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ABSTRACT

A parametric study of Tsai's strength criteria for unidirectional filamentary
composites is presented. The purpose of this study is to determine the fiber
orientation for the maximum strength under a given biaxial state of stress. The
investigation indicates that the best fiber orilentation depends upon the shear
strength of the material in relatiom to its transverse strength. When the shear
strength is less than the transverse strength, the optimum fiber orientation coin-
cides with the principal stress direction, However, when the shear strength is
greater than the transverse strength, the best fiber orlientation does not always
coincide with the principal stress direction. The results of this study are pre-
- sented in the form of plots. The plots together with the equations presented in
the text aid in determining the optimum orientatiom.

Distribution of this abstract is unlimited.

iii



Coutrails

Approved for Public Release



AFFDL-TR-68-168

TABLE OF CONTENTS

SECTION

1

II

144

VII

INTRODUCTION

REVIEW OF YIELD CRITERIA

1. Yield Criteria for Isotropic Materials

2. Yield Criteria for Anisotropic Materials
TSAI'S STRENGTH CRITERIA

PARAMETRIC STUDY OF STRENGTH CRITERIA

AXES OF MATERIAL SYMMETRY COINCIDENT WITH
PRINCIPAL STRESS DIRECTIONS

EFFECT OF ORIENTATION OF AXES OF MATERIAL
SYMMETRY ON STRAINS

RESULTS AND CONCLUSIONS

REFERENCES

PAGE

10

11

13

15

16



AFFDL-TR-68-168

FIGURE

TABLE

ILLUSTRATIONS

State of Plane Stress
Possible States of Stress

Variation of the Strength Factor as a Function of the Ratio of Normal
Stresses for k Equal to Zero

Variation of the Strength Factor as a Function of the Ratio of Normal
Siresses for k Equal to 0.2

Variation of the Strength Factor as a Function of the Ratio of Normal
Stresses for k Equal to 0.4

Variation of the Strength Factor as a Function of the Ratio of Normal
Stresses for k Equal to 0.6

Variation of the Strength Factor as a Function of the Ratio of Normal
Stresses for k Equal to 0.8

Variation of the Strength Factor as a Function of the Ratio of Normal
Stresses for k Equal to 1.0

Zones of Tension and Compression for Plane Stress Field

TABLES

I PEAK POSITIONS AND STRENGTH FACTOR

PAGE
18

19

20

21

22

23

25

26

PAGE
17



AFFDL-TR-68-168

SECTION I
INTRODUCTION

Composite materials have been used for decades in structures. Reinforeed concrete,
asphaltic felts, reinforced rubber, and metal alloys are some familiar composite materials.
Recently they have received more attention due to the advent of lightweight high-strength
fibers. Composites formed by embedding fibers in matrix materials are nonhomogeneous
and anisotropic, Methods of analysis and design devéloped for homogeneous and isotropic
materials are not adequate for composites.

Often in structural design, the characteristic: of interest is strength, For homogeneous
and isotropic materials, well-established criteria are available; there is such a need for
composites. Some work in this area has been done. Marin {Reference 1) developed a
generalized theory 6% strength, in which he agsumed the failure of an element subjected to
triaxial stresses to be a function of the second stress invariant. It is identical to Hill's
Theory (Reference 2) expressed in terms of principal stresses expept for yield stress in
shear. Marin determined the yield siress in shear by using an element with axes oriented
at 45 degrees to the axes of material symmetry, whereas in Hill's work the orientation is
the material axes, Tsai (Reference 3), using Hill's generalized Von Mises criteria,
formulated a strength theory of composites. Briefly stated, the theory provides that for given
strength characteristics and orientation of axes of material symmetry, stresses at failure
can be determined. It is assumed the material layer is subjected to an inplane stress field
determined by the ratios of the stresses.

The purpose of this report is to determine the optimum orientation of material axes for a
given set of strength parameters and stress field using Tsai's criteria.
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SECTION I
REVIEW OF YIELD CRITERIA

1. Yield Criteria for Isotropic Materials

A yield criteria function f (Reference 4) for isotropic materials can be defined as
f(l|,12,13,a'°)=0 {n

where Il’ Iz’ 13. are the stress invariants and o, is some significant material property. In
the case of ductile isotropic materials, it has been observed that moderate mean normal
stresses do not initiate yielding. Substracting the mean normal siresses from the stresses
acting upon the material yields stress deviation. The function f expressed in terms of the
stress invariants Jq» J o» and J 3 of the streas deviation becomes

f(Jp,3,9)=0 t2)
where J; is identically zero.

The frequently used form of Equation 2 is that of Von Mises. In this form it is
assumed that J, is a constant, This formulation yields

2 2 2
29, = ¥ [(cr"- %) * (%2 = %) + (% - Oyy) ]+2[T¥z‘ * T"z’] )

where &, ,0y,,0;, are the normal stresses and T,y ,7y, ., and 7,, are the shear

stresses referred to Cartesian coordinates x, y, and z,

In the case of a material subjected to uniaxial tensile yield stress o, , Equation 3 gives
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Substitution of Equation 4 in Equation 3 yields

i 2 2 2
2 [(o'yy = °’zz) + (o'zz - o'xx) + (o'mr. - a'yy)]
20,

(5)

3 2 2 2] _
+ [Tyz + sz + 'Z'xy ] = |
%

Equation 5 is known as Von Miges’ yield criteria,

2. Yield Criteria for Anisotropic Materials

To allow for the anisotropic properties of the materials, Hill {Reference 2) generalized

Equation b as

2 2 2
F (0'” - "zz) + 6 (a'zz - 0'“) +H(a'“- a'”)

(6)
+2[L Ty, + Mrfz+ Nr,g]:I

where F, G, H, I, M, and N are parameters characteristic of anisotropy of the material.

If X, Y, Z are the normal yield stresses and R, T, S are the yield gtresses in shear
with respect to the material axes x, y, and z of anisotropy, relations between parameters
of anisotropy and the strength characteristics can be expressed as

= H + G
xz
I
— = H + F
YZ
—'—|2=G+F
z
» {(7)
|
- = 2L
RZ
|
—— = 2ZM
TZ
i
—— = 2N
SZ
L,
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Substitution of Equations 7 in Equation 6 gives

B R N R - R L
F e ) L el ] [ ]

(8)
Equation 8 is used as a strength criteria for an anisotropic material subjected to a three-

dimensional stress field,
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L
SECTION IN

TSAI'S STRENGTH CRITERIA

In usual applications, most of the composites are thin and, therefore, a state of plane

stress can be assumed to exist in them. Selecting z as the axis normal to the plane of plate-

like material, the conditions for the plane stress field to exist are
%32 = Tz = Ty = O ' {9)

Tsal (Reference 3) argued that fiber-reinforced compogites can be treated as transversely
igotropic, which means that

Z=Y (10)

Substitution of results from Equations 9 and 10 in Equation 8 reduces it to the form

2 2
2 X 2 X 2 2
Tyx — Txx O'yy + 7{ O'yy + —;—2-— Txy = X {an

In Equation 11 it is assumed that the stress field is defined with respect to the x and y

axes, If it is defined relative to any other set of axes, oy, 1 Oyy s and T, can be computed

¥
by a simple transformation of the axes given in Equation 13.

In Figure 1, 9}, 92 , and T2 are defined with respect to an orthogonal set of axes "1"
and "2"; dividing by o‘,z, Equation 11 can be rewritten in nondimensional form as
' 2 2 2 2 2 2
fu_._u_!L""z' +L—-"J—a +_>(___er . (X (12)
9 ) Y % S 9 g
If x and y are the axes of material symmetry and a is the angle which x-axis makes with

1-axis, transformation of stresses from 1 and 2 axes to x and y axes yields

o1 [ > . . ]
g, cos a sin" a 2s5ina cos O l
o
_3'),"'!" = |sinfa cos’a —2sina cosa n (13)
T,
X
cry -sin 2 cosa sincosQ cosza—sinza kJ
- ! J L - b
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where
%
l = ~————
il
and
T
_ N2
kK * 75

Substitution of Equation 13 in Equation 12 (Reference 3) yields
[n2 - n +a% + kzﬁz] sin @ +
2 21 .3
2k[3n - 1-2a° - (n—=1) B |sin"acosa +
[Bkz -n?+ 2n—1 + (2n + 4k2) 02 + (n2—2n + I-2k2)Bz] sin2 a cosza + {l4)
2k[ 3-n - 2n |:|2 + (n—l)ﬁz] sin cosaa +

2
[I-—n+ a®n? +k232] cos® a =(—-’-‘—) = Rr?

o
or
Ry = f (n,k,0, 8, a) {15)
where
. X
@Y
= X
B - S
. X
Ry = =&~

The strength factor, Rx’ of the unidirectional filamentary layer, is a function of the

strength parameters, a, 8, n, k, the stress field, and the orientation @ . For a given
set of a, 8, n, and k, the strength factor assumes an extremum value when

-5% fin,k,0,8,a) =0 {16)
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Equation 16 re-stated explicitly becomes

2k[3n-t—2u2 - (n-l)ﬁz] sinta
+ [au2 (2 + 0% ~B2) ~2 (n-13n-1-2d° —(n-nﬁz}]snP a cos a
- [lzk {n—1)(2 + a® - BZJ] sin @ cos® a 7

+ [-Bkz (2 + o —Bz) +2 (n=-1){n-3 + 20%n — (n—I)Bz)]sina cos” a

+2k[n-3 + zozn —(n-l)Bz] cos’a = 0

or
8, sin'a + B, sin®a cosa + By sin® a cos® a 18)
+ Bysin a cos’a + Bscos4a =0
where
B, = 2k (3n~1-2a%~ (n-113%) W
By = Bk 2+ 0% - B%) ~2(n-1(3n-1-202 ~(n-1 B
By = —12k {(n-1)(2 + o2 -B2) r (19)
Be = —8k2 (2 +a%=B%) +2(n-11(n-3 + 20%n ~ (n-1) B%)
Bg = 2k (n-3 + 2020 = (n-1) 82 )
If cos @ #0, Equation 18 can be rewritten as
B A+ BN + B30 + B A+ By =0 (20)
where
Az tan a (21
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In case sin @ # 0, Equation 18 can be expressed as
3 32 33 34 _
B+ By A + By A® + BgA\” +BgA =0 (22)

where

A =cot a (23}
In three cases of simple states of stress, Equations 14 and 20 lead to the following

results:

Case 1l: k=0 and n=1

Case 1 corresponds to the "hydrostatic” state of stress. For this state Equation 14 is
independent of @ and the strength factor becomes

- . A
Rx = 0 =
or
% . Y
X {24)
It indicates that for the conditions of stress stipulated in this case, the applied stress is
governed by the transverse strength of the material,
Case 2: k #0and n=1
For this state of stress, Equation 17 becomes
(sin®a — cosza) [ll —uz) + 2k (2 + o® —ﬁz) sin @ cos a] =0 {25)
Equation 25 yields that either
= I
a 2 (26)
or
sin 2a = o - (27)
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Substituting Equation 26 in Equation 14 yields Equation 28.

2

2 = 20-K%) + 2ki+ %)

R

Equation 27 requires parametric study for its evaluation,

Case 3: k=0andn #£1

Fork = 0andn # 1, Equation 20 reduces to a form which yields

A=0

A =/ n-3 +2naz—len—l)
3n—l-auz-Bz(n-l)
When A= 0, Rx evaluated from Equation 14 becomes

Ry =.\ﬁ-n + o n?

and

(28)

(29)

{(30)

t31)

Equation 30, like Equation 27, needs to be studied parametrically in order to interpret the

results in a meaningful way.
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SECTION IV
PARAMETRIC STUDY OF STRENGTH CRITERIA

In Equations 14 and 17, parameters n and k define the state of stress, and a and 5 are

parameters of strength of the anisotropic composite. All the poasible stress fields are shown
in Figure 2. It is evident from the figure that the value of n varies between -1.0 and 1.0, i.e.,
(-1% n £1). For this study values of k are also agsumed to vary between -1.0 and 1.0,

i.e., (-15k £1). However, it is possible for k to take values beyond this range. Parameters

a and B are assigned values between 1, 0 and 100,

Coefficients B; (i=1, 2, 3...5) in Equation 20 are the functions of n, k, a, and B . The

1
quartic Equation 20 was solved for @ and -R: by varying one parametler at anytime. On
substitution of real roots from Equation 20, corresponding values of _R': were obtained from

Equation 14, A maximum of the 'Tlr values and the corresponding angle of orientation were

obtained.

1
A perusal of the computed values of @ pertaining to the maximum of - indicates that

for certain values of n, k, a, and 3, it is identical with @, computed from Equation 32,

2k
}—-n

tan a, = {(32)

where a; is the direction of the major principal streas.

It is also observed that changes in signs of k change the signs of @ without affecting its
magnitude. For that reason, only positive <:;i_raluela of k have been used in Figures 3 to 8. Each
curve in the plots shows the variation of —— ' with n for a prescribed set of values of a and S8

o
indicated on each curve. Solid lines represent values of Tfor which a and Q, are
identical. Broken lines correspond to the cases when a # @, . In all plots( < X v8 n) curves

o
tend to meet near some value n, of n. For n>ne, @ and @, are identical, and T depends

solely on a and is independent of B —x- is independent of B also when n< ne provided

a < . For agreater than 3, however, the strength improves with B .

This observation leads to the conclusion that if a is less than or equal to /3, then ;:'-—
depends entirely upon a. The values of @ computed from Equation 20 are the same as the
values of @, obtained from Equation 32, This means that for maximum strength, fibers should
be oriented in the principal stress direction. This simplifies the computation of maximum fxl—

considerably.
10
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SECTION V

AXES OF MATERIAL SYMMETRY COINCIDENT WITH
PRINCIPAL STRESS DIRECTIONS

It was seen in Section IV that for a < {3, maximum strength is obtained when axes of

material symmetry coincide with those of the principal stresses, This condition'determines
the orientation of the fibers and the criteria assumes a simpler form.

When @ coincides with the principal stress direction, Equation 13 yields

Ty = 0 {33)
tan 2a, = ton2a = IZRn (34)
o,
xx _ 2 2
—OT = 'f [(l+n) +,ﬂ—n) + 4k ] {35)
5-‘1 = 4 [(I+n) —.\ﬂl--n)2 + 4l ] (36)
a -2
Substitution of Equations 33, 35, and 36 in Equation 12 result in Equation 37.
2 2
2 _ (XN _ a 2 L, 2 2 2
Ry = ('a,'l—)- r H+n)* + 7 (a +2][(|—-n) +4k]
(37)
+ 4 (1-a?) (1 +n) \/u-ng + ak?
For k = o, Equation 37 reduces to
R, = X = a2a® —n +1 {38)

T

which is the same as Equation 31.

The peaks observed in Figures 3 to 8 can be obtained from Equation 37 and the results are
given in Table I, For small values of a, a peak position n, depends upon a and k; however,

for large values of a it can be defined by an approximate relationship

ng & k¥ (39)

11
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The corresponding value of —F\"_x becomes

P . i = ! (40)
Ry X I+ ng)

In the derivation of the results discussed so far, it was assumed that X and ¥ were
consistent with the nature of stresses oy and 0y, in Equation 12. I means that if o,
is tensile or compressive stress, the corresponding strengthXhas to be tensile or compressive.
It holds equally for Tyy and Y. In Equation 37, Rx is expressed in terms of a, n, and k,
and it is, therefore, desirable to devise some method for the proper choice of a for given
n and k without computing stresses o, and cryy.

To devise a suitable technique, Equations 35 and 36 are rewritten as

o = [t v+ fo—ap® + ax] “
a‘yy = EI [(Oi +O’2} - %0’,—0'2)24" 4T|22] 42)

and examined. It can be shown that the following conditions determine the choice of a.

b
(I} k >0 (0;>0) and n> k? X = X,
X =Y,
2) x >0 (0;>0) and n< k2 X = X,
Y =Y,

> (43)

(3) k <O (6;<0) and n > k? X = X
Y =Y,
(4) &k <O (0j<0) and n< K X = X
Y =¥

v

where Xt' Xc. Yt' Yc are the tensile and compressive strengths in x and y directions.

Figure 9 represents a plot of Equation 43 indicating the zones of influence of X, X, Y,
and Y.

12
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SECTION VI

EFFECT OF ORIENTATION OF AXES OF
MATERIAL SYMMETRY ON STRAINS

When a thin element of transversely isotropic material was subjected to a plane stress
field, it was observed that the material did have preferred directions relative to the siress
field so as to produce a maximum value of -;'-. It may, therefore, be reasonably postulated
that there exist preferred directions which reduce the strains {o the minimum. From
Equation 13, stresses in the directions of the axes of material symmetry can be obtained as

p= - . . —-— - -
Ox ’_cosza smza -2sindcosQ g,
o, = .'.in2 a cosaa —2sind cosQ a.
vy 2 (44)
. . 2 . 2
'r“ —sin @ cosa sinQcosQ cos a -sin” Q T2
- o . - L J

The strains in x and y directions are

- 1T vy 11 7
—_ - X
€ 0] o,
X Exx El‘ AX
e |=]-22 1 o Oy (45)
¥y Eyy Eyy
|
ny L 0 0 ? T‘y
o -l d L -l

where

€,, = stroin in x-direction

€yy = strain in y-direction

);y = shear strain referred to the x and y axes
E,, = modulus of elasticity in x —direction

E" = modulus of elasticity in y direction

Vyw v Yy Poisson's ratios

G = modulus of rigidity

13
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By using the strains computed from Equation 45, strains referred to any arbitrary set
of axes x' and y' making an angle ¢ with the x and y axes are given by Equation 46

P N 2 ar = 7
€0y cos“ ¢ sin“ ¢ 2singcos¢p €y
_ .2 2 P
€pp| = | sin" cos“ ¢ 2singpcosep €y 46
Yty %
=Y —sincosP singpcos P cos?-sinZep || ==
21 L JLz
€ assumes an extremum value when
Yeyr = © (47)
which means that
Y
ry
tan 2¢ = {(48)
s “xx” €yy
Equation 48 ig substituted in Equation 46 to yield
€0 = '[(e + € )+,\/(€ -€, )% + 2] (49)
Xx' T T T Cyy xx ~ Syy Yy
An examination of Equation 49 indicates that ey attaing its minimum value when Yy ® O,ie.,
2 -3—-—2 i (50)
1 a =
an 5,

Eqguation 50 implies that the minimum strain oceurs along the direction of fibers.

14
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SECTION VI
RESULTS AND CONCLUSIONS

A parametric study of Tsai's strength criteria for unidirectional composites was under-
taken to determine the orientation which yielded the maximum strength for a given set of
parameters of stress and strength. The results obtained from the study indicate that for
materials whose shear strength S is less than the transverse strength Y, the orientation of
the fibers for the maximum value of i' corresponds to the principal stress direction and
the maximum % does not depend upoffthe ghear strength S. No similar conclusion can be
drawn when shear strength S exceeds transverse strength Y; however, for n > n,, f.-xl and

@ are independent of 8.

The effect of the orientation of the material axis upon the strains was also examined.
It was found that the minimum strains occur in the direction of the material axis.

From the above observation it is seen that for S < Y, a maximum strength i;;L is
obtained when the material axes are oriented along the principal stress directions and

minimum strains occur in the directions of the material axes.
LY

15
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Figure 1. State of Plane Stress

18



AFFDL-TR-68-168

88aJ)§ JO 89)®I§ o[qISsog

(‘€)

*Z aInd1 g

19



AFFDL-TR-68-168

o,
I/ Strength Factor, i.e., —)‘(—

1.0

% LEGEND

0.5

o

0.05

-1.0 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Ratio of Normal Stresses n

Figure 3. Variation of the Strength Factor as a Function of the Ratio of Normal Stresses for
k Equal to Zero

20



AFFDL-TR-68-168

. |
1/Strength Factor, i.e., >

1.0

% , LEGEND

0.5

o

.05

0.0l .
-1.0 -0.8 -06 -0.4 -0.2 0 0.2 04 0.6 0.8

Ratio of Normal Stresses
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