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ABSTRACT

A method is presented for analysis of the nonlinear
aerodynamics of slender configurations with vortex separa-
tion. Primary emphasis is on the nonlinear component of
the aerodynamic characteristics. The theory is intended to
be mathematically tractable yet give results of acceptable
accuracy.

A technique for analyzing the nonlinear aeroelastic
problemis given followed by a method for obtaining the non-
linear aerodynamics of wings, bodies, and their combina-
tions. Comparisons with experiment are provided.

The experimental comparisons with the wing results
indicate that the theory overestimates the nonlinear forces
at high angles of attack. The results indicate directions for

further research.
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SECTION 1

INTRODUCTION

Flight technology progress has brought about increasingly higher
speeds in a trend which will certainly continue. These higher speeds
generally require slender aircraft configurations. Because of their
slender nature, these aircraft may experience aerodynamic forces
which have a significantly nonlinear variation with angle of attack, in
contrast with the higher aspect ratio aircraft. While mathematical tech-
niques for analyzing the high aspect ratio '"linear' problem are reasonably
complete, methods for calculating the nonlinear forces on slender aircraft
are still in the developmental stage. In this report, some recent proce-
dures will be described for calculating nonlinear aerodynamic forces on
elastic lifting configurations.

The report is concerned with three configurations: wings, bodies,
and wing-body combinations. The theoretical development of the aero-
dynamics of each configuration type is given, followed by comparisons with
experiment. An approach toward calculating aerodynamic influence co-
efficients accounting for nonlinearity is first discussed preceding the
theoretical development of the aerodynamics.

Nonlinear lift on delta wings caused by vortex separation from the
leading edges was treated by Brown and Michael(3). Subsequently, Bryson(‘”
solved the corresponding problem for circular cones and cylinders. The
present results are based on an extension by Schindel(l) of these methods
which permits application to wings and bodies of more general shape.

In these analyses, nonlinear forces are attributed to the effects of
flow separation on the lee side of wings and bodies. The separating vortex
sheets are assumed to roll up into concentrated vortices which are connected
to the separation points by feeding sheets {e.g., Fig. 2). Requirements that
each vortex and feeding sheet be force free and that separation exist at
prescribed locations determine the vortex strengths and positions,

It is important to note that this report is primarily concerned with
the nonlinear component of the aerodynamics considered. In application of
the material prescribed herein, more accurate linear theories 5) should be
coupled with the slender body analysis of the nonlinear effects.






SECTION 11

NONLINEAR AEROQELASTICITY

The aerodynamic analyses of flight vehicles are generally made
with the assumption that the configurations are rigid, In practice, how-
ever, these vehicles are not rigid and the solutions must be adapted to
allow analysis of this situation. For linear theory, the adaptation is
straight forward; the linear property allows the calculation of zerody-
namic influence coefficients defining the aerodynamic characteristics of
the wing for an arbitrary angle of attack distribution. Nonlinearity due
to flow separation, however, introduces a degree of complexity into the
analysis. The need for a linear analysis still remains but it must include
the nonlinear feature. It is the purpose of this section to present a method
which attempts to meet this requirement. The development of the method
is oriented to a thin wing; however, the basic concept appears applicable
to bodies and wing-body combinations.

Matrix methods are generally used in the aeroelastic analygsis of
wings and bodies. If, for example, 45 represents the pressure difference
acting across a small area of a wing, then the following matrix equation
relates the pressure distribution to the distribution of angle of attack.

[4]- (4] [«] o

where & is the angle of attack or slope of the ith wing area and [’4{;] is
the aerodynamic matrix. The element 4;)' of the aerodynamic matrix rep-
resents the pressure difference at / due to a unit angle of attack at

area £

The pressure difference will cause a structural deformation of the
wing surface which may be represented by the following matrix equation.

[]-[«]- [es] [a#]

L ]
In this equation, [‘(t']- [d[] is the change in wing slope due to structural de-
formation under load, and €/ is a structural matrix giving the slope change
at area ¢ due to a preassure difference at area J .



Sclution of the matrix equation gives the load distribution on a flexi-

ble wing. ,

[2¢]-\[ =] -[ 4] [ec]| [#][«] ()

where [I] is the identity matrix.

The foregoing process assumes a linear relation between pressure
and angle of attack and between load and deflection. In order to account
for a nonlinear relation between angle of attack and aerodynamic load, it
is first necessary to revise the aeroelastic equations. If Eq. (1) is re~
placed by the expression

[“’3] - [Aﬁ'j + [4—"} [“"‘ “"‘] (4)

where [dPJJ is a matrix giving the undeformed wing pressure distribution
including the nonlinear component, then each element of the new aerodynamic
matrix l‘-j] gives a relation between the pressure distribution and pertur-
bation in angle of attack about the corresponding rigid wing local angle of
attack, ®; (Fig. 1). For this case the final load distribution becomes

A ERDIZIN I CICES) 2l

’

In this equation, 46 is obtained by combining a suitable linear theory with
the nonlinear theory described in the following section. The determination
of the aerodynamic influence coefficients, 4‘/ will be described first.

The selected method is intended to optimize the combination of
accuracy and calculation ease. The approach is to multiply each linear in-
fluence coefficient by a corresponding factor which incorporates the non-
linear effect. In order to determine the form of this factor it is necessary
to give some consideration to the aerodynamic fundamentals of the problem.

On the basis of strictly linear theory, the magnitude of a pressure
perturbation at locationJ due to a deflection at location £ is directly pro-
portional to the deflection. To the degree of accuracy inherent in the non-
linear aerodynamic analysis of the following sections, it appears allowable
to relate the influence of one location on the pressure at another to the
pressure changes induced at the influencing location rather than the deflection
itself. Hence, the factor multiplying the linear influence coefficient will
involve some ratio of the nonlinear and linear pressure slopes at the location

. . These slopes are adequately obtained by analyzing the rigid wing at
the angle of attack of interest.

Additional inspection of the nonlinear aspects of the problem are
required before the method of analysis can be formally specified. It should
be noted that the nonlinearity is primarily due to rather large regions of
circulation above the wing. The strength (and position) of this circulation



is a consequence of the flow separation mechanics at the chordwise sta-
tions upstream of the point of interest. The nonlinear pressures at a
location are due to the characteristics of the circulation at the concerned
chordwise station. It is here necessary to observe that since the non-
linear effect enters only through the existence of the circulation, a
structural deformation can only induce nonlinear effects in the downstream
direction. Thus it is found that the subsonic upstream aerodynamic in-
fluence coefficient will encompass only linear effects and must be so rep-
resented in the selected analysis.

On the basis of the foregoing discussion, the mathematical repre-
sentation of the influence coefficient may now be formulated.

-/
4} :[/4] [ oCpr oo
[ “ “ L L da ” Jd«

K. ; downstream influence

- .. (6)
[4“’] - [40] ; upstream influence

A.

In the above relations, [40']1 is the linear aerodynamic influence co-
efficient matrix which may be obtained through use of the methods of Ref. 5
with some minor alterations. The nonlinear pressure coefficients are to
be obtained from the methods of the following section and Ref. 5. The com-

putation procedure for obtaining [dﬁ’p‘/‘m{] is cumbersome and will re-
quire a machine solution, A d,
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SECTION III

THE AERODYNAMICS OF SLENDER CONFIGURATIONS

A method for nonlinear aeroelastic analyses was presented in the
preceding section. Part of the information needed for the method's
application is comprised of the aerodynamic influence coefficients in a
given flight situation. This section is intended to present an approach
toward calculating these coefficients.

The section has two objectives. The first is to present the theory
while the second is to compare theoretical calculations with experiment.
It is also noted that the nonlinear aerodynamics component is of prime
importance in this report; experimental comparisons are therefore in-
tended to appraise only the accuracy of the nonlinear component.

Three distinct configurations are considered: wing-alone, body
alone, and wing-body combinations. Each is discussed separately in
detail.

A. THEORETICAL FOUNDATION

The considered problem is that of steady potential flow about slender
configurations with vortex separation. This section is concerned with the
mathematical formulation of the problem. Discussed below are the govern-
ing differential equation, corresponding boundary conditions, and vortex
sheet model to be used. In the subsequent development, the slender body
theory gives both linear and nonlinear aerodynamic forces; however, as
previously discussed, more accurate linear theories should be coupled
with the nonlinear results in actual application.

1. Governing Egquation

The flow field consists of a slightly perturbed mainstream
about a slender body. The governing equation of motion is the linearized
equation

F X
(1= P * By ™ Py ™0 (7)

where Ma is the free stream Mach number, # is the disturbance velocity
potential, and X , E , and % are Cartesian coordinates fixed to the con-
figuration. The orientation of the system is such that X coincides with a
characteristic longitudinal axis and ¥ is in the axis-free stream plane
(Fig. 2}. For sufficiently slender configurations, the term (/- 743/ Py
may be neglected and Eq. (7) becomes



P " 8,70
f 11
77 (8)

which is the basic equation of slender body theory.

2. Boundary Conditions

The boundary conditions imposed on Eq. (8) are that distur-
bances vanish at infinity and that fluid velocities normal to configuration
surfaces match the surface velocity. It is also generally required that
the flow field pressure distribution be continuous; however, as discussed
below, this condition is relaxed to simplify the problem.

3. Vortex Maodel

A simple model of the separated vortex sheet above a highly
pitched slender body replaces the vortex sheet by a vortex core plus a
"feeding' sheet extending to the separation point(3,6.,7,8) (see Fig. 2).
The strength and location of the vortex cores are obtained from the solution
for the flow about this model., One of the two necessary conditions for
solution is that a cross flow stagnation point exist at the given separation
point. The second is that the vortex system (core plus feeding sheet) be
force free.

The second condition may be formulated as follows. In complex
variable notation P**Er*<P with ¥ in the vertical direction, the force on
the feeding sheet is given by AL el (¥, -X')iwhere L] is the vortex strength,

o,

and % and % are the vortex core and flow separation point locations res-
pectively. The force on the vortex has the form 2 H{,-. - Y A V)

where @/ is the cross-flow velocity at the vortex. Consequently, the con-
dition for a force free vortex system is

J[‘; .f,—f’— * -
%7)?’/ ")‘5"‘[" g (9)

-
where b_’ﬂ‘ Mé‘ -—ta‘._:_/;i.

The condition for the existence of a stagnation point at a given loca-
tion is obtained by setting the derivative of the complex potential equal to
zero at the appropriate location, Conformal transformations are used to
give the complex potential and the resuitant stagnation point condition a
relatively simple form.,

B. THE FLOW ABOUT SLENDER WINGS WITH VORTEX SEPARATION

The wing model considered here is a slender pointed wing with
curved leading edges and arbitrary chordwise camber distribution. The
wing is stipulated to be symmetrical about its longitudinal axis, which is
aligned in the free stream direction (no yaw). The method discussed below
is identical to that of Brown and Michael{3) for the case of the flat delta
wing.



The governing equation is Laplace's equation in two dimensions
4’; 77 (10}

as previously discussed. The boundary conditions at the wing are that the
normal velocities are zero and the flow separates tangentially at the edges.
In the field, the boundary conditions are that the disturbances vanish at
infinity. An additional condition is obtained by requiring each system of
vortex and feeding sheet to be force free. The effect of camber is accounted
for by allowing a chordwise varying cross flow velocity equal to ¢ s &
where & is the local angle of attack.

I. Solution

In obtaining a solution to Eq. (10}, the complex velocity poten-
tial[(-gi) is introduced and is composed of the sum #F* /¥ . Here Y is
the vector point coordinate, ¥7#/%7 , (Fig.3), is the wing semi-span at
a given X -station, and } is the stream function of the cross flow. The
solution is obtained by conformal mapping of the cross flow past two
symmetrically placed vortices of equal but opposite strength. Thus, in
the & -plane,

9)—-— c'ﬂ y/ & - & _ (/ )
f/ < 44 W < .s'mar/) (11)

where @ is the vortex location and £} is the vortex strength. Transforming
Eq. (11} into the physical plane, in accordance with & =/Ffa_g% yields

f(f):-z-f’ /oy YL 62 - f A2 473 et Sma Y- 42

VI Tt 42 = (12)

The unknowns in the problem are the locations and strength of the
concentrated vortices. These unknowns are determined through use of
the boundary conditions. The following equation represents the condition
that the vortex and feeding sheet be force-free (obtained from Eq. {9} by
using Eq. (12) to give @ ).

) dhe, 1 db , 1 /d’é o
/,/ Jx TG oS THmx IX

P

(ama |84, % ¢ y Ty
Vel é"//"[/f L4%) A, it é‘)’ﬁ] 0 5'7 (Z5-6%)% (13)
& .
where =6 and L7 =7 ¢, A, s & where M, = '—g-— By requiring
o o

the existence of stagnation points on the wing leading edges, the following
additional relation is obtained



_ﬂs/.?fé{ag”q') /Jﬁ"-é"//s /xa‘é-‘/é (14)
e (25607 L (g e g?) 7

Equations (13) and (14) may be integrated to determine the position and
strength of each separated vortex as functions of the longitudinal distance, X .

The evaluation of these relations is cumbersome and would have to
be carried out by machine. However, approximate expressions for the
vortex strength and location for the case of an uncambered delta wing are
available{3), The expressions are reproduced here with the note that a
numerical evaluation of Eq. (15) will be necessary.

K - 4 ,,_,_(_&_)'% (15)
& Y 2 Y.

3 gy
-6 . . 1 2 - , ) g (16)
B2 %) |4 |

£ = 2 | r»S Yo % X
aTEgE " T *T/—g-/ = .

<

Here, € represents the wing semi-vertex angle and &, and % are the co-
ordinate locations of the concentrated vortex.
2. Normal Force and Pressure Coefficient

The normal force acting on a wing ahead of a given X -station
may be calculated through use of the following equation. This result is
obtained by consideration of the downward momentum through a con-
trol volume enclosing the wing. Details of the derivation are given in
Refs. 2 and 3.

X)) = - Al cos &, ff[;dz -4 s «J oy ox
{18)

Here X, is the wing angle of attack and & is the local angle of attack. The
area of integration is the entire §-# plane outside of the wing. Upon per-
forming the required operations, the equation for the normal force becomes

) = P 2 2 a4
V749, /f:(/“casar,["/? /_-;L/J:, 6//

w PU2 cos a, s arb® (19)

10



The first term is the nonlinear contribution of the vortex separation while
the remaining term is the slender-body theory result. The distribution
of normal force along the wing may be found by differentiating 4/ ¢%) .

The appropriate expression for the pressure coefficient is

C'p’/'ibgf«“—-zf/_o (20)

on the wing surface. The velocities, £, and #, . in the above equation are
obtained from Eq. {12) through use of the following relations

Bree 2800 L& ftrrs 2hn Zoo2) LHE _(B2 )% | Lppse
4 -7 anr 9, 7 E2AEEr(q2,232) %

and 4= en 2 200 (L R e
r - (x,%) * (22)

where the plus sign in E4. (21) pertains to the leeward surface and the
minus sign to the windward. The following transformations relate
Eqs. {21) and (22} to the physical plane, = If('?.

X ¥é2-§*
! s{"(b"?‘ -gr)";[,é 1‘7. 5‘) *“{30?. J }4

z_{fé*?. -2 [cs% -5,’),‘,{@?‘)&}&

The plus-minus sign refers to the leeward and windward surface respectively,

3. Comparison with Experiment

The aerodynamic parameters selected for comparison are the
lift coefficient, the bending moment about the root chord, and the semi-
spanwise center of pressure. Since the nonlinear component of the aero-
dynamic characteristics is of primary interest, the linear component of
the calculated results was determined by the experimental data around
zero angle of attack. The calculated curves are, then, the sum of the ex-
perimental linear data plus the theoretical nonlinear results.

The data for several delta wings and an ogee wing are presented in
the following figures. All data are presented versus wing angle of attack.
The lift comparisons for the delta wing are presented in Figs. 9 thru 11
while the same for the ogee wing are given in Figs. 12 and 13. The
calculations for the ogee wing do not include the effects of camber.

It is noted that, in each case, theory overestimates the nonlinear forces.
Much of the discrepancy may be attributed to the neglect of compressi-
bility effects in the cross flow hypothesis. Also, the vortex core plus
feeding sheet approximation will introduce some error, particularly in
the vortex core location,

The bending moment and spanwise center of pressure comparisons
are presented in Figs. 14 and 15 for a delta wing. Again it is seen that
some discrepancy between theory and experiment is evident. Two factors
will contribute to the divergence noted. One is that the predicted nonlinear
forces are excessive. The second is that the vortex core location and
hence its influence on the wing is further outboard than experiment(12} and
more sophisticated theories(13, 14, 15)indicate. It may be noted, however,

11



that theory and experiment show an inboard trend in the center of pressure
at the higher angles of attack.

C. THE FLOW ABOUT SLENDER BODIES WITH VORTEX SEPARATION

In this section, the considered model represents slender pointed
bodies of elliptic cross-section and arbitrary camber distributicn (Fig.4 ).
The restriction is made that the cross-sectional area variation in the
streamline direction be non-negative {i.e.0$/%0% Z © ). The governing
equation of motion is, as before (see pp. 7 and 8).

4!,47 =0 (23)

where # is the velocity perturbation potential. The boundary conditions
imposed on the problermn are that the normal velocity at the surface be

zero and the disturbances vanish at infinity. In addition,the previous
conditions on the vortex system are required. The separation point on

the body is obtained from experiment{l) or a satisfactory analytic procedure.
The effect of camber is introduced by allowing a chordwise varying cross
flow velocity equal to { 5/7& where « is the local angle of attack. As in
the case for wings, a more exact linear theory(s) should replace the slender
body expression when applying the results of this discussion.

1, Solution

The complex potential ,jﬁ’)’/"‘/‘, is introduced in cobtaining
a solution to Eq. (23). ¥ represents the cross flow stream function
while J represents the complex variable defined as #=¥§*¢7 . The general
form of the solution is acquired through a conformal transformation of a
flow field which contains the primary features of the physical problem.
The approach taken here begins with the flow past a vertical line and vortex
pair (Fig.5). The resulting flow may be represented by

a = — 'Jﬂ 6'61 ]
pe) sc;t/oye 2 _EY sme (8) (24)

where & is the complex variable in the # -plane @ '9"'"2), € is the location
of the vortex (€-%+¢% ), and.f] is the vortex strength. The transformation

that will give the separated flow about an elliptical cross-section is

O BB cE NNy Yoty B
243 (25)

Under this transformation, the potential function becomes

12
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7 (£3-h) (- L )3 p2) [ (P2 4 ) Ta(p AL p2) ]

—csm d[ (L2A) L2 uh V2 o2 J

3
24 (26)

where the vertical line has been transformed to an ellipse with hori-

zontal semi-axis 4+ _“'%'f and vertical semi-axisc= .f’_:£f {Fig.5 ).

The unknowns in Eq. (26) are the strengths and locations of the
vortices, Two conditions are required in order to specify these para-
meters. The first condition is that the vortex and its associated feeding
sheet be force free. The second is that the flow field have cross flow
stagnation points at given locations on the body (corresponding to em-
pirically established separation lines}).

The general expression for the force balance equation for this case
may be written

LAf-8) 2G4 L sS) e

*
where iy is the cross flow velocity at ¥ due to the potential f/-") minus
the vortex at & , and & is the component due to the cross-sectional area
variation. The expressmn for the velocity l{f at ¥ may be written

/f‘”} o L Loy (R LD u Y[ AP
-(rt #('y/J S (28)

The velocity §, is obtained as follows. First the complex potential function
for an axisymmetric source of strength # is specified

Q, &) =46 (&7 (29)

the transformation

o=_/ [.:m /.f-‘-ri‘:’ (30)

2
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2
maps the circle of radius A ontc an ellipse of horizontal semi-axis A= %
and vertical semi-axis 4 -4% . Hence the potential function may be
written

0.5 /_'f)-/ A?f [ff-y.f“-#’[“]

(31)

for which the velocity is found to be

A (32)

‘f" d&.! - 4

the strength, 4 . of the source may be obtained through the following con-
siderations.

The velocity due to the source must account for the rate of expan-
sion of the ellipse. Consequently, the following expression holds at the
point = A2+ L)

S -l cosx b _ 4 3
X T F-tn (33)
where a;é is the rate of expansion of the horizontal semi-axis of the body

contour. Solving Eq. {33) for A and substituting into Eq. (32} gives the
completed expression for $,:

<
S - _H-t7h () oos ot b
/ 17‘.;.:_4&:. e o'x (34)

Substituting Egqs. {28) and (34) into Eq. (27) gives the follocwing result
for the force balance equation.

L S, ¢ o8 / XY/ - P £ 47 gb , IF,
AT ox T E X Y Fon a/x)/’ ’)#;,(bfi-dﬂﬂ)’/a o -"a’)(,

. Z_}-})ar.f, 'é’l"‘l‘)‘l
Hanex |44 CF> vd
(f“-b‘)(bf "-T)*(12‘*/)“‘)[(.‘.};"—4{3}7.1,‘(‘?1_ 4/(-1/;/&]

14



& 28224 53)
/I“"’I‘)(\f"‘— ‘ﬂ.a)!/;,‘f (Z"*A’)(:"P"‘—Jz-"j

4 [taf})‘fdf Pan’Y 2o ] (35)

243 G- #£37

where the vorticity has been normalized by the horizontal semi-axis,

L=aréd lfbs.md. )

The condition for a stagnation point of the cross flow at the point &
requires that

-’

—

L - @
g

=0
L=’

Upon carrying out the above operation, the additional relation is obtained:

(36)

LY. 7 , -
é/’r_?f{:f /A'z,;[’-’)[/b;i_ 4’.(} i/éff'f’f ) ‘f’_/éd_(a)/_r*_,;) X

’ a 4 2 P p A L s -
X [(Mt‘)[/.;‘- wt7) "-/x-ﬂ /’ﬂ A 1 //J,’-.z)/// 2L ry)
(A4 [(—;"’—#é’/i (L2 yé3) V“f]f (37)

Equations (35)and (37) are derived from the solution of Eq. (23) and
the corresponding boundary conditions., As previously discussed, it is
necessary to prescribe the location of flow separation, ¥’ . The solution
of the equations will probably require a machine computaticon,

2. Normal Force and Pressure Coefficient

The normal force acting on the portion of a body ahead of a
given X -station may be obtained from the following equation.

wx) = - LYY eosx, ff[%'b;smﬂ_] sEy (38)

where, is the body angle of attack. Evaluation of the above equation re-
sults in the following expression

wx)= Y cos =, Mf-’[_*‘?-f’/«e*-«z‘/? 424 e} o Y cosa smamphe £2)% (39,
(-1 za -0 o %
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where .,
G« (LA (3 h3)(g> g£°) %
244

(40)

the distribution of normal force along the body may be found by differen-
tiating &¢X) .
The appropriate expression for the pressure coefficient is

<
Lot (e #r)
7= (41)

F[i;

The velocities, ﬂj‘ , Py, and #; , may be obtained from Eq. (26) through use
of the following definitions.

g =27 /9!"/:0/

er
foer (2 a2

and

3. Comparison with Experiment

The parameters selected for comparison purposes are the
normal force, pitching moment and normal force distribution. As in the
previous sections, the linear component of the calculated curve was ob-
tained from experiment except for the force distribution where part of
the linear distribution was obtained from hybrid theory. The theoretical
curves show results based on the assumption of laminar boundary layer
separation and of turbulent separation. Although the comparisons indicate
the prevalence of laminar flow, the turbulent flow case is shown in order
to demonstrate the importance of selecting the correct boundary layer
type in calculations.

The configuration tested was an ogive-cylinder and is shown to
scale in the force distribution figures. The free-stream Mach number
was 1.98 with Reynolds numbers of 0.439x 106 and 0.146 x 106 based on
the cylinder diameter. T he normal force comparison is represented in
Fig.16. The agreement between experiment and the laminar curve is seen
to be very good. The pitching moment comparison in Fig.l7 also indicates
good agreement although some divergence is noted at the higher angles of
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attack, The normal force distribution comparisons shown in Figs. 18a thru
18d show approximate agreement at the lower angles of attack and significant
discrepancy at the higher angles of attack. Part of the discrepancy may be
due to limitations of the hybrid theory. It is seen, however, that stream-
wise trends in the experimental and theoretical curves do show some
correspondence,

D, THE FLOW ABOUT WING-BODY COMBINATIONS WITH
VORTEX SEPARATION

The separation flow mechanics about slender wing-body combina-
tions are considered in this section. Each component (wing or body) of
the configuration will have a corresponding vortex system as in the pre-
vious models; the condition for determining the vortex strengths and
locations, however, will be different in the interaction regions of the
model. This factor is discussed below,

The geometry of the wing-body configurations consists of a simple
joining together of the separate wing and body models previously discussed
(Fig.6). An important restriction is that the model be laterally and ver-
tically symmetrical (i.e., a body cross-section primary axis be in the
wing plane).

The governing equation is l.aplace's equation in two dimensions as
in the previous sections. The usual boundary conditions on Eq. (8) are
applied; there is no flow through the surfaces and perturbations vanish at
infinity. The condition of continuous pressure in the flow field {violated
by the vortex sheet in the vortex model) is relaxed by requiring the vortex
core plus feeding sheet to be force free.

In order to obtain the nonlinear lift load, the strengths and locations
of the vortex cores (wing and body} everywhere along the configurations
must be determined. For the wing and body alone, the location of the
separation stagnation point plus the force-free vortex system were directly
applied to determine the vortex characteristics. For wing-body combinations,
however, interaction increases the difficulty of the problem; in particular,
the aerodynamic interaction precludes our locating the body separation
peint -~ if it exists at all. The approach taken here is to neglect body sep-
aration mechanics in the cross-flow region of the wing, i.e., the body vor-
tex may change location but not strength (see Ref. 2 }.

It is seen that three cross-flow regions can exist. The first region
will be that portion of the body ahead of the wing while the second, as
discussed above, constitutes the wing-body interaction region. The third
region concerns the portion of the body that may be behind the wing trailing
edge. The vortex model conditions in each region may be stated as follows
(see Fig. (7))

Region I: 1) The vortex core plus feeding sheet is force-free.
2) Flow separation is stipulated to occur at some location
{obtained by experiment or an acceptable theory).

Region II: 1) The wing vortex core plus feeding sheet is force-free;
the body vortex core alone is force free (no feeding
sheet}.
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2) Separation is stipulated to exist at the wing edges with
no separation from the body.

Region ITI: 1) The body vortex core plus feeding-sheet is force-free;
the trailing wing vortex cores are force-free.
2) Separation exists at some given location on the body.

As will be seen from the subsequent discussion, the problem, as
formulated above, is extremely formidable; for this reason, an abbreviated
flow model, which retains the basic features, is also presented. This
model will be discussed following the development of the more accurate
model outlined above.

1. Solution

a, "Primary' Model

A typical slender wing-body configuration will generally
consist of the three distinct regions just defined. These regions are indi-
cated and designated in Fig. (7). Each of these regions is separately dis-
cussed below.

{a) Region I

Slender body theory holds that axial velocity perturbations are much
smaller than lateral perturbations. Hence, except for separation-induced
circulation which is convected downstream, there is no interaction between
chordwise stations. In particular, the portion of the body ahead of the
wing may be analyzed as though the wing did not exist. The procedure for
analyzing the aerodynamics in this region is therefore identical to that o!
Section III-C.

{b) Region II

The general solution to the cross flow in this region is found through
conformal transformations of some simple flow model as in the previous
sections. The first step is to map the flow about two pairs of symmetrically
placed vortices as shown in Fig. {8a}). The complex potential function may
be written

(9)"_(32_»( O- 6 )_ ‘.ﬁjn -8 V_JU«as
s ; o) Y

2 &+ &, L (44)

Applying the transformation &= Yortg? to the above equation results in
the cross flow shown in Fig. (8b) and transforms the segment of the imaginary
axis from -5’ to S’ to a horizontal line $egment. The complex potential
becomes

Foe il by (Y57 ArE ), G gy oS o5 ) e LT
N = T ) ATl 67y s I

(45)
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One additional transformation gives the required cross flow

= ooty et ) Y28

2
where ‘eg /a:‘é)/a ’é)// and ~ - ézr‘t;)/;z . The resulting function

represents the flow about an elliptical two dimensional body with a mid-

plane wing and four vortex systems {Fig. 8c). The potential function may
be written as shown on the following page.

(46)
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This function represents the flow about a two-dimensional wing-
body combination. In order to take account of the growth of the body in
the X -direction, the complex velocity potential of a source within the
body must be added. The strength of the source must be such that the
outflow at the surface of the body just matches the growth rate of the
body.

The complex velocity of the source for an elliptic cross-~section is
found by transforming the potential for a circular body. The complex
velocity potential for the source representing the rate of change of a
circular cross-section may be written (Section III-C-1})

B )=t ror X (48)
s X
where X *97¢% | Now, the circle in the X -plane may be transformed to

an ellipse in the Y -plane by the transformation
X—J_/,/yfya'-’-n"‘) (49)
The potential due to the source in the ¥ -plane becomes
P RCATPRT W VAR AR ENTS (50)

The complex potential for treating the three-dimensional wing-body com-
bination by slender body techniques is thus

4_0 CoRT &Y v*_p:_/:f) (51)

where £ () is given by Eq. (47).

The unknowns in this region of the configuration are the strength
and location of the wing vortices and the location of the body vortices, the
strength being a constant and equal to that at the beginning of the region.
It is seen necessary that three conditions be imposed on the problem to
allow solution. These conditions are that (1) a stagnation point exist at
the wing leading edge (flow separation}), (2) the wing vortex core plus feeding
sheet be force free, and (3) the body vortex core alone be force free. The
last condition dictates that the vortex core follow a streamline of the three-
dimensional flow pattern. The mathematical formulation of each of these
conditions is described below.

The first condition may be found by requiring a stagnation point at
the origin of the & -plane since the wing tip location maps to the origin
when the transformations are applied. The flow in the & -plane is repre-
sented by

BB =-<2 g :9-9.)_ <L SO & - Ut F )
ov K3 (

3-0) ar &+ 2, 27 o+ & 52)
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where j;(é) is the transformed complex velocity potential of the source
and is given by

j; G, r o _.61:// :.n /i rz/ (53)

Y

where

S LRt ) o e s tr? )- (22 r )N 075 1)

RE2 (54)

which may be found from the inverse of the transformations o~ = -o-¢*) and
& -8(o) given above. In the present discussion, flnstead of f D)wﬂl
denote the total complex potential,

Taking the derivative with respect to €:

Jﬁﬂ),_c!’ 9!9 &~ &, 5*5)/9,*9/ __"U“J_a/_?:(aj
o )(afa,)’ F-8,/M(6+8) © o8 (55)
Requiring a stagnation point at the origin dictates that
LE6) |0 =2 (56)
o g0
Consequently, the following expression results
L1, 7 L /7 7 vV x
* g A =
7(90 5.)’Lzr/3*§,) o (57)

The second condition (force condition on wing vortices} may be
directly represented by Eq. (9} of Section III-A.

P «
gd_j;i [%-Ta)- Vg L3 -2 (58)

/ ) _vIL
d s A o'

The expression for (djv/df-f)f;;; may be obtained by subtracting the
contribution due to L7, o, from # and then performing the differentiation.

where

Considering the & -plane, the required expression for the potential may be
written
Po)=-_s jn cf’,(,,/ﬂ-ﬁf _dtxr g (o), L b io-g)
27 a # i Tz &+ & -~ 3 27
{59)
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Differentiating with respect to & and evaluating at & gives

d[/p) = L7 / _ 8+8& - ¢ L & a’_f,(d)
P ,9‘9 &+ 4 2r (8,-4)4+¢) T o’é la-q,
where (60)

o . by IS
o's o7 &

(61)
=¢

= rdr(ﬂ / v—w)

and
Pl - £24p

7] ar‘)/fm) ,2" )/;aﬁ‘) 62)

The final condition of the force free body vortex is obtained by
simply requiring the vortex core to follow a streamline, i.e., the velocity
perpendicular to the vortex must be zero. Consequently, we may write

V;,: = & or
/_‘3./..{ Uy =0 (63)
oY X

The system of three simultaneous equations to be solved for the
three unknowns ], %, ¥ (£} is assumed constant) may be written as:

(64)
/ /
Gl o) ely o)
44 VJ: /4:9 (65)
o v (A4L-
V'=0
g (66)

It is obvious that solution of the above set of equations must be
accomplished numerically, in order to obtain meaningful solutions with
a reasonable amount of effort. Such a solution would be in the form of
a simultaneous numerical integration in the X -direction of the force
equations, (65) and (66) subject to the 'boundary condition' (64 ). The
scolution may then be started at any axial station X, provided the initial
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values of £, ,[' ¥ and ¥ are known. The body cross section, given by a-
and é , and the total span § must be prescribed explicitly as functions
of &

{c) Regicn III

This region of the wing-body configuration consists of the
aft body segment and the body and wing vortex systems. The unknowns
are the location of the wing and body vortex cores and the strength of the
body vortex, the wing vortex strength remaining constant. It is seen that
the problem is very similar to that of Region II. The corresponding
equations may be written as follows:

LG+l o e, M, _yall
A (87-8,)(87+8,) A7 (6-8x8+§) T B |p-4
4L _ V.f/ / =0
X /y 7)% (68)
, Ur/.‘f -0
% a/.‘f e (69),

Equation {67) requires a stagnation point on the body at &=8 Eq. (68)
stipulates a force-free body vortex-feeding sheet system, and the third
equation requires a force~free wing vortex. Apain, the solution to the

problem will require a machine computation involving the procedure of
Region II,

b. Approximate Model

As was the case for the ""primary'' model discussed in the
preceding paragraphs, the approximate model will comprise three
regions (Fig. (7)). Each of these regions is discussed in turn.

(a) Region I

The approximate and primary models are identical in this region
hence, the results of Section III-C may be directly applied.

{b) Region II

The general solution in this region is the same as for the primary
model; the basic differences enter through specification of the body
and wing vortex characteristics (strength and location). In this approxi-
mate model, the body vortex location, normalized to the local body

dimension, does not vary with X . Also, the wing vortex mechanics are
assumed to be subject to the flow associated with the wing alone, i.e., the

body and its vortex pair have no influence. Consequently, the body vortex
{with no feeding sheet) follows a trajectory dictated by body geometry in
the region. The wing vortex has a distribution of strength and position
identical with the wing alone case (Section III-B).
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(c) Region III

The simplifying assumptions applied to the vortex mechanics of
Region II also apply in this region consisting of the body and its vortex
system along with the trailing vortex cores of the wing. The wing vortex
cores strengths and positions are assumed constant and the vortex mechanics
of the body are identical to those of Section III-C with no effect of the wing

vortex cores.

2. Normal Force and Pressure Coefficient

Once the strengths and positions of the separated vortices are
found, the resulting lift distributions on the wing and body may be deter-
mined. The total normal force up to station X is equal to the rate of
downward momentum emerging from the S -plane

x//x).-ﬁb{,eosdf/[l?“%s“’“] cESYy (70)

A

where 4(x) is the area of the & -plane outside the wing-body combination.
Transforming to the & -plane and integrating (see Ref.2 ) gives the following
result for the normal force

AX) = PU, cosx £.P [4 (8,+8)rL] (8 *é)]

,Lp{{gag/nddﬁsd/)’-#)//’f_ii 7 -

a2 a = | a
_’,_,a(/.zs}”a;go‘gd £ + F £ //—3 - &2 /
oo -T2 / * ) /_-2,.1 7

The axial normal force distribution may be obtained by differentiating
Eq. (71).

The expression for the pressure coefficient may be written

CP"‘.?—/" s x M

L/ (4_-" (72)

25



where, as in the foregoing discussions, the perturbation velocities are

defined as
2, - ,M/ilfr)/) (73}
o LE)
/ EP/ / (74)
and
" _ zﬁ/a@/
(75)

The pressure coefficient is difficult to evaluate analytically and a numerical
approach should be used. Computations of nonlinear lifting loads on
specific wing-body combinations are presented below. Corresponding
pressure distributions have not been computed.

3, Comparison with Experiment

The aerodynamic characteristics selected for comparison are
the lift and the pitching moment coefficients. As was the case for the
previous configurations, the theoretical nonlinear component was com-
bined with the experimental linear component to obtain the calculated
curve.

Data on a delta wing with an ogive-cylinder body was obtained for
comparison with theory(lﬁ%. The test of interest was made at a Mach
number of 1.50. The lift comparison is presented in Fig. 19 and the
comparison of the pitching moment results is in Fig. 20. Overestima-
tion of the nonlinear component of the force and moment coefficients

is apparent in the comparisons. Previous comparisons with the wing
and body alone indicate that the wing is primarily responsible. The
neglect of compressibility effects and the approximate vortex sheet
model are factors in the discrepancies.
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SECTION 1V

CONCLUSION

This report has been concerned with presenting methods for the
analysis of the aerodynamics and static aeroelasity of slender con-
figurations with vortex separation. The primary emphasis has been on
the nonlinear aspect of the mechanics involved. Three configurations
have been considered in the report: wings alone, bodies alone and wing-
body combinations, each being investigated using the concepts of slender
body theory to calculate nonlinear forces. Experimental comparisons
for evaluating the theoretical results have alsoc been presented.

Experimental comparisons with theory were designed to evaluate
the theoretical nonlinear component of the aerodynamic characteristics
considered. The linear components of the calculated curves were obtained
from the experimental data around zero angle of attack. The theoretical
nonlinear component was then added to the experimental linear component
for comparison with the data, Results show that theory overestimates
experiment on wing forces but is in good agreement on body forces.

The neglect of compressibility effects in the cross-flow plane is appar-
ently significant for the flow about wings. The separated vortex model
of a vortex pair with feeding sheets of infinitesimal strength is also
responsible.

While the two-vortex slender body model correctly predicts the
trends of nonlinear forces, its quantitative limitations are apparent. The
theory might be improved in two ways. One would be to account for com-
pressibility effects, the other would use a more elaborate vortex model,
such as multiple vortices or a continuous sheet rolling up on itself. In
either case, the mathematical simplicity of the present theory would be
lost; hence a considerable improvement in force prediction would be
necessary to justify a lengthy complex calculation.
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