AFFDL-TR-£8-~150

SESSION 6b.

NONLINEAR ANALYSIS

Sesgion Chairman

R, W. Leonard

NASA Langley Research Center
Hampton, Virginia

1205






AFFDL-TR-68-150

AN APPROXIMATE NONLINEAR ANALYSIS OF THIN PLATES
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An approximate finite element formulation for solution of thin
plate problems including geometric and material nonlinearities is
presented. Material properties are assumed to be represented by an
effective stress-effective strain generalization of a uniaxial tension
test, The method approximates the stiffness of the element by assuming
material response throughout the element is governed by the variation
of effective strains through the thickness at the centroid. Tangent
and secant stiffness may then be determined from the linear elastic
membrane and bending stiffness by simple one-dimensional numerical
integration. Illustrative results are given for cylindrical bending of
simply supported plate strips.
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SECTION I

INTRODUCTION

Many recent developments have taken place in the field of finite element analysis of
nonlinear problems. Reference to much of this work is contained in a paper by Mallett and
Marcal (Reference 1). The present paper extends an approach used by the authors, in solving
large deflection plate problems (Reference 2) and investigating post-buckling behavior of
plates (Reference 3), to include an approximate technique for incorporating nonlinear material

regponse.

The general solution technique and derivation of linear elastic element stiffnesses has
been described in detail in Reference 2. It includes the effect of changes in geometry on the
equilibrium equations and the effect of nonlinear strain-displacement terms arising from
element rotations., The approach is incremental and iterative and is based on achieving an
equilibrium balance between element resisting forces and applied loads. Since the procedure

i iterative the stiffness matrix need not be exact.

The effect of initial stress on the incremental structure stiffness has been discussed in
detail in Reference 3. This gives rise to the so-called ‘‘geometric stiffness’’ matrix which
results in a better approximation of the incremental stiffness and therefore reduces the

number of iterations required to achieve an equilibrium balance.
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SECTION II

PRELIMINARY DEVELOPMENT

The analysis is formulated for a triangular element utilizing the shape functions asso-
ciated with the constant strain triangle (Reference 4) for membrane displacements and those
associated with the Hsieh-Clough-Tocher triangle (Reference 5) for bending displacements,

The global coordinate system, global displacements and global displacement increments
are designated by the upper case letters X U a.ndU (for X,Y,2;U,V,W; and, U, V, W),
respectively. Local coordinate systems, local dlsplacements, and increments in local dig~
placements are designated by the lower case letters X u andu (or x, y, z; G, v, W; and,
U, v, W), respectively. This nomenclature is illustrated in Flgure 1. Rectangular cartesian
coordinates are used throughout,

The incremental equilibrium equation, expressing the equilibrium requirement for the
structure in the ‘“‘incremented®’ configuration ' +AI, may be derived by taking the differ-
ence between the virtual displacement equations, for configuration I + AI” and for the
‘initial’ equilibrium configuration [ (Figure 1), The resulting equation, derived in Reference 3,
is

S~ j; Sij 8Cu; w1 dg + 3 [ As; S av
o o
: ¥ f AT, By, ds,

o)

{1

where, Sij and AS are the Kirchhoff stress tensor in position I" and the increments in the
Kirchhoff stress tensor due to AT , respectively; AE i is the increment in Green’s strain
tensor due to A" and may be expressed by ;

+u u +u, . U, . (2)

i i i k, i ki Yk,j ki Yk,j

S indicates a virtual variation of the displacement increments; AT are increments in the
surface tractions corresponding to AT ; and, dV and dS are elements of volume and area
in the ‘original’ configuration. The summation 1ndxcates the integrals are evaluated over
separate subregions of the structure and then combined for the entire structure,
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'ORIGINAL’
CONFIGURATION%
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*INITIAL' CONFIGURATION, T

'INCREMENTED'
CONFIGUATION, T' + AT

3!-
3
N
Y
GLOBAL COORDINATES X; — {X,Y,Z}
‘INITIAL’ GLOBAL DISPLACEMENTS 0; — {0,V,W}
GLOBAL DISPLACEMENT INCREMENTS Ui —> {U,V,W}
LOCAL COORDINATES x; — {x,v,2}
'INITIALY LOCAL DISPLACEMENTS u; —> {ov,w

LOCAL DISPLACEMENT INCREMENTS uj = {u,v,w}

Figure 1, Coordinate and Displacement Nomenclature
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In utilizing equation 1 to arrive at a stiffness formulation, the integrals are evaluated
over each subregion (element), Displacements* are referred to the local coordinate system,
which is established by the element position in configuration [, Using the Kirchhoff ag~
sumptions, element displacements may be expressed in terms of nodal displacements by
the relationship**,

() [ T T )
e ] [
T F T
A R R (R A IR e
D A N NG
where, ¥, ¥ and W are displacements in the coordinate directions: {u}, {v} and {w} are the
nodal displacement vectors associated with the middie surface of the plate, illustrated

in Figure 2; and {¢u}’ {sbv} and {QSW} are the vectors of interpolating functions associated
with the respective nodal displacement vectors {u}, {v} and { w}.

.

Substitution of Equation 3 into Equation 1 allows Equation 1 to be expressed in matrix
form, in terms of a finite number of nodal displacements, when the element nodal displace-
ments are transformed to the global system and identified with the ‘structure’ nodal dig~
Placements. This yields an equation of the form

(o} [[ke]+[r]] for}+ {50} g

In Equation 4, [KG] is the geometric stiffness matrix. It hag been evaluated in Reference 3.
For linear elastic material response, KT » is the normal assembled structural stiffness
matrix. The subscript, T, is used here to indicate it is a tangent stiffness when nonlinear
material response is considered. The vectors {A r} and{/_\. R} represent the increments in
global nodal displacement and loading vectors associated with the assembled structure.
Recognizing that the virtual displacements are arbitrary, the incremental equilibrium

[xe] {or b+ {ar)

where [K.[] will be referred to as the incremental stiffness matrix and resuilts after com-~
bining [KG] and [KT] .

Equation 4 may be written as

*The term ‘displacements’ should be interpreted as ‘displacement increments’ in the fol-
lowing discussion, The word ‘increment’ is omitted for the sake of brevity,

**A tilde (~) is used hereafter to differentiate field variables from nodal values, except for
the case of interpolation functions,
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SECTION III

THE ELEMENT TANGENT STIFFNESS

The principal purpose of this paper is to develop an approximate method of evaluating

the element stiffnesses contributing to KT of Equation 4. This requires the evaluation of

the second term of Equation 1 for each element, For a plate element subject to Kirchhoff's

assumptions, the variables in this term may be specialized and only the nonzero strain

components need be retained. Since itis assumed that for any element the engineering strains,

and displacement gradients with respect to the element coordinates,

remain ‘small’, the

Product terms in Equation 2 may be discarded and the second term of Equation 1 may be

written in terms of increments of engineering strains and stresses,

L {7) {3} ey

where
[ . [ v
Ex —a—x—
hoadl NS ~ - av
{¢]= R o
o 0T o
ny | dy ox
and

¢

—~—
Q¢
——
]
R Q q
| g |
o
| )
——
m?
L

(6}

{(7)

{8)

In Equation 8, the matrix [8] represents a two dimensional constitutive relationship which

specifies increments in stress in terms of increments in strain. In general this matrix will

vary throughout the volume of the element,

*An asterisk (*) will bereafter be used to designate a virtual variation of a displacement

quantity.
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Substitution of the displacement expression (Equation 3) into ‘Equation 7 yields

{, ), :
} : &1,

.
i {¢u }.y {‘f’v}: 'zz{4’w }:rxv L

It is convenient to write Equation 9 in terms of increments in middle surface strains and
curvatures, {'E’o} and {}{} , respectively, which can be done by the indicated partitioning
of the equation. This yields*
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-28p ] {-:—; - (10)

(7} - {2}-: 00

where terms in Equations 10 and 11 are defined by identification with corresponding terms
in the preceding equations. The subscripts P and B in Equation 10 indicate quantities asso=
ciated with in-plane behavior and bending behavior respectively,

Upon utilizing Equations 11 and 8, Expression 6 becomes
- T
[ - ) ) fRk-e () o
o

and evaluating {2’0} and {J{} in terms of nodal displacement increments, (Equation 10),
yields

i T Br o o8, | -3l ET B r

_E; f —_ E;__P_A______E’-_r___ ..B_. dvo _rE._ “3)
P~ Rl Py z'\- P Py

ra v, L-28g € B | zBgC Bg B

¥Where submatrices or subvectors are obviously matrices or vectors, the brackets or
braces have been omitted in the following.
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The quantity within the integral represents the element tangent stiffness, designated by
[KET]’ and can be written symbolically as

b
rer] - [-mirm]
eT Ksp , Ksg 14)

where submatrices are defined by identification with the corresponding terms in Expression 13.

For linear elastic material response the in-plane and bending effects uncouple, since
the coupling terms are linearly dependent on z, and yield the stiffness matrices associated
with linear elastic in-plane and bending behavior, These matrices are designated as [KE] s
[ K ] and [KB] and are related by the equation

p [Ke - [i”_ _i_.;-_J 5

[}
A | B
The matrices [K p] and [KB] have been evaluated many times (e.g. References 4 and 5),

In general, the evaluation of the element tangent stiffness requires a volume integration
as indicated in Expression 13, If the incremental constitutive relationship is a function of
the strain history, as is the case in elastic-plastic analysis, the numerical computations
involved are prohibitive for any extensive analysis, In addition. many displacement models
(including the model for this analysis) have strain discontinuities. It is therefore questionable
whether the effort involved in maintaining complete consistency between element strains
and the constitutive relationship is justified unless applied to a higher order element, The
tangent stiffness has therefore been approximated in this analysis by relating material
properties to strains at the centroid of the element. This results in considerable simplication
but indicates a fine subdivision of the structure is required to adequately simulate behavior,
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SECTION 1V

A NONLINEAR CONSTITUTIVE HYPOTHESIS

There are a large number of constitutive relationships which may be utilized in evaluating
the tangent stiffness matrix of Equations 13 and 14, Khojasteh~Bakht (Reference 6) and Marcal
and Pilgrim (Reference 7) have derived constitutive equations for elastic~plastic response in

a form which may be conveniently used in evaluation of tangent stifinesses.

In view of the approximations involved, however, it was congidered reasonable to adopt a
simpler set of nonlinear elastic relationships which canbe assumed to approximately simulate

elastic-plastic behavior. This in no way restricts the general approach to the problem.

Since initiation of yielding of metals has been shown to be essentially independent of
dilatation, the yield surface at which plastic response is initiated is generally related to the
strain invariant,

2

(e|~ez)2+(ez-es) 2

m

. -i-(es—el)

{e

i

2 z 2 ) 2 2 2
X -ey) +(ey - €, +{e,—€,) +§(7xy +Yyz +Yrx ! 159

For an elastic-plastic hardening material it may be hypothesized, in a ‘deformation theory?,
that an effective stress, defined as
{
| -2 /2

— 2 2 2 o o
o = ——[(a‘x-o;,)*-(c' -az)+(crz—crx)+6(r“ +7 +T )] {6

2 y yz z%

is related to an effective plastic strain, defined as

P J2
= . ¥ P
€ = 3 4 e (17)

The definitions of the effective quantities are obtained by equating the second stress and
plastic strain invariants to the values of these quantities in a simple tension test. The re-
lationship between the generalized expressions for & and € is then assumed to be that ob~

served in a simple tension test,

For this analysis it was hypothesized that a nonlinear elastic relationship existed such

that the elastic modulus could be obtained from 2z uniaxial tension test which relates effective
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stress to effective total strain. Proceeding in a manner identical to that used above we derive

an expression for effective stress which is identical to Equation 16 while the effective strain
becomes

_ |
DY~ T e

(18)

Assuming uniaxial tension test results as illustrated in Figure 3, the general two di-
mensional constitutive relationship may then be considered to be

{3}=—i—T[c] {<} | (t9)

where {8’-} and {E‘} are the vectors of stress and strain increments defined in Equations 7
and 8, E is the elastic modulus, ET is the tangent modulus from the uniaxial tension test, and
[CJ is the linear elastic two dimensional plane stress constitutive relationship, which is

| v '
[C]= 1—i2 v ! ' (20)
. | -~y
2

Equation 19 defines the matrix [8] of Equation 8 for the present hypothesis, Specializing
Equations 16 and 17 for a plane stress condition yields the specific forms of & and € which
apply to this problem.

In addition to the tangent stiffness constitutive relationship, it is also possible to define
a secant stiffness matrix, which relates final stresses to total strains, as

['65] : i"’ [c} @)

where ES is the secant modulus (Figure 3). This constitutive matrix was utilized in evaluating
the element equilibrating forces which are necessary in performing the equilibrium check

as discussed in Reference 2.
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Figure 3. Generalized Stress-Strain Curve
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SECTION Vv

EVALUATION OF TANGENT AND SECANT STIFFNESSES

By virtue of the assumption that the constitutive matrix for the entire element is related
to strains at the centroid of the element, the matrix [ 5] is a function of the z spatial coor-
dinate only. This permits a simple evaluation of the element tangent and secant stiffnesses,
Defining a new coordinate 7 in the z direction by the relationship

mo=z-b (22)
where b is a constant, Expression 12 becomes

[ i (o) -+ (i) o
o M o @TE - b
o7 {48

]

Since [6] is a function of z or 7 only, and may be expressed in the form of Equation 19,
where ET is the variable, the constant b may be selected as

S ozEr (e

j; Er(z) dz

where h is the thickness of the plate, Cross multiplying Equation 24 and grouping the two

b = (24)

terms indicates that this definition of b produces the result

fh mEr(2z)dz =0 {25)

In addition, the vector { ?o} - b{)‘f} represents the strains on the surface z = b and can
therefore be represented as {?t':} . By virtue of Equation 25 the last two terms in Ex-
pression 23 drop out and Expression 23 reduces to

LETEIGR o <[ T E] o e
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Using Equations 10 and 11 to express {EL} and {)TE} in terms of nodal displacements,*

Expression 26 becomes

»* T ~T ~
er Bp T BP_IL . " Pb
S0 I U Rt Rptatcidiuie ILACHE B~ 27)
8 Vo M Bg C By

where {'Pb} is the vector of in-plane nodal displacements on the plane z = b, The in-plane
and bending stiffnesses uncouple at the reference plane z = b by virtue of the definition of b
and such a plane may be referred to as the ‘‘plane of stiffness’’. On this surface, increments
of in-plane displacements produce no stress couples and increments of bending displacements
produce no stress resultants for the particular variation of the constitutive modulus.

The stiffness submatrices appearing in Expression 27 may be evaluated by integrating
through the thickness of the plate and are directly related to the linear elastic matrices of
Equation 15 by the equations

[kew 1= f, B T8 0y, - J AL P 0
0
and
T 12 an {nldn
[KBb ]5 fv 7n? BE C By dv, * fh =3 T [ Kg ] (29)

a

In order to assemble these stiffness matrices it is now necessary to relate the nodal
vectors of Expression 27 to the nodal vectors on the middle surface as they appear in
Expression 13, This can be accomplished by expressing the vector {rpb} as

= {r, } -0 o, ) = {r} - (30)
{'Pb}‘ {P } —{Bx} {P} {6}

where {9,} and {9,} are the vectors of corresponding nodal rotations appearing in
{'B} = {w defined in Figure 2.

*It is assumed here that interpolation functions apply on the plane z = b and not on the plane
Z=0.
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Substitution of Equation 30 into Expression 27 yields

* L]
r
P akp | -b K r
s P28 _F_ (31
* 4
- | : r
A bKBP' B Kg+b Kog B

where @ is the coefficient of Kp in Equation 28, 8 is the coefficient of K in Equation 29, b
is defined by Equation 24 and KP 5’ 9 and K99 have elements identical to those of aK but
with rows and columns of zeros inserted, and the appropriate sign changes from Equatlon 30,
so that elements of the vector {9} are identified with the corresponding elements of {B}

The submatrices of Expression 31 may now be identified with the submatrices of
Equation 14. The element tangent matrix has now been compietely determined, It can be
evaluated in terms of the linear elastic stiffness matrices of Equation 15 once @, 5 and b
have been determined, These can be evaluated by simple numerical integration through the
thickness of the plate,

The element secant stiffness may be evaluated in the same way when ET(‘r)) is replaced
by Eq ().
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SECTION VI

SOLUTION PROCEDURE AND EXAMPLES

The approximate formulation developed above was applied to determine the interaction
of membrane and bending resistance of some simply supported plate strips. The assumed
material properties, which exhibit a ‘“‘softening’’ at an effective strain of 0,00135, are shown

in the effective stress-effective strain curve of Figure 4.

A schematic illustration of the solution procedure is shown in Figure 5. To a given con-
figuration I, described by global nodal displacements '1- and maintaining equilibrium with
the loads R [+ @ load increment AR = 1-. + AT - Rpis applied, Geometric and tangent
element stiffnesses are evaluated, transformed to global orientation and assembled to form
the incremental stiffness of the structure. The increments in nodal displacements are

approximated by solving Equation 5, which has the form

[Kl; ] {ar'} - {ar} (32)
for{Ar'}

Incrementing the nodal displacements produces the configuration r2. For this config-
uration, element deformations, and from these, element secant stiffnesses are evaluated to
determine the element equilibrating forces. Transforming to global orientation, assembling
and subtracting the structure equilibrating forces from the applied forces, determines the
unbalanced forces R2 actingon the current configuration. A new set of displacement increments
is now determined by solving for {A r 2} in the equation

] ) - )

The process is repeated until the equilibrium configuration T + ATis established, The next
load increment is then applied and the solution progresses in the same way.

Figure 6 compares a moment-curvature curve computed in this way with a closed form
evaluation.

Figures 7 and 8 give results for an infinite strip of simply supported plate, deformed
into a cylindrical configuration by applying a line load along the center line, The plate has a
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Figure 4, Assumed Material Properties

span fo thickness ratio of 28 and the largest center deflection is equal to the plate thickness,
Figure 7 indicates the rapid dominance of membrane behavior., Figure 8 indicates the Progress
of the ‘softened’ zones, the stress distribution and the plate profiles,

Figures 9 and 10 give similar results for a plate, with a span to thickness ratio of 140,
up to a center deflection of five times the plate thickness. At load increment five, softening
had progressed into the bottom of the plate along the line of maximum moment {Figure 10),
At load increment seven the entire Plate had softened except for a small region in the neigh~
borhood of the applied load. At this point the plate was stretching ‘‘like a rubber band’’. Some
difficulty was encountered with convergence in this region as indicated on Figure 9,
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NODAL FORCES

RP+AP

rzr) r2

NODAL DISPLACEMENTS

Figure 5. Solution Procedure
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P IN HUNDREDS OF POUNDS; H IN KIPS, M IN INCH-KIPS
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Figure 7. Force Deflection for Cylindrical Bending of 2k14%0.5" Plate
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SECTION VIL

SUMMARY AND CONCLUSIONS

An approximate finite element formulation has been developed, to include effects of
geometric and material nonlinearities in plate analysis, and applied to some simple plate
examples. Results indicate that the method may form the basis of a reasonable approximate
approach for investigating this type of behavior.
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