

NOTICES

Ţ

1

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related therete.

The information furnished herewith is made available for study upon the understanding that the Government's proprietary interests in and relating thereto shall not be impaired. It is desired that the Judge Advocate (WCJ), Wright Air Development Center, Wright-Patterson Air Force Base, Ohio, be promptly notified of any apparent conflict between the Governments proprietary interests and those of others. WADC TECHNICAL REPORT 54-189 VOLUME II

3

THEORETICAL INVESTIGATION OF OPTIMUM PRESSURE IN AIRCRAFT HYDRAULIC SYSTEMS

Conrad H. Cooke - Eugene Gessner - Robert L. Smith The Glenn L. Martin Company

January 1954

Aircraft Laboratory Contract No. AF 33(616)-344 RDO No. R-452-495

Wright Air Development Center Air Research and Development Command United States Air Force Wright-Patterson Air Force Base, Ohio

VOLUME 2

γ.

TABLE OF CONTENTS

	X	
PPENDIX		PAGE
A	Determination of the Weight and Space of Transmission Lines	A-1
В	Determination of the Weight and Space of Hydraulic Cylinders at Various Pressures	B-1
C	Valve and Filter weight and Space	C1
ם ע	Calculation of the Weight and Space of Cylinder Accumulators	D-1
E	Determination of the Weight and Space of Hydraulic Pumps at Various Pressures and Horsepowers	E-1
F	The Weight and Space of Reservoirs at Various Pressures	F-1
G	Acknowledgments	G-1
Б	North American Aviation Optimum Prossure Study	H-1

ii

LIST OF JLLUSTRATIONS

r7

FIGURE		PAGE
A-1	Sketch to Determine Utilization of Fitting Material	A- 8
N- 2	Weight of Fitting versus Tube OD at 3000 psi	A 9
A-3	Weight of Fitting versus Tube OD at 3000 psi	A-10
A-4	Average of Fittings per Inch (Values plotted versus Tube OD)	A-11
A- 5	Total Weight of Pressure Lines versus Pressure	A- 19
A-6	Flow versus Line Loss (Tubing)	A-20
. A-7	Tube OD versus Pressure	A-21
A- 8	Pressure Linos Tube Weight versus Pressure	A- 22
A- 9	Fluid Density versus Pressure	A-23
A-10A	Pressure Lines Fluid Weight versus Pressure for 2 and 10 Horsepower	⊾- 2l₁
A-10B	Pressure Lines Fluid weight versus Pressure for 50 and 100 Horsepower	A- 25
A-11	Pressure Lines Fitting Weight versus Pressure	A-26
A-12	Total Weight of Return Lines versus Pressure	A- 27
A-13	Return Lines Tubing Weight versus Pressure	A-28
A-1/A	Return Lines Fluid Height versus Pressure for 2 and 10 Horsepower	A-2 9
A-1) ₄ B	Return Lines Fluid Weight versus Pressure for 50 and 100 Horsepower	A-3 0
A-1 5	Return Lines Fitting Weight versus Pressure	A-31
A- 16	Total Weight of Supply Lines versus Pressure	A-3 2
A- 17	Supply Lines Tubing Weight versus Pressure	A-3 3
A-18	Supply Lines Fluid Weight versus Pressure	⊾- 34
A-1 9	Supply Lines Fitting weight versus Pressure	A- 35

111

LIST OF ILLUSTRATIONS

I

4

1

. . . .

...] ---

;

1

E

 . 1		
FIGURE		PAGE
A- 20	Sketch to Illustrato Plumbing Space	A-39
A-21A	Total Pressure Lines Space versus Pressure for 2 and 10 Horsepower	▲- 43
A-21B	Total Pressure Lines Space versus Pressure for 50 and 100 Horsepower	А-ЦЦ
X- 22	Pressure Lines Tubing Space versus Pressure	A-45
A- 23 A	Pressure Lines Bend Space versus Pressure for 2 and 10 Hersepower	⊾- 46
A- 23 B	Pressure Lines Bend Space versus Pressure for 50 and 100 Horsepower	A -47
⊾- 2l↓	Pressure Lines Fitting Space versus Pressure	A- 48
A- 25	Total Space of Return Lines versus Pressure	A- 50
A- 26	Return Lines Tubing Space versus Pressure	A-51
1-271	Return ^{1.1} nes Bend Space versus Pressure for 2 and 10 Norsepewer	⊾- 52
A-27B	Return Lines Bend Space versus Pressure for 50 and 100 Horsepower	⊾- 53
A- 28	Return Lines Fitting Space versus Pressure	⋏- 54
A- 29	Total Space of Supply Lines versus Pressure	A-56
A-3 0	Supply Lines Tubing Space versus Pressure	⊾- 57
A-31	Supply Lines Bend Space versus Pressure	A- 58
A-3 2	Supply Lines Fitting Space versus Pressure	A- 59
A-3 3	Assumed Pressure Relationships for Tube Calculations	A -30
B-1	Sketch of Cylinder Showing Breakdown for Study	в-14
B-2	Cylinder Distribution: Number of Cylinders versus Area Ratie	B-15
B-3	Unibal Bearing Weight versus Load	B-16

iv

LIST OF ILLUSTRATIONS

 \mathcal{C}

I

4

Í

ł.

FIGURE		PAGE
в-4	Piston Diameter versus Piston Thickness	B-17
B-5	Compressive Load versus Critical Stroke	В-18
в-6	Compressive Load versus Stroke (Existing Cylinders)	B-19
B-7	Gland Diameter and Length versus Rod Diameter	B-20
в-8	Rod End weight versus Load	B-21
B-9 A	Hydraulic Cylinder Weight versus System Pressure	B-22
B-9B	Hydraulic Cylinder Weight versus System Pressure	B-23
B10	Weights of Cylinder Ports various System Pressure	B-214
B-11	Sketch to Illustrate Space of Cylinder	B-25
B-12	Sketch to Illustrate Outside Diameter of Cylinder	B-26
B-13	Cylinder Outside Diameter versus Bore	B-27
B-14	<pre>versus Bore Diameter (Cylinder Length = + Stroke)</pre>	B-28
B-15	and Rod Diameter versus Stroke (= Bore: Rod Diameter = .85 Bore)	B-29
B-16A	Hydraulic Cylinder Space versus System Pressure for 3000 and 20,000 IN/LB	B-30
B-16B	Hydraulic Cylinder Space versus System Pressure for 100,000 and 300,000 IN/LB	B-31
C-1	Check Valve Weight versus System Pressure	C-9
C- 2	Check Valve Weight versus System Pressure	C-10
C-3	Filter weight versus Horsepower	C-12
C-4	Filter Space versus System Pressure	C-13
D-1	Cylindrical Accumulator Weight versus Volume	D-6
D-2	Accumulator Weight versus Pressure	D-7
D-3	Accumulator Space versus Pressure	D8

LIST OF ILLUSTRATIONS

FIGURE		PAGE
E-1	. Weight versus Horsepower for Variable Delivery Pumps	E-3
E-2	Pump Space versus Horsepower	E-4
F-1	Reservoir Weight versus Volume	F-9
F-2	Reservoir Space versus Volume	F-1C
H-1	North American Aviation Curve of Weight versus Pressure for Steel and Aluminum Tubing	H-5

vi

LIST OF TABLES

	TABLE		PAGE
	A-1	Actual Fitting Weights and Number of Fittings Per Inch	A-7A
	A- 2	Fitting Weights for Various Tube Sizes	A-7B
	K-3	Total Neight of Pressure Lines	a- 36
	A -4	Total Weight of Return Lines	a-37
	A- 5	Total Weight of Supply Lines	A- 38
	A-6	Total Space of Pressure Lines	A- 149
	A-7	Total Space of Return Lines	A- 55
	A- 8	Total Space of Supply Lines	A- 61
	B-1	Calculation of the Weight of Hydraulic Cylinders	B-32
	8-2	Cylinder Weight Breakdown at Various Pressures	B-33
	B-3	Calculation of the Space of Hydraulic Cylinders	B-34
•	B-4 to B-19	9 Cylinder Data	B-35
	C-1 .	Check Valve Weight and Space	C- 6
	C-2	Valve Data	C-7
	C-3	Valve Multipliers	C-8
	D-1	weight of Accumulators at Various Pressures and work Levels	D-4
	D-2	Spice Occupied by Accumulators	D-5
	H-1	Conversion of Return Lines	н-6
	н-2	Fitting Conversion Chart	H-7
	H-3	Weight Comparison 3000 and 5000 psi	Н-8

.

vii

INTRODUCTION

The appendix contains a detail analysis of the weight and space of the elements comprising an aircraft hydraulic system. Other information of interest to the study is also presented.

In the analysis of the elements, many assumptions have been made for the derivation of the formulas for weight and space. Justification of these assumptions where necessary and possible is also presented.

A weight comparison between 3000 psi and 5000 psi for a typical subcircuit has been made by North American Aviation. A presentation of the analysis of Lou Berthelson is presented in Appendix A.

viii

the second se

APPENDIX A

DETERMINATION OF THE WEIGHT AND SPACE

OF TRANSMISSION LINES

1

I

J

9

I Derivation of the Theoretical Formula to Determine the Plumbing Weight

The equations which consider fluid weight, tubing weight, and fitting weight have been derived as an approach to express total weight required to install sections of tubing in an airplane — in one equation; consisting of pertinent variables such as pressure, density of fluid, density ef fitting and tubing material, and diameter of tubing. The resulting composite equation is written to show the effect of these variables. Their derivation will follow.

The equations are:

 $w_{T} = w_{0} + w_{1} + c_{f}$ (1)

$$\int e^{-\frac{\pi}{4}} \frac{D^2 \rho \, oa}{L_1} \, \frac{S_{t1} - GP}{S_{t1} + GP} \tag{11}$$

$$s_1 = \frac{R D^2 p 1}{S_{t1} + GP}$$
 (III)

$$\pi_{f} = \frac{2.98 \times 10^{-5P_{3}D^{2}}}{36000 + P} + 8.50 \times 10^{-7}DP + 4.87 \times 10^{-3}D \qquad (IV)$$

Whores

1.

7

- WT Combined Average Plumbing Weight Per Inch of Tubing (Lb/In)
- Wo = Average Weight of Fluid Per Inch of Tubing (Lb/In)
- W1 Average Weight of Tubing Per Inch of Tubing (Lb/In)
- Wr Avorage Weight of Fitting Per Inch of Tubing (LB/In)
- D Outside Diameter of Tubing (In)
- P System Working Pressure (Lb/In)
- po = Fluid Density (Lb/In³) at Standard Conditions
- a Density Multiplier Based on Temperature MIL-0-5606

Stl = Ultimate Tensile Stress (LB/IN²)

- pl = Tubing Material Density (Lb/In3)
- of = Fitting Material Density (Lb/In3)
- G = Applicable Safety Factor

W - Stutistical Average Fitting Weight (Lb.)

K1, K2, K3, Etc. = Constant Values

A-2

When the value of W_T has been calculated by the foregoing formulae, a system constant is obtained, which when multiplied by any similar system length yields its plumbing weight.

a. Fluid Weight

The following method was applied in the derivation of formula II, the fluid weight formula.

Fluid weight in the tubing equals its volume times its density.

Volume =
$$\frac{\pi d^2 L}{4}$$

Where:

d = inside diameter of tubing (In)

L = tubing length (In)

Density = apo

Wheres

Combining:

$$W_0 = \frac{\pi d^2}{1}$$
 apo per incl

(7)

It is noted that, the expression (apo) takes into account the effects of compressibility of fluid due to an increase in pressure.

It is desirable that the inside diameter be converted to outside diameter. A conversion is possible through the use of the thick wall formula: (Ref. 2 and 3)

$\mathbf{s}_{t} = \mathbf{GP} \begin{bmatrix} \mathbf{D}^{2} + \mathbf{d}^{2} \\ \mathbf{D}^{2} - \mathbf{d}^{2} \end{bmatrix}$			(VI)
---	--	--	------

When solved for the inside diameter, the equation becomes:

$$d^{2} = D^{2} \begin{bmatrix} S_{t} - GP \\ S_{t} + GP \end{bmatrix}$$
(VII)

Thus Formula V becomes:

$$W_{0} = \frac{\pi D^{2}}{\frac{L}{4}} \rho_{0a} \left[\frac{\mathbf{s}_{tL} - \mathbf{GP}}{\mathbf{s}_{tL} + \mathbf{GP}} \right]$$
(11)

b. Tubing Weight

Formula III, the tubing weight formula, was derived as follows:

Weight of tubing equals the cross-section erea times the tubing length times the material density.

 $Cross-section area = \frac{\mathbf{L}}{4} \left(D^2 - d^2 \right)$

Combining:

$$I = \frac{\mathbf{n}}{4} \left(D^2 - d^2 \right) \rho_{\mathbf{L}} \mathbf{L}$$
 (IX)

Again formula VII is utilized to simplify. Accordingly formula IX becomes:

$$W_{L} = \frac{\pi}{4} \left(\frac{2GP}{S_{tL} + GP} \right) \rho^{LD^2}$$
(III)

For one inch of tubing

c. Fitting Weight

The fitting weight formula, consisted of the product of cross-section area, fitting length, fitting material density, and a constant which includes miscellaneous factors such as number of fittings per tubing lengths, , etc.

Most important, at first, is to correctly define the following:

$$W = \frac{wN}{L}$$

here:

w = individual fitting weight (1b.)

N = number of fittings considered

- L = length of tubing involved (inch)
- W = average fitting weight per inch of tubing (Lb./In.)

A theoretical expression for individual fitting weights was first derived on the basis of strength required for internal pressure only, and on the assumption that it was affected by the same variables which affected a section of straight tubing. Thus, its cross-section area becomes:

$$A = K = (D^2 - d^2)$$

Where K accounts for difference between tubing outside diameter and fitting outside diameter. And if formula VII is introduced to eliminate the variable $d(1,D_{\cdot})$:

A-4

(X)

(VII)

$$A = K_{n} \left(\frac{2 GP}{S_{tf} + GP} \right) D^{2}$$

To obtain a hypothetical length the following relationship was utilized:

Separating Load = Shear Area x Shear Stress

$$D^2P$$
 = $\pi L^{1}D$ x S_{sf}

Solving for L':

$$L^{1} = \frac{DP}{4 S_{sf}}$$

It is assumed that the effective seal between the fitting and the tubing takes place at a point of the inner wall of the "AN" type flare attachment which is approximately equal to the outside diameter of the tubing. In the care of the "ER" type fitting, the seal definitely takes place at the outside diameter of the tube. Fore this reason the separating force is expressed as the internal pressure times the cross-sectional area enclosed by the outside diameter of the fitting.

When area, length, and density are multiplied together:

$$w_{1} = K \frac{\pi}{4} \frac{2 \text{ GD}^{3} \text{ P}^{2} \rho f}{S_{\text{sf}} \left(\frac{S_{\text{tf}}}{G} + P\right)}$$

If the value for the defining material, MIL-S-6753, condition F, or $S_{tf} = 180,000$ psi is introduced, the factor of safety (G) is set at 5, and all the constant quantities are called K, then formula becomes: (XI)

$$w_1 = \frac{K_1 D^3 P^4}{3600 + P}$$

And this weight is that portion of fitting weight which is required to withstand the effects of internal hydraulic pressure. This is shown more effectively in figure A-l as being 21.25% of total fitting (for 1/2" fittings at 3000 psi only) weight, and is represented by the darker cross hatched portion.

It is possible to arrive at a value for K, for P = 3000 psig by assuming the diameter and getting the fitting weight from Table A-1.

From Table A-1 it is seen that the statistical average fitting weight (w) equals 0.0251 lbs. for a 1/2 inch diameter fitting.

So:

c

 $w_1 = .2125 (0.0251) = 0.00531$ lbs.

A-5

(XI)

(XII)

and, from formula XII:

$$K_1 = \frac{(36000 + P)w_1}{D^3 P^2} = \frac{(36000 + 3000)(0.00531)}{(.5)^3 (3000)^2} = .0001585$$

4.

Therefore, formula XII becomes:

$$w_1 = \frac{.0001585 \ D^3 P^2}{(36000 + P)}$$
(XIII)

The sketch, figure A-1 was drawn for a 1/2 inch diameter fitting since this size and fitting group is most common. It provides a means to estimate the percent of material required to withstand internal hydraulic pressure, and to estimate the percent of material required to withstand torqueing preload which appears lightly cross hatched. The remainder of the material must logically be balk. Bulk material can be defined as that weight which includes unstressed material found in shoulders, wrench flats, and other spaces resulting from the nature of the design of the fittings.

In an attempt to arrive at a mathematical expression for the extra weight, formula XIII, and actual data, Table A-1, were plotted together for pressure at 3000 psig, figure A-2. It was observed that the difference between these curves was a straight line. This permits us to write:

$$w' = \frac{0001585D^3p^2}{36000 + P} = -K'D \qquad (XIV)$$

Where w' = actual data, Table A-1

In order to break the term K'D down into two expressions, one for the material weight required to withstand torqueing preload, and the other for the material weight which is bulk, figure A-1 was reexamined. The torqueing weight, composed of the cap and union thread engagement region and the cap shoulder region (lightly cross-hatched) is defined as a percent of the total.

This percent of the total is dependent on the diameter of the fitting and on the internal hydraulic pressure tending to separate the fitting.

The remainder which is pure bulk, is a function of fitting diameter, D.

Accordingly we may write:

 $W' = \frac{000153D^{3}P^{2}}{36000 + P} = K'D = K2^{D}P + K3^{D}$

r: W' =
$$\frac{10001}{36000} + P + K_2 DP + K_3$$

Again from TableAl, D = 12 w' = 0.0251

So for torqueing:

0

 $w_2 = .27(.0251) = 0.00677$ lbs.

(XIV)

1-6

For bulk:

1

}.

ŧ.

w₃ = 1 - (.2125 + .27) 0.0251 = 0.01295 lbs.

Since the weight proportion is defined, it is possible to solve for K_2 and K_3 by setting the applicable sections of formula XIV equal to its respective weight. So for K_2 :

$$W_2 = K_2^{DP}$$

 $K_2 = \frac{W_2}{DP} = \frac{.000677}{(0.5 (3000)} = .00000452$

For Kgi

$$w_3 = K_3D$$

 $K_3 = \frac{w_3}{D} = \frac{0.01295}{0.5} = .0259$

Inserting the values of K2 and K3 into formula XIVa

$$= \frac{0.0001585D^3P^2}{36000 + P} + 0.00000l_{15}2DP + 0.0259D$$
 (XV)

A plot of Equation XV appears in figure A-3 and shows graphically what has gone before.

From figura A-4.

 $\frac{N}{L}$ = 0.18798

Combining formulae X, XV, and XVI, the final formula becomes:

 $W_{f} = \frac{2.98 \times 10^{-5} \text{P}^{3} \text{D}^{2}}{36000 + \text{P}} + 8.50 \times 10^{-7} \text{DP} + 4.87 \times 10^{-3} \text{D}$

(IV)

č

A	TA	BLE A-1	1
a	₩r	- <u>N</u> L	w = W _F T
•250	.0021840	.2188827	.00997794709
• 375	00 <i>3</i> 28 78	.2014873	.01631765376
• 500	.0056159	•2239316	.0250786400 8
.625	.0062842	.0742637	•0846200 768
•750	.0119478	.2445254	.OL;88611817
1.000	.0114928	.2122303	.05415249 37
1.250	•01592 54	.1405083	.1133413470

Ĭ

⋏~7⋏

•

TABLE A-2

D	P	DP	D ³	_Р 2	D3F2	36000+P	(d) D ³ P2 35000+P	.0001585 (Stress 7t)	.00000452DP (Torque #t.)	(Bulk) •0259D (Bulk Ht)	(Torque) 000000452DP + .0259 D	FITTING
.250 .375 .500 .625 .750 1.000 1.250	3000	750 1125 1500 1875 2250 3000 3750	.015625 .052724 .12500 .21414 .121875 100000 1.953125	9(10 ⁶)	1.406(105) 4.74(105) 1.125(106) 2.195(106) 3.8(106) 9(106) 1.759(107)	3.9104	$3.605(10^{\circ})$ $1.217(10^{1})$ $2.89(10^{1})$ $5.62(10^{1})$ $9.75(10^{1})$ $2.315(10^{2})$ $4.51(10^{2})$.00671 .00193 .00458 .00891 .01545 .0367 .0715	•00339 •00509 •00679 •00849 •01018 •01357 •01696	.00647 .00971 .01293 .01618 .0194 .0259 .0324	.00986 .01480 .01972 .02467 .02958 .03947 .04936	.010531 .01673 .0243 .033580 .04503 .07617 .12066

w = w₁ + w₂ + w₃

= .0001585 $\frac{D^{3}P^{2}}{(36000 + P)}$ + .00000452 DP + .0259 D

Material: MIL-S-6758 Condition "F" St = 180,000 PSI

S₈ = 105,000 PSI

€e - .283 Lb/In3

173

au-T-ng — «EU-TTL & E39LA CO. 14 X 19 La Ma 5, itsb. ith ith- arrented. 14 Martin 2, ith start arrented.

2

197116 MUNTER A CARLO CA. 19 X 19 In the Sci State, 516 State annualed 20 X 19 In the Sci State annualed

1À

Fig. A-4 A-11

II Determination of the weight of Transmission Lines

The three types of transmission lines analyzed are pressure, return and supply. The equations evolved in section A-1 apply to all with various assumptions as to the pressure to be used and the line loss to be permitted. A detailed account of the calculation of the weight of pressure turing follows with the variation of conditions for return and supply lines pointed out.

II.a. Pressure Lines

The total weight of pressure lines has been calculated for 2, 10, 50, and 100 horsepowers. The results have been tabulated in Table A-3 and presented graphically in figure A-5. From these curves it is apparent that the optimum pressure, for pressure lines at all horsepowers and at the conditions given, ranges between 3500 and 4000 psi.

II.a.l. Weight of Pressure Tubing

The weight of the tubing can be calculated from the following equations

$$W = \frac{\pi D^2 \rho}{4} \left(\frac{2 GP}{St + GP} \right)$$

(Appendix A Section I)

(TURBULENT REGION)

Wheret

Ŧ

W = Weight of Tubing per Inch Tubing (Lb/In)

- D = Outside Diameter of Tubing (In)
- ρ = Tubing Material Density (Lb/In3)
- G = Safety Factor
- P Nominal System Pressure

This equation is equivalent to the following equation:

$$W = \frac{\rho \pi}{4} (OD^2 - ID^2)$$

The ID for the various pressures and horsepowers was found by use of figure A-6. The requirements for use of this chart for the flow and the pressure drop per foot.

The flow was obtained from the equation: $\zeta = \frac{1714}{12}$

Wheres

Q = Flow (GHM) HP = Horsepowor P = Nominal Operat

Nominal Operating Pressure (Lb/In²)

The average efficiency of the transmission lines was found to be 80%, in a survey of the industry. The average length of tubing in a circuit was found to be 52.25 feet for the HM-1, H5M-1, and B-57. The percent pressure drop per foot then becomes:

$$%\Delta P/ft = \frac{.20}{52.25} = .383\%/ft.$$

With these two values the inside diameter can be found from figure A-6. The interaction of the flow and pressure drop is found. If it is below the transition line corresponding to the pressure used to determine the flow and pressure drop, it is in the laminar region. If this is the case a line is drawn parallel to the dark lines (with tube size markings) to the transition line at the pressure used to determine flow. To got the inside reading from the scale given a line must be drawn parallel to the dotted lines to the scale for correct readings. Correct values may be found from the equations:

 $d^5 = \frac{1}{\pi^2} \frac{1}{\Delta P}$

A-13

(LAM INAR REGION)

____5913.8 ρ

Whero:

alt

d = inside diameter (In)
f = friction factor μ
p = density (lb. sec2/in4)
Q = flow (gal/min)
V = viscosity (In2/sec)
P = pressure drop (ib/In2/st)

From these values of the inside diameter the outside diameter can be found from the thick walled formula.

$$OD = ID \sqrt{\frac{St + GP}{St - GP}}$$

Where:

י סו	outside diameter	• • • • • • • • • • • • • • • • • • •
[D •	inside diameter	
St 🗉	ultimate tensile	strength of material (105,000 psi)
•	Safety factor (5)
P .	nominal operatin	ig pressure

The weight of the tubing can then be found by:

$$\pi = \frac{\pi \rho}{L} (0D^2 - ID^2)$$

The tabulated values for the weight of tubing at various pressures and 2, 10, 50 and 100 horsepower is presented in Table A-3. The graphical results are presented in figure A-8.

From figure A-8 it is evident that the minimum weight for tubing alone at various horsepowers is slightly less than 3000 psi.

II.a.2. Weight of Fluid in Pressure Lines

The weight of the fluid can be found from the following equation:

Wo =
$$ap \frac{\pi D^2}{4} \left(\frac{St - GP}{St + GP}\right)$$

(Appendix A Section I)

Where:

واء

Wo - fluid weight per inch of tubing

D • outside diameter

St = ultimate tensile strength

G = safety factor

P = nominal operating pressure

- ρ = density
 - density correction for pressure (See figure 8) ...

Or, if the inside diameter is used:

$$W_0 = a\rho \frac{\pi d^2}{4}$$

The inside diameter is the same as the one found in the previous section. For this calculation the density at 80° F was used.

The tabulated results are found in Table A-3.

The graphical results are presented in figures A-10A and A-10B. It is clear from these curves that there is a weight saving for the fluid with any increase in pressure.

II.a.3. Fitting Weight

. .

 $\langle \mathcal{F} \rangle$

The weight of the fittings was calculated from the equation:

$$\frac{10^{-5}}{10} = \frac{2.98 \times 10^{-5}}{36000 + P} + 8.5 \times 10^{-7} \text{DP} + 4.87 \times 10^{-3} \text{D}$$

as outlined in Appendix A Section I.

These weights are tabulated in Table Λ -3 of the appendix and presented graphically in figure A-11.

For fittings alone the minimum pressure occurs at 2500 psi. A line on figure A-11 is drawn for the fitting weight for 3/16 OD tubing which is a practical limit for fabrication of tubing.

II.b. Determination of the Weight of Return Lines

The weight of return lines has been determined for 2, 10, 50, and 100 horsepower in the same manner as for pressure lines. For return lines a burst pressure of one-half that used in the pressure lines is used to determine wall thickness (See figure A-33). The pressure dropper foot of tubing is assumed to be the same as in the pressure lines and the fitting weight is the same as for pressure lines and the fitting weight is the same as for pressure lines of corresponding outside tubo diameters.

The total weight of the return lines is tabulated in Table A-4 and presented graphically in figure A-12. From these curves it is evident that there is a minimum weight per horsepower range from 7000 psi for 100 horsepower to 3000 psi per 2 horsepower.

IT.h.1. Return Lines Tubing Weight

The weight of the tubing in the return lines was calculated from the equation:

 $\frac{Wt}{IN} = \rho \frac{\pi}{L} (D^2 - d^2)$

With the pressure drop and the flow the same for the return lines as the pressure lines, the same inside diameter can be used. The outside diameter was calculated using the thick walled formula with burst pressure in the return lines one-half that of the pressure lines.

$$D = d = \sqrt{\frac{st + c \frac{P}{2}}{st - c \frac{P}{2}}}$$

D = Outside dismeter

d - Inside diameter

St = Ultimate tensile strength

G - Safety factor

P = System Pressure

The weight of the return lines tubing is tabulated in Table A-4 and presented graphically in figure F-13.

II.b.2. Return Lines Fluid Weight

The fluid weight in the return lines was determined from the equations

 $\frac{Wt}{IN} = \frac{a\rho}{L} \frac{\pi}{L} d^2$

a = Density correction for pressure ρ = Density at 0 psig and 80° F

d ª Inside diameter of tube

a is determined at one-half the system pressure.

The values of the fluid weight are tabulated in Table A-4 and presented graphically in figure A-14.

II.b.3. Return Lines Fitting weights

۲

The weight of the fittings has been calculated from the same equation used to find the weight of pressure lines fittings.

> $\frac{2.98 \times 10^{-5} \text{D}^3 \text{P}^2}{36000 + \text{P}} + 8.5 \times 10^{-7} \times 0\text{P} + 4.87 \times 10^{-3} \text{D}$ ŵt IN

D Outside diameter of tube Ρ -Nominal system pressure.

The weights of the fittings at 2, 10, 50, and 100 horsepowers and various pressures are tabulated in Table A-4 and presented graphically in figure A-15.

II. C. Determination of the weight of Supply Lines

The weight of supply lines has been determined on a basis of system horsepower, in the same manner as the weight of pressure and return lines.

The material used for this calculation was 5280 aluminum alley. f Aminimum wall thickness of .035 inches and a minimum tubing outside diameter of one-half inch was assumed. The pressure used was the maximum of 80 psia for pump pressurization as outlined in MIL-P-7740 with a safety factor of five.

The flow in the supply lines, for the horsepower chosen, was the same as the flow in the pressure lines for the same system pressure.

Flow = Horsepower x 1714 System Pressure

The average length of tubing between the reservoir and the pump was found to be 20.8 flot. The pressure drop in the supply lines was determined as the difference between maximum and minimum pump inlet pressures. The pressure drop per foot of tubing was found as follows:

Pressure Drop Per Fort = $\frac{Max. Pump Inlet Press - Min. Pump inlet Press$ System Pressure $<math display="block">\Delta P = \frac{80 - 6.9}{20.8} = 3.52 \text{ pri/ft}$

The inside diameter was determined from a graph similar to the one (figure A-6) used for pressure and return lines except that the temperature was assumed to be -20°F. The flows and pressure drop found above are used to find the inside diameter.

The weight of the supply lines fittings is the same as for prossure lines fittings of the same tubing outside diameters.

The weights of supply lines are tabulated in Table A-3 and presented graphically in figure A-16. The weights of the tubing, fluid, and fittings are plotted separately in figures A-17, A-18, and A-19.

loc	o ■FRANCE FRANCE	<u>9 : 2 3 4 5</u>					
		63,46			NR 21.90 STEA	с СЭНС 127,3315	
				Z			
				50,3495 6 L C		3	
	2					2	
10.0							
	8					9 8 7	
Š	6					6	
с С	4	Γ					
Ô,	3		19/ 15/5			3	
ž	2						
ЪГO							
1.0							
1						1	
(
,			67 C				
:		\angle		1/3/	KT 0 2516		
:							
	1				SEE A		
0.1 1							
.0		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $					
	LINE LOSS (AP) P.S.I. PER FOOT						

2.

FIG. A-6 A-20

.

RENTTEL » ESSER CO. Inter socrafed, cm. fines heary.

and the sector of the sector o

. . .

FIG. A-9
1-24 1111 .1. ι, ::! 1111 111 64 1111 at jib . 11 ω FRESSURE LINES FLUID WEIGHT 1 60 -----::: VERSUS PRESSURE 11: 11: ÷i. 111 2 AND 10 HOUSEPOUR 11 56 TOR 1411 52 TP: 1.3 ÷ HH. .,, 44 Lin : ' H Π. 4 48 11 11 11 - 1 0 ÷1 -----111 .:. 44 1. 111 111 :` . : : 11 -1. • 40 3 ۰. :; i. 9 ... • • 1 : 36 ٠. Цų 1 ------------11. 1.11 32 · ; ; . 1 F 0 .H H H 1:: . (111 ÷: ÷ 1.1 5 ÷i: ļβ]:'.: 28 411 1:... :: I. . : ÷ H. 1 ÷ III .:! H 2 24 ::: . ' ٠. . 1 :::! , î ijį. 2 : , 11 1.1. P.Y. . : Π. 20 11.... . i i i 11 5 .. 1 · 1 . : ' ' 16 11; 1. . . . 111 Ø 12 :1 11 ili. :1 SYLS SAN ONOR SENO, 1 H b 1.:: 2 HORSE POWER ••• 4 **5**] [] T Ηi ÷, 詽 1 1 • • • • i :.. ; 111 . . . 03 8 ii. : : : · 6 . . • : 6_ 0 PRESSURE (LB/IN2) Ē . . . ÷ ·:: 1. 111 11 •:: ÷ :t:

Х. М TO X TO TO THE ', INCH REUMIL & EBER CO. ALBANENE &

DII-TEEC

FIG. A-104

HON IS INTO THE TANK HON IS INCH

Ī

DI I.TEEE

ſ

୍

FIG. A-108

arafia Milianeera, 6 ann. lineo accenied, em. linea beary. Bisianeera, 6 ann. aiste a e e

1

1

FIO. A-11 A-26 i -

н-2 **71**-

*****-

£.

																									٨-	-27		
	ΠΠ		MIT		TH S			ΠE		ΠĒ					<u>H</u> E			:4;:		T								Π
			H	••••																							II.	
<u></u>								┞╫┼								-					 						h	Ħ
			••••												1												tii	H
	ų.	0	64			<u> </u>																نې د د محمد						Ħ
		, : 											[., T	OT	A L	n	IE/	GA	17.	0F	KE	12			///	r).		H
		04	0			[1	E.	rs.	US.	\mathcal{P}	RE	35	UR	25					₽
	11. ••••												.Æ	OR	.2,	10	52	, \$	10	01	401	? \$.	E,G	ЭW	FK	<u> </u>	14	
		.0.	56,		7										·					· · · ·	+							<u>1</u> .
	· ' :	 																				+-++					4	
		04	2													::::: 			:.''				111				μĻ	H
														:': 	;:													H
	:::	0.	18						1																			ļļ
			: :.	1			L II															:					 -	
		0	10	1.			Ň															.1.						ļ
				i			\mathbf{N}		· .																			i.
		04	10]																	1			
	ۍ ۔ ک						1											: · · ·										
	N	0	26					N										:					!!!	::¦i				
	7	~~~			115	1		1									÷.,		,							1		
	>	5	22		+•+• :+•	i Y)					1	1			ļ											
	もん	.~							Ń									- ··				::				illi		Į
			Ĵσ.			•	Ň					ļ			1		11.		•								Π	\square
 ii	-2	. 0.	<i>(</i> 0 .)		 		1		i					$\phi^{\prime \alpha}$	2.11	22	SE	001	٨E	<u> </u>								I
	Ξų		50			·	·· \						1 1		• • •							.1					IT	I.
	-0		<i>4.4</i> 	 1 - 1	 · · · ·		 . ;	Ť					∔• • ∶,			- ; - ;											III	Ī
÷++++	L L					• • · · · ·	•	\	Ň		1	1															fii	Π
	F	0	10.				 ·	<u> </u>	` }	~					 						 						tit	Π
	2		 			<u> </u>		•••				þ.		55	OH	02	SE	Po	W	FR	۰،۱۰۰ ستی م			2			IIT	Ħ
<u>.</u>	2	-01	<i>U</i>	-	╞╍╌		<u>a</u>					·											! .				Ħ	h
		· ·			<i>·</i>							· · · ·				• • • • •		·	÷	·							批	Ħ
	2	.01	2_	<u> </u>						Į			· . :		 				<u></u>	••••						i i i i i	III	Ħ
⋕	0				•				. 1			- i		[• • •		- · - -	·:		-				╅╡┼╇	╏╬╴	H
<u></u>	-	00	74			5	<u> </u>	<u> </u>				<u>مب م</u>		þ		01	101	252	-0	p w	EX					111		Ħ
	+ -					[-		L.H	OK	SE.	HOV	VER		2_	 		.			. ;				Ηİ		H
<u>. :</u> 		00	24					<u> </u>				{						<u>`</u>		 								H
									ļ. <u>.</u>																			H
						1		<u> </u>	<u> </u>		<u> </u>				¦			$\frac{1}{1}$	1.1									
				<u> </u>		<u> </u>	•	f	<u> </u>							5			_: £	5			/	2	14		╢	ŧ
			<u></u>	<u> </u>			 	12	ES	SC	IR	f	K	8]]	IN	ノ	ļ	<u> </u> -		<u> </u>					#		出	Ħ
													ļ		. <u>.</u> .						:- <u></u> -		· · · · · · · · · · · · · · · · · · ·	***			\mathbb{H}	
			1	1				L	· ·	<u> </u>	l	J				<u> ·</u>	:		لمغنا		د د د		<u></u>			HI		đ

FIB A-12

4

le i

1

3 con

227-14 - KEUTEL & EBER CO. Millimetri, 6 mm, live accessed, rm, lines bery. Assirant sa

f

ŕ

· · · · · · · · · · · · · · · · · · ·		
	部份指制 计自由 把 推翻	
OZO RETUR	NLINES TUBING	WEIGHT
	2345 PRESSURE	+ Statistic
	in children Ha	SETTINGE
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
lan han han bereken dir han		
100 HODEF	WERMAN	
▐▋▛▙▎▙▖▝▀▖▎▖▎▖▖▎▖▕▋▁▋▖▏▖▖▌▖▖▌▖▖▌▖▖▌▖▖▌▖▖▌▖▖		
		╷╢╍╹╢┥┥╍╢┥╴╕╢╺╁╸┣╌╸╸╢
HERE CHARACTER IN THE CARE AND A REPAIRED AND A REP]][]].[]]
	己日 1 5 5 6 6 6 6 6 6 6 6	
han ban ban ban ban ban ban ban ban ban b		
S 010		
	POWFR	
Sources and the sources of the sourc		
		· · · · · · · · · · · · · · · · · ·
λ		
	· · · · · · · · · · · · · · · · · · ·	╶╏┿╍╀┥╍╍╺┇┿╍╄┥┿╍┇╏╾┦┿╋╿╢
la stan ha la Nari an na an a' still interna an Nari in ta ta ta ha ha ha ha ha	and the first state in the second state	
	····· ··· · · · · · · · · · · · · · ·	
iele han s de le la la Nederla de la		
A CHOW	EFOWER O.	
	RSEPOWER	
┟╬┊╢╬┈┟╌╴┧╌╴┟╌╴┟╌╴┟╌╴┟╌╴┟┅╴┟╍╴┧╍╶╽╴╴┦┙╴╢╴╴┦╴╴┥╸		╺┨╸╧╧ <u>┨╧╎</u> ╤┇┟┥╸╡╎ <mark>┑╖┙┨┆┇╵╘┨╸</mark> ┡
002 002		
	ta hi date bille	
<mark>┟┊╪╪┥╞┑┙╒┫╍┙╍┨┯╛╍</mark> ┨┸╸╶┨┄╶╢╵┉╌╢╼╍╴ <mark>╢╍╍╶╢╍╍╌╢╍╍╶╢╼╍╺</mark> ╎╼╍╺╎╴╸╸╸╎┄╴╢╸╺╶╢╵╌╴╢╸╶╶╢╸╌╌┨╸┈╎╌╌┥╍┯╶╢╶┉╵		
<mark>╞</mark> ┋╬╪╦┉┠╍╵┽╷╎╂╍╶╪╍┉╡╍╵╪╕┉╏╡╺┼╬╍╫╴╖┟╍╌┠╍┅╿╍┉╊╸╶╎╺╶║╴╶╞╶╶╎╸┊╶╴╿╴╎╸╴┊		
╠┊ <u>╠</u> ╼╶╢╍╺┾╍╷┠┶╷┠╌╷┠╌╷┠╼ ╷┢╍╞╼╺╏╴╸╎╴╵╠┉┢┉╻╻╻┥╸╻╻╸┊╴╴┠╸╸		
	BILLINA	<i>'p</i> 3
PPERCUDELIDIN		
		小司出行情報問題
Link and and an	inagin af marife and and an fear fear	· <u></u> <u>+</u>
		·[···][!!!];!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

FIG. A-13 A-28 HOM S' SHT OT OT V S' HOM

311-TE2E

7

3

]

FIG. A-14A A-29 Kentrela the in the State Stat

311-Te25

					•						1													٨-	30		
	19				HT.		[1]]	m]]]	<u> i i</u>									h.	1						
			31									 	1			11. 11.											
			27 							 								. : * .			1						
		2	22													• • •											
						-										••••						1				:1.	
Щ.		0	80			1								R	F7	UK	PN	11	VF.	5	11	10	1	FIG	HT		
			1.1.				• 						••• •••••	- <u>7 (</u> 1)	•/. !:	25	25	US		RE	5	50	er				
	••••••	 10	201											7-	OR	5	0/	N	010	b,	40	25	FPC	we	R		
		مو محساد						1	::::																		
		0	26																				:::		: ; ;		
	•															. .											
		0	24				1			[: ! !			: <u> </u> .				
	\sim												::::		111			• · · · ·									<u>і</u> Щі
44	11	0	22				 												· .					<u> </u>		1.	
	8	• 		. i . . . : :						:: 			 				1						1		1 • E		
		- a	0			` 	.				ļ								• • - • • • •							<u>.</u>	j-∔H
	27		. •			P	A . :]	· ·			. 	·			!				: : ;;;;			
,	0	.0	18				11_	i			. 	· ·					· · · ·								. <u></u>		44
ii trei	3					1.:	[.].			:: 				• • • • •		- <u></u>		·								++++	44
1	2	.0,	6			1-	1		l																		###
 +++	10	• • •	•••••			[: \ .	\			[[. 	:.: :		H											╠╬╫┦
	-1.7	.0	14.	:: 		1		<u>}-</u>	 			<u> </u>								· · · ·							11
	2	•••		• •		[. <u>.</u> ,]					1 . • • • • • •	•		• • •	•					·							
		0	2				3	$ -\rangle$					 		<u></u>												
		•				• • • • •	-\ 1		\mathcal{A}^{+}	- 	<u>.</u>	••••															
	2	Q.	10			{				<u> </u>							• • • •										
	- 2		÷					<u> </u>	•	\mathbb{N}	• • • •		••			·i-		::	:	[·;	• • ·						ii//
	-12	.00	? 8.	•	<u> </u>			$\left \right\rangle$.:.	<u> </u>	-																
	RE								X			<u>.</u>	••••	. .		•		. :		• ••••							###
		24	(. 0.	• • • • •					~>	2	, :		1													1	$\exists \dagger$
		ر ایک ا مراح														100	2			•) <u></u>						
		111									, '			~		·		1	5~	ne	~~						
		n	22												-2	24	6	35	00	w				P			
				: []			1						• • •			. : :								P		Ī	前
									: · · :	1	;								•								ΠÌ
				•				2				1				8			E	3			1	b			
			•						P	RE	53	U	PE	1	B	IN	2)										
tiii																											
										<u> </u>	:												:::			Ш	

ġ.

2

FIG. A-148

FIG. A-16 X-32 511-H INES TOTAL SUPPLY VERSUS PRESSURE RR.064 .060 2,50, EOR 14 ļiid 056 11 11 Hİ . 13 Ш 052 ίΩ' :1 111 : 1 Ui. EP 048 100 10 Ţ .Hiji j, 044 1: 1.1 ΞŤ. • .-; |<u>|</u>] i : i 010 · (LB/11/1 111 4 2 EPOWE ,036 1 HORS Į1 1 . . . 50 14.032 14.032 11.028 ;;:: H H ÷ Ы ; <u>| .</u> I I I I 11 . 11 ÷ , H .: . : • ; • H LINES TOTAL .024 i in .11 . : : <u>.</u> • • Ţ .i. 1: 020 $\left\{ \right\}$... ļI Į 10 HO, ı. Now. ...: ;:1 0/6 SUPPLY .: bo 2HOR ij. 0/2 1 • . : : ; 11 <u>[]]</u> 008 . : 1 : : • • Hi :; 11 1 11 004 11 . i, .: μĒ Щ. . • : ; i 1. 111 . . i : ł ÷. • 11 : : 3 1: 8 ÷ ÷ Πl ÷ (ISLIN) . RESSURE ÷ • • HII

×.

۲. M

IO X IO TO THE ", INCH KEUFTEL & FARTH CO. ALEANENE

F I I

Y,

N.

Ken to X 10 TO THE 13 INCH

i r

÷.

· -

and for the second of the second seco

ŝ.

FIG. A-19 A-35

Ċ,

TABLE A-3 6ز-6

j

TOTAL HEIGHT OF IRESSURE LINES

in the second

١

System	нр	 מ ז	0D	Tubing aT(#/in)	Fluid T(#/27)	Fitting TT(#/in)	Total Weight
1 rossure	<u></u>	10		<u>"'()/''')</u>		<u>"'(F/11/</u>	<u> </u>
1000	2	·275	- 513	.0052	.001782	.00181	.008792
	10	•508	•548	.00748	.00617	.00327	•01892
	50	.901	•946	-0187	.0194	-00609	•04419
,	100	1.160	1.219	.0321	.0322	.00841	.0/2/1
1500	5	.221	.261	.00/133	.001365	.00159	.007105
1. State 1.	10	.401	-441	.00376	.00386	.00277	•015 39
	50	.721	•773	.01745	.01249	.00557	.03551
	100	•940	1.010	.0309	-0212	-00805	.06015
3000	· 2	.158	.103	.0032	.000601	.00152	.005321
	10	.272	.713	.00538	.001784	.00253	.009694
	50	.492	.566	.0176	.00581	.005/14	.02885
	100	.632	.728	•0293	.00962	.00805	.04697
1000	2	.1/25	-1875	.00301	.000523	.00163	.005163
4000	10	.242	.281	-00565	-001305	.00259	.000515
	50	Ju18	.506	.01825	.001/23	.00572	.02820
	100	.542	.656	.03065	.00711	.00879	.04655
5000	2	.11.7	1875	0.030	000521	00183	005301
1000	10	.206	.263	-00600	.001035	00273	-009765
	50	. 372	1.76	.010%	001055	006.26	.02002
	100	1.82	.615	.03275	.00565	-00081	01821
	100	•40L	•01)	•••)=1)	••••	.00904	• 04024
7500	2	.129	·1875	.07416	.000406	·00238	.006946
	10	.176	.251	.00743	.000755	.00343	.011615
	50	•300	•435	.0223	.002195	.00806	•032555
	100	•385	.558	.0367	· 00362	•0129 7	•05329
10000	2	.112	.1875	.00508	.000309	.00293	.008319
	10	.145	.275	.01087	.000667	.00502	.016557
	50	.260	.432	.0267	-00162	•01099	.03931
	105	スル	.557	-01/17	002735	.01865	066085

TABLE A-4 A-37

TOTAL WEIGHT OF RETURN LINES

System Pressure	Back Pross.	HP	ID	OD	Tubing Wt(#/IN)	Fluid Nt(#/IN)	Fitting Wt(#/IN)	Total Wt. (#/IN)	
1000	5 00	2 10 50 100	.273 .508 .901 1.16	. 513 .51,8 .94,1 1.20	.0052 .00948 .01648 .0212	.001775 .00615 .01947 .03204	.001814 .005269 .00506 .00325	.008789 .018899 .01201 .061149	
1500	75 0	2 10 50 100	.221 .401 .721 .940	.261 .141 .761 .930	.00433 .00876 .0133 .01723	.001164 .003855 .0124 .03105	.001633 .00286 .005369 .007702	.007027 .015455 .031069 .045982	
3000 _.	1500	2 10 50 100	•158 •272 •492 •632	•178 •312 •532 •678	•0032 •0052 3 •00919 •01353	.000558 .001765 .00554 .00953	•001523 •002525 •004987 •007173	.005281 .009520 .019717 .030233	
4000	2000	2 10 50 100	.1475 .232 .418 .542	•1875 •272 •146 0 •596	.00301 .00474 .00829 .0138	.000521 .00126 .00/16 .00700	.001628 .00249 .004964 .007455	.005159 .00849 .017414 .028255	-
5000	25 00	2 10 50 100	•1475 •206 •372 •482	.1875 .246 .1420 .542	.00301 .00402 .00854 .0140	.000524 .00101 .00330 .00552	.001841 .0025 1 5 .005182 .007845	•005375 •007545 •017022 •027365	
7 500	3750	2 10 50 100	•1¼75 •176 •300 •385	•1875 •216 •358 •460	.00301 .00352 .00859 .01423	•000526 •000739 •002245 •00354	•002362 •00291,6 •005828 •00892	•005898 •007105 •016653 •02669	
10000	5000	2 10 50 100	.147 .165 .260 .334	•1875 •210 •331 •li26	.00304 .00380 .00943 .01546	.000528 .000649 .00161 .00266	.002932 .003407 .006765 .010735	.006500 .007856 .017805 .028855	

۸-5 ۸-5ع TABLE

			TOTAL	meight of su	PPLY LINES			
				Tubing	Fluid	Fittings	Total	
Pressure	HP	ID	OD	(#/in ²)	(#/in2)	(#/in ²)	$(\#/in^2)$	
1000	2	2140	•530	.00534	.00502	.00315	.01349	
	10	•690	.760	.00781	-0113	.00470	.02381	
	50	1.040	1.110	.0116	o256 ء	.005/E	.04482	
	100	1.350	1.420	•01493	.0433	·01042	.06865	
1500	2	.430	• 500	.005 01	.00439	•00330	•012 70	
	10	.620	.690	.00629	.00913	.00483	.02025	
	50	.925	•925	.01035	.021	·00797	.03932	
	100	1,160	1.160	.01290	•03195	.01089	.05574	
30 00	2	.430	•500	•00501	.00/139	.00407	.01347	
	10	•520	•590	•00598	.00642	·00579	.01819	
	50	• 7 77	.847	.00875	.01432	.01047	.03354	
	100	•922	•992	•01031	.0202	.01408	•0 ¹ 山59	
4000	2	.1+30	•500	.00501	.00439	.00563	.01503	
	10	.485	,55 5	•00560	.00558	•00663	.01781	
	50	•723	•793	.00817	.0124	.01251	•03308	
	100	.861	•931	•00966	.0176	•01735	.04361	
5000	2	.430	•500	.005 01	.00439	.00683	.01623	
	10	.460	•5 30	•00535	.00502	•00574	.01791	
	50	.690	•760	•00781	.0112	•01493	.03404	
	100	.814	•884	•00915	.01573	•02062	·0455	
7500	2	•430	•500	•00501	.001.39	.01043	.01983	
	10	·430	•500	•0050 1	.00439	.01043	.01983	
	50	.620	•690	•007 0 6	.00913	.02040	•03659	
	100	•737	•807	•00831	.0129	•02917	•05037	
10000	2	.430	•500	•005 01	.00439	.01479	.02419	
	10	.430	•500	•00501	·00439	. 01479	.02419	
	50	•580	.650	•00664	.00800	.02649	.04113	
	100	•69 0	•760	•00781	.01130	•03866	.05777	

III. Determination of the Space Occupied by the Transmission Lines

The total space occupied by the transmission lines is considered to be the effective volume of the fittings, plus the block volume of the bends plus the volume of the tubing as illustrated in figure A-20.

A-40

$$V_{o1}/I_{n} = \frac{7.8!_{1} \times 10^{-7} D^{3} p^{2}}{26000 + P} - 2.24 \times 10^{-8} DP + 1.28 \times 10^{-4} D$$

+ .760D³ + $\frac{n}{4}$ D²

D = Tubing outside diameter
P = System pressure

All of these values are dependent on the outside diameter of the tubing; therefore, the space occupied by the plumbing will decrease as long as the outside diameter of the tubing decreases. Since the inside diameter of the tubing decreases with any increase in pressure, the outside diameter will decrease until the wall thickness of the tubing increases faster than the inside diameter decreases.

The diameters used for space are the same as those determined for weight.

The space occupied by pressure, return, and supply lines is tabulated in Tables A-6, A-7, and A-8 respectively. The space is presented graphically in figures A-21A, A-21B, A-25, and A-29.

For pressure lines there is no exact minimum space per horsepower. For two horsepower the minimum space is near 4000 psi due to minimum tube size. For ten horsepower the minimum is near 7500 psi while for 50 and 100 horsepower no minimum is reached in the range investigated.

For return and supply lines no minimum is reached except for those horsepowers that become minimum sizes.

III. a. Tubing Space

١

The space occupied by the tubing, as shown in figure A-20 is the actual volume of the tubing and can be calculated from the equation:

$$V_{ol/In} = \frac{\pi}{4} D^2$$

D = Outside Diameters of the Tubing

The space occupied by tubing for pressure, return and supply lines is tabulated in Tables A-6, A-7, and A-8. The results are presented graphically in figures A-22, A-26, and A-30.

III. b. Bend Space

The space occupied by the bends is illustrated in figure A-20. The volume of this block can be calculated by the following equation:

 $Vol/In = (R + \frac{D}{2})^2 \times D \times \frac{N}{L}$

R - Bend Radius to centerline of tube (IN)

D - Outside Diameter of tube (IN)

N = Number of 90° Bends

L = Length of Tubing (IN)

The minimum bend radius of present tubing was found to be 3.5 times the outside diameter. If this value is substituted in the above equation it becomes:

$$Vol/In = 16 D^3 \times \frac{N}{L}$$

Statistical data was collected from several airplanes and it was found that the average number of 90° bends per inch of tubing was .0475. Therefore the equation becomes:

Vol/In = .76 D3

The bend space of pressure, return, and supply lines is tabulated in Tables A-6, A-7, and A-8 respectively. The results are presented graphically in figures A-23A, A-23B, A-27A, A-27B, and A-31.

III. c. Fitting Space

The space occupied by the fittings, as illustrated in figure A-20, is the effective volume occupied by the fitting.

The volume of the fittings is considered in three sections:

- 1. The actual volume of the sleeve extending beyond the nut.
- 2. The volume of the cylinder that would enclose the nut.
- 3. The volume of a cylinder that would enclose the fitting between the nuts.

A-41

The equation for the weight of fittings has already been developed. (Appendix A, Section I)

$$Wt/In = \frac{2.98 \times 10^{-5}D^{3}p^{2}}{36000 + P} + 8.5 \times 10^{-7}DP + 4.87 \times 10^{-3}D$$

The weight divided by the density and multiplied by an appropriate constant equals the volume of the fittings per inch of tubing. This equation is set equal to the volume of fittings for 1/2 inch tubing and 3000 psi, found above, and the new constants evaluated.

 $\frac{\text{Vol}/\text{In}}{\text{In}} = .082 = \frac{\pi}{\rho} \frac{2.98 \times 10^{-5} (.5)^3 (3000)^2}{36000 + P} + 4.87 \times 10^{-3} \text{D}$

$$\frac{x}{p}$$
 = .0263

Solving for new constants:

$$V_{01}/I_{II} = \frac{7.84 \times 10^{-7} D^{3} P^{2}}{36000 + P} + 2.24 \times 10^{-8} DP + 1.28 \times 10^{-4} D$$

The values for 2, 10, 50, and 100 horsepower pressure, return, and supply lines are tabulated in Tables A-6, A-7, A-8 and plotted in figures $A-2l_4$, A-28, and A-32.

HOT SOLUTION TO THE 1- INCH 2591-110

7

; [-

ł

,

.

ę

٢

.

 1

л. Л

311-14cc

					•																				A-4	0	
],		· i : .		[_.	<u>.</u>	<u> </u>	,		:					,			[1111
									- <u>+</u> -	• .•										1.1.1.1.1 1.1.1 1.) 		
		 		 ;				••••		 	 	†			••••••• 	+- 	 <u> </u>			1.1	111						
-					1	 		. ,								
	 - -	 		·! :			 		 ,			(· 	1		1				, ,								
	•) . 7	1					•••• •••	;	•							;		•••							
		+ <i>*</i>	—				• 			1	1	P	RE	ss	UR	E	41	NO	s	3Ē	ND	5	Pric	E			
1	1 * * ; }		2										VE	ks	US	Ś	ys	TEI	2	pr	Es	50	RE				
												F	bR	2	41	0	HC	RS	FF	por	VE,	R	, 		:::: ::::::	: : I	
	3		1.			 			:: 	ļ.	 • • •		<u> </u>		 	 										11'	
	3	•	 						 		. .			••••	• :•				· · · · ·	•					 	:: -	
. 	2		0		. •	1.		, 			. 	•••	ļ.,				:	': 			<u> </u> ,	<u>;;</u>					
					1						·'	. <u>.</u> .:		:			• •••	.				 	ļ				4
:, 	Ú.		9			. .		; 				ا ها معني							:								
	ñ	•	• . -	:			l			:			, : ,	::	1 · · ·				 					14			
, i	9	- C	8					• • •	1 . 1				ļ	• • •	ļ		<u> </u>				- <u> </u>						
	2		1 			.	;		 · · ·								 	<u>.</u> .				::::					
	<u> </u>	; .C	7					•	 												<u>-</u> -	1000 1000					┤╧┿
•	8)	-	 		· `	[••••		· •		: :		•••••				••••		: ::					
	S Y	.0) <i>G</i>				<u> </u>		<u>.</u>						•				+				1		 : : i		
-	3		; • • •	••••	• •	ļ		ļ .		• -						•	 ••	••••;									
		1.0	い			<u></u> . .	-t-			<u>-</u> -		 . :		 		 : :											
1.1	4			`			··		: 	••	• • • •	••••						÷		; 						 	
	-3	jc	. 	-	†		•	<u>\</u>	.		 			 :::	·.		 		: 11							11.,	
• • • • •	5		1		 		'		 . 	• •• •				• • • •	 						• • ••• ·						
–	- 2		- -	1	† · · .		 		\mathbf{N}	+													1				
111	- Q		; 72	1		N								•													
			'	1		[]													- 43-		2					1.1	
		6	2				N										1										
						ļ	. :					• · · ·	 -! (2 1	01	25	FP	jon	ER	مینا						
							` ·	· 			ľ	· ·			Ì	 	İ	ļ				: . 	 	11.1 			
	 			ļ	· 			Ż		 		k		' 	.6	?	ł 1	- :		3 :	 			þ.	×1	ير	
1			ļ <u>-</u>		<u> </u>		 				<u> </u>	;					<u> </u>							: -			
	 	. <u></u>		ļ	 		.	Į.		.				<u>.</u>					; 								111
	 		ļ		<u> </u>			ļ	PR	E.	Ś.S'	UR.	E	.(1	B	///	13		•. +							<u>:[:</u>	
			<u></u>		<u> </u>							•••••	, 				 	÷									
	<u> </u>	<u> </u>	:::	ļ	:::. 	_ <u> </u>		::	.: 		 						 		ļ						1		
	ļ: <u>:</u>	<u> :</u> ::	- - -				 		1	 .	. 		-		 		ļ <u>.</u>			<u> </u>			<u></u>				
	<u> </u>		<u> </u>			<u> .</u>		<u>.</u>		[: : :	<u>i</u>		L _	L <u></u>	1		<u> :.</u>								ti II		

FIG. A-23A

NUM PERSON AND THE R. INCM PROPERTY AND THE REAL PROPERTY INCM

311-1925 •••••••••

Ň,

FIG. A-23B A-47 And the second second to the second s

FIG. A-24

A-48

TABLE

Q

A-6 A-49

1

TOTAL SPACE OCCUPIED BY PRESSURE LINES OD System Tubing Bends Fittings Tota 1 (IN) Prossure HP (IN3) (IN3) (185) (I.N5) •313 •548 1000 2 .0767 .033 .0000LB .100048 •363086 1•34616 10 .238 .125 .000086 .702 .644 50 .946 .00016 100 1.38 2.5522 1.119 1.17 .00022 .261 1500 2 .0536 .057143 .0135 .00043 10 .447 .157 .0679 .221,976 .000076 •773 .469 . 3515 50 .000147 .820647 100 1.01 .800 .782 .000212 1.582212 2 3000 .198 .0308 .0059 2000040 .036740 10 •313 •566 .077 .0233 .000067 .100367 50 .253 .1378 .000143 .390943 100 .728 .416 .000212 .293 .709212 4000 2 .1875 .027 .0059 .00043 .032943 .062 10 .281 .01685 .000062 .078912 50 .506 .0954 .296549 .201 .000149 100 .656 .21/15 •338 .000231 .552731 .0059 .1875 .000049 5000 2 .0276 .033549 •263 •474 •0543 •1765 .000073 10 .01382 .068193 50 .0810 .257665 .000165 100 .1768 .474059 .615 .297 .000259 2 .0059 7500 .1875 .276 .000063 .033563 .01202 10 .251 .0495 .00090 .061610 50 •435 .1485 .0625 .000212 .211212 100 .21,45 .132 .558 .000341 .376841 10000 2 .1875 .0276 .0059 .000087 .033587 10 .275 .0594 .01573 .075262 .000132 .1475 50 .432 •0613 .000289 .208089

100

•557

.2440

-1314

.000491

.375891

100

202 SIGE & SUVYLL & ESCO. 2021 - Superson - Supers Superson - Supe

Ĩ

Millin

Jear a seurer e rare co. Millioner, é con line accadel co. Jear bray. Bature e e

FIG. A-26 A-51 New REUTEL & THE Y, INCH 3597-136 New REUTEL & THEY CO. WITHTO

đ

; بې

• 11

ċ

í

; . .

.

7.1

																								4-	52		
			!			1												<u>i i i</u>							, ;		
4		•-•••															1, 1,		•••				1.11				
													 	• ••••			. 									1	
				- -	1	ر ا . م وسد		::! 		•			;, 							<u></u>				 			
•	: ¹ 			, i -							· · · · ,	. 			::::: •::::			: . : • : . • ·	1 •••							111 	
'	; 		3.			:				· · · ·	- 11*	'.' 	· ·	·						· · · ·		ļ					
. l	i. [- •	•	4	2							R	TC	R.	W.	L1.	VE	5	8E	NL	5:5	r31	CE	; !		
			2							<u></u>	 	[.] .	: <i> </i>	FR	-80	S	SY	57	ΕŅ	1	PR	25	su	RE			
										•••			70	<i>R</i> .	2.9	10	H	PR.	se	10	WE	R			-		
	· · · · · · · · · · · · · · · · · · ·	.1.	/	••••						• •			• • • .					- -	بد		 		1:1		i;::		
		. ر			••••			, 11	1111. 1	••••	••••		1					•						++ 			
)	3			·						 : . i									1								
••• • •	2	0	9	-			•••	·								;;;,				 <u> </u>							
	2	, :	-							1											111	1	1 				
:		.0	8.		, 			:		 											<u>e</u> p						
	Ŭ N				1.1				;; 		: 		1::** • ;• •														
	3	_0	2			- 1						• : : : -		ļ			: :		:: '								
	9						2		. 						• = =												
	Š	.0	6	<u></u>			<u>} </u>																				
r i -	() ()		· 	•, ;		· <u>;</u> .						 						· :									
	- iz	Q	\$	· • • • • · ·																<u>, ii</u>							
	1	-	A									•												i			
	Ň		Y		 														1								
	N'S	0	3	:	•		· • • •																				
	57					: .			$\left \right\rangle$										11.			ijį					
11	8	.0	Ζ_			X				R	:,								111 								
	·	ه بسمبر م	 	.	 	$\left \right\rangle$		İ		· · · · ·			- <u> </u>				:'': 	· ·	· · · ·	1.: 	 						
	l. L. L.		Ĺ		 		5) <u>-</u> -			م	10	110	25.	FA	200	حرح		1					
Ŀ.		.			: • [•] •••		-		\sim	2	HO	<u> </u>	E F	pu	(<u>6</u> - F	8			<u>}</u>					₿			
				Ļ		· · · ·		-				<u> </u>						· · ·									
								,	:	••	••••	.			4	5			E	7				р	K/	23	
						:::			•• 		 ·		 		 -												
	 :					 -	Ċ	- אין	74				С. С.	 K/J	25	1	2/	1	,							-	
										1.5.50	- * -		, د ر به		• • • • • • • • • • • • • • • • • • •												前
													1				<u> </u>										
	Ŀ		[.								_		:							1			:::				
															·												
		_							•																		

FIQ. A-274

7 FIG. A-27B A-53 1: ļ., 14 RETURN LINES BEND SPACE VERSUS SYSTEM PRESSURE FOR SOF 100HORSEPOWER 13 ACVILIANT CT OL X OF UND 12 ÷ 11 11 -BEND SPACE (N3/IN) 1 i ::: 10 11 ÷.1 Į, 9 H 011-T235 . ÷ 1. Щ 8 : ij ٠i ! •; 7 ÷ ÷ İ. 6 LINES ::' 5 ÷ 11 • : : ÍT 111 RETURN ¢. 111 3 ::: 2 JOO HORSE POWER ы 6 63 2 え 8 : 1 ·i: SYSTEM PRESSURE (LB/IN2) 1 i : .

.

1'ABIE A-7 A-55

System	Back		OD	Tubing	Bends	Fittings	Total
Pressure	Press	HP	(IN)	(IN2)	<u>(1N²)</u>	(IN)	<u>(IN2)</u>
1000	500	2	.313	.0767	.02325	.000048	•097998
	-	10	-584	•236	.125	.000091	•361 0 91
		50	.941	.695	.633	.000159	1.328159
		100	1.20	1.13	1.313	.000217	2.44.3217
				-			
1500	750	2	-261	•0535	.0135	.000043	.067043
		10	· • 4441	.1 568	.0651	.000075	•22 1975
		50	.761	•458	•335	.000144	•789144
		100	•98 0	•754	•715	•0002 0 3	1.469203
7000	1500	0	109	0777	0050	00001-1	076711
5000	1900	10	•190	0741	•0079 00707	.000041	•050711 mol.of
		10	•)1C ·	•0101	.02505	.000066	.0.4.490
		50	•752	•222	• 1 14	000151	• 5 50151
		100	•070	• 201	•297	.000189	•598189
4000	2000	2	.1875	.0276	.005	.000043	.032643
		10	.272	• 0 58 1	.0153	.000065	.073465
		50	.460	.1660	.07L	.000131	.240131
		100	.596	. 2785	.161	.000191	-439691
5000	05.00	0	1000	A0.84			
5000	2500	2	.1875	•0276	-005	•000048	.0,2048
		10	-246	•0457	.0113	•000066	•058866
		50	.420	•1365	.0563	.0000136	•192936
		100	•542	•2305	•121	.000213	•351713
7500	3750	2	.1875	.0276	.005	.000062	.032662
		10	.216	.03665	.00766	-000071	0/138/
		50	- 358	.0983	03/185	.000151	12230
		100	.460	.166	.074	.00023	·24023
					· -		
10000	5 000	2	.1 375	.0276	.005	.000077	.032677
		10	.210	•0346	•00696	.000092	.041652
		5 0 .	-331	.0 86	.0276	.0 00178	•113778
		100	.426	.1425	.0586	.000282	.201382

у,

TOTAL SPACE OCCUPIED BY RETURN LINES

Ker KENNEL A LANKE A SUPERIOR

araffa a murutu a rate co. Milicarean a murutu rate dan barty. Milicarean a murutu rate a

A-31 A=58 FIG. SUPPLY LINES BEND SPICE 0.... C 1 PRESSURE VERSUS SYSTEM PRESSOR FOR 2, 10, 50, \$ 100 HORSERWER ÷ Ŀŀ 9 . . 1. **`**۱ B <u>.</u>.| • • . 7. (KNI) 1 , j. <u>.</u> . T 6 BEND SPACE • 2 2 i::i -ح 3 LINES 1. 91 ÷ i 4 'о_с, or, :. 724405 . . ٠i 11 3 . 1 . ÷ 4 : i .. 1 2 Ľ . 1. ίt: : 2 HORS EPOWER ļ., 1 : L٠ ;1; 11 i î ·! · ÷ x/04 2 1 10 1 8 1. 1 PRESSURE (LB/IN) ٠İİ, د

63 Seri-Logarithmic, 2 Cycles X 20 division 64m ceo167 96

1AELE A-8 A-61

TOTAL SPACE OCCUPIED BY SUPPLY LINES

10

į.

System Pressure	HP	OD	Tubing (IN3)	Bords (IN3)	Fittings (IN ³)	Total (IN3)	
1000	2	• '330	•221	•1129 *	00008	• 33398	
•	10	•760	•454	•3337	.00012	•78782	
	50	1.110	•967	1.013	.00019	1.98019	
	100	1.420	1.52	1.04	.00027	3.56027	•
1500	2	.500	.1962	.095	.00009	.29129	
	10	.690	•374	.2495	.00013	.623 63	
	50	•995	•7775	•749	.00021	1.52671	
	100	1.230	1.108	1.413	.00029	2.60129	
3000	2	.500	,1962	.095	.00012	.29132	
•	10	•555	.252	.456	.00015	12964	
	50	.793	.ligh	.1.62	.00027	1.02622	
	100	.931	.680	•732	.00037	1.50437	
4000	2	.=,00	.1962	.095	.00015	.29135	•
	10		-252	.130	.00017	.38217	
	50	.760	.Lqu	.379	.00033	.87333	
· .	100	. 884	.680	.613	.00045	1.29345	
5000	2	.500	.1962	.095	-00017	29137	
	10	.530	.2205	.113	-00020	.3337	
	50	.760	Judi	- 33 35	-00039	.78789	
	100	.884	.6 <u>11</u>	•525	.00054	1.13954	
7500	2	.500	1962	.095	-00028	.2011.8	
1,700	10	.500	.1062	.095	-00028	201/8	
	50	-690	371	-250	-0005b	62151	
	100	-807	-511	. 306	.00077	.00777	* *
	200	•001	•) = 2	• 770		• • • • • • • • •	
1000 0	2	•500	. 1962	• 0 95	• 0 0039	. 29159	
	10	•500 ·	•1962	·C95	.00039	. 29159	. '
	5 0	.650	•332	.209	.00067	.54167	•
•	100	•760	•453	• 3 33 5	.00101	.78751	

APPENDIX B

Ż

1

÷.

THE WEIGHT AND SPACE OF,

HYDRAULIC CYLINDERS

AT

VARIOUS PRESSOR S

HYDRAULIC CYLINDER WEIGHT STUDY

The following symbols will be used throughout this section.

- W_r = Total Hydraulic Cylinder Weight (Lb)
- W_B = Unibal Boaring Weight (Lb)
- W_w = Web Weight (Lb)
- W_D Disc Weight (Lb)
- W_C = Cap Weight (Lb)
- W = Barrol Weight (Lb)
- W_P = Piston Weight (Lb)
- WR = Rod Weight (Lb)
- W_G = Gland Weight (Lb)
- W_E = Rod End Weight (Lb)
- W_F Fluid Weight (Lb)
- d Barrel Inside Diameter (In.) (Bore Diameter)
- D Barrel Outside Diameter (In)
- P = Systom Working Procesure P.S.I.
- P' Proof Pressure (1.5 P) (P.S.I.)
- Pⁿ = Burst Fressure (2.5 P) (P.S.I.)
- S = Stroke (In.)
- St Longitudinal Tensile Stress P.S.I.
- Stt = Transverse Tensile Stress P.S.I.
- S₈ = Shear Stress (P.S.I.)
- ρ = Material Specific Weight (Lb/In³)
- G = Safety Factor (Number)

 \mathbb{N}

Dx	-	Outside Diameter (In.) Subscript Designates Part, Which Will Agree With Weight Subscript
₫x	œ	Inside Diamotor (In.) Subscrip ⁴ Designates Part, Which Will Agree With Weight Subscript
F	۲	Load Through Axis of Cylinder (Lb.)
A	#	Cross Section Area (In. ²)
L _T	-	Thread Length (In.)
L	•	Length (In.)
t	#	Thickness (In.)
D _C		Cylinder Outside Diameter (Space) (In)
D _R	-	Rod Outside Diameter (Spice) (In.)
`θ	-	Quantity Added to Stroke to Yield Cylinder Length (Space) (In)
ઠ	-	Quantity Added to Stroke To Yield Rod Length (Space) (In)
P _{CR}	#	Critical Column Load (Lb.)
a '	-	Cylinder Length (In) (Column)
ъ	-	Rod Extension Longth at Half Stroke (In.)
L	-	a + b
E ₁ ,	E	 Young's Modulus For Cylinder and Rod Material, Respectively PSI
1 ₁ ,	12	 Moment of Inertia Cylinder and Rod, Respectively (In⁴)
j1.	j2	Stiffness Factors (In.)
<u>a</u> <u>j</u> 1	<u>ь</u> ј2	- Radians

B-3

ſ

1

İ.

Ł.

<u>.</u>

<u>j</u>ī

It was the object here to obtain the woight equation of each cylinder part in terms of bore diameter, system pressure, and stroke.

For purposes of calculation a cylinder of the type illustrated in figure B-1 was assumed. This choice is based on statistical evidence that this type predominates all other types in current use in the aircraft industry. (See figure B-2) The cylinder was subdivided into regular geometric solids and named for identification.

First is the unibal bearing at head ond. A plot, figure B-3 was made of bearing weight vorsus load and because the points approximated a straight line, the following relation is trues

$$W_{\rm B} = 1.1 \times 10^{-5} F$$

л d²рт

But:

F

W

5 .

So:

$$_{\rm H}$$
 = 1.297 (10⁻⁵)d²P

Next is the web. From data it is logical to assume the web weight to be twice the unibal bearing weight, whereupon there results:

$$W_{w} = 2.594 (10^{-5}) d^2 Y$$
 (IJ)

Next, the disc is considered. Bacically its weight can be said to be:

 $W_D = \frac{\pi}{L} D^2 t \rho$

From Lame's formula (Mark's Mechanical Engineering Handbook Ref. 3) it is evident:

$$D^{2} = d^{2} \left(\frac{St + P^{*}}{St - P^{*}} \right)$$
(III)

From the equation for stress in a circular plate under uniformly distributed load (Mark's Mechanical Engineering Handbook Ref. 3)

$$= -\sqrt{\frac{0.6 \, d^2 F^n}{4 \, S_t}}$$
(IIIa)

Alsos

$$\rho = 0.1 \, \text{Lb/In}^3$$

St = 50.000 Lb/In³

в-4

(I)

Finally:

Ţ

1

1.

$$W_{\rm D} = .000215 \ \mathrm{d}^{3}\mathrm{P}^{1/2} \left(\frac{20,000 + \mathrm{P}}{20,000 - \mathrm{F}} \right)$$
 (IV)

 \mathcal{C}

The basic cap weight equation is:

$$W_{C} = AL = K \Lambda L_{p}$$
 (V)

For area the following mothod was used:

Tensile Load = Tensil Area x Tensile Stress

$$\frac{\pi}{l_{+}} d^{2}P^{m} = A \times S_{t}$$

$$A = \frac{\pi d^{2}P^{m}}{l_{+} S_{t}}$$

And for threa lengths

Shear Load - Shear Area x Shear Stress

$$\frac{\pi}{4} d^2 P^n = \pi D L_T \times S_g$$

$$L_T = \frac{d^2 P^n}{4} S_g D = \frac{d P^n}{4} \frac{S_{tt} - P^n}{S_{tt} + P^n} \frac{1/2}{S_{tt} + P^n}$$
(VI)

K is assumed to be proportional to pressure and thread length.

So at 3000 pais

$$L = KL_{T} - L_{T} + C$$
 (VII)

From The Glenn L. Martin Company Hydraulic Design Manual it is seen thats.

C = 1.074 If: d = 1.5 In P = 3000 psi P^m = 7500 psi Also: S_B = 37,000 psi S_{tt} = 50,000 psi

Substituting in equation VI:

$$L_T = \frac{1.5}{4} (\frac{7500}{37,000}) \sqrt{\frac{50,000 - 7500}{50,000 + 7500}} = .0635 \text{ In.}$$

B-5

From Equation VII:

$$K = \frac{L_{f} + C}{L_{T}} = \frac{.0653 + 1.074}{.0053} = 17.145$$

Finally:

$$W_{C} = \pi \frac{d^{2} p^{m}}{\frac{1}{4} S_{t}} \cdot \frac{d p^{m}}{\frac{1}{4} S_{0}} \left(\frac{S_{tt} - p^{m}}{S_{tt} + p^{m}}\right)^{1/2} \cdot 17.145$$

Ors

-

$$W_{c} = 1.157 (10^{-8}) d^{3} l^{2} (\frac{20,000 - P}{20,000 + P})^{1/2}$$
 (VIII)

B-6

(IX)

(X)

 (\mathbf{XI})

(XII)

Piston weight was assumed to be:

 $w_P = \frac{\pi}{4} d^2 t \rho$

To obtain thickness of the piston, a plot was mude which is a plot of values from The Glenn L. Martin Compuny Hydraulic Design Manual, Figure B-4, and from it it was observed that:

 $t = .15l_{1d} + .569$

closely approximated retual conditions.

For steels

ρ - .283 Lb/In³

Consequently:

$$W_{\rm P} = \frac{\pi}{4} d^2 (.154d + .569) (.283)$$

Or;

 $W_P = .0801 d^3 + .1266 d^2$

 $p^2 = d^2 \left(\frac{s_{tt}}{s_{tt}} - \frac{p^2}{p^2}\right)$

The barrel weight was considered to be:

$$W = \frac{\pi}{L} (D^2 - d^2) L \rho$$

But :

L = S + Piston Thickness (Equation X)

$$L = S + .54d + .569$$
 (XIII)

= 0.1 LB/IN^3 (Alusinum) (XIV)

B-7

Combining Equations XII, XIII, and XIV, Equation XI becomes:

$$W = \left[.0121 \, d^3 + (.07854 + .0447) \, d^2 \right] \left(\frac{P}{10,000} - .5P \right) \qquad (XV)$$

In order to calculate the red weight it was necessary to establish criteria for rod physical dimensions to obtain comparative values up to 10,000 P.S.I. system pressure.

In order to determine the proportions of diameter and wall thickness of the piston rod, reference is made to figure B-2 which indicates an area ratio of .75. (This means a rod diameter equal to one half the bore diameter). The maximum column strength of a cylinder with such proportions could be obtained by using a solid steel rod, and a plot was made of this case for 3000 P.S.I. Howaver, much greater weight efficiency is achieved without appreciable loss of column strength by use of a hollow steel rod having a wall thickness approximately one eighth of the rod diameter in larger sizes with a minimum wall thickness of .094 inch in smaller sizes #s a manufacturing practice limit. A curve representing the column limit of .094 wall thickness rod has been plotted on figure B-5 up to the point where it also equals one eighth the rod diameter, and beyond that point the curve for column limit was plotted with a rod wall equal to one eighth of the rod diameter. It should be observed that the nollow rod column limit is very close to the solid rod column limit at the same pressure. From figure B-6, it should be noted that the majority of cylinders in use today at 3000 P.S.I. fall very close to the column limit. This means that to be fair in the analysis, design of cylinders to a higher pressure necessitates, in many instances, using a shorter stroke and a correspondingly greater load in order to produce the same quantity of work. This same optimum rod design of .094 minimum wall and an increase in thickness equal to one eighth the rod diameter has been used at all pressures.

The graph figure B-5 presented an excellent correlation between bore, atroke, and pressure for each pressure range considered. These values were established and inserted in the weight and space equations.

The critical column equations were calculated by the following equations: *

* "Critical Buckling Loads for Hydraulic Cylinders" by Fred Hoblit, July 1950 issue of <u>Product Engineering</u> magazine

And:

These equations take into account initial offset of the rod as it emerges from the cylinders. This is sometimes referred to as "spring action".

It is evident that two rod equations are required, one for rod wall thickness of one eighth the rod diameter, and another for a constant wall thickness of .094 inch. Further, the former equation then applies if the bore diameter is over an inch and one half, and the latter below this value.

The basic equation for all cases is:

$$W_{\rm R} = \frac{11}{4} (D_{\rm R}^2 - d_{\rm R}^2) L_{\rm R} \rho$$

Assuming rod wall = 1/8 rod diameter

Or:

1

1.

$$t = \frac{D_R - d_R}{2} = \frac{D_R}{8}$$

From which:

$$8 (D_R - d_R) = 2 D_R$$

And:

$$4 d_{R} = 3 D_{R}$$

B-8

(XVI)

B-ò

 $d_{\rm R} = 3/4 D_{\rm R}$

.

And :

So:

$$d_R^2 = 9/16 D_R^2$$
 (XVII)

The rod length is:

 $L_R = S + Gland Length$

Gland length is shown in figure B-7 as being .929 DR + .9142 whereupons

$$L = S + .929 D_{R} + .9142$$

And if length equal to one quarter inch is added for this nut:

$L = S + .929 D_R + 1.1642$			(XVIII)
$\rho = .283 \text{ LB/IN}^3$ (Steel)		·	(XIX)
$\tilde{D}_{R} = \frac{d}{2}$			(xx)

Combining equations XVII, XVIII, XIA, and XX, Equation XVI becomes:

 $W_{\rm R}$ (.0244 + .0283) d^2 + .0113 d^3

When rod wall = 1/8 (rod diameter)

0r:

$$D_R - d_R = 2$$
 (.094)

Then:

$$d_R = D_R - .188$$

And:

$$d_R^2 = (D_R - .188)^2$$

(XXI)

Combining equations XVIII, XIX, XX, and XXI, Equation XVI becomes:

$$W_R = (.0417d - .00784) S + .01938d^2 - .003644d + .03946$$

(XXII)

Gland weight is expressed as:

When rod wall = .094

$$W_{\rm G} = \frac{\Pi}{4} \left(D_{\rm G}^2 - d_{\rm G}^2 \right) L \rho \tag{XXIII} \tag{XXIII}$$

Referring to figure B-7, it is seen that:

$$D_{G} = 1.25 D_{R} + .700$$
 (XXIV

ŝ.

And:

1

1.

1

$$L = .029 D_{\rm R} + .9142$$
 (XXV)

Also, it is obvious that:

$$d_{\rm G} = D_{\rm R} \tag{XXVI}$$

$$Q = 0.1 \text{ LB/IN}^{\prime} (\text{Aluminum})$$
 (XXVII)

Combining equations XXIV, XXV, XXVI, and XXVII, Equation XXIII becomes:

$$W_G = .00265 d^3 + .03711 d^2 + .0806 d + .0352$$
 (XXVII)

Rod end weight is plotted as a function of the load in figure B-8. Thus the relation below occurs:

$$W_E = 1.293 (10^{-9}) (LOAD)^2$$

But load is:

$$LOAD = \prod_{i} d^2 P$$

Accordingly:

$$W_{\rm E} = 1.795 (10^{-9}) \, {\rm d}^4 \, {\rm P}^2$$

Fluid weight equals:

$$W_{\rm F} = \frac{1}{4} {\rm d}^2$$

Or:

$$W_{\rm F} = .0238 \, {\rm d}^2 \sigma \, {\rm s}$$

And of is a pressure coefficient, see figure A-9.

All the foregoing equations were checked with data, and it was found that some coefficients had to be amended slightly. The correct equations are listed below.

Final weigh' equations for hydraulic cylinder parts:

Unibal bearing: $W_B = 1.297 (10^{-5}) d^2 P$ Web: $W_W = 1.343 (10^{-5}) d^2 P$ (XXIV)

(XXIII)

B-10

10

Disc:

$$W_D = .000462 d^3 F^{\frac{1}{2}} \left(\frac{56,000 + 2.5P}{50,000 - 2.5P} \right)$$

Cap:

$$W_{\rm C} = 1.157 \ (10^{-8}) \ {\rm P}^2 {\rm d}^2 \ \sqrt{\frac{20,000}{20,000} + \frac{2.5P}{2.5P}}$$

Piston:

$$W_{\rm P} = .0248 \, {\rm d}^3 + .0392 \, {\rm d}^2$$

Rod:

1. Rod wall =
$$\frac{\text{Rod } 0.D.}{8}$$

W_R = (.02625 S + .03045)d² + .01217 d³

2. Rod wall = .094

$$W_{\rm R}$$
 = (.0522d - .00985) S + .0243a² - .00457d = .0495

Barrel:

$$W = \left[.0121d^3 + (.07854 \text{ s} + .0447)d^2 \right] \left(\frac{5P}{50,000 - 2.5P} \right)$$

Gland:

$$W_{\rm G} = .0036d^3 + .0436d^2 + .1097d = .0478$$

Rod end:

$$W_{\rm E}$$
 = 3.015 (10⁻⁸) d⁴p²

Fluid:

$$W_{\rm p} = .0238 \, {\rm d}^2$$

" " given in figure A-9

The final weight equation is:

$$W_{T} = W_{B} + V_{W} + W_{D} + 2W_{C} + W + W_{P} + W_{R} + W_{G} + W_{E} + W_{F}$$

and this equation is shown plotted in figures B_{-} 9 and $B_{-}10$

B-11

HYDRAULIC CYLINDER SPACE STUDY

The space occupied by a hydraulic cylinder has been considered to consist of two cylindrical spaces, end to and, on the same longitudinal axis. The larger space is of a length equal to the distance from web end of the hydraulic cylinder to the gland end, (see figure B-11) and with a diameter equal to the outside diameter of the barrel nut. The smaller cylinder has a length equal to the distance from the gland end to the extreme rod end when the rod is extended to full stroke, and its diameter is equal to the largest diameter of the rod end. This arrangement provides for ports, etc.

From the foregoing it is evident that four dimensions are necessary to solve for the space (volume) requirements of a hydraulic cylinder; namely, large cylinder diameter, large cylinder length, small cylinder diameter, and small cylinder length.

To simplify this section of the work a semi-graphical method was utilized. This method consists of solving for general equations a d using plots of these equations as the criteria in succeeding volume calculations.

As previously stated, the large cylinder diameter is that equal to the outermost dimension of the barrel lock nut. This is justified, since space enclosed by this dimension is most necessary for port allowances, etc. Referring to figure B-12 it is seen that this dimension is:

$$D_{c} = d + 2t + \Delta + 2(1.2 t) + C$$

From The Glenn L. Martin Company Hydraulic Design Manual, data was plotted and from this plot it was seen that:

$$= .0793 \text{ d} \quad \frac{50,000 + 2.5P}{50,000 - 2.5P} + .1789$$

Also:

C = .385 for the range from .750 to 4 inch diameter barrel

From the thick wall (Lame') Formula:

$$t = d \left(\frac{1}{2} \sqrt{\frac{50,000 + 2.5P}{50,000 - 2.5P}} - \frac{1}{2} \right)$$

And this all combines to yield:

$$D_{\rm C} = d \left(2.273 \sqrt{\frac{50,000 + 2.5P}{50,000 - 2.5P}} - 1.2 \right) + .5639$$
 (XXV)

A plot of which is shown in figure B-13.

The length of the large cylinder was considered to be: (See figure B-14)

 $L_{C} = 1.5d + t_{D} + S + L$

1.5d was considered to be a good allowance for the web length:

From Equation IIIa:

 $t_{\rm D} = \frac{0.6 \, {\rm d}^2 \, (2.5 \, {\rm P})}{4 \, {\rm S}_{\rm t}}$

From Equation XXV:

Finally:

 $L_{c} = \Theta + s$

Where:

Ī

 $\theta = (1.9645 + .001583 P d + 1.1642)$

is plotted in figure

For the smaller cylinder (rod) assumptions were made based on data. A quantity " \int " to be added to the stroke to yield the small cylinder length, was considered to be equal to the bore. The small cylinder diameter was set "at 0.85 times the bore diameter. This information is plotted in figure B-15.

For the total volume occupied by a hydraulic cylinder

$$\mathbf{v} = \frac{\mathbf{T}}{4} \left[\mathbf{D}_{\mathbf{C}}^{2} + \mathbf{s} + \mathbf{D}_{\mathbf{R}}^{2} (\mathbf{s} + \mathbf{s}) \right]$$
(XXVIII)

(The values from the graphs are inserted along with known quantities)

The values for equation were solved and are plotted (figure B-16) to show the minimum pressure.

(XXVI)

(XXVII)

																					-			_	-	a arrestered	-
		1							<u> </u>			1	1	1	,			T	Les 1		1.1			100		11.11	
	*:H										1 - 1 - 1 1 - 1 - 1		[l	۱ <u>۰</u> ۰۰											+++++++++++++++++++++++++++++++++++++++	
								1.1		1.	1.1	1 . ·	ļ		÷.,						j T	н . ,		1:44	l i i		
		<u>[::</u>]	1		<u> </u>								<u> </u>		Ì		i	. 0			+	1	1				
		::::				11-11	ĊYI	LIN	DE	R	DI:	ŝΤſ	21E	LUT	101	U			1			Ľ.,:],		1.+++	
							1	1.	100			10	*	1	Ina	200		1 :	[:]				1::	lir.	141	1.11	-11
	÷+-			<u> </u>	<u>.</u>	↓	nic.	γiv	100			·····	<u>_</u> r	-10	500		1	1			17		1	1			
				.		V	Ek	151	2S		YR I	⇒A	·	12	AT.	10		 		1241						• - ÷;-	
		} -	1	1 10	1.1	•	50	TA	ŇL.	Sr	άM	ÞLe	Ξ.	ЪÒ	4	.		1 2	i 11		1.1.1	End		1		1 '	:;
		[•]	10	•	∮ →	┊┠╌╌╌		+			تسم				,		- تبنا	17	N.				1		1. :		
	121	ļ	.					۰. ۱	Å	L		l, ∴	ha	40	<u> </u>			↓ . / .	191		ļ		l i :	-			
					1.1		6	— .;	i n'i		\overline{v}	. 6-5 - 3	UM I	10	1	(i i] [:.	X	· • . •		11		<u> </u>			
-		†]	j				(<u> </u>)		511	AI	-			11-			1	1	[.			[0;!]	
			j			-1¢	<u>, </u>	1 I	~~	1 . . •	<u> </u>	() 	χU	<u>ہ د</u>	5		.	Į		-	· :		ł ·	••••	444	••	
		1.			F	20)	Þ:	51	þe	E	FF	†e	CT	(Ve	1		<u>`</u>	I									-
					5	100	= _	1. с	SIV.	in	En	P	Y	PIC	TO	J		Į.	1.1	۱ ۱	1.1	11	:	: :			•:•
•	f		-	· * • • •	1		-	1			1		1.1.		1		1:1	<u> </u>	<u> </u>	ł tr			t:-	· · · ·			
<u>.</u>			<u>L.</u>		· -	1E	A	5	<u>A</u> F	<u>se</u>	- A		<u> </u>							11	1.11		Ŀ.	1	1		
	Į		<u> </u> ,₽.	• ' ī	111.	2	1 1.		1.1				1:1.0	1	1.1			1.						1 11			ļЮ.
	1			• • • i .•		1.1.7	177	1::*:	1:1:						1:1:1	÷ 🗄	† ₽.	· ·	1.3	:: \	137	137	1:		titt;	Hit	[j]
	Ľ		130	[]	<u>_</u>			 					<u> </u>	<u> </u>	<u> </u>	ļ. <u></u>	¦ ∎	· [<u> </u>	┟┯╴╽		 	HH.	<u> </u>
:	ļ. ,	1	<u>ا</u> .		j		: ÷.	[:		:	113						1.	:	1.1		÷1.]•	1 88	144	194	
	•• •	1	1.	.	1		1.1		111						1	-	1	1 .		†	E		T.	1.11		[[]]	
- -	<u>.</u>	6	+		<u> </u>			¦ ;	<u> </u>		<u> </u>	ļ i. ,	+	<u> </u>	+		.	·	ł	- L-	1	1	1- 1	1	{ −++	₩₩	<u>h</u>
11			121								$\mathbb{H}_{\mathbb{H}}$						1	1			1	122	<u>ີ</u> ດ				
1.14		ň									· . : ·			1		· ·		1			V		17		14		
- <u></u> -	 −−+ '	5	L			<u></u>	+		1		<u> </u>	÷÷-,			<u> </u>			÷ - ·		.	+·∖−		- Š		l::! :		
	<u></u>	E.	1.1			.		.	<u>]</u>		::_;	<u> </u>	1:			. 1	I	N			.		E		144	1441.	<u>ii</u> ii
		\mathcal{H}^{+}	1::					16			11		{ .	1 : •	1:1:1	: 	· '	1 Ji			14		2	L. j			19
1,	•	ប៊ី 🗍	11-				1415	11.				1	<u> </u>			17	• • • • •	IF.	1			1	Ŭ	I TH	1111		
	··	M			 			I	ب نو ز	• : <u>-</u> •	ļ					}: ∫ ÷	¦	U U			{- \		5		1:44	┞┤┼	
		4	20							. • .			• • •	1 : .		/		5	. <u>.</u>				I				
1.1		0	1.					In:		111	1.	[∢		1.1.			ୁ ଜି				
::::	<u>+-</u> :	· · · · ·	+	1.4	h.	Hi:		:+-		H	l				1		0	۵.	::::	•		• •• •	1.	i i i i i i	╏┼┼╏┼	╏╎┧┤┴	+++
		N						Li.						1			 i	<u> </u> .		j_i.					Ш		
	1	Π	!.··	14 H			hitt			, , ,		: :		1	1.		[]:::	14	Í.	11	111		Z		1111		H.
		57	TE:			1.11	时行				† -• : -	 ; • •	1		1	11		1 x	177			0	2: 2				
<u> </u>		<u> </u>									::: 							W.			<u> </u>	<u></u>	-in				4
		2.		l':!!		<u>[]</u> []]				E		t.	0					.				<u> </u> : +	ā				
		D.]				1	1	6];::::		14]]					111
		\mathbf{Z}^{\perp}	<u>+</u> -						<u> </u> ,					1	+++++			-1.				++-	20	┋╧┿		╞╬╫╢	H
:				11			<u>, '''</u>	L					/				<u> </u>	. 1				LL	ເມື			ШШ	
11.1			10								•		1	1.0			.:		[···]		11.	11	Ż			배	
	<u> </u>		μŲ	í	1	1		t ent				-0	1:-					14		· · · ·	†	₶₽	1		$\left \right $	hii	
<u>.</u>	ļi. J				1.1	<u> </u>	<u> </u> :	4	<u> </u>				- <u></u>	↓	<u> </u>		<u>:::</u> .				<u> .</u>	₽. 1 .	1	111		111	Щі
He.	1.		 •¦•	(·					· ·			./ .:					۱ ^۰ ۰۰	16			: · · :	1	3				
11			1	, .	1:1	<u> </u>	T.					/				:: •	[5	, <u> </u>	•		[.]			111		;;;
	 	;	ł		 :		 ∴:	:	{····	;	- /				 	÷		-	[{÷÷∙ k	 ::::		114	144	44
	: : :				<u> :</u>]		<u> </u>			·	1	<u> </u>	:;: 		ļ.			1		<u> </u>					:11	时	111
НĒ		1					(⁻		ا کے ا		آ م ا			•	1.		:				i. 1	1	١				
	†; -	1	1		†					V	;. ₹ 			1				1 n]	<u>†:</u>	1				;,; :
<u> </u>		 			<u> </u>	 .	ļ. <u> </u>				. <u> </u>	ļ	ļ						!	<u></u>	1:1	_	1.			111	1
		d. ¹	{	1 : :	1.	•	: سر ا			4			•		;			Ň		• • •	• • •		4			14	
	Į.	1					i se	Ĩ	1		•	「 · •		1	1			[`` `		• • • •	<u> </u>		1			tit	
ļ	<u> </u>	+	0		+	<u>}</u>	<u> </u>	<u> </u>	 	<u> </u>		1		<u></u>				+-	<u> </u>		ļ		<u> </u>				
				<u> </u>				.			; .« 	T	-		e				• 9	•	i			O		,1,1	
		<u> </u>			· .				1	r 4 , 1 4		A	R	A	t [€	P^{γ}			.		1					1.1	
L	h	معينية	1 	منبحه	1			<u> </u>	<u> </u>			L					-		i		i		<u> </u>	<u>ز اندا</u>			<u></u>

FIG. B-2 B-15

\$

 $^{\prime}d$

1

10 X 10 to the H three to the to the total to the H three to the total t

which it some an stan a serie to a sight

- A

-

are True Renver e cat in X IV to the Signature Control Interand and a set of the Control Con

FIG. B-4 B-17

, ruck

FIG. B-5 B-18

¥£.,

ία.

FIG. B-7

to X le m

 $\left(\right)$

artiuta ArTen 1904 Hoff and Lands

EENTRY & TOUR CO. Bod scoretel, Ca. Under Mat is s. 1. s.

harry.

1.

FIG. 8-10

A Set a Real and a set of

7

FIG. 9-13 8-27

FIG. 8-14 8-28

17-16 REWTEL & ETHER CO. Tr, 5 mm. Jing growind, rm. Jing 11, 5 mm. Jing 18, 19 א אבערדע, א נאגדא כט, שמי, וואיז צרריבוול, יוש, וושיו איצעץ

'i:: 5

3

2

Ô

- I

2) 100 1 (S 000 (2)

2 S BORE DIA (IN) ••

S

FIG. 8-15 8-29

Ŵ

1

TABLE B-1 B-32

	CALCULATION OF	THE WEIGHT	OF HYDE ULIC	CYLINDERS	
W (WORK)	d	Ч	S	Тот	AL
3,000	.479	3,000	5.54	•39	808
-	.1.62	4,000	ь. <u>1</u> .		946
	1448	5,000	3.82	.36	0776
	.423	7,500	2.85	.38	LOOB
•	.406	10,000	2.32	.L2	1,60
20,000	•935	3,000	10.30	لبلباً. 1	1936
	.868	4,000	8.45	1.33	1672
	.840	5,000	7.22	1.310	0100
	•792	7,500	5.42	1.540	0750
	•7 57	10,000	Ĩ _{+ •} I ₄ I ₄	1.79	3504
100.000	2.255	1,500	16.7	8.918	310
	1.747	2,500	16.7	5.600	7
	1.593	3,000	16.7	5.26	71
	1.538	4,000	13.5	5.370	050
	1.493	5,000	11.4	5.762	279
	1.405	7,500	.8.6	6.958	338
	1.325	10,000	7.25	8.279	74
600,000	4.015	1,500	31.6	43.965	8
	3.11	2,500	31.6	31.110	6
	2.84	3,000	31.6	29.653	i9 0
	2.725	4,000	25.8	29.943	80
	2.647	5,000	21.8	31.951	.75
	2.52	7,500	16.2	1,0.221	2
	2.39	10,000	13.4	49.120	1

2

ļ.

Í

•

Ţ

Î

÷ • • •

TABLE B-2 B-33

1

7

÷

.....

20,000 INCH LE. OF WORK

đ	P	S	UNIBAL B EA RING	CYLINDER END	HEAD END CAP	LOLYPOP	EARREL OVER	PISTON
•935	3,000	10.30	3.40 (10 ⁻²)	3.52 (10 ⁻²)	.10120	.02074	•2684	.036286
•868	4,000	8.45	3.9	4.04	.1277	.02735	•2725	.031122
•840	5,000	7.22	4.58	4.74	.1653	.03755	•2960	.02911
•792	7,500	5.42	6.11	6.32	.2616	.0668	•3655	.02583
•757	10,000	4.44	7.44	7.69	.3505	.0989	•4670	.023534

ROD END CAP	ROD	FLUTD	TOTAT
261.61			
•50101	•46747	•217	1.444936
•21090 30597	•20224	•1533	1.331672
• 50 505	+25951	-1238	1.310100
•20109	•23213	.0829	1.540750
etht(01	+191/0	•0627	1.793504

1.....

ТАВLE B-3 B-3Ц

W Warner (Р	đ	S	TO TAL. SPACE
	$V = \frac{\pi}{4} \left[D_{C} \right]$	$\frac{2}{2}(\theta + s) + D_R^2$	(S + S)	
3.000	3.000		5.54	10.183
7.000	1.000	.1,62	I.48	9.288
	5,000	.1418	3.82	9.026
	7,000	.423	2.85	8.74
	10,000	·1+06	2.32	9.773
20.000	3.000	.935	10.30	43.82
	L.000	.868	8.45	37 • 55
	5,000	.840	7.22	35.86
	7,000	•792	5.42	36.40
	10,000	•757		41.443
160.000	1,500	2.255	16.7	257.3
100,000	3,000	1.593	16.7	162.1
	4.000	1.538	13.5	147.0
	5,000	1.493	.11.4	140.32
	7,500	1.405		141.72
	10,000	1.325	7.25	164.28
600.000	1,500	4.015	31.6	1,341.5
,	3,000	2.940	31.6	801.8
	4,000	2.725	25.8	732.1
	5,000	2.647	21.8	690.1
	7,500	2.520	16.2	720.3
	10 000	2.300	13.4	837.1

<u>_</u>

\$

٦
CYLINDER DATA BOEING IABLE B-4 B-35

HALEDia.Dia.StrokeLangthAreaAreaRatioHeadiedIedFlareICanopy Latch1.62.752.782.0611.619.763 $B-173$ 61Bonb Door21.503.172.63.63091Spoiler1.75.8832.362.1051.796.74677Aileron2.00.755.102.6982.6961.0060Flareron Fower2.00.752.052.6962.6961.0060Stoller5.92.99.39.39426Stoller5.92.99.39.39426Rudger Fower2.00.753.402.6982.6981.0060Stoller5.92.99.39.39426HFR.2.5.14.19426Rudger Fower2.00.753.402.6982.6981.00HFR.2.5.25.99.39.39426Hyd. Lock.75.5.2.50.1418.2155.55511Aut. Brake.56.58.2461326.538B-17816B. Door Front2.241.61223.03.941.92.462116B. Door Rear2.2551.62023.03.991.92.462116Steering3.875.17410.5011.7910.02.850355HFR Door1.000<		Fist	Rod	.	Retract	Head	Rod End	Area	Access	Access		
Ganopy Latch 1.62 .75 2.78 2.061 1.619 .763 $B-478$ 5.023 Bond Door 21.50 3.17 2.63 $.850$ 5.763 $B-478$ 5.763 Spoiler 1.75 .88 32.36 2.405 1.796 .746 746 Aileron 2.00 .75 5.10 2.698 2.696 1.00 60 Flaperon Fourer 2.00 .75 2.05 2.698 2.696 1.00 60 Spoiler 5.92 .09.39.394 26 Ifr. 2.5 .69.14.494 26 Rudger Fower 2.00 .75 3.40 2.698 2.698 1.60 66 Hyd. Lock.75.5. 2.50 .1418 $.2455$.555 11 Nut. Brake.56.58 $.246$ 1326 .538 $B-478$ 166 Spoiler 1.5 .11 1.612 23.0 3.94 1.92 4.82 116 Nut. Brake.56.58 $.246$ 1326 .538 $B-52$ 127 Aut. Brake.56.58 $.246$ 1326 .538 $B-52$ 127 B. Door Front 2.241 1.612 23.0 3.99 1.92 4.82 116 B. Door Rear 2.255 1.620 23.0 3.99 1.92 4.82 116 Steering 3.875 4.741 10.50 11.79 10.02 $.850$ 355 <th><u>NAEB</u></th> <th>Dia.</th> <th>Dia.</th> <th>Stroke</th> <th>Length</th> <th>Area</th> <th>Area</th> <th>Ratio</th> <th>Head</th> <th>kod End</th> <th>Flane</th> <th>Load</th>	<u>NAEB</u>	Dia.	Dia.	Stroke	Length	Area	Area	Ratio	Head	kod End	Flane	Load
Bonb Door 21.50 3.17 2.63 $.630$ 57 Spoiler 1.75 $.68$ 32.36 2.105 1.796 $.746$ 77 Aileron 2.00 $.75$ 5.10 2.698 2.698 1.00 66 Flaperon Four 2.00 $.75$ 2.05 2.698 2.698 1.00 66 Spoiler 2.00 $.75$ 2.05 2.698 2.968 1.00 86 Spoiler 5.92 $.09$ $.39$ $.394$ 26 IFR. 2.5 $.69$ $.44$ $.494$ 26 Rudger Fower 2.00 $.75$ 3.10 2.698 2.698 1.00 Spoiler 5.92 $.09$ $.39$ $.394$ 26 IFR. 2.5 $.69$ $.44$ $.494$ 26 Rudger Fower 2.00 $.75$ 3.10 2.698 1.00 Hyd. Lock $.75$ $.5$ 2.50 $.4418$ $.2455$ $.555$ Aut. Brake $.56$ $.58$ $.246$ 1326 $.538$ B. Door Front 2.24 1.612 23.0 3.94 1.92 $.482$ B. Door Latch 1.5 $.11$ 1.92 $.482$ 116 B. Door Rear 2.255 1.620 23.0 3.99 1.92 $.482$ 116 Steering 3.875 $.474$ 10.50 11.79 10.02 $.850$ $.355$	Canopy Latch	1.62	•75	2.78		2.061	1.619	•78 3			B-478	6150
Spoiler 1.75 .88 32.36 2.405 1.796 .746.746Aileron 2.00 .75 5.10 2.698 2.696 1.00 .66Flaperon Fourer 2.00 .75 2.05 2.698 2.698 1.00 .66Stev. Fower 2.00 .75 3.10 2.698 2.96 1.00 .66Spoiler 5.92 .99.39.394.26IFR. 2.55 .09.14.194.26Rudger Fower 2.00 .75 3.10 2.698 2.698 1.00 Hyd. Lock.75.5. 2.50 .1418.2455.555Aut. Brake.56.58.246 1326 .538B-478Lain Gear 4.26 1.312 21.93 14.21 12.88 .904B-52 127 Aut. Brake.56.58.246 1326 .538B-478.16Steering 3.675 1.602 23.0 3.99 1.92 1482 .16Steering 3.675 1179 10.02 .850.350.359HP Dore 1000 .645 1.79 11.79 10.02 .850.350	Bomb Door			21.50		3.17	2.63	.830				9500
Aileron 2.00 $.75$ 5.10 2.698 2.698 1.00 60 Flaperon Fower 2.00 $.75$ 2.05 2.698 2.698 1.00 60 Stev. Fower 2.00 $.75$ 3.40 2.698 296 1.00 80 Spoiler 5.92 $.09$ $.39$ $.394$ 26 IFR. 2.5 $.69$ $.14$ $.494$ 26 Rudger Fower 2.00 $.75$ 3.40 2.698 298 1.60 Hyd. Lock $.75$ 5.5 2.50 $.4418$ $.2455$ $.555$ 11 Aut. Brake $.56$ $.58$ $.246$ 1326 $.538$ $B-47B$ Nuin Gear 4.26 1.312 21.93 14.24 12.88 $.904$ $B-52$ Aut. Brake $.56$ $.58$ $.246$ 1326 $.538$ $B-47B$ Noor Front 2.24 1.612 23.0 3.94 1.92 4.82 B. Door Faer 2.255 1.620 23.0 3.99 1.92 4.82 Steering 3.875 4.74 10.50 11.79 10.02 $.850$ JFP Door 10.02 $.850$ $.510$ $.510$	Spoiler	1.75	.88	32.36		2.1,05	1.796	•746				7220
Flageron Fower 2.00 .75 2.05 2.698 2.698 1.00 50 Stev. Fower 2.00 .75 3.40 2.698 2.95 1.00 50 Speiler 5.92 .99 .39 .394 20 IFR. 2.5 .69 .14 .494 20 Rudger Fower 2.00 .75 3.40 2.698 1.00 50 Hyd. Lock .75 .5. 2.50 .4418 .2455 .555 11 Aut. Brake .56 .58 .246 1326 .538 B-478 Scin Gear 4.26 1.312 21.93 14.21 12.88 .904 B-52 127 Aut. Brake .56 .58 .246 1326 .538 B-478 116 B. Door Front 2.241 1.612 23.0 3.94 1.92 .482 116 B. Door Latch 1.5 .11 .11 .11 .11 .11 .11 .11 .11 B. Door Rear 2.255 1.620	Aileron	2.00	•75	5.10		2.698	2.698	1.00				0303
Biev. Fower 2.00 $.75$ 3.10 2.698 2.96 1.00 86 Speiler 5.92 $.99$ $.39$ $.394$ 26 IFR. 2.5 $.69$ $.14$ $.194$ 26 Rudger rower 2.00 $.75$ 3.40 2.698 2.698 1.60 66 Hyd. Lock $.75$ $.5.$ 2.50 $.1418$ $.2455$ $.555$ 11 Aut. Brake $.56$ $.58$ $.246$ 1326 $.558$ $B-47B$ Nat. Brake $.56$ $.58$ $.246$ 1326 $.558$ $B-47B$ Nat. Brake $.56$ $.58$ $.246$ 1326 $.5938$ $B-52$ 127 B. Door Front 2.24 1.612 23.0 3.94 1.92 1.482 116 B. Door Latch 1.5 $.11$ $.999$ 1.92 1.482 116 Steering 3.875 $.174$ 10.50 11.79 10.02 $.850$ $.355$ <td>Flageron Fower</td> <td>2,00</td> <td>•75</td> <td>2.05</td> <td></td> <td>2.698</td> <td>2.698</td> <td>1.00</td> <td></td> <td></td> <td></td> <td>6060</td>	Flageron Fower	2,00	•75	2.05		2.698	2.698	1.00				6060
Speiler 5.92 .09 .39 .394 24 IFR. 2.5 .09 .14 .494 24 Rudger rower 2.00 .75 3.40 2.698 2.098 1.00 Hyd. Lock .75 .5 2.50 .4418 .2455 .555 11 Aut. Brake .56 .58 .246 1326 .538 B-47B Nat. Brake .56 .58 .246 1326 .538 B-47B Nat. Brake .56 .58 .246 1326 .538 B-47B Nat. Brake .56 .58 .246 1326 .538 B-52 12 B. Door Front 2.24 1.612 23.0 3.94 1.92 1.82 110 B. Door Latch 1.5 .11 .11 .11 .11 .11 .11 B. Door Rear 2.255 1.620 23.0 3.99 1.92 .182 .110 Steering 3.875 .174 10.50 11.79 10.02 .850 .355	Elev. Power	2.00	•75	3.40		2.698	298	1.00				80 BC
IFR. 2.5 .69 .14 .194 26 Rudger rower 2.00 .75 3.40 2.698 2.098 1.00 64 Hyd. Lock .75 5.5 2.50 $.1418$ $.2455$ $.555$ 11 Aut. Brake .56 .58 $.246$ 1326 $.538$ $B-47B$ Nation Gear 4.26 1.312 21.93 14.21 12.888 $.904$ $B-52$ 127 B. Door Front 2.24 1.612 23.0 3.94 1.92 1482 110 B. Door Latch 1.5 .11 1.5 .11 1.5 111 110 B. Door Rear 2.255 1.620 23.0 3.99 1.92 1.82 110 B. Door Rear 2.255 1.620 23.0 3.99 1.92 1.82 110 B. Door Rear 2.255 1.620 23.0 3.99 1.92 1.82 110 HWP Board 1.000 6.56 12 70	Speiler			5.92		-09	•39	•394				2970
Rudger Fower 2.00 $.75$ 3.10 2.698 2.698 1.00 64 Hyd. Lock $.75$ $.5$ 2.50 $.1,118$ $.2455$ $.555$ 11 Aut. Brake $.56$ $.58$ $.246$ 1326 $.538$ $B-47B$ Nain Gear 4.26 1.312 21.93 14.24 12.68 $.904$ $B-52$ 427 S. Door Front 2.24 1.612 23.0 3.94 1.92 4.82 116 B. Door Latch 1.5 $.11$ $.11$ $.11$ $.11$ B. Door Rear 2.255 1.620 23.0 3.99 1.92 4.82 116 Steering 3.875 $.474$ 10.50 11.79 10.02 $.850$ 355	IFR.			2.5		-89		494				2670
Hyd. Lock.75.52.50. l_{118} . $2l_{55}$.55511Aut. Brake.56.58.2461326.538B-47BNain Gear4.261.31221.9314.2412.88.904B-52 l_{27} S. Door Front2.241.61223.03.941.92. l_{482} 115B. Door Latch1.5.11.11.11.11B. Door Rear2.2551.62023.03.991.92. l_{482} .115Steering3.875. l_{74} 10.5011.7910.02.850.355JEP Rear1.000.65.12.70.12.100	Rudger Fower	2.00	•75	3.40	· .	2.698	2.098	1.00				6080
Aut. Brake $.56$ $.58$ $.246$ 1326 $.538$ $B-47B$ Main Gear 4.26 1.312 21.93 14.24 12.88 $.904$ $B-52$ 427 E. Door Front 2.24 1.612 23.0 3.94 1.92 482 116 B. Door Latch 1.5 $.11$ 1.5 $.11$ 1.92 482 116 B. Door Rear 2.255 1.620 23.0 3.99 1.92 482 116 Steering 3.875 $.474$ 10.50 11.79 10.02 $.850$ 355	Hyd. Lock	•75	•5.	2.50		.4,18	·2455	•555				1325
Main Gear 4.26 1.312 21.93 14.24 12.88 $.904$ $B-52$ 42° B. Door Front 2.24 1.612 23.0 3.94 1.92 4.82 110 B. Door Latch1.5.11.11.11.11B. Door Rear 2.255 1.620 23.0 3.99 1.92 4.82 .11Steering 3.875 $.474$ 10.50 11.79 10.02 $.850$.355	Aut. Brake	•56	.58			.246	1326	•538			в-47в	738
Main Gear 4.26 1.312 21.93 14.24 12.88 .904 B-52 42 B. Door Front 2.24 1.612 23.0 3.94 1.92 482 116 B. Door Latch 1.5 .11 .11 .11 .11 .11 B. Door Rear 2.255 1.620 23.0 3.99 1.92 482 .11 B. Door Rear 2.255 1.620 23.0 3.99 1.92 .482 .11 B. Door Rear 2.255 1.620 23.0 3.99 1.92 .482 .11 B. Door Rear 2.255 1.620 23.0 3.99 1.92 .482 .11 B. Door Rear 2.255 1.620 23.0 3.99 1.92 .482 .11 B. Door Latch 10.02 .850 .353 .353 .353 .353 Steering 3.875 .474 10.50 .11.79 10.02 .850 .353												
b. Door Front 2.24 1.612 23.0 3.94 1.92 4.62 110 B. Door Latch 1.5 $.11$ $.11$ $.11$ $.11$ B. Door Rear 2.255 1.620 23.0 3.99 1.92 $.482$ $.110$ Steering 3.875 $.474$ 10.50 11.79 10.02 $.850$ $.359$	Main Gear	4.26	1.312	21.93		14.24	12.88	-90/1	·		B-52	12700
B. Door Latch 1.5 .11 B. Door Rear 2.255 1.620 23.0 3.99 1.92 .482 110 Steering 3.875 .474 10.50 11.79 10.02 .850 355 JEP Door 1.00 11.79 10.02 .850 355	B. Door Front	2.24	1.612	23.0		3.04	1.92	1.82		L	-)-	11050
B. Dcor Rear 2.255 1.620 23.0 3.99 1.92 1.482 110 Steering 3.875 .474 10.50 11.79 10.02 .850 35 JEP Deat 1.000 .605 .613 .70 10.02 .850 35	B. Door Latch	- ·		1.5		.11						320
Steering 3.875 .474 10.50 11.79 10.02 .850 35	B. Door Rear	2.255	1.620	23.0		3.99	1.92	1,82				11050
	Steering	3.875		10.50		11.70	10.02					X5X00
	IFR Door	1.000	.695	6.13		70	1.1	-070 E19				2770
Fr. Recp. Toroles: 1.058 718 2.77	Fr. Bech. Torsles	1.058	71.8	2 77		•/7 89	•44	.510			B-52	26.0

CYLIN	DEB'	DATA
CHAN	CE V	ought

 C_{i}

- · ·

TABLE B-5 B-36

	Pist,	Rod		Retract	Head	Rcc Side	Area	Access	Access		
NALE	Dia.	Dia.	Stroke	Length	Area	Area	Ratio	Head	Rod End	Flane	Load
										F7U-1	
Nose Gear	3.25	2,5	17.657		8.296	3.387	. 408			1200 psi	1435
Sain Gear	3.25	2.5	21.954		8.296	3.387	_ L08			1200 psi	2750
Lain Gear Locr	1.122	•499	4.00		•98 52	•7596	.801				
Nose Gear Door	3.•747	•561	3.56		2.405	2.1578	. 897			1200 psi	• 505
Speed Brake	2.122	• 998	16.34		3.53	2.7577	.760			1500 psi	6600
Alevator	2,623	1.373	5.68		3.916	3.916	1.00			3020 psi	26650
Canopy	1.997	1.373	بلبا 27		3.14	1.666	•531			1500 psi	1950
Inboard Slats	1.497	•746	12.490	<i>,</i>	1.65	1.1561	.701	Lock	Lock	1200 psi	1100
Outboard Slats	1.497	•749	17.84		1.65	1.209	•732	Lock	Lock	1200 psi	1100
Wing Fold	2.50	1.185	15.29		4.909	3. 815	•776			2600 psi	9800
Wing Einge Pin	.998	•499	5.31		.782	.5865	.750			2500 psi	111.5
Arrest Gear	1.74	.748	9.80		2.378	1.939	.815		Dash Pot	1050 psi	1650
Gun Charge	1.00	-	10.0		.785		_	· .			-
Barrier Last	.625	.21,9	2.18		.307	.258	.8.1				792
Ailevator Change	2.38	1.75	1.25		4.49	2.08	1.1.6				13300
Wing C.	4.273	1.373	3.65		14.32	13.85	.967			3000 psi	10500
-									•		-
						·				F7U-1 F7U-3	
Sudder Yaw Rate	1,125	686			1 07	6.0	621				1 500
Canony	2 00	1 275			z 11.	1 61.6	•0=1	7 7	1		1000
10 G Lock and Track Inlock	500	1.575			1.767	120	• 724	j Int.	LOCKS	1000	2015
Lose Gear Door	1 875	1.00		•	•190 <u>7</u> 2 75	120	•011	7		1000 121	27 1.975
linea Ga. M	7, 25	2 50			8 70	7 70	•/14	LOCK	• •		1=00
Annat Geon	2 125	2.90			2 57	2.27	.400 779	LOCK	XDOT -		4500
MIESC GOAL	C+169	1.00			2.00	2.145	•110	Interna	al Dashpot		7320
								Gage ar	la Keservoir		
Ning Fold	3.00	1.50			7.068	5.30	.750	Int. Se	eg. Valte		16100
Outer Panel Slat	1.50	1.00			1.767	.982	•7 5 5	Lock			2710
Fower Control	4.50	1.75			15.9	13.10	- BLB	2002			88170
Main Gear	2.122	1,123		· ·	3.53	2.54	720				6500
Ning Fin Pull	1.25	624			1.227	.921	750				1620
Speed Brake	L_50	1.375			15.0	1)).	•77¥ 008				12700
Lain Gear Door	1.25	-500			1.227	1.031	000 .				00124E
Center Sec. Slat	1.50	.750			1.767	1.325	750				<u>+++</u> v
Rocket Pack Door	1.38	625			1 104	1,180	• 100 705				ZADA
		••••			1.470	1 0103	• (77				2000

1 In and

Sector Sector

TABLE B-6 B-37

CYLINDER DATA

CONVAIR

NAJE	Pist Dia	Rod Dia.	Stroke	Retract Length	Head Area	Rod Side Area	Area Ratio	Access Head	Access Rod Ind	Flane	Load
Rudder (3000 psi) Elevon (3000 psi)	1.126 2.126	.623 1.125	4.35 7.59	· ·	.604 2.5778	.6£04 2.5778	1.00	Tanden Tanden	· · · · · · · · · · · · · · · · · · ·	XFY-1 XFY-1	2010 7720 m
Nose Gear Door	1.00	•75	.720		.785	•343	•437	Ball Lock	Ball Lock	XF-102	2355
Nose Ge_r	1.562	1.062	10,50	*	1.911 #	1.029	•537	Snucher	Snubser		5730
Lain Ger	2,00	1.00	12.56		3.14	2.355	•727	Snibber	Snubber		9410 11000
Lover Stord Broke	2.250	1.00	0.45 7 LE		2.970 3.076	3.004	•111	Tancen Ball Lask	Bol: Too'r		11920
Unter Steed Brake	1 75	1.00	6.28		2 1.05	1 600	-:WZ 677	BELL LOCK	Ball Lock		7210
Rudder	1.625	.875	4.030		2.061	1.460	.705	Jandem	JAII DUCK	XF-102	6180
					• .				-		
Elevon Inboard	2.00	1.125	7.45		2.1548	2.1548	1.00	Tandem		XF2Y-1	64:60
Elevon Outboard	1.681	1.00	7.35		1.432	1.432	1.00	Tardem			4300
Engine Air Inlet Duct	1.375	•75	7.2		1.474	1.032	.701		-		02بليا
Rudder	1.375	. 875	4.26		.873	.873	1.00	Tandem			2620
Ski Actuating Fwd.	2.125	1.000	8.1		3.53	2.745	.756		,		10600
Ski Actuating Aft	2.625	1.125	8.5		5.39	4.4048	.817				16160
Ski Down Lock	•625	•375	1.00		.3068	.1964	•640		· · · ·	, • • • •	920
Water Rudder, Dive Brake	2.75	2.25	8.00		5•94	3.976	. 668			XF2Y-1	17800

	·										
								• .		19 ¹ 57	-
					CYLINDER	DATA		•	IAD	B-38	
				DOL	IGLAS (EI	SEGUNDO)			*Ext	ended Length	Page 1
	Fist.	Rod		Retract	Head	Rud Side	Area	1000 55	Access		
<u> </u>	Dia.	Dia.	Stroke	Length	Area	Area	Ratio	Eead	Rod End	<u>Plane</u>	Losd
rrest Hook Bumper	.500	312	2.00	7.562	.1950	.1 095	•558	Spring	Louded	A3D	587
ose Wneel Door Latch	.625	.213	.562	4.25	.3068	.2300	•749			XFLD-1	92
ose Gear Dwn Latch	.625	•375	3.187	5.93	•3068	. 196 3	• di			XF3D-1	92
ose Gear Door Lock	.625	.312	•50	4.25	•3068	•2300	•749			F3D	921
rrest Hook Centering	•750	•375	1.062	no end bearing	• <i>L</i> µµµ	•334	•753			A3D	1330
ose Gear Link Lock	.875	.50	4.0	3.959*	.60.3	.4053	.675	Ext. S	pring	A3D	160
ain Gear Bungee	•675	. [437	2.593	15.937	.6013	.4513	.750	Ext. S	pring	XF4D-1	180
ckpit Enclosure	.875	.750	23.167	31.625	.6013	.1 591	. 265			Xet2D-1	150
anding Flap	. 875	.625	6.0	12,281	.6013	.2945	.490			X5T2P-1	180
ockpit Enclosurs	.875	.750	25.25	33.25	.6013	.1595	.265			AD-2-3	150
ockpit Enclosure	. 875	.750	24.437	34.0	.6013	. 1595	. 265			LD-2-3-4	160
anding Flap	.812	.625	6.0	12.281	.5185	.2117	.408			XBT2D-1	155
ain Gear Link Latch	1.0	.50	1,25	17.107	. 7854	.5890	•749			XFUD-1	200
anding Flap	1.0	.625	6.0	12.25	•7854	.4786	.608			X5T2D-1 AD-1-2	200
ain Gear Latch	1.00	•500	•312	6.0	•7854	.4764	.608	Spr ing	Loaded	XF3D-1	200
	10	405	4 DE	10 640	7851	1.786	60.9			F3D-1-2	200
anding Flap	1.0/0	•œ5	0.25	10.502 5.305	8866	4002	.000			TELD AZD	200
ain Gear Door Latch	1.002	-500	6 75	10 75	8866	-0902 6781	•/30				266
anding Flap	1.002	•702	0.17	10.15		.0701	./20	6	D	NELD 1	200
ose Gear Dwn. Latch	1.125	•512	• /50	0.0	•9940	•91/2	•949	spring	, keturn		270
terg. Enclosure	1,125	•0/フ	0.2/2	17.957	•9940	•3921	•272	1			290
ose Gear	1,187	•/50	0.250	12.001	1.1075	,00,7	.601			230-1-2	<u></u>
ose Wheel Steer	1.250	•562	0.781	no end bearing	1.2272	•9172	•196			A3D	300
ail Bumper	1.250	.625	4•9 37	11.125	1.2272	.9204	•750	Interr	al Spring	A3D	36
ail Wheel	1.250	. 875	12.937	20.250	1.2272	. 6258	.511		- •	A2D-1	- 36
ain Gear Door Latch	1.312	.500	1.750	4.750	1.397	1.356	. 866			XA2D-1,F3D	40
ain Gear Door-	1.343	•625	5.50	8.562	1.4180	1.1114	.764			BT2D-1	42
ain Gear Door	1.375	.625	5.50	7.812	1.4849	1.1781	•747			XBT2D-1	1,1,1
aw Damper	1.437	.312	2.50	9.625	1.5462	1.5462	1.00			F3D-3	L6
- Barren	1.1.77	-375	1.0	12.50	1-6230	1.5125	-931				1.0

.

•										
									- '	
						<i>.</i> .		TA	BLE B-S	
				CYLI	NDER DAT	(Cont'd)			3-39 1	
		·		DOUGLAS	S (EL SE	IUNDO)			Page 2	
)" () (T2	Pist.	Rod	Ct-alm	Retract	Head	Rod Side	Area	Access Access	ייייייייייייייייייייייייייייייייייייי	
1. Hu.E.		D18.	BULLOKB	Then S ou	VLAH		Aacio	nead Rod 200		
poiler	1.437	•50	2.625	6.125	1.623	1.4266	• 877		F3D-2	4870
ain Gear Door	1.437	•50	5.125	8.687	1.623	1.4256	.677		F3D-1-2 KFLD 1	4870
ipeed Brake	1.500	750	8,125	13.250	1.767	1.3253	.750		XFLD-1	5290
Speed Brake	1.500	1.0	17.0	24.0	767	9817	556		F3D-1	5200
lain Geur Door	1.500	.625	6.187	10.313	1.767	1.4603	.330		XA2D-1	5290
lain Geur Door	1.531	-500	1.969	8-593	1.8/15	1.6451	.892		XFLD-1	5520
lain Gear Do or	1.562	750	7.562	7.562	1.9175	1.1745	.770		AD-2	5750
lain Gear Door	1.562	1.062	18,125	23.750	1.9175	1.0309	-538		43D	5750
lain Gear Latch	1.625	500	1 250	10.375	2.0700	1.8740	.006	Brt. Spring	F3D-3	6210
lomb Bay Fwd. Door	1.625	750	7 250	11, 625	2.0700	1 62/0	785	mot obt me	A3D	6210
peed Brake	1.625	•150	· (•250	27.00	2 0700	1 201.	620			6210
lose Gear Door Latch	1.687	1.00	20.27	2 (•2) 8 456	2.0700	2 1240	056		F7D-1-2-7	6700
	1.750	•),)	3.10/		2.2909	2.1200	•727 282		170-1-2-7 1700-1 AD 1 9	0100
Sil Wheel	1 750	1.5/5	19.275	20.025	2.4077	•9204 •201	• <u>7</u> 62		ADIZDEL, ADELEZ	7210
ain Cour Tates	1 075	1.375	19.375	20.025	2.4055	•9204	-20C		470	1210
	1.075	.625	1.00	10.093	2.7600	2.3532	.566			8250
	1.0/5	. 875	8,250	18.0	2.7600	2.1587	./83	·	XF4D-1	8230
11. mech. Advantage Shirt	2.00	•562	2.437	11.00	3.1416	2.8966	•920	Finger Lock	F3D-1-2	9410
OTO GOLT	2.00	. 662	6.781	17.875	3.1416	2.8931	.920		F3D-1-2	9410
peed Brake	2.00	1.50	25,125	34.0	3.1416	1.3745	•438		F3D	9410
uin Gear	2,125	1.00	8.0	19.312	3.5466	2.7612	.780		XF3D-1	10630
lail Skid	2.125	1.25	7.250	21.125	3.5455	2.3194	.653		XF3D-1	10630
ain Landing Gear	2.125	1.375	11.375	24.750	3.5466	2.0617	•581		XBT2D-1	10650
lose Gear	2.250	1.062	8.250	15.125	3.9761	3.0895	•778		A3D	11900
ain Gear	2,250	1.062	8,500	15,50	3.9761	3.0895	.778		F.D-1	11000
ain Gear	2,250	1 375	12.875	10.375	3,9761	2.1912	.628		4D-1	11000
ain Gear	2.250	1 275	12 1.37	21.750	3.9761	2.0012	628		···· 1 YE®27-1	11900
ain Gear	2.250	3 275	A + + / /	210 275	Z 0761	2 1012	-020 629		XBROD_1	11900
and adar		40212	19.190	19-212	2.9101	C+491C	•020		1010	11900
ain Gear	2 25			10 50	7 0741	T 1007	007	•		11900
ing Fold	2 275	1.000	13.150	19.50	.5.9/CL	2.1907	.003		AU-3-4	11900
King Flan	2 +712	.875	5.750	12.68/	4.4301	2.0200	•079		Artin-1	13300
lide Dime Breke	0 775	1.00	6.562	14.687	4.4301	3.0447	•0:23		A3D''	13300
TTC NTAG DIGYO	6.212	1.750	8.125	17-437	4.4301	2.0248	-450	•	XBT2D-1	13300
	ļ		<i>v.</i>						AD-1-2	13300
<u>ن</u>	1 () () () () () () () () () (

6

9

.

the state of the second s

فللتجريذ سعمققا العد وسيسلأ أتحكي

CYLINDER DATA (cont'd) DOUGLAS (EL SEGUNDO) TABLE B-9 B-40

Fage 3

	Pist.	Rod		Retract	Head	Rod Side	Area	Accass	Access		- <u></u>
<u> </u>	Dia.	Dia.	Stroke	Length	Area	Area	Ratio	Head	Rod End	Plane	Load
Lain Gear	2.437	1.062	9.343	19.250	4.6664	3.7 798	.810			F3D-1-2	13300
Bomb Bay Rear Door	2.500	1.000	7.250	13.656	4.9087	4.1213	.641			A3D	14730
Lower Dive Brake	2,500	1.625	17.687	24.375	4.9087	2.8348	•576	Lock		XET2D-1	
		-				•				BT2D-1	1473C
Lower Dive Brake	2,500	1.625	17.781	24.375	4.9087	2.8348	.576	Lock		AD-	1473C
Speed Brake	2.500	1.500	21.750	29,500	4.9087	1416 3.1	.640	Lock		A2D-1	11730
Lain Gear	2,500	. 875	35.562	43 437	4.9087	2.1487	.438			A3D	14730
Escape Chute Door	2.625	1.375	1.937	10.187	5.4119	3.927	.725	Single #	cting	13D-1	16230
Lain Landing	2.625	1.875	11,406	16.375	5.4119	2.6507	.490	0	U	A2D-1	16230
Spoiler	2.625	2.00	4.00	10.437	5 4119	2.2703	.420			F3D-3	16230
Speed Brake	2,625	1.750	18.250	26.562	6.5000	4.0947	.630			A3D	19500
Fin Fold	3.000	1.250	8.437	17.062	7.0686	5.8414	.828			XBT2D-1	21200
Wing Fold	3.000	1.500	14.000	21.750	7.0686	5.3015	.751				21200
Wing Fold	3.250	1.375	12.125	19.250	8.2958	6.8109	822	•		F3D .	21.850
Wing Fold	3.250	1.500	12,125	19.250	8.2958	6.5287	.787			F3D-1-2,A2D-1	24850
Wing Fold	3.250	1.375	10.937	20.437	8.2958	6.8109	822	2		IA2D-1	21,850
Wing Fold	3.500	1.625	10,937	21.750	9.6211	7.5472	784			AD	28850
Wing Fold	3.625	1,500	10.812	20.312	10.700	8.9392	-834			F3D-3	32100
Wing Fold	4.375	1.625	12 437	23.750	15.100	13.030	.861			A3D	15300
wing Fold	4.375	1.875	11.250	21.000	15.100	12.340	.818			A2D-1	45300

NALB	Fist Dia	Rod Dia.	Stroke	Retract Length	He_d Area	Rod Side Area	Area Ratio	Access Eead	Access Rod End	Flane	Load	
Lower Cargo Loor	2.00	1.25	15.5		3.14	1.913	.610			YKC-1248	9410	
Lain Gear	6.00	2,125			28.27	24.74	.874	Swivel Joir	nts		63500	۴
Nose Gear	3.25	2,50	15.6		8.30	3.39	.408				21900	
Nose Gear Stear	4.375	1.375	-		15.0	13,53	.903			-	150CO	
Down Latch	1.000	.623	1.00		.785	.480	.611				2555	
Jan Latch	1.000	.625	3.48		.785	•479	.610				2355	•
Center Latch	.937	.562	10.70		659	• .441	.640			·	2065	•
Nose Load Door	2.000	1.25	12.5		3.14	1.913	.609				<u>о́ціо́</u>	
Ramp Up Latch	.500	.312	1.375		.1963	,1203	.613				589	
Hose Load Ret.	1.500	.375	180.0		1.767	1.657	.938			· .	5300	
Fwd. Ramp Ext.	1.375	1.250	27.9		1.474	,247	1675				1340 .	
Ramp Latch Adj.	1.00	437	3.2		.785	.635	.606			XKC-1579	2355	¢.

. G

DOUGLAS (SANTA MONICA)

CYLINDER DATA

THE GLENN L. MARTIN CONTANY

NALE	Fist. Dia.	Rod Dia.	Stroke	Retract	Head Area	Rod Side Ar 3a	Area Ratio	Access Head	Access Rod End	Flare	Load	
Canopy Latch Hydro Flap Latch	.750 .812	.500 .500	5.00 3.50	11.750	14417 5178ء	•21,53 •322	•555 •621		2700 psi	8-57B 152-1-2	1135 1400	·
Nose Gear Latch Pin	.836	.498	2.50	5.375	•54 8 9	•354	.645			PL1 = 1	1645	
Hatch Snubbing Sonobouy Door Tail Bumper	•873 •875 1•000	•737 •500 •500	6.6 2.00	14.9 8.593 16.42	•5986 •6013 •785	.1716 .405 .589	.1278 .623 .750		• ·	P9:-1-2 トラニー1-2 月上-1	1795 1803 2355	
Filots Seat	1.000	•500	6.25		•785	•599	.762			XB-51	2355	· · · ·
Aft Gear Door Lock Aileron Guad Stop Rudder Boost	1.000 1.000 1.063	•375 •937 •750	5.00 .625 3.625	15.218	•785 •785 •140	.675 .095 .Ццо	.660 .121 .498)13-51 1951-1-2 1951-2	2355 2355 1320	. *
Jet Doors Nose Gear Door Center Wing Flap Ellin Gear Door Elev. Boost Stabilizer Aileron Boost	1.116 1.125 1.125 1.125 1.183 1.312 1.375	.498 .75 .809 .75 .625 .4375 .685	15.0 8.94 12.25 9.14 3.437 4.137 3.062	23.4 16.21 20.625 16.21 10.912 15.688	•985 •9940 •985 •9940 •787 1.202 1.106	.790 .5522 .471 .5522 .787 1.202 1.106	.801 .556 .478 .556 1.00 1.00	Balanced		IL::-1 B-573 FLM-1 B-57B XB-51 B-61 L0L	2950 1160 2950 800 1180 1600 1661	1
Elevator Boost	1.375	.750	4.00	19.00	1.03	1.03	1.00			F51-2	30 <u>9</u> 0	. e 1
Demand Assist.	1.438	•799	7.187		1.629	1.188	•730			Fex-5a	214:0	
Bomb Bay Door Cancpy Aft Ramp	1.500 1.500 1.5	1.00 1.25 .745	13.437 31.29 8.75	21.218 41.56 14.0	1.767 1.767 1.767	.982 .540 1.33	•556 •306 •753		2700 psi	Р51-1-2 В-57В Цоц	4750 2860 5300	

TABLE 8-11 8-42

TABLE B-12 B-43 514 41 424

12

				-							
Rudder Boost	1,563	•687	6.718	14.7	1.5303	1.5303	1.00		680 psi	P51-1	1050
Elev. Boost Dive Brake	1.563 1.625	•687 •75	6.718 2.00	14.7 22.919	1.5303 2.07 3 9	1.5303 1.6321	1.00 •757		1720 psi	Р5111 В-578	2660 1000
Nose Gear	1.56	1.122	16.187	27.75	1,911	.926	.4£!4			Fix-1	5730
Speiler Nose Gear Wing Glap	1.563 1.625 1.687	.688 1.00 1.125	5•375 8•662 14•797	24.382 24.8	1.5303 2.0739 2.243	1.5305 1.2285 1.258	1.00 .621 .500		2700 psi	XB-51 B-57B P54-1-2	2870 1400 6050
Dive Flap	1.687	1.375	16.688		2.243	•769	.312			X B-51	6730
Landing Gear	2.00	•999	18.9	26.74	3.14	2,355	•750	Snubber.	Snubser	104	9 <u>4</u> 20
Wing Flap	2.00	•75	6.72	14 . 156	3.14	2.698	. 8,8			404	9420
Nose Gear	2.00	•999	15.437	23.562	3.14	2.355	•750	Snubber	Snubber	404	9420
Tip Gear	2.00	.810	7 .687		3.14	2.625	.836			X B-51	942 0
Aft Gear Surge Speed Brake Spoiler Ail Wing Flap Cyl Spoiler Aileron Bomb Door Hydro-Flap Nain Gear Down Lock	2.00 2.125 2.248 2.375 2.250 2.250 2.375 2.500	1 •747 1.250 •750 1.247 1.750 1.375	1.875 20.25 7.11 3.90 6.07 15.8 3.844	30.25 14.76 18.30 17.37 28.2 15.00 30.5	3.14 3.5466 3.538 3.2029 3.534 3.976 4.439 4.909	2.319 3.538 3.2029 3.534 2.749 2.025 3.435	.654 1.00 1.00 1.00 .693 .457 .700	Balanced		ХВ51 В-57В FL4-1 В-57В P5X-1-2 FLX-1 F54-1-2 F9X-54	9 <u>1</u> 20 5400 11920 11300 11910 11910 13300 7360
Nain Gear Jplock	2,500	.625	2.063		4.909	4.602	•938			Fe M-5 A	7360
Fwd. Gear	2.500	1.25	17.61		4.909	3.682	.750			XB-51	14720
Nose Gear	2.750		8.625		5.940	5.155				PBM-5A	17800

٠

è

CYLINDER DATA

TABLE B-13 E-44

	Fist.	Rod		Retract	Head	Rod Side	Area	Access	áccess		
NALE	Dia.	Dia	Stroke	Length	Area	Area	Katio	Head	Rod End	Flene	Load
Aft Gear	2.750	1.25	13.07		5.940	4.713	. 793			XB-51	17600
Main Gear	2,750	1.250	10.73	20.63	5.4396	4.7121	.868			B-573	67C0
Bomb Door	3.00	2,125	18,312		7.069	3.539	.500			X3-51	21200
Bomb Door	3.00	2.125	18.312	34.1875	7.0680	3.522	. [198			F-57B	11300
Steer	3.25	1.68	8.375	· · · ·	8.296	5.520	.667			X3-51	21.850
Nose Gear Steer	3.38	1.06	4.95		8.973	8.091	.901			202	26900
Nose Steer	4.25	1.0	1,.25		14.19	13.315	.939			Posi-5A	21250
Landing Gear	4.375	1.50	17.0		15.0	13.233	.883			P31-5A	22500

The Glenn L. Martin Company

· · ·

2

1. Same

· .

TABLE B-UL B-45

CYLINDER DATA GRULMAN

Pist. Rod Side 1500 Retract Head Access Rod Access Ratio NAME Dia. Stroke Longth Area Area Head Rcd End Plane Dia. Load .982 •556 1.50 25.6 1.757 F9F-4-5 Canopy 2645 .602 _1.687 5.781 1.795 Nose Wheel 2.237 3355 10.625 7.67 5.902 .770 Dive Brake 3.125 11650 1.353 .911 .672 Inboard Flap 3.984 Ball Lock 2030 1.313 •749 2.937 2.405 1.804 3610 Outboard Flap 1.750 Ball Lock 2.875 4.937 3.36 3.36 1,00 Balanced Rod Each Rod 5040 Aileron Boost .502 2.098 1.052 Wing Lock 4.925 3140 1.875 .672 Seat Adjust 1.312 4.00 1.353 .911 2030 6.003 1.757 .982 .556 Ball Lock 2645 Main Gear 1.500 1.554 Inboard L.E. 1,125 1.994 .667 .691 Ball Lock 1495 1.00 2.625 .785 .635 1178 Main Gear Uplock .809 Ball Lock 4.750 1.230 ·259 Kain Gear 7120 3.25 10.187 .441 Mech. Aileron Boost .750 3.00 661 1.093 .994 .687 .691 Outboard L.E. 1.125 1840 Arresting Hook 1.125 3.562 1.227 18,66 15.52 .832 Wing Fold 4.875 7.906 2600 7.812 1.465 1.042 .701 Nose Theel 1.375 F9F-4-5 2230

CYLINDER DATA

TABLE B-15 B-46

10

LOCKHEED

NALB	Pist. Dia.	Rod Dia.	Stroke	Retract Longth	Head Area	Rod Side Area	Area Ratio	Access Head	Access Rod End	Plane	Load	-
Jury Strut	.785	•5	7.0	<u> </u>	.484	.2877	•593			12V-7	1454	
Nose Gear	2.375	1.375	8.16		4.412	2.938	. 566			·	13200	
Spoiler	1.375	.875	4.52		2.75	2.1,88	•778				8250	
Main Gear Uplock	.375	•375	5.3		.6012	.4812	.80	-		•	1803	
Main Geur	2.375	1.5	22.37		6.469	4.702	.727				19400	
Pod Actuating	1.0	•5	3.5		.785	•5887	•750		•		2360	
Lain Gear Jury Bomb Door Motor	1.25	.811	•344		1.227	.7104	•579			P2V-7	3580	

Wing Flap Motor

A State of the second se

4. 4

÷ ...

TABLE B-16 B-47

			MCDONNELL						B-47				
NAXE	Pist Dia.	Stroke		Retract Length	Head Area	Rod Sid s Area	Area Ratio	Access Head	Access Rod End	Plane	Irad		
			10.00		•785	•434	•552		· · ·	F101	3530		
			1.90		•371	•174	•469			•	16/0		
			2.78		1.108	•912	•825				4980		
			1.88		1.108	.912	.825				<u>4980</u>		
			12.72		- 8.946	6.541	•730				70207		
			13.14		4.43	3.322	•750		•		19900		
			2.10		. 887	∙ 691	•760				Loco		
			23.88		7.069	3.522	•499				31900		
			9.95		2.237	1.795	.803			F101	10500		
Wine Fold	3.	1.62	10.50		12.57	10.50	.836		÷	F2H-3	18630		
Elay. Feel Domner	4		3.00		3.55	3.55	1.00				1500		
Aileron Ratio Change			2.50		•68				· · ·	F2H-3	3750		
Speed Brake	2.375	1.5	20.13		4.430	2.663	.601			F3H-1	13500		
Kose Gear	2.25	1.5	16.26		3.976	2.209	556				119.0		
Lain Gear Unlock	.875	-500	2.90		.601	405	.673				1803		
Aileron			L.77		4.180	L.180	1.00	Valve in 1	Piston		25086		
Elevator			2.60		.190	.190	1.00	Valve in 1	Piston .		11.75		
Rudder	.735	-368	.02	м.	122	.351	7.0		10 001		990 Tension		
Rudder Feel	2.00	1.375	8 11		3.1/1	1.651	52 7				9/120		
hain Gear	1,125	.625	5.86		, och	-685	.600				2982		
hair Gear Door	2.750	1.000	7.08		5.94	5,155			•		17800		
Thil Skid	1.250	.875	11.28		1.227	.626	511				2000		
Flan	1.695	750	1.75		2.071	1.632	•J== 787				0010		
Arnost Cour	2 175	1,250	0 68		1. 1.7	3 202	723	•			17050		
Mine Fold	1.1.82	71.0	2.85		4+47	020	+(-) 750	-			17270		
The Aur Air Door	1040E	- 140	1 10		1-1-1	108	•/70 61.1	•			2070		
Stab Hud Noto=	•••••	•212	1.10		•	•130	•011			रूच १	910		
Slat-Hyd. Kotor	· •	•			· .					r 2a-1	260 10 10		
Slat-Hyd. Kotor					1	•					260 in lb.		

#

CYLINDER DATA

٦...

				CYLINDER	DATA			TADL	E 5-17		
				NOR THAL	ERICAN				9 = 40	· ·	f
		····									
	Fist.	Rod	P ()	Retract.	Head	Rod Side	Area	Access	Access		
N76.5	U1a.	Dia.	Stroke	Length	Area	Area	Ratio	nead	Rod End	Plane	- 20 u
Aux G.D. Fairing Lock	.625	•375	1.875		.3068	.1968	.641			FJ-2	920
Aux G.D. Fairing	1.35	•625	5.187		1.247	.7202	.751			1000 psi	1227
Aux Gear	2.00	1.000	6.212		3.14	2,355	•750				9410 ji
Aux Gear Lock	1.502	•500	•938		1.911	1.715	.897				5750
Main Gear Fairing Up Lock	.625	•375	•750		.3068	.1968	•641				920
Lain Gear Fairing Door	1,168	.688	6.688		1.112	.740	.665				3340
Lain Gear	3.00	1.250	5,220	•	7.068	5.84	.627				21200
Lain Gear Up, Down Lock	1.75	.675	1,628		2.405	1.004	.765				7210
Tail Bumper	1.00	.620	5.500		785	•483	. 616				2355
Arresting Hook	2.25	1.500	8.875	,	3.976	2.21	.556				11930
Lux. Gear Strut		-	-								
Speed Brake	1.562	1,000	11.90		1.911	1.126	.588				5730
Wing Fold	2.875	1.187	7.250		6.47	5.358	.626				19/00
Winz Lock Fin	1.875	1.062	2.375		2.75	1.868	.679	•			8250
Power Master Brake	1.250	.375	2.30		1.227	1.117	.911				3680
Gun Bay Furze Door	.683	.500	2.875		3.72	3.535	.950	•		F.I_2	
	• • • •	.,			•		.,,,			10-2	
Rudder Cyl	1.479	.997	4.499		•93 9	•979	1.00	Tancem		X42J-1	2810
Stabilizer	2.438	1.497	9.736		2,932	2.932	1.00	Tanden		:	8790
Aileron	1.70	1.059	3.078		1.388	1.388	1.00	Tandem			L160
Outboard Flap	2.001	•997	7.470		2.349	2.349	1.00	Balanced	Fiston	I .12J-1	7050
			· .				• • •				
Aileron Cylinder	2.144	1.122	1.448		1,81	1.81	1.00			F-8(a	5430
Stabilizer	2.362	•997	3.607		1.00	1.00	1.00				3000
Lain Gear Door	1.312	.637	5.313	`	1,355	• 96 3	.725				5070
Lain Gear Uplock	•75	• 275	1.00		•44	•33	.750				1320
Lain Geir	1.625	.812	5.779		2.075	1.555	.750		•		6220
Lain Gear Down Lock	.687	.312	1.250		•368	.296	.604	Seq. Fopt	æt		1105
Aux. Alight Gear Down Lock	.625	•375	1.500	•	•307	.20	.651	- * * *			920
Aux. Alight Gear	1.562	.809	7.784		1.915	1.402	733				5710
Aux. Alight Gear Lock	.872	•375	2.00		•52	.41	.789				1560
Aux. Gear Door	1.375	.687	3.375		1.49	1.118	.750				-11.70
Dive Brake	1.75	1.125	9.078		2.41	1.412	786	•		r_btr	7220
		/					•100			reuch	1600

٠

.

Í

.

-

.

TABLE	B-18
	B-49

CYLINDER DATA NORTHROP

-	•						•					
NAME		Fist. Dia.	Rod Die.	Stroke	Retract Length	Head Area	Rod End Area	Area Ratio	Access Head	Access Rod End	Flane	Loade
Kain Gear		2.626	1.25	7.27		5.43	4.203	.,75			F-89D	15300
Lain Gear Door	-	1.626	•75	4.4		2.09	1.648	.778				6270
Nose Gear	- -	2.126	1.5	11.52		3.56	1.793	.504				10680
Rudder		1.126	.81	4.50	,	.l ₁ 88	.458	1.00	Balanced			1469
Elevator		1.688	1.25	3.68		1.016	1.016	1.00	B _larced		•	3045
Aileron		1.876	1.00	3.03	•	1.991	1,991	1.00	Balanced			5980
Dive Brake		3.000	1.12	5.98		6.083	6.083	1.00	Balanced			15230
Engine Hoist		1.876	•75	10.0		2.776	2.334	.841				8320
Seat Adjust		•937 5	.62	7.2		.6896	.3876	. 562	Spring Re	turn		2065
Lain Gear Bungee	i i i i i i i i i i i i i i i i i i i	2.001	1.00	3.93		3.14	2.355	.750	Single Ac	ting		94 10
Enclosure Jetis	Assist.	2.126	.62	8.87		3. 56	3.258	.914				10680
Radar Scope and	Conscle	•937	.62	9.91		.6876	•3876	•562			F-89D	2065

.

•

					CYLIND REPU	ær data Blic	TA	BLE B-19 B-50		
NAME	Fist. Dia.	Rod Lia.	Stroke	Head Area	kod Side Area	Area Ratic	Access Access Heid Rod End	Plane	Losd	
lose Gear Lock _ ain Gear Retract] ain Gear Uplock	1.50 1.13 1.00	•875 •500	.604 7.92 1.56	1.755 1.00 .755	. 402	.1.02	Single Acting Ball Lock and Swi on	F84-F	1500	
lain Gear Downlock	1.50		1.00	1.765	•2-7	-17-	Built in Check Seclence		2645	
Lie Ger Out Lock	1.25	.500	1.30	1.225	1.029	.6L0	Single Acting	· .	1838	
ding Slat	1.00	•575	8.53	•785	.675	•85°	•		0 - / 0	
-ing fisp	2.88	2.00	2,25	5.51	3.57	•517		*	9760	
1.053 Gear Uplock	1.00	-	کلو۔	•(8)		210			1178	
IT, LOZZIE LATCH	1.25	.500	2.25	1.427	-640	•919			1838	
1.053 GDJT	2.75	.675	3.92	5.94	5.25	•8t3 .			8900	
Duct Screen	1.00	•750	3.50	•785	•437	(•557			1178	
Lileror Fow r	2.125	•750	4.33	° 3.55	3.118	1.00			5340	
-Jato Release	.875	.312	2,62	.601	•525	.673			901	
Elevator Fower	1.904	•750	3.39	2.85	.845	1.00			121,0	
Rudder rower	1,211	.625	2.02	1.163	1.163	1.00			2205	
Speed Bruke	2,125	1.250	9.87	3.55	3.35	.654			5340	
Ifr. Release	•937	.500	2.98	. 689	493	.716		F84-F	1034	

CYLINDER DATA

APPENDIX C

VALVE AND FILTER WEIGHT AND SPACE

ý,

AFPENDIX C

VALVE WEIGHT AND SPACE

In this section, mathematical expressions for check valve weight and space were obtained. Other valves have been considered as multiples of the check valve weight and space for equivalent horsepower rating.

The check value weight was obtained by considering, as in other sections, that the part in question consisted of an assembly of several simpler parts. The ends of the check value appear as being quite similar in design and construction to an "AN-815" union. The burrel part is essentially a section of tubing. The internal parts like poppet and spring are also similar in shape and weight to line fittings. The weight equation became basically:

$$K_{\rm CT} = K_1 W_{\rm F} + K_2 W_{\rm TUBING}$$

Where:

13

W_{CV} = check valve weight (LB)

- W_F = Fitting weight (LB)
- WTUBING Tubing weight (LB)
- K = Ratio of theoretical fitting weight to actual fitting weight
- K₂ = Ratio of theoretical tubing weight to actual barrel weight

The fitting weight has been expressed in Appendix "A" as:

$$\mathbf{v}_{\mathbf{F}} = \frac{2.98 \ (10^{-5}) \mathrm{D}^2 \mathrm{P}^2}{36000 + \mathrm{P}} + 8.5(10^{-7}) \mathrm{DP} + l_{t} \cdot 87(10^{-3}) \mathrm{D} \qquad (C2)$$

A check valve was disassembled and weighed and from this, it was established that the fitting portion which consists of poppet, spring, and both fitting ends, weighs 0.3/61 lbs. For the one half inch tube size, used for 3000 psi, and the barrel weight which was actually a straight tube, was found to be 0.2/11 lbs.

If the criteria that D = 0.5 in. and P = 3000 psi is introduced in equation Cl, WF becomes equal to 0.004569 lb. Accordingly:

$$K_1 = \frac{W_{CV} - W_{BARREL}}{0.004569} = \frac{.3461}{0.004569} = 75.7$$
(C3)

To obtain a value for \mathbb{Z}_2 , it was necessary to find an equation for the check value body weight. Since the body is essentially a piece of straight tubing, its basic equation is:

(C1)

$$W_{\text{TUBING}} = \frac{\pi}{4} \left(D_{\text{CV}}^2 - d_{\text{ev}}^2 \right) L \rho$$

Whorei

L

L

D_{CV} = Outside barrel diameter (IN)

- d_{cv} = Inside body diameter (IN)
 - = Barrel length (IN)
 - = Material weight (LB/IN²)

It was observed from a plot of "L" versus " D_{CV} ," for all sizes of check values:

=
$$2.00 D_{cv}$$
 (C5)

From Lame's relationship for thick wall cylinders:

$$d_{cv}^{2} = D_{cv}^{2} \left(\frac{S_{t} - P}{S_{t} + P}\right)$$
(66)

From a plot of "D_{CV}" versus "D": (Tubo Size)

$$D_{cry} = 1.463 D + .3244$$
 (C7)

The use of material according to Specification MIL-S-6758, Condition F, was assumed and so:

$$-.283 \text{ LB/IN}^3$$
 (C8)

$$S_{\perp} = 180,000 \text{ LB/IN}^2$$
 (C9)

When equations C5 through C9 are introduced into equation C4:

$$W_{\text{TUBING}} = .0278 (4.69D + 1)^3 (\frac{P}{36000 + P})$$
 (C10)

which includes a safety factor of 5.

When D = .500 inch and P = 3000 psi, then W_{BARREL} (by equation ClO) is equal to 0.0804 LB.

Actually, as was stated earlier, the barrel was 0.1411 LB, accordingly,

$$\mathbf{R}_2 = \frac{0.1411}{0.0804} = 1.755 \tag{(C11)}$$

When equations C2, C3, C10, and C11 are inserted in equation C1, the total check valve weight becomes:

$$W_{CV} = \frac{.002256D^{3}P^{2}}{36000 + P} + .0000643DP + .369D + .0488(4.69D + 1)^{3}$$

+ $\frac{P}{36000 + P}$ (C12)

C-3

(C4)

Where:

W_{CV} = Check valve weight (LB) D = Tubing size (IN)

. . . .

P = System Pressure (LB/IN²)

For the space relationship the check valve was considered to be a cylindrical can of an outside diameter equal to the dimension across corners of the bexagon ends, and of a length equal to the check valve length less the threaded ends. (Since these ends are assembled in tubing during use).

By equation C5 the check valve length is stated as:

$$L = 2.09 D_{CV}$$
 (C13)

The relation between the tubing diameter (D) and the dimension across corners (D_{BS}) is:

$$D_{RC} = 1.69 D + .375$$
 (C14)

Basically, the space volume is equal to:

$$\mathbf{v}_{\mathrm{S}} = \frac{\pi_{\mathrm{c}}}{4} D_{\mathrm{BS}}^{2} \mathbf{L}$$
 (C15)

When equation C13 and C14 are substituted into equation C15, the final result is:

$$V_{\rm S} = 6.9 \, (D + .222)^2$$

where :

V. - Space volume (IN3)

D = Tubing size (IN)

Equations C12 and C16 appear plotted in figures C1 and C2 respectively.

Other values which were considered were, relief values, serve values, shuttle values, solenoid values, and disconnects. (Both bulkhead station and line to line connection types). The following method was considered advisable since all values can be considered as being composed of fittings and pressure containers.

For values which are of the standard "AN" type, such as relief values, shuttle values, and disconnects, weight data as listed in "AN" standards was utilized by obtaining a ratio between the respective value weight and a check value weight at the same norsepower. This ratio was termed a "multiplier," and they are listed in Table C3. Space was treated similarly except that space was considered to be the volume of the smallest sized box which could contain the value.

c-4

(016)

For the more complicated and less conventional type valves such as serve and solenoid control valves, many actual valves from current airplanes were investigated and the observations were tabulated. (See Table C2). The respective weights and space volumes were averaged and those averages were used in a similar manner as the previous types.

Ī

í.

1

3

Ŀ

ć

₩<u>₽</u>,

Table Cl C-6

	<u> </u>			······································	
P	HP	$\frac{d}{dt} \frac{S_t + P}{S_t - P}$	CHECK VALVE WEIGHT	CHECK VALVE SPACE	
1000	2 10 50 100	•313 •5!;8 •9!;6 1•219	•1699 •3073 •6708 •0379	1.055 3.16 11.05 20.20	
- 1500	2 10 50 100	.216 .441 .773 1.01	.1446 .2731 .6157 .9804	.780 2.01 6.80 12.82	
3000	2 10 50 100	•198 •313 •566 •728	.1235 .2483 .5933 .9332	•511 1•056 3•38 5•92	
4000	2 10 50 100	.1875 .281 .506 .656	- 1512 - 2565 - 6206 - 9972	•475 •876 2•66 4•67	
5000	2 10 50 100	.1875 .263 .474 .615	•1724 •2733 •6744 •9758	-475 -786 2-32 4-04	
7500	2 10 50 100	•1875 •251 •435 •558	.2263 .3614 .8149 1.3815	•475 •731 1•96 3•28	
10000	2 10 50 100	•1875 •275 •432 •557	.2817 .4909 1.1295 1.9145	.475 .859 1.859 3.26	·

I

.

														Table	C2	
													<u></u>	00201	<u> </u>	
													ACEN	VALUE		
								δT.	FLON	FRESS	VOL		WT.	SHACE	NULT	ZULT
CO.	NFGR NO.	TYFE	SILENOID	WAY	ROE 11	ARHANE	USE	LB	GEA	ŀSI	11,3	HP	цБ	ц;3	WI	SACE
Bertea	1.FC-0-01	Servo				404	Aileron	2.8	1.73	1500	36.9	1.51	.130	.70	2.15	52.7
Dertea	11800	Selector	Yes					1	3	3000	11.1	5.25	.225	•75	. 4.45	14.8
G. C. *	AV148-1128D	Selector	Yes	4	2			2	6 .	3000	133.5	10.5	.285	1.10	7.02	.151
G.C.	лv134-124	Selector		3	2	XF61-1	Spoiler	1.5	3.5 👌	- 3000	63.5	6.12	.230	.30	6.52	104
G. C.	AV14C-1153	Selector		4	3	FGu−1	Line Door	6	34	3000	350.0	59.5	.690	3.90	8.7	8•93
Bendix	548 570	Selector	Yes	4				1.9	6	3000	49.5	10.5	. 285	1.10	6.67	45
Hyd-Aire	4952	Selector	Yes	3		XF6K-1	Pump Discharge	2.3	6	3000	67.2	10.5	.235	1.10	8.07	60.6
Adel	22982	Selector	Yes	4	. 3			2.1	12	3000	52.9	21	.385	1.70	5.45	3.61
Adel	25036	Selector	Yes	3	ź			1.5	1	100	24.9	.564				
							Fump	-								
G. C.	AV110-1146	Selector	Yes	3	** -,	XP6 1-1	By-Pass	1.5	1	100	33-4	-584				
Jondin	550470	Salaatar	Yee	z	0	x 0/41 - 1	Stabilizer	16	17	7000	1.6 a	22 7	· 1.00	1 80	١.	26.1
Deraix	550050	2 9160001	162	2	4	. AI (84-1		1.0	1 2 ,	5000	40.9	<u> </u>	•400	1.00	4	203.
Veri Tomm	X8 160100	Salaatam	Vez	1.		YT61.1	Dear		50	2000	100 5	97 E	500	E 75		20 5
nya-towr	X3-100100	Selector	162	4		X 1(0),-1	11+:1:+		-) 0	9000	1.07.0	01.9	.000	2.22		20.0
Evd-how	XS-18100	Selector	Yes	Ъ		XP62-1	Door		20	2000	1221	35.0	510	2.60		51.8
nya iont	10100	00103001		4		лт <u>с</u> ш- <u>-</u>	DUUI		20	5000	Trik-ort					74.00
Bertea	lifc-8-01	Servo				XP62-1	Hydroflap	3.1	12	3000	61 .7	21.0	•385	1.70	8.05	48.1
							Rudder									
Bertes	LFC-6-03	Jer v o				XF61-1	Control	1.5	1.5	- 3000	32.9	2.63	.170	.60	5.7	54.8
leston	11920	Servo				XP6X-1	Stabilizer	4.85	5 24	3000	107.0	42.0	•560	2.90	8.6ć	36.9
heston	11930	Servo			~~~	XP61-1	Spoilor	3.00	60	3000	2,00	105	1.000	6.20	3	38.7
Weston	11940	Servo				<u>∧r6±−1</u>	Hydroflap	2.05	5 2li	3000	69.1	42.0	.560	2.90	3.66	30.7
neston	11750	Selector		4		AP 62-1	Cong Plap	2	1.3	30-0	48.4	2.27	.160	•55	12.5	66.1
Weston	8440	Selector	Yes	4	~	XF61-1	Banb Door	2	20	- 3000	71.6	35.0	.510	2.60	3.92	27.5
Bendix	551590	Selector	Yes	4				3-39	9 16	3000	68.4	28.0	.450	2.20	7.54	70.5
	•						Flaps-									
Adel	21700	Selectar	Yes	- 4		P51-2	Bomb Door	2.1	20	3000	75.6	35.0	.510	2.60	4.12	29.1
Bertea	laFC-6-03	Servo				F51-2	Boost	143	8 1.5	3000	32.9	2.63	.170	.60	8.45	54.8
Adel	23386	Selector	Yes	4	3	P54-2	Hydroflap	2.1	6	3000	75.4	10.5	. 285	1.10	7.37	5 8 .5
G. C.	AV148-1122	Selector	Yes	4	3			1.7	3 • 5	3000	89.6	6-12	.230	.80	7.39	112
G. C.	AV 148-1124	Selector	Yes	4	3		*******	1.9	5 6	3000	1165	10.5	.285	1,10	6.84	106
G. C.	av14 c-113 8	Selector	Yes	4	3			1.9	56	3000	116.5	10.5	.265	1,10	6.84	106

•

Sin line

- main ar sess

•General Controls

• •

.

<u>-----</u>

Table C3 C-8

TABLE OF MULTIPLIERS

.

	Weight	Space
Disconnect, in-line	1.538	2.5
Disconnect, Bulkhead	1.338	2.3
Relief Valve	6.5	26
Servo Valve	5.5	45
Shuttle Valve	1.5	· 9
Solenoid Valve	6.7	64

•

II. Determination of the Weight and Space of Filters

The weight of filters was assumed to be similar to the weight of accumulators; with different constants. (See Appendix D) This equation is of the form:

Wt = .60131
$$d^2 p^{\frac{1}{2}} \left(\frac{20000 + P}{20000 - P} + 3.67 d^3 + \frac{.358 d^2 P}{12000 - P} \right)$$

+ .0158 d³ + .025 d² + .007 (Air Volume) + 1.3

In the calculation of the weight of accumulators it was noted that for small work levels (figure D-2) the weight of the accumulators was nearly constant for all pressures.

Therefore a plot of filter weight versus horsepower was made for 1500 psi, 3000 psi, and 5000 psi (figure C-3). From this it was evident that the weight of the filters was constant at all pressures for the same horsepower level. An average of points was drawn resulting in the following equation:

٢

The space of actual filter was calculated and plotted. From this plot an equation was determined for the space of filters at various pressures and horsepowers.

Space =
$$\frac{1.125 \times 10^4 \text{ (HP)}}{\text{System Pressure}} + 7$$

The space occupied by filters at 2, 10, and 20 horses d = r was calculated and is presented graphically in figure C-4.

FIG. C-3

HORSEPOWER

.

FIG. C-4 C-13

A Sector

APPENDIX D

CALCULATION OF THE

WEIGHT AND SPACE OF

CYLINDRICAL ACCUMULATORS

D-1

I The Weight of Accumulators

The final equation for the weight of accumulators is as follows:

Weight = Weight of End Caps + weight of Barrel + Weight of Piston + Correction factor for bulk

Weight of End Caps = $.00131 \text{ d}^2P^{\frac{1}{2}} \left(\frac{20000 + P}{20000 - P}\right)$ Weight of Barrel = $5.67d^3 + .558d^2 \frac{P}{h2000 - P}$ Weight of Piston = $.0158d^3 + .025d^2$ Correction Factor = K = 1.3 + .007 (Air Volume) where d = Accumulator Bore P = Systom Pressure

It is noted that the form of the equations above is the same as the equations found in Appendix B for the calculation of the weight of various sections of the cylinder. The changes have been in the constants to conform to the actual weights of the cylinders and, in the case of the barrel, changes in material strength and density and the replacement of the stroke in terms of the bore.

As a basis for comparison -- three work levels were chose:: 1,200,000 IN-LB; 300,000 IN-LB; and 75,000 IN-LB. For convient calculation this value was divided by the pressure to obtain the air volume of the accumulator. (This assumes 100% efficiency.)

The bore and stroke relationship was obtained for the 1CC cubic inch accumulator at 3000 psi. This ratio being: $\frac{S}{A} = 5.68$

A fluid volume of 90% of the air volume was found to be average for 3000 psi accumulators so the equation for finding the bore of the accumulators was:

$$d^{3} = \frac{\text{Air Volume}}{14.95}$$

Figure F-1 is an illustration of the weight of accumulators versus air volume for 3000 and 1500 psi accumulators. Two solid lines represent the awage weights at these pressures. A dotted line represents the calculated weight using the equations without the correction factor with a phantom line representing the correction factor. The correction factor is the difference between the dotted line and the 3000 psi line. * ***** -

From the final equation -- page F-1, the weights of accumulators at various pressures and work levels were calculated. The results a e-presented in Table D-1 and figure D-2. From these curves it is evident there is a minimum weight for any work level at 4000 psi. It is also noted that there is little auving above 3000 psi as the curve is nearly flat between 3000 and 5000 psi.

II Space Occupied by Cylindrical Accumulators

The space occupied by accumulators was considered to be the volume of a cylinder that is the envelope of the accumulator.

Space = $\frac{1}{4}D^2 \times L$ Where D = Outside diameter of cylindrical envelope L = Total length of accumulator

Since the stroke was considered as a multiple of the bore for weight, the length is considered as multiple of the outside diameter. The difference between the bore and the outside diameter and the overall length was also considered to be a constant multiple.

The actual envelope for several accumulators at 3000 psi and varicus volumes was calculated. With the assumptions as above:

Space = 9.21 x d3 d = Accumulator bore

The space occupied by accumulators was determined and is tabulated in Table D-2 and presented graphically in figure D-3. WEIGHT OF ACCULULATORS AT VALICUS THESSURGS and wORK LEVELS

•.:

FRESSLA	ůCh K	VOL	d٤	d ²	d	END CARS	LALEL	FISTON	K	WEIGHT
1000	1,200,000	1200	21,3.5	30.5	6.05	1.538	22.1	4.700	9.7	30-090
	300,000	300	61.0	15.62	3.94	.656	5.14	1.3543	3.4	10-5505
	75,000	75	15.23	6.22	2.496	.261	1.305	.3963	1.525	3-7875
1500	1,200,000	200	162.5	29.8	5.19	1.76	22.1,5	3.310	6.9	3:20
	300,000	200	Lo.6	12.81	3 •5 8	•756	5,69	.961	2.7	10.107
	75,000	50	10.15	14.69	2 •1 55	•2765	1.44	.2775	1.59	3-64:0
300 0	1,200,000	Цсс	81.25	18.7	4.32	1.817	23.4	1.7505	L.1	31.0675
	300,000	100	20.3	7.46	2.73	.725	5.95	.5075	2.0	9.1825
	75,000	25	5.08	2.92	1.719	.2835	1.518	.1531	1.475	3.1/296
1,000	1,200,000	300	61.0	15.52	3.94	1.98	24.2	1.362	3.4	30.942
	300,000	75	15.23	6.22	2.396	.774	6.14	.396,	1.825	9.1355
	75,000	10.75	3. 81	2.44	1.562	.3035	1.563	.1212	1.1.313	3.419
5000	1,200,000	210	48.75	13.52	3.65	2.055	24:8	1.103	2.95	30 .9 38
	300,000	60	12.2	5.31	2.302	.82	6.32	.326	1.72	9.186
	75,000	15	3.03	2.09	1.447	.3225	1.604	.10015	1.405	3.43165
7500	1,200,000	180	36.55	11.12	3.32	2.78	28.35	.855	2.56	34-545
	300,000	45	9.15	4.375	2.09	1.094	7.22	.2539	1.615	10.1829
	75,000	10	2.03	1.602	1.266	.40	1.65	.0722	1.370	3.4922
10000	1,200,000	120	24.4	8.41	2.9	3.31	28.9	.5962	2.14	34.9462
	300,000	30	6.1	3.34	1.628	3.314	7.37	.1799	1.51	10.339
	75,000	7•5	1.525	1.329	1.152	.522	1.900	.0571	1.3525	3.8316

TABLE D-1

SPACE OCCUPIED BY ACCUMULATORS

SPACE * 9.21 d ²											
WORK	d	d 3	SPACE	<u>,</u>							
1,200,000	6.05	21.3.5	224 0								
300,000	3.94	61.0	561								
75,000	2.496	15.23	140-3								
1,200,000	5.10	162.5	1497								
300,000	3.58	40.6	374.								
75,000	2.165	10.15	93.6								
1,200,000	4.32	81.25	749								
300,000	2.72	20.3	187								
75,000	1.718	5.08	46.8								
1,200,000	3.94	61.0	561								
300,000	2.496	15.23	140.3								
75,000	1.562	3.81	34.2								
1,200,000	3.65	48.75	9، بابابارا								
300,000	2.302	12.2	112.3								
75,000	1.447	3.03	27.9								
1,200,000	3.32	36.55	336.5								
300,000	2,09	S 15	84.3								
75,000	1.266	2.03	18.7								
1,200,00 0	2:9	21.1	224.5								
300,000	1.328	6.1	56.2								
75,000	1.132	1.525	14.05								
	SPACE WORK 1,200,000 300,000 75,000 1,200,000 300,000 75,000 1,200,000 300,000 75,000 1,200,000 300,000 75,000 1,200,000 300,000 75,000 1,200,000 300,000 75,000	SPACE $9,21$ d WORK d 1,200,000 $5,94$ $75,000$ 2.196 1,200,000 5.19 $75,000$ 2.196 1,200,000 5.19 $300,000$ 3.58 $75,000$ 2.196 1,200,000 3.58 $75,000$ 2.165 1,200,000 2.72 $75,000$ 1.718 1,200,000 3.94 $300,000$ 2.392 $75,000$ 1.562 1,200,000 3.65 $300,000$ 2.302 $75,000$ 1.447 1,200,000 3.32 $300,000$ 2.09 $75,000$ 1.266 1,200,000 2.9 $300,000$ 1.328 $75,000$ 1.152	SPACE $4,21 d^2$ WORK d d^2 1,200,000 $5,04$ 61.0 75,000 2.196 15.23 1,200,000 5.19 162.5 300,000 3.58 40.6 75,000 2.196 15.23 1,200,000 5.19 162.5 $300,000$ 3.58 40.6 75,000 2.165 10.15 1,200,000 4.32 81.25 $300,000$ 2.72 20.3 $75,000$ 1.718 5.03 1,200,000 3.94 61.0 $300,000$ 2.496 15.23 $75,000$ 1.362 3.81 $1,200,000$ 3.65 48.75 $300,000$ 2.09 21.4 $1,200,000$ 3.32 36.55 $300,000$ 2.09 21.4 $300,000$ 1.328 6.1 $75,000$ 1.328 6.1 <td>SPACE 4 d^2 SPACE WORK d d^2 SPACE 1,200,000 5.94 61.0 561 75,000 2.196 15.23 140.3 1,200,000 5.94 61.0 561 75,000 2.196 15.23 140.3 1,200,000 5.19 162.5 1497 300,000 3.58 40.6 374 75,000 2.165 10.15 93.6 1,200,000 4.32 81.25 749 $300,000$ 2.72 20.3 187 75,000 1.718 5.03 46.8 $1,200,000$ 3.94 61.0 561 $300,000$ 2.92 18.75 144.9 $300,000$ 2.65 381 34.2 $1,200,000$ 3.52 36.55 336.5 $300,000$ 2.09 9.15 84.3 $75,000$ 1.266</td>	SPACE 4 d^2 SPACE WORK d d^2 SPACE 1,200,000 5.94 61.0 561 75,000 2.196 15.23 140.3 1,200,000 5.94 61.0 561 75,000 2.196 15.23 140.3 1,200,000 5.19 162.5 1497 300,000 3.58 40.6 374 75,000 2.165 10.15 93.6 1,200,000 4.32 81.25 749 $300,000$ 2.72 20.3 187 75,000 1.718 5.03 46.8 $1,200,000$ 3.94 61.0 561 $300,000$ 2.92 18.75 144.9 $300,000$ 2.65 381 34.2 $1,200,000$ 3.52 36.55 336.5 $300,000$ 2.09 9.15 84.3 $75,000$ 1.266							

SPACE - 9,21 d3

FIG. D-1 D-6

لم

.

**

DETERMINATION OF THE WEIGHT AND SPACE OF HYDRAULIC PUMPS AT VARIOUS PRESSURES AND HORSEPOWERS

APPENDIX E

E-1 .

.

Determination of the weight and Space of

Hydraulic Pumps at Various Pressures and Hørsepowers

It appears logical to assume that the weight of the pump is a direct function of horsepower and independent of working pressure, on the basis that the pump is the optimum design for that pressure.

Examining the cross section drawings of the New York Air Brake 66WA300 or Vickers PV3911, it is evident that the majority of the weight of the package is in the construction of the mechanical parts and joints, and the casing - most of which surrounds the chamber pressurized by inlet or by-pass pressures only.

At a given horsepower this equipment must remain substantially the same. Increasing system pressure can be accomplished by reduction of stroke or bore; and, it is assumed, the reduction in the size of the cylinders will be compensated by increase in wall thickness of the cylinder and pressure chambers.

Since that part of the pump affected by these variations is a relatively small percentage of the total pump weight and space, any error in the above assumption will be negligable within the range of the study.

Therefore, the equations for weight and space for all pressures are based on the most recently developed production pumps for 3000 psi. Any advance in the design of pumps, such as high speed development, would be of equal advantage to all pressures.

In figure E-1 is a plot of weight versus horsepower for some recently developed 3000 psi pumps. Through these points an average is drawn which represents the weight of pumps for any horsepower at all pressures. The equation for this line is:

Wt - 3.4 + .72 (HP)

Figure E-2 is a plot of the pump space versus horsepower of 30.0 psi pumps. The line drawn is the average of these points. The equation of this line is:

Space = 80 + 15.7 (HP)

2284-110

¥

APPENDIX F

I

Ţ

į

1

1

÷.,

F-1

THE WEIGHT AND SPACE OF RESERVOIRS AT VARIOUS PRESSURES

APPENDIX F

THE WEIGHT AND STACE OF RESERVOIRS AT VARIOUS INESSURES (This study conforms to Specification MIL-R-5520 A in every detail) The following symbols were used throughout this section: Total weight of reservoir including fluid (LB) $W_{\mathbf{R}}$ Total external space utilized by reservoir (IN²) SR Total internal volume of reservoir (IN3) V_R Total internal volume of reservoir (GAL.) V_{RG} Minimum "full" design level volume of fluid $\delta_{\mathbf{R}}$ Air volume in resorveir (IN²) δα Emergency fluid volume in reservoir (IN²) δ. Volume of fluid in reservoir allowed for net depletion from δC cylinder volumetric changes (IN3) - Fluid volume allowed for accumulators (IN²) δ_A Fluid volume allowed for leakage (IN^3). δ_{I.K} Total system fluid volume, including the reservoir volume (IN3) ٥s Volume of fluid in the reservoir made unavailable by the δ_F action of the largest capacity quantity measuring type hydraulic fuse. (IN3) Fluid volume allowed to insure that pump suction head is δg maintained for all altitudes and accelerations without the reservoir design limits. i.e. fluid quantity for negative $"_{\rm L}$ " loads. (IN3) Fluid volume allowed to equal the maximum thermal contraction δ_{T} (Taken between the temperature limits of +70°F and -40°F) (IN3) Total work of all the cylinders in the system (LB-IN) UC Work of the largest accumulator in the system (LB-IN) UAL U, Total work of all accumulators, including the largest, in the system (LB IN)

UCMAX	-	Work of cylinders in the largest fused system (LB IN)
UEM	•'	Sum of work of actuators in the emergency system (LB IN)
L	-	Length of line at any one horsepower level (IN)
HP	-	Horsepower used as a work level measure
Р	-	System Hydraulic Prossure (LB/IN ²)
ĸ	-	Geometrical construction constant
v _c	-	Total fluid volume of all operating cylinders within the system (IN3)
VAL		Total air volume in the largest accumulator (IN ³)
۷ _A	-	Total air volume of all accumulators, including the largest, in the system (IN^2)
V _{EM}	-	Actual fluid volume required to complete the program emergency operation. (1N3)
v _L		Line fluid volume plus fitting fluid volume (IN3)
V _{FL}		Filter fluid volume (IN ³)
vv	-	Valve fluid volume (IN ³)
ν _p		Pump or motor fluid volume (IN ³)
Va	-	Total air space volume (IN ³)
·	L	• (HP) • 7065 = $L_{L1} \cdot (HP_1) \cdot 7065 + L_{L2} (HP_2) \cdot 7065 +$
	• • • •	• + $L_{IN} (HP_N) \cdot 7065$
WTANK	*	Weight of empty reservoir (LB)
WFLUID		Weight of fluid (LB)

Below are listed, by paragraph numbers, what appears in Specification k.HL-R-5520A when restated as mathematical expressions.

3.2.2	VR	12	$\delta_{R} + \delta a + \delta_{\Theta}$	(F ₁)
3.2.3	δ _R	*	$\delta C + \delta_A + \delta_{LK} + \delta_F + \delta_g + \delta_T$	(F ₂)
3.2.3.в	δC	-	1.5 (0.25)V _C = .375V _C	(F3)
3.2.3.Ъ	٤ _A		$v_{AL} + .6 (v_A - v_{AL})$	(F4)
3.2.3.c	οľΧ	-	.05 \$	(F5)
3.2.3.d	δ _F	-	٥ _F	(F6)
3.2.3.0	δ ₅		κ ₁ ν _R	(F7)
	ĸı	**	Ratio of allowed fluid to total volume of reservoir and it is dependent on the geometrical configuration.	
3.2.3.1	δŢ		$(70 + 40)$ (.000432) b_{s} = .0475 b_{s}	(F8)
3.2.4	δα		0.15 _R + 0.150	(F9)
3.2.5	. ⁵ e	-	1.25 V.M	(F10)

The items included in the system is defined by:

$$\delta_{S} = V_{R} + V_{C} + V_{A} + V_{T} + V_{FL} + V_{T} + V_{T}$$
(F11)

Combining equations F1 through F11 and solving for VR:

$V_R = \delta_R + \delta a + \delta_a$

- = $\delta_{R} + (0.1 \delta_{R} + 0.1 \delta_{0}) + 1.25 V_{EM}$
- 1.1 δ_R + 1.375 V_{EM}
- = 1.1 $\delta_{C} + \delta_{A} + \delta_{LK} + \delta_{F} + \delta_{E} + \delta_{T} + 1.375 V_{EM}$
- = 1.1 .375 V_{C} + V_{AL} + .6 (V_{A} V_{AL}) + .05 δ_{S} + δ_{F} + 1.1 K1 V_{R} + 1.375 V_{EM}
- .4125 V_{C} + .44 V_{AL} + .66 V_{A} + .1072 δ_{S} + 1.1 δ_{F} + 1.3 $K_{1}V_{R}$ + 1.375 VEM
- .4125 V_{C} + .44 V_{AL} + .66 V_{A} + .1072 V_{R} + V_{C} + V_{A} + V_{L} + V_{FL} + V_{V} + V_{F} + 1.1 δ_{F} + 1.1 K_{1} V_{R} + 1.375 V_{EM}
- .5197 V_{C} + .14 V_{AL} + .7672 V_{A} + (.1072 + 1.1K₁) V_{R} + 1.1 δ_{F} + 1.375 V_{EM} + .1072 V_{L} + V_{FL} + V_{V}

Finally:

$$v_{\rm R} = \frac{1}{.6928} - 1.1 \, \kappa_1 = .5197 \, v_{\rm C} + .101 \, v_{\rm A} + .7672 \, v_{\rm AT} + 1.18 \, F + 1.375 \, v_{\rm EM} + .1072 \, v_{\rm L} + v_{\rm FL} + v_{\rm V}$$
(F11)

To render this equation more readily useable it was logically assumed from data that:

$$v_{V} = .1 v_{L}$$
(F13)

$$V_{FL} = .05 V_L$$
 (F14)

$$b_{\rm F} = 1.5 \, V_{\rm CMAX} = 1.5 \, \frac{U_{\rm CLAX}}{P}$$
 (F15)

$$V_{\rm EM} = \frac{U_{\rm EM}}{P}$$
(F16)

$$U_{\rm C} = \frac{U_{\rm C}}{P}$$
(F17)

$$V_{A} = \frac{U_{A}}{P}.$$
 (F18)
W UAL (F16)

$$V_{AL} = \frac{OAL}{P}$$
 (F19)

Further, when line volume is plotted versus pressure at various horsepower, it was found that the following relation obtains:

$$V_L = \frac{35.85 (HF) \cdot 7065}{P}$$
 (F20)

The quantity $\frac{1}{.8928 - 1.1 \text{K}_1}$ which a pears in equation F11 can be thought

of as a multiplier dependent on value of the geometrical construction constant K_1 . To obtain values for K_1 , the negative ${}^n \varepsilon^n$ load fluid allowances for the utility and surface control systems of the Martin XFGM-1 were divided by their respective total volumes.

Accordingly: for the tank type reservoir:

Ands

For the piston type reservoir:

$$K_1 = 0$$
 and so:
 $\frac{1}{.8928 - 1.1K_1} = 1.12$

(F21)

(F22)

. 1×4 - 1

)

Utilizing the rolations shown by equations F13 through F20 :

$$v_{\rm R} = \frac{1}{.0928 - 1.1 {\rm K}_1} \left(\frac{1}{{\rm F}}\right) .5197 \ v_{\rm C} + .141 \ v_{\rm A} + .7672 \ v_{\rm AL} + 1.5 \ v_{\rm CMAX} + 1.375 \ v_{\rm EM} + 4.142 \ L_{\rm L} \cdot ({\rm HP})^{.7065}$$
(F23)

To obtain the volume in a tank type reservoir, equation F21 was utilized:

$$v_{\rm R} = \frac{1}{P} 1.102 \, u_{\rm C} + .933 \, u_{\rm A} + 1.628 \, u_{\rm AL} + 3.18 \, u_{\rm CMAX}$$

+ 2.915 $u_{\rm EM} + 9.37 \, L_{\rm L} \, (\rm HP)^{.7065}$ (F24)

For the piston type:

$$V_{R} = \frac{1}{P} .582 U_{C} + .493 U_{A} + .859 U_{AL} + 1.68 U_{CMAX} + 1.54 U_{BM} + 4.95 L_{L} \cdot (HP) \cdot ^{7065}$$
 (F25)

The reservoir weight can be expressed as:

$$W_{R} = W_{TANK} + W_{FLUID}$$
 (F26)

From figure Fl for tank type reservoirs:

 $W_{\text{TANK}} = 6.7 + 1.22 V_{\text{RG}}$ (F27)

Since the fluid (MIL-0-5606) weighs .03085 LB/IN³ at 70°F

$$W_{\rm FLUID} = .03085 (V_{\rm R} - V_{\rm a})$$
 (F26)

To obtain an expression for Va in terms of $V_{\rm R}$ the following two definitions were solved simultaneously:

 $v_{\rm R}$ = 110% of $v_{\rm FLUID}$ $v_{\rm R}$ = $v/ + v_{\rm FLUID}$

R Y FL

And so:

Therefore equation F28 becomes:

 $W_{FLUID} = .03085 (V_R - .091V_R)$

= .03085 (.909) V_R

- .0281 V_R

By definition:

V_R - 231 V_{RG}

F--6

1

(F29)

(F30)

(F31)

Inserting equations F27, F30, and F31 into F26:

$$W_{R} = 6.7 + 1.22 V_{RG} + .0281 V_{R}$$

$$= 6.7 + .00528 V_{R} + .0281 V_{R}$$

$$W_{R} = 6.7 + .00528 V_{R} + .0281 V_{R}$$
(F32)
$$W_{R} = 6.7 + \frac{1}{P} - .0367 U_{C} + .0311 U_{A} + .0542 U_{AL}$$

$$+ .106 U_{ChAX} + .0915 U_{PM} + .3124 U_{L} \cdot (11F)$$
und is the reservoir weight with fluid for the tank type.
From figure F1 for the piston type reservoir:
$$W_{TANK} = 6.32 + 5.89 V_{RG}$$
Since no air space found in the piston type:
$$W_{FLUID} = .03085 V_{R}$$
(F34)
Combining equations F26, F31, F33, and F34:

$$\mathbf{w}_{R} = 6.32 + 9.69 \mathbf{v}_{RG} + .09009 \mathbf{v}_{R}$$

= 6.32 + .0255 \mathbf{v}_{R} + .03085 \mathbf{v}_{R} (F35)

 $W_{R} = 6.32 + .05635 V_{R}$

Using the expression for V_{R} , equation F25:

$$W_{R} = 6.32 + \frac{1}{P} \cdot 0.0328 U_{C} + \cdot 0.02775 U_{A} + \cdot 0.0483 U_{AL} + \cdot 0.0945 U_{CMAX} + \cdot 0.0867 U_{EM} + \cdot 279 L_{L} \cdot (HF) \cdot 7065$$
(F36)

and is the weight of piston type reservoir with fluid.

From figure F2 for the tank type reservoir:

$$s_{\rm R} = 598 v_{\rm RG} \cdot 728$$

 $= (6534 v_{\rm RG})$
 $= (28.3 v_{\rm R}) \cdot 728$ (F37)

Using equation F24 for $V_{\rm R}$

$$S_{R} = \frac{1}{P} 31.2 U_{C} + 26.4 U_{A} + 46.1 U_{AL} + 90 U_{CMAX} + 82.5 U_{PM} + 265 L_{L} \cdot (HP) \cdot 7065 .728$$
(F38)

and this is the equation for space of the tank type reservoir.

From figure F2 for the piston type reservoir:

$$S_R = 300 + 650 V_{RG}$$

= 300 + 2.81 V_R (F39)

Using equation F25 for V_{R} :

2

ί.

2

$$S_R = 300 + \frac{1}{12} + 1.636 U_C + 1.385 U_A + 2.41 U_{AL}$$

+ 14.72 U_{CLIAX} + 4.33 U_{EM} + 13.91 L_L • (HP) • 7065 (F40)

Which is the equation for space utilized by the piston type reservoir.

FIG. F-2 F-10 Q Ł × 64 60 XAGM 56 2422 HAT IO X IO TO THE 52 • : : . . . 48 44 PISION - INCH 44 2137011 . . . 40 311-Te25 WITH FILTER 101 m .i Z 36 10 N i. (-) X 72 . . . 5 32 -2 444 XPGM-1 SPACE 60 100 341 (6 B-STA 28 E 19ELL ų '11 Ì 18-51 RESERVOIR 24 -NORTHROP --- RAD RES 20. PS11-15 12 1 11 Ħ . . . 8-6 1 B ιŢ 1 4 ÷ 1 -51 ----1 .:| XB C Ġ ŀ 8 .**!**.. 4 •• TOTAL VOLUME (GALS)

1

5 . S

APPENDIX G

ACKNOWLEDGMENTS

In our effort to make the results of this study applicable to the entire industry, an attempt was made to get everyone interested to contribute. Excellent cooperation was obtained from this contacted.

The following companies and organizations willingly contributed information that appeared to be valuable in the optimum pressure studys

> 1. Aircraft Laboratory - Mechanical Branch Wright Air Development Center

2. Bureau of Aeronautics - Airborne Equipment Section

3. Boeing - Seattle

T

4. Chance Vought - Dallas

5. Convair - San Diego

6. Douglas - El Segundo, Long Beach, Santa Monica

'7. Grumman - Bethpage

8. McDonnell - St. Louis

9. North American - Downey, Inglewood

10. Northrop - Hawthorne

11. Republic - Farmingdale

Ţ

Ì.

*

OPTIMUM PRESSURE STUDY

NORTH AMERICAN AVIATION

APPENDIX H

NORTH AMERICAN AVIATION

Optimum Pressure Study

Lou Berthelson

Purpose: Compare weight of utility system at 3000, 5000 psi and other weights considering actuators, lines and fittings. Space saving is evident in all three.

Actuators D Brakes

. .

FbD 2t

Weights	5000 psi	3000 ps 1
Cylinder Piston Cylinder Nute End End Cap	.818 1.803 .212 .740 .801	.907 2.083 .252 .766 .865
TOTAL	4.374	4.873
		4.374 = 11.5% saving

.500

Assume qualitative conclusion of 10% saving in general run of actustors.

Lines: Fu =

!

Burst Pressure = 4 p

 $f \frac{2}{d} \frac{V2}{2e};$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ ΔP Pressure Drop: h h Pf Ŧ Z friction factor h = head loss f V -. fluid velocity Ff =fluid density line length z -Nr = Reynolds No. đ ID . ν. 3 kinematic viscosity abs viscosity .

$$f = \frac{64}{Nr} \qquad f = 1190 \qquad Nr \frac{PVd}{M} = \frac{Vd}{V}$$
$$\Delta P = \frac{64}{Nr} \frac{1}{d} \frac{(PV^2)}{2} = \frac{64}{Vd} \frac{1}{d} \frac{(PV^2)z}{2}$$
$$\frac{8}{Vd} = \frac{1}{V} \frac{1}{d} \frac{(PV^2)z}{2}$$

Q

Line and Fluid Weight:

1.

D - O.D. Tube Specific Weight Metal Pm pf = Specific Weight Fluid $W = pf \frac{\pi}{11} (D - 2t)^2 + pm \frac{\pi}{11} D^2 - (D - 2t)^2$ $= \frac{\pi D^2}{l_4} (1 - \frac{l_1 p}{r_4})^2 (Pr - p_m) + P_m$ Power = constant PaQn : PoQo Power Loss = constant Pnun = Pouo $\frac{(8nM QnZ)}{An} \quad Q_{n} = \left(\frac{8nM QoZ}{Ao^2}\right) Q_0$ $\frac{Q_n^2}{An^2} = \frac{Q_0^2}{Ao^2} s \frac{Q_n}{An} = \frac{Q_0}{Ao} \qquad A_n = \frac{Q_n}{Q_0}$ $An = \frac{Po}{Pn} \times \frac{Qo}{Qo} \times Ao = \frac{Po}{Pn} Ao$ $\frac{\pi}{L} (D_n - 2t_n)^2 = \frac{P_0}{P_n} (D_0 - 2t_0)^2 \frac{\pi}{L}$ $D_n^2 (1 - 4 \frac{P_n}{F_n})^2 = D_0^2 \frac{P_0}{F_n} (1 - 4 \frac{P_0}{F_0})^2$ $\begin{bmatrix} - & 1-4 & Po & 2 \\ \frac{\pi}{4} & Do^2 & Po & \frac{1-4}{Fo} \\ \hline \frac{1}{4} & \frac{Pn}{Fn} & \frac{1-4}{1-4} & \frac{Pn}{Fn} \end{bmatrix} (pf-p_{mn}) \frac{1-\frac{4}{Fn}}{1-\frac{1}{Fn}} 2$ Wn Wo $\frac{\pi \text{ Do}^2}{4} \quad (\text{pf}-\text{p}_{\text{mo}}) \quad (1 - \frac{1}{10})^2 + \text{p}_{\text{mo}}$ $\frac{\boxed{P_{o}}}{P_{n}} \frac{P_{mn}}{(1-4)}^{2} - (p_{mn} - pf)$ Wn Wo $\frac{P_{m_0}}{(1 - 4P_0^2)} = P_{m_0} - pf)$

н-3

Sen Curves

1

Return lines using Al. Alloy

Spec. drop .10(5000) = 500 psi Burst Factor of 7/1 Burst Pressure 7 x 500 = 3500 psi

 $An = \frac{3500}{2 \text{ Fn}} Dn$

$$D_n^2 (1 - \frac{3500}{F_n})^2 = D_0^2 (1 - \frac{1}{4} \frac{P_0}{F_0})^2 \frac{P_0}{F_n}$$

$$\frac{P_{0}}{5000} \frac{P_{mn}}{\left(\frac{1-\frac{3500}{F_{n}}}{F_{n}}\right)^{2}} - \left(\frac{P_{mn}-pf}{F_{n}}\right)^{2}$$

If Po = 3000 and Pn = 5000; $\frac{Wn}{Wo}$ = .24

Wn Wo

 $\frac{pmo}{(1 - \frac{1}{4} \frac{Po}{Fo})^2} ... (Pmo - pf)$

3000	PSI SYSTEM	5000	5000 PSI SYSTEM		
SIZE	WT (Lines Only)	SIZE	WT	Wo.	
5/8 x .049	.060	1/4 x .035	.029	.48	
ı∕2 x .065	.107	3/8 x .035	·044	. 41	
5/L x .083	.174	1/2 x .042	.072	.41	
1,∕4 x .095	.230	5/8 x .049	.107	.46	
		· .	AVERAGE	•44	
	· ·	· .	SAVING	•56	

LINES SUMMARY

Assuming JC% pressure lines and 30% return lines

•7	x x	•135 •56	-	.095 .168
				.253

1

0

25% wt. saving in lines by converting 3000 to 5000 psi

TABLE E-2 H-7

FITTING CONVERSION CHART

		R	ETURN LINES				PR	ESSURE LINE	3		
3000 Type,	PSI Size	$\frac{At = 0}{(A1 - A1)}$	5000 PSI SIZE	Wt = Vin AL \L	Wn Wo	3000 Туре,	FSI Size	Wt = .lo ALAL	5000 FSI Eq Size	Wt = Wn St. Steel	-Sn No
815	3/8 1/2 5/8	.056 .102 .161	1/4 3/8 1/2	.037 .056 .102	.66 •55 •64	815	3/8 1/2 5,′8	•56 •102 •161	1/4 3/8 1/2	•129 •137 •333	2.3 1.8 2.1
833	3/8 1/2 5/8	.076 .133 .214	1/4 3/8 1/2	.050 .076 .133	•66 •57	833	3/8 1/2 5/8	.076 .133 .214	1/4 3/8 1/2	.1:1 .211 .405	1.9 1.6 2.0
834	3/8 1/2 5/8	.107 .200 .246	1/4 3/8 1/2	.072 .107 .200	.67 .54 .81	334	3/8 1/2 5/8	.107 .200 .246	1/4 3/8 1/2	.214 .313 .595	2.0 1.5 2.4
				NOTAL VERAGE	5.10 .57			<u> </u>		TO TAL AVERAGE	17.6

1

Fittings and Piping = 81.0 lb.

Assume .35 fraction of weight for fittings (ALAL) .35L + L = 81 L = 60 lb. lines 21

21 lb. fittings

Assume .30 as amount of return lines $.3 \times 21 \approx 6.3$ lbs. .57 (6.3) = 3.6 lbs. Return lines at 5000 psi

2.00 (21 - 6.3) = $\frac{29.4}{33.0}$ lb. Pressure lines at 5000 psi Fitting loss = 12 lb. = 12/21 = 57%

	WEIGHT COMPARISON	3000 and 5000	4
ITFM	3000 WEI	PSI GHT	5000 PSI WEIGHT
Lines	6	0	148
Fittings	2	1	33
Cylinders	14	4	41
TOTAL	12	5	122

1

If a better fitting were developed, considerable weight and space saving could be accomplished. Lacking this and considering approximation of this analysis there is no justification of designing to a higher pressure.

NORTH AMERICAN AVIATION

Utility System Weight Breakdown

Typical Airplane

1. Power System

ł

	Main Pumps Reservoir Press and Fitting Equipment Oil and Air Filters	1)4 6 2 4	
	Accumulators	<u>18</u> 44	.164
2.	Valves		
	Relief Restrictor Check Speed Brake	1 1 3 7	
	Landing Gear and Brake	25	•093
3.	Actuators		
	Landing Gear Speed Brake	25 19 14	.164
4.	Tubing and Fittings		
	Power System Landing Gear and Brake Speed Brake	26 38 <u>17</u> 81	.300
5.	Fluid		
	9.9 Gal.	.59	.22
6.	Miscellaneous		
	Supports Power Clips and Miscellaneous	$\frac{1}{13}$.05
•		268	

APPENDIX J

REFERENCES

- 1. U.S.A.F. Tech. Report No. 5997, James E. Campbell, Investigation of the Fundamental Characteristics of High Performance Hydraulic Systems, June 1950, Page 11, Restricted
- 2. Raymond J. Roark, Formulas For Stress and Strain, McGraw-Hill Book Company, 1958, Page 232
- 3. Harold W. Adams, Aircraft Hydraulics, McGraw-Hill Book Company, 1943, Page 80
- L. Lionel S. Marks, Marks Mechanical Engineers Handbook, McGraw-Hill Book Company, Fifth Edition, 1951

atter a pression of the