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MODIFIED POTENTIAL ENERGY MASS REPRESENTATIONS
FOR FREQUENCY PREDICTION'
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Mass representations are derived based on complementary anergy
requirements for computation of frequencies of systems composed of
rods, torque tubes, and beams with nondiscrete masses, Modified mass
representations are then derived which reduce the error for upper-
bound frequency rredictions for systems with uniformly distributed
masses. Sample problems are solved iliustrating that low-error
estimates are obtained for a variety of boundary conditions with few
elements,

1.0 INTRODUCTION

In predicting structural resonances analytically, mass and stiffness must be represented.
If a set of assumptions is adapted in representing either the mass or stiffness, then these
same assumptions can be imposed in representing the other quantity. In the case of finite
differences, in which displacements are the unknowns and continuity of stresses is maintained,
consistency of assumptions leads to lower-bound estimates of frequency. In the case of the
potential energy approach, this consistency insures that upper-bound estimates of frequency
are obtained,

Previous investigators have examined various representations of mass to predict resonant
frequencies. Duncan (Reference 1) considered several finite difference representations for
predicting beam resonances. He determined that the best lumping technique involved lumps
midway between displacement stations. Leckie and Lindberg (Reference 2) demonstrated
that the accuracy of finite difference predicticns varied considerably depending on the
boundary conditions being considered. They proposed a potentialenergy representation as one
whose error could be defined and with which extrapolation could be employed. For their
problems and the problems selected by Archer (Reference 3), frequency predictions using
the potential energy approach had smaller error than those based on finite difference repre-
sentations. Archer emphasized that the potential energy approach results in upper-bound
estimates of frequency. It is noted that despite the fact that difference techniques resulted in
larger error in predicting beam frequencies, they generally gave low frequency estimates.

None of these authors has considered the complementary energy representation of mass,
This representation will provide lower estimates of frequency than those provided by the poten~-
tial energy estimate. Moreover, the complementary energy mass representation can be used in
conjunction with the potential energy estimate to obtain & modified potential energy mass matrix
which yields lower upper-bound estimates of frequency than the potential energy estimate.

t This paper presents the results of one phase of research carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under Contract No. NAS7-100, sponsored by
the National Aeronautics and Space Administration.
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In the next section, Section 2.0, of this paper, the complementary energy mass matrix
representation is derived. Mass matrices for rods, torque tubes, and beams are presented.
Section 3.0 defines a modified potential energy mass representation. Sections 4.0 and 5.0
include a number of examples illustrating the effectiveness of the modified mass matrix.
Section 6.0, the final section contains study conclusions.

2,0 DERIVATION OF THE MASS MATRICES

The basic requirements that must be satisfied in a complementary energy approach are
that stresses must satisfy microscopic equilibrium within an element, and the stress resultants
must be continuous across element interfaces. Satisfaction of the first requirement is con-
tingent upon the nature of the stress field assumed within the element, and satisfaction of the
second depends on the characteristics of the interelement comnection. In meeting these
requirements, the complementary energy mass matrix may be derived in three steps. The
first step consists of developing the mass matrix for rigid body motions. In view of the fact
that these involve nc strain energy, they will trivially be consistent with the complementary
energy requirements,

The second step consists of deriving the mass matrix for an equivalent set of mass forces
imposed at the nodes of the structure. Forboth beams and rods, the ordinary potential energy
stiffness matrix can be used fo relate nodal forces and displacements. This relation is then
operated upon by a scalar to obtain equivalent mass forces, which leads to the elastic portion
of the complementary energy representation. :

The third step consists of summing the rigid and the elastic contributions to the mass
matrix, These matrices may be added because elastic motions are chosen which are orthogonal
to the rigid motions,

In the remainder of this section, the mass representation for rods, tubes and beams will
be obtained by executing these three steps., For completeness, the potential energy mass
representations for these elements are also included,

Consider the straight rod element which provides resistance only to 2longation, {8 stress-
free along its sides, and obeys the laws of linear elasticity under deformation. The displace-
ment function, when only end loads are permitted, is

U + UZ u 27 W

= |
ulx) 2 ~+ - X {1

where u(x} is the displacement along the rod axis, u, and v, are displacements of the rod end
points, "a" is the length of the rod,and x is measured along the rod with its origin at midspan.
In Equation 1 the first termonthe right represents the rigid body displacement of the rod, and
the second term the elastic deformation,

Assuming time dependent generalized displacements, the kinetic energy corresponding to
the rigid body mode is:

a2 o . -
T=—2'-f m(x)(ﬂ—;ﬁ)z dx (2)
oz

where m{x) is the mass per unit length. Assuming the mass is distributed uniformly [m(x)=m]
and substituting Equation 2 into Lagrange’s equation, the generalized forces are obtained as
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F = i - ma ? T ! = MQ i.l' (3)
% a @Y |
where
AL
= 4 4 4
MR ma o {4)
4 4

Here Mp is the mass matrix due to rigid body motion, and the F are the generalized forces,

If the displacement function given by Equation 1 is used in a Rayleigh-Ritz approach, the
following stiffness equation is obtained:
Fy b u
= .ﬁ (5)
Fo a |-t )y,

where A is the cross-sectional area, and E is Young's modulus of the rod. This relation
defines end displacements for any end-loading, F, and F, , based upon a stress distribution
which satisfies microscopic equilibrium. Thus, by formulating a kinetic energy expression
that reflects the characteristics of Equation 5, the generalized forces associated with this
kinetic energy will imply stresses which satisfy the complementary energy requirements.
Therefore, the form of the kinetic energy is taken as

o f%mcx) de |46, [ ] {:'z} (6)

_0/2

where @ is a scalar. One remaining requirement isthatthis kinetic energy represent only the
elastic energy in the rod, thus rigid body mction must be zero. This condition leads to
U T-u, or 4, = -0, , which when imposed in Equation 6 requires @ = {- in order to
represent the total mass, Substituting Equation 6 into Lagrange’s equation and combining the
resultant mass matrix with Equation 4 yields the complementary energy mass matrix for the

rod; namely,

(7}

o ml—

0
L
2

The potential energy mass representation is obtained by using the time derivative of the
entire Equation 1 in Equation 2 rather than only the rigid body term, then using Lagrange’s
equation. This gives

(8)

. 4

"

3

o
wl— o]
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Equations 7 and 8 define mass representations which will lead to predictions of resonant
frequencies for rods with uniform cross-sections and uniform mass distribution. If ma is
replaced by pa where p is the mass moment of inertia per unit length, these relations
become mass representations for tubes with uniform torsional stiffness and uniform distri-
bution of the mass moment. It is noted that the derivation procedure used can also provide
mass representations for other than uniform mass distributions,

The procedure outlined for determining the complementary energy mass matrix for the rod
element can be applied directly to the beam element. For a beam element having coordinates
and displacement variables as shown in Figure 1, the rigid body displacement function ia:

) w,+wz W, —w,
we F 2 + — . X (9)

Corresponding end point elastic deformations are

w'E =0 ’ 9|E = Bl - -Ea_—!_l_
w w (r0)
= z - 2 W
Wy £ o, BaE 92 3
Kl-& i i } Afm“ AreE . x‘%

J

¢

Figure 1, Beam Ccordinates and Displacement Variables
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Substitution of these functions into the appropriate kinetic energy expressions leads directly
to the rigid body and elastic mass matrices. Note that only the end point moments need be
considered in establishing the elastic mass matrix, since the transverse deflection at each
node is accounted for entirely by the rigid body displi.cement function. In light of this condition
the scalar @ is determined by consideration of the total mass moment of inertia of the beam
rather than the mass, as for the rods. Neglecting shear deformation for simplicity in later
work, the complementary energy mass matrir is

2a° SYM ]
30 8
M- Mo (n)
¢ 6 a? 3a 2a®
-3a -5 -3a 8

The degrees of freedom are § , w , 6, and w,with positive directions as shown in
Figure 1.

The potential energy matrix has been given by Leckie and Lindberg (Reference 2), Archer
(Reference 3), and others, It is

[ 442 SYM
22a i56
“P = M9 (12}
420 -34° -{3a 4q°
3a 54 ~22d 156

3.0 REDUCED RANGE MASS MATRICES

As already noted, a potential energy formulation of the dynamic equation leads to upper-
bound eigenvalue estimates. However, it is possible to improve the mass representations
given by Equations 8 and 12 so that the upper-bound estimate is lowered. This reduction can
be achieved by a simple device. A modified potential energy mass matrix is defined as follows:

Mup = Mp +53 (M, ~Mp ) (13)

where 5 is a scalar factor. Note that for B=0, MMp = Mp,andfor B=1, Mye = Mc .
To evaluate 3 all possible end conditions are considered for a single element, Then, the value
of s selected which under no condition admits a frequency prediction less than the exact
value for the lowest elastic frequency,

Consider the rod mass representations. Each segment of the rod is assumed to have a
uniformly distributed mass. The effect of neighboring elements on a given segment can be
represented by considering that the rod segment is connected by two springs to supports as
shown in Figure 2. The scalar B is to be chosen 8o that no matter what value is given, the
spring stiffness k, , and ka , the frequency estimates will be high,

For the rod configuration shown in Figure 2, exact eigenvalues are cbtained by solving
the wave equation subject to the spring constraint boundary conditions represented by &k ) and
ko, . The transcendental frequency equation that 1s obtained is:

(4X* K, Kp) tan 2X —2X (K, +K,) =0 (14)
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where N wnz a2 ) AE K K= Ko ,
AT s ——— ,C= “m K3 » %2% TAE
4c & )

and wy is the circular natural frequency.

Figure 2, Rod Element with Node Constraints

Since high estimales are required, the value of the scalar can be sstablished by examining
the one element representation of the segment. Usingthe mass matrix defined by Equation 13,
the single element dynamic matrix equation is:

2 2+8 1-8 u, I+K, -l u,
23): [I—B 2+B] {uz}z[—l I+K2]{uz}

which has the following frequency equation:

2. {e+(2+[3m<.+s<2} +/[6+{2+B)(K.+Kz)]z 3(K,+ K, +K, Ky) }“5)
"2 201428) 2(1428) 1+28

Note that this equation can be used to obtain frequency estimates for the two mass represen-
tations. If 3 =0, the potential energy estimate is obtained based on the displacement function
(), and if B = |, the complementary energy estimate is obtained.

Solutions of Equations 14 and 15 for various values of the parameters k| und k2 are given
in Table I. This data indicates that the complementary estimate may be less than the exact
solution, and the accuracy of the estimates is sensitive to end conditions.

In Table I the columns defining the scalar give the value of the scalar 8o that the frequency
estimate equals the exact value., For the zero frequency case, the value of B for the first
mode is immaterial since the rigid mode is simulated exactly. It can be seen that the critical
value of B=0.08 arises when the end 8prings are selected to simulate the free-free con-
dition. Hence, this condition provides the largest value of 8 which guarantees that frequency
estimates will be high, The mass matrix for ge = 0.108 {s:

[0.35!3 0. 1487

M 0. 1487 " 0.3513

MP T

Note that, as might have been anticipated, the critical value of B3 could have been defined
from the idealized end-condition cases alone, Applying this consideration to the beam, it is
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TABLE I

ROD SEGMENT EIGENVALUES

wz 02
ac?
gii?;ﬁ::s First Mode Second Mede
Kl K2 p.E.! Exact C.E.2 Scalar P.E.1 .Exact C.E.2 Scalar
0 0 0.000 0.000 0.000 0.0 3.000 2.467 1.000 0.108
0 .1 0.024 0.024 0.024 14.6 3.076 2.517 1.026 0.111
Q 1 0.197 0.185 0.191 1.84 3.803 2.934 1.309 0.151
a 10 0.605 0.510 0.451 0.554 12.39 4.635 5.550 1.58
0 o 0.750 0.617 0.500 0.432 - 5.552 - -
.1 .1 0.050 0.049 0.050 | 31.5 3.150 2.566 1.050 0.114
.1 1 0.233 0.216 0.227 2.41 3.867 2.980 1.323 0.151
1 10 0.670 0.555 0.500 0.623 12.43 4,681 5,550 1.54
.1 o 0.825 0.666 0.550 0.478 - 5.602 - -
1 1 0,500 0.427 0.500 4.77 4,500 3.373 1.500 0.167
1 10 1.234 0.879 0.945 1.28 12.77 5.079 5.555 1.25
t o 1.500 1.029 1.000 0.915 - 6.035 - -
10 10 5,000 1.726 5.000 4.71 18.00 ;.042 6,000 0.778
10 @ 8.250 2.049 5.500 6.05 - 8.296 - -

H . .
Potential Energy Estimate

2

Complemcntary Energy Estimate
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found that the critical end conditions occur for the free~guided case. The modification to the
potential energy matrixinvolves a scalarof0.001709. The modified mass matrix corresponding
to this value of 8 is

4.232 SYM
M . ma | 22.23 156.7
MP 420 -2.875 ~12.62 4.232
12.62 53.31 -22.23 I56. 7

4.0 ILLUSTRATIVE ROD (TUBE) PROBLEMS

Sections 2.0 and 3.0 provide three mass representations for predicting resonant frequencies
for rods having uniformly distributed mass and stiffness (cross-sectional area times Young’s
modulus). For all distinct combinations ¢f classical end conditions for the rod, the reciprocal
square of the frequency parameter —$—; was computed for eachof the three mass matrices.
Results of these calculations are shown in Table II. For the free-free case, all matrices
predict the zero frequency. The frequency parameter given in this case is for the first
elastic mode.

Study of this table confirms the following conclusions:

1. All exact values are less than, or equal to, the modified potential energy
predictions,

2, The modified energy predictions always are more accurate than either the
potential or complementary energy estimates. The error in predictions for the
modified case is reduced between 25 and 100 percent from the potential energy
estimates,

It is of interest to examine the frequency parameter estimates as a function of the number
of analysie elements. Table IIl summarizes such a study for the pinned-iree end conditions.
It can be seen that estimates vontinually involve less error as the number of elements is
increased. Two segments are sufficient to obtain estimates with engineering accuracy. Poten-
tial and modified potential estimates are always low and complementary high.

TABLE 1T

RCD RECIPROCAL FREQUENCY PARAMETER

c 2
(W) x |0
Geometry || Potential EE;?:— Potfﬁgial Ez(-;;n Exact [ Complementary EE;;“
o0——0 0.8333 -17.8 1.013 0.0 1.013 2.500 48.0
%——O 3,333 ~17.8 3.513 -13.3 4,053 5.000 23.3
| %——o—-@ 0.8333 -17.8 0.8782 (~13.3 1.013 1.250 18.9
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TABLE III

PINNED-FREE ROD RECIPROCAL FREQUENCY PARAMETER*

2
(——) x |0
wa 02

Ele:;r.lts Potential Potzggial Complementary
1 3.3333 3.5132 5.0000
2 3.8511 3.8961 4.2678
3 3.9615 3.9815 4.1467
4 4.0012 4.0124 4.1054
5 4.,0016 4.0268 4.0861
6 4.0298 4.0348 4.,0761
7 4.,0359 4.0396 4.0699
8 4.0398 . 4.0426 4.0659
9 4.,0432 4.0448 4.0631

10 4.0445 4.0463 : 4.0612
20 4.0508 4,0513 4,0550

*Exact Value = ;%— = L40528

5.0 ILLUSTRATIVE BEAM PROBLEMS

Table IV includes predictions of the reciprocal square of the frequency for beams for all
distinct combinations of idealized end conditions, For the cases which include rigid modes
(e.g., free-free), the zero frequencies are predicted exactly and therefore have been omitted
in Table IV. The last column of Table IV indicates the precentage reduction in error when
using the modified potential energy representation instead of the potential.

Conclusions 1 and 2 of Section 4.0 also apply to this data. The error in this case is reduced
a minimum of 4,03 percent, however.
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TABLE 1V

BEAM RECTPRCCAL FREQUENCY PARAMETER

I El
- - =) % 100
( w? md“)
. Mod . % Error
Geomentry | Potential Potential Exact#* Complementary Reduction Scalar
3 g 0.19345 0.19431 0.19978 0.69444 13.5 0.02255
0.01488 0.01575 0.02629 0.52083 7.6 0.01263
§———————:;}‘ 0.23810 0.25193 0.42049 8.33333 7.6 0,02253
0.83333 0.384615 1.02660 8,33333 6.6 0.02577
4; Z} 0.03968 0.05386 G.06417 8.33333 : 58.0 0.00295
§———————<£ 3.09524 3.10894 3.19640 11,1111 13.5 0.01262
S 8.01190 8.03186 8.09086 19.4444 33.8 0.00697
; 0.08254 0.09701 0.20598 8.33333 i1.7 0.01458
E 16,2967 16.3019 16,4256 19.4444 4.03 0.04190
i%; I 0.13190 0.14604 0.20278 8.33333 . 20.0 0.00857
),.32488 0.33938 0.42049 8.33333 15.2 0.01127
é; 0.02036 0.03465 0.04005 8.33333 72.9 0.00235
3}——————42 1.01190 1.02560 1.02660 9.02777 93.2 0.00183
cé 3.18217 3.19640 3.19640 11.1111 100.0 0.00171
0.05196 0.06650 0.10946 8.33333 25.3 0.00676
0.11949 0.15408 0.19978 | 8.33333 43.1 0.00685
0.01362 0.02617 0.02629 8.33333 99.0 0.00172

*Exact Values from Reference 4

6.0 SUMMARY AND CONCLUSIONS

This paper has presented the means for easily developing the complementary energy mass
representation using the stiffness matrix and rigid mass matrix, It has shown that this matrix
can be used to modify the pofential energy mass matrix. Mass representations have been
developed for uniformly distributed masses on uniform rods (tubes) and beams. Solutions for
all possible distinct idealized end conditions have been presented using one or two element
breakdowns. Based on theoretical considerations and this data, the following conclusions
are drawn:

1. The modified potential energy matrix with the potential energy stiffness matrix
defines an upper hound estimate of resonant frequencies,
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2. Modifled potential energy estimates always involve less error than potential
energy estimates. :

3. Complementary energy estimates are always less than both the potential and
modified potential, but not necessarily less than the exact resonances.

4. Accuracy of estimates improves for all representations as the number of
elements is increased,

5. The set of all possible distinct classical end conditions includes the case in-
volving the severcst test for accuracy for estimating frequencies by potential,
modified potential, and complementary energy approaches,

6§, The number of elements required to obtain satisfactory estimates of frequency
is dependent on the mass representation selected, the end conditions, and the
number of resonances required. Using the modified potential energy matrix,
considering the worst end-conditions, and requiring the first resonance within
.ive percent, two elements are required for uniform rods and at least two
51 beams,
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