 1 | | - | | | 8 | Before H | leating | 7 | After He | Heating | | Temp. | Hours | Breaks" | [%] | x*
psi | S.D.='
psi | E . | x
Inches | S.D.
Inches | E | mu/in | S.D. | E . | _ <u>_</u> | S.D. | | 757 | н | ωщ | 28 | 26689
24658 | 3554 | 22 | 0.032 | 600*0 | 28 | 3509 | 16 | | | | | 75 | Н | លកា | 15 | 22105 | 1654 | ı | • | • | 15 | 3499 | 173 | | | | | 400 | н | ωщ | 15 | 22008 | 1325 | 15 | .056 | .005 | 15 | 3480 | 151 | | | | | 400 | 200 | ΩH | 15 | 22347 | 1343 | 14 | .053 | .007 | 15 | 3499 | 133 | 15 | 3499 | 133 | | 700 | <u> </u> | ΩШ | 15 | 20828 | 2317 | 14 | .055 | .004 | 15 | 3561 | 100 | | | | | 700 | 200 | ល្អ | 15 | 19600 | 876 | 13 | .058 | .005 | 15 | 3541 | 128 | 15 | 3093 | 88 | | 918 | н | លក | 15 | 21360 | 814 | 13 | .048 | .005 | 15 | 3526 | 133 | | | | | 918 | 200 | αп | 13 | 11798 | 820 | 12 | .045 | .007 | 13 | 3547 | 124 | 13 | 986 | 34 | | 1130 | - 1 | αн | 15 | 20313 | 1751 | П | .051 | .007 | 15 | 3543 | 68 | | - | | | 1130 | 200 | លមា | 13 | 9355
8309 | 884 | 11 | .043 | .014 | 133 | 3264 | 371 | 13 | negli-
gible | | | 1220 | н | លកា | 15 | 21750 | 1261 | 14 | .043 | .004 | 15 | 3548 | 76 | | | | | 1220 | 200 | ល្លម | :
: | 9492
6903 | 1530 | 7 | •044 | •024 | T. | 3508 | ೪೮ | 11 | Ł | | | 1256=/ | - | ωщ | 11 | 14349 | 1455 | 10 | .027 | .007 | 11 | 3469 | | | | | | 1 / | hour 4 | 1 - 4 4 4 | , | | F-7-7 | ' | | 44 | | - HO. | | 9 | -17 7- | | One hour indicates specimens were tested after less than one hour exposure at the indicated testing temperature. Five hundred hours indicates that specimens were heated at the test temperature for 500 hours, cooled slowly to room temperature, and then tested in the same manner as the one hour specimens. Sindicates fracture originated on the surface of the specimen. Eindicates fracture originated on the edge of the specimen. The indicates average. Sindicates standard deviation. 7 Radius of the smooth portion of the fracture face. Specimen surface ground and polished, not sandblasted. Tested in a shorter time than other specimens. | æ | | | | <u> </u> | | | | | | | | | |--------------------|-----------------------|-----------------|--------|----------|--------------|--------------|---------|--------------|----------------------|--------------|------|----------------| | CGW 1723 Specimens | Size | S.D. | Inches | 0.049 | .053 | .052 | 790. | .053 | .023 | .028 | •048 | 600* | | W 1723 | Mirror S | ı× | Inches | 911.0 | .116 | .119 | .139 | •094 | .072 | 090• | 060• | 690. | | | | F | | 12 | 13 | 13 | 14 | 14 | 13 | 12 | 15 | 12 | | Sandblasted, | Rupture | S.D. 5/ | psi | 788 | 728 | 902 | 637 | 806 | 787 | 1151 | 890 | 479 | | | | 1× | psi | 6630 | 6560
6700 | 6650
6300 | 6070 | 6990
7000 | 77 90
6900 | 8520
6930 | 7700 | 7630 | | Annealed, | Modulus | ,덴 | | 12 | 13 | 13 | 14
0 | 14 | 13 | 12 | 15 | $\frac{12}{0}$ | | Rupture for | . ~ | ofa/
Break=/ | | ΩĦ | លកា | ល្លមា | លកា | ល្គ | ល្ងក | ល្ង្ | ΩH | ល្អមា | | lus of | Exposure ¹ | ţ | Hours | П | Н | 500 | ٦ | 200 | H | 200 | П | 1 | | Table XVI. Mochu | Testing | remperature | o.F. | 75 | 400 | 400 | 700 | 7 00 | 1150 | 1150 | 1242 | 12967/ | One hour indicates specimens were tested after less than one hour exposure at the indicated testing temperature. Five hundred hours indicates that specimens were heated at the test temperature for 500 hours, cooled slowly to room temperature, and then tested in the same manner as the one hour specimens. Sindicates fracture originated on the surface of the specimen. E. " edge." " edge." edge 71 œ | S.D. indicates standard deviation. Radius of the smooth portion of the fracture face. Tested in a shorter time than the other specimens. \overline{x} indicates number of specimens tested. \overline{x} indicates average. 0 4 6 6 F | - | | | |-------|--------|--------| | E E . | | ails | | E SEL | RESTER | BREAL. | | | | | | | , | | | | | | - | Cata | | see. | | | |---|--------------------------|-----------------------------|-------------|-------|-------|---------|-------|-------|----------------|---------------|-------------|--------| | ន | er | ating
S.D. | mu/in | | | 258 | | 282 | | ı | t | | | ecimer | of Center | After Heating | Ħ | | | 2078 | | 1949 | | 20 | ı | | | Š | ě | | | | | 15 | | 15 | | 12 | 1 | | | GW 172 | Birefringence of | Before Heating | mu/in | 123 | 233 | 260 | 240 | 294 | 297 | 236 | ı | | | sted, C | Biref | fore E | mu/in mu/in | 2336 | 2093 | 2081 | 2164 | 2040 | 2256 | 2028 | ı | | | Jae | | щ ц | | 15 | 15 | 15 | 15 | 1.5 | 12 | 12 | ı | | | Sand | ize ⁶ / | S.D. | Inches | 900.0 | 900. | .006 15 | .005 | •008 | .003 | .017 | .004 | .004 | | empered | Mirror Size ^e | IX | Inches | 0.047 | .049 | 040 | .048 | .044 | .026 | .037 | .030 | .032 | | li-T | M | Ħ | | 15 | 15 | 15 | 15 | 15 | 12 | 10 | 14 | 12 | | for Sen | of Rupture | S.D.5/ | psi | 1119 | 1225 | 1408 | 1267 | 1708 | 1500 | 1100 | 1655 | 454 | | Rupture | lus of | / * X | | 17980 | 16530 | 16310 | 16350 | 16650 | 17520
16330 | 10850
9200 | 16800 | 12720 | | of | Modu | 1 ³ / | | 15 | 15 | 15 | 15 | 15 | 12 | ಣಣ | 15 | 12 | | Table XVII. Modulus of Rupture for Semi-Tempered, Sandblasted, CGW 1723 Specimens | Location Modulus | of
Breaks ² / | | ល្លា | ខ្លួក | លកា | លកា | ΩМ | ល្លម | ഗ | លកា | លដ | | le XVII. | Expo-/ | sure-' | Hours | Н | H | 200 | H | 200 | Н | 200 | Н | | | Tab | Test- | ing
Temp. | °F. | 75 | 400 | 400 | 700 | 700 | 1150 | 1150 | 1242 | 12967/ | | | | | | | | | | | • | | | | specimens were tested after less than one hour exposure at the indicated testing temperature. Five hundred hours indicates that specimens were heated at the test temperature for 500 hours, cooled slowly to room temperature, Sindicates fracture originated on the surface of the specimen. E. " edge of the specimen. and then tested in the same manner as the one hour specimens. edge of the specimen. One hour indicates 7 0 Radius of the smooth portion of the fracture face. n indicates number of specimens tested. x indicates average. S.D. indicates standard deviation. 0 4 m 0 1c 1 Tested in a shorter time than the other specimens. 35 | Table XVIII. Modulus of Rupture for | lus of R | of R | 왂 | ture for | Ten | Tempered, Sandblasted, CGW 1723 Specimens | Sandble | sete | d, CGM | 1723 5 | pec | imens | | - | |-------------------------------------|---------------|---------|--------------------|----------|---|---|---------------------|------------|-------------|------------------|-----|-----------|---------|-----| | Expo-/ | ion | Modu | Modulus of | Rupture | , <u>, , , , , , , , , , , , , , , , , , </u> | Mirror S | Size ⁶ / | | Biref | Birefringence of | | ညီ | er | | | | ot
Brest 2 | 73/ | /

 -
 - | /g/ | Ş | 1 > | Č | <u>М</u> , | fore F | Before Heating | | | Heating | | | | DI CONS | - | psi | ps. | - | hes | Inches | 7 | mu/in mu/in | mu/in | = | mu/in mu/ | mu/in | | | | លមា | 15
0 | 23950 | 1144 | 15 | 0.040 | 0.004 | 15 | 3574 | 242 | | | | · | | | ΩH | 15 | 22930 | 1125 | 15 | .043 | .004 | 15 | 3578 | 176 | | | | | | | ΩĦ | 15 | 23630 | 1738 | 15 | .040 | .004 | 15 | 3674 | 145 | 15 | 3636 | 185 | | | | αн | 15 | 23780 | 1302 | 15 | 030 | .003 | 15 | 3676 | 138 | | | | O. | | | លកា | 15 | 23370 | 988 | 1.5 | .038 | .003 | 15 | 3593 | 149 | 15 | 3352 | 152 | wi | | | ΩН | 12
3 | 18690
13800 | 3017 | 12 | .024 | •000 | 15 | 3670 | 130 | | | | ra | | | ល្អ | 4°O | 10450
8700 | 2398 | 4, | .039 | .016 | 4, | 3895 | 126 | 4 | 20 | ı | ils | | | លមា | 15 | 18400 | 1987 | 133 | .028 | .007 | 1 | ı | ı | ı | t | • | _ | the indicated testing temperature. Five hundred hours indicates that specimens were heated at the test temperature for 500 hours, cooled slowly to room temperature, and then tested in the same manner as the one hour specimens. S indicates fracture originated on the surface of the specimen. E " edge " edge " " edge " " " exposure at One hour indicates specimens were tested after less than one hour -1 0 4 m m n indicates number of specimens tested. X indicates average. S.D. indicates standard deviation. Radius of the smooth portion of the fracture face. | 1 TO 1 TO 1 | |--------------| | <u> </u> | | でなび ロアムム かぎて | | | | | CGW 114 | CGW //40 Specimens. | S. | | | | | | |--------------|-----------|---------------------|-----------|------------|---------|-----|-----------|---------------------| | Testing | | Location | Modu | Modulus of | Rupture | W | Mirror Si | Size ⁶ / | | aını pradmat | -a mendxu | Break-/ | .er | /*!X | S.D. 5/ | | ı× | S.D. | | ٥F | Hours | | | psi | psi | | Inches | Inches | | 7.5 | – | က ျ | 13 | 0019 | 233 | 13 | 0.097 | 0.0114 | | | | ធា | 2 | 4300 | 1 | 1 | 1 | • | | 400 | H | ΩÞ | 12 | 6700 | 557 | 12 | 920. | .0182 | | 400 | 500 | ្រលួ | က
က | 6900 | 1216 | 12 | .059 | .0085 | | 700 | - | a 07 | 7 7 | 2200 | 705 | | - 090 | . ט | |) | i |) iu | | 6900 | 2 : | H 1 | | #
 | | 700 | 200 | വ | 14 | 7750 | 718 | 14 | .054 | .0152 | | | | យ | 4 | 7700 | 1 | | 1 | • | | 870 | Н | တ္၊ | ij | 8100 | 467 | 11 | .050 | 0600 | | | | i.i. | 4 | 8200 | ı | 1 | ŧ | 1 | | 870 | 200 | മ | | 8500 | 562 | 13 | .042 | .0117 | | | | ក្រ | 2 | 2200 | 1 | 1 | 1 | 1 |
 096 | - | മ | <u>د</u> | 7700 | 546 | 12 | .0565 | .0093 | | • | | ш | 2 | 8 200 | ı | • | ı | • | | 9957/ | 1 | លមា | 15 | 8220 | 470 | 15 | .038 | .0043 | the test temperature for 500 hours, cooled slowly One hour indicates specimens were tested after less than one hr. exposure at the indicated testing temperature. Five hundred hours indicates that to room temperature, and then tested in the same manner as the one hour specimens were heated at specimens. 7 Sindicates fracture originated on the surface of the specimen. edge Radius of the smooth portion of the fracture face. n indicates number of specimens tested. x indicates average. S.D. indicates standard deviation. 140012 Tested in a shorter time than the other specimens. 37 | 28 | ter | Heating | F | | | 92 | | 37 | | • | 1 | | | |--|-----------------------------|-----------------------------|----------|--------|-------|-------|-------|--------------|-------|--------|-------|---------|-------| | oecime) | of Center | HIX | mu/in | | | 1797 | | 749
763 | | negli- | arm h | | | | Q
Q | e e | <u> </u> | <u> </u> | | | 15 | | ۲
2
8 | | 2 | 10 | | | | 3GW 774(| Birefringence of | Weating S.D. | mu/in | 73 | 99 | 77 | 138 | 34 | 98 | 06 | 1 | 86 | | | sted, (| Biref | Before F | | 1729 | 1713 | 1750 | 1688 | 1757
1760 | 1750 | 1754 | 1752 | 1731 | | | ola £ | | <u>й</u> г | | 15 | 15 | 15 | 15 | 12 | 15 | Ŋ | 10 | 14
1 | | | l, Sandk | Şize ^e / | S.D. | Inches | 0.0041 | .0048 | .0036 | .0068 | .0081 | .0106 | .0062 | ı | .0047 | .0039 | | empered | Mirror S | ۱× | Inches | 0.064 | .049 | .042 | .044 | .044 | .041 | .032 | l | .038 | .031 | | u-I | <u>×</u> | c | | 15 | 14 | 15 | 14 | 12 | 15 | 4 | ! | 4. | 13 | | Rupture for Semi-Tempered, Sandblasted, CGW 7740 Specimens | Location Modulus of Rupture | S.D. 6/ | psi | 547 | 1894 | 585 | 1253 | 731 | 1929 | 611 | 1 | 1679 | 006 | | | | | psi | 00611 | 13600 | 14300 | 14100 | 11200 | 13800 | 10900 | 7900 | 13200 | 12940 | | | Mod | na/ | | 15 | 15 | 15 | 15 | 128 | 15 | S | 10 | 14 | 15 | | Modulus of | Location | ot
Breaks ² / | | ខាល | ΩЫ | ΩH | ល្ម | αщ | ΩШ | တ | ы | ល្យ | ΩH | | Table XX. | Expo-/ | sure | Hours | Н | Н | 200 | ~ | 200 | - | 200 | | Н | H | | T | Test- | ing
Temp. | οF | 75 | 400 | 400 | 700 | 700 | 870 | 870 | | 096 | 9957/ | | | | | | | | | | | | | | | | exposure at the specimens were heated at the test temperature for 500 hours, cooled slowly to room temperature, specimens were tested after less than one hour Five hundred hours indicates that and then tested in the same manner as the one hour specimens. indicated testing temperature. One hour indicates Sindicates fracture originated on the surface of the specimen. E indicates fracture originated on the edge of the specimen. indicates fracture originated on the edge of the specimen. n indicates number of specimens tested. \overline{x} indicates average. S.D. indicates standard deviation. 0 4 0 0 1 Radius of the smooth portion of the fracture face. in a shorter time than the other specimens. Tested | Table XXI. Modulus of | | Rupture for An | neale | i, Sandb | lasted, C | 3W 790 | for Annealed, Sandblasted, CGW 7900 Specimens | ຮບ | |-----------------------|------------|----------------|---------|--------------|-----------|--------------|---|------------------| | Testing | Exposure / | Location | Modu | Modulus of | Rupture | 4 | Mirror Size | / = 6 | | Temperature | | of Breaks 2 | _
_ | /*!X | S.D.5/ | <u> </u> | ١× | S.D. | | οF | Hours | | | psi | psi | | Inches | Inches | | 75 | ı | លមា | 13 | 6150
4700 | 627 | 72 | 0.087 | 0.029 | | 400 | r | លកា | 10
3 | 6870
7350 | 514 | 01 | .063 | .019 | | 400 | 200 | លកា | ဆပ | 6640
5330 | 571 | ∞ | .073 | .016 | | 700 | ı | លកា | တပ | 7460
7050 | 477 | ∞ | .050 | 600. | | 700 | 500 | ល្លម | 14
1 | 7360
6200 | 511 | 14 | •058 | .014 | | 1420 | ~ | លកា | 11 | 7670
7300 | 826 | 11 | .046 | • 008 | | 1420 | 200 | លកា | 10 | 9020
8900 | 644 | & | .032 | 900. | | 1508 | r | លកា | 12 | 7800
6600 | 494 | 12 | .055 | •0076 | | 17872/ | 1 | αн | 15
0 | 7140 | 565 | 13 | .046 | .007 | the indicated testing temperature. Five hundred hours indicates that specimens One hour indicates specimens were tested after less than one hour exposure at 100 n indicates number of specimens tested. \overline{x} indicates average. 0 4 0 0 F Radius of the smooth portion of the fracture face. Tested in a shorter time than the other specimens. S.D. indicates standard deviation. | | Ta | Table XXII. | - [| 15 0 | f Ruptu | Modulus of Rupture for Semi-Tempered, Sandblasted, CGW 7930 Specimens | -tue | Tempere | d, Sand | db | sted, | CGW 790 | 00.53 | pecime | sus | | |----|--------------|-------------|----------------|---------|----------------|---|------|-------------|--------------------|----------|-------------|---------------------------|-------|---------------|-------|--| | | Test- | | Location | Mod | lus of | Location Modulus of Rupture | | Mirror Size | ize ⁶ / | | Biref | ringenc | Š | f Cent | er | | | | ing
Temp. | sure- | of
Breaks2/ | /હા | | / <u>a</u> 0.8 | 5 | ۱, | מ | <u>~</u> | fore H | Before Heating After Heat | Af | After Heating | ating | | | | °F. | Hours | | | psi | psi | | nes | Inches | - | mu/in mu/in | mu/in | = | mu/in mu/in | mu/in | | | | 75 | Н | លកា | 14
0 | 0668 | 2034 | 13 | 0.065 0.021 | 0.021 | 14 | 006 | 314 | | | | | | | 400 | ~ | លកា | 10
3 | 8620
8170 | 1596 | Φ | .053 | •008 | 10 | 739 | 326 | | | - | | | | 400 | 500 | លកា | 14
1 | 10390
12200 | 1157 | 13 | .045 | .007 | 14 | 918 | 189 | 14 | 913 | 184 | | | | 700 | Н | Ωщ | 12 | 10460 | 1120 | 12 | .048 | .0033 | 12 | 917 | 245 | | | | | | | 700 | 200 | លកា | | 10750
10500 | 1825 | 12 | .042 | •008 | 13 | 915 | 162 | 13 | 907 | 160 | | | 41 | 1420 | ٦ | លក | 44 | 10730 | 1334 | 14 | .038 | .0029 | 14 | 876 | 236 | | | | | | | 1420 | 500 | លកា | တမ | 6800
7400 | 1704 | 00 | .097 | .050 | o o | 987 | 205 | თ | 40 | 1 | | | | 1508 | г | លកា | 13 | 11700 | 1533 | 12 | .033 | .0050 | 13 | 795 | 284 | | | | | | | 17872/ | П | លក | 15 | 10000 | 565 | თ | .030 | -000 | | | | | | | | One hour indicates specimens were tested after less than one hour exposure at the Five hundred hours indicates that specimens were heated at the test temperature for 500 hours, cooled slowly to room temperature, and then tested in the same manner as the one hour specimens. indicated testing temperature. indicates fracture originated on the surface of the specimens. edge n indicates number of specimens tested. លក indicates average. 110011 S.D. indicates standard deviation. Radius of the smooth portion of the fracture face. Tested in a shorter time than the other specimens. | | | | | | | | | | | | | |-------------------------|----------------------------|--------|----------------------|------|---------|-------|--------------|-------|---------------|-------------|---------------------------------------| | Size / | S.D. | Inches | 0.011 | .013 | .014 | .024 | *000 | .007 | * 000 | .0051 | | | Mirror S | ١× | Inches | 0.070 | .057 | .049 | .056 | .051 | .033 | .027 | .038 | · · · · · · · · · · · · · · · · · · · | | <u> </u> | £ | | 13 | 13 | 14 | 15 | 12 | 15 | 10 | 12 | | | Rupture | S.D.5/ | psi | 306 | 553 | 750 | 578 | 389 | 2206 | 1180 | 848 | 2270 | | Modulus of | / 1 X | psi | 6800
61 00 | 7240 | 7170 | 7500 | 7680
7000 | 10690 | 10830
9500 | 9800 | 12490 | | Mod | 13 / Ell | | 14
1 | 13 | 14
0 | 15 | 12 | 15 | 12 | 15 | 12 | | Location | of
Break ² / | | ΩH | លមា | លកា | ល្លាធ | លមា | លមា | លកា | លកា | ល្អក | | Exposure ¹ / | | Hours | H | н | 200 | H | 200 | H | 200 | П | | | Testing | Temperature | ٥F | 75 | 400 | 400 | 700 | 700 | 1724 | 1724 | 1814 | 1922 ⁷ / | One hour indicates specimens were tested after less than one hour exposure at the indicated testing temperature. Five hundred hours indicates that specimens were heated at the test temperature for 500 hours, cooled slowly to room temperature, and then tested in the same manner as the one hour specimens. ٦| S indicates fracture originated on the surface of the specimen. En indicates number of specimens tested. Radius of the smooth portion of the fracture face. S.D. indicates standard deviation. x indicates average. 0 4 10 10 17 1 Tested in a shorter time than the other specimens. The results for the annealed glass show that when tested with less than one hour exposure at the testing temperature, LOF Plate Glass, PPG 3235, PPG 6695, and CGW 1723 all showed a decrease in strength from the room temperature value with increasing temperature. This was followed by an increase in strength as the strain point temperature was approached until a value of the strength that was as great or greater than the room temperature value was reached. These decreases in strength compared to the strength at 75°F varied from about six percent to about 15 percent and were statistically significant at the 5% level for LOF Plate Glass and PPG 6695. The strength of CGW 7740, CGW 7900, and CGW 7940 increased with increasing temperature up to the strain point. At the strain point all of the glasses with the exception of CGW 7900 showed a decrease in strength. CGW 7900 showed a slight increase in strength at the strain point. Heating for 500 hours did not adversely affect the strength of annealed glass, but it tended to strengthen the glass, expecially at the higher temperatures. When only the highest two treatment temperatures for each glass are considered they show that in 12 cases out of 14 the heat treatment increased the strength of the glass. This is significant by the sign test at the 5% level. The figures show for semi-tempered and tempered glasses tested at
temperatures at least 400°F below the strain point of the glass the 500 hour exposure to elevated temperatures did not reduce the strength of these glasses, but as the strain point of the glass is approached the strength decreases greatly. When tested with less than one hour exposure to the testing temperature, all of the semitempered specimens retained their strength up to 120°F below the strain point. The fully tempered glasses showed a loss in strength at these temperatures. The four glasses available in both tempered and semi-tempered form show that after exposure for 500 hours at temperatures 120°F below their respective strain points the strengths of both the tempered and semi-tempered specimens are close to one Also, after this exposure, these glasses have no another. appreciable strain remaining; however, in every case except for CGW 7900 the strength values of the semi-tempered and tempered specimens are higher than those of the annealed specimens heated and tested under the same conditions. CGW 7900 specimens had crystallized surfaces and this undoubtedly accounts for part of the loss of strength. Considering all seven glasses, heating did not appear to affect the number of fractures originating on the surface for annealed glass; but heating at higher temperatures, especially for 500 hours, did reduce the number of fractures originating on the surface in the semi-tempered and tempered specimens. Considering all seven glasses, and all conditions of temperature, Table XXIV shows the number of test groups that had edge breaks, the number of groups in which the surface breaks were stronger and the number of groups in which the edge breaks were stronger. Table XXIV. Test Groups that had Edge Fractures | Condition of Temper 1/ | No. of Groups in
Which Edge
Breaks Occurred | Which Surface | No. of Groups in
Which Edge
Breaks Were
Stronger | |------------------------|---|---------------|---| | A | 42 | 37 | 5 | | S | 21 | 14 | 7 | | T | 12 | 11 | 1 | 1/ A - Annealed, S - Semi-tempered, T - Tempered. The data shows that the glass is stronger when the fractures occur on the surface than when the fractures occur on the edge of the specimens. This is significant by a sign test at the one percent level for the annealed and tempered specimens and at the 25% level for the semitempered specimens. ### MODULUS OF RUPTURE DETERMINED AT THE MAXIMUM TESTING TEMPERATURE The maximum testing temperature is used here as the temperature at which the testing machine crosshead speed had to be slightly increased in order to maintain the required loading rate of 10,000 psi per minute. Below the maximum test temperature the glasses tested obeyed Hooke's law during the modulus of rupture testing. Above the maximum test temperature the glass would yield with load and required an increase in crosshead speed to maintain the required loading rate. The maximum testing temperature was found by testing at increasingly higher temperatures until the testing machine crosshead speed had to be slightly increased in order to maintain the required rate of loading. After specimens had been heated to the strain point it took about two minutes to reach the maximum test temperature. Specimens were held at temperature for two minutes before testing. The maximum test temperature and the moduli of rupture obtained at these temperatures are presented with the other modulus of rupture data for the respective glasses. However, the data are summerized in Table XXV which gives the glasses tested, their strain point and maximum test temperature, and the modulus of rupture at that temperature. | | Table X | XV. Moo | Table XXV. Modulus of Rupture | 1 | at Maxim | ım Te | Maximum Testing ' | Temperature | ure | | | |----------|--------------------------|-----------------|-------------------------------|---------------------------|----------|------------|--|---------------------------|--------------|-----------|-------------------| | Glass | Degree
of
Temperal | Strain
Point | Maximum
Test
Temper- | Location
of
Break=/ | | Modu
at | Modulus of Rup
at Maximum Te
Temperature | Rupture
m Test
ture | M | Mirror Si | Size ⁶ | | | • | | | | |)
인 | / *!X | S.D. 5/ | Ľ | IX | S.D. | | | | ЬĢ | 유 | | | | psi | psi | | Inches | Inches | | 699 | Ą | 2 | | Ω | | | 7900 | 888 | | 0.069 | ~ | | PPG 6695 | SŢ | 1220 | 1256 | വ | | 12 | ത | 743 | 12 | .033 | .0052 | | 699 | Ħ | 2 | | ထ | | | 14410 | 1521 | | .027 | | | CGW 1723 | A | 4 | 1296 | တ | | | 7630 | 479 | | 690 | .0092 | | ~ | SI | 1242 | 29 | ഗ | | 12 | 12720 | 454 | 12 | .032 | .0040 | | CGW 7740 | ь | 959 | 995 | ß | | 15 | 8220 | 470 | 15 | .038 | .0043 | | 774 | ST | Ŋ | 995 | Ø | | 15 | 12940 | 897 | 13 | .031 | .0039 | | CGW 7900 | Ą | 1508 | 1787 | Ø | | 15 | 7140 | 565 | ا | .046 | .007 | | _ | ST | 1508 | 1787 | ഗ | | 15 | 10000 | 2479 | თ | 030 | .007 | | CGW 7940 | А | 1814 | 1922 | S | | 12 | 12490 | 2270 | ı | ı | • | A - Annealed, ST - Semi-tempered, T - Tempered. Sindicates fracture originated on the surface of the specimen. n indicates number of specimens tested. Tindicates average. S.D. indicates standard deviation. Radius of the smooth portion of the fracture face. #### Amount of Temper in Specimens Table XXVI shows the range in residual tensile stress for the various glasses in both the semi-tempered and tempered conditions. It can be seen that there is considerable difference between the maximum and minimum values for different glasses. Since the amount of temper in the specimens showed a rather large spread in the values, Spearman's Rank Coefficient Constant was determined for the various test groups to see whether there was a correlation between the degree of temper and the strength of the specimen. The results of the analysis are presented in Table XXVII. The expected number of significant results at the five percent level in 65 tests is five percent of 65 or 3.25, whereas, the observed number of significant results is 31. This large number of significant results indicates that in a given lot of tempered glass there is a correlation between the modulus of rupture and the temper, the greater the temper the higher the strength. | Range of Temper in Glass Specimens | Residual Tensile Stress Difference | Maximum Minimum | psi psi percent | 4060 3430 16
7585 6955 8 | 4500 3575 20
7895 6570 17 | 2260 1780 21
3875 2925 25 | 5660 3580 37
8925 6305 29 | 2800 2060 26 | 1780 350 80 | |------------------------------------|------------------------------------|---|-----------------|-----------------------------|------------------------------|------------------------------|------------------------------|--------------|-------------| | Table XXVI. Range of | Residua | <u> </u> | .s.α. | ST 406 | ST 4500 | ST 2260 | ST 5660 | sT $ $ 280(| ST 178(| | T | | a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a | | LOF Plate | PPG 3235 | PPG 6695 | CGW 1723 | CGW 7740 | CGW 7900 | 1/ ST - Semi-tempered; T - Tempered. Table XXVII. Correlation Between Strength and Amount of Temper for Semi-Tempered and Tempered Specimens | Glass | Temper ¹ | Number of Test Groups
Showing Correlation at
the 5% Level | |-----------|---------------------|---| | LOF Plate | ST
T | 4 out of 10
5 out of 9 | | PPG 3235 | ST
T | 3 out of 7
2 out of 7 | | PPG 6695 | ST
T | 2 out of 7
2 out of 7 | | CGW 1723 | ST
T | 5 out of 5
3 out of 5 | | CGW 7740 | ST | l out of 3 | | CGW 7900 | ST | 4 out of 5 | Total 31 out of 65 1/ ST - Semi-tempered; T - Tempered. #### Loss of Temper Table XXVIII shows the loss of temper in the semitempered and tempered glasses after heating at the indicated temperature for 500 hours. The original amount of temper (75°F column) shows that CGW 1723 has the greatest amount of temper while CGW 7900 has such a low coefficient of expansion that it can only be tempered a small amount. The table shows that the glasses with high strain point lose only a small amount of temper when heated to 700°F for 500 hours while the glasses with a low strain point lose a considerable amount of their temper. Change in Amount of Temper after Heating for 500 Hours at Various Temperatures Table XXVIII. | | | | - | | 2 | , | | מסומים יים יים מיים מיים מיים מיים | 00101 | | | |-----------|-----------------------------|------------------|-------|--------------|--------------|-----------|-------|------------------------------------|--------------|--------|--------| | Glass | Tempe $\mathbf{r}^{\perp}/$ | Amount of Temper | | | Loss | of Temper | | after Heating | ting | | | | | | 75°F | 400°F | 700°F | 830°F | 870°F | 915°F | 1130°F | 1150°F | 1220°F | 1420°F | | | | psi | ₽0 | % | % | % | ₽° | 80 | 82 | 82 | 80 | | LOF Plate | ខ្លួក | 3835
7510 | 6. | 54.2
62.0 | 1 1 | 96.9 | 1 1 | 1 1 | 1 1 | 1 1 | 1 1 | | PPG 3235 | r S | 3910
7335 | 2.0 | 51.9 | 98.5
96.8 | 1 1 | 1 1 | , , | î I | 1 8 | , , | | PPG 6695 | ST | 4274
7595 | 00 | 6.6 | 1 1 | | 64.9 | 100 | | 100 | 1 1 | | CGW 1723 | RI | 4555
8050 | 1.03 | 4.5 | | 1 1 | | 1 1 | 99.0
99.5 | | e | | CGW 7740 | SJ. | 2400 | 0 | 57.2 | ı | 100 | ı | • | , | | ı | | CGW 7900 | ST | 1370 | 0.5 | 8.0 | • | | 1 | , | , | | 95.9 | 1/ ST - Semi-tempered; T - Tempered. #### Young's Modulus Determined at Elevated Temperatures Young's modulus was determined by the dynamic method at temperatures up to the strain point on three annealed specimens of each of the glasses in the test program. Specimens from the same lot as those tested for the modulus of rupture were used. The results are presented in Figure 9 and show that the Young's modulus of
LOF Plate, PPG 3235, PPG 6695 and CGW 1723 decreases as the temperature increases. The Young's modulus of CGW 7740, CGW 7900, and CGW 7940, all initially increased as the temperature increased. It is interesting to note that the four glasses that had decreasing Young's moduli with increasing temperature are the same glasses that had initially decreasing moduli of rupture with increase in Young's moduli with temperature are the glasses that also showed an increase in moduli of rupture with temperature. ### Young's Modulus Determined at 75°F Before and After Heating for 500 Hours at Various Temperatures Young's modulus results determined at 75°F before and after heating for 500 hours are presented in Table XXIX. The actual value of Young's modulus determined at 75°F before heating and the percent change in this value caused by heating to the indicated temperature are presented. It can be seen that with the exception of CGW 7900 and CGW 7940 the Young's modulus tended to increase with temperature. CGW 7940 showed no change after heating while the decrease in CGW 7900 semi-tempered specimens is probably due to the devitrification of the surface of these specimens. The glasses capable of being tempered to some degree had a Young's modulus that was greatest for the annealed glass, slightly lower for the semi-tempered glass, and still lower for the tempered glass. These differences are statistically significant at the 5% level with the exception of the differences between the semi-tempered and tempered specimens for PPG 3235 and PPG 6695. After heating at the higher temperature Young's modulus for all three conditions of temper tended to approach each other at a new value higher than the original annealed value. It should be noted that the Young's modulus values given in Table XXIX were determined at 75°F before and after heating for 500 hours at the indicated temperatures. Young's modulus values determined on the same types of glass after different heat treatments would give somewhat different values than those presented here (10). | Ţ | Table XXIX. | | Change in Young's | Modulus | Modulus at 75°F | After 50 | After 500 Hours Exposure | Exposure | to Vari | ous Tem | to Various Temperatures | • | |-----------|-------------|------------------------------------|-------------------|---------|-----------------|----------|--------------------------|----------|---------|---------|-------------------------|---------| | Glass | Temper / | ./ 75°F | 400°F | 700°F | 830°F | 870°F | 915°F | 1130°F | 1150°F | 1220°F | 1420°F | 1724°F | | | | 10 ⁶ psi ² / | Percent2/ | Percent | Percent Percent | | | A | 10.50 | • | +1.14 | | +2.87 | | | | | | | | LOF Plate | മ | 10.34 | +.48 | +2.81 | | +4.34 | | | | | | | | | Ţ | 10.16 | • | +2.95 | | +5.20 | - | | | | | : | | | A | 9.97 | +.20 | +1.68 | +4.47 | | | | | | | | | PPG 3235 | മ | 9.80 | 20 | +3.44 | +6.87 | | | | | | | | | | T | 9.77 | 0 | +4.29 | +7.83 | | | | | | | | | | A | 12.47 | 0 | + .40 | | | +1.20 | +2.80 | | +2.24 | | | | PPG 6695 | တ | 12.16 | +.08 | +1.15 | | | +3.21 | +4.75 | | +3.97 | | | | | E | 12.12 | +.16 | +1.15 | | | +4.53 | +5.61 | | +4.53 | | | | | ¥ | 12.62 | 0 | + .16 | | | | | 0 | | | | | CGW 1723 | ഗ | 11.93 | 0 | + .25 | | | | | +5.61 | | | | | | Ŧ | 11.85 | 0 | + .51 | | | | | +5.81 | | | | | | ₩. | 9.11 | 0 | +1.19 | | +2.30 | | | | | | | | CGW 7740 | တ | 9.00 | +.22 | +2.76 | | +4.72 | | | | | | | | | × | 9.49 | 0 | 52 | | | | | | | 10 | | | CGW 7900 | တ | 9.56 | +.10 | 0 | | | | | | | -2.824 | | | CGW 7940 | A | 10.50 | 0 | 0 | | | | | | | | 0 | A indicates annealed; S indicates semi-tempered; T indicates tempered. Average Young's modulus determined at 75°F. Change in Young's modulus over 75°F Young's modulus. Surfaces devitrified. #### Poisson's Ratio Values for Poisson's ratio are given in Table XXX. These results were obtained at the same time the dynamic Young's modulus results presented in Table XXIX were obtained. Poisson's ratio was not determined directly but was calculated from the Young's modulus and the shear modulus. The modulus of elasticity in shear at both room and elevated temperatures changed in the same proportion as Young's modulus with the net result being that the Poisson's ratio values were not measurably affected by temper or heat treatment. Table XXX. Poisson's Ratio Determined at 75°F | Glass | | Poisson's Ratio | | |---|---|---|------------------------------------| | | Annealed | Semi-Tempered | Tempered | | LOF Plate
PPG 3235
PPG 6695
CGW 7740
CGW 1723
CGW 7900
CGW 7940 | 0.202
.212
.246
.189
.236
.168 | 0.205
.217
.244
.194
.240
.175 | 0.196
.216
.251
-
.242 | #### PART III #### ADDITIONAL DATA The results presented here were obtained either before, or simultaneously with, the main program data. This data is presented here in order to keep the main program presentation simple and straightforward, and consists of: - 1) Effect of cut edges on the modulus of rupture. - 2) Comparison of the effect of temperature on the modulus of rupture of sandblasted and ground and polished specimens. - Effect of different types of sandblasting on the modulus of rupture. - 4) Effect of the rate of loading on the modulus of rupture. - 5) Modulus of rupture results on specimens previously tested for static fatigue. - 6) Distribution of strength results. - 7) Relation of the mirror size to the modulus of rupture. #### Effect of Cut Edges on the Modulus of Rupture Ground and polished specimens were cut by three different laboratories from the same lot of glass used for the Part I testing. One laboratory (A) cut specimens from this lot on two different occasions and in addition, cut specimens from the same type of glass used in the Part I testing but from a different lot. The specimens were tested on the same apparatus and in the same manner but not at the same time. The results are presented in Table XXXI and show that there is no statistical difference (1% level) between the two groups of specimens from the same lot that were cut by Laboratory A (Groups A-1 and A-2). The results from Laboratory B and Laboratory C show no statistical difference between them, but the strength of both is significantly lower than the strength results from Laboratory A. The modulus of rupture of the other lot (A-3) of glass cut by Laboratory A is significantly lower than the other moduli obtained from specimens cut by this laboratory. Table XXXI. Effect of Cutting on the Modulus of Rupture of Annealed LOF Plate Glass Ground and Polished Specimens | | A-1 | A- 2 | A-3 | В | С | |---|--------|--------|--------|--------|--------| | Average Modulus
of Rupture (psi) | 14,400 | 13,600 | 11,300 | 11,900 | 10,500 | | Standard
Deviation (psi) | 4,400 | 3,610 | 2,550 | 3,040 | 3,220 | | Number of
Specimens | 23 | 30 | 30 | 30 | 30 | | Surface Breaks | 10 | 10 | 12 | 11 | 6 | | Edge Breaks | 13 | 20 | 18 | 19 | 24 | | Average Modulus
of Rupture (psi)
Surface Breaks | 14,300 | 14,600 | 11,300 | 10,700 | 10,600 | | Average Modulus
of Rupture (psi)
Edge Breaks | 14,600 | 13,100 | 11,300 | 12,500 | 10,500 | - A-1. Samples of LOF Plate glass cut by Laboratory A. - A-2. Sample of glass from lot A-1 cut by Laboratory A at a different time. - A-3. Samples of same type of glass but from different lot. Cut by Laboratory A. - B. Samples of glass from same lot as A-1. Cut by Laboratory B. - C. Samples of glass from same lot as A-1. Cut by Laboratory C. It is interesting to note that in all five groups the number of edge breaks exceeds the number of surface breaks, with edge breaks comprising from 56% to 80% of the total. Comparing the average modulus of rupture for surface and edge breaks shows that one is not consistently different from the other and in three of the five cases are quite close together. The results show that there may be an effect on the strength of glass caused by the cutting of the specimens by different individuals. ### Comparison of the Effect of Temperature on the Modulus of Rupture of Sandblasted and Ground and Polished Specimens Thirty ground and polished and ten sandblasted specimens were tested at 75°F, 400°F, and 550°F, all after less than one hour exposure to the test temperature. The results are presented in Table XXXII. The average modulus of rupture of the ground and polished specimens was slightly higher at 75°F than at 400°F and 550°F but that the difference was not a statistically significant amount (1% level). It should be noted that the large standard deviation of the ground and polished specimens serves to mask any but large differences between groups. The modulus of rupture of the sandblasted specimens was lowered a statistically significant amount at both 400°F and 550°F as compared to 75°F. There was no significant difference between the 400°F and 550°F results for the sandblasted specimens. Contrails Effect of Temperature on the Modulus of Rupture of Annealed LOF Plate Glass Specimens Table XXXII. - indicates fracture originated on the surface of the specimen. n - indicates number of specimens. 0 0 4 1 \overline{x} - indicates average. S.D. - indicates standard deviation. #### Effect of Different Sandblasting on the Modulus of Rupture Table XXXIII gives the modulus of rupture results at 75°F for LOF Plate glass sandblasted by different methods. The results show that different amounts of abrasion can affect the strength of glass. The methods of sandblasting were varied by using different grain sizes of sand and different amounts of air pressure to blow the sand against the specimen. Table XXXIII. Effect of Different Sandblasting on the Modulus of Rupture of Annealed LOF Plate Glass Specimens | Group | Fracture
Origin | Number
of
Specimens |
Average
Modulus
of
Rupture | Standard
Deviation | |-------|--------------------|---------------------------|-------------------------------------|-----------------------| | 1 | SE | 19
5 | 10240
9410 | 446
735 | | 2 | S | 10 | 82 1 0 | 1109 | | | E | 0 | 0 | 0 | | 3 | S | 9 | 6900 | 579 | | | E | 6 | 5030 | 779 | #### The Effect of the Rate of Loading on the Modulus of Rupture The modulus of rupture was determined on groups of 15 annealed, sandblasted specimens of PPG 3235 glass tested at several rates of loading. The specimens were from the same lot, and were the same size as those used in the main program (Part II) testing. The testing was conducted at 75°F on the same apparatus and with the same technique as used for the other modulus of rupture work except for varying the loading rates. A graph of the results obtained is shown in Figure 10. In addition, the data presented by Black (10) and Orr (11), are presented for comparison. The data of Black and Orr were obtained on ground and polished specimens of a different size and a different glass composition than used for the NBS work. However, the interesting point is that although all three curves show an increase in strength with increase in loading rate, the rate of increase for the ground and polished specimens is much greater than for the sandblasted specimens. ### Modulus of Rupture of LOF Plate Glass Determined on Survivors of the Stress-Rupture and Creep Testing The modulus of rupture was determined, at 75°F, on the LOF specimens that survived the 500 hour stress-rupture test as well as those specimens tested at 870°F that exhibited creep. The average value of the modulus of rupture for each group of survivors is presented in Table XXXIV. The stress-rupture specimens tested at 75°F and 400°F survived 500 hours at the indicated stress and temperature. The specimens tested at 870°F were held at this temperature and under the indicated stress for a maximum of 50 hours; for at this time the amount of creep had become excessive for the apparatus, and the testing stopped. These tests were made to compare the modulus of rupture of specimens tested under different conditions of stress and temperature, and also compare these values to the modulus of rupture of specimens that were not previously stressed. The results in Table XXXIV show that for the annealed specimens there is no statistical difference between the modulus of rupture of the two groups, stressed at 870°F and 400°F, during the stress-rupture test. RUPTURE OF ANNEALED, SANDBLASTED, PPG 3235 SPECIMENS Table XXXIV. Modulus of Rupture Determined at 75°F on Sandblasted LOF Plate Glass Specimens that Survived the Static Fatigue and Creep Testing | _ | rapte vvviA. | Glass Sp | ecimens 1 | that S | Survive | d the St | atic | Fatigue a | and Cre | ep Testi | ng | | |-----------|-------------------------|-----------------------|----------------------------|---------|-------------------------|----------------------------|--------|--------------|-----------------|-----------------------|--------|---------------------| | Amount of | Temperature
at which | Stress ² / | Location of | | | _ | Mirr | | Birei
Before | ringence
Heating | | ringence
Heating | | Temper1/ | Stressed
°F | % | of
Break ³ / | n4/ | x ⁶ /
psi | S.D. ⁶ /
psi | n | x
Inches | n | x
mu/in | n | x
_mu/in | | А | 870
870 | 60
60 | E | 5
5 | 6760
6560 | 1135 | 5
5 | .055
.068 | | | | | | A | 400
400 | 60
60 | E | 8 0 | 7100 | 652 | 8 | .052 | | | | | | ST | 870
870 | 60
60 | S
E | 1 7 | 10000
8030 | | 1
7 | .030
.069 | 1
7 | 1685
18 4 1 | 1
7 | 225
186 | | ST | 870
870 | 75
75 | E | 4 3 | 9000
6 4 30 | 1838 | 4
3 | .047
.056 | 4
3 | 1826
1846 | 4
3 | 237
116 | | ST | 870
870 | 90
90 | E | 2 6 | 6200
8500 | 990 | 2
6 | .048 | 2
5 | 1695
1842 | 2
6 | 125
210 | | ST | 400
400 | 60
60 | S
E | 10 | 15070 | 397 | 10 | .032 | 10 | 1793 | 10 | 1691 | | ST | 400
400 | 75
75 | S
E | 10 | 15090 | 387 | 10 | .032 | 10 | 1784 | 10 | 1689 | | ST | 400
400 | 90
90 | S
E | 6 | 15630 | 507 | 6 | .030 | 6 | 1830 | 6 | 1751 | | st | 75
75 | 60
60 | S
E | 10
0 | 14340 | 670 | 10 | .036 | 10 | 1808 | | | | sr | 75
75 | 75
75 | S
E | 8
0 | 14830 | 1161 | 8 | .035 | 8 | 1843 | | | | T | 870
870 | 60
60 | S
E | 5
5 | 7900
7360 | 1651 | 5
5 | .078 | 5 5 | 3462
3663 | 5
5 | 488
680 | | T | 870
870 | 75
75 | E | 3
4 | 13570
8800 | 2871 | 3
3 | .029 | 3 4 | 3426
3509 | 3
4 | 828
583 | | T | 870
870 | 90
90 | E | 6
4 | 12020
10725 | | 5
4 | .031 | 6 4 | 3531
3492 | 6 | 1032
708 | | T | 400
400 | 60
60 | E | 10
0 | 22660 | 577 | 10 | .030 | 10 | 3519 | 10 | 3380 | | T | 400
400 | 75
75 | S
E | 10
0 | 227 20 | 388 | 10 | .030 | 10 | 3 536 | 10 | 3398 | | T | 400
400 | 90
90 | S
E | 8 | 22270 | 828 | 8 | .031 | 10 | 3456 | 10 | 3384 | | T | 75
75 | 60
60 | S
E | 10
0 | 22130 | 690 | 10 | .033 | 10 | 3547 | 10 | 3506 | | T | 75
75 | 75
75 | S
E | 10
0 | 22380 | 543 | 10 | .031 | 10 | 3492 | 10 | 3441 | | Т | 75
75 | 90
90 | S
E | 2 | 24100 |) | 2 | .026 | 2 | 3815 | 2 | 3797 | ^{1/} A - annealed, ST - semi-tempered, T - tempered. ^{2/} Stress applied to specimens. Presented as a percent of the average modulus of rupture determined at the indicated temperature. ^{3/} S indicates fracture originated on the surface of the specimen. E " edge " " ^{4/} n indicates number of specimens tested. ^{5/} x̄ indicates average. S.D. indicates standard deviation. ^{7/} Radius of the smooth portion of the fracture face. For the semi-tempered specimens there is no statistical difference between the modulus of rupture of any of the groups stressed at 75°F and 400°F. The specimens stressed at 870°F had lower strengths than the specimens stressed at 75°F and 400°F, however, this is not surprising since the amount of strain remaining in these specimens was small. There was no statistical difference between the groups stressed at 870°F when comparing averages that included surface and edge breaks. Comparing the surface break average only would be meaningless because of the large number of edge breaks. The results of the tempered specimens show there are no statistical differences between the specimens stressed at 75°F and 400°F. The specimens stressed at 870°F had significantly lower modulus of rupture than those stressed at 75°F and 400°F. There were differences in the strength of the groups of specimens stressed at 870°F, the strength of the groups depending largely on the amount of temper remaining. The moduli of rupture for annealed, semi-tempered, and tempered LOF Plate Glass specimens tested at 75°F and not previously stressed are, respectively: 6900 psi, 13410 psi, and 21990 psi. Comparing these values to the values obtained after stressing for 500 hours at 75°F and 400°F and presented in Table XXXIV shows that stressing for 500 hours at the two indicated temperatures did not significantly weaken the glass in any of the three conditions of temper. ## Distribution of Strength Results Knowledge of the type of distribution of results of strength tests is important so that useful statistical analyses can be made. There is a difference of opinion as to the type of distribution that best describes a glass sample tested for strength, so in an attempt to clarify the picture the following work was done. Six hundred PPG Plate Glass specimens were tested. The specimens were the same size as used for the remainder of the test program and came from a single lot of commercially produced plate glass. Three hundred specimens were tested with the original ground and polished surfaces and three hundred had the surfaces sandblasted in the same manner as for the regular program. Specimens were measured for the degree of anneal, refractive index and thickness before testing and all these measurements indicated there were no unusual discontinuities among the specimens. The three hundred specimens of each surface type were divided into two groups so in effect there were four groups of 150 specimens each that were tested at 75°F. Four types of distribution for the results were tried: log-normal, extreme value, Weibull, and normal. Two log-normal and extreme value were not satisfactory in describing the data. The Weibull distribution gave results that were inconclusive. Three of the four test groups fit the normal distribution. Figures 11 through 13 show the test groups plotted on normal probability paper. A chi-square test also confirmed the normality of three of the test groups and the non-normality of the fourth. This analysis indicates the modulus of rupture values of a glass sample generally assumes a normal distribution and analysis of the strength of glass can be made on the basis of this assumption. ## Mirror Size When glass fractures, the area immediately surrounding the fracture origin is smooth and is referred to as the mirror portion of the fracture face. There is an inverse relationship between the size of this mirror and the strength of the glass. The results obtained on the glasses in the program are shown in Figures 15 through 18. These results were obtained from the modulus of rupture specimens. Inspection of Figures 15, 16, 17, and 18 shows that the data for a particular glass fell along the curve describing that glass irrespective of surface conditions of the glass, rate of loading, time under load, and temperature of test. Figure 16 shows the data for PPG 3235. The symbols show the data obtained by testing at various temperatures. The letters show the data obtained during the rate of loading experiment, conducted at 75°F. Comparing the mirror sizes at a constant stress showed that the factors noted above did not affect
the mirror size. All determinations were made on the same size specimens so no effect of size was studied. Examination of the curves and the comparisons of mirror size at constant stress for a particular glass showed that other than the effect of strength on mirror size there was essentially no difference between the mirror sizes of: 1) Specimens having ground and polished surfaces and specimens having sandblasted surfaces, 2) Specimens broken at different rates of loading in the modulus of rupture testing, 3) Specimens tested at different test temperatures. This was true whether tests were made with less than one hour exposure or after 500 hours exposure at the testing temperature. Figure 19 is a graph of the four curves plotted together to show the relationship between them. It can be seen that the curves are parallel but displaced from one another, indicating that the type of glass has an effect on the location of the curve. The results show that of all of the factors investigated the only one affecting the relationship between mirror size and modulus of rupture is the type of material. ## CONCLUSIONS The following conclusions were developed from the data obtained in the test program. Some, as mentioned in the introduction, have been previously reported by other authors; but they are presented here because they were derived from the present work and also give further confirmation to the previous findings. - 1) Satisfactory results were obtained by the method reported for measuring modulus of rupture. This method followed ASTM procedures except for the use of two point loading. Other alterations or modifications may interfere with the modulus of rupture test. The results showed that a rod in contact with the tensile surface of a test specimen will significantly reduce the strength of the glass. - 2) In addition to reporting the average modulus of rupture, the standard deviation or coefficient of variation and the number of specimens tested should be reported. - 3) The location of the fracture origin should be reported as the distance from the loading knife edge or in the case of two point loading, fracture origins that occur outside the area of uniform stress between the loading knife edges should be reported as well as the distance from a loading knife edge. This information can be used to determine the actual stress at which the glass failed and not the stress which a portion of the glass withstood. - 4) An analysis of the data shows that glass with fractures originating on the surface may be significantly stronger than glass with fractures originating on the edge. This should be considered in reporting strength results. - 5) Modulus of rupture tests conducted under similar conditions and on the same kind of glass at different laboratories, or possibly at the same laboratory, can give statistically different results and yet show no laboratory bias. - 6) Abrading the surface of the specimens reduces the scatter in the results and lowers the strength. Carefully controlled, uniform surface abrasion may be useful in reducing the number of specimens required to make comparative tests between groups of the same glass under different conditions. Since the strength of glass is largely dependent upon the surface of the glass the results obtained with abraded specimens should in no way be construed to be used as the absolute value of the strength of the glass in question. - 7) The cut edges may affect the strength of glass. - 8) The rate of loading will affect the strength of glass, the faster the rate of loading the higher the strength. However, this effect appears to be less noticeable in specimens with abraded surfaces than in specimens with ground and polished surfaces. - 9) The modulus of rupture determined on specimens that had undergone static fatigue testing was not changed from specimens that were tested without being subject to static fatigue. - 10) The four annealed glasses having the lowest silica content and highest coefficient of expansion, showed as the temperature increased, a decrease in strength followed by an increase in strength as the strain point was approached. The decreases in strength varied from 6% to 15% below the 75°F modulus of rupture value. This decrease and increase in strength with increasing temperature was observed in sandblasted LOF Plate Glass at NBS in the preliminary program, in the main program, and in comparing the effect of temperature on sandblasted and ground and polished specimens. The same phenomenon was observed by Corning Glass Works (13) when it performed similar tests on CGW 1723. Young's modulus showed a continuous decrease with increasing temperature for the above four glasses. - 11) The three glasses with the higher silica content and the lower coefficients of expansion showed a continuous increase in strength with increase in temperature. Other workers have observed this in the case of fused silica (14). Young's modulus increased with increasing temperature for these three glasses up to the beginning of the transformation region. - 12) For annealed glass, heating for 500 hours at a particular temperature increased its strength when compared to the same glass untreated. - 13) Testing semi-tempered specimens with less than one hour exposure to a testing temperature showed that these glasses tended to retain their strength to near the strain point. Tempered glass tested under the same conditions lost appreciable amounts of strength at temperatures below the strain point. - 14) After heating for 500 hours both semi-tempered and tempered glasses lost appreciable amounts of strength at temperatures well below the strain point. - 15) After heating for 500 hours at 120°F below the respective strain points of the glasses the semi-tempered and tempered specimens, when measured optically, showed they were annealed. However, in every case these specimens were stronger than the annealed specimens heated for 500 hours at the same temperature. - 16) Statistical analysis of the data showed that there is a correlation between the amount of temper and the strength in the semi-tempered and tempered specimens; the greater the temper the higher the strength. - 17) A statistical study of the distribution of strength showed that out of four theoretical distributions the normal distribution was the best for describing the data for glass and appeared to be adequate for obtaining the parameters necessary for a statistical analysis of the strength of glass. - 18) For annealed glass the relationship between the mirror portion of the fracture face and the strength of glass is not affected by the condition of the surface, temperature, or rate of loading; but is different for different types of glasses. ## **BIBLIOGRAPHY** - 1. Stanworth, J.E., "Physical Properties of Glass." Oxford, at the Clarendon Press, 1950, p. 103. - 2. Kerper, M.J., Lathey, C., Robinson, H.E., "Properties of Glasses at Elevated Temperatures, Part I." WADC TR 56-645, May 1957. - 3. Kerper, M.J., Diller, C.C., Eimer, E.H., "Properties of Glasses at Elevated Temperatures, Part II." WADC TR 56-645, November 1958. - 4. Kerper, M.J., Diller, C.C., Eimer, E.H., "Properties of Glasses at Elevated Temperatures, Part III." WADC TR 56-645, October 1959. - 5. Kerper, M.J., Diller, C.C., Eimer, E.H., "Properties of Glasses at Elevated Temperatures, Part IV." WADC TR 56-645, May 1960. - 6. Kerper, M.J., Diller, C.C., Eimer, E.H., "Properties of Glasses at Elevated Temperatures, Part V." WADC TR 56-645, in process. - 7. Kerper, M.J., "Properties of Glasses at Elevated Temperatures, Part VI." WADC TR 56-645, August 1962. - 8. Spinner, Sam, Teft, W.E., "A Method for Determining Mechanical Resonance Frequencies and for Calculating Elastic Moduli from These Frequencies." ASTM 1961 Preprint 102. To be published in ASTM Proceedings. - 9. Dixon, W.J. and Massey, F.J., Jr., "Introduction to Statistical Analysis." McGraw Hill Book Co., Inc., New York, 1951, p. 247. - 10. Otto, W.H., "Compaction Effects in Glass Fibers, J. Am. Ceram. Soc., Vol. 44, No. 2, Feb. 1961, p. 68-72. - 11. Black, L.V., "Effect of the Rate of Loading on the Breaking Strength of Glass." Bull. Amer. Ceram. Soc., Vol. 15, pp. 274-275 (1936). - 12. Orr, Leighton, Private communication. - 13. Shoemaker, A.F., High Temperature Aircraft Windshield Development Program, Quarterly Report No. I, September 1958. - 14. Dawihl, W. and Rix, W., "Strength of Quartz Glass at Elevated Temperatures." Z. Tech. Physik 19 [10] 294-96 (1938).