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ABSTRACT 

Aircraft engine turbomachinery blading o~rates in an environment that induces vibration which 
can lead to failure through high-cycle fatigue. This vibration can often be reduced to acceptable 
levels by friction dampers, which dissipate energy by capitalizing on the resulting relative motion 
between the blade and a motionless structure or adjacent vibrating blades. The key to optimizing 
a given dam~r design is to determine the dynamic weight at which the maximum energy is dissi
pated without locking the blade at the dam~r contact point. As the design of turbomachinery blad
ing progresses towards higher-loaded stages with more complex geometry, vibratory modes beyond 
the primary beam bending become more prominent. This pa~r will discuss the development of an 
analytical method to predict damper effectlveness for any blade mode. The analysis is based on a 
component mode method, and includes provisions for modeling stick-slip at the friction contact. 
Multiple damper contact points can be evaluated, and the tlamp!r design can be blade-to-ground 
or blade-to-blade with arbitrary phase angle. The results of a series of lab tests with simple beam 
specimens to evaluate the principal dam~r design variables will be presented along with the corre
sponding analytical predictions. 
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I INTRODUCTION 

Dam pas for turbomachinery blading have traditionally been designed through the use of experience 
and lah testing. Until recently. there was little analytical support available because of the complexity 
of the governing equations, which are nonlinear due to the friction forces present at the blade-damp
er contact points. The solution is also complicated by the requirement to know all three spatial com
ponents of the relative motion at these contact points. Recent development efforts, however, have 
resulted in analytical methods which can be used to evaluate the effectiveness of the damper in re
ducing blade vibration. 

There are certain basic characteristics that 
qualitatively describe the effects of a damper 
on the vibratory motion of a blade. The most 
important characteristic is the existence of an 
optimal friction force for a given excitation. 
As the d:unper weight is varied, a value can be 
found which minimizes the blade response, 
and increasing or decreasing the damper 
weight from this value will cause the vibratory 
response of the blade to increase. Variables 
such as shank-ter-airfoil stiffness ratio can 
modify this optimum weight. A damper also 
causes the vibratory mode shape to change, 
and in the extreme a very heavy damper can 
redurc the relative motion to a point that the 
airfoil is vibrating alone without any mechani
cal damping. As a result of the damper and the 
mode shape change, the resonant frequency 
will increase, and this change may be quite 
significant in some cases. An example of a 
blade and damper along with the nomencla
ture that will be used in this paper is shown in 
Figure I . 
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Fipre 1. Typical turbine blade with 
self~entering damper. The damper rides 
under the platform and contacts adjacent 
blades. 

The method outlined here follows from references [ 1] through [5]. The main emphasis of this paper 
is the extension of these methods to efficiently analyze self-centering blade-ter-blade dampers, 
which arc carried between the platforms of adjacent blades. Engine rotation causes the centrifugal 
forces which load the dampers against the blades, and the design of the dampers is such that they 
always remain in contact with each adjacent blade, hence the term "self-centering". To begin, 
though, blade-ter-ground dampers are considered to introduce the methodology which will be used. 

2 ANALYTICAL APPROACH 

2.1 BLADE-TO-GROUND DAMPERS. Because of the complexity of the geometry of turboma
chincry blades, a detailed model such as a three-<limensional finite element analysis is required to 
accuratdy ussess the natural frequencies and their associated mode shapes. Since frequency analy
sis is n~arly always done as a part of the blade design process, it is assumed that such a model exists 
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and the governing equations will be used as a starting point. The equations of motion for the blade 
arc then 

lml(u) + fcl(u) + [kl{u} = (Pl - (F} 

where 
u = displacement of each degree of freedom 
m = mass matrix 
c = viscous damping matrix (assumed proportional) 
k = stiffness matrix 
P = driving force 
F = friction force . 

( l) 

For typical turbine blade models, (1) represents a very large set of equations, which are all coupled 
through the mass, stiffness, and damping matrices. While P will be specified, the Fare nonlinear 
functions, so the equations cannot be solved directly. One approach to dealing with this set of equa
tions is to turn to a modal method, where it is assumed that the natural f rcqucncies and mcxie shapes 
have been previously determined by solving the eigenvalue problem, 

[m](u) + [kl{u} = {O} . (2) 

An important mathematical property of the mode shapes is that they form un orthogonal set. which 
is relevant because the mode shapes can then be used as coordinates to describe the motion. The 
physical displacements can be represented as a superposition of the mode shapes, 

where 
<l> = matrix of mode shapes, ~i 

q = modal amplitudes. 

{u} = [ci-]{q) (3) 

Note that the physical displacements are a function of position and time, while the mode shapes are 
a function of position only and the modal amplitudes are a function of time only. This can be substi
tuted into (1 ), and after pre-multiplying by the transpose of [cl>], 

where 
Mi= modal mass of ith mode 
roi = natural frequency 
~i = viscous damping 
Pi = mode shape component at the location of the excitation force for the ith mode 
ai = mode shape component at the location of the friction damper for the ith mode. 

(4) 

The mass, stiffness, and damping matrices have been diagonalized due to the orthogonality of the 
modes, meaning the left-hand sides of (4) arc completely de-<:oupled. Any physical quantity can 
be described in terms of the modal amplitudes by using (3), and in particular, the physical displace
ment at the damper contact is given by 

II 

~ = Ia;q;. (5) 
; .. 1 
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The equal ions of motion wi II be simplified through the use of the method of harmonic balance. The 
displacements and forces arc assumed to be of the fonn 

q; = qf cos Or+ qf sin Ct 
P = pc cos Ct + ps sin Ct 
F = F cos Ct + P sin Ct 
e = ee cos Ct + es sin Ct 

(6) 

where n is the driving frequency. Note that the damper displacement, for example, can also be writ
ten in terms of its magnitude and phase, 

e =(sin(Ct+1JI) . (7) 

By applying the harmonic bu lance method to (4), expressions for the modal amplitudes can be deter
mined. 

e (Pep; - fCa;)(a,r- 0 2) - (P'p; -F'a;)(2t,cu;O) 
Q; = M;[(a,f- g2)2 + (2t,cu;C)2I 

qf _ (P'p; -Fa;)(2t,-a,i0) + (Psp; -Pai)(a,r - 0 2) 

I - M;[(a,f- g2)2 + (2t,-a,;0)2l 

Substituting these into (5), then using (6) and equating like tenns, 

ec = A 1 pc - A2 F -A3 ps + A4 fS 

wherc 
~s = A I ps - A2 Fs + A3 pc -A4 Fe 

A I = ± p;a;(a,/ - 02) 

;,. 1 Y; 
A3 = i Pia;(2tico;C) 

i•l 'Yi 

A2 = ± a;a;(a,r - g2) 

i• I Yi 
A4 = ± a;a;(2tico;C) 

i•l 'Yi 
and 

(8) 

(9) 

I Following I 2), the damper is taken to be a Coulomb friction element and a spring in series, so that 
slip occurs in the friction element when the spring force reaches a value of µN. Lab measurements 

I 
have shown this to be a good idealization of the behavior of the damper. The damper displacement 
and the resulting friction force are defined in Figure 2, and it is noted that the displacement can be 
written 

i = ( cos8 (10) 

and tht stan of slip in the half-cycle 0<8<1t can be detennined to be 

8 = cos-1 (l - 7ff) . (11) 

JBl\-4 



. - I .. 
11N 

Bl:1clc j 

J 
~ 

/' \ I ! lllfflro<l.>t.r-. ~ 

Damper 

' I I 

k - µN -iiM 

.. ~ 
·2• 8 l1 

Thall 

Figure 2. Behavior of friction Interface. The friction element, shown schematically with the 
blade, behaves as a spring until the slip value is attained. 

The damper force is expanded in a Fourier series and truncated after the fundamental ham10nic 
terms, resulting in · 

F = GI f cos 6 + G2 f sin 6 
where 

GI = !ce-..!.sin 28) 
n 2 

G2 = _!sin28 . 
n 

Comparing (6), (7), and ( I 0), this equation becomes 

fC = GI ;c -G2 ;s 
fS = G 1 es + G2 ;c . 

This is substituted into (9), which is rearranged to give 

El= -DJ fc +D2 ;s 

E2 = D 1 ;s + D2 ec 
where 

DI = 1 + A2 GI - A4 G2 
D2 = A2 G2 + A4 GI 

Equation (14) can be solved to give 

DI El +D2 E2 
tan 1/) = ----

DI E2-D2 El 
JBA-5 

El = Al pc - A3 P·' 
E2 = A I P' + A3 pc . 

(12) 

( 13) 

(14) 

(15) 



Because DI and D2 are trunscendentnl functions of E>, iteration is required to solve (15). A simple 
bisection method is utilized because E> is bounded by O<E><1t. Once ~ is known, substitution into 
( 13) gives all the forces acting on the blade. The modal amplitudes Qi are then detennined using (8), 
and any physical displacement or stress of interest can then be obtained by following (3). 

A common approach to assess the effectiveness of a given damper design is to repeat the solution 
for a range of driving frequencies, determining the displacement and/or stress at key locations on 
the blade. By varying the friction or driving forces, a parametric study can be conducted as shown 
in Figure 3. From this information, which includes the resonant stress, frequency, and log decre
ment, the optimum damper weight can be detennined. 
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Figure 3. Frequency response for various friction forces. By using a series of driving 
frequencies. the maximum response for a given friction force can be found. 

2.2 BLADE-TO-BLADE DAMPERS. A common design approach for blade dampers is to place 
the damper between two blades, so that centrifugal forces cause the damper to remain in contact with 
the platfonn of each blade as they vibrate. Because of the free-floating nature of the damper, its 
relative motion along each face of the blade platform must be determined. Simply knowing the abso
lute motion of the damper is not sufficient. It is assumed that these vibratory motions are small 
enough so that the scrubbing surfaces move in translation only, that the centrifugal force will cause 
the damper to move radially outward as far as the platforms allow, and this motion will be continuous 
sliding. These assumptions are consistent with good damper design practices. 

The damper is shown schematically in Figure 4. With the assumptions made for damper motion, 
the dnmpcr position is known once the motions of the two blades have been specified. Motion out 
of this plane is considered separately because its effect on damping depends on the physical damper 
restraints, and in addition, this component is usually not a source of reliable damping. If an oblique 
coordinate system is placed along the contact surfaces as shown, with the origin at the damper apex, 
detem1ination of the relative motion becomes much easier. The transfonnation equations to obtain 
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Fi~urc 4. Blade-to-Blade Damper. The motion of the damper is shown schematically. Notl' that 
the location of the damper is detennined by the location of the contact points on the blades. 

the vibratory motions in tenns of the oblique coordinates from the usual Cartesian reference frame 
can be found in [8]. Because rotations of the blade contact surfaces are ignored, the A-blade damper 
surface will move along lines parallel to~. while the B-blade moves parallel to Tl• The absolute 
damper motion is seen to correspond to the ;-motion of B and the Tl- motion of A, and the relative 
motion along each face of the damper is given directly by 

e = e!bs - e~b.r (16) 

7/ = 1/:bs - 1/~b.r · 

In this equation, the "abs" subscript indicates absolute components of motion while the lack of u 
subscript indicates a relative tenn. For clarity, the discussion will be limited to motion in the; direc
tion; similar results would be applicable to the Tl component. Replacing the blade displacement in 
( 16) with the modal components, 

II II 

e = L, a;<f; - L, b;qf 

where 
ai = mode shape in the~ direction for the ith mode at the damper contact of blade A 

cf; = modal amplitude of blade A 

bi = mode shape in the~ direction for the ith mode at the damper contact of blade B 

c/! = modal amplitude of blade B. 

( 17) 

Now assume that blades A and B have identical responses with the exception of an interblade phase 
angle, <t>. Again assuming hannonic motion, the modal amplitude can be written 

</; = qf cos Ct + qf sin Or (18) 

ell = qf cos(Ot + g)) + qf sin(Or + g)) 

where the cosine and sine tenns on the right- hand side of both equations refer to blade A. 
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Expanding and substituting into ( 17), 

n n 

sc = I<ai-bicos cJ>)qf - L(bi sin cJ>)qf 
i=I i:r: 1 

n n 

ss = L (ai - b; cos cJ>)qf + L(b; sin cJ>)qf . 
i=l 

The relations given by (8) still apply, and substituting into (19) leads to 

~c = C 1 pc - C2 Fe - C3 ps + C4 P 

where 

and 

~s = C 1 ps - C2 P + C3 pc - C4 pc 

CI = A 1 - B 1 cos cJ> - 83 sin cJ> 
C2 = A2 - 82 cos cJ> - 84 sin cJ> 
C3 = A3 - 83 cos cJ> + Bl sin cJ> 
C4 = A4 - 84 cos '1J + 82 sin '1J 

Bl= i Pibi(wr-02) 

i:r:l Yi 
B3 = i p;b;(2l;!J);0) 

i=l Yi 

82 = i a;b;(wr - 0 2
) 

i=l Yi 

B4 = i a;b;(2t!J)i0) 

i•l Yi 

(19) 

(20) 

The forces rnntributed by the damper are still given by ( 12), where it is understood that~ is the mo
tion of the blade relative to the damper at the contact point. Then (20) is identical in fonn to (9), 
the only difference in the equations being in the C-coefficients. In fact, (9) can be obtained by taking 
the hi to be zero. The solution can then proceed in a manner identical to the blade-tcr-ground damper, 
it~rating on ( 15) to find the relative displacement. 

2.3 MULTIPLE DAMPERS. The analysis is now extended to the case of multiple damper loca
tions with multiple excitation forces. Because the blade-to-blade analysis will easily degenerate 
to the blade-to-ground case, only these results are derived here. Also, because the approach taken 
is identical to that for a single damper, detail will be kept to a minimum. 

The equations of motion are generalized to 

M;[Qi + 21;,w;q; + wfq;J = L P1 Pli - L F1 a1; 
I j 

where 
P1 = cxcitution force at l1h location 
fJti = mode shape component at the Ith location for the ith mode 
Fj = friction force at the j th damper location 
aJi = mode shape component at the jth damper for the ph mode for blade A. 

(21) 

The relative motion at the jlh damper, obtained by staning with ( 17), assuming hannonic motion, 
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and substituting for the C/i. is given by 

where 

and 

eJ = I c11,Pf - I c2µF5 - I c3j1Pf + I c4)JF1 
I J I J 

~)' = L CIJtPf - L C2µF} + L C3JtPf - L C4)JF] 
I J I J 

Cl11=A111 -Bl11coscJ> -B3j1sin<l> 

C2)J = A2µ - B2)JcoscJ> - 84µsin<l> 

C3jt = A311 - 831,cos cJ> + 8111 sin cJ> 

C4)J = A4 µ - 84)1 cos cJ> + 82)1 sin cJ> 

(22) 

Because the force at each damper is only a function of the relative motion at that location, ( 12) still 
applies for each damper, and (22) becomes 

£11 = Io1)Je5- 2_v2µe1 (23) 
J J 

E2J = 2_DIµe}+ 2_D2JJl5 
where 1 1 

Dlj1=6µ + Ic2µGl1 -"iC4µG21 E11= I<c11,Pf-c11,Pf> 
J J I 

D2)1 = L C2jJ G21 + "f C4JJ Gl1 E2j = I<Cljt Pf+ C3jl flf) 
J J I 

where OjJ is defined to be the Kronecker delta. The displacements at the various dampers are coupled 
through the D-matrices so the result is a set of coupled, nonlinear algebraic equations, with one 
equation for each damper location and direction. The solution method employed for a single damper 
can no longer be used and is replaced by a method based on Newton-Raphson iteration. This algo
rithm, though, cannot guarantee convergence, and in practice assumptions are made to reduce the 
system to a single equivalent damper whenever possible. 

3 EXPERIMENTAL VERIFICATION OF ANALYTICAL METHOD 

Verification of the preceding analytical methods by laboratory . experiments was deliberately 
planned to take place in several stages, beginning with a simple beam model and eventually leading 
to actual turbine blade geometry. This paper shows analytical comparisons with experimental re-
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suits for simple beam models of various geometries. Specimens were constructed with a simulated 
airfoil, platform, and shank region as shown in Figure 5. A number of different specimen geometries 
wen; tested and the effects of the most significant variable, shank thickness, are illustrated for blade
to -ground, blade- to- blade, and multiple damper test configurations. 

3.1 BLADE-TO-GROUND DAMPER. The first specimens were tested with a blade-to-ground 
arrangement as shown in Figure 5. This arrangement allowed the normal load on the damping sur
face to be varied and the resulting dynamic friction force to be measured. Excitation was provided 
by a shaker table. Strain gages were placed on the specimens to monitor the vibration as a result 
of the action of the bar damper. 
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Figure 5. Simple Beam Model and Associated Test Apparatus. 

The vibratory response of the simple beam model in terms of airfoil root stress versus damper load 
is shown in Figure 6. The effect on the first flexural (primary) frequency with increasing damper 
load is also shown. Each set of data for the two different shank thicknesses shows very good correla
tion to the analytical method. 
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Figure 6. Comparison of Analytical Method with Test Data for Blade-to-Ground Damper. 
JBA-10 



3.2 BLADE-TO-BLADE DAMPER. Testing of a blade- to-blade configuration was conducted 
using the apparatus shown in Figure 7. Two identical simple beam models were clumped in u lixturc 
with a dumper supponcd between adjacent platfonns and landed by meuns of u wire uttuched to u 
pulley. The damper load was varied over a wide range by npplying varying tensile loads in the wire. 
Excitation was provided by means ofa pulsing air jct (siren), exciting the specimens in the first flexu
ral mode of vibration . The level of excitation was controlled by the air jet supply pressure, and the 
frequency was controlled by the speed of the air jet rotor. 

Tut Bladt Damper 
Load Wirt 

Damper 

Figure 7. Blade-to-Blade Damper Test Apparatus. 

Vibratory stresses were measured at the airfoil root, the top of the blade shank, and at the bottom 
of the blade shank. Two different levels of excitation were used, and results were obtained for in
phase and out-of-phase blade motions. 

Results for the in-phase and out-of-phase damper tests are shown in Figures 8 and 9, respectively. 
The averages of several experimental data sets arc shown and compared with analytical predictions. 
Airfoil root stress at the two levels of excitation and resonant frequency predictions at the lower level 
are given. 

i 
J -~·~.:-··· 

\ "'·--~~;: .. , 
· - Llblnt 

Dlmptr lold Dlmptr lold 

Figure 8. Blade-to-Blade Damping Results: In-Phase Vibration. 
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Figure 9. Blade-to-Blade Damping Results: Out-of-Phase Vibration. 

The analytical predictions for both levels of excitation show good agreement with the experimental 
data for in-phase and out-of-phase vibration. Prediction of frequency change as a result of increas
ing damper load also shows good agreement. 

3.3 TYPICAL DAMPER EFFECTIVENESS TEST. The final stage of experimental testing was 
designed to duplicate a typical set-up used in the laboratory to conduct damper effectiveness testing 
on actual engine hardware. The testing on model blades was conducted using a damper positioned 
either side of a test blade with the dampers retained by two additional blades with airfoils removed, 
as shown in Figure 10. The test blade was excited by means of the air siren, but the "dummy" blades 
do not vibrate because of the removal of their airfoil. Again several vwiables were examined, and 
1he tests were repeated to obtain an average for each setting. 

Damper 

Figure 10. Experimental Set-up for Typical Damper Effectiveness Test. 

Figure 11 shows the airfoil root stress and resonant frequency change plotted against damper load 
for three shank thicknesses compared to analytical results. There is good agreement between the 
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analytical results nnd the t:xperimentul data. This again suppons the use of this analytical technique 
to predict the optimum dumper weight to ensure muximum dumper effectiveness. 
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Figure 11. Comparison of Analytical Method with Test Data for Damper Effectiveness Test. 

4 DISCUSSION OF RESULTS 

A full range of experimental testing has been carried out examining variables such as damper-to
platfonn contact angle, platfonn width, and shank thickness. Various excitation levels were used, 
and results were plotted for an average of each data set. It was decided to present the results for the 
variation in shank thickness because these illustrated the most pronounced effect on blade damping, 
and it has been demonstrated within this paper that the analytical method was able to predict the re
sults for this variable accurately. Predictions for other variables were also good although not shown 
here for brevity. It should be noted that, while comparison of the analytical method with experimen
tal results has been presented for only the primary bending mode, the method is capable of predicting 
the damper effectiveness for any mode of interest. 

The analytical method is able to detennine the "optimum" damper weight by predicting the actual 
decrease and increase in vibratory response as the damper load is increased. The optimum theoreti
cal weight of the damper is that weight which, when convened into an equivalent load at engine 
speed, produces the minimum vibratory response. 

A damper can increase the frequency of the blade by significantly high percentages. For first flexu
ral modes this can be as large as 25% for a cooled turbine blade. It is, therefore, imponant to be able 
to predict this increase accurately as it has a pronounced significance when considering resonances 
with stimuli that could produce detrimental responses of the blades. The analysis has demonstrated 
its ability to predict this frequency increase accurately for the test cases presented and offers a means 
of correcting for damping effects when assessing resonances in engines. 

The analysis was able to predict the point at which the damper load becomes so high that it prevents 
motion in the shank and causes the airfoil to vibrate in an undamped mode. This condition is poten
tially dangerous for the airfoil because of the high vibratory stresses involved. 
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S CONCLUSIONS 

• A new analytical method has been developed which enables a blade designer to pre
determine the effectiveness of a damper design prior to manufacture and bench test. 

• The method is able to predict the optimum damper load for maximum effectiveness 
and the point at which the damper is so heavy that it effectively "locks-up" the airfoil 
at the platfonns so that it is virtually undamped. 

• Comparisons made between the analytical method and experimental data generated 
by using simple beam models confinns the accuracy of the tool for design use. 

• Future work will be centered around developing this analytical method for use with 
actual cooled turbine blade geometry and applying it to a rotating system of blades 
to predict damped responses compared to engine blade strain gage data. 
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