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NUMERICAL APPROACH FOR WAVE MOTIONS
IN NONLINEAR SOLID MEDIA

Alfredo H.-S. Ang*

University of Illinois
Urbana, [llinois

The development of alumped-parameter model of three~space solid
media and its important definitions and properties are described. Field
problems of solid media can be formulated with reference to the model,
resulting in a system of recursive equations which are obtained on the
busis of fundamental principles of mechanics and basic material be~
havior. The equations of the model are also shown to be central finite
difference analogues of the differential equations of the corresponding
continuum tmodel. Although the model is applicable to many static and
dynamic problems of solid media, the application of the approach is
iliustrated with dynamic problems of wave propagations in spherically
and axially symmetric solids.

INTRODUCTION

Initial and/or boundary-value problems of solid media in two and three space dimensions
invariably involve great analytical difficulties, These difficulties are necessarily more severe
when the idealizations of linear elasticity are removed and material nonlinearity and inelas-
ticity are included in the formulation, and when complete solutions under these realistic con-
ditions are desired. In order to he able to incluce as many as possible of the physical factors
and parameters that constitute a real problem oi solid media, a computational approach formu-
lated on the basis of mathematically consistent lumped-parameter models is proposed.

The umlderlying discrete models can be developed by properly concentrating the masses of
elemental volumes at appropriate mass points and defining average strains and stresses for
elemental voiumes at appropriate stress points. The inertial and deformational equations of a
solid medium can then be defined for such a model at the mass points and stress points,
respectively: the resulting equations are compatible with the basic requirementsof a solid,
and arve furthermore identical with one of the central finite difference analogues of the
differential equations of the corresponding continuous model. In one sense, the model serves
w provide a physically meaningful finite difference grid for a solid continuum, and through
which initia! und/or boundary value problems of solid media can be formulated and solved
directly on the basis of simple physical principles of mechanics and material behavior.

Instead of formulating problems on the basis of a continuum model and subsequently reducing
the resulting differential equations into finite difference equations by more or less arbitrary
rules {or by trialand error), a problem can be formulated in finite mathematical terms directly

hrough the model. The latter approach leads to a system of recurrent equations which are
physically meaningful with reference to the model, are also consistently central finite differ-
ence analogues of the corresponding continuum equations, and are directly adaptable to high-
speed digital calculations. Furthermore, physical boundary conditions present little or no
difficulty since these can be included in the recurrent equations simply as imposed displace~
ments or average applied stresses on the appropriate boundary mass points,
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The model and its underlying properties and definitions are described in three-space; how-
ever, the solution technique is illustrated for nonlinear~nonelastic solids with specialized
geometries., For this latter purpose specialized discrete models are algo presented and used
for problems involving the numerical prediction of motions or stresses in elastic-perfectly
plastic solids possessing spherical and axial symmetry, The details of the calculation technique
ure described for these special situations, and one problem for each case is illustrated
numerically.

DISCRETE MODEL OF 3-SPACE SOLIDS

Basic Definitions and Relations

The proposed discrete model of solid media can be developed within the premise of a few
basic and simple definitions, In the rectangular Cartesian system of reference, the model is
shown symbolically in Figures 1 and 2. It is composed of two basic types of lumped elements
denoted as mass points and stress points; the relative positions of these elements are indicated
in Figure 2, and their physical meanings are as follows:

Mass Point -~ The total mass of a solid medium is concentrated at the mass points. Each mass
pomt contains the mass of the solid corresponding to an elemental pyramidal volume of
s(Ax) (Ay) {(&z). All particle motions (accelerations, velocities, and displacements) of the solid
are defined only at the mass points.

Stress Point -~ A stress point is the point of definition of the average stress and sirain
tensors of the solid within an elemental volume of -'-(Ax) (Ay) (Az) as indicated in Figure 1; the
material in this volume, therefore, isin homogeneous states of stress and strain. The deform-
ability, or conversely the resistance, of a solid medium 18 represented by the deformability,
or resistance, of a finite number of stress points.

In Figures 1 and 2, the siress points are shown symbolically in the form of deformable
springs; these are to be considered as generalized axial and shear springs possessing
properties identical with whatever behavioralproperties are ascribedto a solid. The effective
area of a generalized spring is equal {o the average area over its length; for instance, the
effective area normal to o, (i, j, k), Figure 1, is equal to,

5 (8x) (ay) (a2) 1
™ = ¢ (ay) (az)

Within the assumption of infinitesimal strains, all the components of a symmetric strain
tensor at a stress peoint can be derived directly from the model on the basis of purely
geometric arguments. Considering a stress point (i, j, k), Figure 1, the strain components are:

e (i,],k) = u(i+l,i,k)A; uli-1,i,k) (1)
e, (i2j,k) = v(i,i+l,k)ﬂ; v i,j-1,k) (2)
¢, (i,],k) = w(i,j,k+1)A; wili,j,k=-1) (3)
Yy (i00K) = u(i,i+1,k)ﬁ; uliyi-1,K) +1ﬁ+1.4‘;k)ﬂ; v(i-1,i.k) (4)
v, (i) = u(i,i,k+1)A-z ufl,j,k-1) +1N_(i+llj,k)A; wli=-1,i,k) (5)

(i,i.K) = v(iii,k+l)a; v(iiak=1) w(i,i+l,k)A; w(i,j-1,k) (6)
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The above expressions for the strain components can be recognized to be respectively,

central finite difference analogues of the following classical differential expressions for the
strain components
Jduy Ov 9

x
xu
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~&

]
21
\<u
N

]
Nt

Equations of Dynamical Equilibrium

The equation of motion of mass point (i,},k) in the x~direction can be derived on the basis of
Newton’s second law; thus,

3 (8y) (82) Lo, (i+1,),K) - o, (i-1,],k}]
+g () (02) [r (LJ+LK) = 7 (10K ]
+—é (ax) (ay) [, (iLjsktl) = 7 (iLj,k=1)] = £ (ax) (ay) (82) G

Dividing both sides of the above equation by 3 (AX) (Ay) (Az) yields,

1 _ 1l . . ) - _—
o‘x(l 1,j,k) cx( ;l,J,k) . Txy(a,J+1,lx) TXV(I,J 1,k)
Ax Ay
T o (isjsktl) = 7 (i,j,k=1) .
4 X2 ! Xz =pu (D
Az ‘ o]

Similarly, the equations of motion in the y- and z~directions of mass point (i,j.k) can be shown
to be, respectively,

cy(i,j-i-l,k) - cv(i,j—l,k) 'rxy(i+1,j,k) - Txv(i-l,j,k)

+

by Ax
1 (iyj,k¥l) = 7 _(i,j,k=1)
vz Yz -
+ iz PV, (8)
and,
o, (i,j,ktl) - o (i,j,k-1) . T (i+lajak) = 7 (i+1,],k)
Az Ax
- _ -
. Tyz(l,_] 1,k) TVZ(I,J 1,k) o ©)
Ay P o}
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It is easily recognized that Equations 7 through 9 are each, respectively, a central finite
difference analogue of the following differential equations of motion of a solid continuum:

BUK a‘T Xy a'T xZ azu
=+ =

Ox + dy dz e Bt2 (10)
6(} ‘T a az

+ XY 3 jZ = v
dy Ax dz P at?_ (11}
BOZ asz aTY_E azw
5z T "By TP 12)

The wmathematical consistency of the model as indicated above can also be shown for the
displacement equations of motion. Consider an isotropic and homogeneous Hookean solid; using
Honke's stress-strainequations in Equation 7 through 9 and applying Equations 1 through & for
the strain components, the resulting displacement equations of motion in the x, y, and z-
directions are thus, respectively, as follows:

G {U(i+2)JJlk) il ZU(I,I,k) + u(i’zni:k) + u(i11+2) it Zu(i!ilk) + U(;Ji_zsk)

(ax)? (ay)2
+ uli, j,ht2) - 2ul(i,j,k) + u(i,i,k-Z)}
{az)?
+ [,_;_tj {.lj(|+~1|:k) - 2“(‘:l:k)_ + U(' 21],!()
(L\.X)
R N R N R S s N Y I I S P LI I D
{ax) (Ay)

Wi+l ] 1k+l - +lz k- 1)] - [W(l']s :k+1) - {"' 3 k-~ - .
Wi LU HUSHNSYS, SRS
. {’v(i+21i,k) = 2v{ifak) + v(i-2,0,k) o v{i.j+2,k) - 2v (i, hk) + v(i,j=2,k)

- (ax) 2 (ay)?

vi{ipjak+2l ~ 2y(i, ik} + v(i,j,k=2)
.* A v
(82)2 ;

e Tu(itl, 1K) - u(i-1, 040, k)] = [u(itl,j=1,k} = uli=1,7-1,k}]

el (ax} (ay)
V(I,L’rl’ k) = 2v ul,k) + v, {=2,k)
(Av)

i it k) - w(i il k=1) ]~ [wll, =l kb)) = wliyi-LkeDT Y _

+ LAREE (.A‘f) (Az? l } ol VO (14)
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and,
5 {w(i+2),],k) - 2w(i, i k) + w(i-2,0,k) , w(i,i*+2,k) - 2wli,[,k) + wii,i=2,k)
(ax) 2 (ay)?
oukisfokt?) - 2wlisf k) + w(i,i,k—zl}
(az)2
CluGirl, kD) - u(iml, ke ] - [uCitl,iske1) = u(i-1,j,k-1)]
+ Oure) | () (22)

(ui,i41, k1) - v(i i1, k)] = [v(i, i+l k=1) = v(i,j-1,k-1)]
(ay) (az)

4

ouliniakt2) - 2wlii.k) * w(i.i,k-2¥}= o i (15)
2
(42) °
where A and G are the Lame’s constants, and pis the mass density of the solid. Equations 13

through 15 can again be recognized to be, respectively, central finite difference analogues of
the tollowing displacement differential equations of an isotropic Hookean solid continuum:

2 2 2 ‘2 2 2 2
A%y, 9%y, 3% cu | O 3w 3%y
G = + + +  (a4G) - —= tSSc TS ) PT (16)
(éx" Byz 822> (‘\sz s x Btz
2 2 2 2 2 2 2
3% | 3% | 0% 3%u 3% 9w 3%y
G + + +  (MG) - I s )= p T {17)
5}(2 Byz 522> X2y By.z Y2 atz '

’E\Zw Bzw azw\ azu azv azw azw
G + + + ()\-Q-G) . W + S +—= )= p (18
kaxz ay2 522) xaz Yoz atD atz )

It may be emphasized that the equations of dynamical equilibrium are defined for all the mass
points, Furthermore, since all components of the strain and strain rate tensors and of the
associated stress and stress rate tensors are defined at a stress point, the constitutive
equations of a material are sufficiently defined for each stress point within the bhasgic assump-
tions of the model.

Boundary Conditions

By consistently applying the basic definitions and average properties of the model at its
Loundary, the two types of boundary conditions can be defined accordingly for the model.
Lifectively, a stress boundary condition is defined at the fictitious stress points immediately
outside of the boundary mass points, while a displacement boundary condition is defined by
specifying the required displacements of the mass points on the boundary.

In the process of numerical solution, any displacement boundary condition must be included
in the strain-displacement equations, Equations 1 through 6, for the appropriate stress points,
«nd any stress boundary condition must be included in the dynamical equations of equilibrium,
Equations 7 through 9, of the appropriate boundary mass points.
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Significance of the Model

The proposed discrete model of solid media is developed on the premise of the definition of
certain average physical quantities at specified points in the solid. This leads to a model whose
average properties are in every respect consistent with those of an idealized solid element,
aad are also compatible with the basic theories of elasticity and plasticity. Furthermore, the
equations of the model which can be derived on the basis of fundamehtal principles of mechanics
are also consistently a central finite difference analogue of the differential equations of the
corresponding continuum model. Because of this latter attribute of the model, mathematical
theories of finite differences, such as domain of dependence inequalities of hyperbolic systems
of equations, may be used with the model to ensure stable calculations.

The model is intended to provide a discrete model of solid media from which a finite math-
ematical formulation of problems of deformable solids canbe obtained directly on the basis of
fundamental principles of mechanics and basic physical behavior of materials, Such a formu-
lation leads directly to a system of recursive equations which are intuitively meaningful and
are readily adaptable to high-speed machine calculations. Because the inherent simplicity and
physical clarity of the approach holds equally well for nonlinear-nonelastic materials as it
does for linearly elastic material, the use of the discrete model empodies a somewhat unified
numerical approach to the analysis of solid media.

Statement of Basic Problem

A field problem of solid media can be considered as that of determining the motions and
states of strain and stress of the lumped-parameter model under appropriate boundary con-
ditions. The basic problem is then the determination of the six components of the strain tensors
and the corresponding components of the associated stress tensors at all stress points plus
the three components of the displacement vectors atall mass points in the model. For a model
consisting of n mass points and n stress points, there are 15n unknowns as follows: €, 1€,€,
Yay * Yuz 0 Yyz 3 92 Bys Tyy v Ty at the n stress points and u, v, w at the n mass points,
Equations 1 through’ 6 for thé n stress points and Equation 7 through 9 for the n mass points
represent a system of 9n equations; the additional 6n equations must be furnished by the con-
stitutive equations of the material at the n stress points, '

A solution of the basic problem stated above may be accomplished by numerical methods of
calculation, wherein the equations of the model and the appropriate material equations are used
recursively in the numerical process. Specific problems of spheriecally symmetric and axially
symmetric solids and the appropriate solution techniques are illustrated in the sequel.

SPHERICALLY SYMMETRIC ELASTIC-PLASTIC PROBLEM

For a spherically syminetric solid, the discrete model is reduced appropriately in spherical
coordinates, to that of Figure 3, where all physical quantities are functions only of the radial
distance, r and time, t. For illustration, a problem of a contained explosion in an infinite solid
is considered as shown in Figure 4. The material is assumed to be an elastic~perfectly plastic
solid in which the material at any stress point obeys Hooke'slinear stress-strain equations
prior to any yielding as given by the von Mises yield condition. Thereafter the material obheys
the Prandtl-Reuss elastic-plastic equations. Unloading from a plastic state is governed by the
rate form of Hook’s equations. The pressure pulse shown in Figure 5 is applied uniformly over
the surface of a spherical cavity in the solid. Zero initial conditions are assumed of the solid.
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Recursive Equations for Spherically~Symmetric Solids

With reference to Figure 3, the recursive equations for solids with spherical symmetry are
as follows:

Strain-Displacement Relations:

() - u"(i+1) ‘-ﬁrut(hl) (19)
t,. t,. ut i
e (i) = egli) E—T((-i_% (20)

The finite model is terminated at a radius of r = 4.72a (i = 160) with the following boundary
conditions,

et (160) = 0

at(160) =

!
Lo’

Equations of Dynamical Equilibrium:

. E+1) - ot(-1) 200(0) - 20°(3)
ut (i) ='1"|:o + ] (21)
p Ar r{i)
where, ior the problem in Figure 4, the stress boundary conditions are,
c:(O) = p(t)
Material Equations (Elastic-Perfectly Plastic):
All quantities are for stress point i at time t.
_ = 1 2 2
h = = _
e 255 e m 9k (22)
g = Jhe + 2Ge
r r
= 3e +
CICP he 2G€Q
where =
e e * ZeQ
ko = yield limit in simple shear (23)
2 -2 . .
J, = kT and W== (0 - o )(e -
2 o € €.) >0,
when 3 r ¢ ?
o, = Kle + 2¢) (24)
O = G (25)
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where K is the bulk modulus,

When Jp = kg and- W <0, unloading from a plastic state commences at stress point i;
elastic unloading is assumed and the rate form of Equation 22 and 23 are used,

uadrature Relations

For static or quasi-static problems, i = 0 for all mass points; Equations 19 through 25
therefore, represent a set of recursive relations which are sufficient for determining the un-
xnowns in the problem, Iterative techniques may then be used to obtain the required solutions
4s has been done previously for an elastic-plastic plane problem (Reference 1).

For dynamical problems, the following quadrature relations are used in a step-by-step
marching process: (Reference 2)

S = )+ 8 [ R it ] (26)

2
A = W)+ o ety + (é“ () (27)

u

Numerical integration Process

Assuming that all physical quantities are known at time t, the corresponding quantities at
time t -~ At are obtained by using the above recursive equations iteratively, The sequence of
calculations within one cycle of calculations consists of the following steps:

(1) Calculate *8t(3) from Equation 21
(2) From the results of (1), calculate 6t"4t (i) and ,tT8t().

(3) From the results of (2), calculate the strain and strain rate components at all stress
points.

(4} On the basis of the states of strain and stress at time t, 8tress points i are examined to
determine the applicable material equations for each stress point,

(9) Caleculate stress rates and total stresses at all stress points using appropriate material
equations (Equations 22 and 23 or Equations 24 and 25) for each stress point,

(6) Reculculate [}t'mt(i) with new stresses in Equation 21 and repeat steps (1) through (5)
if necessury.

Stability Requirements

In the above numerical process of integration, the time and space meshes used in the compu-
titional scheme must satisfy certain requirements necessary for stable calculations. For
spherical wave propagation in an clastic medium, one of the conditions for stable finite differ-
ence calculations (Reference 3) , known as the Courant condition, is

Ar
At < =5
~ (28)
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where c = / M » the elastic dilatational velocity of propagation, In the elastic-plastic range
of behawor. the propagation velocity of the plastic pulse is less than C, » hence Equation 28
is still valid,

For reliable reproduction of pressure pulses, it has been shown empirically (Reference 4)
for one-dimensional plane wave propagation that the space mesh must be chosen with respect
to the minimwm rise or decay time, t,, of the applied pressure pulse as follows:

C
=3t (29)
E
where c= ./“[;

For spherical wave propagation, the condition,

Ar < t

1
wor . (30)

has also proved to yield reliable results.

The accuracy of the calculation technique is illustrated in Figure 6 in which elastic results
obtained with the numerical technique are compar: id with the corresponding results obtained
from an analytic solution (Reference 5).

Results of Elastic-Plastic Calculations

Numerical solution from the calculations of a problem with k, = p,/7 and 3'-- 0,753 (where

2 =/K/p) are presented, in the form of histories in Figures 7 through 10, For purposes of

comparlson, corresponding results for the related elastic problem are also shown in the same
figure in dash curves.

The solutions were obtained with a model of uniform mesh lengths Ar = z%. The calculation
time for the elastic-plastic problem was approximately 5 minutes, while for corresponding
elastic problem, the time was less than 2 minutes on an IBM 7094 machine,

AXI~-SYMMETRIC ELASTIC-PLASTIC PROBLEMS

In Figure 11 the discrete model is presented in spherical-polar coordinatea for solids with
axial symmetry (Reference 6), Inthis case, allphysical quantities are functions of r and ¢, and
time t. For illustration, consider the problem depicted in Figure 12, which 18 a half-space
subjected to a pressure pulse (Figure 13) applied at the surface of a crater (Reference 7). The
material is assumed to be an elastic-perfectly plastic solid. Because of axial symmetry, the
number of unknowns are reduced from that ofthe general solid, and the appropriate recursive
equations for this model are as follows:

Strain~-Displacement Equations:

£y L ut(HL D) - ut(-1,0) (31)
e (i,j) = Ar
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t,. .
) = Uit agie) i

. ty. . '
wli) i) o () (33)

7t (i,_i) = Ut(i:i+l) = Ut(i:i'l) + wt(_i+13i) d Wt(i'lsi)

(32)

E;(i!j)

r(i:j) * Aq) Ar
- wt i i (—14)
r(i,j) 2
Equations of Dynamical Equilibrium:
ot,. . 1 _(E:(H'l,j) - O:(i—l,_j) (I,_j+1) - 'T (I,J-H)
u(l:J)-“-_p[ e + T
20, (i,]) - op(i,i) - ogli,j) = 750 (1,]) tan (i, ])
+—L P ] 125)
r(l.J) :
ty. . t
(i,j+1) - o.(i,j-1) (i+1,j) - 'r (. 1,j)
cat(:,j)=—1[aq’ O +J
p r(i,j) - & Ar

31, o{i,J) + og(iL)) tan 9(is)) - op(i,)) tan (i, j)
S | e

The stress boundary conditions for the problem of Figure 12 are a« iollows:
ot(0,5) = plt)
T(0:3) = 0

and, or(i,0) =

'r: (i,0) =0

And for the purpose of approximating a semi-infinite half-space, the finite model is terminated

at & radius of 1140 fi, {i = 33) with the following boundary conditions,

GI’ (34s.j ) =
t L
T I'q)( 34: _] ) =
Material Equations {Elastic-Perfectly Plastic):

All quantities are for stress point (i,j) at time t.
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21,2, 2, 2 2 2
When Jy B + sp + 55 * 2-rrq)) < kg
o = 3te + 26¢ (37)
r r
- \ (38)
= +
% Jhe ZGecp
0'9 = 3Jhe + ZGEB (39)
= (40)
T Gyr(p
"
where e =3 (Er+€¢i+€9)’
$. =0, 75 Sp " Cp ™ 93 Sg=0g -0
=4
g = 3(0' +ch+oe)
When J2=k,andw=5e +5q)":9+'rg-q)7rq: 0
W (41)
g = 26(¢ —-—Es)+3l(e
r 2%
. W ) (42)
= -— + 3JKe
S ZG(eq, 2 S
0
O ZG(ée - '-"\"!E 56) + 3Ke (43)
2kg
P =260 - ) (4a)
re Fo 2,&3 re

When J, = k> and W<0, unloading from a plastic state commences at (i,}.), and the rate form
of Equations 37 through 40 are used.

@Quadrature Relations:

All quantities refer to mass point (i,j).

Ltrbr ot +_£g (ut + LtHaY (45)

) (46)
w't-Hlt = ﬁt + -g'—t (wt + wt+m)
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and,
2
ut+At = ut + At L'lt +—(A—L; Ut {47)
2
WEHBE gt 4 e (48)

2

Typical Numerical Results

Certain results of numerical calculations for an elastic-plastic half-space and for the corre~
sponding elastic half-space solid are presented in Figures 14 through 19, The elastic-plastic
solid is assumed to have a yield strength of k, = 10 ksi, while the applied pressure pulse,
Figure 13, has apeak pressure of 71ksi. In Figures 14 and 16, the histories of two stress com-
ponents along the surface of the half-spaceare presented; in Figures 15 and 17 the same com-
ponents along the center line are given. The contours shown in Figure 18 represent maximum
radial stresses attained in the solid, and Figure 19 shows the positions of the moving plastic-
elastic interface in the half-space as a function of time, .

Only typical resuits of certain stress components can be presented; however, a complete
solution consists of the histories of all stress components at all stress points, and the
components of all acceleration, velocity, and displacement vectors of all mass points.

Calculation time for the elastic problem was approximately 10 minutes, while the elastic-
plastic problem required approximately 30 minutes of calculation on an IBM 7094 computer.
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