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SECTION I

INTRODUCTION

A frequent intermediate step in the linear dynamic analysis of complex structures is the

golution of the eigenproblem:

KX = A MX (n

This requires the determination of the scalar quantities A (eigenvalues) and the corresponding
non-trivial solutions X (eigenvectors) for the given nxn matrices K and M . In the common
structural application, ¥ and M are respectively, the master stiffness and mass matrices
of the structure, and their order, n, corresponds to the elastic degrees of freedom of the
system. In this paper, the K and M matrices are assumed to result from a finite element

idealization of the actual structure,

Frequently, in applying the formulation of Equation 1 to the study of the vibration character-
istics of a structure, the order of the K and M matrices is so high that it is impractical or
prohibitively expensive to obtain the complete eigensolution. On the other hand, to carry out
a reasonably accurate dynamic analysis of the structure, it is possible to get along with only
a partial eigensolution, It is this class of problems for which the method described in this

paper is especially useful.

There are two general types of methods for the eigensclution of Equation 1: transformation
methods and iterative methods. The transformation methods such as the Jacobi, Givens, and
Householder schemes (Reference3):are almost always preferable when a complete eigen-
solution is required. On the other hand, the labor saving involved in obtaining only a partial
solution by these methods canbe a small fraction of the total. Furthermore, the transformation
methods accomplish the solution by operating onthe matrices of the system which necessitates
the storage of large matrices. With the emergence of the ‘‘consistent mass matrix,”” (Reference
4) another difficulty develops because of the necessity to transform Equation 1, the general
eigenproblem, into a special eigenproblem:

DY = AY (2)

as required by the transformation methods, If K or M happen to be sparse or banded, this
step generally produces a dynamic matrix D with more extensive storage requirements than
either K or M.
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The direct iterative methods, on the other hand, can avoid the necessity of storing the
entire matrix by using modern matrix interpretive methods, yet they are disadvantaged in
the general eigenproblem, Equation 1, and generally require preliminary modification similar
to the transformation methods, In addition, these methods are plagued by convergence dif-

ficulties and are computationally expensive for the intermediate eigenvalues and eigenvectors,

This paperdescribes aniterative method which canbe applied directly to the eigenproblem,
Equation 1, without preliminary medification, It uses the well known property of the Rayleigh
quotient,

T
X KX
R(X) = T L {3)
X' MX
that it equals the eigenvalue when the eigenvectoris substituted into it and that it is stationary
in the neighborhood of an eigenvector,

The basic algorithm is simple: The Rayleigh quotient is minimized to obtain the lowest
eigenvalue and the associated eigenvector. This minimization is done numerically using the
conjugate gradient msthod, Next, for the second eigenvalue and eigenvector, the Rayleigh
quotient is again minimized, only this time in a subspace which is M-orthogonal to the first
eigenvector. This process can be repeated as many times as desired to obtain as many of the
eigenvalues and eigenvectors as aredesired up tothe complete eigensolution, This approach of
obtaining the lowest (or highest) eigenvalue and the associated eigenvector was originally
proposed by Bradbury and Fletcher (Reference 1),

The contribution of the present paper is: (1) that it extends the approach so that it ig
practical to obtain the intermediate eigenvalues and eigenvectors without a lessening of the
storage and efficiency advantages, and (2) it explores it in application to the special character-

istics of finite element structural dynamics problems.

The extension to intermediate eigenvalues is accomplished by using a gradient projection
scheme (Reference 2) for constraining the minim:zation search to the subspace M-orthogonal

to the previously determined eigenvectors,

The advantages in structural problems of the formulation of Equation 3 are that both the
numerator and denominator, as well as all of the other quantities required by the iteration
procedure for all of the eigenvalues desired, can be computed without having the assembled
K and M matrices at hand, This is accomplished by noting that the numerator is twice the

strain energy for a given X (the generalized displacements), and that the denominator is
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twice the maximum kinetic energy of the structure and that these can be computed by summing
the potential andkinetic energies of the individual elements of the discretized structural model.
In this sense, the approach is an extension of the energy search method documented in the

literature (References 5 and 6).

Because the method is iterative and converges quite rapidly when reasonable initial
estimates of the eigenvector are available, it lends itself well to embedment within structural
optimization procedures where dynamic behavior is to be considered. This is because as the
optimum structural design‘ is evolved, the eigensolution generally is expected to change only
incrementally from design to design, Hence, the previous solution provides good initial

estimates of the eigenvectors,

SECTION II

FORMULATION OF THE PROBLEM

The eigenproblem, Equation 1, can be written as
[k-xm] x=0 (4)

I X is asolutionto Equation4,then bX is also a solution for any nonzero value of the scalar
b, thus the eigenvector corresponding to any eigenvalue X is arbitrary to the extent of a scalar
multiplier, In other words, the Rayleigh quotientdefined in Equation 3 has no unique minimum,
but takes on the same value at every point along any line in the n~dimensional space passing
through the origin. Furthermore, the quotient is not defined at the origin, Consequently, the
minimization of the Rayleigh quotient is not guite as simple as that of a function with a well

defined minimum.

The redundant degree of freedom, which prevents us from determining the absolute
magnitudes of the components of the eigenvector, can be eliminated by an arbitrary normal-
ization. The simplest normalization for the present purpose is to set any non-zero component

of the eigenvector equal to one.

The Rayleigh quotient, Equation 3, equals the eigenvalue when the eigenvector ig sub-
stituted in it, Moreover, it is stationary in the neighborhood of an eigenvector and its value is
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bounded by the lowest and highest eigenvalues of the physical system, Thus, the minimization
of the Rayleigh quotient will yield the lowest eigenvalue.

The minimization problem to find the lowest eigenvalue can thus be stated as:

Find X = X, such that

X, K X,
R(Xl) = — (5)
X, MX,
is minimum, subject to
T
qu = X| Oq = (8)

where qu is the normalizing or reference component and e _is a vector with its qth com-

ponent as one and zero elsewhere (i,e, ¢ a is a unit coordinate vector for the gth coordinate),

An illustrative example with a geometrical interpretation might be convenient to elucidate
the underlying idea. Consider the three degrees of freedom system depicted in Figure 1,
The tubular member AB of mean diameter D = 0,8 in, and the wall thickness t = 0.2 in. is
held fixed at the end A and is hinged at the end B, A model consisting of two standard beam

elements was used and the vertical displacement of the middle point C of the beam and the
rotation at the points C and B are taken to be the three degrees of freedom,

|T2

4 H = an )

"%
| ’

A H= C B H-H

L. |- [

1 L “ L a

Mean diameter(D)=0.8"

Wall thickness (t)= 0.2"
L=16.16"
E=30x|0%|bs./in®
P=0.28 Ibs./in>

Figure 1, Tubular Beam Fixed at the End A and Hinged at the End B,
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The stiffness and the mass matrices of the structure are given as:

0.729 x 10° 0.0 -0.295 X 10°

K :| 00 0.635 % 10° 0. 159 X 10°
-0.295X 10° 0. 159 x 10° 0.37x ©° |

0.438 X 1072 0.0 0.295 X 1072

M:=| 00 0.293 X 10” -0. 110 X 10~

0.295X 1002  -0.110 X 107 0.147 X 10”"

Let the vector space, comprised of the degrees of freedom be represented as

Ky

X = Xo

X3

and if we pick the normalizing component as x, , then the normalized vector has only two

unknown components:

x:_.’/xI b
where 0= — and b=T
I

Note that in this example we have chosen eq vector as
|
Oq H 0
¢

From the expressions of K , M and X given, we can write the Rayleigh quotient, R, ex-

plicitly as:

0.73-6.0b + 63.50% + 31.7ab + 31.70° « 10
0.44 + 0.6b + 2.9a% — 2.2ab + 1.5b%

R{X)=

A plot of R( X ) for different values of a and b is shown in Figure 2, which represents the
contour map of the values of the Rayleigh quotient corresponding to the normalized modes of
the system, As is seen in Figure 2, the Rayleigh quotient takes on the minimum value at the

point 1, a maximum value at the point 3 and an intermediate value at the saddle point 2,
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1.09x107  7.f8X10°

,70x107

-3.0 -2.0 -1.0

7.66x10"

!

‘Ma\\
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T

6.06x106
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1.0

LHx107

4.03x107

2.0

Lo9x 107

Figure 2, Contour Map of Rayleigh Quotient.

277

3.0

1.48x107




AFFDL-TR-68-150

The first three eigenvalues A, , A, , and A, and their associated eigenvectors X, ,

2

X, and X, are givenby

A, = 0.780%10° , X,=0.1099X 10® , )\3=O.?80XI03 (radions /sec.)®
and
1.0 1.0 1.0
X,:|-0.033 , X, =| 0592 , X;=| -0.793
0.122 ~0.662 -1 .29

The minimization problem posed in Equations 5, 6 will yeild )\, and X, .

In problems of structural dynamics, the eigenvectors represent the mode shapes and the
choice of a non-zero component ordinarily presents no serious problem. The mechanization
of this aspect of the method is briefly described in the discussion of Example 1, Section VII
Numerical Examples,

Once the lowest eigenvalue )g| = R( X, ) is known, the next higher or (second) eigenvalue

and its associated eigenvector can be determined by posing a new minimization problem:

Find X = X, such that

X, KX,
R(xz): T (7)
Xz sz
is minimum, subject to
T
Xz Or = (8)
and
T
X,MX, =0 (9)

In the subspace defined by the constraints, Equations 8 and 9, the Rayleigh quotient takes
on a unique minimum (assuming distinct eigenvalues) at the eigenvector associated with the
second lowest eigenvalue, The constraint Equation 8 is of the type already discussed and
9 represents the imposition ofthe M-orthogonality conditionbetween X, and X ,. Geometrically
speaking, these constraints merely restrict the portion of vector space in which the search for
the second eigenvector is carried out and in this restricted space R has a minimum cor-

responding to A »
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The determination of the third and subsequent eigenvalues together with their associated
eigenvectors up to the complete eigensolutionis accomplished by solving a sequence of problems
similar to the one presented by Equations 7 to 8, The only change is that each time one
additional equation of constraint has to be imposed on the minimization problem to satisfy the
condition that the eigenvector currently being sought is M-orthogonal to all of the previously
determined eigenvectors, The problem of determining the £th eigenvalue (2 < # <n) can thus

be written

Find X = Xy such that

x} KX,
R(x£]= T {1Q)
subject to
XTon = | {1)
and
x}mxi :0 L=z, A (12)

where Xi, i = 1,2,...,/-1 are assumed to be known when the Jth eigenvector is bheing

sought,
Denoting
M Xl. = Vi (13)
the constraint Equation 12 can be written as
x} V, =0, i=1,2,---, £-1 (14)
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SECTION IIL

MINIMIZATION ALGORITHM

The methods of minimizing a function of several variables can, in general, be classified
as gradient methods and non-gradient methods, The gradient methods use the local information
about the rate of change of the function with respect to the changes in the variables and require
the evaluation of the gradient vector, inthiscase VR. These methods are inherently the more
powerful as more information about the functionisused and are preferred over the nongradient
methods,

The Rayleigh quotient as a function of the n variables (x|, XZ""’xn) = y defined in
Equation 3 is differentiable, and its gradient vector
2KX (X KX)
X Mx (X mx)®

VR=9g 2 MX

. 2{ KX -R MX)
(xXT MX )

{15)

is easily computed, Therefore, it is logical to carry out the minimization of the Rayleigh

quotient by one of the gradient methods,

Through the middle 1950's, one of the most popular gradient methods was the method of
steepest descent, This method chooses each direction of search to be the negative of the
gradient vector. Though used moderate success on a variety of problems, it often turns out
to be hopelessly slow because of the fact that successive moves are perpendicular to each
other and the method gradually settles into a steady n-dimensional zig-zag for functions having
any significant eccentricity. The convergence difficulties of the steepest descent method have
been largely eliminated by a modification of the basic iteration which has been called the
conjugate gradient method (Reference 7), This method has the property that, for a quadratic
function of n variables, it will converge in n steps, apart from round off errors, For general
functions, as the iterate approaches the minimum, the function is usually more nearly

approximated by a quadratic and so convergence accelerates toward the solution,
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The method of Davidon (Reference 8) (1959) which was amended by Fletcher and Powell
(Reference 9} (1963) is also a gradient technique which has the property of quadratic con-
vergence, However, the simplicity of the conjugate gradient method and its modest demands on
storage, compounded by the successful experience of Fletcher and Bradbury (Reference 1).
dictates the use of conjugate gradient method to minimize the Rayleigh quotient,

The algorithm can be written as:

Xo = arbitrary (a)

G, = VRIX,) (b)

So z —Go {e)

X = X tels Ca) t16)
Gi+| = VR(XH_l) le)

B = Gi+||2/lGi|2 (f)
Sit1 T TG4, tA S (g)

where the step length «a %“is the value of o which minimizes R({ X jte Si). From Equation
16g we note that $ i1 isalinear combinationof 6 i1 and So’ SI teees Si and hence it is a
linear combination of 6,6 v Gy 4. The algorithm is based on a Gram-Schmidt orthog-

onalization of the Gi and the derivation is documented in the literature (Reference 10),

The method described in Equations 16 is applicable in principle fo any unconstrained
minimization problem, It will be noted that the constraint Equation 6 is trivially satisfied by
setting the qth component of the starting point to be unity and setting the corresponding com-
ponent of the gradient vector to be zero throughout the search space, Thus, the problem of
minimizing the Rayleigh quotient function to find the lowest eigenvalue is similar to an un-
constrained minimizationproblem andthe Fletcher Reeves algorithm can be directly applied.

However, the use of conjugate gradient method for finding the intermediate eigenvalue is
possible only when the minimization of the Rayleigh quotient is restricted to a subspace of
X inwhichthe constraint Equations 11 and 12 are continuously satisfied. In order to insure that
the search is carried out in the desired subspace of X , it is necessary: (1) to start the
iteration with a point in that subspace; and (2) to project the gradient vector g , Equation 15
on to that subspace, Both of these requirements necessitate the use of some matrices which
project the arbitrary starting point and the gradient vector ¢ on to the subspace of constraints,
Henceforth, such a matrix will be called the “projection® matrix and the way it is generated

is discussed in the subsequent section,
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SECTION IV

PROJECTION MATRIX

Let P be a matrix which has the property that for any vector W , the vector

W = PW (17)

satisfies
wlz. =0 ,i=1,2,--",q (18)

where Z i’ i=1,2,....q are ¢ linearly independent vectors,

Note that Equation 18 can also be written in matrix form as:
T

{axn) (nxi)
where
NOo=[z,,2,,2,] (20)

{nxq)

In other words, the matrixoperator P eliminatesfrom the vector W the non-orthogonal
components, thus giving the vector W p which is orthogonal to the subspace spanned by the
vectors 2 i i =1,2,...,q. This idea can thus be expressed differently as:

q
W, = W~ E’ u Z, {21
or, in the matrix form as: :
Wp W~ N u (z2)
{nxq) (gx1)

where the components of vector U are s i=1,2,...,q. Premultiplying Equation 22 by
NT we obtain from Equation 19

NT Wy NTW-o(NT N =0 (23)
Therefore

-1
us: (N N ONTW (24)

From Equations 24 and 22 we obtain
w-nN (N N N'w

Wp

{ I-N(NTNY' NT}w (25)

where I is the identity matrix.
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Note that ( NTN ) will be a (gxq) symmetric matrix, and is nonsingular since N is a
(nxg) matrix composed of q linearly independent columns. Hence ( NTN )-I exists,

Comparing Equations 17 and 25 we obtain the projection matrix as:
P{ I N (N NV N} (26)

In particular, for determining the Ath eigensolution, a projection matrix

{r -np (Nl N,y N} (27)
where

N,: [e_ v, 'ng"",",é'-l] (28)

will project the gradient vector ¢, Equation 15 on to the subspace of constraints defined by
Equations 11 and 12. Note that the column vectors of the matrix N ¢ are linearly independent.
Thus

9, ° P g (29)

A question which immediately warrants attention is, since we use q instead of ¢,
will the conjugate gradient method actually converge? In other words, is there a function of
which 9 p is the gradient and whose function value equals R in the subspace defined by
Equations 11 and 12, To see that the answer is affirmative, it is only necessary to construct
the Lagrange function for the constrained minimization problem, Equations 10 to 12, Define
a ‘““Lagrange-Rayleigh’® function for the .Zth eigensolution as:

Ly= R{X)—u (X Lo
£ T RpT e R e — 1) - _Z uiXpViog 0]
122

where u, i=1,2,,., [ are the Lagrange Multipliers. Note that the stationary condition over
the variables X is

£
VL£=VR-u‘ej - F_ u.V. , =0 {31

or in matrix form

Vig= g -N,U=0 (32)
and if the Lagrange multiplier vector U is defined by Equation 24 as

T -
U =(N, N NG g (33)
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we obfain

VLJZ:o—N[(N}fo' NEG EPﬁnwp (34)

where P 7 is given by Equation 27. Furthermore, L = R in the proper subspace, because the
second and third terms of Equation 30 are identically zero by virtue of constraint Equations
11 and 12,

Thus, the ‘‘Lagrange-Rayleigh’® function has the same value as the Rayleigh quotient in
the proper subspace and the projection matrix P '/ projects the gradient vector ¢ on to this
subspace, giving thereby the gradient of the ‘‘Lagrange-Rayleigh’’ function.

SECTION V

RECURSION PROCEDURE

It is always possible to form the (f x{) matrix {N 2 N Y ) and then invert it to obtain the
projection matrix P g, Equation 27, when the search for the _Zth eigenvalue and its cor=
responding eigenvector is made. However, it is desirable to avoid this computation, as the
value of [ will be large when higher eigenvalues are searched,

It will be noticed from Equation 28 that the size of the rectangular matrix N Y, increases
by one column, every time a new eigenvalue and its associated eigenvector is searched. This
suggests that some sort of a recursion procedure should be used which permits the insertion
of the vector Vg _, on to the set

"1-.’:'[‘i-".rVz"""vj-z] ( 35)
and uses ( N £T_ \ Ny_ . )"! , which is presumed to be known, Such a recursion procedure to
obtain ( N jT Ny y-! from { N} ., N yR )" is described in Reference 2. It is based on
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the method for the inverse of a matrix in terms of the inverses of certain of its partitions,

For purposes of the present work, let

o o
] ]
T
'j Vl
T
Qﬁ-|= ¢ Ny, Nf-n)'
e V2
T
‘j vf-—z
Therefore,
T
Q£ = (Np Nl ) = ;
.j v.@ [
—
A,
T
where

L

We presume that A]' is known, then

i
Q) =

T
Q. AV, Ve and Al

2

T =t
{ Nj NL)

SYM
vI vI
T T (36)
vI VZ v2 VZ
T ' T
vl V.é’—z Vf-zvf-z—l
{ —-
T v
| °j 2~
|
T
Qj_l : V|'Vf_’
L
———————————————————— |__———-——
T I
v' Vf-l 1 } v/e—lvﬁ-l
| A
1
, Ra
]
{(37)
;
s
_ [T T YL
B [‘l ,(-|’v| vl-n' ‘V[-zv[—l ] )
_ B, {Bz
= Et Rl (38)
B, ! B,
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can be obtained from

and

where the scalar quantity s is given by

T -1
s = AadAz A' Az

Al (39)

(40)

A procedure to obtain 8, , B, , and B ; which is even more efficient than the direct
formulas shown above and which uses only the old projection matrix, Pf -y the old inverse,

le , and the vector V,_, is described in Appendix I
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SECTION VI
STEP BY STEP PROCEDURE
CHOICE OF A STARTING POINT

The iterative methods should have a good starting point, otherwise unnecessary time is
wasted inside the minimization procedure to minimize the function; However, there seems to
be no simple method for findinga good starting value for any iterative method. In Reference 1,
a choice of the starting point is made on the basis that the first step of the minimization pro-
cedure makes the fastest descent towards the minimum, It is a unit vector e ; (the jth element
of e ; is Sij) lying along the coordinate axes, Such a starting point gives a badly distorted
mode shape and was not found to be the best choice for solving the structural dynamics
problem,

Contrary to expectation, a set of random vectors proved to be superior to the selected
unit vectors and in this work they wereused as starting points. The method showed reasonahbly
good convergence from these points. Once the solutions converged, a knowledge of the mode
shapes of the structural system was obtained, Experiments were conducted in which some of
the design variables of the structure were changed and the eigensolution of the modified
system was obtained by using the mode shapes of the original design as the starting points,
This showed rapid convergence, "

The starting point for the search of the lowest eigenvalue needs to satisfy only one
constraint, Equation 6, which is trivially satisfied by dividing through by the qth component.
However, the minimizafion algorithm, Equations 16, generates a sequence of vectors which,
in the limit, tend directionally to the minimum eigenvalue on the search space. Thus the qth
component of the vectors so generated have to be maintained as unity, 8o as to satisfy the
constraint, Equation 6, continuously in the space. This is achieved by setting the gth com-
ponent of the gradient vector at the particular point equal to zero. In other words, no ‘“‘move?’
is made in the qth direction of the search space.

The starting point for the search of second eigenvalue has to satisfy an additional con-
straint, Equation 9, and this can be easily satisfied by Schmidt orthogonalization,

Let S(' () be some initial estimate, Therefore,

T
(0) . Z(0) _ (0}
X, ' =X, 0,7 v, 1y, (4i)
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T
satisfies Equation 9 if V, V|, = 1. Note that V, = MX

eigenvector corresponding to the first (lowest} eigenvalue.

, »Equation 13 where X | is the

In order to get the starting point for the search of subsequent eigenvalues, the initial
estimate is passed through a projection matrix as discussed in Section IV, Projection Matrix,

where the matrix is given by Equation 27 but the matrix N ¢ Wwhere

Ny =[V,.V "'.Vg-.] (42)

is to be used instead of matrix N rx Equation 28,
FUNCTION EVALUATION

The value of the function to be minimized is required at the end of each iteration cycle
for almost all the iteration methods since the convergence criterion is based on the function
value, Moreover, for the particular problem of minimizing the Rayleigh quotient, the function
value is required at each cycle in order to evaluate the gradient vector, Equation 15, It is,
therefore, necessary to have an efficient routine for function evaluation, in order to avoid the
time which would be otherwise wasted inside the minimization procedure. The value of the
Rayleigh quotient can be computed without havingthe assembled K and M matrices at hand,
This is accomplished by noting that the numerator is twice the strain energy for a given X (the
generalized displacements), and that the denominator is twice the maximum kinetic energy
of the structure and these can be computed by summing the potential and kinetic energies of
the individual elements of the discretized structural model. Thus R{X) can be writien as

' (43)

where r is the number of discrete elements, k i and m; are, respectively, the stiffness and
mass matrices of the ith element of the discretized structure and Yi is the displacement
vector of the ith element corresponding to the generalized displacement vector X . To obtain
the vector Y, i = 1,2,...,r from the vector X is rather easy and is a matter of logical
operations, A wariety of methods exist for such logical operations. One such scheme is

described in Reference 11 and an equivalent technique is discussed in detail in Appendix II,
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For the purposes of the present work, a separate subroutine was written in Fortran IV
to decompose the vector X fo the vectors ¥ i to evaluate the vectors "i Y, and
m Yi and then to assemble back the product KXzA and MX * B, The assembly of the vectors
A and B is accomplished through a logical operation on the vectors kiYi and m. Yi
which is merely the inverse of the operation described in Appendix II,

As will be seen later, this subroutine was used over the over again to evaluate certain
other quantities required in the iteration process, other than the function evaluation which is
now obtained by two vector multiplications XT A and XT B and one division in order to

get:

Rix) - XA

x"s
Needless to emphasize the advantage gained by getting along without the assembly of K and
M matrices. Frequently, the order of K and M matrices encountered for large structures
is so high that it is impractical or prohibitively expensive to study their vibration charac-
teristics without making approximations. The size of element stiffness and mass matrices
are relatively much smaller than the size of the assembled stiffness and mass matrices of
large complex structures. Furthermore, advantage can also be taken of similar elements,
For example, in a structural system of a large number of elements, if only three types of
elements are used, then we need store only the stiffness and mass matrices corresponding

to these three elements, rather than for all of the r elements.
GRADIENT EVALUATION

The minimization algorithm, Equation 16, reciuires the evaluation of the gradient vector
at each cycle of the iteration. The gradient vector, g , of the Rayleigh quotient function is
given by Equation 15. For determining the lowest (first) eigensolution, the component of the
gradient vector corresponding to the normalizing component of the eigenvector is set equal to
zero, in order to continuously satisfy the constraint imposed due to the normalization of
the eigenvector. While determining the intermediate eigensclution, the projection matrix
Py , Equation 27 is used to project this gradient vector, g , on to the proper subspace of
search, M-orthogonal to the previously determined eigenvectors. The component of the gradient
vector, ¢ P’ corresponding to the normalizing component of the eigenvector turns out to be
zero automatically, but a small number often appears due to roundoff errors and this is simply

removed by setting that component equal to zero.
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EVALUATION OF STEP LENGTH

Once a direction of move § i has been chosen, we must determine a’.l" s0 that the
function is minimized in that direction, Thus the problem of finding the step length is essentially
the linear search problem which requires the determination of the @ ’i"along S i through

X i at which the value of the Rayleigh quotient function
(X, +a8) K(X +a.S)

RIX + a8 ): - (44)
X + 280 MIX, +a.S,;)

is a minimum, i.e.,

[= N

=l ®y .
. , =Ria’)=0 (45)

o

In the general problem, no expression is available to determine a ;‘. so an interpolation
approach (References 7, 8, and 9) is adopted, In the particular problem of Rayleigh quotient,
however, an explicit expression in @, can be generated (Reference 1) from Equations 44
and 45 which has the form

|.|a.iz tva, +v =0 (48)

where

o
L1}

(siT xsiuxirm si)—(xfx siusfmsi )

(8] K'$)(X MX,) —(X] KX,)(S MS,) 47

-
n

X
n

(X] K S, )X MX, )= (X] KX)(X MS )
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The two roots of Equation 46 correspond to the maximal and minimal points of the

Rayleigh quotient in the direction

function value corresponds to ai“.

1

N

Si through xi as shown in Figure 3. The minimal

v
=]

Figure 3.

Rlal= R(xi +asi)

Representative Variation of Rayleigh Quotient Along a Line

Note that the matrix products regquired in Equation 47 to evaluate the coefficients of the
quadratic, Equation 46, are easily obtained through the subroutine discussed above in sub-

section ‘‘Functional Evaluation.”
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SECTION VII
NUMERICAL EXAMPLES

In all the illustrative examples presented in this section, (1) a general planar heam element
having six degrees of freedom was used to model the various structures, (2) the distributed
mass of the system was used to evaluate the components of the mass matrix (the ‘‘consistent’’
mass matrix) (Reference 4), (3) the Univac 1108 digital computer was used to obtain the
numerical results and (4) except where noted, random vectors were taken as starting points

for the minimization algorithm to obtain the eigensolution.
EXAMPLE 1

As a simple application, the cylindrical cantilever rod shown in Figure 4a is considered.
An attempt was made to obtain the complete eigensolution of this simple structure by the

successive minimization of the Rayleigh quotient in the appropriate subspace.

Based on the surmise that the lowest eigenvalue would correspond to the first cantilever
mode, the degree of freedom associated with the transverse deflection of the cantilever at the
free and (x8) was made to equal one and the others were taken as zero in order to start the
search for the lowest eigenvalue. (This obviously makes Xq the normalizing component), A
capability was built into the computer program tochange the normalizing component whenever
the magnitude of any other component of the vector in the appropriate subspace exceeded
five times the magnitude of the current normalizing component (which in any case is one).
Every change of the normalizing component necessitated the restart of the minimization
algorithm due to the change in the subspace of search.

Curiously enough the complete eigensolution so obtained gave the first six eigenvalues
and their associated eigenvectors and did not pick up the remaining three eigenvalues. This
is because the three axial degrees of freedom are uncoupled from the six translational and
rotational degrees of freedom of the cantilever beam and with the particular choice of starting
point, the method could not enter into the subspace in which the eigenvalues associated with

the axial modes of vibration are located. If instead of e, the starting points are taken as

8'

e ., only the eigenvaluegs associated with the three axial modes of vibration are obtained.

7
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Furthermore, if the same structure is oriented differently as shown in Figure 4b where
the translational, rotational and axial degrees of freedom are all coupled, the complete
eigensolution, i.e. all the nine eigenvalues and the corresponding eigenvectors, were obtained
from the starting point of e 8
The first three eigenvalues of the model are: 0.2466 x 108, 0.1161 x 109 and 0,9747 x 109
which correspond to the frequencies of 0.4966 x 104, 0,1079 x 105 and 0.3122 x 105 radians/sec.
These compare favorably with the exact values of 0,4945 x 104, 0.1065 x 105 and 0.3100 x 105
radians/sec., and respectively correspond to the first cantilever beam mode, the first axial

mode and the second cantilever beam mode.
EXAMPLE 2

Consider as another illustrative example the planar frame shown in Figure 5a consisting
of tubular members pinned together at the nodes. Each member was modeled with a single
beam element. Thus, the structure has fourteen degrees of freedom. A complete eigensolution
(i.e. all the 14 eigenvalues and eigenvectors) of the system was obtained by successive
minimization of the Rayleigh quotient. The time taken was 4.17 seconds.

EXAMPLE 3

The partial eigensolution of a 56 degrees of freedom system shown in Figure 5b was
obtained by minimizing the Rayleigh quotient. Each member of the four bay planar frame,
pinned at the nodes, was modeled with a single beam element. The determination of ten eigen-

values and eigenvectors took 77.91 seconds,
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L=1.0"
D=0.25"
E=30x10° Ibs. /in®
P=0.28 1bs./in3

Figure 4, Cantilever Rod
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Sl

30"
(a)

Mean Dia.(D)=1.8"
Wall Thickness {t)=0.1"

Livid E =30x10° Ibs./in?
P=0.28 Ips./in?
(N < T [
|2II
. o —
¥ ¥ | 4 ' ¥
A 55" A |5Il A |5II A |5Il A
(b)
Figure 5, Planar Frames: (a) Fourteen Degrees of Freedom:

(b) Fifty-six Degrees of Freedom,
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Figure 7,

e

;;,v_

(b)

Schematic Representation of Mode Shape of 134 Degrees of Freedom

System Corresponding to:
Higher Natural Frequency

(a) Y.owest Natural Freguency;
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EXAMPLE 4

A frame structure having 134 degrees of freedom shown in Figure 6 was analyzed to obtain
the first five eigenvalues and the associated eigenvectors. Each member was pinned at its
nodes and modeled with only one element, The number of iterations required to converge to
the solution up to the eighth decimal place, the time taken to obtain each eigenvalue and the
numerical result obtained are given in Table I, The eigenvectors so obtained were used as the
starting points for the minimization algorithm to obtain the eigensolution of a changed design
of the same structure, The change in the original design was brought about by increasing the
mean diameter of members 1 to 20 by 10% and by decreasing the mean diameter of members
21 to 29 by 10%. The results for the changed design are also given in Table I. The total time
taken to obtain the partial (first five) eigensolution of the original design was 46,95 seconds
while that for the changed design was 20.30 seconds. Thus, the method converges rapidly for
the changed design. The reason is that the eigenvectors of the original design provide the
reasonable initial estimates of the eigenvectors for the changed design and thus are good

starting pointg for the minimization algorithm,

It would be observed from Table I that the first two eigenvalues are well-separated while
the nextthree are closely spaced. A study of the associated eigenvectors explains this behavior,
The first two eigenvalues, respectively, correspond to the mode shapes schematically
represented in Figures 7a and b. The next three closely spaced eigenvalues correspond to the
mode shapes where the overall structure frequency is dominated by the individual frequency
of the long members of the structure marked 34, 35, 44, and 45. This interaction ofthe individual
member frequency with the overall structure frequency is responsible for the three closely

spaced eigenvalues.
TARLE I

FIRST FIVE EIGENVALUES OF THE ORIGINAL AND THE CHANGED DESIGN, EIGENVALUES
REQUIRED TO CONVERGE UP TO THE ELGHTH DECIMAL PLACE

No, of Original Design Changed Design

Eigen- Iterations Time Value Iterations Time Value

value (secs,) (secs.)
1 59 5.3 | .52309556x10° 26 2.22 | .64067844x105
2 56 4,27 | .58762266x107 40 3,04 .60087324x107
3 205 19,53 | .75223340%107 73 6.11 | .75745767x107
4 100 8.36 |.77330454x107 46 4,50 | .75729213x107
5 105 9.49 | .79875840x107 43 4,43 .75753798x107
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The same example was rerun with a relaxed convergence criterion {this time the solution

was required to converge to only the sixth decimal place) and the results obtained are given

in Table II. The total time taken for the partial eigensolution of the original design is 24,34

seconds while that for the changeddesign is 7.97 seconds. Thus, there is a considerable saving

of time in choosing a less stringent convergence criterion. However, although the error does

not seem to propagate badly from eigenvalue to eigenvalue, the eigenvectors so obtained are

not as accurate as those obtained by the more stringent convergence criterion,

TABLE II

FIRST FIVE EIGENVALUES OF THE ORICINAL AND THE CHANGED DESIGN, EIGENVALUES
REQUIRED TO CONVERGE UP TO THE SIXTH DECIMAL PLACE

No. of Original Design Changed Design

Eigne- | Iterations| Time Value Iterations | Time Value

value (secs,) (secs.)
1 45 3.49 .623109x106 0.56 .640686x10°8
2 45 3,51 .587632x107 9 1.14 .600891x107
3 50 4.15 .752796x107 22 2,13 .757763x107
4 55 5.55 .773182x107 27 2.11 .757269x107
5 76 7.64 .798727x107 28 2.03 .757271x107

EXAMPLE 5

When each of its members is modeled by two beam elements the number of degrees

of freedom of the system shown in Figure 6 is 281, The results for the first five eigenvalues

of this refined model are given in:

TABLE IIT

RESULTS OF 281 DEGREE-0F-FREEDOM MODEL OF FIGURE 6.

Time
No, Iterations (secs,) Value
1 417 71.78 .6207 x 10°
2 301 55.57 .5291 x 107
3 614 117.22 ,6295 x 107
4 222 42,48 .6371 x 107
5 297 59,12 L6643 x 107
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As anticipated, the refined modeling gave a better correlation between the closely spaced
eigenvalues of the overall structure and the eigenvalue corresponding to the lowest natural
frequency of the individual members having a length of 21.21 in. {any of the ones marked 34,
35, 44 and 45 on Figure 6). The lowest natural frequency of the simply supported tubular
beam of mean diameter 1.6 in,, wall thickness 0.1 in. and a length of 21.21 in.is 0,251 x 104
radians/sec., which correspond to an eigenvalue of 0.6300 x 107. Thus, the closely spaced
eigenvalues are the resuit of the interaction between the individual member frequency and the

overall structure frequency.

SECTION VIII

CONCLUSION

An iterative method to obtain the partial/complete eigensolutionof a general eigenproblem
arising in structural dynamics is described. The method does not require preliminary modifi-
cation to put the general elgenproblem into any special form. It has been found to be effective
for the partial eigensolution of complex structures and thus is useful for the dynamic analysis
of complex structures.

Since the method converges rapidly when reasonable initial estimates of the eigenvector

are available, it lends itself well to embedment within structural optimization procedures where
dynamic behavior is to be considered.
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APPENDIX I

PROCEDURE TO OBTAIN @,' FROM Q,_,

As discussed in the text of the paper, Q"E' is given by:

B, ! 8.
- T - !
Q' = (N Np) = -——-—il--—-- (48)
T
B, 1 B
where l
- - T .
B, : A7 +4(a]' A, A, &)
i -1
BZ = —-—s— (AI AZ) (49)
|
By * %
and
s = A,—A, A A, (50)
Furthermore,
_ T
A Qo =Ny Ny
T T T T
= Vv V' -V v
Az ['j -0 0 gt -2 ,@-l]
and
As = V}-;Vﬂ-u (51)
It is presumed that
-1 -1 _ T -
A2 QL =N  Ng ) (52)
is known.
We can write
T
Az = N,P-i v,ﬂ—l {53)

where
Ng-i =['j Yy ’vz‘m’vﬂ—z]
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Therefore, from Equations 48, 49, 50, and 51, we obtain

T . T T
s 'vl’-lv,ﬂ-l v£-1 Ny, (Nl’.—l Nﬂ-u’ Neo Vf-l

"

v}-l Pf—n vf-l {54)

where

]

T T
{x- N, v, N N ) (55)

is the ‘‘projection’’ matrix,

Po-

The projection matrix, Equation 55, has a neat property that the vectors P ¢ - W and
{I L } W are orthogonal. This can be seen by mere multiplication of the two vectors:

\VTPj_l {1 - Pf_l}w:wT {r - Ny, (N}é_l Ny v NT£_| }x

{Nf-l {NE-VI Nf-l)-‘

T T
WM N N
Ny (Np N v NG ) w (56)

since(NTj_' NI-I ) (Njé;-l ﬂ.{-—l)g L

The term within the brackets { } on the right hand side of Equation 56 is identically
zero and hence we obtain

T - . )
wie, {rt -p w0 (57)
Equation 57 can be rewritten as
T T 2

< = | P w 58
w P,?-u W:-Ww ij Pﬁ-l w I 7 | (58)

Therefore, we obtain from Equation 54

2

s P, vyl (59)

Note that the projection matrix P -, is already known and thus to obtain s from Equation
59 is computationally more efficient than that from Equation 50.
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If we denote
= A - (N Ny ) !
fpoy = A, A" 2= 7. Nj, Voo (60)

then from Equations 55 and 60 we obtain

Pﬂ-i V£-|:Vf—a —Nj-l l'ﬁ_l 61}
Furthermore, from Equations 52, 60, 61, and 49 we obtain
_ T -1 I_ T
B, = (N,ﬂ-a Nf—l) +s F oo “f-
. -
B, = s /-1 {62)
and
-
By = %
Thus the procedure fo obtain Q}l from Q ﬁ::l can be summarized as:

Compute the vector ry_, from Equation 60 as two matrix vector multiplications.
Compute the scalar, 8, from Equation 61 and 53,

Compute the matrix B , the vector B, and the scalar B, from Equation 62,

N

Form the desired QB' from Equation 48
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APPENDIX II

TRANSFORMATION BETWEEN REFERENCE AND LOCAL COORDINATES

Let SR be an rx(t+l) table whose first column contains the element numbers w.rranged
from 1 to r and whose rows contain in the remaining t columns the corresponding local con-
sistent coordinates of the elements, replaced one to one by the number of the corresponding
degree of freedom of the structure in the reference coordinate system. The ith row of the
SR table is used to obtain the (txl) vector ¥ i i=1,2,,,.,r from the (nxl) vector X. Y, is
the displacement vector of the ith element corresponding to the generalized displacement vector
X of the system, As an illustrative example, consider the simple cantilever beam shown in
Figure 4, which is modeled with three general planar beam elements, Thus, the number of
elements, r, is 3, the local degrees of freedom of an element in the reference coordinate sys-

tem, t, is 6, and the number of degrees of freedom of the system, n, is 9, The SR table for this
system is shown below:

Degrees of Freedom
Axial Transverse
Element Displacement Displacement Rotation
No, At End At End of End
P Q P Q P Q
1 0 1 0 2 0 3
2 1 4 2 5 3 6
4 7 5 8 6 9
Let the generalized displacement vector be:
X
X2
X3
Xq
x = Ks
ig
Xy
Xg
Then Xe
0 X, X4
X X4 Xy
0
YI = . YZ = *2 and Y3 z X5
X2 X5 Xg
0] X3 Xe
X3 Xg X9
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Thus we can say that

SR;

Yi <« X
i.e., the vector X istransformed tothe vector Yi through the ith row of the SR table, where
the non-zero components of the vector Yi are the components of the vector X associated

with the ith element,
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