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The Fractional Order State Equations E
for the Control of Viscoelastically Damped Structures '
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Abstract

The fractional order state equations are developed to predict
the effects of feedback intended to reduce motion in damped
structures. The mechanical properties of damping materials are
modeled using fractional order time derivatives of stress and
strain. These models accurately describe the broad-band effects
of material damping in the structure’s equations of motion. The
resulting structural equations of motion are used to derive the
fractional order state equations. Substantial differences between
the structural and state equations are seen to exist. The
mathematical form of the state equations suggests the feedback of
fractional order time derivatives of structural displacements to
improve control system performance. Several other advantages of
the fractional order state formulation are discussed.

Nomenclature
A . state Matrix
-ap, : system eigenvalue
-gﬂ : dlagonal matrix of eigenvalues

B : state control matrix
b : viscoelastic model parameter

Dp : the beta order fractional derivative
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Dﬂ : modified beta order fractional derivative
E ;E1 : viscoelastic model parameters

]

Eﬂ(x) : the beta order Mittag-Leffler function
?(t) : applied loads prior to initial time, t = 0
?(t) : applied loads after initial time, t = O
£(t) : modal loads prior to initial time, t = 0
f(t) : modal loads after initial time, t = 0
f*(t) ! stress operator acting on loads

G(t) : structural pseudo loads

g(t) : modal load

E(t) : modal psendo load

-G : feedback gain matrix

Il'a

: the one minus a order fractional integral
50 : structural stiffness matrix

51 . structural visco-stiffness matrices

2

: number of physical degrees of freedom

M : structural mass matrix
t : time starting at the onset of motion
t : time starting at the initial time

t° : time interval between t = 0 and t = 0
w(t) : structural displacements

X spatial coordinates

x the reduced state vector

g(t) . state vector

x ! intial state vector

y(t) : modal response

y(t) : modal response for loading prior to t = 0
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?(t) : modal response for loading after t = 0
z : impulsive load coefficients vector

B : basis fraction (i/n) for the system

I' : the gamma function

e¢(t) : strain history

¢ : system orthonormal transformation

o(t) : stress history

(E°+E1Da) : Strain operator

(1+bDa) : stress operator

Introduction

In the modeling of the linear elastic behavior of large space
structures, damping has typically either been ignored or modeled
as being linearly dependent on velocity. This damping model is
adequate for very lightly damped structures and also allows a
linear state space model to be defined for the structure’s motion.
This formulation is well suited to the design of active control
systems using state space techniques.

However, for heavily damped structures ignoring the damping
is imprudent and modeling it as being linearly dependent on
velocity is inadequate. Velocity dependent damping models, while
mathematically straightforward, fail to describe the broad band
mechanical behavior of damping materials. Historically, the need
for more refined models has pushed the development of
viscoelasticity as a discipline within engineering mechanics.
Applicable viscoelastic models relate time dependent stress and
strain fields with series of ordinary time derivatives. These
models yield acceptable broad band Bode plots of material
properties, but they have drawbacks. Typically these models
contain many terms, making them mathematically cumbersome and
increasing the order of the differential equations describing the
system.

As an alternative we will present accurate broad band
viscoelastic damping models having only four parameters” and posed
in terms of non-integer order time derivatives. The real strength
of this approach is that these non-integer or fractional order
derivatives describe inertial effects, damping effects, elastic
effects and control effects with equal precision. Substantial
accompanying benefits are that the order of differentiation in the
system equations does not exceed three and that a potentially
infinite number of additional feedback states arise to improve
system performance.

To reap the benefits of this approach; however, one must
become comfortable with the concept of fractional order

DAB-3

Confirmed public via DTIC Online 01/09/2015



ADA309668 . Downloaded from Digitized 01/09/2015

differentiation. While 'the convolution operator that produces
these time derivatives at first appears alien, frational
differentiation in the Laplace transform domian is exceedingly
simple. Multiplying a transform by sa, in effect, produces the
transform of the a order derivative.

The development and applications of fractional order
derivativesk%thggggglasticity and structural dynamics are well
documented.” ' e 6 The models are consistent with
themodynamic constraints and have their foundation in classical
molecular theories predicting the macro mechanical properties of
viscoelastic materials.

The resulting structural equations of motion serve as the
foundation for the state equations, but they are substantially
different. The hereditary nature of the structural equations
suppresses the existence of homogeneous solutions found in the
state equations. In addition, the two sets of equations employ
different operators that lead to different requirements for
initial conditions. It should come as no suprise that the
generalized or fractional order state equations comprise a
generalization of the initial value problem. The generalization
begins with the structural equations of motion.

Ihe Structural Equations of Motion

The structural equations of motion differ from classical
formulations in that fractional order derivatives are used to
model the viscoelastic damping phenomenon. The extended Riemann
Liouville fractional derivative is a linear operator

t
DT, [w(e)] = ¢ w(t) dr 0<as<l (1)

€ Jo r@-a)(e-n)®

and serves as the basls of the generalized model of the
viscoelastic phenomenon. The most general form of the models is

N a . N a
a(t,x,) +p§1pr(z)[a(t,xi)] = E_e(t,x,) +p§1EpD(E)[e(t,xi)] (2)

where the derivatives acting on the stress and strain fields are
of real, rational fractional order. Note that this model becomes
the classical viscoelastic modell when the orders of
differentiation are taken to be integers.

The Fourier transform of the fractional derivative of a
function has a special property when the function is zero for
negative time.
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F [0, [x(6)]] = (10)* Flx(t)] (3)
where
F [x(t)] = I x(t)e 't at (4)

This property, eqn 3, is that the transform of the a order
derivatives is the transform parameter, iw, raised to the a power
times the transform of the function. Note the similarity of this
transform with the Fourier transform of an ordinary derivative.

The attractive feature of the fractional derivative operator
is the ability to vary the degree of its frequency dependence
through the choice of a. As a direct result, fractional
derivative models are capable of modeling linear,
frequency-dependent phenomena not easily captured by the
transforms of ordinary derivatives. This leads to models accurate
over several degades of frequency needing very few, typically
four, parameters .

In the time domain the four parameter model for uniaxial
deformation takes the form

(1 + bD%)o(t) = (E, + Elba)e(t) (5)

where b, Eo' E1 and o are the parameters. This model has been

used to construct the general three-dimensional constitutive
equations1 for 1linear, homogeneous, 1isotropic viscoelastic
materials . When these general constitutive equations are
employed, it can be shown that the general form of the finite
element equations of motion take the form

BUD? % (t) + MDAW(E) + k;D7W(t) + k w(t) = bDE(E) + F(t). (6)

where M is the mass matrix, Eo is the stiffness matrix, 51 is the
visco-stiffness matrix, f(t) are the applied forces and Y(t) are

the structure’s deflections. Note that the equations of motion
are posed in terms of three real, square symmetric matrices. 1In
general the visco-stiffness matrix 51 will not be a linear

combination of M and Eo and usually the equations of motion cannot

be decoupled in their present form.
To overcome this obstacle to spectral analysis and begin the
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derivation of the state equations, we will pose the structural
equations of motion in terms of two real, square symmetric
matrices, for which an orthonormal transformation exists. To
begin this process one takes advantage of the composition property
of the fractional order derivative,

D“[D” [w(t:)] ] - °‘+7[w(t)], (7)

and poses the structural equations of motion as

&y#ﬂ+gwﬁ‘+hwﬁq+g]yn-[1+wfﬁku> (8)

Here m, r and q are integers and (D‘B)ln is the B order derivative
taken m times. i

fm =2+ a
pr = 2
Bq = a
B = 1m

B is chosen to be the largest fraction of the form 1/n, where n is
an integer, common to all the rational orders of differentiation
in the structural equations of motion,. As we will see later,
this form for B is necessary to insure that initial velocities
appear in the fractional order state equations. The most general
form of these equations of motion is

m
T e PP we) = 1+ b YD) - £ (0. 9)
p=0 P |

Here the (- are real and constant, although many may be zero, and
g*(t) is the result of the viscoelastic stress operator acting on
the applied forces, F(t), as shown in eqn 8.

Eqn 9 describes the structures with N degrees of freedom
producing N equations of order Am that can be alternatively posed
as m'N equations of order 8. In matrix form the m:‘N equations of
B order are
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where the lowest set of partitioned equations is seen to be eqn 9.
The matrix [H] is chosen such that both square matrices of order
m:N become symmetric and the top (m-1):N equations are satisfied
identically. This is accomplished by constructing H such that all
matrices, 29 lying on any given diagonal running from lower left

to upper right in the first matrix of eqn 10 are equal. We will
refer to this form of the equations of motion as the expanded
equations of motion.

For example, if a is one half in eqn 6, then B is one half
making m=5 in eqn 8 and the expanded equations of motion become

(0 2 0 gb] (% w(e))
9 g gy ¥l 0 ue)
pt/? 2 9 bM M 2 <(D1’2)2y(t)»
obd 8 0 0| (@Y% ue
BEOM Q0K we)
(11)
[0 g o o) Hwe) [ 4, )
o o-vu -4 0 |[@H u 0
v R S R el {O] SR B
Y M Q0 Q|| e 0
I 9 0 020 9 1.‘0_L w(t) ) \(1+bD172)§(t)‘

Both the general form (eqn 10) and the example in eqn 11 are
now posed in terms of two real, square, symmetric matrices for
which an orthonormal transformation exists,
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(n")“:‘"g(tﬂ YN (E)
{ Py } - | @ AN (12)
Py u(t) yo(®)

which leads to a system of m-N uncoupled differential equations
of order B.

oPulfo) Dot [+ o} feo .o

Constructing the Modal State Equations

The decoupled structural equations of motion or basis
equations (eqn 13) individually take the form

P+ Pyy(r) = £(t) g = 1/n (14)

where the subscripts have been dropped to simplify notation.
Green's function solutions for these equations are relatively
straightforward and the resulting expressions for the forced
response of the structure can be shown to be real, continuous and
causal (1:73). These solutions to eqn 14 may be viewed as
particular solutions of the structural equations of motion.

It is important to note that the only homogeneous solution to
eqn 14 is the trivial solution. This is consistent with a strict
interpretation of eqn 2, the generalized visocoelastic
constitutive model. Inherent in the model is the implication that
at time zero the viscoelastic material should be in its wvirgin,
undeformed state and the structure is commencing motion from a
quiescent state. Attempting to impose non-trivial initial
conditions implies the existence of previous motion that is
inconsistent with the hereditary viscoelastic model and hence,
homogeneous solutions are not needed.

To construct the modal state equations, one needs to shift
the time scale such that the initial time occurs at some time, to,

after the onset of structural motion. This shifted time scale is
shown in figure 1. Posing the bﬁﬁ}s equations, eqn 14, in terms
of this shifted time scale yields

1 d JE y(r-t))

—1_ By(i-t ) = £(E-
T P ar + ay(E-t ) = £(E-t ) (15)
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The applied loads prior to t (0 SESto) are T(E-to) and the
corresponding response is ;(E-to). The equation predicting this
response is
085 (8-t )+aP§(T-t )=E(E-t ) (16)
o o o
The loads for the episode of interest (EZto) are ?(E-to) and the
equation for the corresponding response ;(E-to) is

PPF(E-t ) + PF(E-t) - EE-c) (17)

The total response for t = tois ? +y and the general

expression for the response is

v o= -
1 I y (r-w) +y (x-4) 4,4 aﬂ[§(r) + ;(r)]
r(1-g) Yo A

u
(18)

- F(r) + g(v)

where r = E-to, u = t-r. Here g(r) is a pseudo forcing function

that produces the residual response of the structure due to the
prior application of f(t-to).

r+t
~ y(-t )
v 1 |7 GEw AN
CORERS 97 { J PN } (12
(o]

Expressing eqn 18 in terms of the time t scale in Figure 1, where
zero time is now to after the onset of structural motion, yields

1
r'(1-p)

t' .
[LEDar + Pyce) = Eeey + B(e) = g(0).
o P
(20)
Note that here the order of differentiation and integration

in the fractional derivative operator 1is the opposite of eqn 1.
This reversal of operations occurred when Leibnitz’s rule was used
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to differentiate in eqn 15, producing eqns 18 and 19. This change

will prove crucial to solving the initial value problem, because
in contrast with eqn 14, eqn 20 possesses both a particular
solution, uniquely dependent on the forcing function, and a
homogeneous solution, uniquely dependent on the initial wvalue,
y(0).

Before presenting these solutions it is important to address
the relationship between the operator appearing in eqn 20 and the
original definition shown in eqn 1. Using Leibnitz’s rule to
differentiate the integral in eqn 1 yields

1 a [* wt-r) 1 w(0). *w (t-1)
s &[0 e e {9 [H2 o]

or in operator form

- A -
n“[w(t)] - %%%%27 + D“[w(t)] - ;%%%57— + 11*’Lk(t)] (22)

p° [w(t)] - Il°°[€z(t)]

where D* is the definition and D* is the modified derivative
operator appearing in eqn 21. In fact D% is the Riemann-Liouville
indefinite, fractional order (l-a) integral of the first
derivative gglghe function or effectively an order -a integral of
a function. ™™ The key observation here is that the indefinite
fractional order integral operator in effect produces a constant
of integration in each modal response. These constants will be
used to statisfy the initial conditions in the fractional order
state equations.

Posing equation. 20 1in terms of the modified f£fractional
derivative operator, D,

0 + &) yv) - F(e) + B(t) = g(B) (23)

produces the modal state equations, Note the similar appearance
of eqns 14 and 23. Recall that eqn 14 is based on the t time
scale and has a trivial homogeneous solution. On the other hand,
eqn 25 1is based on the t time scale, posses a non-trivial
homogeneous solution and accounts for the effects of previous
motion through the initial wvalue, y (0), and pseudo forcing
function, E(t).
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Constructing the Fractional Order State Equations

The overall goal is to determine the nature of the fractional
order state equations from the modal state equations. The
immediate goal 1is to use the modal state equations, eqn 23 to
predict structural response, where the relaxation effects induced
by previous motion are accounted for by the pseudo forcing
functions, g(t). The transient structural response will be a
superposition of the homogeneous solutions of the modal state
equations and will be shown to satisfy the initial conditions.
The forced structural response will be constructed from the
particular solutions to the modal state equations derived using
Green's functions. Superimposing the transient and forced
response produces the total structural response.

The transient structural response 1is constructed by first
determining the general form of the homogeneous solution for the
modal state equations, eqn 23. These solutions take the form

Byp
(-(at)")
¥y, (€) = yh(O)p§° T(1%p8) (24)

which is a special case of the beta order Mittag-Leffler function
defined as (14:102)

__ P |
B = Z TCL+pB) (29

In Mittag-Leffler notation the homogeneous solution is
- 0) E_|- A 26
Y (8) = y,(0) 8 (at)™], (26)

where this special Mittag-Leffler function has the property

Sﬂzﬂ[_m)ﬂ] - ﬁsﬂ[-@c)ﬂ]. (27)

The property should come as no surprise because the
Mittag-Leffler function has long been viewed as a generalized
exponential function . In related work Koeller has shown
that the quasi-static fractional calculus viscoelastic formulation
leads to Mittag-leffler functions.

Including the particular solution, the total solution to each
of the modified basis equation is

y(£) = y,(0) Eﬂ[-(aw ] j o [ [ (a,)ﬁ]]g(t rydr (28)
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which can be determined using Laplace transforms or other
traditional solution  techniques for integral-differential
equations. The kernel in the convolution integral of eqn 28 is
the unit impulse solution (Green's function) for the modified
basis equations, and is singular. Note that E_(0) is not zero and

B

that the singular behavior of the kernel can be determined through
a straightforward application of eqn 1.

It }s the singular nature of fractional order derivatives of
Eﬂ(-(at) ) that is useful in resolving an apparent paradox in the

overall initial value problem. Recall that there are m-N (eqn 23)
modal state equations needed to characterize the structure, where
the solution for each equation has a homogeneous solution
containing a different initial wvalue. This paradox becomes
apparent when eqn 12 is used to solve for the m'N initial values
of the homogeneous basis functions in terms of the structure'’s
initial displacements y£(t) and their derivatives evaluated at

time zero.
ORI T.n(®)
1P @t - | @ { vy } (29)
) (8) ¥, (8)
!h(t) y]_(t)
. Jt-o \ ‘t-o

The paradox is that at this point only g%(O) and D%&(O) can be

specified, while the remaining elements in the state vector on the
left of eqn 29 are undetermined. Note that the order of the
differential equations of motion (eqn 6) 1is order 2 + a or
equivalently fm and that the state vector in eqn 31 calls for the
initial values of derivatives up through 2 + a - B8 or equivalently
B(m-1). In other words, when posing N, Am order differential
equations as a system of m-N differential equations of order g8,
the corresponding initial value problem calls for all the initial
values of the pp order derivatives of the displacement vector,
Yh(t): p=0,1,2,.--, m-1, These requirements appear to be

analogous to the traditional initial value problem, but also leave
one with the requirement for yet ore initial conditions.

It is proven in reference that all of the non-integer
derivatives of Yﬁ(t) of order less than two appearing in the state

19;

vector have zero initial value. The 1initial wvalues for
acceleration and the accompanying higher order derivations
appearing in the state vector can be determined by returning to
the original equation of motion, eqn 6, and using successive
applications, of eqn 22 to determine the singular terms in the
equation of motion. The resulting equation of motion for the
response to turning off the previous forcing function {s
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Figure 2 - The Response of the Damped Oscillator
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é(o')t'° m-2n-1  -£p A(‘:‘j'2r_=-t>p
M A T bEEl TIH? ¥
w(0~ e ® ro m
+(1 + bD ) M W(t) - kl Tia) +(1_<° + l-ch yu(t) (30)
FoHe®
=P r'l-a) + G(t)

The fractional derivatives in this equation of motion are
evaluated for t = 0 or equivalently t = t . G(t) are the pseudo

forces needed to produce the residual motion associated with the
previous loading history, already accounted for in the modified
basis equations. The singular forcing function is the result of
the a order derivative of the step function turning of F(t). The
remaining singular behavior is the result of repeatedly applying
eqn 22 to separate out the singular behavior of the fractional
derivatives of acceleration.

The corresponding equation of motion for the response to the
new loads is

sohHe e m-2n-1 _-£p % 2n-p

t
M Tyt L ) T

(31)
w(O )t

+ (1 + bD )M w(t) + kl T

l\a ~
+ (&, + Kk DHFCE)

bF(0%)e™® .
- Taay— (1 + D)

where the singular forcing function reéults from again using eqn
22 to express the effects of the step function turning on F(t).

The remaining singular behavior is also the result of using eqn 22
to separate out the singular behavior of the fractional
derivatives of acceleration. Again the tilde and double tilde
notation identify motion due to previous forces, ?(t), and present

forces, ?(t), respectfully, as in eqns 16 and 17.

Equating the coefficients of the strongest singularities
(order a) in eqn 30 and then in eqn 31 yields two equations needed
to establish the initial conditions acceleration.
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~ BY §(0) - ky#(07) = — bE(O) (32)
b F(0") + k; §(0%) - bEcoh) (33)

Adding these two equations produces the relationship needed to
establish changes in the initial conditions due to stopping and
starting of the load histories.

g[ 50" - §<o')] + b'1§1[ So*) - §<0‘>] - Foh - Fo)  (34)

Since this relationship is based on step loading, which is
incapable of instantaneously changing the displacement or velocity
time history between time 0 and 0 , one can conclude that

w(0%) = w(0") (35)
W) = %(0") (36)

and eqn 36 can now be re-expressed as

woh - 507 - 17 Bo" - O8) (37)

Thus we see that the change in the initial accelerations is
proportional to any instantaneous changes (steps) in the
magnitudes of the applied loads at t = 0. It is reassuring to
note that eqn 37 is strongly reminiscent of Newton's second Law.
To determine the initial accelerations at time 0 one needs to
determine the accelerations at time O and then add to them the
additional component of acceleration from the change in load
histories. Should there be a continuous transition from one load
history to the other, then

50" = 50" | | (38)

and the accelerations at time 0 are the accelerations used in the
initial value problem. Satisfying the initial conditions on
acceleration in this manner effectively removes the a order
singular terms on both sides of eqns 30 and 31.

The remaining singular terms in these equations do not have
corresponding terms on the respective force sides of the
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equations. To preserve the equality one must conclude that the
coefficients of these singular terms are zero. Note that setting
these coefficients to zero in effect generates the remaining
initial conditions needed in eqn 29. From eqn 30

A(m:2n-l)ﬁ
D [{w(o')] -0 t=1,2,3,.-+,m-2n-1 (39)

and from eqn 31

A(m:2n-t)
D [?(0*)] -0 t=1,2,3,-,m2n-1. (40)

Proof 1is given in reference'® > Hence, one can see that the

initial values of the fractional derivatives of displacement
greater than second order and less than order fm must be zero to
preserve the equation of motion. Adding the two equations of
motion and recalling that

w(t) + w(t) = w(t) tz0 (41)
yields
M(L + BD™)U(E) + (e +k DMw(t) = (14bD%) E(e) + G(e) (42)

which is identical to eqn 8 except for one very important detail.
The fractional derivative operator has changed from the original
definition, eqn 1, to the modified definition eqn 22. Recall that
the modified basis functions use this modified definition as well.

In fact, the entire initial value problem (constituted by
eqns 42, 10, 23, and 29) and its solutions (eqn 28) can be cast in
terms of the modified definition of fractional differentiation.
The composition property for the modified operator

D207 [w(t)]] = D* 7 [w(e) ], (43)

holds when the initial values of the fractional derivatives are
zexo as stipulated in the initial value problem. One can now
straightforwardly demonstr;ﬁe that eqn 42 leads to a coifespondigg
form of eqn 10 where the operator is replaced by D”. The
operators in eqn 29 can now be replaced by as well. Noting
that the particular solution in eqn 28 is independent of the
initial value and may be viewed as an excitation from a quiescent
state, one can show that the solution of the modal state equation
takes the form
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) B
7,(8) = y,(0) Eﬂ[ (ay®) ]

t . (44)
+ J(-a?)m'l D-l'a[Eﬁ[-(ajt)p]]gj(t-r)dr

0

i

Proof is given in reference'®® and note that the kernel is now

non-singular. One can now conclude that eqn 44 is the solution of
a well-posed problem. The uniqueness of the solution follows
: immediately from Laplace transforms. Multiplying the initial
o value and the modal forcing function, gj(t), by (l+e¢) and taking ¢

4 small demonstrates continuous dependence on the data, so long as
;| the convolution integral is bounded.

To test the robustness of the modal state equations, one
needs to ascertain its ability to generate the structural response
to impulsive loading. The method entails solving the initial
value problem for a step response (using initial accelerations,
eqn 37) from a quiescent state and noting that the impulse
response 1is the first derivative of the step response. The
structural response for a unit impulse load at the z™ degree of
freedom of the structure is

m-N A
- _ B 2n+2q-1.-1-a ) Bll.T
O =P L (e 7[5y - oy o7

2n+q-1,T

+b z $14C-2p) CHER (45)

where z 1s a N order column vector of zeroes except the zth
element, which is one. Here ¢ are the structure's mode shapes

which constitute the lowest N terms of the j eigenvector of the
expanded equations of motion, eqn 10. Again the solution is seen
to be continuous and is expressed in terms of the modified
operator and the Mittag- Legffler function. Derivation of this
expression is given elsewhere

At this point one might be tempted to assert that the
original definition of fractional order differentiation, eqn 1, is
somehow inappropriate for the initial value problem., Not true.
Recall that the initial value problem has insufficient numbers of
physically motivated initial values to determine wuniquely the
overall homogeneous solution as a superposition of solutions to
the modified basis equations. The additional auxiliary initial
conditions, developed by suppressing singular behavior at time
zero, provided precisely the number of needed initial conditions
for a unique solution. Recall that the original definition,
eqn 1, produced this singular behavior without which the 1initial
value problem would flounder for lack of initial information®
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Moreover, having derived the structural equations of motion
in terms the modified fractional derivative operator, eqn 42, and
having established the robustness of the formulation through the
existence of 1its 1impulse response, one can now proceed to
construct the structure’s fractional order state equations.
Casting equation 42 in terms of two real, square and symmetric
matrices, as shown in eqn 10, produces the fractional order state

equations.
[ 2 | (@Fyuco))
N : H X
8 | g
P12 @) 2u(e)
2 P u(e)
L E“ o .232221- . !(t) / (46)
21 [P twcey 9
+ -H 0 4(9ﬂ)2!(t) - 4 ] a
2| [P = 2
[0 --- 00t e ] L wt) ) | £ (£)+G(¢)),

with straightforward matrix manipulation these state equations
take the form

DPx(t) = & x(t) + B u(e) + B &(t)

Note that applying the orthogonal transformation given in eqn 12
to the state equations yields the modal state equations, eqn 23,
In effect one has come full circle and derived equations of motion
capable of describing the hereditary viscoelastic damping effects
as well as characterize the system in terms of its initial states.

It is reassuring that the fractional order state equations
predict a response that 1is, strictly speaking, a function of all
its previous states, as it should be for a system that exhibits
hereditary behavior. The pseudo forces @(t) describe the effects

of previous internal viscoelastic deformation, and the initial
states (taken at some time to after the onset of motion) describe

the effects of immediately previous motion. To predict accurate
short term system response, records of previous motion must be

kept to construct the pseudo forces. This is necessary for
heavily damped structures. In lightly damped structures the
hereditary effects are much smaller and the pseudo forces may be
ignored.

With or without the pseudo forces included the fractional
order state equations one can predict open or closed loop system
response, The closed loop feedback relationship between the
state vector and the applied forces is
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HORRES

F(t) = -(bDHE x_ = - G x (47

Here X is the reduced state vector containing the displacements
w(t) and all derivatives (including fractional order) of w(t) up g

to, but not including, the second derivative. When the stress
operator takes the a order derivative of X this generates the

higher order derivatives of w(t) in the full state vector. Here
the -é is the matrix of actual gain coefficients, -G is the matrix
of effective gain coefficients and x is the full state vector

appearing in eqn 46.

Note that when b is zero in the stress operator the reduced
state vector is the full state vector and no distinction is
necessary between actual gains and effective gains. Substituting
eqn 47 into eqn 46 produces the equations for the closed loop
response. :

Dﬁ’s-<é-22>¥ (48)

This equation includes the feedback of fractional order
derivatives of the structure’s response. Recall that the
fractional derivatives actually being fed back are those of order
less than two, namely those in the reduced state vector X . The

fact that the full state vector appears in eqn 48 is a consequence
of the mathematics in eqn 47. However, eqn 48 is in fact the
closed loop state equations. There is no a priori reason to
exclude the fractiogfl derivatives from feedback.

In fact Oldham” has developed RLC circuits that generate the
fractional order derivatives and integrals of input signals over
limited frequency ranges. It is possible to take signals
proportional to structural deflections and accelerations and
produce signals proportional to their fractional derivatives and
feed them back.

The Fractional Order Matrix Exponential Function

Although the modal equations are an effective tool in
deriving the fractional order state equations, solution formats
for these state equations are not limited to modal analysis. When
modal analysis is unwarranted, the fractional order analogue of
the matrix exponential function can serve as an alternate
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solution format.

The development begins with the open loop state equations
without the pseudo force.

DPx - A x (49)

One can use the following approach to determine the closed loop
response by substituting A - BG, into eqn 48 for A here and

replacing the orthogonal transformation that follows with a
similarity transformation for the asymmetric matrix A-BG. For

simplicity of notation the open loop case is considered.
One assumes a time series solution of the form.

- B 2B, ... B, ...
x(t) X, + X t" + X, t" o+ + gp "+ (50)

Substituting this solution into eqn 49, evaluating the fractional
derivatives term by term using the modified operator defined in
eqn 22 and equating terms of 1like power in time yields the
following solution.

A B a? 2P AF P

= t = -
x(t) = [ I+ T(178) + T (1+25) +o00 4+ NGETT) + . ] x, (51)
oY
x(e) = Ega ¢f) x (52)

Here Eﬂ(étﬁ) is the fractional order matrix exponential function.

It may be viewed as the generalized matrix form of the scalar
Mittag-Leffler function given in eqn 24. Similar to its scalar
counterpart, the fractional order matrix exponential function has
the property

oA Byl - B
D [Eﬂ (at )] A Ega ), (53)

One can relate this form of the solution back to the modal
solutions, eqn 22, by using the orthogonal transformation given in
eqn 12

x=4y ‘ (54)
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to decouple the homogeneous form of eqn 46. The result is the
homogeneous modal state equations.

Py--ay (33)

where -2'6 is a diagonal matrix containing the system’s

eigenvalues. Solutions of this equation take the form

y,(t) - Eﬂ(-(at)ﬂ)yj(o) (56)

which are identical to those in eqn 26. However, using the
orthogonal transformation to construct the structure’s response
from eqn 56 produces

x(e) = g Eg(- 2Py ¢ x, (57)

This result is equivalent to that shown in eqn 52.

Example Problems

To demonstrate the solution techniques developed for the
fractional order state equations, one will first apply them to two
simple cases. The first case is a homogeneous f£first order
differential equation with constant coefficients. The second
example is a second order differential equation for a single
degree of freedom viscoelastically damped oscillator.

If one is to view the fractional order state formulation as a
generalization of the 1initial value problem, its solution
techniques should apply to ordinary differential equations with
constant coefficients. The first order differential equation is

A

Dlw + a°w =0 w(O)-w0

which using the composition property can also be expressed as

A

p%

Posed in fractional order state form this equation becomes

A ~1/2 f1/2

12| 01 D w -10 D w 0
s {7 Do {7 - {6)
The associated eigenvalue problem is

(el {e}- [oud{e}-{0)

which has eigenvalues

2 2
w +a w=20
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A== 1a

and associated eigenvectors of the form

(+}-()

The solution takes the form

{ Sllzw(t)} - [ ia -ia ] { y1(°)Euz('(iat1/2))}
w(t) A NS PO

To determine the 1initial wvalues yl(O) and yz(O), one evaluates
this expression at t = 0

(- 41 ()
v, 1 1 Yz(o)
and solves for yl(O) and yz(O)

{ro} - [1 2]{0) - ()
yz(o) 2ia |-1 1a v, w%/Z

Substituting these values into the solution for w(t) given above
yields

w

w(t) = 52 Em(-(iat”2

w
0 172
)) + 3 B (- (-1at™?))

Using the series representation of the Mittag-Leffler function
given in eqn 25 and summing the two series, the terms having
fractional order powers of time add out and one is left with

(-a’t)?

“0 =¥ 2 T

0
or

2
w(t) = woe-' ¢

as expected.

In the second example the fractional order time behavior does
not add out, but instead describes the decaying motion of a damped
oscillator.

D2w(t) + 2D %w(t) + w(t) = 0
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For simplicity the coefficient of the 1/2 order derivative in the
stress operator is taken to be zero. The remaining half order
derivative describes the low frequency viscoelastic damping and
the mass and stiffness coefficients are taken be to one. Again
using the composition property the equation may be posed as

p*2%w(t) + 2D %w(t) + w(t) = 0

In expanded form the equations become

“3s2 *372
0001 '32 2"’(") 0 0-10 '32 2"’“) 0
sz fooro| oy | [o-100 [y | _Jo
01001 ey [ |2 989 | awer [ 7] 8

w(t) w(t)

The eigenvalues and eigenvectors for this system appear in
Table 1. Applying the initial conditions

Al--0.5437 Ai--l.O A3-0.7718+1.11511 A‘-0.7718-1.11511

% A3 PN 23
1 2 3 &
2 2 2 2
¢1- Az ¢z- xz ¢3- A3 ¢‘- Aa
A A A
1 2 3 &
1

Table 1 - The Eigenvalues and Eigenvectors of the Fractional Order
State Equation for the Damped Oscillator.

%(0) = 2.0 DY%w(0) =0 Dp¥%(0) =0 D¥%(0) =0
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and solving for the coefficients of the Mittag-Leffler functions
as before yields the response of the heavily damped oscillator. A
plot of the response is given in figure 2.

Conclusions

The fractional derivative model of viscoelastic damping
appears to be a useful tool in constructing state equations that
describe the motion of damped structures. The essential value of
this viscoelastic model lies in its use of generalized derivative
operators. When the model 1is incorporated into equations of
motion, the accelerations describing inertial effects can be
expressed in terms of the same operator that describes
viscoelastic effects. Furthermore when the external loads are
related to structural responses through constant gain feedback,
the feedback forces can be described in terms of this operator as
well. Given that these fractional order state equations contain
fractional order time derivatives of structural motion in the
state vector, this formulation suggests the feedback of rational
order time derivatives of structural response.

These fractional order state equations appear to constitute a
generalization of the classical initial value problem. Posing a
system of integro-differential equations as higher order matrix
equations with lower, fractional order differential operators
produces additional homogeneous solutions with accompanying
requirements for additional initial conditions. These additional
or auxiliary initial conditions are developed by suppressing
singular behavior in the equations of motion. Eliminating the
singular behavior in the equations of motion also leads to the use
of a modified fractional order derivative that accommodates
initial conditions (initial states) in the state equations. Thus
the state equations are seen to be related to the original
structural equations of motion, but not identical as they would be
in a classical formulation.

Moreover, this formulation apppears to be a strong candidate
for the general description of linear systems exhibiting strong

hereditary behavior with weak frequency dependence. The
advantages for the controls engineer are numerous. First, one
avoids the use of time dependent coefficients in the state
equations. Also the fractional derivative models are compact,

making least squares fits to data tractable and manipulation of
the model practical. The resulting state equations have analytic
solutions and the solution techniques are similar to classical
approaches. Finally, the 1inclusion of the fractional order
derivatives in the state vector provides additional forms of
feedback to improve system performance. Given that a fractional
derivative model accurately captures the hereditary effects, the
fractional order state equations appear to be a useful tool in the
design and analysis of a feedback control system.
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