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In the finite element-method based on the principle of minimum
potential energy, the so-called displacement-method, a given tem-
perature distribution can easily be taken into account. In this paper a
variational principle for linear heat flow problems has been formulated
analogous to the principle of minimum potential energy. On the basis
of this variational principle the temperature distribution canbe derived
by means of a finite element~-methed. The determination of the thermal
deformations then follows as a natural sequel to these computations,
For both successive problems the same division in elements is re~
quired. In this paper the necessary matrices have been derived. Two
examples illustrate the application of the method.

1. INTRODUCTION

The determination of the thermal deformations and the accompanying stresses in a structure
can be divided into two basic problems: 1) the determination of the temperature field; 2) the
determination of the displacements and deformations due to this temperature field, Here it
1s assumed that the very weak interaction between the temperature- and the deformation
probiem may be neglected.

In practical applications a solution of the continuous field equations for the heat flow in a
structure cannot be found but numerically with the exception of some simple one~ and two-
dimensional cases. For the solution of a deformation problem the finite element-method
based on the principle of minimum potential energy, the so-called displacement method,
has proved to be highly efficient. Here a known temperature distribution can easily be taken
into account, provided that it can conveniently be translated into thermal components of
generalized strains. A finite element-method for the solution of the temperature problem
was devised that meets this requirement.

Analogous to the principle of minimum potential energy & variational principle for the heat
flow problem can be formulated. An integral formula, quadratic in the temperatures, is shown
to remain stationary with respect (o temperature variations at the actual temperature
distribution that satisfies the heat balance equation and boundary conditions. In the principle
presented here, that of temperature dependence of thermal conductivity, specific heat of the
material and heat transfer coefficients have to be neglected.
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On the basis of the variational principles governing the temperature and the displacement
field, a finite element-method has been developed for the solution of both problems in one
computational scheme, A necessary condition for the solution of these subsequent problems
is that the division in elements for both problems is identical. The finite element-method for
temperature problems leads to the solution of a set of simultaneous linear differential
equations. The solution of two simple problems will illustrate this,

This variational principle for the heat flow problem resembles a principle derived pre-
viously by Biot (Reference 1), Biot’'s principle has the advantage that nonlinear problems can
also be solved; it would also be possible to derive a finite~element method on his principle.
However, for linear temperature problems the finite element-method derived in this paper,
is considered preferable. Gurtin (Reference 2) presents a variational principle for the solution
of some linear heat flow problems. The integral formula derived by him is also quadratic in
the temperatures but since convolution integrals are used it is not quite clear in which way the
finite element-method could be introduced to solve heat flow problems,

2. A VARIATIONAL PRINCIPLE FOR THE SOLUTION
OF LINEAR TEMPERATURE PROBLEMS

Let a structure be subjected to a heat flux \}arying with time. The equation expressing
balance of heat in an infinitisimal element of the structure is given by:

dq.
- i o & =
a!i+Q cv.J.O {1}
where, according to Fourier’s law of heat conduction, for the heat flux vector holds:

Q-:-X'h (2)

Here & represents the temperature, X the heat conductivity, @° the heat production per unit
volume and cy the specific heat capacity. Moreover the summation-convention is applied here.

On the surface of the body three different types of boundary conditions will be considered:

1} prescribed temperature on the surface Al

o= 5° (3)
2) prescribed heat input through the surface A2
[}
[ ] - . —
'qi'"i“')‘dli L {4)

3) heat flow through the surface Ag that is proportional to the difference in temperature
between the surface of the structure and the surrounding medium:

3 e — } — &
-M'“i’"‘ﬁ' n a (8-0) (5)

where @ is the heat-transfer coefficient.
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The surfaces Aj, Ag and Ag will form the total surface A of the structure to be investigated,
The outward unit normals n; on the surface A are taken positive. The differential Equations
1 and 2 together with their boundary conditions Equation 3 may be replaced by the require-
ment, that the following integral expression vanishes for all continuous, twice differentiable
functions u, that are defined inside the volume, occupied by the structure and on its surface:

ff-(i)—ao)'u-dAn{f{-‘q?-ni+)\'ad:2*—-ni}-u-dht

A 2

.ff {oa(d~—om)+)\.-—g,‘}i--ni}-u.dA+ o)
A
3

_gf{‘-ﬁ: (xﬁ’l—) +a°-cvé}-u-av= 0

In the above Equation 6 we shall restrict the functions u to those, that on the surface Aj,
where the temperature is prescribed, are equal to zero. Then, according to the fundamental
lemma of the calculus of variations the differential Equations 1 and 2 with their boundary
conditions shown in Equations 3, 4 and 5 are equivalent to the variational condition:

3P - {[{—q‘i’n‘ . )\52‘:— ni}Bo . dA +
2
4-[[{0(1(0—!'“)1‘)\-3%'n'}-B;‘dAi' ‘ (7}
A3
TG 032) ey ) pa e

where 8¢ are mathematically admissible variations of the temperature. This includes the
conditions that ¢ = #° on the surface Al. where the temperature is prescribed and that ¢ is

twice differentiable.

By application of the divergence theorem this expression is transformed into:
g9 d+2 o } _ff °
szfff{xaxIS(é'.—T)'(Q CVC’)SG’ dv .q['ﬂi'SJ'dAQ
v AZ

.ff ate—~ )84 dA = O 8
As
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Thus far no restriction has been made on the physical quantities )\, ¢y and a. Hereafter
these quantities will be considered as conatants, independent of the temperrature 9. Then the
variational condition (8) can be interpreted as a stationary value principle for the following
expression with respect to mathematically admissible variations of 2, In this variational
process the time-derivative of # is to be treated as a fixed quantity.

fff[% 'a:'i %"Qo'o‘cv'“' t"]dV-ffq?ni . @ dA +

A
2 (9)

+ ff%— a(i-im)z dA = stationary
A3

Here Q°, q; and ¢, are given quantities that may vary with time. By means of the stationary
principle, derived above, a new way of approximating heat-flow problems has been obtained.
Particularly in the finite-element method this approximation is given as a set of simultaneous
ordinary differential equations.

3. SOME GENERAL REMARKS ON THE FINITE ELEMENT METHOD

We shall restrict ourselves here to some remarks on the finite element method for the
determination of the temperature distribution and for the determination of the deformations by
the so-called displacement method.

The potential energy of a loaded structure is given by the expression:
ff E{e”}dV-ff f‘}u,dv-f o%u, da t0)
v v A
P

Here E(ejj) represents the specific elastic strain energy, fj the forces per unit volume, pi
the forces per unit area and Ap the surface, where the forces have been prescribed.

According to the principle of minimum potential energy equilibrium of the structure is
characterized by a stationary value of P with respect to kinematically admissible variations
of the displacements. For linear deformation problems E{e;;) is a quadratic expression in
the first derivatives of the displacements and in the temperature This integral (Equation 10)
for the potential energy has a strong resemblance with the integral (Equation 9) that has
been derived for linear temperature problems, e.g.:

f{fz 'ax ci_', "V:f.{fﬁ“il’
f'v[ Q-9 -V ‘———;j[ff?uldv an
ff qn, dA -‘-‘—:ffp‘i'uidn
A2 A
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~'hen also inertial terms would be considered, we could extend this analogy to one more
l@rm:
fffcv- - J dv ﬁ—fffp -uii.ii dv
v v

wiwere p is the mass density.

‘S0 P may appropriately be called the temperature potential. As is well known the dimensions
of the potential energy is work; on the other hand the dimension of the temperature potential
is work x temperature.

It is seen from solutions of temperature problems in the book by Carslaw and Jaeger
{Reference 6) that simple non-stat-onary temperature problems lead to complicated analytical
analysis, Therefore the temperature potential could be a quite suitable tool for the solution of
bractical linear temperature problems by a finite element method, analogous to the element
method based on the principle of minimum potential energy. In addition it will be possible to
solve first the temperature problem and subsequently, using the same subdivision into
elements, solve the thermal deformation problem,

In the discription of the element method some concepts will be used that will be described
here briefly. In the element method we shall use the column vectors ¢ and v to coliect the
values of the temperature or displacements respectively at distinct points of the structure.
To indicate the difference between these vectors and the value of the temperature or displace-
ment at an airbitrary point in the interior of &n element the latter will be specified by a
circumflex {a).

The attack on a problem, that will be solved with one of the element methods described
here, starts as follows:

a} the structure is divided by lines or surfaces into suitable elements,

b) at distinct points at the boundary of the elements a finite number of temperatures or
displacements of unknown magnitude are assumed,

¢) in the interior of the elements simple expressions are chosen, representing the tem-
perature or the displacement field. These expressions contain just as many linear
parameters as the number of temperatures or displacements mentioned under b, These
forms are restricted by the requirement that the linear parameters shall be uniquely
related to the temperature or displacements at all the distinct points of the structure,

In Sections 4 and 5 first the matrices will be derived for one individual element; ihic will be
indicated by the superscript k, The prescribed quantities are indicated by a superscript o.
For the structure as a whole, consistingof N elements, it is necessary ui)(define new matrices.
Generally for these matrices the following ruie is applied: if AX is the matrix for the
element k then A is the corresponding matrix for the whole structure, where:

AI

>
n
.
ney

\ (i2)
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The only exception to this rule is the definition of the location matrix for the whole structure,
This matrix is defined as:

( 10~

L L

; 2
| R0 N I Sy B (13)

The non-prescribed and prescribed temperatures or displacements at distinct points of the
structure are collected respectively in the vectors o, 8°, u and v°, All other column

vectors of the structure are defined as:

i

g = a
(14)

z-—-- N

4. THE ELEMENT-METHOD FOR TEMPERATURE PROBLEMS

The value of the temperature distribution in the interior of an element can be approximated
by:
Ak 1k
N § 15)

In this formula ;: is a row vector, containing functions of the coordinates;the linear param-
eters of the tefmperature distribution have been collected in the column vector BX. They
furnish an expression for § that fulfils the conditions b and ¢ in Section 3.

ad

From Equation 15 the three components of the column vector[—a-"—]can be evaluated:
' i

2.
']=C$3k | (16}

=

z{%fe the three rows of the matrix c}; can be derived directly from the assumed row vector
%3)
The specific temperature potential due to heat conduction in the interior of an element, as

it has been formulated in the Equation 9 for P, becomes:

';=é[£%]¢;&ﬁﬂ 7}
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where the matrix Gk contains thzheat conducrivity A. Substitution of Equation 16 into Equation
17 and integration of the matrix(C3})G Ct, over the volume of the element leads to a quadratic
form in B representing the fempérature potential due {o conductivity of the element as a

wnole:

- '
ffj},_ B*ck 6kch grav:4 g*rkg" (18)
\")

By our choice of the approximation of the temperature distribution Equaticn 15 it is easy to
find the relationship between the parameters of this temperature distributlonﬂ K and the
values of the temperature at distinct points of the element collected in the vector ¢k, The
general expression for this linear transformation ig represented by:

B - o; s (19}

Substitulion of this transformation into Equation 18 leads to:

k _ 1 ik ok wk nk ok
50'2‘ D:!T D!,o (20)

In the integral expression Equation 9 part of the temperature potential is due to a given
heat input. There are three types of heat input, that will be treated separately. We shall give
here only formally the necessary transformationfrom the integrals to the matrix expressions.

We can corsider:

_ff Ood'dv = .k ko
v

_ ° o _ 4k ko
ff; Q. n, ¢ dAT—~ a,
A

and by adding (a} and (b):

lk N 1
-8 qkl °_ o q"2° ot q"'° {21

—ff 2 atw-o12aa=- § (o*- '“) (o ) (22)
A

As before, the matrix expression for that part of the temperature potential, which is due to
the heating of an element, can be found by the following subsequent steps:

. .\‘:'; c .éklkl‘kﬁ'k .
fff AR ffkf , s 39 B" AV

f1

(23)



Thus far only one individual element has been treated. The following step is to consider an
element as a part of the whole structure. Thie can be done by expressing the components of the
véctor oK in the prescribed and non~prescribed temperatures at distinct points of the
structure. For that purpose the location matrix is used:

'lh z [L':’ L;o] 00 (24}
L

By means of the notation Equations 12, 13 and 14 the approximated temperature potential of
the structure, divided into elements, will become:

‘P-E'LTB")T] I..I T,Tod[l.ai.:] . —[oTu")‘j |J'; a .
:’T e° (LO)T
[}

{25)

3 [(OT—OL)] l..;l; QL [lv—*m] +

+

*

T oTY. T T .
[‘(.0 ) Lo Dy HD, [L',L‘;] J | = stationary,
LO T &
( 0) '
When a structure has_a certain temperature distribution we have seen in Section 2 that the
temperature potential P is stationary for the mathematical admissible variations of the
temperature. The same will apply to Equation 25, but here the temperatures to be varied are

the non-prescribed temperatures at a finite number of distinct points in the structure. This
variational process leads to the following set of equations:

( Mt
T T.T o 0 T T o 30
. Loq°- L, D0, TD, L0 L,oL, e L, o.no‘ L,

T ol y =~ (T al T .
Ly Dy HO, L, @ (L‘D‘TD‘L,*LJQL#IC* o8
26

Since the expression f Cy 3 8 av is positive definite the matrix LT, D';r HD, L, is non-
singular. So by multiplication of Equation 26 by the inverse of this matrix the following
set of simultaneous differential equations of the first order is obtained:

®z-Y- -8+ 2(1) 27)
where:

T T -1, T T T
. 28)
Y :(L,0,HD L ) (LD TOL .L QL ) (
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T a7 =1, T T T
z{?t) -(L',D‘l'l Dd L‘) (L§q°— ‘D‘TD' I.“’ ° »
T

r . (29)
.
+lgQ@L s L D HD L )

The vector 2(t) is aknown vector with respect to the time t. This can be specified by ebeerving
in Equation 29 that both the heat input (q°), the prescribed temperatures (¢° and 4°) and the
temperature of the medium, surrcunding the structure (0 ) can vary in a given way as
functions of t.

As is known from the theory of matrix functions the solution of Equation 29 is:

alt) = o TF {o(o) +.[te""- 2(7) d'r} (30}

where the matrix e~ Y! is defined by the series:

e oL, Y.¥.12 y.y.y.t3
eVt = Y,-}+ o - rnrt. (34)

From physical considerations (see Section 6) and from a mathematical point of view it
can be concluded that the matrix Y is singular if both the temperature is non-prescribed
anywhere in the structure and the matrix @ is a zero matrix, However, the equations 29 and
30 are valid for all cases to be considered.

When Y is a non-singular matrix the most essential thermal problems can be solved in
closed form with the aid of the eigenvalues and eigenvectors of the matrix Y. Two examples
of these kinds of problems are given in Section 6.

When Y is singular a solution can only be obtained by means of a step by slep aumerical
integration of Equation 27.

5. THE ELEMENT METHOD FOR THERMAL DEFORMATION PROBLEMS3

In the preceding chapter we have found an approximation for the temper:iires inza
structure using an element method. In this chapter it is assumed that for the sppioalinativn
of the thermal deformations the structure has been divided into eiements in the sxmae way
as has been done for the determination of the temperatures,

The value of the displacements in the interior of an element can be approximeiad oy

;lu = x: . a* {32}

Generally this vector u consists of three components glving the displacementis in the three
coordinate directions., The matrix X contains functions of the coordinates, the vector akK
the linear parameters in the displacement field, The choice of X{; and the number of param-
eters  is influenced by the conditions b and c of Section 3. From these displacemen:is
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Equation 32, the total deformation in the inferior of an element can be evaluated; this is
reflected in the following equation:

¢ :ck o (33)

The local deformation due to a temperature field is given by the tensor formula:

A

o _ &
¢ °3 0 Sij (34)

Here eij represents the strain tensor due to the temperature field 3. ¢ is the coefficient of
cubic expansion and §i; is the Kronecker delta. For the temperature distribution the ap-
proximation Equation 157is used.

This has been written as:
Ak kT
& cixy ) I 8 (35)

This matrix formula for the deformation modes due to the temperature field in an element
is given by:

A K ok
i s, B (36)

The elastic deformations (eK) are the difference between the total deformations ek and the
thermal deformations Kko:

.“:.-,‘“’:cua..dﬁ (37)
The specific elastic strain energy in the kth element may then be given by:
T
k LAk K ok
.Iu = -2-(‘ )Gu % . (38)
where GE is the matrix containing the elastic constants.

After substitution of Equation 37 and after integration over the volume of the element the
total elastic strain energy of the element becomes:

e - [T, -] 39

K K
' _st’u SN ﬁ
where:

o [ & o
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o= (@) Jflee, o ov:
s - et o v

By our choice of the Approxi.gmtion 32 it is easy to findthe relationship between the param-
eters of the displacements @" and the values of the displacements at certain poinis of the
element collected in the vector uX, The general expression for this linear transformation is
given by:

a =0 -.u 140)

(41)

The integral in the potential energy, which is due to loads on one element of the structure,
can always be replaced by an approximation in matrix form. Here we shall not concern our-
selves with the contribution due to forces of inertia. We restrict ourselves to quasi-static
problems. We shall give here only formally the necessary transformation from the integrals
to the matrix expression:

=[] 15w, ov - [f 60, an = _(et (42)
v A
p

In the same way as has been done in Section 4 we shall consider this element as a part of
the whole structure. Again a location matrix is used to express the components of the vector
uK in the prescribed and non-prescribeddisplacements atdistinct points of the structure, This
transformation is:

o - [‘-k '-“] u (43)
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By means of the Equations 12, 13 and 14 the matrix expression for the potential energy can
now he formulated for the structure as a whole:

P= :;__[ur(uc)T.T(o‘ﬂ tI.offol of[s, s,l[e o]y v © o[ .
(L°o o- 8., o-o0d0 oL0L° u®
T
0 Ly v
O(Lg "o (44)

T _
-[v(e9] | e
vy
When a structure is in equilibrium the potential energy is stationary for kinematically
admissible variations of the displacements. The same will apply to the matrix Expression

44 for P where the kinematical degrees of freedom have been collected in the vector u.
This variational process leads to the following set of equations:

T o7 S FL S o ©
Lyols, 0 L -w=tift -LiD 8, 0L, u +

T T o‘ {45)
+LT0ls,o05[L 15 ]le
‘O
We shall write this as:
K = b X Ko
w Y +[% s]e (46)
.O
where:
K .L'D'S D L
U U U uU u u
1T ¢0 1T pT 0 40
b : Lu f Lu Du 3“ Du Lu u (4T7)

o T 5T o ]
LA R DA
From Equation 46 we see how we can use the temperature vector ¥, determined as a solution
of Equations 27 or 28, to find the displacements in a thermal deformation problem.

It should be noted here that the notation, used here, differs slightly from the notation in
the paper by Besseling (Reference 5). The matrices D.ﬁ are equivalent, not to the finite-
difference matrices DK, but to the transformation matrices T of Reference !? 8 a con-
sequence the stiffness matrix 8K, is singular and equivalent to the matrix ( Kl sk ¢k in
the notation of Reference 5.
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6. SOLUTION OF TWO TEMPERATURE PRCBLEMS BY MEANS
OF THE FINITE ELEMENT-METHOD

6.1. The solution for two special cases,

We shall solve here two special linear heatflow problems using the element-method. These
problems ure specified by the prescribed conditions of the problem, or from the mathematical
point of view: how does the vector z(t) in Equation 29 vary with the time t§We shall restrict
ourselves to those vectors z(t) that are constant or vary linearly with time, The solution of
these problems covers a great many practical applications,

Equation 30 governs the general solution of temperature problems by means of the element-
method:

t
*{t) = a‘“ ‘[0(0) + f eYT:(ﬂ dr} . (48}
0

In the following the matrix Y is assumed to be non-singular, so that Equation 48 can be
inlegruted when ch.z(r) is an integrable function. If the structure is not completely isolated
#{0) will not be of any influence for { = O and we find the following equation:

lim o' - ] (49)

t ->®

6.1.1, The first problem to be considered will be:
Z{t) = z,= constant for ¢t > 0,

Integration of Equation 48 leads to:

{t)

-t - -

s {1-eM) (50)
For t =» © Equation 50 hecomes:

ol =Y 7'z, (50

Since non-singular matrices ¥ are only considered we know that @ (g0) exisis. Substitution
of Equation 51 into Equation 50 leads to:

ol1) _ a()s o~ Y {om) -omm} (52)
With the notation:
pit) = &(1) - () {53
Equation 52 becomes:
bit} = e Y. p(O) (54)
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6.1.2, In the second problem the vector z(t) fulfils the expression:

z(')=:°+l'-f (55)
Integration of Equation 48 leads to:

. . a Yt -1 - =Tt — - —a-Yt
oit): ¢V (o) +Y {l e }:o Y'{I o }zl+Y"zlt (56)

celt)z=g{t)-y"! zo+ v-? z'_Y" zlt (57)

into Equation 56 leads to:

e(t) = e ¥ .e(0) (58)

which expressmg is completely equivalent to Equation 54. Besides a constant increase in
temperature: ¥~ z; t the temperature distribution for t =» @0 is given by: v-lz 0" y-2 zy.

6.2, Further solution of the problems.

We have seen in paragraph 6.1. thatthetwoproblems treatedthere, can be reduced to one
equation: .

b(t) - e - (O} {59}

The solution of this set of equationa can be found by the application of matrix functions
{Reference 6). For a non-singular matrix Y the following matrix equation holds:

Y-\Ify z ify-.& (60)

where Wy represents the matrix with eigenvectors and A the diagonal matrix containing the
eigenvalues N belonging to the eigenvectors of Y in'Wy.

Now we solve the following set of linear equations:
\y, W, - b (0 (1)
When the vector @4, is known we can derive subsequently:

i) 2 o~V y(0): .-"v,...,b=

- - (62)
f‘l’, -‘Awb=\!’, * .Q.b A
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whti{'e A represents the diagonal matrix with terms e~ )‘t, A the column vector with terms
B and -Q-b the diagonal matrix with the terms o the vector wp. In this Expression 62 the
product matrix W, p is known; so, if we have found a solution to Equation 59 in the form
62 the temperatu¥e distribution for all the requested values of t can easily be evaluated.

6.3. The cylindrical slab

The examples for the illustration of the finite element-method will deal with two different
temperature problems of a cylindrical slab with zero Initial temperature and with the sur~-
faces at the end kept at the same, prescribed temperature. The slab has been completely
isolated along its cylinder surface. :

k K
ol %

|- ]

il .

It is assumed that the temperature 3k ina slab-element of length a can be approximated by:

T
K Kk k X
3 ¥y, '8 ’[’ '6] B
K (63)
B e
_ _ _ Kk Kk _k K
In agreement with Section 4 we need the matrices Gt’, Gl’,‘l' 1Dgand H .

Since the temperature distribution in the slab is known these matrices can be derived.
They have the following value:

¢ -d[a 1]; 6 = x;

-
-

K | K ¢ a
OOtD’='z II;H=J—|2 2 0

"

L X
T 3

o ! -2 2 o 1

where F represents the cross-sectional area, a, the length, A, the heat conductivity and cy,
the heat capacity of the slab, For the problems to be considered we need only the following
two matrices:

kVok &k \F ol
(DJT °d=7

(64}

(o“;)TM‘t o: .

:
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6.3.1. Use of the finite element-method

The slab to be considered has been divided into four identical elements, We shall use the
symmetry of the problem to reduce the number of dependent variables to two.,

0 | 2, § I (s]
4 /
| ) ——y
4 4
V. 7
-'_a—-—
¥

In the following sections we shall find the general solution for two simple problems by
means of the finite element-method; these solutions will be compared with theoretical resulis.
If the centre of the slab is kept fixed in space (up = 0) thenthe theoretical solution of the
average temperature J, of the slab is a measure for the elongation of the slab:

u-a.Ez%,

where g is the coefficient of linear expansion.

For the determination of the thermal deformations with the element-method the Formulas of
Section 5 must be used,

Therefore the displacement U in a slab element will be approximated by:

<[ 5]]a,

(65)

Elaboration of the equations in Section 5, withu, = 0, leads to the following set of equations
for u, and uy: _

EF
< [ -, :%EFa o],
-] 2 v, -1 Q 1 #l
1’!
or: (66)
€ )
a? uo T ! 2 } \’o
u 2 - 1 22
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#rom this equation we see that again ; is equal to the average temperature Y, in the slab

uging the approximate solution, This only true in this case where all the slab elements
are identical,

6.3.2. Example One

In the first example the surfaces at the end of the slab are kept at a constant temperature
¥, for t > O, The matrix equation for the approximation is:

¢ of }
VS 4 l,’l .-)‘.EE 2 -l 3 -}af- -1 -.\9°- (67)

K | 0

With: £ = 2a, The matrix Y and the vector z, are:

Y:-Z%!:-:S;:g_ni}.-z .
Te. ° Te, % (8

Y |-e s 1]

By the introduction of a dimensionless parameter T for the time:

e AL (69)
c £
v
the general solution of Equation 57 becomes:
- 3 \ : <2.60 7
o(t) = Bl=]!|d ~]0.859 o0.141] | | % (70)
3y | 1,207 -0.207] | "3 7 |
The approximation of the average temperature is:
- . .OI -2-60 T
1’0“) = 2 - [0.731 0.019] ¢ v, (70

e-3l.‘? 1

The theoretical solution of this problem is given on page p. 100 in Reference 6 as a series
expansion. If we take only the first two terms of this expansion and determine the values of
the temperatures at the points 1 and 2 of the slab we get:

< qAr.-2.471
= = -10.9 Q.
¥ {t) I 3 00 300| ]| e "o (72)

i 1.273 -0.424 || e 222 ¢
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and the average temperature is:

-2.477
¥, = ¢ - [0.811 0.090] ) % (73}
2227

In the solution of the approximation of ¥, Equation 71 we see that for t = 0 the average tem-
perature becomes: «, = 0.25 3. This is due to the linear temperature distribution in the
slab elements at the ends of the slab.

6.3.3. Example Two

In the second example the surfaces at the end of the slab are kept at a temperature 'jo' t
fort >0. .

The matrix equation for the approximation is:

Al AF AF ¢ oF
6 |% &l ==|2 tf]s|-% | g, t- —% 1 g (7
0 [] [
I 2 1’2 | | 'I.’z 0 0
With: £ = 2a the matrix Y and the vectors z, and z, are:
Y = 24Aﬁ 5 -3, :O = _.|? 2-|1§°; z| = . 24X2 -2 150 (7%)
chl’. 1 TC'E
6 5 -1 ' ¢
By the introduction of a temperature parameter 80 defined by:
¢, §%8
g . Y= "o (76)
0 A

and by the use of the dimensionless t in Equation 69 the general solution of Equation 74
becomes:

2 [ J 1. . -2.60 T
, Y, 0.375 (8, +(0.364 o0.0n ||, .
Y% ! 0.500 0.515 -0.015] [¢-31.7 1
The approximation of the average temperature is:
1) = . - 2607
Bt =3t -0.313 6 + [0311 0.002] |, .8 (78)

o~ (]
.-SI.T t
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Again comparison with the theoretical solution of this problem (Reference & Page 104) {s
possible. By restricting ourselves to the first two terms of the expansion in the theorstical
solution, we get: .

s Mlafg = 11d y o378 6,+ |0.365 o.01a]|-2.477

. - (79)
% ! 0.800 0.515 .0.019(|4-22.27
and
W, () = Bt _ 0 333 8, + [o.aza o_oo4J 0-2.47F 6, (80
' s2227

These two simple examples show us the use of the finite element-method for linear heat
flow problem. The corresponding treatment of more complicated structures is in Preparation.
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