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ABSTRACT

An approximate method has been devised for determining the
nonstationary air-loads on an elastic wing with supersonic edges upon
which is mounted an axially symmetric body. The flow field due to an
oscillating axially symetric body isolated in a supersoni¢ stream is
superimposed on the flow field due to an oscillating elastic wing with
supersonic edges. An additional velocity potential satisfying the basic
linearized differential equation of fluid motion is constructed so that
the required boundary conditions are satisfied on the wing., The result
is a modification of the original source strength distribution on the
isclated wing., This modified source strength distribution is calculated
by means of a numerical integration procedure. The nonstationary air-loads
for the wing may then be calculated as in Reference 1,
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INTRODUCTION

The trend in recent high speed airplane and missile designs
has been toward low aspect ratio lifting surfaces mounted on bodies
whose diameters are large fractions of the total lifting surface
span, In the case of higher aspect ratio configurations, it is common
practice for flutter analysts to ignore the presence of the body or to
assume that the wing continues wminterrupted to the center line of the
body when calculating unsteady air-lcad distributions on the wing.

For moderate aspect ratios, flutter analysts sometimes treat the body

as an infinite reflecting plane. As the aspect ratio is stiil further
reduced so that the body diameter becomes vroportionately larger, one

is led to ask whether the effect of wing-body interference can still

be ignored in computing non=-stationary air-loads. Certainly, sufficient
evidence is not available to show that such effects are unimportant. It
hag already been shown that the presence of a body near a low aspect
ratio lifting surface in a steady compressible flow appreciably affects
the load distribution of the lifting surface. (See, for example, Reference
2)s» One is therefore inclined to suspect that wing-body interference in
non-statiorary flow is likewise not negligible. Because large body
diameter-wing span ratio configurations are most often encountered in
high speed aircraft and missile designs, it seems appropriate to confine
consideration to the case of supersonic flow,

Since the linearized problem of an isolated wing oscillating
in a supersonic stream has not yet been solved exactly, it cannot be
expected that an exact solution for the nqn-statlonary surersonic wing=-
body problem can be obtained at this time. However, in what follows,
an approximate method will be derived for determinlng the effect of an
axially symmetric fuselage on the air-loads acting on an elastic wing
with supersonic edges mounted on the body in the plane of the body
diameter,

The problem of the body alone oscillating in a supersonic
stream is treated in Reference 3. Recently, a group at Republic Aviation
Corporatlon has developed an approximate method for computing oscillating
air-loads on an isolated wing, all of whose edges are supersonic (Reference
1). The method can be applied to an elastic wing undergoing arbitrary,
harmonic distortions, The formulation of the present problem is based
on the assumptions that (&) the perturbations from a uniform flow are
sufficiently small so that the flow equations may be linearized, and (b)
the flow field around the wing is adequately described by a linear super-
pogition of the velocity potential due to the wing alone, the wvelocity
potential due to the bedy alone, and an additional velocity potential,
which when added to the first two, causes the boundary conditions on the
wing to be satisfied., The velocity potential due to the wing alone
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will be taken from the work of Garrick (Reference l), the potential
for the body alone from (Reference 3); the wing-body interference

potential is developed herein., The method of Reference 1 is used to
obtain numerical solutions of the equations.
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SECTION I

CONSTRUCTIQN OF THE SOLUTIMN

The velocity potential for the nonstatiocnary flow over a
wing with supersonic edges has been derived (under the assumption of
linearized theory) in Reference l,, In that derivation, it was assumed
that the actwl wing may be replaced by a distribution of scurces and
sinks in the plane z = 0, It was shown that the strength of a source
at any point on the wing is proportional to the downwash ( w, ) at
that point., Thus for hammonic oscillations, the velocity potential
at a point (x, y) of the wing for the flow around the wing alone may
be written as

g ot BE) oy

where W

is the frequency pa.mmet.er defined as

wM

¢ (2)
e*

r g

@« is the frequency of oscillation, M is the free stream Mach number,
¢ is the free stream speed of sound, P is the Prandtl-Glauert factor

p=Ih-1"
R may be written as

R= G -ply ) W

and D is the area within the fore Mach cone emanating from the point
(=, ¥).

(3)

The velocity potential for the nonstationary flow about a
slender body of revolution has been derived (under the assumptions of
linearized theory) in Reference 3., In this derivation it was assumed
that the body may be replaced by a distribution of doublets along the
axis of the body. The doublet intensity distribution was detemined by
satisfying the condition of no nomal velocity at the surface of the
body. It was thereby found that the doublet intensity at any point
is proportiomal to the product of the body cross-sectional area(S) at that
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point times the vertical velocity of the body axis ( wyp ) at the same
point, Thus for harmonic oscillations, the velocity potential at any
point in space for the flow around the body alone may be written (in

cylindrical coordinates, (see Figure 1) as

twt 5 x-pr i@ (X-5)
Becre )= cos 62 [wlrg)sale sin(Zr)ag
x-pr . e Be-f) o
o f LSS alpsEioge  cosGif) .
s P | ()

x-8r | @ (x-§) o
$ L8 f C’;(EJSG’)(X-E)G “ ;cas(ﬁ'f’) J
r A P 5

where a prime denotes differentiation with respect to ; and

Pela-5)iair® ()

It is now assumed that the total velocity potential ¥ for the
wing-body combination may be expressed as the sum of these two potentials
plus a correction potential ¥y which will cause the boundary condition
to be satisfied on the surface of the wing; that is:

P= Pt B+ (1)
The boundary condition on the wing is
2¢
However, Z=0 220
gatw Z=0 = W (9)

Since the velocity potential for the wing alone already satisfies the
boundary condition for the motion of the wing, it is only necessary that
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Py be of a form such that the vertical welocity that it induces
at a given point on the wing just cancels the downwash induced by the
body at the same point; that is,

0z 4

i:g £=0

(10)

An alternate formulation of this problem is to assume that
the domwash produced by the sources representing the wing must be modi-
fied to account for the downwash induced by the body so that the boundary
condition on the wing is satisfied. An examination of eguation (5)
shows that 4, is always zero in the plane z = 0 (8 -E-TT). There~
fore, the potential for the flow over the wing in combination with the
body is of the same form as the potential for the wing alone, but the
source strength distribution is modified to account for the dowrwash due
to the body. Thus,

- (X~§)

twt -"'R
‘waaf)*g:,,- [ﬁ%(w)_ %ﬁ(mﬂe cas( M ): 47(11)

This formulation will be used in the subsequent development.

Since P, is expressed in cylindrical coordinates and it is
required to evaluate 1‘2 at z = 0,2% is written as follows:

QE
é—ﬁ ) = ?—L-’é _?.f'_ Q‘Pb 39 (12)
oZ 2 r 9% 26 32
Noting that_ )
a ge et (13)
?..’: = z = ()
oz Zso |4 Zs0 (]J-l)

Since 3‘4’1:/%.- remains finite on the wing, the first term of equation (12)
vanishes. Similarly,

- |
@= tan -g (15)

1) 'This assumption restricts consideration to only symmetrical wing-
body configuration; i.e., where the axis of the body lies in the plane
of the wing, _
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and

3 % L
e e

Inspection of equation (5) shows that a fmction\vh(x, r,t)
may be introduced such that

‘Pb (X) ’I 9) t)= cos 6[% (X,};t)] : (17
and therefore

2%

5—6-9=-SM 9[% (X//t)] (18)
At z =0, 9: ,and r = ¥; hence,

)

_iPJz ==V, (x4t (19)
and

3% | _ 1 ; ¥

22 ’z:o ?%()5 ?,t).. 75( ’)e (20)
where

Biry)=- j VAP PTSSL L N PR

-4 [ cﬁ?r;;s ®rtSila-pe *“eos@r)
P 5 (21)

-é_°_°J Ensmune > Veos(Bn
2 P 4

and P is now

P= m-;)z_/s:yz' (22)
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Substituting equation (20), (21) and (22) into equation (11)
gives the complete expression for the potential at point (x,y) on the
wing of the wing-body combination., The pressure jump at this point is
then obtained from the potential as

F='2/°(éa:+vaax¢ (23)

The 1lift (positive down) on a streamwise strip of the wing is given by

Ls=-£fJx (2L)

and the stalling moment about a spanwise axis, x4 , is

Ms=-fp(x-x¢.)dx (25)
s
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SECTION II

METHOD OF APPLICATION

Up to the present time, completely aralytical evaluations
of integrals of the form of equations (1) and (21) have not been
accomplished. For rigid body motions, equation (1) has been approxi=-
mately evaluated by expanding the integrand in powers of & as in
Reference 5. On the other hand, equation (1) has been approximately
evaluated even for the case of arbitrary wing elastic deformation
modes in Reference 1 Ly means of a numerical integration technique.
In this paper, both of these methods will be combined to evaluate
equation (21)., The results of this evaluation may then be used directly
in calculating the nonsteady air-loads acting on the wing of the
wing~-body combination,

The first step in this technique is to subdivide the wing
into & number of small rectangular boxes of dimensims h  and h s
as shown in Figure 1. Boxes along the wing trailing edge are made
half-size in the stream direction, in accordance with the procedure
of Reference 1. The body is also divided into sections, the chordwise
dimensions of which are made equal to the chordwise dimension of the
wing boxes, h, . The size of the boxes is not important from the

theoretical point of view, as long as they do not become too large
in the stream direction, However, certain ratios of length to width
of the rectangle are more advantageous for computing purposes. (For
a more detailed discussion of box size see Reference 1).

The essence of the method of Reference 1 is that, by making the
boxes small enough, the downwash over any box can be considered as
essentially constant and it can be removed from within the integral
of equation (1), Then by expanding the numerator of the remaining
integrand in & power series in & , retaining as many terms as are
required for accwracy in practical problems, and using a mean value
theorem where the power series expansion is not needed, the double
integral can be evaluated for all boxes within the region of integration,
This procedure will be adopted for the evaluation of equation (21).

EVALUATION OF THE BODY-INDUCED DOWNWASH

If, then, the grid of boxes is made fine enough, it is
reasonable to assume tlmt w and S are constant along each segment
into which the body axis has been divided, Then, the values of

wb and S and their derivatives with respect to & at any point
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along a segment are taken to be the values at the center of the
segment. Equation (21) then becomes

+( s,S -HJZJ SJ-uwwiJ S)f“_”e—ﬁwa 5?:”.( F)J;j

where the symbol % = stands for summation over those segments of the
fuselage centerline included within the fore Mach cone emanating
fram the point (x, y) on the wing, and the symbol /% stands for
integration in the x direction over the length of each of these
segments, For a body section whose center line is cut by the fore
Mach cone, the integration is performed only up to the Mach line,
Thus equation (26) may be written as follows:

UJZ- st Wi i 4 LD W; S,
?)"S{ Ak '; ”)I‘J} (27)

For the case of segments wherein the body axis is not cut by the fore
Mach cone,

o -cw( -E) -
L;=) sin(47)d§ (26)
-1
and X — —
i -Cw (X-F) 5
I [ (r-§)e cos (M P)J; (29)
I P
where X~ = « For the case of the segment wherein the body
axis is cut by the fore Mach line,
| ?__ )
...uu(x LY by
I [ sin (s P) 45 (30)
gl
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and

f? L& (X-E) & p
= [ x-&e cos (71 7)
Ly [ 2 d5 (31)

The integrals defined by equations (28), (29), (30), and
(31) may be evaluated as follows, For those body segments which are
within one and a half box lengths in the flow direction from the
point (x,y), (i.6.,(x- X)) € 32 hx) s the integrands in_these
integrals may be expanded in powers of <O . Formulas are presented
below for the values of these integrals wherein the integrands were
expanded to the second power of <o , These formulas should provide
engineering accuracy for most problems. Should increased accuracy be
desired, it can be achieved by using these formulas with a very fine
grid, or a coarse grid and more accurate formulas which include
higher powers of & , Thus for a "near® body segment not cut by a
Mach line,

Xj-1

L-s A,b—t-) +Az{:az (32)
*8.16,5+8, & (33)

where

A _2M[(X Xj-IX--) fzf /8 4 *cosh” & ;’")

-(X_XJ')J(X‘XJ')Z"/&Zgz+/52# COSA e XJ)] (34)
2 2 3
A 3 {[(X-X) F?] [ A /63‘]/] (35)
B": Ja'xf-f)z" 2% - %12ty
Fg l)(x %) /33' 6
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B = %[EX-XJJJ(X-X;'J’-'-F?’"f-/e“f'cosh" (XI;;;')

K- NG-1,..) -f.’a‘ z f Y *cosh” (”F;J:') (57)

fzi-a»{“*M‘)ffW-"-ﬂ‘zJ P omfoen gy
36 My [Jlr-s, s ]] (38)

Formulas for Il and 12 for the case of "near"™ segments

wherein the body axis is cut by the Mach line can be obtained from the
above formulas by putting xj = X -F’- .

For body segments which are more than one and a half box
lengths removed from the wing point (x,y),{(x = x, > 3/2 b, the ex—
ponential and trigonometric terms of the integrgnds of equa.tions (28),
(29), (30) and (31) vary very slowly over the length of the segment
provided is reasonably small, Hence, good apmroximations to the
values of these integrals may be obtained by considering these terms
as constant and equal to their values at the mid-point of the segment
over which the integration is being performed, and then integrating
the remaining part of the integrand directly. That is, it is assumed
for "far" segments that

L ze-‘a”(x-g‘")SI'ﬂ[% P(gmﬂfdg (39)
and S -8 )

I=e - cas[M P(é'...]f g(;) (Lo)
where ‘

5, = 45 (1)
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For those body segments wherein the body center lline is not cut by a
Mach line, these integrals can be shown to have the values

-

I=e (48] sin[5 P(é'..)]( Xj = X)) (L2)

and

SR LXEpy)

R LS il i

For those body segments wherein the body center line is cut by
a Mach line, the same equations can be used with X = x ...?B, .

These equations make it possible to calculate the increments
in downwash on the wing dus to the body. It should be noted that these
incremental downwash velocities have components both in phase and out
of phase with the wing motion,

DETERMINATION OF THE NONSTATICNARY LIFT

AND MOMENT DISTRIBUTIONS

The application of the method described in the previous
sectims to the mlculation of the unsteady air-loads on the wing
of a wing-body combination will now be described. Although the method
is generally applicable to an elastic wing experiencing harmonic os-
cillations of arbitrary mode shape, for simplicity the following
derivation will be restricted to a wing~-body configuration undergoing
rigid-body symmetrical motims. In order to dete mine the potential
at a point (x,y) on the wing, equation (11) must be evaluated over
the region of integration D bounded by the forward Mach cone emanating
from (x,y), the wing leading edges, and the sides of the body. The
boxes on the wing which contribute to ¥ ( x,y,t) are indicated by the
cross-hatched area in Figure 2, In keeping with the assumptions made
previously, the dovmwash over a box will be considered constant and -
equal to its value at the center of the box. Thus the geametrical
domwash due to the motion of the wing is

w;,.(% 7%) = £w[3:*(5,"‘-4'o)3s]* sz ()
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where 9, and g, are the generalized coordinates in the vertical

translation and pitching modes respectively; (& ,%, ) are the
coordinates of the centrold of the box on the wing, and xqo is the
location of the pitch axis.

The dowrwash at (& , 7‘ )} induced by the body must now
be determined. A Mach forecone is drawn from (&, % ); those body
segments included within this cone (as shown in Fg.gure 2) will
contritute to the induced downwash at this point,

The geometrical downwash at any point along the body center
line can be written in terms of the generalized coordinates as follows:

Wi=cwl[g +05-4) g ] + Ve
From this one can immediately write:

“"3,; Wy (Em’-l = ‘w[i’ *(é-lnj-xa)?;] * sz (L5)

' .

“= g, (46)
wherse Em; is the coordinate of the center of the jth body segment
and is defined by equation (41),

Using the above expressions for the geometrical downwash of

the body, one can rewrite equatims (20) and (27) as follows (dropping
the e*“* temms for convenience)

[W‘ @. 7)] = i 26, 7)

(L7)
=-cwg B -iwg £, -V %, " "“’73534,'
where ‘¢, .
:f”"Tl?cz%‘(WSJI'J“‘”%I' L) (1)
i _:-é . — [
o T (ML BSL ST -x) )
c

I‘«-‘ Iy (50)
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(51)
Z"' F%" s Izl

Thus, the total downwash which enters into equation (11) is

%,
g5, 7)-[ 5505, 7.,
.-.iw?'[l +§,h]+ ésozz[(gc-x.)f-}'zh-ffz‘,]-f ng[li‘fz,,]

(52)

Equation (11) can be evaluated in accordance with the "box"
. method of Reference 1, leading to the following general form for the.
velocity potential at point (x,y), which is now assumed to be at the
center of box "iw:

g = (53)
= ch‘F.,h,]z; [“"’S"‘J" +V2‘£J"]52

where ‘
o j ™ the potential at the center of box i due to a constant wnit
- domnwash velocity at box j,

hw 1o F
, =/
Jm 'hj (5l)
h: = (8.~ X)) + + .
(2)
& =+
f"'i (56)

%‘ denotes summation over all boxes included within the region of
integration D, defined previously. Using equations (23) and {2l),
together with the assumption that the potential at the center of a
box can be considered as the mean value over the entire box, Reference
1 shows that the downward load acting on a chordwise strip of the wing

is given by
T&
L= 2/"'“’ S AL +2/0V‘n"-re: (57)
LE
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where the index i ranges over all boxes in the strip from leading edge
(IE) to trailing edge (TE) and ‘P is the value of the potential at

the trallmg edge of the strip. AX. is the dimension of box i in the
stream direction. Substituting equation (53) into equation (57) and
non-dimensionalizing yields the following expressions for the non-
stationary sectional 1ift coefficients:

?bv“,-ﬂ +=L,) +(13“1-4)3z (58)
where
L"‘“’"’hi? Sa i',z % j l—‘;:l'j?"'ﬂ;j";u

—f:: g ‘ﬁ-j ch- ETJ‘ Jz"&frcd .(J.(Z-J (60)

bw
with k = v the local reduced frequency, at the wing roct.

In a similar manner, using equations (25), a general expression

for the pitching moment on a strip about the axis of pitch x4 and
equations for the moment coefficients are obtained,

M=-JxL +.z/or:w§ X 8x; +2fore‘£re - zf VE P 8x;

(61)
—_—M VRY . .
~4fb'zvt&:’ (Mf‘Mz)% +(M3+LM4) 52' (62)
 a g e Ko : X "
M'-an- 7 (L,ff.l,‘) 4-2.;.5‘2'1‘,4&"'24%‘.;:1
(63)

 Xre { <t W
"2k z“’re, J "ﬁ% “r‘?%j hi
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M+e M X
3 LY+ — Eix. '
b 4) 2545 ‘Axijz‘qzjl'lj

- Xr
‘ 53‘ S‘Pn ‘- s
4 T R A

(z.

- -_;-_
i '_'Ex,; axX; > ‘(10.,«(.;) Xre
; f = 4
2b6%4 ] j 4 ‘12 TE J (6L)

+ — '
u&&‘?“‘? 4"
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SECTION III

AFPLICATION TO A SFECIFIC PROELEM

The application of the method described in the previous
sections to the calculation of the wnsteady air-loads on the wing
of a wing-body combination will now be illustrated. Since the
purpose of this example will be merely to illustrate the application
of the method and to determine the order of magnitude of the
effect of the body on the wing air-loads, a very coarse grid will
be used in order to shorten the computations. Rigid body translation
and pitching motions will be assumed so that the results may
be compared with previocusly obtained results for the wing alone,
Calculations will be done for both the wing alone and for the
wing-body combination so that the effect of the body can be
determined directly. The wing-alone configuration will consist of
one wing of the wing-body combination refiected about the wing
root chord line. The wing planform chosen is the same as the one
that was used in References 1 and 5, This will also allow & com=
parison to be made between the results obtained with a coarse grid
(7 boxes; Figure 2) and the fine grid used in Reference 1 for the
wing alone case (28 boxes; Figure 1).

Since the calculations will be done for only one Mach
number, it will be convenient to let the sides of the rectangles be
in the ratio,

E;.;/;t. , | (65)

where hx and h_ are box lengths in the x and y directions respec-—

tively. The geometry of the network, therefore, is such that the
body axis is cut by a Mach line only at the boundary of a body
segment,

The following parameters are used in this analysis:

b = ..3_.. s M - 1.75, “;fb = k = 04
C) = w_—_cM 7Y = __23“.’ i’dz = -——_———Ekui = M 18667
B i ¥
X, = 2.25
a = 1,75
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Maximum body diameter
Maximum wing span

25

Wing leading edge sweep angle = 30°
The edquation for the radius of the body is taken to be
vy = JOLETx - .053863x° (66)

In this example the 'lifz and moment of the wing are
calculated for it values_ of -—E-'l'- and Qe ©

A detailed drawing of the wing and body with the grid of
boxes superimposed is shown in Figure 2.

The value of the potential for boxes close to the wing
leading edge is obtained by weighting the result obtained for the
- whole box in accordance with the percentage of area of the whole
box that is contained between the fore Mach cone and the leading
Edgeo

1)

The results of calculations using equations (57)
through (64) for the example described above are summarized in
Figures 3 through 12,

1} Alter the calculations described herein were completed, the
authors of Reference 1 devised a scheme whereby the 1lift and
moment could be calculated somewhat more simply using pressure
coefficients rather than velocity potentials. Since the principles
involved are the same, the calculations are presented here in terms
of potentials,
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SECTIN IV

DISCUSSION OF RESULTS

Formulas have been derived to detemmine the effect of the
fuselage of a wing~body combimtion on the air-~loads acting on a
wing in nonstationary purely supersonic flow, The equations do
not readily lend themselves to analytic evaluation. However, a
procedure has been presented which allows a numerical solution of
the problem.

Examination of equation (5) or (21) leads to the conclusion
that the most accurate results are obtained when the ratio of body
diameter to wing span is large (providing that the body fineness
ratio is large so tat linearized theory applies). This is deduced
from the fact that the downwash induced by the body has a 1/r type
singularity at the body axis. When the body diameter is large, no
point on the wing is very close to the body axis and hence the
mathematical singularity which does not actually exist physically
need not be dealt with, Practically, the presence of a singularity
at the body axis is not really a deterrent to the use of this
method since corrections for the presence of the body are probably
not required when the body diameter is small compared to the wing
span, and also because accuracy is more important in the region
of the wing tips than near the body. ‘

The wing lift and moment due to harmonic rigid body trans-
lation and pitching about the mid-point of the root chord for the
configuration shown in Figure 2 are presented in Figures 3 through
10, Curves of the variation of the unsteady aerodynamic coefficients
along the span are presented. Curves for the wing alone are drawn
for the results of References 1 and § and for the results of this
papers The curves for the wing-body combination are also drawn on
the same graphs for comparison,

It is interesting to note that excellent agreement between
1ift curves is found for the wing alone case over the inboard half
of the span. The lack of agreement near the tip is caused partly
_because of the small numbexr of boxes in this region and partly be-
cause the calelations for some of the cecefficients entail working
with small differences of large numbers, The wing-alone moment
curves are in good agreement over the inboard half of the wing for
some of the coefficients, although the agreement is poor in other
cases. This is to be expected since the moment coefficients depend
on the distribution of pressures rather than total forces as in the
case of the 1ift coefficients and accurate pressure distributions
cannot be expected from the coarse grid used in these calculations,
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The changes in total lifts and moments are not as
extreme as may be expected from an inspection of Figures 3
through 10. Iarge changes do occur in the real components
of the force and moment vectors due to translatory oscillations,
However, since these real components are small compared to the
imaginary components, the total changes in 1lift and moment
magnitude are essentially those due to the changes of the
imaginary components.

The overall effect of the body on the wing can be seen
more clearly in Figures 1l and 12, The ratios of the magnitudes
of the aerodynamic coefficients for the wing-bocly combination to
the wing alone coefficients are presented in Figure 11, In this
figure, the following definitions apply.

Ly=J1%4,% | (67)
Ly= Jiaz ty

(68)

M;, '-‘J)W,:r M: (69)
- 2

M- My M, (70)

It is seen that the 1ift coefficients are affected most
in the middle region of the wing (the dashed portions of the
curves indicate extrapolated data), whereas the moment coefficients
are altered most near the wing-body intersection. An interesting
observation is that the curves for the cutboard half of the semi-gspan
are almost exactly the same for all four coefficients. The
equations derived in this paper are too complex to determine whether
this is the gereral case or whether it is only a coincidence for this
particular set of parameters,

Figure 12 presents curves showing the variation of the
change in phase angle of the aerodynamic vectors along the wing
span, It is seen that for all coefficients, the body produces almost
no phase change over the outboard two~thirds of the wing. The 1lift
coefficients suffer very little phase change near the root, whereas
an extremely large phase change takes place near the root, for the
moment coefficients. The size of the phase shift may be considerably
in error. As explained previously, accurate pressure distributions
cannot be expected when a very coarse grid is used. Inspection of
Figure 2 shows that the local chord of the lattice representing the
wing changes from two to three boxes at Jjust about the same span
wise station that the sudden change in phase shift occurs. Actually
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the effect of the change in chord is not as great as the above
statement might imply because the potential contributed by each.
box is weighted according to the percentage area of the box
covered by the wing. It should be noted however that the large
changes in the moment coefficient magnitudes and phase angles
near the wing-body intersection may be grossly exaggerated.

The singularity at the body axis causes the velocities induced:
by the body at points very close to the body axis to be much
too large, thereby exaggerating the effect of the body on the
wing air-loads in this region.

An effect which is not evident from the equations
presented in the previous sections was noticed during the calcu=-
lations, It was found that one of the most dominant temms involved
in the calculation of the body-induced downwash was the term
involving S'. Not only was this term larger than the others but
it was noticed that if this term were omitted, the body-induced
dowrmash would be of an entirely different order of magnitude and
possibly even of a different sign, Thus if a circular cylinder
were used as a fuselage, the results would be quite different, It
seems likely,therefore, that the effects of the body on the wing
air-loads are quite sensitive to body shape and the position of the
wing on the body. The results of this example should therefore
not be considered to be typical, However, they do show that wing~
body interference effects can be significant.
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SECTIN V

SUMMARY AND CONCLUSIONS

An approximate method has been developed for taking into
account the effect of a fuselage on the unsteady air-lcads on an
elastic wing with supersonic edges. A numerical procedure for
obtaining solubtims is presented, based on the technique employed
in Reference 1 wherein the wing alone case is considered.

The results of sample calculations shcw that a body with
maximum diameter equal to twenty-five percent of the maximum wing
span appreciably affects the magnitude of the unsteady aerodynamic
forces and moments, whereas the phase angles of the aerodynamic
force and moment vectors are only slightly affected.

It became apparent, during the course of the sample
calculations, that downwash induced on the wing by the body is
very sensitive to the shape of the body. Therefore the results
obtained in the sample calculations should not necessarily be
considered as representative of the general effect of a body on
the unsteady air-loads on a wing.

Although the example calculated herein was concemed with
the effect of a body on the airloads of a wing with supersonic
edges, the method is also applicable to a wing with subsonic edges,
since the essence of the method is merely the mcdification of the
downwash in the area perturbed by the wing, -
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