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A FLAY TRIANGULAR SHELL
ELEMENT STIFFNESS MATRIX*

Robert J. Melosh**

Philco Western Development Laboratory

This paper presents the derivation of the equations for a flat-plate
triangular element applicable to the analysis of shell-like structures
using the direct stiffness method, The element accounts for membrane
and bending flexibility and material properties ranging from isotropic
to aeolotropic. The derived element satisfies requirements on macro-
scopic equilibrium and intra-element deformation compatibility for
non-planar arrays, but apprrximates the deformation state conditioned
by bending and shear stresses acting over the elements, Computed
results demonstiraie that the derived element is satisfactory for
predicting deflections and slopes when shear rigidities are very high
or low,

1.0 INTRODUC TION

The intrinsic characteristics of the flat triangular geometry make it a desirable choice for
a finite element for structural analysis. It can be used without geometric error as a basic
building block for representing any polygonal shape. It can be used to approximate curved
surfaces, This representation can be exact in the limit (Reference 1) if refinement of mesh
is properly employed, {Reference 2),

In addition, it has special attributes for structural analysis, Since the simple planar dis-
placement function is associated with uniform stresses satisfying microscopic equilibrium,
corresponding potential and complementary energy solutions are avallable for obtaining
solution bounds as shown by DeVeubeke (Reference 3). It can also be shown that the finite
element representation for the structural slice is a finite difference representation, and
hence must yield the exact elasticity solution in the limit, The use of the pyramid type dis-
placement function results in a stiffness matrix which will lead to monotonic golution in
accordance with the convergence criteria of Melosh (Reference 4).

Matrices have been derived for the triangular element representing mid-plane extensions,
bending and twisting, These have failed to satisfy displacement continuity requirements withia
the element because, as indicated by Irons, (Reference 5} this is impossible if the Kirchholf
hypothesis is retained, Moreover, these fail to retain continuity across element boundaries,
except for unfolded structures. If shear deformations are considered, however, a matrix
associated with a continuous displacement function within the element can be obtained, If dis-
placements vary linearly along an edge, folded structure displacement continuity can be
achieved, Such a basis was used by the author in developing a facet matrix in 1960, but was

* This paper presents the results of one phase of research carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under Contract No, NAS 7-100, sponsored by
the National Aeronautics and Space Administration,

** Engineering Mechanics Section Manager
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unpublished because of dissatisfaction with the derivation, Applications have shown that this
matrix produces satisfactory results and recent work has provided the extension to the
aeolotropic material,

This paper contains a formulationof this stiffnes s matrix for a flat triangular shell element,
that is, one capable of stretching and bending. Tt e matrix includes as a sub-set the stiffness
matrix for the triangular slice in plane stress, originally published by Turner, et al {Refer-
ence 6). Applications are given for a thin, elliptical plate in bending and a thick square plate
in pure shear,

2,0 DEVELOPMENT OF THE STIFFNESS MATRIX

2.1 Displacement Function

Consider the thin flat triangular facet shown in Figure 1. For convenience, a rectangular
cartesian coordinate system is chosen with its origin at the centroid of the triangular area
and its X-Y plane coincident with the midplane of the facet. The facet is assumed to be of
uniform thickness. Assume that the displacement function is given by

4 C .L'“’J[H]{"ji+’81i}
o LoenJIn] e

n

where
T ox,y;y = 1,2,3, XL " X RS
[ I PR FIE S PREES'S Ml PR Pa FE.PY
H] = y y y
_ 23 3i 12
Xa1¥31 ~ 23)Yy < <
X32 13 21

and f(z)} is some undefined function of x.

It is noted that Equation 1 describes displacements that vary linearly over the planform, along
any edge, and through the thickness of the facet, This is a “‘pyramid®’ function and hence will
lead to monotonic convergence and an exact solution if network refinement is infinite,
2.2 Stress-3train Relations

The stress-strain relationship is expressed by

o = De {2}
where
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For a material with one plane of symmetry {in this case the midplane of the facet) the O ma-

trix takes the form,

D“
D21 DPae
D - D3 D3z Daz
Dqai Daz Daz Das
0O 0 0 0 D
0 0O O 0 Dg D

Sym.
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In order that a real material be represented, matrix D must be positive semidefinite.

It is customary in the analysis of shells to adopt Love's hypothesis; that is, to assume

thut o,, = O,

In the present context, this assumption implies a change of f(z) only. Since

the form of f(z)is immaterial to the development, only the stress-strain relations must be
modified, Imposing this condition on Equation 2 and eliminating €,, gives

D, - Dauz /Daq Sym.
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b = D3 = Da Da3’Dag Pap™ Pap UayDag Dy3- D4§/D44 14)
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2,3 Stiffness Components

To clarify subsequent discussion, the element structure will be assumed to result in two in-
dependent elastic responses, First, the direct stress response involving stretching and
shearing of the elastic plane will be considered. Then, a model involving shearing only will
be considered. The stiffness matrix will be composed of the sum of the stiffness associated
with these responses,

The first model may be regarded as one in which the x-z and y-z shearing strains are zero
or the muterial develops no z axis shear stress or shear strain energy as a consequeie of
deformation, Thug, the stress«strain relations reduce to

1
2
Txx D, - Dg, ’044 \ Sym. €, x
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or

DBS : DG& : DSB g DGB= Y

Subsgtituting Equations 1 and 2, using the linear strain-deformation relations, the strain

energy reclations, and Castigliano’s theorem, leads to the load-deflection relations

where V,,  and 6, are the generalized loads associated with Vi and ij and
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The second model involves a material or structure for which only x-z and y-z shear strains
or stresses develop strain energy, Since it is desired to limit deflections to linear functions
and since only two independent elastic responses are required, consideration of constant
shears is sufficient, Because the angular change Gji at all the nodes is the same, an infinite
number of moment coefficients can be obtained depending on how the moments are distributed
to the nodes,

Because of the successful use of the shear beam with a direct stress member in predicting
behavior of classical beams (Reference 7) this representation offers a reasonable device
for defining uniquely the equivalent moments inducing uniform shear strain., Assume that a
shear beam lies along each edge of the triangular facet, i.e., one connecting nodes 1 and 2;
one connecting nodes 2 and 3; and one connecting nodes 3 and 1, Then, the partitions of the
stiffness matrix associated with these members are given by
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where Aij = Area resisting shear along side ij
Lij = Length of side ij

To complete the definition of the stiffness matrix, it is necessary to define the Bi' in
terms of the facet geometry and material parameters, Since the coefficients of K._m1 are
independent of moment distribution, the [3j; are chosen so that the K, coefficients match
those using Equation 1 when one angle of the facet is a right angle. This is achieved by taking
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Equations 4, 6, 7 and 8, define the facet stiffness matrix,

3.0 APPLICATIONS

Three applications are presented here to indicate the validity of the stiffness matriz. i'he
irst application involves predictions of deflections of an aluminum plate one-inch wide,
12 inches long, and 0.1=inch thick. The plate is clamped at one end and loaded with unit loads
it various stations along the span.

Figure 2 shows the gridworks examined. Analysis results are included in Table 1. These
results indicate that the gridpoints at the tip deflect together, deviation of the largest angle
n the triangle from 90 degrees has little effect on accuracy and predicted strain-energy is
.ess than the theoretical, They show that the accuracy of predictions improves ag the gridwork
3 refined,

Figure 3 shows the gridwork for a second application. This application consists of an
slliptical glass plate simply supported and loaded with uniform pressure over its surface,
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TABLE 1

BEAM DEFLECTION PREDICTIONS

[ Points Deflections Beam j
With Unit I'nder Theory Percent
Gridwork Normal Loads L.oads Resuits Error
1 3.8 . 1393 . 1395 . 164 15.0
1 4,9 . 4956 . 4964 . 554 10.8 |
1 5,10 1. 2050 1. 2060 1.313 §.3 |
2 3,8 L1217 L1217 . 164 26,2 :
2 4,4 . 002 . 554 8.0 :
2 5,10 1. 2480 1.2480 1.313 5.2 i

Figure 4 shows the elliptical plate predicted deflections and slopes as compared with
theoretical values determined from Galerkin’s results (Reference 8), Results in Figure 4 were
obtained by Clark White* They show excellent correlation between the theoretical and
numerical analysis predictions,

The accuracy of slope predictions is even better than that of displacements. The strain~
cnergy indicated in the numerical analysis is again less than that predicted theoretically.

The third application was considered by Dr. Utku** to determine the error in predicting
shear deformations, It consists of predicting the deflections of a square simply-supported

plate undergoing shear deformation under acentralload, Assuming that Oy, Oy %, 0, = 00,
the equation of shear equilibrium becomes Poisson’s equation, i.e., y

Y 2 u, ¥ —p Gt
where
u, is the displacement normal to the plate
p is the normal pressure
G is the shear modulus

t is the plate thickness

* Clark White, Research Scientist, Manned Spacecraft Simulation, Ames Research Center,
Moffett Field.

** Dr. Senol Utku, Senior Development Engineer, Applied Mechanics Section, Jet Propulsion
Laboratory,
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Then, the solution for the simply-supported plate can be written ag a double cosine series,

4 § % cosmmx/2a cosnwy/2o0
u T e
z L m=1,3,5--n=1,3,5- (m?+ 0%y

where the p integral is replaced by a single unit central load where 2a is the length of a side,

To obtain the corresponding case using the numerical analysis approuach, the midplane
siretching must be restruined, This can be achieved Ly setting D, = D,~ D= Diz= Dy= D,,
= Q0. Since setting these constants to large numbers might incur large fruncation error, the
Vij are set to zero instead. If each element is to be in pure shear, it must also be required
that &, as well, The plate is thea loaded with a single unit central load, The tangentiul
forces impliedin the theoretical analysis to satisfy microscopic equilibrium can be disregarded
in the numerical analysis since th ey do ne work,

Figure 5 shows a comparison of the theoretical and numerical analysis deflections. Excel-
lent correspondence is obtained except directly under the load. Strain energy of the numericsi
analysis is less than theoretical,

Use of this stiffness matrix for analysis of parts of a hemispherical shell is contained in a
report by T, &, Lang of Jet Propulsion Laboratories,

4.0 SUMMARY

A stiffness matrix has been presented for a flat, thin, triangular facet under bending,
shearing, twisting, and stretching, The implied deformation state insures that the matrix will
vield monotonic convergence of strain energy predictions with gridwork refinement and lower
bounds on struin energy. Is successful applicalion to pure bending and pure shearing cases
indicates that it is useful in predicting structural behavior for moderately thick plates,
i.e., those in which shear deformations may be important but the normal stress unimportant,

509



AFFDL~-TR-66-80
REFERENCES

1. Synge, J. L., The Hypercircle in Mathematical Physics, Cambridge University Press,
Cambridge, Mass., pp. 98-117, 209-213, 1957, '

2. Storg, C. L., The Amateur Scientist, Simon and Schuster, New York, pp. 409-410, 1960.

3. Fraeijs DeVeubeke, B., ‘‘Quality Between Displacement and Equilibrium Method With a
View to Obtaining Upper and Lower Bounds to Static Influence Coefficients,”” Paper
presented to Structures and Materials Panel, AGAARD, Paris, August 1962,

4. Melosh, R, J., ‘““Bases for Derivation of Matrices for the Direct Stiffness Method,’’
ATAA Journal, Vol. 1, No, 7, pp. 1631-1637, July 1963,

5. Iroms, B, M., and Draper, K, J., “Inadequacy of Nodal Connections in a Stiffness Solution
for Plate Bending,”” AIAA Journal, Vol. 3, No. 5, p. 61, May 1965.

6. Turner, M. J., Clough, R. W., Martin, H, C., and Topp, L. J., “Stiffness and Deflection
Analysis of Complex Structures,” Journal of Aeronautical Sciences, Vol. 23, No. 9, .
pp. B05-823, September 1956,

7. Melosh, R. J., and Merritt, R. G., “Evaluation of Spar Matrices for Stiffness Analyses,?’
Journal Aerospace Sciences, Vol. 25, No. 9, pp. 538-543, September 1958,

8. Timoshenko, §., Theory of Plates and Shelis, McGraw-Hill Book Co., New York, pp. 292~
293, 1940,

510



AFFDL-TR-66~80

Figure 1, Facet Geometry
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Figure 2, Beam Gridworks
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