

Cleared: May 26th, 1972

Clearing Authority: Air Force Space Command

FINAL REPORT ON CHEMICAL VAPOR DEPOSITION (CVD) BARREL COATING FOR REFRACTORY FASTENERS

Gene F. Wakefield
Carl L. Yaws

*** Export controls have been removed ***

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval to the Manufacturing Technology Division, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio 45433.

FOREWORD

This Final Technical Report covers all work under Contract F33615-68-C-1433 from 1 April 1968 through 1 October 1969. The manuscript was released by the author in December 1969 for publication.

This contract with Texas Instruments, Inc., 13500 North Central Expressway, Dallas, Texas, was initiated under Manufacturing Methods Project 474-8, "Chemical Vapor Deposition (CVD) Barrel Coating for Refractory Fasteners." This work was administered under the technical direction of Lt. J.R. Williamson, Fabrication Branch (MATF), Manufacturing Technology Division, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio.

This program was directed by Dr. Gene Wakefield, Project Manager and conducted by Dr. Carl L. Yaws, Project Engineer. Contributing to the program were Mr. Charles Epps and Mr. Jim Anderson. Texas Instruments report number is 04-69-09.

This program has been accomplished as part of the Air Force Manufacturing Methods Program, the primary objective of which is to develop, on a timely basis, manufacturing processes, techniques and equipment for use in economical production of USAF materials and components.

Your comments are solicited on the potential utilization of the information contained herein as applied to your present and/or future production programs. Suggestions concerning additional manufacturing methods development required on this or other subjects will be appreciated.

This technical report has been reviewed and is approved.

JACK R. MARSH

Millaria

Chief, Fabrication Branch Manufacturing Technology Division

ABSTRACT

Potential manufacturing-production equipment was established via CVD-barrel coating technology in this program for applying CVD coatings to large quantities of small parts (i.e., refractory fasteners for aerospace structures). In Phase I, the practical equipment was designed, constructed, installed and tested in start-up. In these initial runs, trideposition reaction of hydrogen reduction of gas phase silicon, titanium and chromium chlorides was demonstrated as a CVD chemistry base for depositing chromium-titaniumsilicon (Cr-Ti-Si) coating on small parts. In Phase II, optimization, production and evaluation studies were conducted with the designed equipment. Coating improvements including apparent optimum region and key process parameter effects were achieved with statistical runs and analyses (i.e., T- and F-tests at 95% confidence level). Process development was scaled-up to large quantities by uniform coating many small parts: (a) 1/4-in. dia. round rods, 3 per run; (b) 1-in. threaded studs, 6-10 per run; (c) 1 1/2-in. hex head bolts, 10 per run; (d) mixed shapes-bolts, studs, rods and flat panels, 20 per run; (e) refractory fasteners-bolts, studs and nuts, 30 per run; and (f) production demonstration-refractory fastener bolts and nuts, 30-50 per run. More than twenty demonstration runs at the increased capability (i.e., coating 30-50 substrates per run) were conducted with reproducibility to illustrate that the CVDbarrel coating technology is within potential manufacturing production scope. Important coating properties (i.e., oxidation resistance for substrate protection, Cr-Ti-Si concentrations, mechanical strengths, etc.) were evaluated. For 2400°F oxidation environment, more than eighty and twenty hours of protection was achieved for round rod and refractory fastener small parts from production demonstration batches. Uncoated parts experienced severe failure in less than one-half hour. Cursory literature screening revealed favorable state-of-art comparison based on this program and two independent literature sources. In Phase III, fluoride and chloride routes were investigated for tungsten-tungsten silicide (W-WSi2) coating of tantalum. For the fluoride route, tungsten coating of tantalum T222 was demonstrated with uniform coverage of round rod small parts. This abstract is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of the Manufacturing Technology Division, Air Force Materials Laboratory, Wright-Patterson Air Force Base, Ohio 45433.

TABLE OF CONTENTS

Section		Title	Page
I	INT	RODUCTION	1
II	AP	PROACH	5
III		NUFACTURING PROCESSING EQUIPMENT DESIGN, NSTRUCTION AND INSTALLATION	7
IV		OCESS OPTIMIZATION START-UP COATING ALUATION	15
	Α.	PRELIMINARY RUNS	15
		 SiCl₄-Cr and TiCl₄-Cr Reactions SiH₄ Decomposition Reaction TiCl₄-Ti and HCl-Cr Reactions Trideposition Reaction Using Si, Ti and Cr Chloride Feeds 	15 20 25 31
	в.	PARAMETER VARIATION	33
		 Reaction Temperature Deposition Time Si, Ti and Cr Chloride Concentration H₂ Concentration Rotation Speed Flow Rate Coating Evaluation 	33 36 36 40 40 40 42
v		TIMIZATION AND PRODUCTION DEMONSTRATION UDIES	45
	A.	OPTIMIZE PARAMETERS	45
		 Gas Feed Geometry Study First Statistical Series Argon Dilution of Hydrogen Gas Feed Second Statistical Series with Dual Chamber Prereduction 	45 50 53 57
	в.	ANALYSIS	62
		 Regression Analysis Factorial Analysis of Variance 	63 65

TABLE OF CONTENTS (CONTD)

Section	Title	Page
v	C. ADDITIONAL OPTIMIZATION AND PRODUCTION	68
	 Deposit Phases Coating Oxidation Samples Analysis of Test Duplicate Best Coating Produce Fasteners Cyclic Oxidation Optimization Production Demonstration Batches 	70 70 74 77 82 84 91
VI	COATING EVALUATION STUDIES	95
	A. OXIDATION TESTING B. METALLOGRAPHY C. ELECTRON MICROPROBE D. STRAIN EFFECT TEST E. CYCLIC OXIDATION F, MECHANICAL TESTS - EXTERNAL TEST - COMPARE TO STATE-OF-ART	95 103 109 113 115 125
VII	EQUIPMENT MODIFICATION, DESIGN, CONSTRUCTION AND INSTALLATION FOR TUNGSTEN-TUNGSTEN SILICIDE COATING	135
VIII	COATING PREPARATION STUDIES	137
	A. FLUORIDE ROUTE B. CHLORIDE ROUTE	137 144
IX	CONCLUSIONS	147
x	RECOMMENDATIONS	151
XI	DISTRIBUTION LIST	153
	LIST OF ILLUSTRATIONS	
Figure	Description	Page
1	Diagram of Rotating Reaction Chamber Equipment	8
2	Composite of Rotating Reaction Chamber, Track Assembly and Furnace	10
3	Gas Supply Cabinet for Processing Equipment	11
4	Gas Supply Cabinet Process Flow Diagram for Initial Preliminary Runs with SiH ₄ Decomposition Reaction	12

Figure	Description	Page
5	Gas Supply Cabinet Process Flow Diagram for Preliminary Runs and Parameter Variation Experiments	13
6	Preliminary Runs: Process Studies Equipment Diagram	21
7	Preliminary Runs: Weight Loss of Ti Chips for TiCl ₄ -Ti Reaction	29
8	Parameter Variation: Microphotographs Showing Coating Surface	43
9	Parameter Variation: Microphotographs of Cross Section Showing Coating and Substrate	44
10	Optimize Parameters: Gas Feed Geometries for Introducing Gas Feed Reactants in Reaction Chamber	46
11	Optimize Parameters: Reaction Chambers Used for CVD Coating with Trideposition Reaction	47
12	Optimize Parameters: Effect of Reaction Temperature on Coating Rate in First Statistical Series	52
13	Optimize Parameters: Effect of Silicon Chloride Concentration on Coating Rate in First Statistical Series	5 4
14	Optimize Parameters: Effect of Flow Rate on Coating Rate in First Statistical Series	55
15	Optimize Parameters: Effect of Titanium Chloride Concentration on Coating Rate in Second Statistical Series	59
16	Optimize Parameters: Effect of Hydrogen Concentration on Coating Rate in Second Statistical Series	60
17	Optimize Parameters: Effect of Argon Dilution of Hydrogen Gas Feed on Coating Rate in Second Statistical Series	61
18	Deposit Phases: Effect of Substrate Loading on Coating Rate in Deposit Phase Runs	71
19	Duplicate Best Coatings: Mean and Distribution for Coating Deposit and Rate for Representative Duplicate Best Coating Run	81
20	Produce Fasteners: Mean and Distribution for Coating Deposit for Different Shaped Substrates Coated in Representative Produce Fastener Run	83

Figure	Description	Page
21	Cyclic Oxidation: Mean and Distribution of Coating Deposit on Differently Shaped Refractory Fasteners Coated at High Reactor Loading Level	85
22	Cyclic Oxidation: Uniform Coating Coverage of Differently Shaped Refractory Fasteners Permits Attachment of Coated Threads and Nut	87
23	Cyclic Oxidation: Statistical Base Optimization Runs Locate Optimum Region for 2400°F Coating Oxidation Property Improvement	88
24	Cyclic Oxidation: Statistical Base Optimization Runs Locate Optimum Region for 2600°F Coating Oxidation Property Improvement	89
25	Cyclic Oxidation: Use of Statistical Base Optimization Runs Provides Coating Oxidation Property Improvement for Protecting Hex Head Bolt Refractory Fasteners	90
26	Production Demonstration Batches: Coating Deposit Mean and Distribution Illustrating Current Coating Capability for Refractory Fasteners	93
27	Oxidation Testing: Oxidation Test Results for First Statistical Series Samples	96
28	Oxidation Testing: Oxidation Test Results for Second Statistical Series Samples	97
29	Oxidation Testing: Oxidation Test Results at 2500°F for Representative Deposit Phase Run Samples	98
` 30	Oxidation Testing: Oxidation Test Results at 2200°F for Representative Coating Oxidation Sample Runs	100
31	Oxidation Testing: Oxidation Test Results at 2400°F for Representative Coating Oxidation Sample Runs	101
32	Oxidation Testing: Mean and Distribution for 2400°F Oxidation Test Results for Samples Prepared at High Substrate Loading Level in Coating Oxidation Sample Runs	102
33	Metallography: Photographs Showing Representative Surface of Coating Deposit from Gas Feed Geometry Study	104

Figure	Description	Page
34	Metallography: Photographs of Cross Section Showing Coating and Substrate Resulting from Second Statistical Series	105
35	Metallography: Photograph of Mounted Cross Section for Deposit Phase Run Sample Showing Coating Coverage of Threaded Substrate	106
36	Metallography: Structure of Cb 752 Alloy Substrate Before and After Coating	107
37	Metallography: Surface of Cb 752 Alloy Before and After Coating in Coating Oxidation Sample Run	108
38	Electron Microprobe: Analysis of Coating Deposit from Gas Feed Geometry Study	110
3 9	Electron Microprobe: Analysis of Coating Deposit from Second Statistical Series	111
40	Electron Microprobe: Coating Composition of Samples from Coating Oxidation Sample Runs	112
41	Strain Effect Test: Equipment Sketch for Applying Strain to Sample at High and Low Strain Levels	114
42	Strain Effect Test: 2400°F Oxidation Test Results for Samples at No Strain, High Strain Level and Low Strain Level	116
43	Cyclic Oxidation: Mean and Distribution for 2400°F Oxidation Test Results for Samples Prepared in Duplicate Best Coating Runs	117
44	Cyclic Oxidation: Mean and Distribution for 2400°F Oxidation Test Results for Differently Shaped Substrates Coated in Representative Produce Fastener Run	119
45	Cyclic Oxidation: 2400°F Oxidation Test Results for Representative Cyclic Oxidation Runs	120
46. .	Cyclic Oxidation: Additional 2400°F Oxidation Test Results for Representative Cyclic Oxidation Runs	121
47	Cyclic Oxidation: 2600°F Oxidation Test Results for Representative Cyclic Oxidation Runs	122

Figure	Description	Page
48	Cyclic Oxidation: 2400°F Cyclic Oxidation Results for Refractory Fasteners Coated at Current Coating Capability	123
49	Cyclic Oxidation: 2200°F Cyclic Oxidation Results for Refractory Fasteners Coated at Current Coating Capability	124
50	Mechanical Tests: Ultimate Tensile Strength versus Temperature for Production Demonstration Batches	127
51	Mechanical Tests: Shear Strength versus Temperature for Production Demonstration Batches	129
52	Process Flow Diagram for Fluoride Route to Tungsten- Tungsten Silicide Coating	136
53	Coating Preparation Studies: Tungsten Coating Deposit on T222 Substrate for Fluoride Route	143

LIST OF TABLES

Table	Title	Page
I	Preliminary Runs: List of Routes for Introducing Chemical Feeds	16
11	Preliminary Runs: Results for SiCl ₄ -Cr and TiCl ₄ -Cr Reactions	22
Ш	Preliminary Runs: SiH4 Decomposition Reaction	24
IV	Preliminary Runs: SiH ₄ Decomposition Reaction with Rotating Reaction Chamber Equipment	26
v	Preliminary Runs: TiCl ₄ - Ti Reaction	28
VI	Preliminary Runs: HCl - Cr Reaction Conversion of HCl Passed over Solid Cr Chips	30
VII	Preliminary Runs: Results for Trideposition Reaction Using Silicon, Titanium and Chromium Chloride Feeds	32
VIII	Parameter Variation: Results Using Silicon, Titanium and Chromium Chloride Feeds	34
IX	Reaction Temperature Effect on Coating Deposit in 930°C to 1050°C Range	35

LIST OF TABLES (CONTD)

Table	Title	Page
X	Reaction Temperature Effect on Coating Deposit in 980°C to 1150°C Range	36
XI	Deposition Time Effect on Coating Deposit	37
XII	Si, Ti and Cr Chloride Concentration Effect on Coating Deposit	38
хШ	Ti and Cr Chloride Concentration Effect on Coating Deposit	39
XIV	H ₂ Concentration Effect on Coating Deposit	41
xv	Rotation Speed Effect on Coating Deposit	41
XVI	Flow Rate Effect on Coating Deposit	42
XVII	Gas Feed Geometry Effect on Coating Deposit with Quartz Rocking Bottle Reaction Chamber	49
XVIII	Gas Feed Geometry Effect on Coating Deposit with Small Reaction Chamber	49
XIX	Optimize Parameters: First Statistical Series of Experiments	51
XX	Effect of Argon Dilution of Hydrogen Gas Feed on Coating Deposit	56
XXI	Effect of Dual Chamber Prereduction of Titanium Tetrachloride on Coating Deposit	56
XXII	Optimize Parameters: Second Statistical Series of Experiments with Dual Chamber Prereduction of Titanium Tetrachloride	58
XXIII	Analysis: Multiple Regression Analysis of First Statistical Series	63
XXIV	Analysis: Multiple Regression Analysis of Second Statistical Series	64
XXV	Analysis: Factorial Analysis of Variance for First Statistical Series	66
XXVI	Analysis: Factorial Analysis of Variance for Second Statistical Series	67

LIST OF TABLES (CONTD)

Table	Title	Page
xxvII	Coating Oxidation Samples: Plan and Results for Initial Coating Oxidation Sample Runs	73
XXVIII	Coating Oxidation Samples: Loading Level and Coating Deposit Results for Coating Oxidation Sample Runs	74
XXIX	Analysis of Tests: Effect of Process Variables on Oxidation Resistance of Coating Based on 2400°F Oxidation Test Results	75
xxx	Analysis of Tests: Cursory Multiple Regression Analysis Correlations for 2200°F and 2400°F Coating Oxidation Resistance	78
XXXI	Duplicate Best Coating: Process Conditions and Results for Duplicate Best Coating Runs	80
XXXII	Coating Composition from Electron Microprobe Analysis of Samples from Initial Coating Oxidation Sample Runs	113
хххш	Ultimate Tensile Strength of Coated Refractory Fasteners from Production Demonstration Batches	126
VXXIV	Shear Strength of Coated Refractory Fasteners from Production Demonstration Batches	128
xxxv	Relaxation Test Results for Coated Refractory Fasteners from Production Demonstration Batches	130
IVXXX	Reusability Results for Coated Refractory Fasteners from Production Demonstration Batches	131
IIVXXX	Compare To State-of-Art: Cursory State-of-Art Comparison on Cyclic Oxidation and on Mechanical Properties	133
IIIVXXX	Coating Preparation Studies: Initial Runs for Fluoride Route	139
XXXIX	Coating Preparation Studies: Process Conditions and Results for Fluoride Route	140
XL	Coating Preparation Studies: Observations for Fluoride Route	141
XLI	Coating Preparation Studies: Initial Process Conditions	145

APPENDIXES

Appendix	Title
I	OPTIMIZE PARAMETERS: RESULTS FOR GAS FEED GEOMETRY STUDY AND FIRST STATISTICAL SERIES
II	OPTIMIZE PARAMETERS: PROCESS CONDITIONS FOR INITIAL DUAL CHAMBER RUNS AND SECOND STATISTICAL SERIES EXPERIMENTS
III	ANALYSIS: MULTIPLE REGRESSION ANALYSIS TAB RUN-FIRST STATISTICAL SERIES
IV	ANALYSIS: MULTIPLE REGRESSION TAB RUN-SECOND STATISTICAL SERIES
v	ANALYSIS: FACTORIAL ANALYSIS OF VARIANCE TAB RUN- FIRST STATISTICAL SERIES
VI	ANALYSIS: FACTORIAL ANALYSIS OF VARIANCE TAB RUN- SECOND STATISTICAL SERIES
VII	DEPOSIT PHASES: CHEMICAL COMPOSITION OF COLUMBIUM ALLOY THREADED SUBSTRATES
VIII	DEPOSIT PHASES: TABULATED PROCESS CONDITIONS FOR DEPOSIT PHASE RUNS
IX	COATING OXIDATION SAMPLES: PROCESS CONDITIONS AND RESULTS FOR COATING OXIDATION SAMPLE RUNS
х	ANALYSIS OF TESTS: CURSORY MULTIPLE REGRESSION ANALYSIS FOR 2200°F AND 2400°F COATING OXIDATION RESISTANCE CORRELATIONS
XI	ANALYSIS OF TESTS: MULTIPLE REGRESSION TAB RUN-2200°F OXIDATION RESISTANCE CORRELATION FOR COATING BASED ON SAMPLES FROM TWO COATING THICKNESS LEVELS
XII	ANALYSIS OF TESTS: MULTIPLE REGRESSION TAB RUN-2400°F OXIDATION RESISTANCE CORRELATION FOR COATING BASED ON SAMPLES FROM TWO COATING THICKNESS LEVELS
XIII	ANALYSIS OF TESTS: MULTIPLE REGRESSION TAB RUN-2200°F OXIDATION RESISTANCE CORRELATION FOR COATING BASED ON ALL SAMPLES FROM COATING OXIDATION SAMPLE RUNS
XIV	ANALYSIS OF TESTS: MULTIPLE REGRESSION TAB RUN-2400°F OXIDATION RESISTANCE CORRELATION FOR COATING BASED ON ALL SAMPLES FROM COATING OXIDATION SAMPLE RUNS

APPENDIXES (CONTD)

Appendix	Title
xv	ANALYSIS OF TESTS: MULTIPLE REGRESSION TAB RUN- CORRELATION FOR 2200°F COATING OXIDATION RESISTANCE AS FUNCTION OF PROCESS VARIABLES, BASED ON ALL SAMPLES FROM COATING OXIDATION SAMPLE RUNS
XVI	ANALYSIS OF TESTS: MULTIPLE REGRESSION TAB RUN- CORRELATION FOR 2400°F COATING OXIDATION RESISTANCE AS FUNCTION OF PROCESS VARIABLES, BASED ON ALL SAMPLES FROM COATING OXIDATION SAMPLE RUNS
XVII	CYCLIC OXIDATION OPTIMIZATION: PROCESS CONDITIONS AND RESULTS FOR CYCLIC OXIDATION RUNS
XVIII	CYCLIC OXIDATION OPTIMIZATION: PROCESS CONDITIONS AND RESULTS FOR CYCLIC OXIDATION RUNS
XIX	PRODUCTION DEMONSTRATION BATCHES: PROCESS CONDITIONS AND RESULTS
xx	OXIDATION TESTING: OXIDATION TEST RESULTS FOR FIRST STATISTICAL SERIES SAMPLES
XXI	OXIDATION TESTING: OXIDATION TEST RESULTS FOR SAMPLES PREPARED IN SECOND STATISTICAL SERIES
ххп	OXIDATION TESTING: OXIDATION TEST RESULTS AT 2500°F OXIDATION TEMPERATURE FOR SAMPLES PREPARED IN DEPOSIT PHASE RUNS
XXIII	OXIDATION TESTING: 2200°F OXIDATION TEST RESULTS FOR SAMPLES PREPARED IN COATING OXIDATION SAMPLE RUNS
XXIV	OXIDATION TESTING: 2400°F OXIDATION TEST RESULTS FOR SAMPLES PREPARED IN COATING OXIDATION SAMPLE RUNS
XXV	OXIDATION TESTING: SUMMARY OXIDATION TEST RESULTS FOR 2200°F AND 2400°F TESTING FOR SAMPLES PREPARED IN COATING OXIDATION SAMPLE RUNS
XXVI	OXIDATION TESTING: ADDITIONAL 2400°F AND 2600°F TEST RESULTS FOR SAMPLES PREPARED IN COATING OXIDATION SAMPLE RUNS
XXVII	METALLOGRAPHY: COATING THICKNESS OF SAMPLES PREPARED IN COATING OXIDATION SAMPLES
IIIVXX	METALLOGRAPHY: COATING THICKNESS OF SAMPLES PREPARED IN CYCLIC OXIDATION OPTIMIZATION RUNS

APPENDIXES (CONTD)

Appendix	Title
XXIX	METALLOGRAPHY: ANALYSIS FOR COATING HARDNESS
XXX	METALLOGRAPHY: ANALYSIS FOR COATING THICKNESS
XXXI	METALLOGRAPHY: ANALYSIS FOR COATING THICKNESS
XXXII	ELECTRON MICROPROBE: COATING COMPOSITION OF SAMPLES PREPARED IN SECOND STATISTICAL SERIES
XXXIII	ELECTRON MICROPROBE: COATING COMPOSITION OF SAMPLES FROM COATING OXIDATION SAMPLE RUNS
XXXIV	STRAINED EFFECT TEST: 2200°F AND 2400°F CYCLIC OXIDATION TESTS RESULTS FOR SAMPLES AT TWO STRAIN LEVELS
xxxv	CYCLIC OXIDATION AND STRAIN EFFECT TEST: 2200°F, 2400°F, AND 2600°F CYCLIC OXIDATION TEST RESULTS FOR SAMPLES PREPARED IN DUPLICATE BEST COATING RUNS
XXXVI	CYCLIC OXIDATION: 2400°F CYCLIC OXIDATION TEST RESULTS FOR COATED FLAT PANELS, 1 1/2-IN. ROUND RODS AND 1 1/2-IN. HEX HEAD BOLT SUBSTRATES
IIVXXX	CYCLIC OXIDATION: 2400°F CYCLIC OXIDATION TEST RESULTS FOR COATED FLAT PANEL SUBSTRATES
XXXVIII	CYCLIC OXIDATION: 2400°F CYCLIC OXIDATION TEST RESULTS FOR COATED 1 1/2-IN. ROUND ROD SUBSTRATES
XXXIX	CYCLIC OXIDATION: 2400°F CYCLIC OXIDATION TESTS RESULTS FOR COATED 1 1/2-IN. ROUND ROD SUBSTRATES
XL	CYCLIC OXIDATION: 2400°F CYCLIC OXIDATION TEST RESULTS FOR COATED 1 1/2-IN. HEX HEAD BOLT SUBSTRATES
XLI	CYCLIC OXIDATION: 2600°F CYCLIC OXIDATION TEST RESULTS FOR COATED 1 1/2-IN. ROUND ROD SUBSTRATES
XLII	CYCLIC OXIDATION: 1800°F, 2200°F AND 2600°F TEST RESULTS
XLIII	CYCLIC OXIDATION: 2400°F TEST RESULTS
XLIV	CYCLIC OXIDATION: ADDITIONAL 2400°F TEST RESULTS
XLV	CYCLIC OXIDATION: 2400°F OXIDATION TEST RESULTS FOR WEIBULL PLOT
XLVI	CYCLIC OXIDATION: WEIBULL PLOT OF CUMULATIVE FAILURES VERSUS 2400°F COATING LIFE

APPENDIXES (CONTD)

Appendix	Title
XLVII	COATING PREPARATION STUDIES: GAS FEED GEOMETRIES
XLVIII	COATING PREPARATION STUDIES: ADDITIONAL PROCESS CONDITIONS AND RESULTS FOR FLUORIDE ROUTE
XLIX	COATING PREPARATION STUDIES: ADDITIONAL OBSERVATIONS FOR FLUORIDE ROUTE
L	COATING PREPARATION STUDIES: ADDITIONAL INITIAL PROCESS CONDITIONS AND RESULTS FOR CHLORIDE ROUTE
LI	COATING PREPARATION STUDIES: INITIAL OBSERVATIONS FOR CHLORIDE ROUTE
LII	COATING PREPARATION STUDIES: INITIAL PROCESS CONDITIONS AND RESULTS FOR CHLORIDE WITH TUNGSTEN HEXACHLORIDE FEED
LIII	COATING PREPARATION STUDIES: INITIAL PROCESS CONDITIONS AND RESULTS FOR CHLORIDE WITH TUNGSTEN HEXACHLORIDE FEED
LIV	MECHANICAL TESTS — EXTERNAL TEST: MECHANICAL PROPERTY EVALUATION BY STANDARD PRESSED STEEL CO. OF COATED REFRACTORY FASTENERS FROM PRODUCTION DEMONSTRATION BATCHES
LV	PROPERTY EVALUATION BY STANDARD PRESSED STEEL CO. OF COATED REFRACTORY FASTENERS WITH POST-HEAT TREATMENT FROM PRODUCTION DEMONSTRATION BATCHES

SECTION I

The objective of the program was continued refinement of CVD refractory coating processes and practical production equipment for applying these coatings to large quantities of small parts (i.e., fasteners for aerospace structures). The equipment which evolved specifically included optimization and production demonstration studies for the chromium-titanium-silicon (Cr-Ti-Si) coating on columbium and coating preparation studies to illustrate process versatility by deposition of the tungsten-tungsten silicide (W-WSi₂) coating on tantalum.

This program represents a unique contribution in the areas of processing equipment and refinement of processing techniques. The equipment and refinement aspect of the program is directed toward the need of a technically oriented manufacturing program to develop processes specifically applicable to this product type with resulting lower costs and increased efficiency.

The specific requirement area is the coating of refractory metal fasteners. The primary need for refractory fasteners is in aerospace applications. The need for a better refractory fastener coating process is a reality at this time, and the need five years from now could be critical. Reentry body technology at present is based primarily on ablative cooling; however, as refractory hardware is refined, the next generation of re-entry vehicles will depend on radiative cooling utilizing the refractories for structural surfaces. As indication of the immediate order of magnitude, a typical four-vehicle re-entry development program may require as many as 15,000 refractory fasteners, each requiring coating. The total sum represents a

significant cost item. Because previous studies have shown the impractically of coating very large structures, it is apparent that, within the foreseeable future, large refractory bodies will be built up from smaller panels which will necessitate the continued use of fasteners. This need will also become apparent in the areas of hypersonic aircraft, air-breathing missiles, and reusable rocket stages.

Efforts in refractory coatings have primarily used conventional coating techniques on shapes and fasteners. Oxidation protection provided by the coating was generally lost if any deflection or strain of coated parts was attempted. The inherently brittle nature of the common coating compositions, particularly with the silicides, is probably unavoidable. The detrimental effect of fracture, usually of intergranular nature, is increased by the large, normally columnar, grain size. The fracture can propagate rapidly through the coating and then laterally along the substrate-coating interface to produce gross spalling. Thus, either a coating must be maintained in a crack-free condition, or fracture of the coating must be controlled so that the structure continues to provide adequate protection.

The likelihood of maintaining a crack-free coating seems low when the application of the coated hardware is considered. Damage during the assembly process can occur due to mishandling, impact, or being strained to correct misalignments. The structure during actual use will be subjected to shock; thermal stress and strain generated by rapid, non-uniform heating; and a high probability of impact. Designs of flight structures can be developed to minimize and perhaps eliminate flexure, though more optimum utilization might be obtained by permitting some flexing. The coated fasteners used in assembling components will be subject to damage from handling and wrenching and will be torqued to produce some elongation. While the capability to apply patch repair if important, such methods are applicable only to observed and accessible defects, and then primarily during assembly, rather than during service.

The requirement for a coating having ductility or the ability to withstand some strain while remaining protective is critical. Coating processes which can control the nature of the structures must be developed to satisfy this need.

Chemical vapor deposition techniques are especially applicable to this area of fastener coating because of two basic considerations: (1) the close tolerance of threaded fasteners or mechanical fasteners requires a very uniform coating; and (2) since large numbers of fasteners are required in many programs, a technique must be developed for coating large numbers. Other coating techniques are utilized in the area of refractory fasteners, but each has its individual limitations in areas such as coating uniformity and reasonable production cycle. A chemical vapor deposition process provides a high-purity coating which gives oxidation protection of refractory fasteners in high temperature environment while satisfying the basic considerations.

SECTION II APPROACH

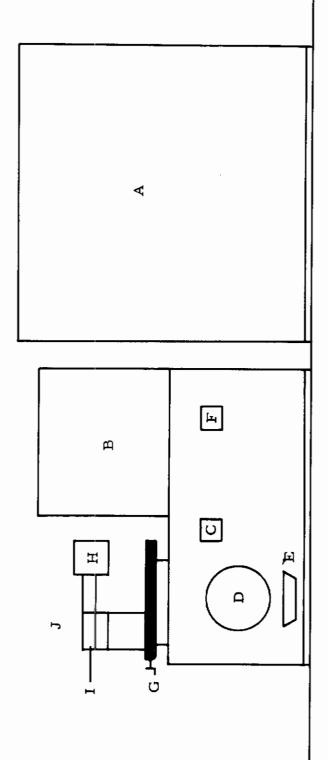
This program was conducted in three phases described in the following paragraphs.

PHASE I. Processing equipment for coating large numbers of refractory fasteners by the chemical vapor deposition process (CVD) was designed, constructed, installed and tested. The design for the equipment was based on equipment presently used for coating by CVD techniques. Because coating uniformity is a critical consideration for fasteners, chemical vapor deposition is especially applicable since it provides a precise control capability. For testing, the process evolvement of the manufacturing processing equipment was centered on start-up coating experiments involving preliminary and parameter variation runs.

PHASE II. The manufacturing equipment and process which evolved during Phase I was used to optimize trideposition of the Cr-Ti-Si coating on columbium. The technology base for this portion of the program was work performed under Contract AF 33(615)-3046, sponsored by the Chemical Processing Branch, Manufacturing Technology Division, Air Force Materials Laboratory. During that contract, Texas Instruments demonstrated the ability to perform the Cr-Ti-Si coating by a one-step, or trideposition process. Subsequent oxidation testing established the good performance levels of this coating. The specific approach of the current program was concentrated on optimization, production demonstration and coating evaluation studies for coated samples produced in the manufacturing processing equipment.

PHASE III. The specific approach for Phase III was based on equipment modification, design, construction, installation and coating preparation studies to illustrate the process versatility for other coatings. The other coating of major interest was the W-WSi₂ system for tantalum alloys.

SECTION III


MANUFACTURING PROCESSING EQUIPMENT DESIGN, CONSTRUCTION AND INSTALLATION

Varied and numerous activities were involved in the manufacturing equipment design, construction and installation. The processing equipment, shown schematically in Figure 1, consisted of a reaction chamber (which rotates and tumbles the parts to be coated), a furnace, gas supply cabinet and other equipment. The parts to be coated were loaded into the coating chamber. The coating chamber was then inserted into the furnace and the coating gases were activated to flow through the neck of the chamber.

Several items for the furnace, which contains the rotating reaction chamber during trideposition reaction, were incorporated to provide automatic temperature control. Single phase power supply — using saturable core reactor for controlling power output — was made available in the laboratory since the existing laboratory power supply was not adequate to meet the furnace power requirements. The furnace resistance heating elements were reworked and made amenable to the single phase power supply to provide high reaction temperatures required for trideposition reaction. The electrovolt assembly and magnetic amplifier were then installed.

The temperature controller-recorder was integrated with the system. Initial checking indicated satisfactory automatic temperature control. However, temperature jumps and inaccurate indications were experienced in subsequent use. Instrument repair required to resolve these problems was made and resulted in achieving automatic temperature control.

The rotation-speed control was installed to allow the rotation speed of the reaction chamber to be varied.

LEGEND:

- A. Gas supply cabinet
- B. Furnace
- C. Rotation speed control
- D. Temperature recorder controllerE. Electrovolt assembly

J. Gas exhaust

Gas inlet

Rotating reaction chamber

Ħ.

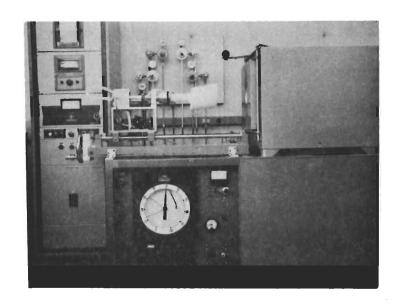
F. Magnetic amplifier

Track assembly

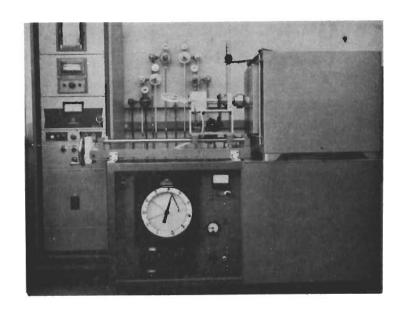
Figure 1. Diagram of Rotating Reaction Chamber Equipment

After initial design, construction and installation, several modifications were made to the track assembly, which is used to transport the rotating reaction chamber into the furnace. The foundation, moving-assembly guide supports and gear drive were reworked and assembled. The track assembly was then center-mounted by using additional supports.

Furnace doors with thiner insulation were fabricated and installed to allow the rotating reaction chamber to enter the high temperature zone inside the furnace.


A photograph of the rotating reaction chamber, installed trac assembly, furnace and temperature control system is shown in Figure 2. View a. is with the rotating reaction chamber outside the furnace. View b. is with the rotating reaction chamber inside the furnace.

The gas supply cabinet is shown in Figure 3. Installation of the TiCl₄ bubbler, rerouting of plumbing, recharging of the He purifier and integration of SiH₄ into the unit were completed prior to conducting the experiments.


A process flow diagram of the gas supply cabinet is shown in Figure 4. This cabinet was used for the initial preliminary runs using the SiH_A decomposition reaction.

One of the problems encountered during SiH₄ decomposition reaction was premature decomposition of the SiH₄ in the feed inlet tube. To overcome this problem, the next preliminary runs were conducted with SiCl₄ as silicon source using the SiCl₄ bubbler, added as shown in Figure 5 for introduction during the trideposition reaction. The flow diagram illustrated in Figure 5 was also used for parameter variation experiments.

A temperature range kit was obtained, installed and calibrate to permit higher temperature variations (i.e., above 1050°C).

a. Rotating Chamber Outside the Furnace

b. Rotating Chamber Inside the Furnace

Figure 2. Composite of Rotating Reaction Chamber, Track Assembly and Furnace

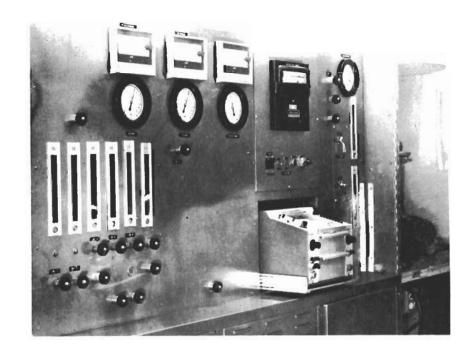


Figure 3. Gas Supply Cabinet for Processing Equipment

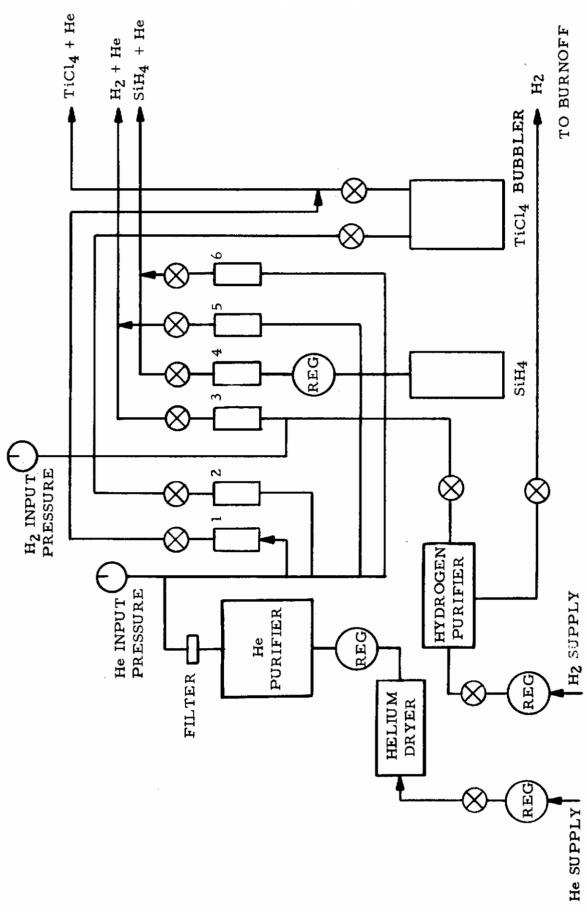
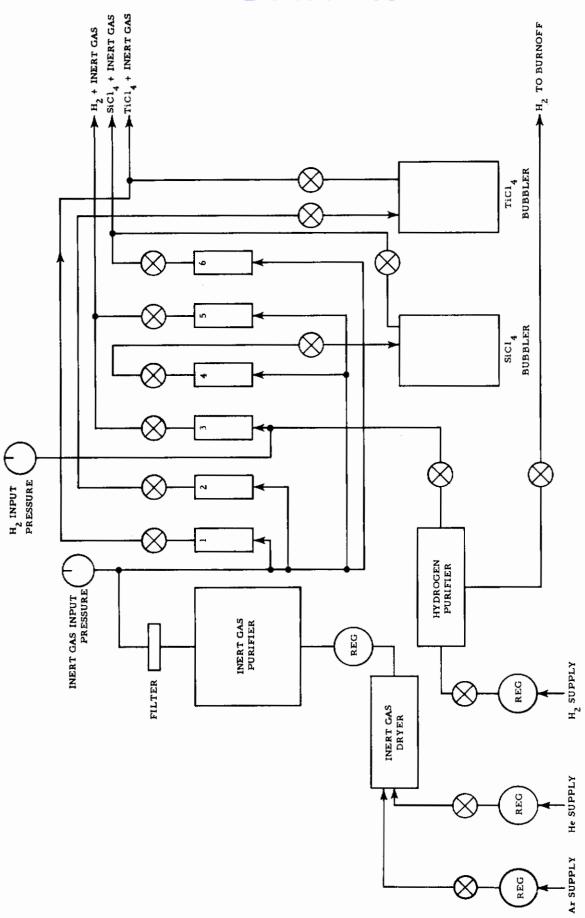



Figure 4. Gas Supply Cabinet Process Flow Diagram for Initial Preliminary Runs with SiH₄ Decomposition Reaction

Gas Supply Cabinet Process Flow Diagram for Preliminary Runs and Parameter Variation Experiments Figure 5.

Additional manufacturing processing equipment design, construction and installation activities were completed prior to testing. These activities involved: installation of "Limitrol" for overheat protection, replacement of electrovolt assembly, adjustment of magnetic amplifier, installation of new temperature sensing device, modifications of gas inlet and exhaust, modifications and fillings of SiCl₄ and TiCl₄ bubblers, fabrication of reaction chambers, fabrication and installation of several gas feed geometries for introducing reactants into the reaction chamber, repair of the rotation speed control unit (including replacement of fine speed control assembly), reworking furnace doors, replacing furnace heating elements and installation of heavier duty electrical power supply. Completion of the manufacturing equipment design, construction and installation permitted start-up of coating experiments involving preliminary and parameter variation runs in the process optimization.

SECTION IV

PROCESS OPTIMIZATION START-UP COATING EVALUATION

A. PRELIMINARY RUNS

The trideposition reaction coating chemistry involved hydrogen reduction of gas phase silicon, titanium and chromium species. In the preliminary runs, several reactions (i.e., SiCl₄-Cr; TiCl₄-Cr; SiH₄ decomposition; TiCl₄-Ti; HCl-Cr and trideposition with Si, Ti and Cr chloride feeds) were studied as routes for introducing the respective gas phase species inside the rotating reaction chamber for coating deposition. From this study, the trideposition reaction with silicon, titanium and chromium chloride feeds was selected as the chemistry base for next program activity involving parameter variations. The demonstrated TiCl₄-Cr and TiCl₄-Ti reactions provided the respective titanium and chromium species for the chemistry base.

1. SiCl₄-Cr and TiCl₄-Cr Reactions

The reaction chemistry for the trideposition coating was based on hydrogen reduction of gas phase silicon, titanium and chromium species inside the rotating reaction chamber. For the chloride species (i.e., SiCl_{x} , TiCl_{y} and CrCl_{z}), introduction of the SiCl_{4} and TiCl_{4} feeds (tetrachlorides) may be achieved by conventional means of bubbling an inert gas through the respective liquids and achieving saturation. Introduction of CrCl_{z} presents a feed entry problem since both chromium chlorides (di and tri) are solids and have negligible vapor pressure at room temperatures.

Several routes for introducing the chemical feeds into the rotating reaction chamber are detailed in Table I. Two routes, from among several, to overcome this feed entry problem are to react SiCl₄ or TiCl₄ with solid Cr chips to generate the CrCl_z. Further, the CrCl_z product should be generated at sufficiently high temperature so that the CrCl_z component is furnished in the vapor phase and available for subsequent hydrogen reduction.

PRELIMINARY RUNS: LIST OF ROUTES FOR INTRODUCING CHEMICAL FEEDS Table I

	, wo	Commonte	
			Sketch Flow Diagram
Chemical Feeds	Favorable	Unfavorable	For Rotary Chamber Reactor
SiCl ₄ + Cr*	$ullet$ Ease of handling SiCl_4	 No method for independent dent measurement of Cr 	SiCl ₄ + He→
$SiC_{x} + CrC_{z}$	• Generate CrCl at higher temperature	• No knowledge of reacting species SiCl _x and CrCl _z	$TiCl_4 + He \rightarrow$ $Cr chips$ $H_2 + He \rightarrow$
	 Independent flow measure- ment for TiCl₄ 		
$TiCl_4 + Cr^*$	 Ease of handling TiCl₄ 	 No method for independent measurement of Cr 	SiCl ₄ + He→
TiCl + CrClz	 Achieve partial reduction of TiC1₄ 	 No knowledge of reacting species TiCl and CrCl 	$TiCl_4 + He \longrightarrow Cr chips$
TiCl ₄ + Ti*	• Ease of handling TiCl ₄	No method for independent dent measurement of Cr	SiCl ₄ + He
TiC1	 Achieve TiCl₄ partial 	 No knowledge of reacting species TiCl 	$TiCl_4 + He \rightarrow Ti chips$ $H_2 + He \rightarrow Ti chips$

* Solid Chips

Table I (Contd)

Sketch Flow Diagram	For Rotary Chamber Reactor	$SiH_4 + He$ TiCl ₄ + He	$^{\mathrm{g}}$ $^{\mathrm{H}_2}$ $^{\mathrm{H}_2}$ $^{\mathrm{H}_2}$ $^{\mathrm{Cr}}$ $^{\mathrm{chips}}$	OR	SiH ₄ , H ₂ , He TiCl ₄ + He	Cr chips	SiH ₄ , H ₂ , He→ Cr chips	TiC1 ₄ , He————————————————————————————————————	SiH_4 , H_2 , He $TiCl_4$, He Cl_2 Cr chips
Comments	Unfavorable	No method for independent dent measurement of Cr	 No knowledge of reacting species TiCl, CrCl 						
Com	Favorable	 Help Equilibrium by reducing HCl in reduction of trideposition 							 Ease of handling SiCl₄ and TiCl₄ Independent variations of Cr concentration
	Chemical Feeds	SiH ₄ ———	Si + Others						CrC1

* Solid Chips

Table I (Contd)

Sketch Flow Diagram	For Rotary Chamber Reactor	i, y, z SiCl ₄ , He raight- $H_2 + He$	riation	riation $SiC1_4 + He$ $Ti-Cr$ chips I for Ti H_2 , He	$\frac{OR}{SiH_4'}$ $H_2' He \longrightarrow$
nents	Unfavorable	 No knowledge of x, y, z Difficult to determine Ti loss Cr loss in straight-forward manner 	 No independent variation of Ti and Cr 	 No independent variation of Cr Are kinetics equal for Ti and Cr reaction 	
Comments	Favorable	 Only necessary to measure SiCl₄ flow Difficult to achieve desired Si/Ti/Cr concentrations 		$ullet$ Only measure two feed streams TiCl $_4$ and SiCl $_4$	
	Chemical Feeds	$SiC1_4 + TiCr^{**}$ $SiC1_4 + TiCr^{**}$	TiCl _y + CrCl _z	$TiCl_4 + TiCr^{**}$ $TiCl_7 + Cl_2$	

*
Solid Chips

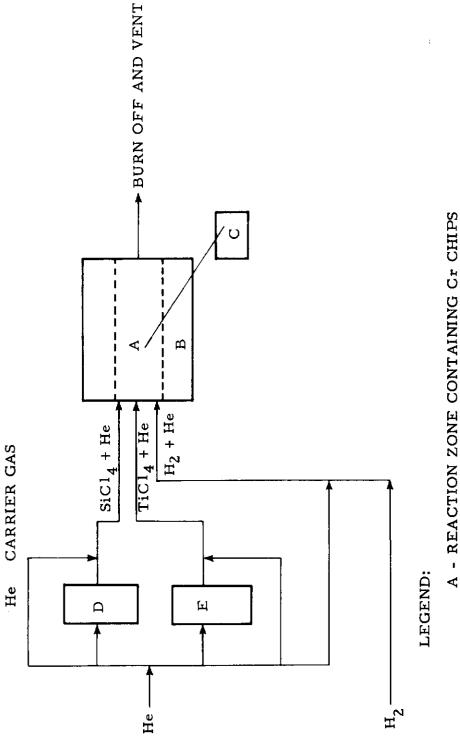
**
Solid Alloy Chips

Table I (Contd)

	Com	Comments	Sketch Flow Diagram
Chemical Feeds	Favorable	Unfavorable	For Rotary Chamber Reactor
$C1_2 + CrTiSi_2 \xrightarrow{**}$	• Only measure one feed stream C1 ₂	 No independent variation of Si 	Ti-Cr-Si ₂ chips
$SiCl_{x} + TiCl_{y} +$	 Questionably if desired Si/Ti/Cr concentration can be achieved 	 No independent variation of Ti 	$H_2 + He$
$\operatorname{CrCl}_{\mathbf{z}}$ alloy		 No independent variation of Cr 	
HC1 + Cr * CrC1	Measure only HCl for Cr concentration	•	SiC1 ₄ + He
	 Independent variation of Cr concentration 		TiCl ₄ + He — HCL — HCL
	 Independent measure- ment of SiC1 (or SiH₄) and TiC1, 		H ₂ + He Crephine
	ħ		OR
			SiH ₄ , H ₂ , He→
			$TiC1_4 + He$
			HC1
			Cr chips

* Solid Chips ** Solid Alloy Chips

A sketch of the equipment used in the process study of these two routes is illustrates in Figure 6. The reaction zone in the figures was used to simulate the high reaction temperatures which was encountered in the rotating reaction chamber. Inert gas bubblers were used for SiCl₄ and TiCl₄ flows.


The experimental results for the SiCl₄-Cr and TiCl₄-Cr reactions are detailed in Table II. For the SiCl₄-Cr reaction, the experimental results disclosed cursory reaction feasilibity. In each experiment, the SiCl₄ was passed over solid Cr chips at high reaction temperatures. Each time the solid Cr chips experienced a weight loss indicating chlorination of the chips and transfer of the chromium chloride product to the vapor. The Cr chips remaining after each experiment had a dark coating. X-ray analysis of this coating from one of the runs indicated a chromium silicide (Cr₃Si).

For the TiCl₄-Cr reaction, the process study also revealed cursory reaction feasibility. Experimental conditions included passage of TiCl₄ over solid Cr chips at reaction temperatures within scope of proposed conditions for the rotating reaction chamber. In each of the experiments, a loss of weight was sustained by the chips disclosing chlorination and transfer of the chromium chloride product into the vapor phase. Since this route was conducted at sufficiently high temperature and provided the CrCl₂ in the vapor phase for subsequent hydrogen reduction, the TiCl₄-Cr reaction was selected for use in the subsequent program.

2. SiH_4 Decomposition Reaction

The SiH₄ decomposition reaction was identified in Table I as a means for introducing the gas phase silicon species of the chemical feeds into the rotating reaction chamber. The SiH₄ represents a non-halide source of silicon and its use could be advantageous because it reduced the HCl content from the trideposition reaction.

- B ELECTRIC FURNACE
- C TEMPERATURE CONTROLLER AND INDICATOR
- D SiCl4 BUBBLER
- E TiCl4 BUBBLER

Figure 6. Preliminary Runs: Process Studies Equipment Diagram

Contrails

PRELIMINARY RUNS: RESULTS FOR SIC14-Cr and TiC14-Cr REACTIONS Table II

	Chips, mg	Si	1	ı	ı	1	1	i	- P	2.3 gain	ı	ı	ſ	l	İ	<u>.</u> I	I	ı	1	ļ	
	Wt Loss of Chips, mg	$\mathbf{C}\mathbf{r}$	39.0	25.3	11.4	36.5	56.4	64.8	Not measured	13.0	217.3	152.2	203.5	140.8	80.8	113.1	ı	Error	200.0	410.0	
	Reaction	Temp. (°C)	950	950	950	1	1	i	1000	086	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	
	H, Flow		ı	1	ı	i	ı	i	200	200	1000	1000	1500	1500	1500	1500	1500	1500	1500	1500	
	H,	Carrier	ı	i	ı	ı	ı	1	1000	1000	200	200	200	200	200	200	200	200	200	500	
	114	Carrier	ı	ı	ı	ı	ı	ı	200	1000	1000	200	200	200	200	200	200	∞500	∞500	2000	
(m1/min)	TiCl4	Bubbler	ı	l	l	l	ŀ	ı	1000	200	200	1000	1000	1000	1500	1000	2000	2000	2000	2000	
He Flow (114	Carrier	1000	1000	1000	ı	ı	I	I	ı	I	ı	I	I	I	Some	ı	€200	200	€200	
	SiC14	Bubbler	10	30	10	40	09	80	I	I	ı	1	ı	1000	89	89	89	68	89	68	
		Run Number	CLY-1-68	CLY-2-68	CLY-3.1-68	CLY-3.2-68	CLY-3.3-68	CLY-3.4-68	CLY-4-68	CLY-5-68	CLY-6-68	CLY-7-68	CLY-8-68	CLY-9-68	CLY-10-68	CLY-11-68	CLY-12-68	CLY-13-68	CLY-14-68	CLY-15-68	

After a literature search for decomposition temperatures and safe handling rules for the SiH₄, several cursory experiments were conducted for the decomposition reaction. The experimental results are listed in Table III.

In the first experiment, the SiH₄ feed tube was placed at the entry of the furnace and did not extend into the furnace hot-zone to preclude plugging by premature SiH₄ decomposition. The feed tube did not plug and solid deposits were obtained on quartz reactor walls and the sample specimen located inside the furnace hot zone. Subsequent efforts of (1) combined feeding of H₂, He and SiH₄ in same feed tube, and (2) graphite wool insulation enclosing the feed tube were not successful in precluding premature SiH₄ decomposition when the feed tube was extended into the furnace hot-zone and each time the feed tube plugged prior to completion of the experiment.

The described preliminary runs with the SiH₄ decomposition reaction were made with a stationary reactor while the rotating reaction chamber equipment was being completed. Additional preliminary runs were made using the rotating reaction chamber.

The first experiment using the rotating reaction chamber was conducted with satisfactory operation of the equipment. This included sufficient cooling of the locking unit-quartz chamber neck connection to prevent partial melting of seal material and resulting gas leakage at the connection point. However, the SiH₄ feed tube plugged after about five minutes.

In the next run, the feed tube was repositioned so that is was several inches from the high temperature reaction zone inside the rotating chamber. The feed tube did not plug during this run. Observation made after the run revealed that the SiH₄ did not enter the rotating chamber sufficiently for required reaction. The SiH₄ feed tube did extend into the chamber for reaction in the next run, but the feed tube plugged prior to

Table III
PRELIMINARY RUNS: SiH₄ DECOMPOSITION REACTION

Run No.	He Flow (ml TiCl ₄	(ml/min)	H ₂ Flow (ml/min)	He Carrier (ml/min)	Reaction Temperature (°C)	Comments
CLY-24-68	2000	200	1500	200	850	The SiH4 feed tube placed at entry of furnace hot zone to protect against plugging by early SiH4 decomposition. Feed tube did not plug during run. Solid deposits obtained on quartz reactor walls and sample specimen located inside furnace hot zone.
CLY-25-68	2000	500	1500	200	850	H2 diluted with He and SiH4 were introduced through SiH4 feed tube. Increased velocity was intended to protect against plugging. SiH4 feed tube extended into furnace hot zone. The SiH4 feed tube plugged after 5 min. Solid deposits achieved on feed tube, quartz reactor walls and sample specimen.
CLY-26-68	2000	500	1500	. 500	850	Experiment conducted with graphite cloth insulation wrapped around SiH4 feed tube and H2-He-SiH4 common introduction. With insulation and common feeding, feed tube extended into furnace hot zone. The SiH4 feed tube plugged after 20 minutes operation. Solid deposits obtained with powder-like consistency.
CLY-27-68	2000	:	1500	500	, , , , , , , , , , , , , , , , , , , ,	Lower reaction temperature used in experiment. Graphite cloth insulation not used. Common feeding of H2-He-SiH4 feed tube located inside hot zone. The SiH4 feed tube did not plug during run but solid deposits were noted inside the tube following the run. Solid deposits obtained on reactor walls and one sample specimen.

completion of the run. Subsequent runs to preclude premature SiH₄ decomposition included: (1) hydrogen and SiH₄ introduction in common feed tube, (2) hydrogen flow in annulus with SiH₄ feed flow in annulus center tube, (3) helium flow in annulus including determination of center tube temperatures at several flows and (4) argon flow in annulus. These attempts to preclude premature SiH₄ decomposition were only partially successful (i.e., increasing length of time before plugging occurred).

The argon was used in the last attempts because of its lower thermal conductivity compared to hydrogen and helium. Argon annulus flow provided the lowest center tube temperature.

Complete data and observations for the SiH_4 decomposition reaction are listed in Table IV for these preliminary runs with the rotating reaction chamber equipment.

3. $TiCl_4$ -Ti and HCl-Cr Reactions

Of the possible routes for introducing the chemical feeds into the rotating reaction chamber, the TiCl₄-Ti reaction was identified in Table I as a route for achieving parital reduction of TiCl₄ prior to the trideposition reaction. The partial reduction could enhance the trideposition reaction by reducing the number of moles of HCl in the reaction product.

Several experiments were conducted to determine the cursory feasibility and conversion for the TiCl₄-Ti reaction. The stationary reactor equipment used in the experiments contained a small furnace which was used to approximate reaction conditions for rotating reaction chamber equipments. The initial experiments indicated reaction feasibility. This was indicated by the loss of weight of the Ti chips when TiCl₄ (diluted with He) was passed over them.

Table IV

PRELIMINARY RUNS: SiH_4 DECOMPOSITION REACTION WITH ROTATING REACTION CHAMBER EQUIPMENT

	He Flow	(ml/mln)	SIH ₄ F1	ow (ml/min)	H ₂ Flo	w (ml/min)	Reaction	
Run Mumber	TIC14 Bubbler	TIC1 ₄	SIH ₄ Streem	He Diluent	H ₂ Stream	He Diluent In H ₂	Temperature oc	Observations
CLY-28-68	2000	500	4-5	500	1500	500	1000	The experiment was conducted in the new rotary chamber aguipment. The used fan and furnace-door heat shield kept the seal material (used for locking unit and quartz chamber) from burning. The SIHA feed tube plugged 5 minutes after start of experiment. Experiment conducted without SIHA after plugging. Graphite substrate sample sustained weight gain indicating deposit on sample. The SIHA feed tube was placed at approximate mid-point of the chamber of the quartz rotating reactor.
CLY-29-68	2000	1000	4-5	1000	2000	500	1000	The SING feed tube was repositioned for the experiment. It was placed several inches from the entry of the high temperature zone of the chamber of the quartz rotating reactor. The feed tube did not plug during the experiment. During experiment, brownish-colored mass was noted in vapors from exhaust burn of. It was suspected to be SING not fully entering the rotating reaction chamber. When the reactor was removed, it appeared the SING feed gas had not entered the chamber containing the substrate samples. The graphite substrate samples sustained some weight gain.
CLY-30-68	2000	2000	4-5	-	5400	-	1000	The SIM, feed tube extended into chamber to provide silicon source for trideposition reaction. Hydrogen and SIM, were introduced through same feed tube. Unable to complete experiment due to SIM, feed tube becoming plugged after 5-8 minutes. Graphite substrate samples experienced very small weight gain.
CLY-31-68	2000	2000	4-5	1	5500	5500	1000	e Hydrogen feed Introduced in annulus with SIMg feed tube comprising center tube of the two-tube annulus system. Hopefully, this arrangement would help prevent early SIMg decomposition which plugs feed tube. In another feed system, hellum was introduced in annulus with thermowell tube comprising center tube for analogous temperature indication of SIMg feed tube. Initial part of experiment completed. Thermowell lask developed causing shutdown of run as silver solder used for sealing the thermocouple tube melted at conditions experienced in run.
CLY-32-68	2000	2000	4-5	1	5500	5500*	1000	e Similar set up as previous run except different thermowell used having a stainless steel weld. • Calibrated thermocouple used in experiment indicate temperature in annulus center tube. • With MF flowing in annulus, temperature indications in center tube were: I min - 70° C, 5 min - 540° C, 13 min - 846° C, and 20 min - 870° C. • Final leveling off temperature was 874° C with cooling via He flow in annulus.
CLY-33-68	2000	2000	1	-	5500	11000*	1000	Hellum flow in annulus increased to 11 //min to further cool annulus center tube. Lower temperature observed in annulus center tube, but still not sufficient to prevent early 51Mg decomposition. Final leveling off temperature of 816°C was achieved in the experiment.
CLY-34-68	2000	2000	-	-	5500	6200 to 6800**	1000	e Hellum flow in annulus replaced with argon, Argon has lower conductivity – about 10 percent of He – than hellum. • Experiment conducted to determine effect of lower conductivity on lowering of annulus center tube temperature. • With argon low of about 6-7 ² /min, lowering of temperature achieved. • Temperature leveled off at about 736° C.
CLY-35-68	-	_	4-5	_	-	620 0**	1000	e in the run, argon flowed in annulus and SINL flowed in center tube. Experiment conducted to determine if argon annulus flow would provide sufficient cooling to early SINL decomposition which plugs feed tube. Satisfactory SINL flow achieved in first part of run. But feed tube plugged after 8 min. Next experiment in rotary equipment shakedown will utilize SICIL as the source of silicon.

^{*} He flowing in annulus.
** Argon flowing in annulus.

Four experiments were conducted to determine extent of TiCl₄ partial reduction (i.e., conversion of TiCl₄) using the same Ti chips charge in each run. The partial reduction was about 40-60% conversion depending on conditions and chip history in these runs. The results are summarized in Table V.

The results of the four runs are shown graphically in Figure 7 as weight loss of Ti chips versus He flow through TiCl₄ bubbler. The graph indicates increase of weight loss with increase of flow. On the basis of these favorable findings, the TiCl₄-Ti reaction was selected for use in the subsequent program including parameter variation and optimization studies.

The HCl-Cr reaction was also previously identified as a feed entry route for providing the chromium chloride in the trideposition reaction. It further represents a route to provide variable Cr-concentration independent other metal Si and Ti components of the reaction.

Feasibility of the HCl-Cr reaction was ascertained at conditions similar to those anticipated with the rotating reaction chamber equipment. The HCl converted when passed over the Cr chips was calculated using data from another CVD project at Texas Instruments. Table VI shows the HCl conversions calculated using this data. The results reveal that 80% or more of the HCl was converted to the chromium chloride in most of the tabulated runs. Based on these findings, the HCl-Cr reaction was selected as a chromium chloride back-up route for use in the event that the other titanium and silicon chloride routes did not provide the appropriate Cr/Ti/Si reaction concentrations.

TABLE V PRELIMINARY RUNS: TiCl₄ - Ti REACTION

N G	He Flow (1	He Flow (ml/min)		Wt. Loss Of	TiCl ₄ Conversion
. Nati	Bubbler	Carrier	(°C)	(mg)	(%1011)
CLY-17-68	2000	500	1000	287.2	
CLY-18-68	2000	500	850	110.0**	1 1
CLY-19-68	4000	500	850	Tube Plugged	! }
CLY-20-68	2000	500	850	228.6	40.5
CLY-21-68	1000	500	850	149.7	52.8
CLY-22-68	4000	500	850	573.1	50.5
CLY-23-68	2000	500	850	341.0	60.5
OTHER RUN CONDITIONS OR OBSERVATIONS: Time of run: 30 minutes. Charge of Ti chips varied in runs 17, 18, a Same charge of Ti chips used in 20, 21, 22, * TiCl ₄ converted * TiCl ₄ converted (mol %) = TiCl ₄ feed (mol ** Suspected in any other runs calculated above.		Time of run: 30 minutes. Charge of Ti chips varied in runs 17, Same charge of Ti chips used in 20, 2 TiCl ₄ conversion (mol %) = $\frac{\text{TiCl}_4}{\text{TiCl}_4}$ feed Suspected inaccurate weight loss of Ti cused in any other runs calculated above.	ER RUN CONDITIONS OR OBSERVATIONS: Time of run: 30 minutes. Charge of Ti chips varied in runs 17, 18, and 19. Same charge of Ti chips used in 20, 21, 22, and 23. $\frac{\text{TiCl}_4 \text{ converted (mol/min)}}{\text{TiCl}_4 \text{ feed (mol/min)}} \text{where: TiCl}_4 \text{ converted is calculated from wellower than the same of Ti chips}$ Is the first of the toler of the palance o	where: TiCl calci	where: TiCl4 converted is calculated from weight loss of Ti chips

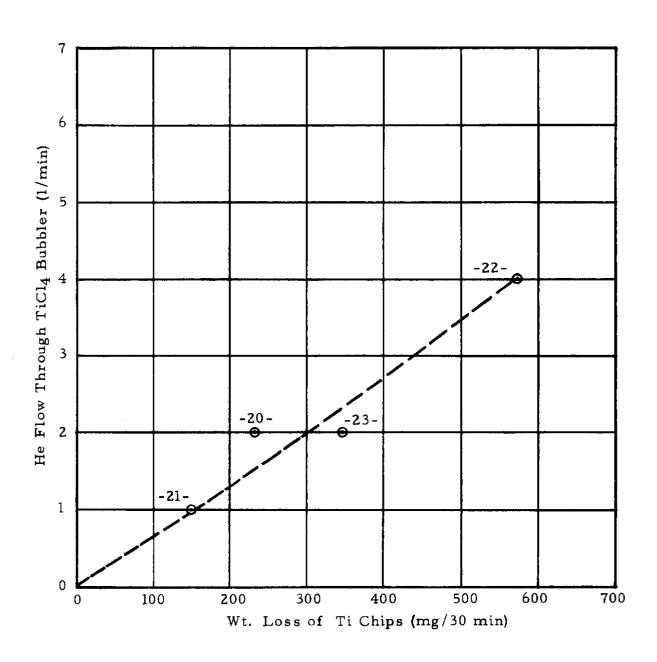


Figure 7. Preliminary Runs: Weight Loss of Ti Chips for $TiCl_4$ -Ti Reaction

PRELIMANRY RUNS: HC1-Cr REACTION CONVERSION OF HC1 PASSED OVER SOLID Cr CHIPS

Rı	Run Number	5351	5452	5553	5755	5856	5957	8509	6119	5260	6361	6462	6563
ı	He (1/min)	2.0	2.0	3.0	3.0	3.0	4.0	3.0	3.0	3.0	4.0	4.0	4.0
F LOW	HCl (cc/min)	.250	250	250	250	250	250	250	250	250	330	250	330
Temper (°C)	Temperature (°C)	1000	1000	950	1000	1000	1000	1000	1000	1000	1000	1000	1000
HC1 C	HC1 Conversion* (mol %)	100	80	85.5	80	87	81.5	70.5	83.5	64.5	84	85	86
отні	OTHER RUN CONDITIONS:	TONS:											
	Hcl diluted with He passed downward over solid chips in vertical quartz reactor. Solid Cr chips charge in the range of several hundred grams.	He pas harge i	ssed do n the r	wnward ange of	d over f sever	solid c al hund	hips in Ired gr	vertic ams.	al qua	tz rea	ctor.		
* HC1	*HCl Conversion (mol %)	ol %) =	•	HC1 Converted (mol/min) HC1 Feed (mol/min)	ted (mo	01/min) n)		where: H w	C1 con eight l	HCl converted is cal weight loss of chips.	is calc	HCl converted is calculated from weight loss of chips.	from

4. Trideposition Reaction Using Si, Ti and Cr Chloride Feeds

One of the basic problems arising from using the SiH₄ decomposition reaction as the gas phase silicon species for the trideposition was early decomposition of the SiH₄ in the feed entry tube. Since the previous work with a laboratory stationary reactor had provided chromium-titanium-silicon coating using the respective metal chloride feeds, the next preliminary runs were conducted with silicon, titanium and chromium chloride feeds. These runs were made using the rotating reaction chamber equipment.

Preliminary runs for the trideposition reaction using these metal chloride feeds indicated feasibility of the coating reaction for the conditions studied. For these runs, graphite and metal substrate samples were placed inside the rotating reaction chamber. During the deposition time, the silicon, titanium and chromium chlorides, hydrogen and inert gas diluent were continuously introduced into the rotating reaction chamber containing the substrate samples. Substrate sample weight gains and other data for the trideposition reaction, using metal chloride feeds, are recorded in Table VII. In general, the results were favorable in that the substrate samples experienced weight gains indicating deposition of coating on the substrates in the reaction environment.

These favorable results (i.e., coating deposit achieved on substrate using silicon titanium and chromium chloride feeds) provided the trideposition reaction chemistry base for starting up the next program activity involving parameter variations.

Wakefield, Gene F., "Final Report on Refractory Metal Coatings by Chemical Vapor Deposition," Technical Report AFML-TR-66-397 (December 1966).

Table VII

PRELIMINARY RUNS: RESULTS FOR TRIDEPOSITION REACTION USING SILICON, TITANIUM AND CHROMIUM CHLORIDE FEEDS

ng)		Average				*2	2.2*			**************************************	**************************************	10 4 7 6 6 2 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	**************************************	**************************************	***************	**************************************	2.2* 4.6* 15.7 15.7 4.0 10.1 10.1 19.7 2.3
ple (r	rate	Ave						-		_	<u> </u>						_
te Sam	Metal Substrate	3	'	•	•	•	4.7	14.4	4.7	4.3	10.0	5.1	8.0	28.2	11.7	1.7	
ubstrat	Metal	2	•	•	•	•	0.9	19, 1	2.7	3.3	10.4	5.1	10.4	15.7	11.1	5.6	
ain of S			,	,	•	•	9 .0	13.7	8.2	4.3	6.6	4.7	8.6	15.3	11.1	2.7	
Weight Gain of Substrate Sample (mg)	Graphite	Substrates		9.5	15.2	11.8	16.7	38.7	25.2	3.2	76.1	6.3	73.9	31.2	16.3	4.8	
	Reactor	l emperature (°C)	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1050	1050	950	
	uo o	(min)	30	30	30	30	30	120	30	30	120	30	120	120	30	30	
Total	Flow	Measured (4/min)	5.089	10.148	6.695	9.089	10, 145	9.089	10,889	8.945	10.889	9.945	9, 945	9.089	9.089	9.089	
	Inert	Gas	He	He	He	He	He	He	He	He	He	He	He	He	He	He	
(t/min)	Inert	Gas	.50	1.0	. 65	1.30	1.30	1.30	1.30	.65	1.30	.65	. 65	1.30	1,30	1.30	
H, Flow (t/min)	H,	Stream	1.5	3.0	2.35	4.7	4.7	4.7	6.5	6.5	6.5	6.5	6.5	4.7	4.7	4.7	_
î	TiCL		.50	1.0	2.4	.50	. 50	.50	.50	.50	. 50	05.	.50	. 50	.50	.50	
Inert Gas Flows (t/min)	TiC1.	4 Bubbler	2.0	4.0	1.0	2.0	4.0	2.0	2.0	1.0	2.0	2.0	2.0	2.0	2.0	2.0	
rt Gas Flo	SiCi	Diluent Bubbler	.50	1.0	. 25	. 50	. 50	.50	.50	.25	.50	.25	.25	. 50	.50	.50	
Inei	Sici	Bubbler	680.	. 148	. 045	. 089	. 145	680.	680.	. 045	. 089	. 045	. 045	680.	. 089	680.	
	Run	Number	CLY-36-68	CLY-37-68	CLY-38-68	CLY-39-68	CLY-40-68	CLY-41-68	CLY-42-68	CLY-43-68	CLY-44-68	CLY-45-68	CLY-46-68	CLY-47-68	CLY-48-68	CLY-49-68	

OTHER RUN CONDITIONS AND OBSERVATIONS:

- Several substrate samples used in run CLY-36-68 sustained a weight gain.
- Six metal substrate samples used in run CLY-17-68 experienced a weight gain of 39.1 mg.

 Two ceramic substrates were used in runs CLY-42-68 through CLY-48-68 in addition to graphite and metal substrate samples.
 - In runs CLY-43-68 through CLY-48-68, the ceramic substrates from immediate preceding run were used.
 - Graphite substrates from immediate preceding run were used in runs CLY-45-68 through CLY-48-68.
 - Slight variation in size of graphite and metal substrate samples,

* Two metal substrates were used in runs CLY-38-68 and CLY-39-68. The respective weight gains were

4.4 and 9.2 mg. The average respective weight gains per metal substrate were 2.2 and 4.6 mg.

B. PARAMETER VARIATION

The trideposition reaction with hydrogen reduction of silicon, titanium and chromium chloride feeds was used as the chemistry base for parameter variation runs with the rotating reaction chamber equipment. Six parameters were investigated including reaction temperature, deposition time, reactant concentrations, rotation speed and flow rate. The investigation disclosed that the coating deposit from the trideposition reaction was increased with increase of the following parameters: reaction temperature; deposition time; Si, Ti and Cr chloride concentrations; H₂ concentration; rotation speed and flow rate. These disclosures and base parameter values gleaned from the runs formed the basis for the next activity of optimization and production demonstration studies with the manufacturing processing equipment.

1. Reaction Temperature

Parameter variation experiments using silicon, titanium and chromium chloride feeds indicated coating deposit increase with reaction temperature increase. This reaction temperature effect on coating deposit was observed for variable temperature runs in 930-1150°C range. Reaction temperatures up to 1230°C were achieved in subsequent other parameter experiments.

Complete data for parameter variation runs with silicon, titanium and chromium chloride feeds are recorded in Table VIII.

The initial parameter variation experiments were conducted by varying the temperature and holding other parameters constant to determine reaction temperature effect on the coating deposit (determined as weight gain of substrates). These initial experiments used facsimile samples of graphite and columbium for the substrates and utilized reaction conditions similar to the previous effort. Results of three experiments illustrating the reaction temperature effect — reaction temperature increase provides coating deposit increase — are summarized in Table IX for 930-1050°C range.

Table VIII

PARAMETER VARIATION: RESULTS USING SILICON, TITANIUM AND CHROMIUM CHLORIDE FEEDS

	In	ert Gan	Inert Gas Flow (4min)		Weight	W eight	Weight H, Flow (Umin)	(Vmin)	Inert	Total	Deposition	Deposition Resction	Robertion		Weight Cain of	Jain of		
Number	Sic.	SiC14	TiC1	to:	TiCl4 Loss of	Loss of	H,	Inert	Gas	Flow	Time	ıre	Speed		Metal Substrate	betrate		
	Bubbler	Diluent	Bubbler Diluent Bubbler Di	luent	(gus)	(mg)	Ľ	i e		(Vrnin)	(um)	5	(rpm)	-	(mg	3	Average	Т
CLY-50-68	680	05.	2.0	.50	:	;	4.7	1.50	He	9.089	30	1030-1050	=	17.3	17.0	18,0	17.4	Т
CLY-52-681	_	. 50	_	-	;	;	4 .7	1.50	He	9.089	30	1030-1050	_	:	;	25.8	25.8	_
CLY-53-682	_	. 25		_	ł	;	6.5	.65	Az	9.945	120	930-1000	_	14.8	11.1	12.3	12.7	
CLY-54-68		_	2,0		:	;	_	-	_	9.945	_	1130-1150	_	8.02	21.2	31.9	24.5	_
CLY-55-68	. 045		4 . 0		1034	;	_	_	Ā	12.044		1180-1200		54.3	53, 1	58.3	55.2	
CLY-56-68	. 144		6.8		4036.9	;			He	14. 544	_	1180-1200	_	45.0	43.0	46.6	43.9	
CLY-57-68	. 144		6.8	_	127.9	3504	_		He	14.544		1180-1200	_	42.2	44.2	53.9	48.9	
CLY-58-68	. 045		4.0		374.9	392.4	6.5		Ar	12. 44		1180-1200	_	10.3	104.0	82.9	99.0	
CLY-59-68	. 045		4.0		2186.4	0.9	0.9		۸ŗ	11.445		1210-1230		21.0	29.3	27.9	26. 1	_
CLY-60-68	. 045		4.0		236.2	1641.6	0.9		_	11.445		9611-9211	_	22.5	24.0	28.7	25.1	
CLY-61-68	060 .		6.50		1911.6		6.3	_	_	14.3		1225-1250	_	9 .0	6.7	6.9	6.5	
CLY-62-68	_		_		4161.4	0.9	0.9			14.0		1225-1250	=	40.8	25.43	46.9	37.7	
CLY-63-684	_	_			1035.7	:	_			_	_	1225-1250	2	12.6	13.3	14.7	13.5	
CLY-64-684				_	1642.8	;						1225-1250	~	22.4	18.2	20.6	20.4	
CLY-65-685	_	_		_	2141.9	;	_	_		_		1225-1250	יה	3.7	3.2	€.3	3, 7	
CLY-66-68	060			. 50	7442.7	;	6.0	. 65	_	14.0		1230	=	6.4	6.4	8. 1	7.0	
CLY-67-68	. 045	. 125	3.25	. 25	4267.7	;	3.0	. 325		7.0		_	11	6.1	5.4	4.7	5.4	_
CTX-68-68	. 228			. 50	5765.1	;	6.0	. 65	_	14, 135			٣	6.62	29.1	26.8	28.6	_
CLY-69-68	060.	_	_	_	3158.0	:	_	_		14.0			=	8.5	11.1	9.6	♦ .6	_
CLY-70-68				_	4270.7	;			_				_	15.3	18.1	9. 1	14.2	
CLY-71-68	-	_				;	_						_	1	!	:	;	_
CLY-72-68		. 25			1148.8	:	0.9				_			10.8	11.1	13.0	11.6	_
CLY-73-68		3.91			4627.4	;	3.0		_				_	11.5	10.2	11.3	11.0	
CLY-74-686	_	.25			8747.0	;	0.9		_				==	24.2	24.5	19.6	22.7	_
CLY-75-68	_	3.91	_	_	7258.5	;	3.0	_	_	_			•	16.2	14.4	20.0	16.8	
CLY-76-68	060.		6.50	. 50	_	1	6.0	. 65		14.0		_	•	8.4	9.7	9.7	9.5	_
CLY-77-68	. 045	_		. 25	4511.9	;	3.0	. 325	_	7.0			m	3.6	4.1	5.2	4.3	
CLY-78-68	. 045	. 125		. 25	4432.9	;	3.0	325	Ar	0.7	120	1230	=	÷.5	4.3	6.4	5.0	
																		7

OTHER RUN CONDITIONS AND OBSERVATIONS:

Completed rotameter calibration for Ar inert gas prior to CLY-59-68

Started using columbiuem substrates obtained for steel prior to CLY-59-68

- Dual thermocouple installed in furnace prior to CLY-61-68
- Acid etched and cleaned rotating reaction chamber used in CLY-62-68 through CLY-68-68
- Refilled TkCl₄ bubbler prior to CLY-66-68
 Installed new thermowell for reaction temperature prior to CLY-66-68

Refilled TiCl₄ and SiCl₄ bubblers prior to CLY-72-68 FOOTNOTES

- 1. Weight gain on graphite substrates of 19.4 mg.
- 2. Weight gain on graphite substrates of 147.1 mg.
- . Slightly smaller size than other two substrates.
- 4. Different reactor geometry for gas feed inlets in runs CLY-63-68 and CLY-64-68.
 - 5. Low liquid level detected in TiCl4 bubbler.
- . Different reactor geometry for SiCl_4 and H_2 gas feed inlets.
- 7. Couldn't complete run because of emergency hydrogen purifier shutdown.

Table IX

REACTION TEMPERATURE EFFECT ON COATING DEPOSIT IN 930°C TO 1050°C RANGE

	Reaction	Coating (m	g Deposit g)
Run No.	Temperature	Graphite	Metal
	(C°)	Substrates	Substrates
CLY-49-68	930 - 950	4.8	2.3
CLY-39-68	980 - 1000	11.8	4.6
CLY-48-68	1030 - 1050	16.3	11.3

Slight variation in size of graphite and metal substrates. Deposition time of 30 minutes.

Complete data are listed in Table VII. Weight gain shown for metal substrate is average for three samples.

Subsequent parameter variation experiments were conducted at higher reaction temperatures. A comparison of two such experiments at identical process conditions except temperature is recorded in Table X to show that the increase in coating deposit with temperature occurred at reaction temperatures to 1150°C.

Prior to conducting the above experiments at higher reaction temperatures, a temperature range kit was obtained, installed and calibrated for use in the rotating reaction chamber equipment.

Maximum reaction temperature of 1230°C was achieved in experiments completed after temperature range kit installation.

Table X

REACTION TEMPERATURE EFFECT ON COATING DEPOSIT IN 980°C TO 1150°C RANGE

	Reaction	Coating D	_
Run No.	Temperature	Graphite	Metal
	(°C)	Substrates	Substrates
CLY-53-68	980 - 1000	19.4	12.7
CLY-54-68	1130 - 1150	147.1	24.5

Slight variation in size of graphite and metal substrates. Deposition time of 120 minutes.

Complete data are listed in Table VIII. Weight gain shown for metal substrate is average for three samples.

2. Deposition Time

Initial parameter variation experiments disclosed that coating deposit increases with increase of deposition time. The deposition time effect on coating deposit was investigated for three reaction temperatures in the 950°C-1050°C range. The data is recorded in Table XI.

Subsequent parameter variation experiments utilized the deposition time (i. e., 120 min) providing the greater coating deposit.

3. Si, Ti and Cr Chloride Concentration

Increase in coating deposit with silicon, titanium and chromium chloride concentration increases was suggested in parameter variation experiments. The coating deposit increase was observed with quantitative silicon and titanium chloride concentrations and with qualitative chromium chloride concentration.

Table XI
DEPOSITION TIME EFFECT ON COATING DEPOSIT

	Reaction	Deposition	Coating Depo	osit (mg)
Run Number	Temperature (°C)	Time (min)	Graphite Substrates	Metal Substrates
CLY-39-68	980 - 1000	30	11.8	4.6
CLY-41-68	980 - 1000	120	38.7	15.7
CLY-48-68	1030 - 1050	30	16.3	11.3
CLY-47-68	1030 - 1050	120	31.2	19.7
CLY-49-68	930 - 950	30	4.8	2.3
CLY-50-68	930 - 950	120	8.5	10.3

Slight variation in size of graphite and metal substrates. Complete data are listed in Table VII. Weight gain shown for metal substrate is average for three samples.

The initial parameter variation experiments were completed with variations in silicon, titanium and chromium chloride concentrations while holding other parameters constant. Silicon and titanium chloride concentrations were measured by helium flow through the respective bubblers. Chromium chloride concentration was only qualitative (i.e., chromium chloride concentration is increased with titanium chloride concentration). The run results shown in the last two runs in Table XII suggest coating deposit increase with silicon, titanium and chromium chloride concentration increase.

Table XII
Si, Ti AND Cr CHLORIDE CONCENTRATION
EFFECT ON COATING DEPOSIT

	Concentrat	i Chloride ions* (He Flow bbler in &/min)		Coating Dep	osit (mg)
Run Number	SiCl ₄ Bubbler	TiCl ₄ Bubbler	H ₂ Flow (\$\(\ell\)/min)	Graphite Substrates	Metal Substrates
CLY-43-68 CLY-39-68 CLY-40-68	.045 .089 .145	1.0 2.0 4.0	6.7 4.7 4.7	3.2 11.8 16.7	4.0 4.6 5.6

Slight variation in shape and size of graphite and metal substrates. Deposition time is 30 minutes. Complete data are listed in Table VII. Weight gain shown for metal substrate is average for three samples.

*Qualitative Cr chloride concentration increases with TiCl4 bubbler.

A chromium chloride generation chamber which would provide quantitative measurement of chromium chloride was being constructed while the initial parameter variation experiments were being made. The chromium chloride is generated by passing TiCl₄ (contained in inert diluent gas passed through the TiCl₄ bubbler) over solid Cr chips according to representative reaction.

$$2\text{TiCl}_4 + \text{Cr} \stackrel{\text{T}}{\rightarrow} 2\text{TiCl}_3 + \text{CrCl}_2$$

Quantative measurements with the generation chamber supported the qualitative chromium chloride concentration increase with TiCl₄ bubbler (i.e., TiCl₄ bubbler flows of 3.25 and 6.5 l/min provided Cr chips weight losses of 4276.7 and 7448.7 mg).

Although run CLY-43-68 in Table XII was conducted at higher hydrogen flow, its respective silicon, titanium and chromium chloride concentrations are lower than the same respective chloride concentrations of the last two runs in the table (i.e., the last two runs have higher silicon, titanium and qualitative chromium chloride concentrations). Since the coating deposit of the last two runs was higher, the CLY-43-68 run further indicated coating rate increase with silicon, titanium and chromium chloride concentrations.

Two cursory runs were conducted with an increase of titanium and chromium choloride concentrations with other parameters constant. Results, listed in Table XIII, for these runs suggested increase of coating deposit with titanium and chromium chloride concentration increases.

Subsequent parameter variation experiments were conducted with higher titanium and chromium chloride concentrations.

Table XIII

Ti AND Cr CHLORIDE CONCENTRATION EFFECT ON COATING DEPOSIT

		1 '	g Deposit mg)
Run Number	Ti Chloride Concentrations* (He Flow Through TiCl ₄ Bubbler in \$\mathcal{L}\/\text{min})	Graphite Substrates	Metal Substrate
CLY-43-68 CLY-45-68	1.0 2.0	3.3 6.3	4.0 5.0

OTHER RUN CONDITIONS:

Slight variation in graphite substrate samples. Fresh graphite samples used in run CLY-43-68. Graphite samples from previous run used in run CLY-45-68. Weight gain for metal substrate is average for three samples. *Qualitative Cr chloride concentration increases with TiCl4 bubbler.

4. H₂ Concentration

Determination of hydrogen concentration effect on coating deposit was made in subsequent cursory parameter variation experiment. With hydrogen concentration measured by hydrogen flow rate, the summary tabulation in Table XIV suggested the coating deposit increased with hydrogen concentration increase.

It should be noted that the cursory determination applies at two reaction chamber rotation speeds (3 and 11 rpm) and constant flow rate (14 ℓ/\min).

5. Rotation Speed

Investigation of rotation speed effect on coating deposit was made at two levels of flow rate and hydrogen concentration. The results indicated some coating deposit increase as rotation speed increase from three to eleven rpm. The data from these experiments, listed in Table XV, summarizes the results.

The rotation speed effect was observed at two flow rates, 14 and 7 l/min, and hydrogen concentrations of 3 and 6 l/min. The higher rotation speed of eleven rpm which resulted in greater weight gain was used in most parameter variation experiments.

6. Flow Rate

Parameter experiments made with flow rate variations suggested increase of coating deposit with increase in flow rate. The data in Table XVI illustrated coating deposit increase with flow rate increase during experiments. These experiments were conducted with the flow rate doubled, including hydrogen concentration, and flow rate doubled with hydrogen concentration constant (last two runs).

 $\label{eq:table_XIV} $$ $_{\text{L}} = \text{CONCENTRATION EFFECT ON COATING DEPOSIT} $$$

Run Number	Rotation Speed (rpm)	Flow Rate (l/min)	H ₂ Concentration: H ₂ Flow Rate (l/min)	Coating Deposit: Avg. Substrate Weight Gain (mg)
CLY-72-68 CLY-73-68 CLY-76-68 CLY-75-68	11 3	14 14 14 14	6 3 6 3	11.6 11.0 16.8 9.2

Some flow difficulties experienced with SiCl₄ and TiCl₄ bubblers in first part of CLY-76-68 run. Complete data are listed in Table VIII.

Table XV

ROTATION SPEED EFFECT ON COATING DEPOSIT

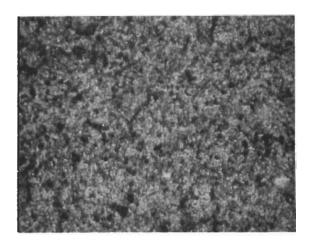
Run Number	Rotation Speed (rpm)	Flow Rate (l/min)	H ₂ Concentration: H ₂ Flow Rate (<i>l</i> /min)	Coating Deposit: Avg. Substrate Weight Gain (mg)
CLY-72-68	11	14	6	11.6
CLY-76-68	3	14	6	9.2
CLY-78-68	11	7	3	5.0
CLY-77-68	3	7	, 3	4.3

Other run conditions and complete data are listed in Table VIII.

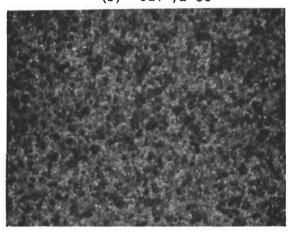
Table XVI FLOW RATE EFFECT ON COATING DEPOSIT

Run Number	Rotation Speed (rpm)	Flow Rate (l/min)	H ₂ Concentration: H ₂ Flow Rate (\(\ell/\)min)	Coating Deposit: Avg. Substrate Weight Gain (mg)
CLY-66-68	11	14	6	7.0
CLY-67-68	11	7	3	5.4
CLY-73-68	11	14	3	11.0
CLY-78-68	11	7	3	5.0

- Run CLY-66-68 was conducted at twice the flow rate of run CLY-67-68 on all components including H₂ Concentration.
- •Run CLY-73-68 was conducted at twice the flow rate of run CLY-78-68 while holding H₂Concentration constant.
- · Complete data are listed in Table VIII.


7. Coating Evaluation

Cursory electron microprobe analysis was completed on several samples prepared in parameter variation experiments. The analysis indicated that chromium, titanium and silicon depositions were achieved in the experiments since the coating deposit contained these respective components.


Microphotographs showing surface of coatings deposited in parameter variation experiments are presented in Figure 8.

Microphotographs of mounted sample cross sections are given in Figure 9 to show the substrate and coating deposit.

(a) CLY-68-68

(b) CLY-72-68

(c) CLY-73-68

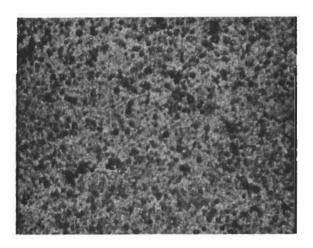
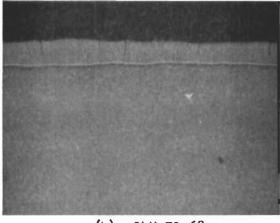
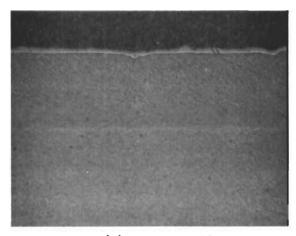




Figure 8. Parameter Variation: Microphotographs Showing Coating Surface (250X)

(a) CLY-68-68

(b) CLY-72-68

(c) CLY-73-68

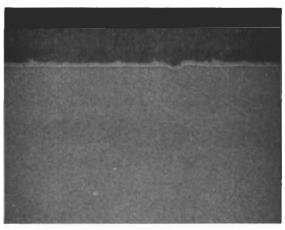
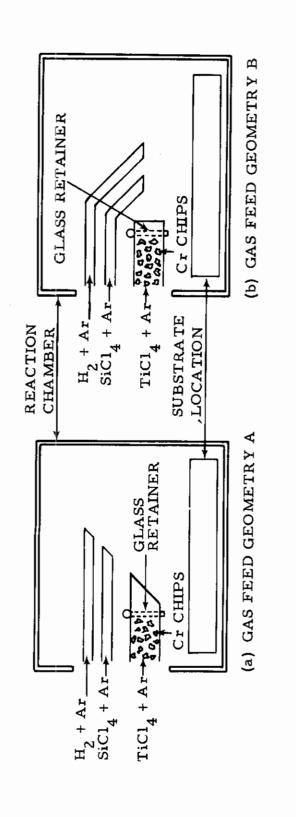


Figure 9. Parameter Variation: Microphotographs of Cross Section Showing Coating and Substrate (500X)

SECTION V

OPTIMIZATION AND PRODUCTION DEMONSTRATION STUDIES

A. OPTIMIZE PARAMETERS

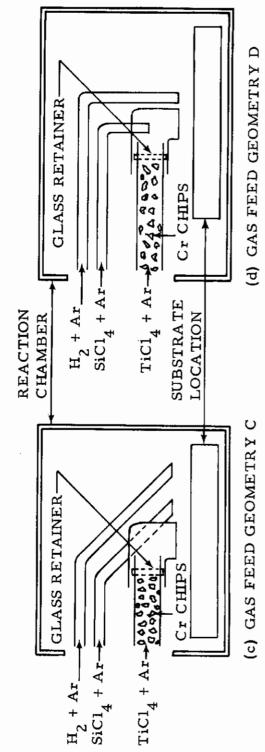
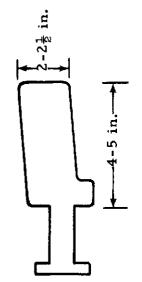
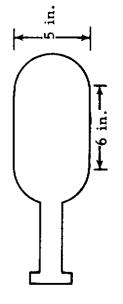

Previous parameter variation disclosures were utilized as the basis for optimize parameter runs with the manufacturing processing equipment. For optimize parameters, demonstrated coating rate increases comprised the key results. Coating rate increases for the trideposition reaction were achieved with the following important variables: gas feed geometry; reaction temperature; silicon chloride concentration; flow rate; dual chamber prereduction of titanium tetrachloride; titanium tetrachloride concentration; hydrogen concentration and argon dilution level of the hydrogen gas feed. Coating rates in the runs were the highest to date with the equipment. Additionally key findings included first and second statistical series results for use in the next program activity of analysis involving statistical regression and factorial variance analyses.

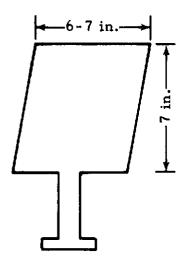
1. Gas Feed Geometry Study

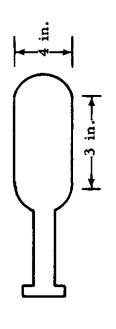
Prior to conducting the experiments involved to optimize parameter, several gas feed geometries were studied. This included cursory gas mixing experiments which allowed observation of gas mixing patterns. This also involved study of different reaction chamber configurations.

The gas feed geometries studied are shown in Figure 10. Results indicated appreciable difference between coating deposits obtained by use of each of the gas feed geometries.

The reaction chambers used are shown in Figure 11.


Figure 10. Optimize Parameters: Gas Feed Geometries for Introducing Gas Feed Reactants in Reaction Chamber


(b) Reaction Chamber B (special reaction chamber)

(d) Reaction Chamber D

(a) Reaction Chamber A (7-in. quartz rocking bottle)

(c) Reaction Chamber c (small reaction chamber)

Optimize Parameters: Reaction Chambers Used for CVD Coating with Trideposition Reaction Figure 11.

Prior to conducting the initial experiments with different gas feed geometries, several cursory experiments were made to observe gas mixing inside the reaction chamber. The experiments disclosed: (a) the reaction of water vapor and TiCl₄ provided a white reaction product which permitted observation of the gas mixing process, (b) addition of SiCl₄ did not visibly alter observed gas mixing and (c) increase of diluant gas carrying water vapor to maximum flow achievable with the equipment did not alter the observed gas mixing. The observed gas mixing in the cursory experiments indicated some variation of the visible white reaction product with region inside the reaction chamber. Also, the cursory experiments indicated gas mixing could be altered with the gas feed geometry used to introduce the reactants into the reaction chamber.

The initial optimization parameter experiments with different gas feed geometries were conducted with the 7-in. quartz rocking bottle as the reaction chamber. The 7-in. quartz rocking bottle (see Figure 11a) was used in preliminary and parameter variation runs discussed earlier. Coating deposit results for two initial experiments conducted at identical conditions, except gas feed geometry, in Table XVII revealed that coating deposit was increased with gas feed geometry change (i. e., greater coating deposit was achieved with gas feed geometry B than with gas feed geometry A).

The data listed in Table XVII indicates coating deposit using gas feed geometry B was almost double that obtained using gas feed geometry A to introduce the reactants into the reaction chamber. As a result of this increase achieved with change of gas feed geometry, other gas feed geometries were investigated.

Results for other gas feed geometries investigated are tabulated in Table XVIII for runs with a constant flow rate and silicon chloride concentration.

Table XVII

GAS FEED GEOMETRY EFFECT ON COATING DEPOSIT
WITH QUARTZ ROCKING BOTTLE REACTION CHAMBER

Run Number	Gas Feed Geometry	Coating Deposit: Avg. Substrate Weight Gain (mg)
CLY-72-68		11.6
CLY-85-68		21.7

Other Run Conditions:

Other process conditions are given in accompanying data table in Appendices.

Table XVIII

GAS FEED GEOMETRY EFFECT ON COATING DEPOSIT WITH SMALL
REACTION CHAMBER

Run Number	Gas Feed Geometry	Flow Rate Via Measured Gas Feed Flow (L/min)	Silicon Chloride Concentration Via SiCl Bubbler (Ar, 1/min)	Coating Deposit: Avg. Substrate Weight Gain (mg)
CLY-88-68	В	3,863	. 0225	14.2
CLY-89-68	С	3.863	. 0225	27.7
CLY-92-68	D	3, 86 3	.0225	36.5

Other Run Conditions:

Other process conditions are given in accompanying data table in Appendices.

The data shown in Table XVIII indicated that greatest coating deposit was achieved with gas feed geometry D (i.e., the greatest coating deposit of 36.5-mg substrate weight gain was achieved using gas feed geometry D for introducing the reactants into the reaction chamber).

It was recognized that the other parameters such as flow rate and silicon chloride concentration influence the coating deposit obtained while using any specific gas feed geometry. However, since gas feed geometry D provided the greatest coating deposit of all gas feed geometries studied, it was selected for use in the first statistical series of experiments for optimization.

2. First Statistical Series

For optimization, the first statistical series of experiments were conducted for determining the effect of three of the independent variables — reaction temperature, silicon chloride concentration and flow rate — on the coating rate for two levels of each of the dependent variables. Three other independent variables — titanium chloride concentration, hydrogen concentration and argon dilution of hydrogen gas feed — were held constant for the series. The results, including graphical plots with positive slope curves for coating rate variation, indicated that coating rate is increased in the independent variable ranges studied.

The experimental plan for the first statistical series is given in Table XIX. The general variable range selected for the series was based on results from previous preliminary runs, parameter variation experiments and gas feed geometry study. The results for the coating rate at each level of the independent variables of temperature, concentration and flow are presented in the last column of Table XIX.

Effect of reaction temperature on coating rate is graphically illustrated in Figure 12. The curves were constructed for comparing data points of constant flow rate and silicon chloride concentration. The four curves with positive slopes indicated that the coating rate is increased with reaction temperature for the variable range studied.

Table XIX

OPTIMIZE PARAMETERS: FIRST STATISTICAL SERIES OF EXPERIMENTS

Run No.	× l	× 2	* 3	у
1	-1	1	1	0.61
2	-1	- 1	-1	0.37
3	1	-1	-1	0.39
4	-1	- 1	1	0.47
5	1	l	l	0.69
6	1	1	-1	0.59
7	1	- 1	1	0.59
8	-1	1	- 1	0.37

Variable	Description	- 1	1
\mathbf{x}_1	Reaction Temperature (°C)	1015	1115
* ₂	Silicon Chloride Concentration via SiCl ₄ Bubbler (Ar, //min)	. 0225	.045
* ₃	Flow Rate via Measured Gas Feed Flow (// min)	7.73	11.59
у	Coating Rate via Average Weight Gain Rate Per Substrate (mg/min)		

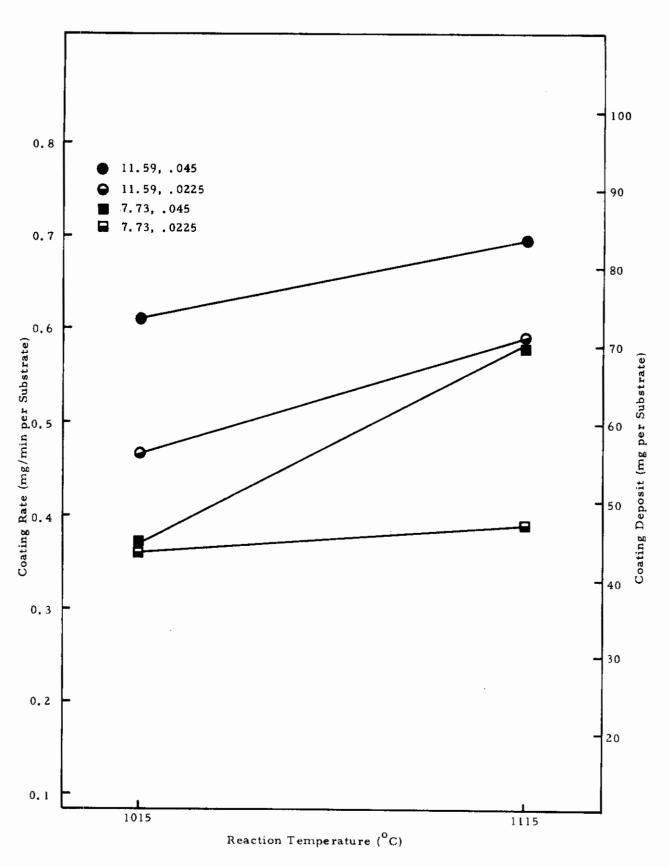


Figure 12. Optimize Parameters: Effect of Reaction Temperature on Coating Rate in First Statistical Series

Figure 13 illustrates effect of silicon chloride concentrations on coating rate. The effect shown was with constant flow rate and reaction temperature. The bottom curve in Figure 13 show little effect of silicon chloride concentration on coating rate. The remaining three curves, which have more positive slopes, indicated higher coating rate increase with silicon chloride concentration.

The effect of flow rate on coating rate is illustrated in Figure 14 at constant reaction temperature and silicon chloride concentration. Each curve constructed in Figure 14 has a positive slope and indicated the coating rate increase with flow rate for the variable range tested.

3. Argon Dilution of Hydrogen Gas Feed

While conducting the first statistical series, an exploratory run was conducted in which the hydrogen gas feed was highly diluted with argon. After completion of the first statistical series, an inspection of the coating deposit achieved in the series revealed that this exploratory run provided the highest coating deposit. Confirmation of this finding was made by repeating the exploratory run and obtaining similar high coating deposit as shown by last two runs of Table XX. The summary tabulation in Table XX illustrated the appreciable coating deposit increase due to the high level of argon dilution of hydrogen gas feed.

The effect of dual chamber prereduction of titanium tetrachloride was investigated in several runs after completion of first statistical and exploratory runs. Dual chamber prereduction is the dual reduction achieved by flowing titanium tetrachloride feed through a dual chamber containing the solid Ti and Cr chips to permit the following representative reactions:

$$3\text{TiCl}_4 + \text{Ti (solid chips)} \xrightarrow{\text{T}} 4\text{TiCl}_3$$
 (1)

$$2\text{TiCl}_4 + \text{Cr (solid chips)} \xrightarrow{\text{T}} 2\text{TiCl}_3 + \text{CrCl}_2$$
 (2)

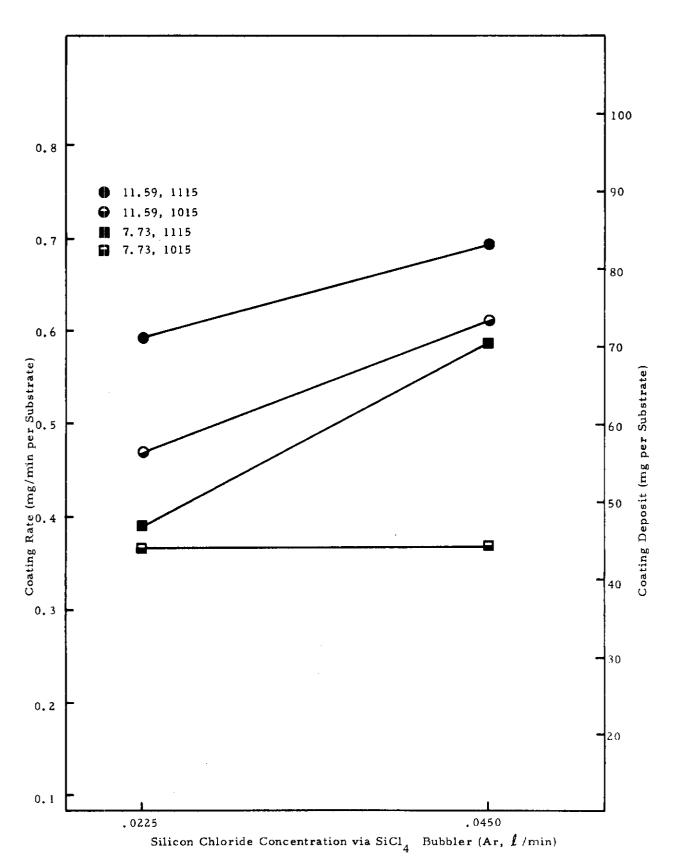


Figure 13. Optimize Parameters: Effect of Silicon Chloride Concentration on Coating Rate in First Statistical Series

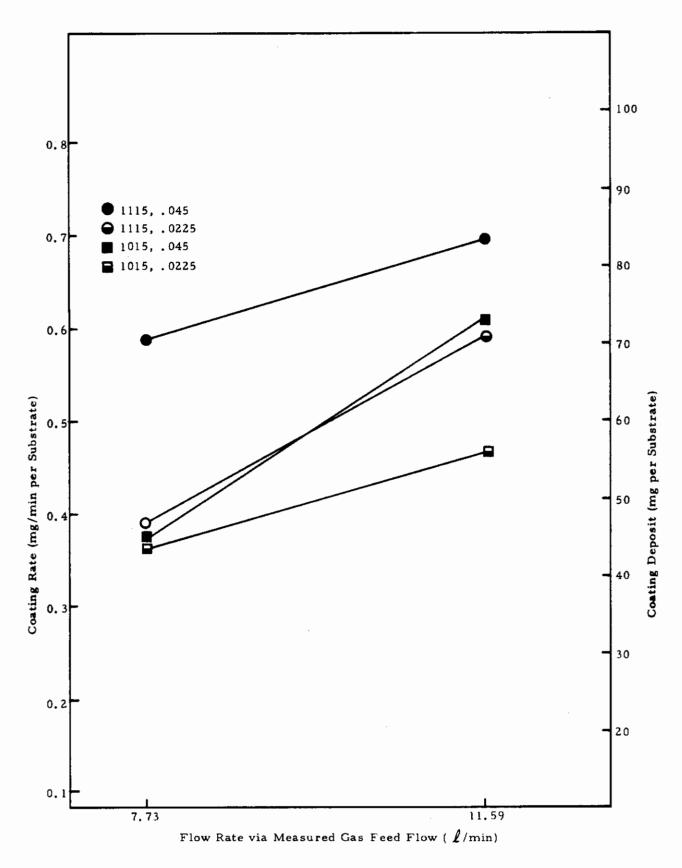


Figure 14. Optimize Parameters: Effect of Flow Rate on Coating Rate in First Statistical Series

Table XX

EFFECT OF ARGON DILUTION OF HYDROGEN
GAS FEED ON COATING DEPOSIT

Run Number	Argon Dilution of Hydrogen Gas Feed	Prereduction of Titanium Tetrachloride	Coating Deposit: Avg. Substrate Weignt Gain (mg)
CLY-96-68	Low	Single Chamber	44. 3
CLY-98-68	High	Single Chamber	96.6
CLY-107-68	High	Single Chamber	95.5

Other Run Conditions:

Hydrogen gas feed of 3 l/min. The "low" and "high" expressions used in argon dilution of hydrogen gas feed are 0.46 and 4.33 l/min.

It should be noted that the above reactions are not precise representatives of chemistry since other titanium and chromium chlorides are known to exist. The shown reactions are intedned only to represent dual chamber prereduction of titanium tetrachloride.

The investigation indicated the coating deposit achieved during dual chamber prereduction was increased over that achieved with single chamber prereduction with only Cr chips as shown by data in Table XXI.

Table XXI

EFFECT OF DUAL CHAMBER PREREDUCTION OF
TITANIUM TETRACHLORIDE ON COATING DEPOSIT

Run Number	Prereduction of Titanium Tetrachloride	Coating Deposit: Avg. Substrate Weight Gain (mg)
CLY-107-68	Single Chamber	95.5
CLY-108-68	Dual Chamber	112.9

Other Run Conditions:

Both runs conducted with high argon dilution of hydrogen gas feed.

In addition to coating deposit increase indicated in Table XXI, microscopic inspection of the single and dual chamber samples revealed that the coating deposit surface of the dual chamber sample was smoother (i.e., less nodule projections) than the single chamber sample. This was confirmed by comparison made of additional deposit surfaces prepared by both single and dual chamber prereductions. As a result of these findings, the dual chamber prereduction of titanium tetrachloride was selected for use in the second statistical series of experiments.

4. Second Statistical Series with Dual Chamber Prereduction

The second statistical series of experiments to optimize parameters was designed to determine effect of the three independent variables which were held constant in first statistical series (i.e., titanium tetrachloride concentration, hydrogen concentration and argon dilution of hydrogen gas feed). The completed series, at two levels for each independent variable are presented in Table XXII. For the series, the independent variables studied in the first statistical series were maintained at the constant optimum level as determined by first statistical series results.

The second statistical series resulted in coating rate increases; which, in general, surpassed coating rates achieved in the first statistical series. Graphical plots are shown in Figures 15, 16 and 17. The positive slope curves, illustrating coating rate increase, indicated that argon dilution of the hydrogen gas feed influences coating rate more than titanium and hydrogen concentrations.

The effect of titanium chloride concentration on coating rate is depicted graphically in Figure 15. The effect depicted by each curve in the figure was obtained while holding hydrogen concentration and argon dilution of hydrogen gas feed constant. The positive slope curves in the figure indicate that there is a coating rate increase due to titanium chloride concentration.

Table XXII

OPTIMIZE PARAMETERS: SECOND STATISTICAL SERIES
OF EXPERIMENTS WITH DUAL CHAMBER PREREDUCTION
OF TITANIUM TETRACHLORIDE

Run No.	Х ₄	X 5	x ₆	Y
1 2 3 4 5	-1 -1 1 -1 1	1 -1 -1 -1 1	1 -1 -1 1 1	0.619 0.469 0.535 0.576 0.831 0.567
8	-1	-1 1	-1	0.624 0.510

Variable	Description	- 1	1
x ₄	Titanium Chloride Concentration via TiCl ₄ Bubbler (Ar, &/min)	3	6
х ₅	Hydrogen Concentration via H ₂ Flow (l/min)	3	6
x ₆	Argon Dilution of Hydrogen Gas Feed (l/min)	3	6
Y	Coating Rate via Average Weight Gain Rate Per Substrate (mg/min)		_

Figure 16 shows effect of hydrogen concentration on coating rate. The effect depicted by curves was obtained while holding the titanium chloride concentration and argon dilution of hydrogen gas feed constant. The curves suggest a small increase in coating rate with hydrogen concentration.

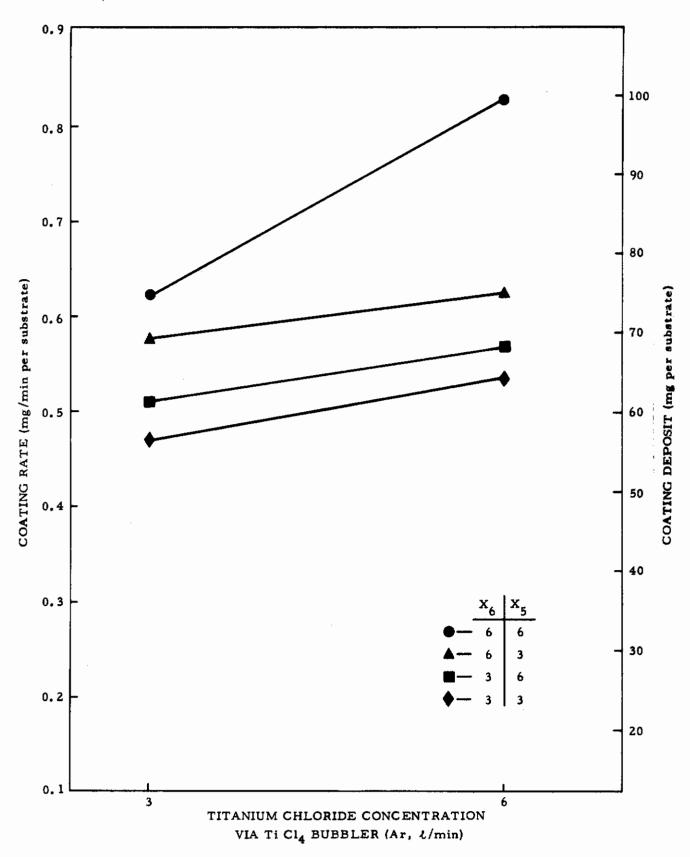


Figure 15. Optimize Parameters: Effect of Titanium Chloride Concentrations on Coating Rate in Second Statistical Series

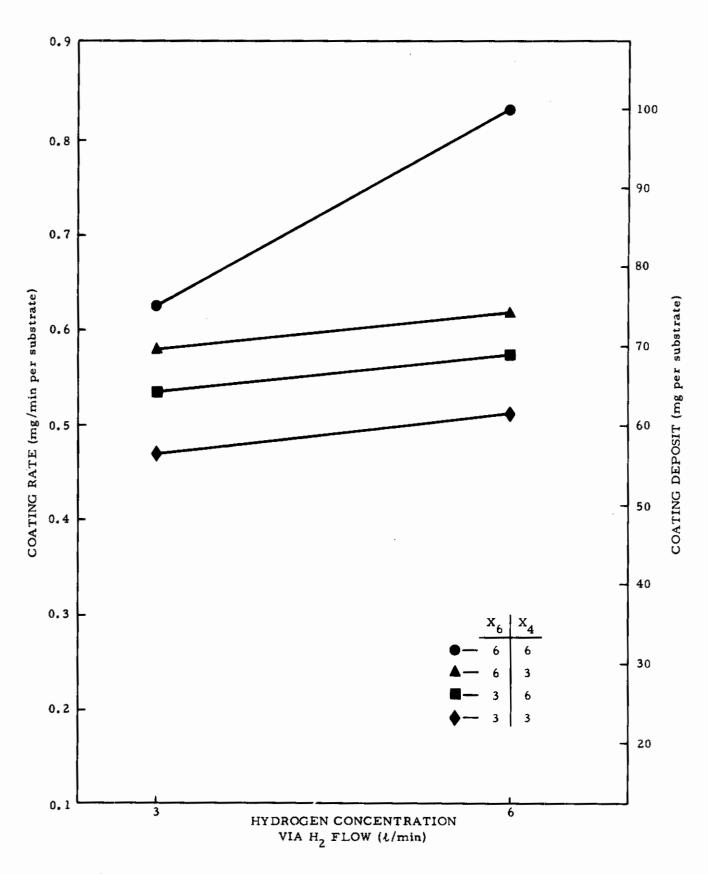


Figure 16. Optimize Parameters: Effect of Hydrogen Concentration on Coating Rate in Second Statistical Series

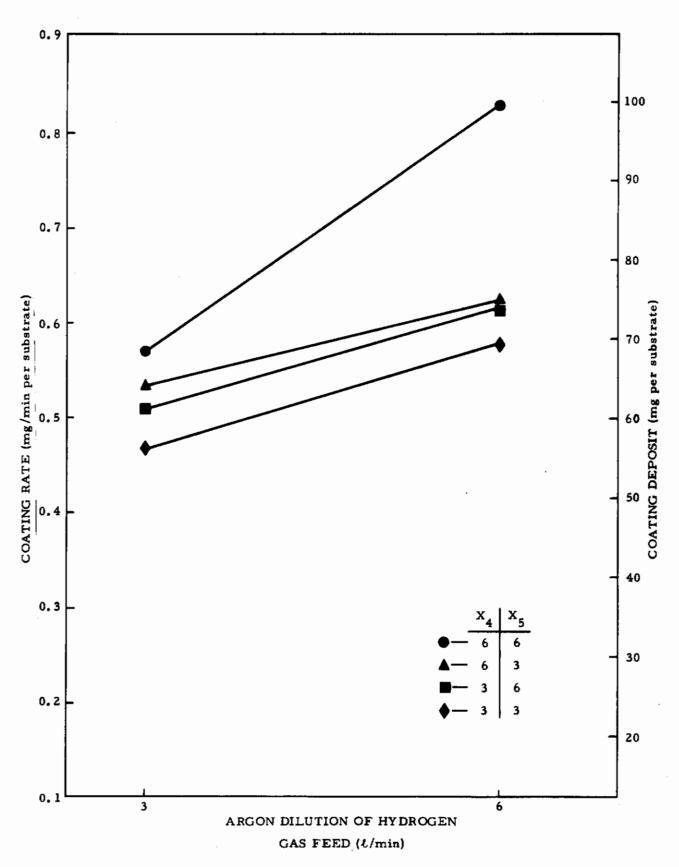


Figure 17. Optimize Parameters: Effect of Argon Dilution of Hydrogen Gas Feed on Coating Rate in Second Statistical Series

The effect of argon dilution of hydrogen gas feed on coating rate is indicated by Figure 17. The effect depicted by the curve was obtained while holding the titanium chloride and hydrogen concentrations constant. The positive sloped curves illustrate an increase in coating due to argon dilution of hydrogen gas feed. It is noted that these positive slope curves have higher slopes than the corresponding positive slopes of the other two independent parameters. This suggests that argon dilution of the hydrogen gas feed has more effect on coating rate than titanium chloride concentration and hydrogen concentration for the range of variables studied.

The above suggestion tends to confirm earlier findings made in the exploratory runs to optimize parameters: argon dilution of hydrogen gas feed is an independent parameter providing appreciable increase in coating deposit.

B. ANALYSIS

Regression and factorial variance analyses of the first and second statistical series results were performed to provide information for reference to use in subsequent program activities. Multiple regression analysis with T-test indicated that flow rate and argon dilution of hydrogen gas feed appreciably influence coating rate. For F-test, factorial analysis of variance confirmed the indicated coating rate influence at 95% confidence level. The factorial analysis additionally disclosed that variation was not attributable to first order interactions. On basis of these findings, flow rate and argon dilution were maintained at high levels in the next experiments (deposit phase runs) with the rotating reaction chamber equipment.

1. Regression Analysis

Multiple regression analysis of the first statistical series results was made for coating rate as a function of the three independent variables: reaction temperature, silicon chloride concentration and flow rate. The regression analysis results are listed in Table XXIII. The computed T-value for each variable ($X_1 = 2.99$, $X_2 = 2.99$ and $X_3 = 4.35$) exceeds the T-value (2.36) for 95 percent confidence level. This indicates the X_1 , X_2 , and X_3 influence on coating rate. On the basis of T-test, the X_3 variable has the greatest effect.

Table XXIII

ANALYSIS: MULTIPLE REGRESSION ANALYSIS OF FIRST STATISTICAL SERIES

Variable	Regression Coefficient	T Value	T for 95% Level
X (Reaction Temperature)	1.1 x 10 ⁻³	2.99	2.36
X ₂ (Silicon Chloride Concentration)	4.89	2.99	2.36
X ₃ (Flow Rate)	4. 15 x 10 ⁻²	4.35	2.36

Intercept: -1.22691

Standard Error of Estimate: 0.05196

Multiple Correlation Coefficient: 0.94983

Multiple regression analysis results are listed in Table XXIV for the second statistical series. The tabulated regression analysis results apply for coating rate as a function of the three independent variables: titanium chloride concentration, hydrogen concentration and argon dilution of hydrogen gas feed. The computed T-values for X_4 and X_6 (i.e., X_4 = 2.37 and X_6 = 3.53) exceed the T-value for 95 percent confidence level (i.e., T = 2.36), and indicate a significant effect by X_4 and X_6 on coating rate. The smaller value, 2.00, for X_5 indicates less influence. On basis of T-test, the X_6 variable, argon dilution of hydrogen gas feed, has the greatest effect on coating rate for the variable range studied in the second statistical series.

Table XXIV

ANALYSIS: MULTIPLE REGRESSION ANALYSIS OF SECOND STATISTICAL SERIES

Variable	Regression Coefficient	T Value	T for 95% Level
X ₄ (Titanium Chloride Concentration	3.19×10^{-2}	2.37	2.36
X ₅ (Hydrogen Concentration)	2.69×10^{-2}	2.00	2.36
X ₆ (Argon Dilution of Hydrogen Gas Feed)	4.74×10^{-2}	3,53	2.36

Intercept: 0.11325

Standard Error of Estimate: 0.05702

Multiple Correlation Coefficient: 0.92017

2. Factorial Analysis of Variance

Factorial analysis was completed for first statistical series using the Yates' method, as discussed by Davies; for calculation of effects and mean squares. The results for analysis of variance, including F-value calculated from experimental data and F-value required for 95 percent confidence level, are presented in Table XXV.

In Table XXV, the columns for source of variation and F-values are utilized. The main effects in source of variation for rows 1, 2 and 3 corresponds to variations in the three independent variables X_1 , X_2 and X_3 . The other source of variation (interactions) corresponds to interactions of the respective independent variables. It is noted that F-values of main effects of 1, 2 and 3 exceed the F-values of interactions (i.e., $X_1 = 8.97$, $X_2 = 8.97$ and $X_3 = 19.0$ vs 1.18, 0.074 and 0.073 respectively). These higher F-values indicate that the coating rate variation is attributable to the three independent variables studied in first statistical series, and is not attributable to first order interactions of the variables. Furthermore, on basis of F-test at 95 percent confidence level, the highest F-value of 19 for X_3 indicates that flow rate has the greatest influence on coating rate for variable range studied. Flow rate in the second statistical series exceeded flow rate in first statistical series on basis of this finding.

Factorial analysis of variance for the second statistical series is presented in Table XXVI. In the table, with first column for source of variation, the main effects in source of variation column for 4, 5 and 6 corresponds to variations in the three independent variables X_4 , X_5 and X_6 which are titanium chloride concentration, hydrogen concentration and argon dilution of hydrogen gas feed respectively.

Davies, O. L., Editor, The Design and Analysis of Industrial Experiments, p. 264, Hafner Publishing Company, New York, New York, 1963.

Table XXV

ANALYSIS: FACTORIAL ANALYSIS OF VARIANCE FOR FIRST STATISTICAL SERIES

Source of Variance	Degrees of Freedom	Sums of Squares	F Value*	F ** Required
Main Effects				
1	1	2.42X10 ⁻²	8.97	7.71
2	1	2.42X10 ⁻²	8.97	7.71
3	_ 1	5, 12X10 ⁻²	19.0	7.71
Interactions				
12	1	0.32X10 ⁻²	1.18	7.71
13	1	0.020X10 ⁻²	0.074	7.71
23	1	0.020X10 ⁻²	0.073	7.71
123	1	0.720X10 ⁻²		
TOTAL	7	11.041X10 ⁻²		

NUMBER OF VARIABLES:

NUMBER OF REPLICATES: 1

Variance	Variance Identification	No. of Levels
1	Reaction Temperature	2
2	Silicon Chloride Concentration	2
3	Flow Rate	2

GRAND MEAN:

0.51

*Based on combining all four interactions
**95 percent confidence level

Table XXVI

ANALYSIS: FACTORIAL ANALYSIS OF VARIANCE FOR SECOND STATISTICAL SERIES

Source of Variance	Degrees of Freedom	Sums of Squares	F Value	F Required	F Required
Main Effects					
4	1	1.83X10 ⁻²	5.64	4. 54	7. 71
5	1	1.30X10 ⁻²	4.01	4. 54	7. 71
6	1	4.05X10 ⁻²	12.4	4. 54	7.71
Interactions					
45	1	0.301X10 ⁻²	0.924	4.54	7.71
46	1	0.234X10 ⁻²	0. 722	4. 54	7.71
56	1	0.392X10 ⁻²	1.20	4.54	7.71
456	1	0.373X10 ⁻²			
TOTAL	7	8.485X10 ⁻²	1		

NUMBER OF VARIABLES:

NUMBER OF REPLICATES: 1

Variance	Variance Identification	No. of Levels
4	Titanium Chloride Concentration	2
5	Hydrogen Concentration	2
6	Argon Dilution of Hydrogen Gas Feed	2

GRAND MEAN: 0.591

^{*}Based on combining all four interactions

^{** 90} percent confidence level

^{*** 95} percent confidence level

The other source of variation (interactions) corresponds to interaction of the respective independent variables. It is noted that F-values of main effects of 4, 5 and 6 exceed the F-values of interactions (i.e., $X_4 = 5.64$, $X_5 = 4.01$ and $X_6 = 12.4$ vs 0.924, 0.722 and 1.20 respectively). These higher F-values indicate that the coating rate variation is attributable to the three independent variables studied in second statistical series, and is not attribuable to first order interactions of the variables. Furthermore, on basis of F-test at 95 percent confidence level, the highest F-value, 12.4 for X_6 , indicates that argon dilution of hydrogen gas feed exerts highest influence of the independent variables.

The argon dilution of hydrogen gas feed was maintained at high level in the next experiments, deposit phase runs, on basis of above favorable effect in factorial analysis of variance.

C. ADDITIONAL OPTIMIZATION AND PRODUCTION

Additional optimization and production studies were started by utilizing previous program analysis findings from first and second statistical series which were conducted with round rod substrates of columbium composition.

In deposit phases, acceptable coating deposits were achieved on threaded substrates — 1-in. threaded stud refractory fasteners of columbium alloy Cb 752 composition — in variable loading runs with the processing equipment. For coating oxidation samples, a statistically designed plan was formulated and conducted to determine the influence of the seven process variables on important coating properties (including rate, deposit and oxidation resistance). The effect of each process variable was established by the Yate's method in analysis of test which also included a specific method for selecting process variable values for oxidation improvement.

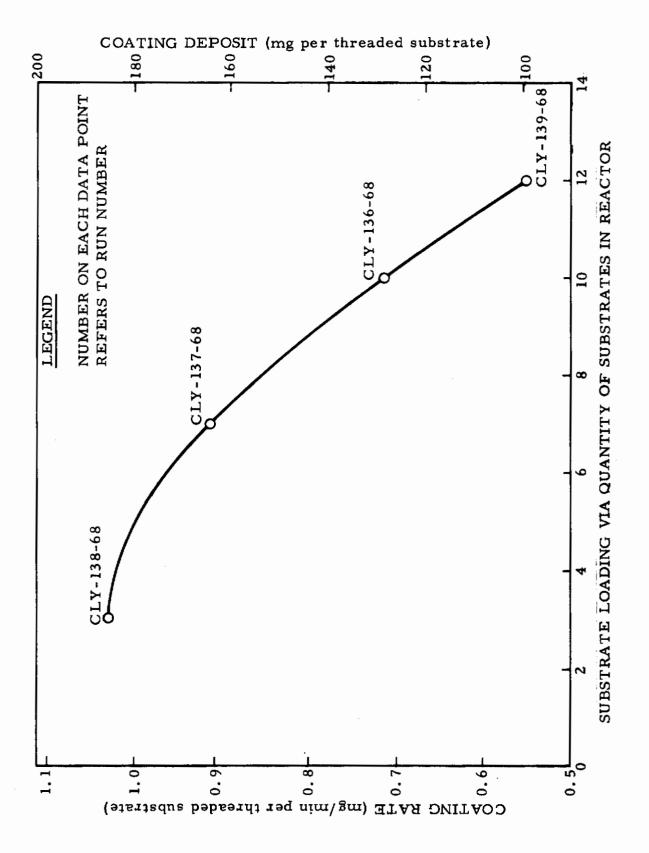
Duplicate best coating runs demonstrated that differently shaped substrates — 1 1/2-in. hex head bolt refractory fasteners of Cb 752 composition — could be CVD coated at high reactor loading of ten substrates per run. Produce fastener runs further verified that the CVD-rotating reaction chamber technology was applicable for coating additional different shapes — bolts, studs, rods and flat panels — in one run. Coating was achieved with reactor loading of twenty total substrates per run which is within scope of potential production equipment.

Cyclic oxidation optimization provided significant coating oxidation property improvement and uniform coverage of different shapes.

Three shapes — hex head bolt, threaded stud and hex nut refractory fasteners — were CVD coated at a loading level of thirty substrates per run (i.e., ten of each shape) with uniform coating coverage of very little variation from the mean. Additionally, statistical base optimization runs — based on statistical plan results from coating oxidation samples and analysis of test — were completed to define the apparent optimum region. A tenfold coating oxidation property improvement over earlier results was achieved by coating the refractory fasteners in the apparent optimum region.

For production demonstration batches, specific refractory fasteners — 1 1/2-in. long hex head bolts and complimenting 1/4-in. dia. hex nuts — were coated at increased reactor loading of thirty to fifty substrates per run. A total of more than twenty demonstration runs were made with uniform substrate coverage at this current coating capability level. In previous work which served as a basis for this scale-up program, coating capability involved one substrate per run. The current coating capability of fifty substrates per run greatly exceeds the previous results and illutrates that the optimized technology is within the scope of practical production equipment.

1. Deposit Phases


Deposit phase runs with threaded substrates — refractory fasteners of columbium alloy composition — were made using independent variable values obtained from first and second statistical series which were conducted with round rod substrates of columbium composition. The coating deposits achieved on the threaded substrates in the runs were acceptable and within the same order of magnitude as coating deposits obtained with the round rod substrates.

Deposit phase runs with variable quantity substrate loading in the reactor were completed as part of the program objective involving process establishment of potential production equipment. The variable quantity substrate run results disclosed coating rate and coating deposit variations when substrate loading in reactor was increased from 3 to 12 substrates.

Figure 18 illustrates the variation of coating rate with substrate loading. The right vertical axis in the figure shows the variation of coating deposit. The curve constructed in the figure indicates that coating rate and coating deposit were decreased as substrate loading was increased from 3 to 12 substrates in the reactor. The coating deposit variation is about 50 percent with the 400 percent loading increase. Also, the coating deposit (about 130 mg per threaded substrate) achieved at substrate loading of 10 was within the acceptable range for the next experiments, coating oxidation samples.

2. Coating Oxidation Samples

A statistically designed plan was formulated and conducted in coating oxidation samples runs. The purpose was to determine influence of the seven process variables on coating properties of interest (coating rate, coating deposit and oxidation resistance of coating) while conducting a minimum number

Deposit Phases: Effect of Substrate Loading on Coating Rate in Deposit Phase Runs Figure 18.

of experiments utilizing previous program findings. A fractional design was selected which minimized experiments by requiring only one-sixteenth of total factorial design for process variable effects and neglecting first-order interactions. Previous program findings were utilized in selection of process variable base levels in the fractional design. The fractional plan and results for coating properties at each experiment level are presented in Table XXVII.

The influence of the process variable on coating properties listed in the table was determined by Yate's method. The calculated effect tended to confirm earlier reported results applicable to different process variable value ranges. The calculated results disclosed that the coating rate and the coating deposit on substrates increased with corresponding increases in reaction temperature, silicon chloride concentration, flow rate, titanium chloride concentration and hydrogen concentration. Reaction temperature, silicon chloride concentration and titanium chloride concentration exhibited more influence on coating rate and coating deposit than the other process variables for the variable range studied in coating oxidation sample runs. The coating property disclosure applies for 1-in. threaded stud substrates which were coated at high loading levels of six and ten substrates per run.

A detailed tabulation of process conditions and results for coating oxidation sample runs is presented in Appendix IX. A summary tabulation showing loading level (quantity of substrates coated in the run) and coating deposit (quantity of coating deposited on the substrate) is given in Table XXVIII. It is noted in the table that eight demonstration runs were conducted at a loading level of ten substrates per run with a complimenting coating deposit 80 to 160 mg per substrate.

Table XXVII COATING OXIDATION SAMPLES:

PLAN AND RESULTS FOR INITIAL COATING OXIDATION SAMPLE RUNS

		Pr	осевв Va	riables				R	esults: Co	ating Prop	erties
Run No.	x ₁	x ₂	х ₃	x ₄	х ₅	x ₆	x ₇	Y	Y ₂	Y ₃	Y ₄
1	-1	-1	-1	-1	-1	-1	- 1	. 513	92.1	2.0	. 5
2	+1	+1	-1	-1	+1	+1	-1	1.210	218, 5	26. 5	9.0
3	+1	-1	+1	-1	+1	-1	+1	. 920	165.5	17. 3	1,0
4	-1	+1	+1	-1	- 1	+1	+1	. 457	82.0	9.8	2.0
5	+1	-1	-1	+1	-1	+1	+1	.605	109.7	11.8	6.5
6	- 1	+1	-1	+1	+1	-1	+1	.776	141.7	2.0	27.5
7	-1	-1	+1	+1	+1	+1	-1	.617	111.1	103.5	42.0
8	+1	+1	+1	+1	- 1	-1	-1	1. 160	209.8	2,0	34.0
Process Va and Coa Proper	ting		D	escription		•	Le	ow vel	High Level	Unit	Base Level
	-	_			000		+	_			
\mathbf{x}_1		Reaction Temperature (°C)		°C)		100	·	1100	50	1050	
x ₂				ie Concen (Ar, l/m		a	. 04	10	. 080	. 020	.060
x ₃	x ₃		Rate via Flow (l/	Measured min)	i Gas		1	17	21	2	19
x ₄		Titanium Chloride Concentration via $TiCl_4$ Bubbler (Ar, t/min)						4	6	1	5
x ₅	x ₅		ogen Cond low (t/mi	centration n)	via			4	6	1	5
x ₆		Argon Dilution of Hydroge Feed (L/min)		Argon Dilution of Hydrogen Gas 4			4	6	1	. 5	
x ₇		Substrate Loading via Quantity of 6 Substrate in Reactor					Substrate in Reactor			2	8
Y Coating Rate via Average Weight Gain Rate per Threaded Substra					<u> </u>		Substrate (r	ng/min)	- ' '		
Y ₂		Coati	ng Depos	it via Ave	rage Wei	ght Gain p	er Threa	ded Sul	bstrate (mg)	
Y 3						ce at 2200 ent Before			Test Time	in High	
Y ₄						ce at 2400 ent Before			Test Time	in High	

Table XXVIII

COATING OXIDATION SAMPLES: LOADING LEVEL AND COATING DEPOSIT RESULTS FOR COATING OXIDATION SAMPLE RUNS

Run	Loading Level: Quantity of		Ç	eting I	epositi	Weight	Gain of	Substra	te (mg)				Substrate
Number	Substrates	1	2	3	4	5	6	7	. 8	9	10	Avg.	Identification
CLY-147-68	6	131, 7	132.8	138.2	115.2	129.3	124.0					128.5	Threaded Substrate
CLY-148-68	6	92.9	93.6	92.4	91.2	91.5	91.0			—		92.1	Threaded Substrate
CLY-149-68	10	162.0	163.0	168.5	168.4	166.0	164. B	165.5	165. 9	166.6	164. 5	165.5	Threaded Substrat
CLY-150-68	10	111.2	109.6	113.5	112.2	111.8	108.0	106.4	109.1	109. 1	107.0	109.7	Threaded Substrate
CLY-151-68	6	114.5	115.2	106.9	111.9	106.6	112.0	l —		—		111.1	Threaded Substrat
CLY-152-68	6	220.5	189. 5	242.9	216.8	223.8	217.7	I —	—			218.5	Threaded Substrate
CLY-153-68	10	59.8	90.2	80.1	56.2	90.0	91.2	89.5	91.8	90.7	80.7	82.0	Threaded Substrate
CLY-154-68	10	147.1	138.8	134.1	145.4	134.4	136.6	142.0	144.1	1 4 7. 0	147.9	141.7	Threaded Substrate
CLY-155-68	6	205.0	207.8	210.7	210.3	200.4	224. 5			 —	l —	209.8	Threaded Substrat
CLY-156-68	10	136.6	130.5	133.2	127.3	134.2	134. 9	135.7	132.2	135.5	139.3	134.9	Threaded Substrat
CLY-157-68	10	117.0	104.9	101.7	103.4	108.4	103.4	107.3	106.6	110.3	106.0	106.9	Threaded Substrat
CLY-158-68	10	93.4	93.1	93.6	95. 1	93.4	94.3	94.7	96.7	95.7	98.4	94.3	Threaded Substrat
CLY-159-68	10	137.9	136.8	134.9	139.0	143.0	138.4	139.9	142.3	141.1	140.4	139.4	Threaded Substrate

^{. 1-}in. Threaded Stud Substrate

Completion of this program activity of coating oxidation samples revealed that 1-in. threaded stud substrates may be CVD coated at loading levels of six and ten substrates per run which is within the scope of potential production equipment. Additionally, it provided necessary data for the next activity — analysis of test — involving process variable effects on coating oxidation resistance.

3. Analysis of Test

In analysis of tests, the effect of process variables on coating oxidation resistance was determined for samples from coating oxidation sample runs. Yate's method was utilized for calculating the effects. The calculated results based on 2400°F oxidation test results for the coatings are shown in Table XXIX.

Reaction Chamber C (small reaction chamber)

Table XXXIX

ANALYSIS OF TESTS: EFFECT OF PROCESS VARIABLES ON OXIDATION RESISTANCE OF COATING BASED ON 2400°F OXIDATION TEST RESULTS

	Process Variable			Effect of Process	Variable on Oxidation Resistance of Coating
	Identification	Unit	Base Unit Level	Calculated Effect	Remarks
x ¹	Reaction Temperature (°C)	20	1050		Decrease of reaction temperature below 1050°C base level should improve coating oxidation resistance.
x ²	Silicon Chloride Concentration via SiCl Bubbler (Ar, L/min)	.020	. 060	+.28	Increase of silicon chloride concentration should increase coating oxidation resistance.
x ₃	Flow Rate via Measured Gas Feed Flow (L/min)	2	19	+. 44	Coating oxidation resistance is increased with increase of flow rate.
×	Titanium Chloride Concentration via TiCl ₄ Bubbler (Ar, \$\epsilon{t}\text{min}\)	1	5	+1.22	Large calculated effect of +1.22 suggests that titanium chloride concentration possesses greatest influence on oxidation resistance for variable range studied.
x ₅	Hydrogen Concentration via H_2 Flow (t/\min)	ı	5	+, 45	Second largest calculated effect of +.45 indicates hydrogen concentration increase favorable influences coating oxidation resistance.
x e	Argon Dilution of Hydrogen Gas Feed (t/\min)	1	5	77	Lowering of level of argon dilution of hydrogen gas feed improves coating oxidation resistance.
۲x	Substrate Loading via Quantity of Substrate in Reactor	2	8	67	Negative calculated effect indicates coating oxidation with decrease of substrate loading.

Explanation:

- Process variable effects calculated by Yate's method
- Effects are based on results for 2400°F oxidation testing of samples from initial coating oxidation sample runs.
- 1-in. threaded stud substrates
- Reaction Chamber C (small reaction chamber)
- Gas Feed Geometry D

In Table XXIX, a positive value in the column for calculated effect indicates that coating oxidation resistance is improved with positive increase of that test process variable. Within this scope, the calculated results indicate that coating oxidation resistance at 2400°F is improved with increase of silicon chloride concentration, flow rate, titanium chloride concentration and hydrogen concentration. The negative values in the calculated effect column suggest that coating oxidation resistance is improved with decrease of reaction temperature, argon dilution of hydrogen gas feed and substrate loading. Of these calculated effects for improvement with process variable increase, it appears that titanium chloride concentration and hydrogen concentration possess more influence on oxidation resistance than the other process variables for the variable range studied.

These findings for process variable effects on coating oxidation resistance were utilized in experiments for coating oxidation improvement. For their implementation, the respective values in the calculated effect and unit columns in Table XXIX are used. The product of the calculated effect and unit values is determined for each process variable. This product is then added (subtracted if the calculated effect is negative) to the base level of the variable to provide a new process variable value for oxidation improvement. 2

Multiple regression analysis for coating oxidation resistance as a function of coating thickness and composition was made for samples prepared at two coating thickness levels according to contract specifications. The cursory correlation applied for 2200°F and 2400°F coating oxidation resistance. Due to low computed T values and composition data spread, it was concluded that the correlations comprised only a rough estimation method.

Li, C.H., "Work Sheet Gives Optimum Condition," Chemical Engineering, 151-156, April 7, 1968.

In further work for analysis of tests, multiple regression analysis correlations were compiled for 2200°F and 2400°F coating oxidation resistance as a function of the seven process variables (reaction temperature, silicon chloride concentration, flow rate, titanium chloride concentration, hydrogen concentration, argon dilution level and substrate loading). The correlations including regression coefficients and computed T values are presented in Table XXX. In the table for 2400°F coating oxidation resistance, the columns for regression coefficient and computed absolute T values are used. The positive values in the regression coefficient column suggest that 2400°F coating oxidation resistance is improved with increase of silicon chloride concentration, flow rate, titanium chloride concentration and hydrogen concentration. In the column giving the computed T value for each of these process variables, it is noted that their computed T values exceed T values for 90% and 95% confidence levels. Within this scope, the tabulated results further indicate influence of silicon chloride concentration, flow rate, titanium chloride concentration and hydrogen concentration for coating oxidation resistance improvement at 90% and 95% confidence levels.

The findings from completion of this program activity — especially the indicated influence of the process variables on coating oxidation performance — provided a good method for process variable value selections in remaining program activities concerned with improving coating oxidation resistance.

4. Duplicate Best Coating

Selection of process variable values was completed for experiments in the plan for duplicating the best coating. The plan for duplicating best coating runs involved using program results for 1-in. threaded studs as substrates and the small reaction chamber (Reaction Chamber C in Figure 11c) as the reactor.

Table XXX

CORRELATIONS FOR 2200°F AND 2400°F COATING OXIDATION RESISTANCE ANALYSIS OF TESTS: CURSORY MULTIPLE REGRESSION ANALYSIS

			Regression Coefficient	efficient	Computed Absolute T Value	olute	T Value for Confidence Level	T Value for fidence Level
	Process Variable	Variable Value Range Studied for Correlation	2200°F Coating Oxid. Res. Y ₃ (hr)	2400°F Coating Oxid. Res. Y ₄ (br)	2200°F Coating Oxid. Res. Y ₃ (hr)	2400°F Coating Oxid. Res. Y ₄ (hr)	95%	% 06
x ₁	Reaction Temperature (°C)	988-1100	239	064	1.10	1.80	2.20	1.80
x	Silicon Chloride Concentration via $\operatorname{SiCl}_{\frac{1}{4}}$ Bubbler (Ar, ℓ/\min)	.040110	-140.6	191.7	.279	2.32	2.20	1.80
x ³	Flow Rate via Measured Gas Feed Flow (L/min)	16.5-21	3.40	1.96	. 629	2.22	2.20	1.80
×*	Titanium Chloride Concentration via TiC1 Bubbler (Ar. l/min)	3.75-6	3,48	11,68	. 322	65.9	2.20	1.80
×	Hydrogen Concentration via H ₂ Flow (t/min)	2.5-6	6.49	3, 54	. 644	2. 15	2.20	1.80
×°	Argon Dilution of Hydrogen Gas Feed (*/min)	1.25-6	2.58	-1.97	. 295	1.38	2.20	1.80
×	Substrate Loading via Quantity of Substrate in Reactor	6-10	-3,94	-2.99	. 740	3. 43	2.20	1.80
Intel	Intercept		188.9	-8.69				
Stan	Standard Error of Estimate		31.23	5. 12				
Mult	Multiple Correlation Coefficient		1.59	876.				
Mea	Mean Value for Correlation		15.3	11.6				
Corre	Correlation Specifica							
	• Y_3 and Y_4 = aX_1 + bX_2 + cX_3 + dX_4 + eX_5 + tX_6 + gX_7 + Intercept	eX ₅ + fX ₆ + gX ₇ + 1	Intercept					
	• a, b, c, d, e, f, and g = Regression coefficient in above tabulation	coefficient in above	tabulation					
	• Y ₃ = Coating Oxidation Resistance at 2200°F via Oxidation Environment Before Failure [hr]	2200°F via Averag	at 2200°F via Average Test Time in High Temperature e Failure (hr)	h Temperature				

- Y₄ = Coating Oxidation Resistance at 2400°F via Average Test Time in High Temperature
 Oxidation Environment Before Failure (hr)
- Correlation based on samples from coating oxidation sample runs
- 1-in, threaded stud substrate
- Reaction Chamber C (small reaction chamber)
- Gas Feed Geometry D

The steps in this plan were (a) repeating runs which provided best coating oxidation resistance at 2400°F testing, (b) repeating runs which provided best oxidation resistance at 2400°F testing with substrate reactor loading of ten and (c) conducting additional runs utilizing findings of previous activity — analysis of tests — for process variable effects on coating oxidation resistance. For the additional runs, process variables of silicon chloride concentration, flow rate, titanium chloride concentration and hydrogen concentration were increased from their base level values on the basis of calculated effect for coating oxidation improvement. The substrates were 1 1/2-in. hex head bolts of specified columbium alloy composition.

Initial experiments with 1 1/2-in. hex head bolts and small reaction chamber disclosed that, after short periods of operation, the gas feed geometry system was broken by the different rotation volume of hex head bolt substrates. To solve this problem another reaction chamber (Reaction Chamber D in Figure 11d) was fabricated.

Complete process conditions and results for the duplicate best coating runs are presented in Table XXXI. The first two runs in the tabulation were made at process conditions which provided best 2400°F coating oxidation resistance with 1-in. threaded stud substrates according to steps (a) and (b) in the above stated plan for duplicating best coating runs. The remaining runs comprise the additional runs for coating oxidation improvement. All runs in the table were made with high substrate reactor loading of ten substrates.

Cr and Ti Chips Charge

Fresh Fresh Fresh Fresh

Table XXXI

DUPLICATE BEST COATING: PROCESS CONDITIONS AND RESULTS FOR DUPLICATE BEST COATING RUNS

		(4 / min)	(uin		Weight	Weight Weight	3	min)		Otal	l otal	Daniel	acit to a		Weight Gain of		Reaction	Gas Feed		
	SiCI	,	TiCI	_	Loss of Cr Chips	Loss of Loss of	H ₂	Diluant	Gas	Measured	Time	Temp. S	Speed			Substrate	Chamber	Geometry	Chamber Geometry Dual Chamber	٥
_	Bubbler	Diluant	Bubbler Diluant Bubbler Diluant	Diluant	(mg)	(mg)	Feed	Cas	(mg) Feed Gas Identification (1/min)	(t./min)	(min)	<u>[]</u>	(rpm)	Substrates	(Bus)	TOERCHIO!			1	L
CLY-160-69 .080 CLY-161-69 .040 CLY-162-69 .078 CLY-163-69 .096 CLY-164-69 .120 CLY-165-69 .120	.080 .040 .078 .078 .096	2.46 2.822 2.204 1.38	6.0 6.0 8.6 12.2 15.0	0.50 0.50 0.50 0.50 0.50	Yes Yes Yes Yes Yes	* * * * * * * * * * * * * * * * * * * *	6.0 6.0 6.5 8.0 10.0	6.0 4.0 6.0 6.0 6.5 3.5 8.0 2.0	A A A A A A A A A A A A A A A A A A A	17.0 21.0 22.0 25.0 27.0 29.0	240 300 300 300 60 270	1000 1000 1000 960 900	=====	0 0 0 0 0 0	178.4 147.2 297.3 306.8 81.4	1 1/2 Hex Head Bolt	00000	00000	Chamber B Chamber B Chamber B Chamber B Chamber B	
OTHER RUN CONDITIONS	CONDITI	SNO								•			1	1	Config CT AC Transfer Land Land					

• 1 1/2 hex head bolt (dimension: 1 1/2 in, long x 1/4 in, diameter with 1/2 in, of 1/4-20 refractory threads one end and hex head other end,
• In run CLY-164-69, resistance heating element burned out after one hour of run time.

	Quantity	L		Cos	ting Dep	Coating Deposit: Weight Gain of Substrate (mg)	ight Gain	of Subst	rate (mg				Substrate
Number	of Substrate	-	2	٠	-	3	9	7	20	6	10	Avg.	Identification
01 01.	2	4	159.6	170.8	182.7	183.6	193.5	194.7	193.0	191.3	167.8	178.4	144 5 159 6 170 8 182.7 183.6 193.5 194.7 193.0 191.3 167.8 178.4 1 1/2 Hex Head Bolt
20-101-170	2	1 2 2	152.0	147 7	143 6	143.6	138.0	157.3	163.2	156.1	145.6	147.2	162 0 147 7 143 6 143 6 138 0 157 3 163.2 156.1 145.6 147.2 1 1/2 Hex Head Bolt
CLY-161-69	2 9	1000	200	207 0	297 8	302.0	294. 7	294.1	294.0	295.6	302.6	297.3	202 207 207 207 8 302 0 204 7 294.0 295.6 302.6 297.3 1 1/2 Hex Head Bolt
CTX-162-69	9 9	200.0	100		302.2	305.5	305.4	296.7	296.7	317.3	313.7	306.8	200.2 201.4 202 2 305 4 296.7 317.3 313.7 306.8 1 1/2 Hex Head Bolt
CLY-163-69	2 2	27.5	7,44		82.9	90 3 82 9 63.0 69.1	69	94.1	79.2	1.98	106.0	81.4	94.1 79.2 86.1 106.0 81.4 1 1/2 Hex Head Bolt
CLY-164-69	2 5			131 4	4 111	228 7	327.8	329.8	332.9	329.3	329.0	330.7	22. 23. 23. 4 228. 7 327. 8 332. 9 329. 3 330. 7 1 1/2 Hex Head Bolt

The distribution and mean of coating deposit and rate are shown in Figure 19 for a representative duplicate best coating run. The partially darkened columns correspond to coating deposit and rate for each substrate (i.e., individual data for each substrate). The darkened column is the mean value for the ten substrates coated in the run. The individual data and mean value in the figure illustrate that there was little distribution of coating deposit and rate among the ten substrates coated in the run.

Completion of duplicate best coating runs demonstrated that the fabricated reaction chamber (Reaction Chamber D) may be utilized for coating 1 1/2-in. hex head bolt substrates at high substrate reactor loading of ten substrates per run. Further, the 1 1/2-in. hex head bolts were coated at high loading with very small variation of quantity of coating deposited on each substrate.

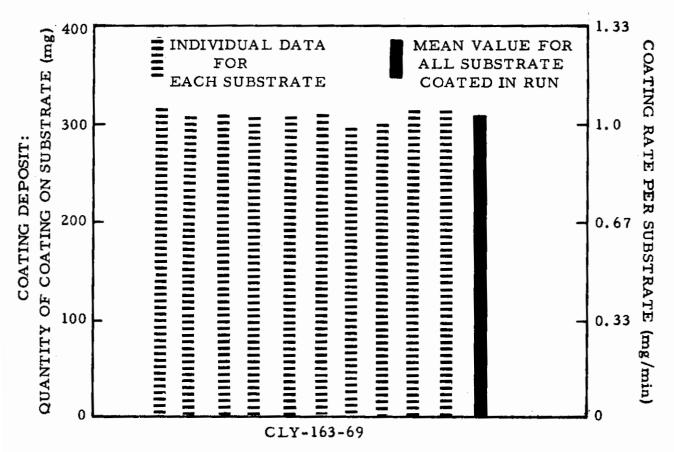
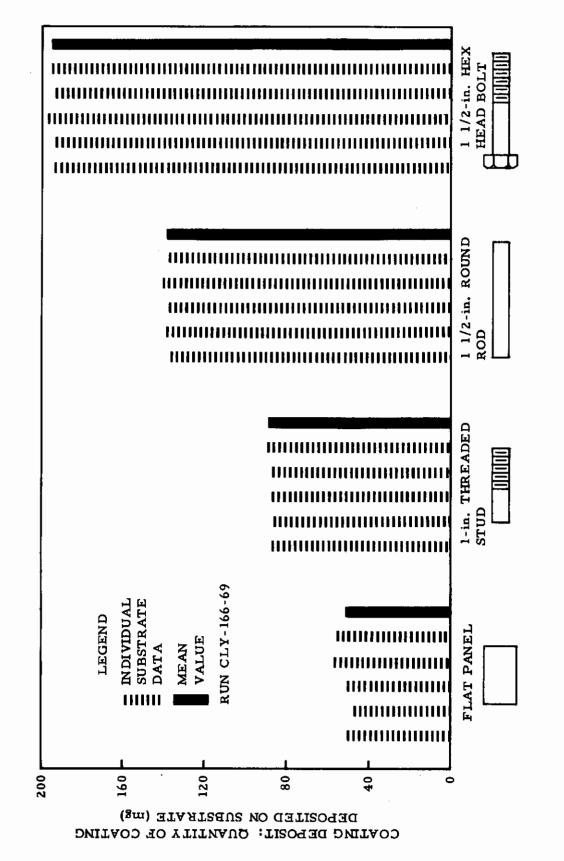


Figure 19. Duplicate Best Coatings: Mean and Distribution for Coating Deposit and Rate for Representative Duplicate Best Coating Run (1 1/2-in. Hex Head Bolt Substrate)


5. Product Fasteners

For "produce fasteners," process variable values were gleaned from duplicate best coating runs which were completed with 1 1/2-in hex head bolt substrates. The initial "produce fastener" runs within the scope were started using the reaction chamber just fabricated (i.e., Reaction Chamber D). These initial runs revealed that a larger reaction chamber was required for coating different shaped substrates — such as threaded studs, hex head bolts, hex nuts, flat panels and round rods — at high substrate reactor loadings within contract specifications. Procurement of a larger reaction chamber for use as the reactor in product fastener runs was started and completed.

Produce fastener runs were made with this larger rotating reaction chamber. The results for a representative run are shown in Figure 20 which plots coating deposit (i.e., quantity of coating deposited on a substrate) for the different shaped substrates coated in the run. Based on individual substrate data and mean value for each differently shaped substrate, the graphical plots indicate little coating deposit variation from the mean. This is especially true for the 1-in. threaded stud, 1 1/2-in. round rod and 1 1/2-in. hex head bolt. This small coating deposit variation is within acceptable limits. It is further noted that twenty of the different shaped substrates were coated in the run.

Completion of produce fastener runs demonstrated that, with the larger reaction chamber, the CVD-rotating reaction chamber technology is applicable to coating a variety of differently shaped substrates — including 1 1/2-inl hex head bolts, 1-in. threaded studs, 1 1/2-in. round rods and flat panels. Further, the completed produce fastener runs revealed that these different shaped substrates may be coated at loadings within the scope of process development of practical production equipment according to contract specifications.


Produce Fasteners: Mean and Distribution for Coating Deposit for Different Shaped Substrated Coated in Representative Produce Fastener Run Figure 20.

6. Cyclic Oxidation Optimization

Using previous results as a starting point, cyclic oxidation runs provided significant coating oxidation property improvement and uniform coating coverage of different shapes. Uniform coating coverage with very little coating deposit and coverage variation from the mean was achieved for three different shapes - hex head bolt, threaded stud and hex nut refractory fasteners - prepared at loading level of coating thirty substrates per run (i.e., ten of each shape). The uniform coverage permitted attachment of the coated hex nut to complimenting coated threaded bolt and stud substrates suggesting that the CVD coated components are still amenable for use in their original application. For coating oxidation property improvement, mean test times to failure of eighty plus hours for protection in a 2400°F oxidation environment were obtained for coated 1 1/2-in. round rods. The round rod substrates were coated in statistical base optimization runs to define apparent optimum region. Use of the apparent optimum region for coating 1 1/2-in. hex head bolt refractory fasteners provided a tenfold improvement. Results indicated mean time to failure exceeding twenty hours, compared to previous several hours protection. For comparison, the uncoated fastener fails with severe oxidation after only one-half hour. Coating thickness was several mils (mostly 3-4 mil range) for providing high temperature oxidation protection of the base substrate. These coating oxidation property test times to failure of eighty and twenty plus hours surpass all previous results for substrates coated at current high reactor loading level (coating twenty to thirty substrates per run) with several shapes.

For cyclic oxidation runs, Figure 21 presents representative results for coating deposit mean and distribution based on individual substrate data and mean value of the distribution. The figure applies for three differently shaped refractory fasteners — hex head bolt, threaded stud and hex nut — which were coated in the same deposition run at high reactor loading level of coating thirty substrates (i. e., ten of each shape). The fairly uniform height of the partially darkened — individual substrate columns for each different shape in the figure — reveals very little coating deposit and coverage variation from the mean.

Cyclic Oxidation: Mean and Distribution of Coating Deposit on Differently Shaped Refractory Fasteners Coated at High Reactor Loading Level Figure 21.

The uniform coating coverage of the three differently shaped refractory fasteners is shown in Figure 22. For the bottom two samples, attachment of the coated hex nut to the respective coated threaded substrates (threaded stud and hex head bolt refractory fasteners) suggested that the CVD coated components were amenable for use in their original application.

For coating oxidation property improvement, results of the statistical base optimization runs to locate the apparent optimum region are contained in Figure 23. The coating oxidation property (i.e., test time to failure illustrated by the darkened columns and the left vertical axis) was determined as the mean time from testing four coated samples in the 2400°F oxidation environment. The figure illustrates the coating oxidation property improvement with successive statistical base optimization runs (i.e., process parameter changes illustrated by horizontal axis). The improvement is demonstrated by the increasing height of the darkened columns (i.e., test times to failure exceeding 10, 20, 30, 60, 70, and 80 and 40 hours with the left vertical axis). The coating thickness of several mils (mostly in the 3-mil range) on the 1 1/2-in. round rod substrates is given by the partially darkened columns and right vertical axis. The mean test time to failure of eighty plus hours protection in the 2400°F oxidation environment indicated in the "apparent optimum region" surpasses all previous results for samples prepared at this reactor loading level (total: coating twenty substrates per deposition run, individual substrate shape: ten round rods and ten threaded studs).

Figure 24 displays results for "apparent optimum region" from 2600°F cyclic oxidation testing. The figure applies for 1 1/2-in. round rod substrates coated in the statistical base optimization runs.

Use of the statistical base optimization runs (i.e., process parameter values gleamed from the apparent optimum region) for coating 1 1/2-in. hex head bolt refractory fastener substrates provided significant coating oxidation property improvement. Figure 25 illustrates the improvement by comparing previous and current test times to failure. In the figure, mean test time to failure was determined as mean time from testing four coated samples to gross failure in the 2400°F oxidation environment.

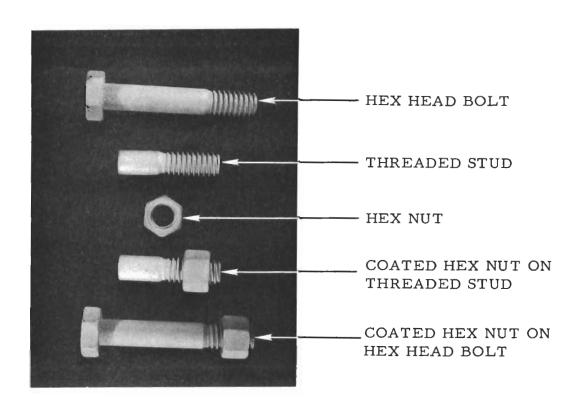


Figure 22. Cyclic Oxidation: Uniform Coating Coverage of Differently
Shaped Refractory Fasteners Permits Attachment of Coated
Threads and Nut (High Reactor Loading Level: 30 Substrates
Coated in Run CLY-177-69)

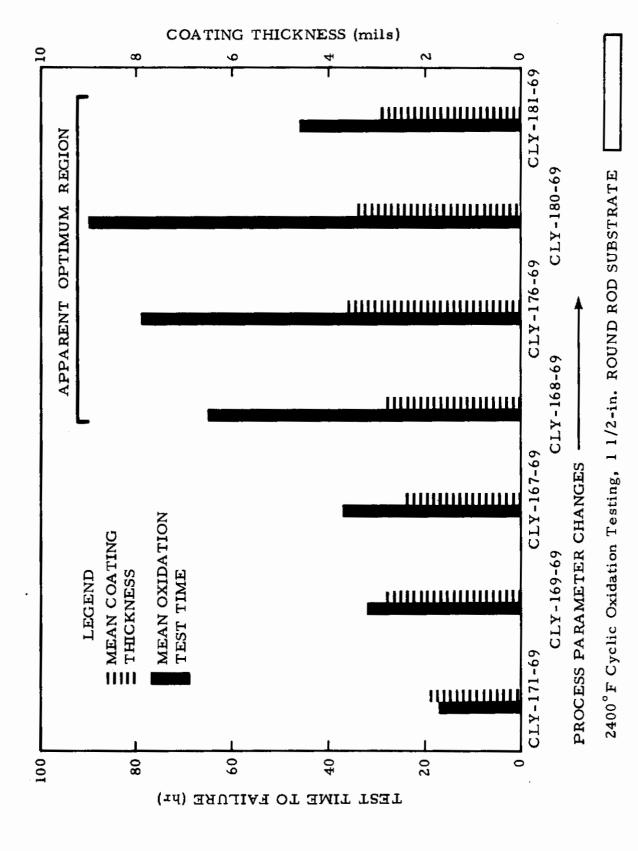


Figure 23. Cyclic Oxidation: Statistical Base Optimization Runs Locate Optimum Region for 2400° F Coating Oxidation Property Improvement

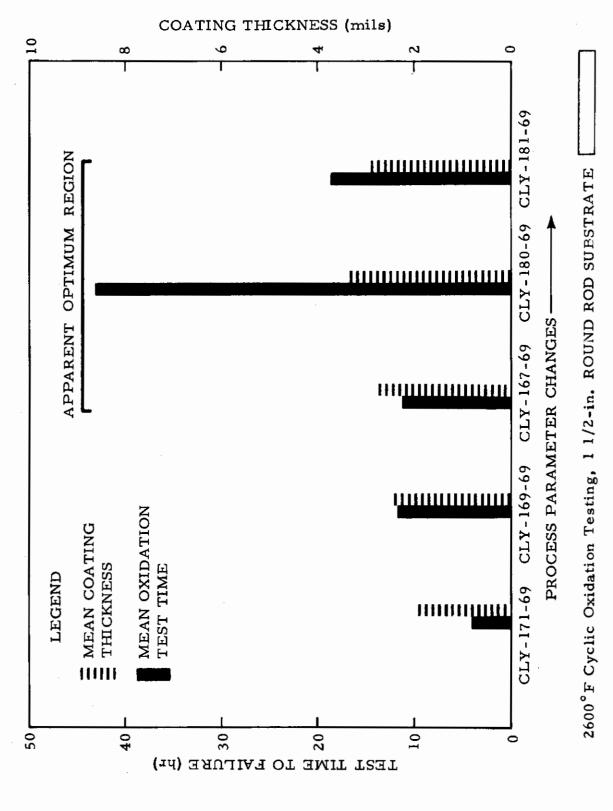


Figure 24. Cyclic Oxidation: Statistical Base Optimization Runs Locate Optimum Region for 2600° F Coating Oxidation Property Improvement

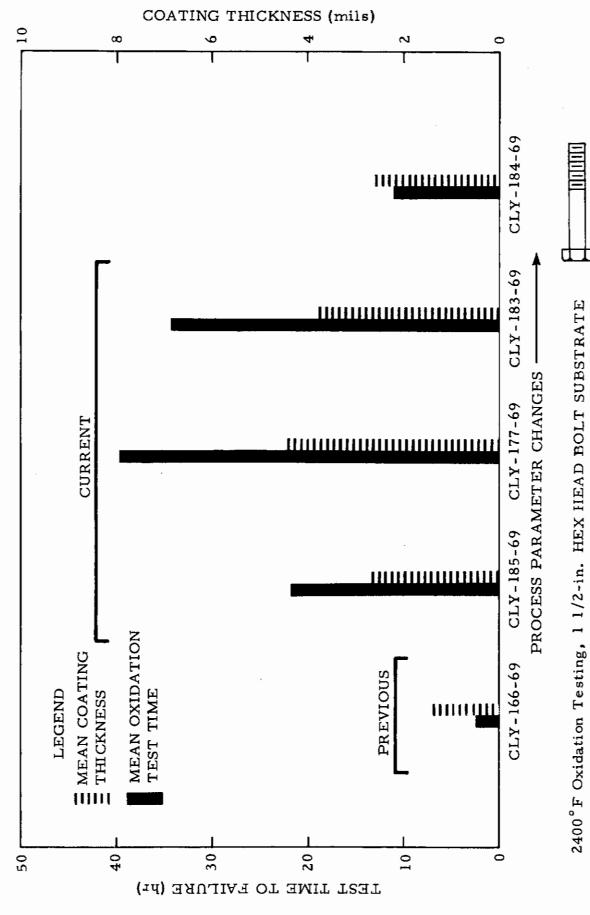


Figure 25. Cyclic Oxidation: Use of Statistical Base Optimization Runs Provides Coating Oxidation

Property Improvement for Protecting Hex Head Bolt Refractory Fasteners

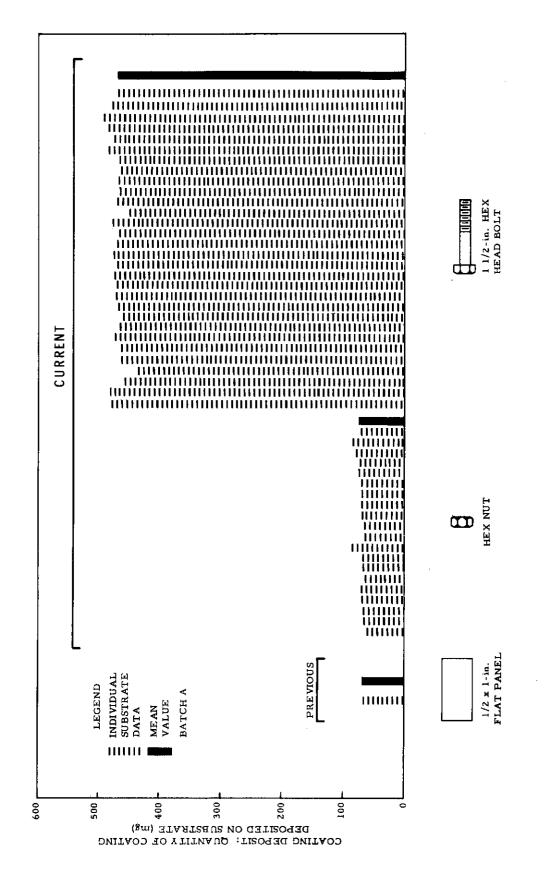
90

Previously, mean test time to failure for the coating was only several hours protection of substrate from high temperature oxidation. Current results, for three different runs as disclosed in the figure, indicate a mean time to failure exceeding twenty hours which comprises a tenfold improvement over previous results. This twenty plus hours protection before gross failure exceeded all previous results for samples coated at this reactor loading level (coating twenty to thirty substrates total per deposition run with several substrate shapes comprising the total).

Completion of this program activity of cyclic oxidation disclosed that differently shaped substrates — including refractory fasteners such as hex head bolts, threaded studs and hex nut — may be coated at a high reactor level of coating twenty to thirty substrates per run with uniform coating coverage of the substrate. Further, the cyclic oxidation program activity results — specifically the process parameter values gleaned from the apparent optimum region — comprise a base for coating refractory fasteners at increased loading in the next program activity — production demonstration batches.

7. Production Demonstration Batches

Coating of refractory fasteners-hex head bolts and hex nuts — required for "production demonstration batches" was completed at increased loading. A comparison of previous and current results disclosed that the current coating capability of coating thirty to fifty substrates per run exceeds all previous results. Twenty plus demonstration runs were conducted at this current coating capability level with uniform substrate coverage. For the four batches selected from the demonstration runs for external testing, 2400°F cyclic oxidation test results revealed twenty plus hour coating protection of the refractory fastener substrates.



The previous program activity, cyclic oxidation, served as a base for coating of the refractory fasteners. Specific use involved coating the refractory fasteners with process parameter values gleaned from the apparent optimum region.

Representative results at the increased coating capability are illustrated in Figure 26 which plots coating deposit mean and distribution for the columbium alloy refractory fasteners. The figure additionally compares previous and current coating capabilities which are denoted by the two horizontal darkened lines with turned down ends above the individual and mean data. The current coating capability comprises coating fifty substrates per deposition run (i. e., evidenced by shown individual substrate coating deposit data on thirty hex head bolts and twenty hex nuts located below the horizontal darkened line for current coating capability). In previous work which served as a basis for starting this scale-up program, coating capability involved coating one substrate per deposition run (i. e., evidenced by shown data on single flat panel). The current coating capability of fifty substrates per run exceeds all previous results for refractory fasteners and is within the scope of process demonstration of practical production equipment.

Process conditions and results for additional production demonstration batches are given in Appendix XIX. A total of more than twenty demonstration runs were conducted in the coating capability range of thirty to fifty substrates per run. Uniform coating coverage (with only minimum percentage of coating deposit variation within the individual substrates) was achieved in the twenty plus production runs.

Production Demonstration Batches: Coating Deposit Mean and Distribution Illustrating Current Coating Capability for Refractory Fasteners Figure 26.

SECTION VI COATING EVALUATION STUDIES

A. OXIDATION TESTING

Oxidation test results for protection of the substrate by the coating deposit were made on the samples obtained from the first statistical series tests. The samples were subjected to a 2500°F oxidation environment in the initial testing. The test results are shown in Figure 27 by plotting weight gain (caused by oxidation) against the test time in the environment. The curves indicate that satisfactory initial oxidation resistance for several hours is provided by some first statistical series samples.

Oxidation test results for second statistical series samples are shown in Figure 28. The curves indicate that satisfactory initial oxidation protection for several hours was provided by nearly all second statistical series samples. Upon exposure to test time exceeding ten hours, 3 of the 8 second statistical series samples provided satisfactory oxidation protection for the substrate. In general, oxidation resistance of second statistical series samples was better than results for first statistical series samples. Round rod substrates of columbium composition were utilized in both first and second statistical series.

For deposit phase runs, threaded substrates — 1-in. threaded stud refractory fasteners of columbium alloy composition Cb 752 — were utilized. Oxidation test results for representative samples are illustrated in Figure 29. Each data point in the figure corresponds to weight gain without visible substrate oxidation. The last data point for each curve is that weight gain determined prior to visible substrate oxidation which was observed at next weighing. The curves disclose both satisfactory initial oxidation resistance for several hours and substrate protection for long exposure to test time exceeding 10 hours.

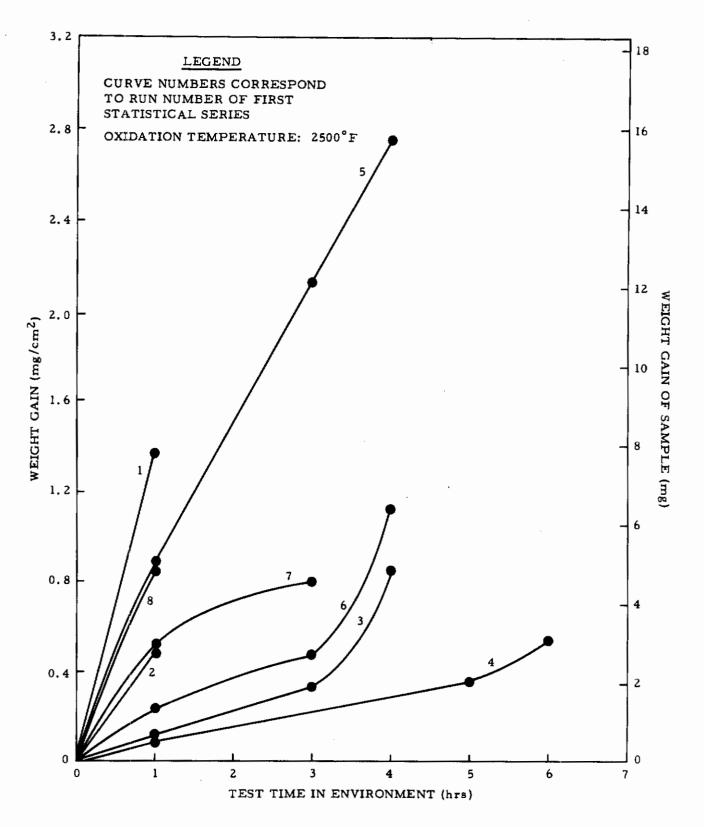


Figure 27. Oxidation Testing: Oxidation Test Results for First Statistical Series Samples

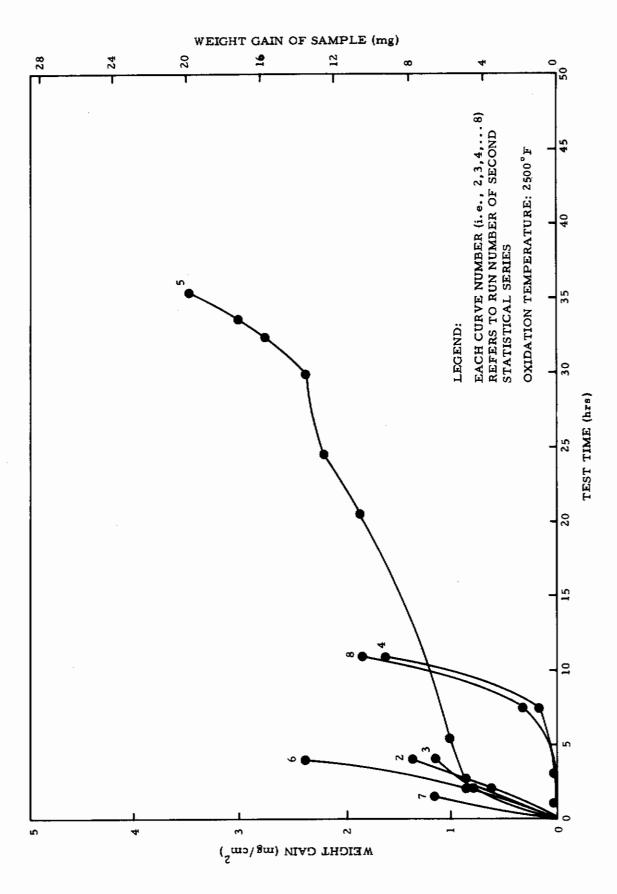
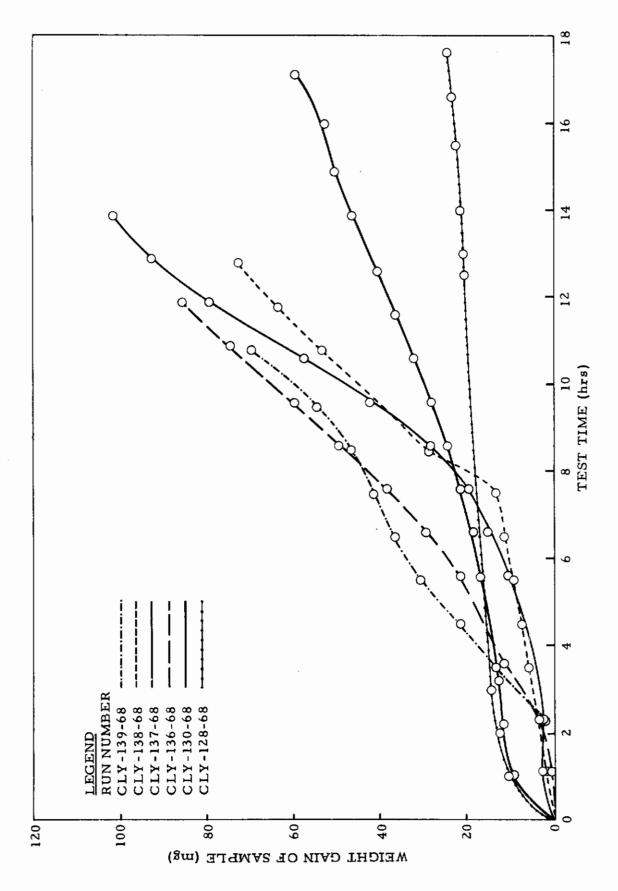
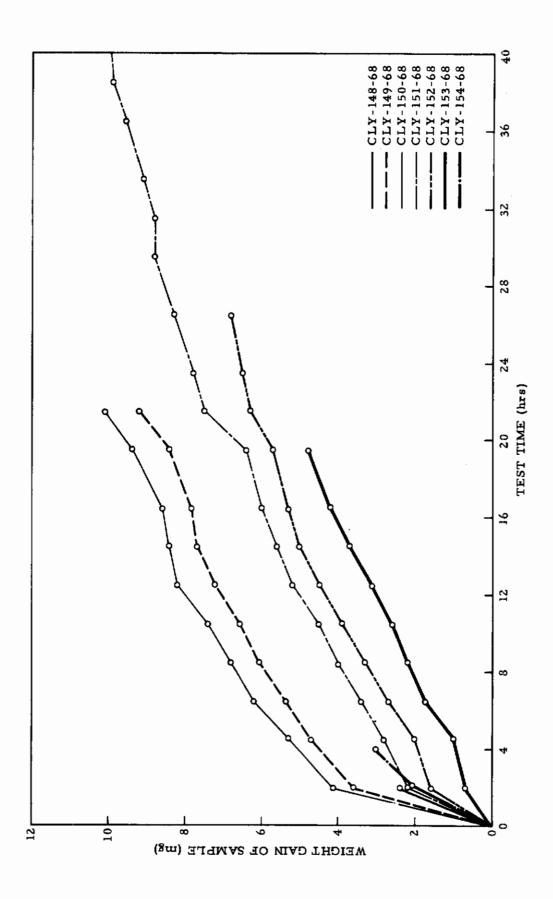



Figure 28. Oxidation Testing: Oxidation Test Results for Second Statistical Series Samples

Oxidation Testing: Oxidation Test Results at 2500°F for Representative Deposit Phase Run Samples Figure 29.



In general, oxidation test results for "deposit phase runs with threaded substrates" surpassed results for first and second statistical series with round rod substrates. For first and second statistical series, 3 samples provided oxidation protection for test time exceeding 10-hours. In deposit phases, adequate oxidation protection for test time exceeding 10-hours was provided by all 6 representative samples shown in Figure 29.

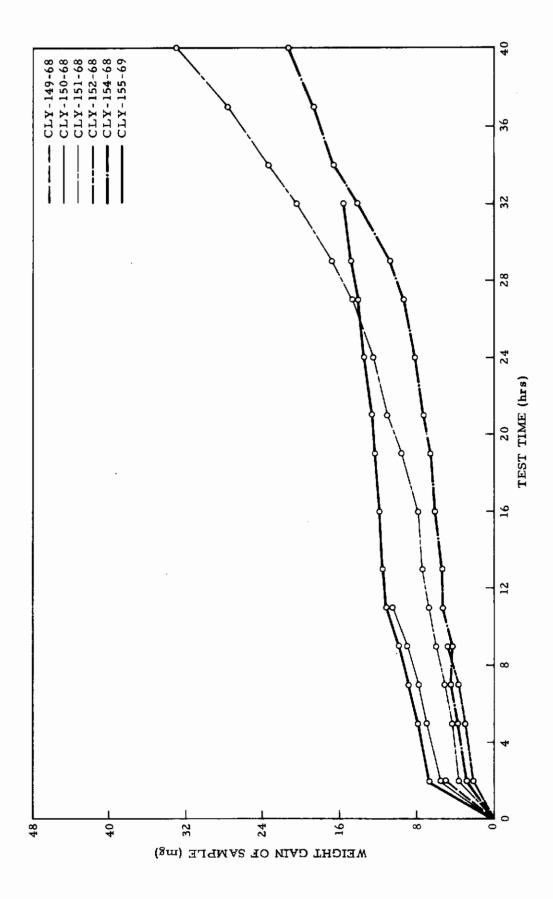
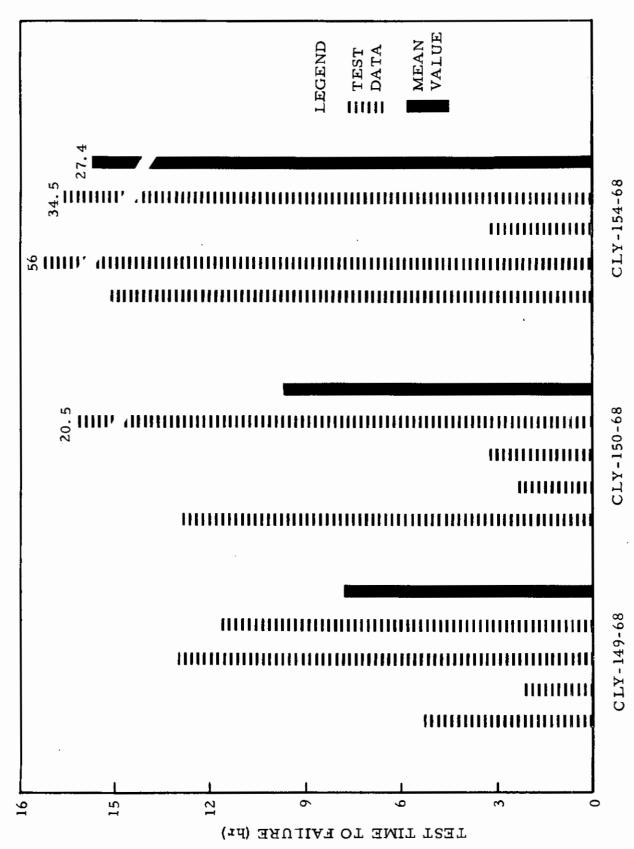

Oxidation test results at 2200°F are shown in Figure 30 for representative samples from coating oxidation sample runs. The curves constructed in the figure illustrate the coating oxidation resistance for protection of threaded substrates. Five of the samples provided adequate oxidation resistance for test time exceeding eighteen hours in the high temperature oxidation environment.

Figure 31 presents oxidation test results at 2400°F for representative coating oxidation sample runs. It is noted, in the figure, that three samples provided threaded substrate protection from oxidation for a test time greater than thirty hours. In general, oxidation test results for coatings from coating oxidation sample runs showed improvement over previous results from first statistical series, second statistical series and deposit phases because of process variable changes.

Additional 2400°F oxidation testing was performed on samples prepared in coating oxidation sample runs. The additional testing involved four samples from runs conducted at high substrate loading level (i.e., 10 substrates per run). Figure 32 presents the mean and distribution of the additional 2400°F oxidation test results for the coated 1-in. threaded studs. The undarkened columns in the figure indicate the distribution of test time to failure with each of the four samples tested. The mean value is disclosed by the darkened column. In the figure, the run providing the best 2400°F oxidation test results is run CLY-154-68 with mean time to failure of 27.4 hr. These results served as a base for starting the next experiments — duplicate best coatings — with 1 1/2-in. hex head bolt substrates.



Oxidation Testing: Oxidation Test Results at 2200°F for Representative Coating Oxidation Sample Runs Figure 30.

Oxidation Testing: Oxidation Test Results at 2400°F for Representative Coating Oxidation Sample Runs Figure 31.

Oxidation Testing: Mean and Distribution for 2400°F Oxidation Test Results for Samples Prepared at High Substrate Loading Level in Coating Oxidation Sample Runs (Coated Refractory Fastener: Coated 1-in. Threaded Stud) Figure 32.

B. METALLOGRAPHY

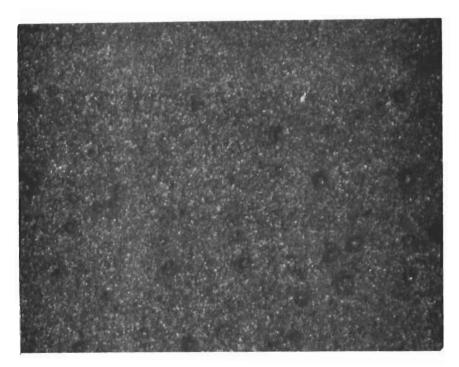
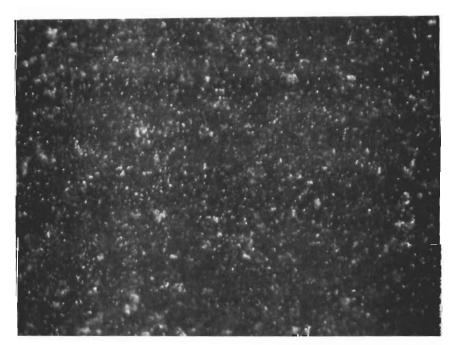

Photographs showing representative surfaces of coating deposits for samples prepared in gas feed geometry study and first statistical series are presented in Figure 33. Both flat panel and round rod substrates are illustrated in the figure.

Figure 34 presents photographs of mounted cross sections to show coating and substrate for representative second statistical series samples. Round rod substrates of columbium composition were utilized in the second statistical series.


For threaded substrates — 1-in. threaded stud refractory fasteners of columbium alloy composition Cb 752 — photograph of mounted cross sections is shown in Figure 35 for deposit phase run sample. Coverage by the coating is illustrated in the figure for the threaded substrate.

For additional metallography, the structure of the Cb 752 alloy before and after coating is shown in Figure 36 for 1-in. threaded stud substrate. A nitric acid-hydrofluoric acid-glycerin solution was used as etchant in bringing out structure showing grain size and boundary. Figure 36a shows the structure before coating. Figures 36b and 36c depict the structure after coating.

Photographs showing surface of Cb 752 alloy before and after coating are presented in Figure 37. Figures 37a and 37b show the columbium alloy as received and after etching prior to coating. The surface, after coating, is shown in Figures 37c and 37d for representative samples prepared in coating oxidation samples runs.

(a) CLY-90-68 (Flat Panel Substrate)

(b) CLY-93-68 (Round Rod Substrate)

Figure 33. Metallography: Photographs Showing Representative Surface of Coating Deposit from Gas Feed Geometry Study and First Statistical Series (250X)

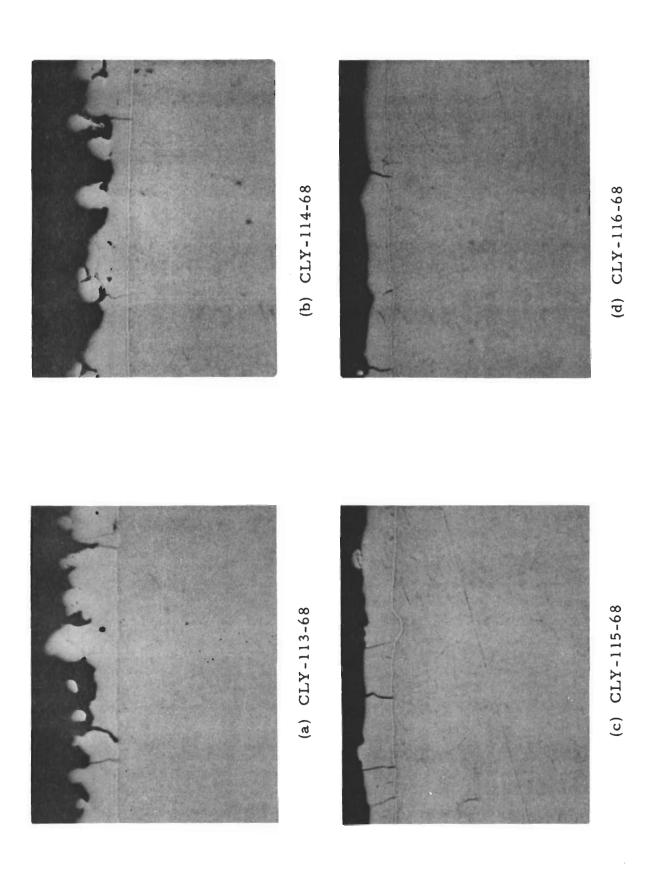
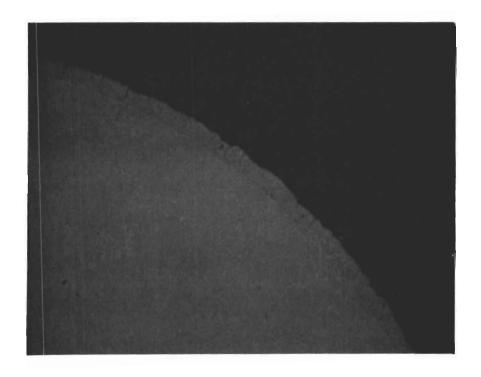
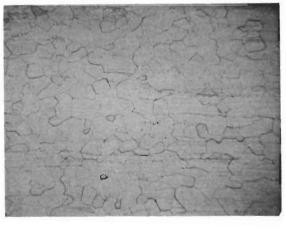
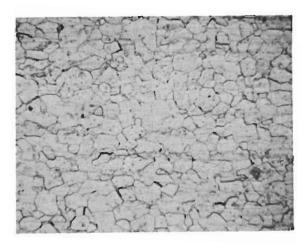
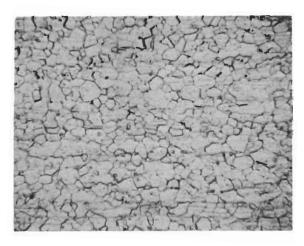
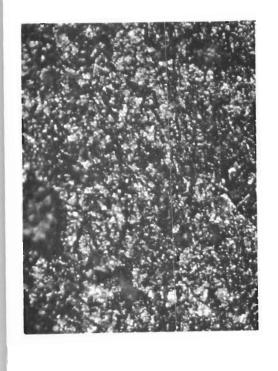


Figure 34. Metallography: Photographs of Cross Section Showing Coating and Substrate Resulting from Second Statistical Series (X500)

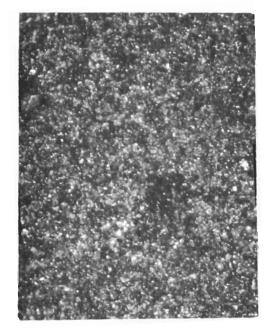





Figure 35. Metallography: Photograph of Mounted Cross Section for Deposit Phase Run Sample Showing Coating Coverage of Threaded Substrate (50X)

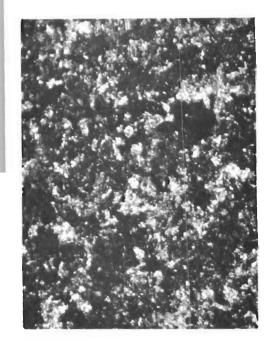
(a) Before Coating, as Received

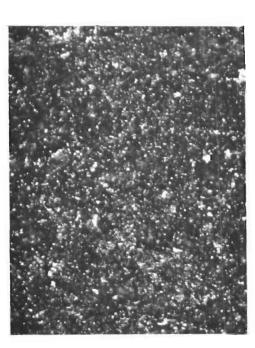


(b) After Coating (CLY-138-69)



(c) After Coating (CLY-139-69)


Figure 36. Metallography: Structure of Cb 752 Alloy Substrate Before and After Coating (1-Inch Threaded Stud, 500X, Etchant: 1 Part HNO₃, 1 Part HF and 1 Part Glycerin)


(b) After Etching (Cb 752 Alloy)

(d) After Coating (CLY-154-68)

(a) As Received (Cb 752 Alloy)

(c) After Coating (CLY-151-68)

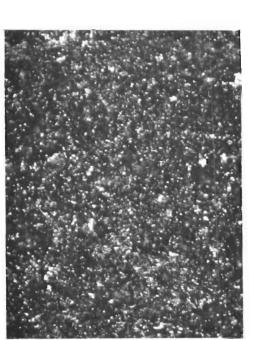
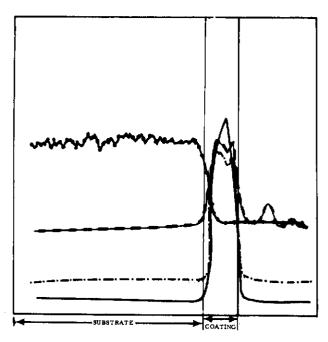
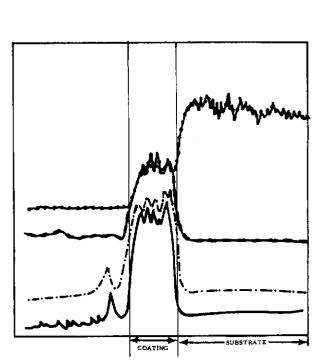


Figure 37. Metallography: Surface of Cb 752 Alloy Before and After Coating in Coating Oxidation Sample Run (250X)


C. ELECTRON MICROPROBE

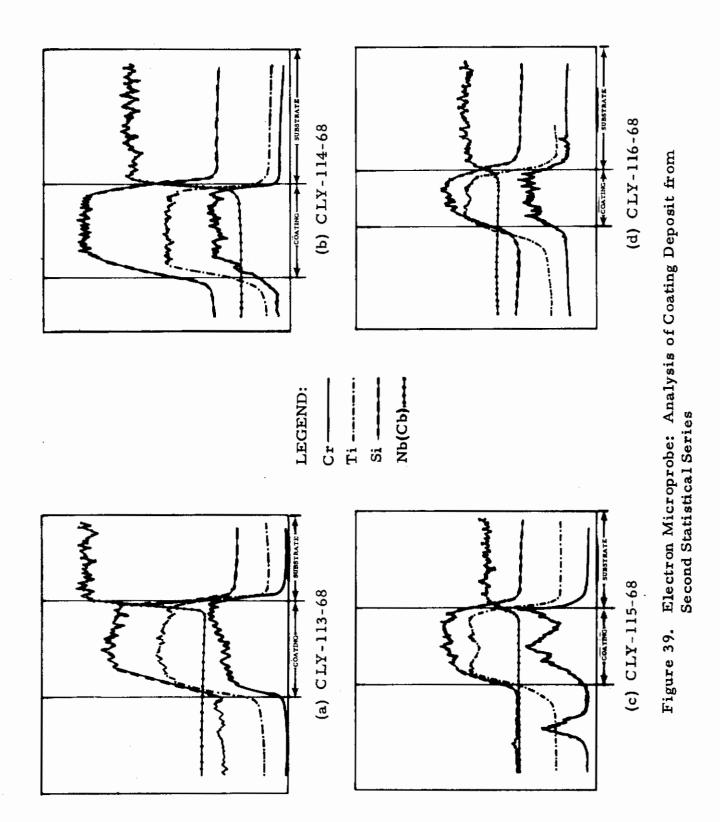
For "coating composition," electron microprobe traces showing chromium, titanium and silicon concentrations in the coating deposit are presented in Figure 38 for representative samples prepared in gas feed geometry study and first statistical series. In the figure, the microprobe trace height is for each component concentration in the coating. The traces for both flat panel and round rod substrates disclose that Cr, Ti and Si components are contained in the coating with negligible siliciding of substrate.


For representative second statistical series samples, coating compositions are illustrated with the electron microprobe traces shown in Figure 39. It is again noted in the figure that the respective components comprise the coating deposit with minimal siliciding of substrate. On the basis of relative constant level component traces across the coating (i.e., from coating-substrate interface to coating surface), the traces further reveal fairly constant component concentrations for Cr, Ti and Si in the coating deposit.

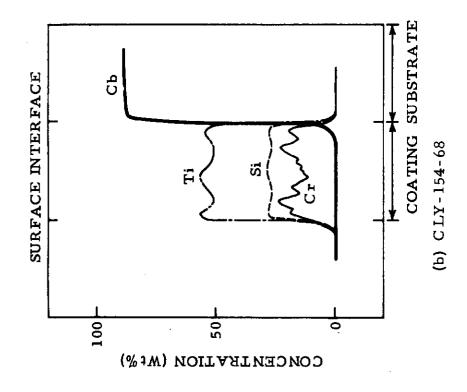
Coating compositions from electron microprobe traces for chromium, titanium and silicon are shown in Figure 40 for samples from coating oxidation sample runs. The graphical plots in the figure disclose the respective chromium, titanium and silicon concentration in the coating from coating-substrate interface to coating surface. The coating composition shown in Figure 40a is for the sample providing high oxidation resistance at 2200°F test temperatures. Figure 40b displays coating composition for sample with high oxidation resistance at 2400°F testing from coating oxidation samples with reactor loading of ten substrates.

Coating compositions for all samples prepared in initial coating oxidation sample runs are presented in Table XXXII. The average component concentrations for chromium, titanium and silicon in the table apply for coating at the base of the 1-in, threaded stud substrate.

(a) CLY-90-68 (Flat Panel Substrate)



(b) CLY-93-68 (Round Substrate)


LEGEND:

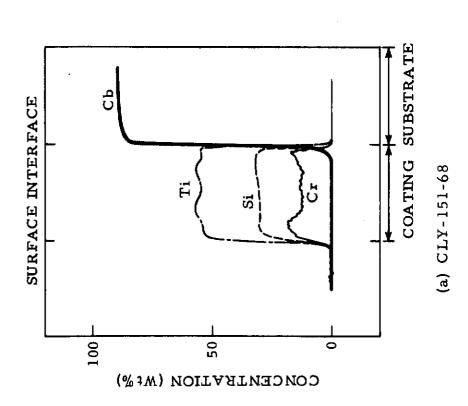

Cr ______ Ti -------Si _____ Nb(Cb)----

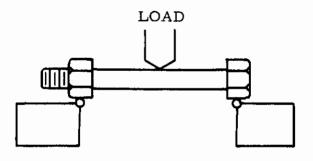
Figure 38. Electron Microprobe: Analysis of Coating Deposit from Gas Feed Geometry Study

111

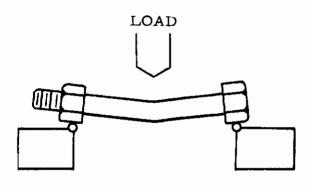
Electron Microprobe: Coating Composition of Samples from Coating Oxidation Sample Runs (1-in. threaded stud) Figure 40.

Table XXXII

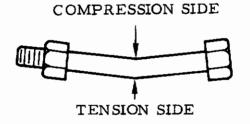
COATING COMPOSITION FROM ELECTRON MICROPROBE ANALYSIS OF SAMPLES FROM INITIAL COATING OXIDATION SAMPLE RUNS


Run Number		Composition: conent Concent (wt %)	
	Cr	Ti	Si
1 2 3 4 5 6 7 8	8.7 11.5 8.7 11.9 19.3 17.5 14.5	61.0 53.7 61.3 55.6 52.5 54.3 55.2 51.0	30.3 34.8 30.0 32.5 28.2 28.2 30.3

Other Conditions:


- Average component concentration is based on average electron microprobe analysis for each component in coating at base of threaded substrate.
- Run number refers to run in statistical plan for initial coating oxidation sample runs.

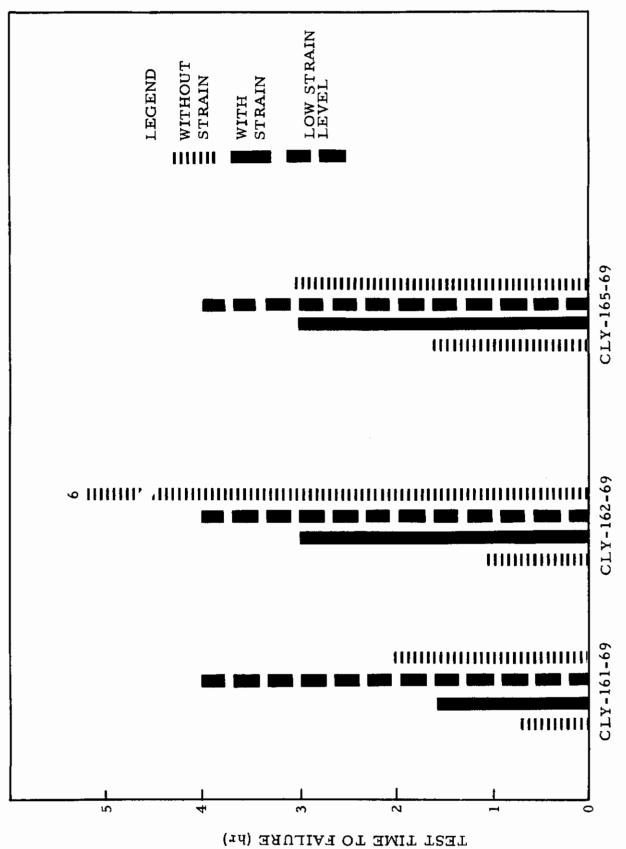
D. STRAIN EFFECT TEST

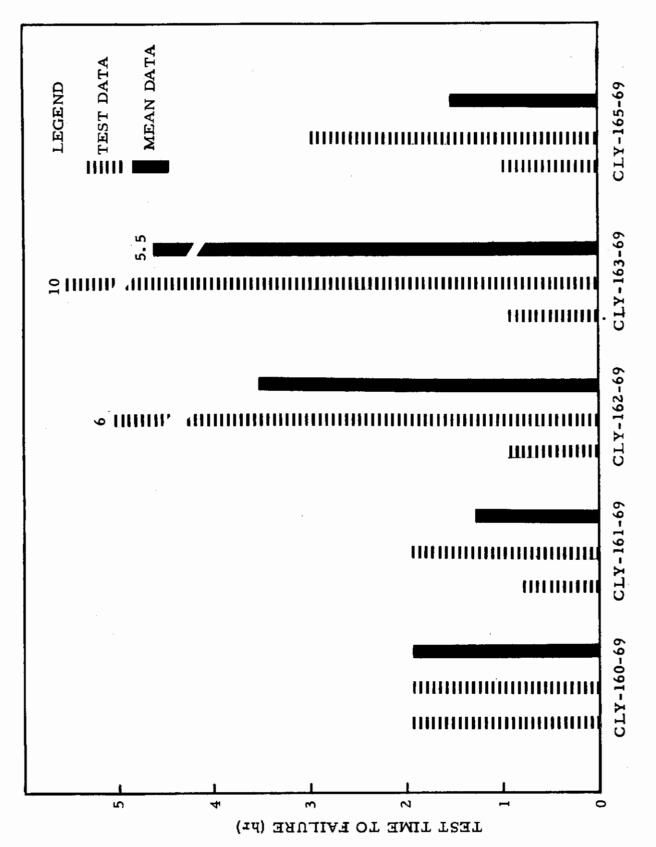

Progress was achieved in "strain effect test-evaluate" strained samples which involved applying strain on the sample and testing for oxidation performance of the strained sample. Application of strain on sample at two strain levels was made by equipment shown in Figure 41. Figures 41a and 41b illustrate the sample shape before and after strain. The compression and tension sides of the strained sample are depicted in Figure 41c. In most of the samples, a several hundred pound load was applied to deform coated sample and obtain strain on one quarter inch diameter samples. The resulting displacement from original shape was approximately ten mils for the high strain level and five mils for the low strain level.

(a) Before Strain

(b) After Strain

(c) After Strain


Figure 41. Strain Effect Test: Equipment Sketch for Applying Strain to Sample at High and Low Strain Levels (1 1/2-in. Hex Head Bolt)


Figure 42 presents oxidation performance results of the strained samples. The figure applies for 2400°F coating oxidation resistance for samples with and without strain (i.e., no strain, high strain level and low strain level). The undarkened graphical colums in the figure represent test data for samples without strain. The darkened graphical columns correspond to samples at high and low strain levels. Based on data shown in the figure for testing of twelve coated samples, completion of strain effect test-evaluate strained samples suggests that oxidation performance of the strained samples is within the scope of results for unstrained samples.

E. CYCLIC OXIDATION

Cyclic oxidation testing of samples - coated 1 1/2-in. hex head bolt refractory fasteners of columbium alloy composition Cb 752 - prepared in duplicate best coating runs was made at test temperatures of 2200°F, 2400°F, and 2600°F. The mean and distribution for cyclic 2400°F oxidation test results are graphically shown in Figure 43 for the 1 1/2-in. hex head bolt substrates which were coated with the fabricated reaction chamber (i.e., Reaction Chamber D). The first two runs in the figure (i.e., CLY-160-69 and CLY-161-69) were made at process conditions which provided best 2400°F coating oxidation resistance for 1-in. threaded stud substrates which were coated with the small reaction chamber (i.e., Reaction Chamber C). Comparison of the test results at high substrate reactor loading of ten (mean time: 27.4 hr. protection for 1-in. threaded stud versus 2 hr. protection for 1 1/2-in. hex head bolt as shown in Figure 43) indicate that change of substrate and reactor influences coating oxidation performance. Further, the comparison of mean test time to failure on successive runs in the figure indicates improvement of coating oxidation performance.

Strain Effect Test: 2400°F Oxidation Test Results for Samples at No Strain, High Strain Level and Low Strain Level (1 1/2-in. Hex Head Bolts) Figure 42.

Cyclic Oxidation: Mean and Distribution for 2400°F Oxidation Test Results for Samples Prepared in Duplicate Best Coating Runs (1 1/2-in. Hex Head Bolts) Figure 43.

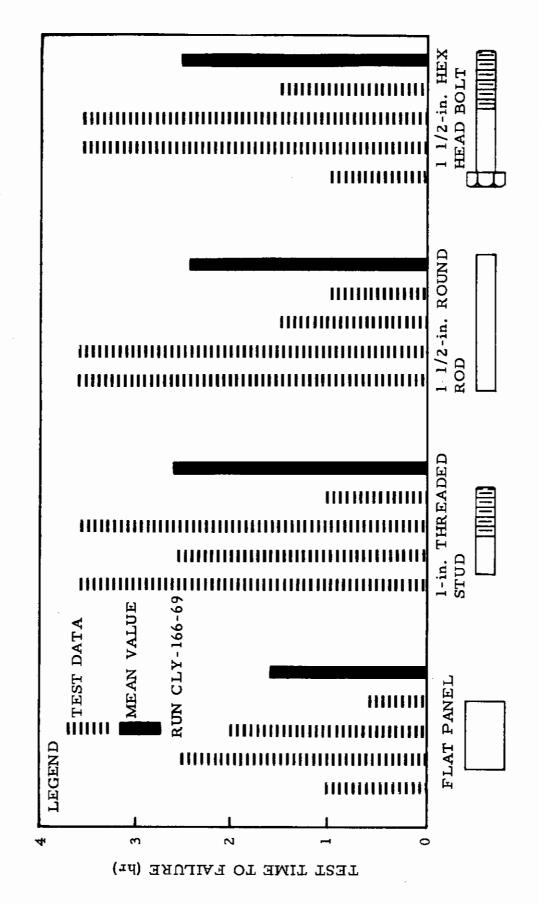


Figure 44 displays the mean and distribution of 2400°F oxidation test results for different shaped substrates coated in subsequent representative "product fastener" run. These results – especially the relative test time to failure for 1 1/2-in. round rod and 1 1/2-in hex head bolt substrates – were used as the base for the next experiments for coating oxidation property improvements.

Oxidation test results are shown in Figure 45 for representative cyclic oxidation runs in which round rod substrates were prepared at the reactor loading level of twenty substrates in the deposition run. Based on three different runs, the figure discloses coating protection of the round rod substrate from 2400°F oxidation for a test time exceeding thirty-five hours. Additional cyclic oxidation runs for coating oxidation property improvement were conducted. Figure 46 contains the oxidation test results for the additional runs. The figure reveals that for three coated samples (i.e., samples from three different runs) the coating protects the base substrate from 2400°F oxidation for test time exceeding eightly hours. This test time to failure of eighty plus hours was a considerable improvement over the previous thirty-five plus hours of protection.

Figure 47 presents 2600°F oxidation test results for representative cyclic oxidation runs in which round rod substrates were coated.

For production demonstration batches (i.e., coating of refractory fasteners — hex head bolts and hex nuts — at increased loading), four batches were selected from the process demonstration runs for use in the external testing. Cyclic oxidation results for the batches — A, B, C and E — are presented in Figures 48 and 49 for 2400°F and 2200°F test temperatures. The graphical results apply for both refractory fastener bolt and nut shapes (i.e., in testing, the CVD coated hex head bolt was attached to hex-nut as shown). Failure in most cases (for both test temperatures) involved small pin hole oxidation breaks in nut and thread regions. In general, the test time to failure in 2400°F oxidation environment exceeds twenty hours. It is noted that the twenty plus hour coating protection of the substrate applies for refractory fasteners coated at the increased current coating capability of coating thirty to fifty substrates per deposition run.

Cyclic Oxidation: Mean and Distribution for 2400°F Oxidation Test Results for Differently Shaped Substrated Coated in Representative Produce Fastener Run Figure 44.

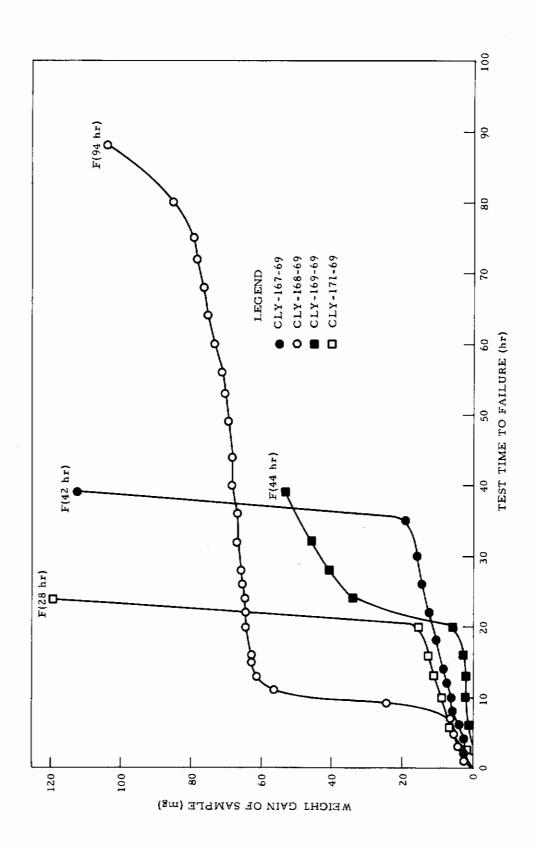


Figure 45. Cyclic Oxidation: 2400° F Oxidation Test Results for Representative Cyclic Oxidation Runs

1 1/2-in. ROUND ROD SUBSTRATE

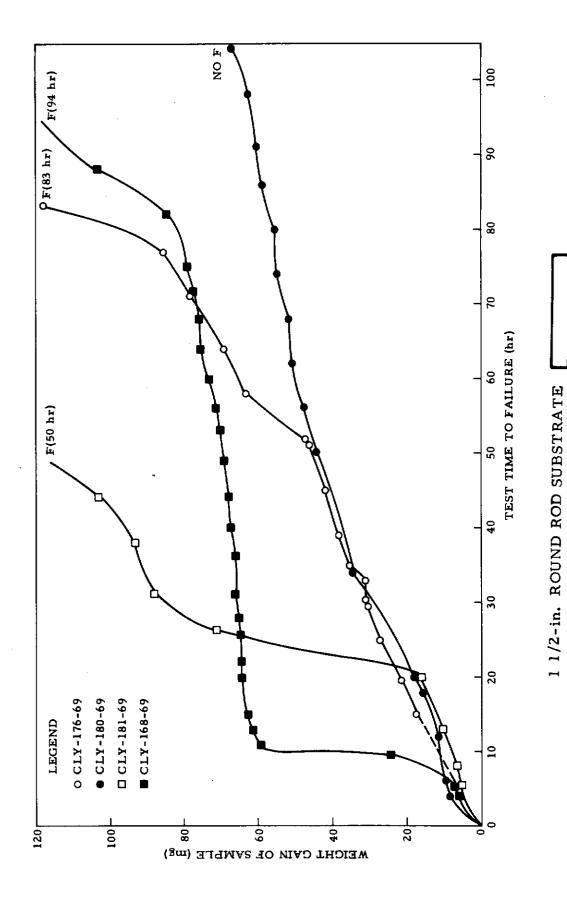


Figure 46. Cyclic Oxidation: Additional 2400°F Oxidation Test Results for Representative Cyclic Oxidation Runs

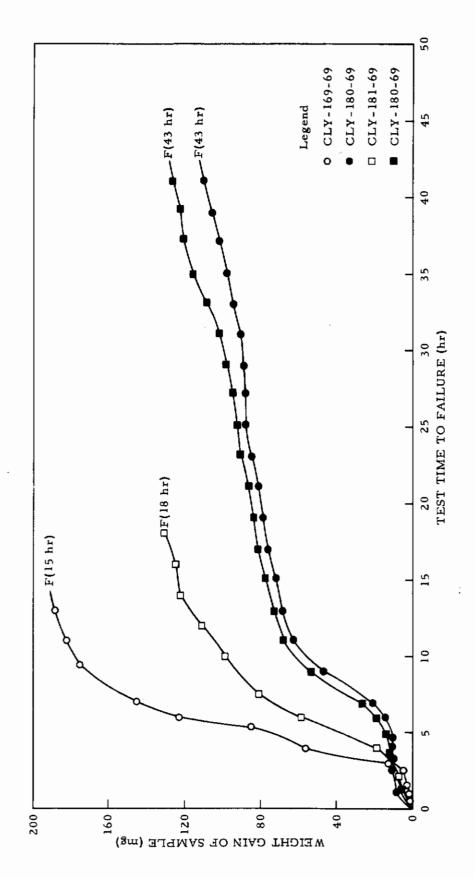


Figure 47. Cyclic Oxidation: 2600°F Oxidation Test Results for Representative Cyclic Oxidation Runs

1 1/2-in. ROUND ROD SUBSTRATE

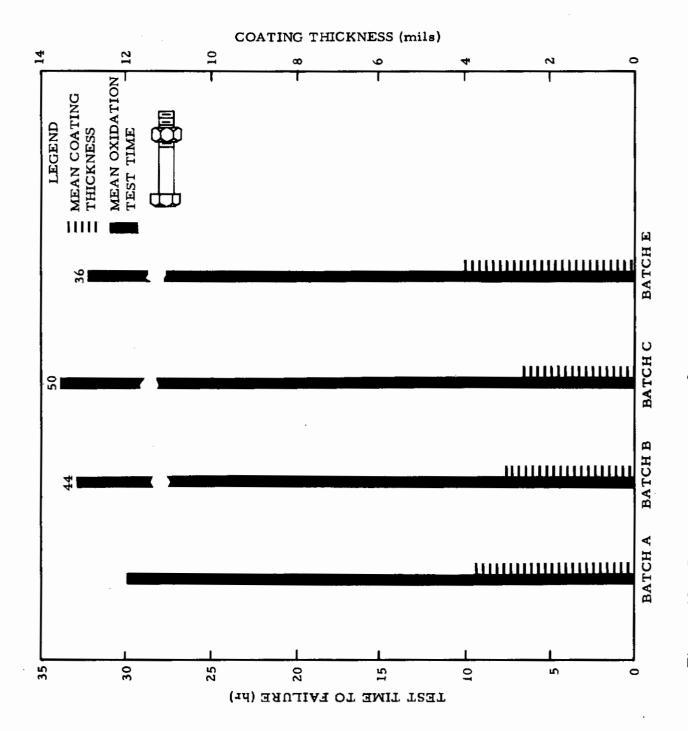
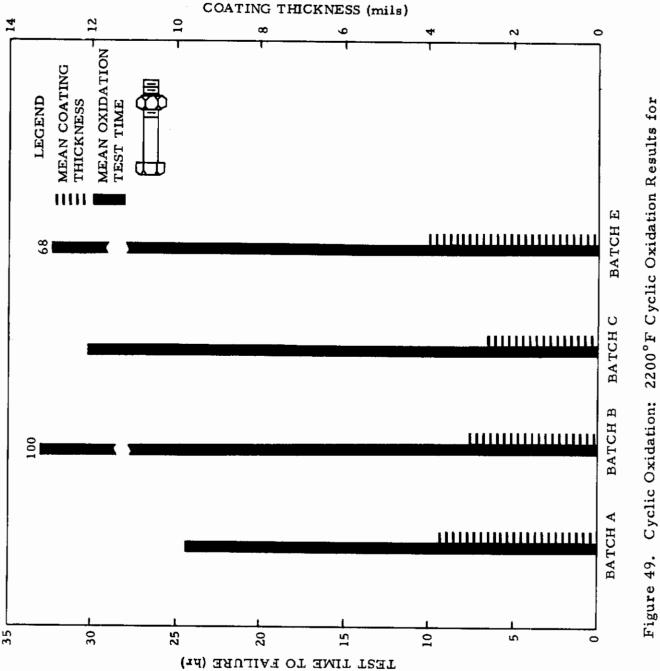



Figure 48. Cyclic Oxidation: 2400°F Cyclic Oxidation Results for Refractory Fasteners Coated at Current Coating Capability

Refractory Fasteners Coated at Current Coating Capability

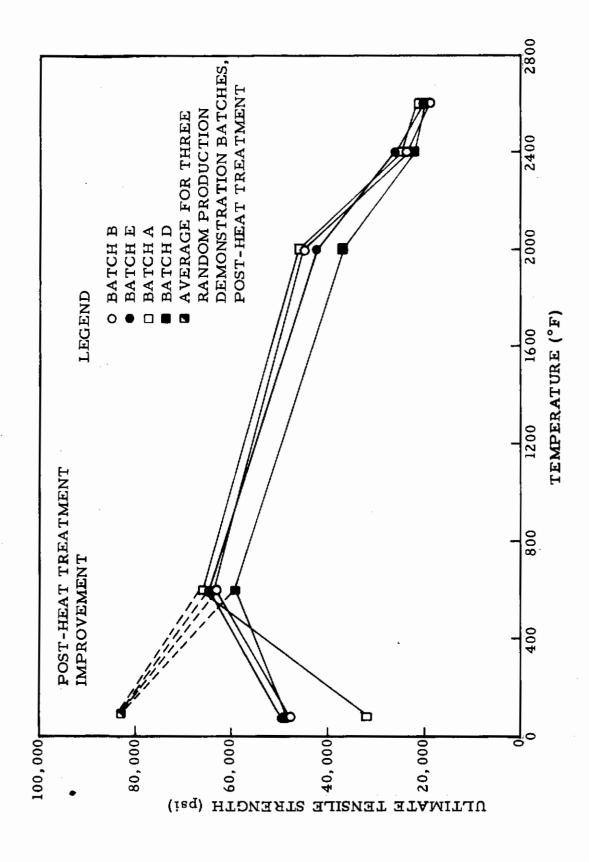
F. MECHANICAL TESTS — EXTERNAL TEST — COMPARE TO STATE-OF-ART

Mechanical tests and external tests involved mechanical property testing and an independent evaluation of the coated refractory fasteners. Specific mechanical testing included ultimate and shear strengths in the respective temperature ranges of 80-2600°F and 80-2400°F. This testing was conducted by Standard Pressed Steel Co. (See tables in Appendix LV) on Cb 752 refractory fasteners which were coated at the increased current capability of coating thirty to fifty substrates per run with the processing equipment.

Ultimate tensile strength results including post-heat treatment coated samples at the various temperature levels are presented in Table XXXIII for fasteners from production demonstration batches. The tensile strength versus temperature is shown in Figure 50. The results indicate low tensile strength at room temperature but good tensile strength in the higher temperature ranges beginning at 600°F and extending into the 2000°F plus temperature. The room temperature tensile strength is significantly improved with post-heat treatment as shown for random production samples.

Table XXXIV gives the shear strength of coated refractory fasteners from the same production demonstration batches. Figure 51 depicts the shear strength versus temperature plot. Two of the shown batches exhibit low room temperature shear strength with better strength in the 600°F temperature range. With post-heat treatment, the shear strength at room temperature is appreciably enhanced as illustrated by the positive dotted lines.

Relaxation and reusability test results are shown in Tables XXXV and XXXVI for the refractory fasteners coated in production demonstration batches. For reusability, the tabulated results disclose slight and negligible coating damage at 2000°F test temperature.



ULTIMATE TENSILE STRENGTH OF COATED REFRACTORY FASTENERS FROM PRODUCTION DEMONSTRATION BATCHES* Table XXXIII

Test	Bat	Batch B	Batk	Batch E	Bate	Batch A	Bat	Batch D
Temp.	Pounds	psi (Av.)						
80	1800 1350	49, 500	1670 1430	48,700	1050 1000	32, 200	1640 1420	48, 100
** **	2400 2800 2900	84,800**	2400 2800 2900	84,800	2400 2800 2900	84,800	2400 2800 2900	** 84,800
009	2015 2080	64,300	1960	63, 900	2065 2090	65, 300	1855 1955	59,800
2000	1390	42, 500	1430 1410	44,600	1390 1500	45,400	1200	36, 900
2400	835 860	26,600	760 746	23, 600	760 826	24,800	76 3 680	22, 700
2600	635	20,000	635 640	20,000	069	21,400	595 637	19,400
*								

*Tests conducted by Standard Pressed Steel Co. (SPS)

** With post-heat treatment of coated fasteners. Coated samples selected at random from production demonstration runs.

Mechanical Tests: Ultimate Tensile Strength versus Temperature for Production Demonstration Batches Figure 50.

Coated samples selected at random from production

** With post-heat treatment of coated fasteners.

demonstration runs.

SHEAR STRENGTH OF COATED REFRACTORY FASTENERS FROM PRODUCTION DEMONSTRATION BATCHES* Table XXXIV

Test	Batch B	sh B	Batc	Batch E	Bate	Batch A	Batch D	th D
· Emp	Pounds	psi (Av.)	Pounds	psi (Av.)	Pounds	psi (Av.)	Pounds	psi (Av.)
80	3250 5450	41,900	3400 2600	28, 900	2540 2310	23, 400	5320 5300	51, 100
* 08	6400 6450 6460	65, 700**	6400 6450 6460	65, 700**	6400 6450 6460	65, 700 **	6400 6450 6460	,** (5,700
009	4275 4275	41,200	4320 4240	41,300	4375	41,800	4275 418 0	40,800
2000	3335	32, 100	3125	30, 100	3065	29, 500	3080	29, 700
2400	2125	20,500	2205	21,300	2220	21, 400	2050	19,800
* Tests	conducted	Tests conducted by Standard Pressed Steel Co. (SPS)	ressed Stee	1 Co. (SPS)				

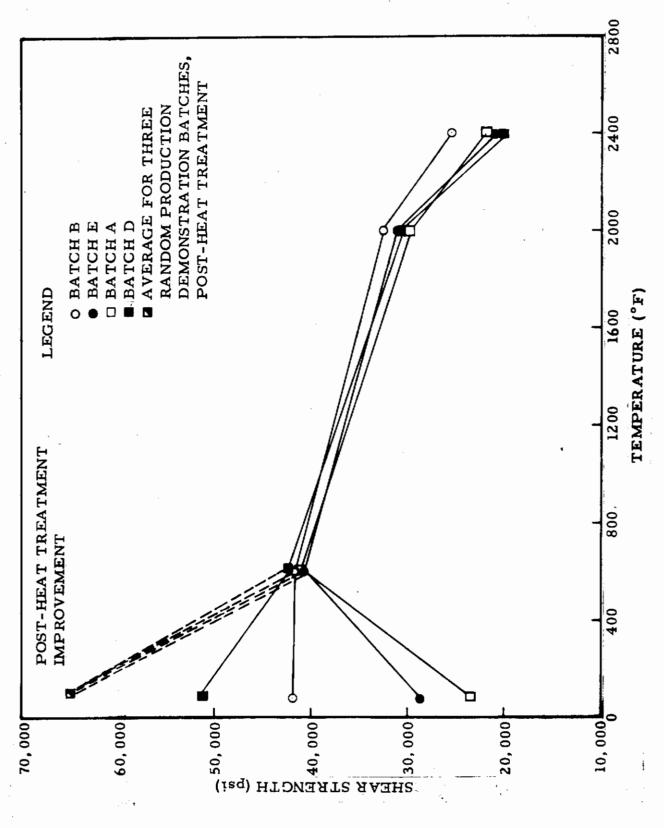


Figure 51. Mechanical Tests: Shear Strength versus Temperature for Production Demonstration Batches

Table XXXV

RELAXATION TEST RESULTS FOR COATED REFRACTORY
FASTENERS FROM PRODUCTION DEMONSTRATION BATCHES*

Batch Type	Temperature °F	Length After Soak (Seated)	Length After Soak (Unseated)	Change in Length	Residual Load, psi
А	2000	1.6755	1.6752	0.0003	3750
В	2000	Broke	Loading	•	İ
D	2000	1.6650	1.6648	0.0002	2500
E	2000	1.6764	1.6761	0.0003	3750
A	2400	Broke	Loading		
В	2400	1.6855	1.6854	0.0001	1250
D	2400	1.6638	1.6637	0.0001	1250
E	2400	1.6809	1.6808	0.0001	1250
		,			

TEST CONDITIONS

Hex head bolts preloaded to 15,000 psi and exposed to elevated temperatures as shown for two hours.

^{*}Tests conducted by Standard Pressed Steel Co. (SPS)

Table XXXVI REUSABILITY RESULTS FOR COATED REFRACTORY FASTENERS FROM PRODUCTION DEMONSTRATION BATCHES*

Dodah	Difficulty of	Nut Removal	Castina
Batch Type	Starting	Turning	Coating Damage
	Test Temper	ature - 2000°F	
A A	Very high breakaway high breakaway	hard (wrench required) easy (finger loose)	slight Nil
B B	high breakaway Very high breakaway	easy (finger loose) easy (finger loose)	Nil Severe
Д Д	high breakaway Very high breakaway		slight slight
E E	high breakaway finger loose	easy (finger loose) easy (finger loose)	Nil Nil
	Test Temper	ature - 2400°F	
A A		movement movement	
B B	Very high breakaway	hard (wrench required) movement	severe
D D		movement movement	
E E		movement movement	
TEST	' CONDITIONS		•

Bolt, nut removal of parts tensile tested at 2000 $^{\circ}F$ and 2400 $^{\circ}F$

^{*}Tests conducted by Standard Pressed Steel Co. (SPS)

With respect to state-of-art, it is recognized that the coating oxidation protection of a substrate exposed to high temperature oxidation environment is influenced by many factors (substrate material, shape, temperature, exposure time, coating thickness, coating process, etc.). For columbium alloys, several of these factors are mentioned and discussed in a fairly recent literature review.

A cursory state-of-art comparison for cyclic oxidation and mechanical properties is presented in Table XXXVII. The tabulation is based on limited literature screening. The tabulation involves several of the many factors influencing oxidation protection, i.e., substrate material, substrate shape, coating thickness, temperature and cyclic oxidation life. For cyclic oxidation, the data discloses thirty plus hour protection of hex head bolt substrate exposed to 2400°F oxidation environment for both this program and the other source presenting data for the same refractory fastener shape. For mechanical properties, room temperature tensile and shear strengths for this program are quite good for the post-heat treatment samples. In general, the remaining tabulated data suggests a favorable state-of-art comparison (i.e., comparable cyclic oxidation life and tensile shear strengths for shown temperature range).

Completion of this program activity disclosed the mechanical and cyclic oxidation state-of-art properties of coated Cb 752 refractory fasteners from production demonstration batches. For mechanical properties, tensile and shear strengths were favorable in temperature range of 80° F to above 2000° F. For cyclic oxidation, cursory literature screening revealed favorable state-of-art comparison based on this program and two independent literature sources.

Maisel, L., Metal Finishing, pg 76, January, 1968.

Table XXXVII

COMPARE TO STATE-OF-ART: CURSORY STATE-OF-ART COMPARISON ON CYCLIC OXIDATION AND ON MECHANICAL PROPERTIES

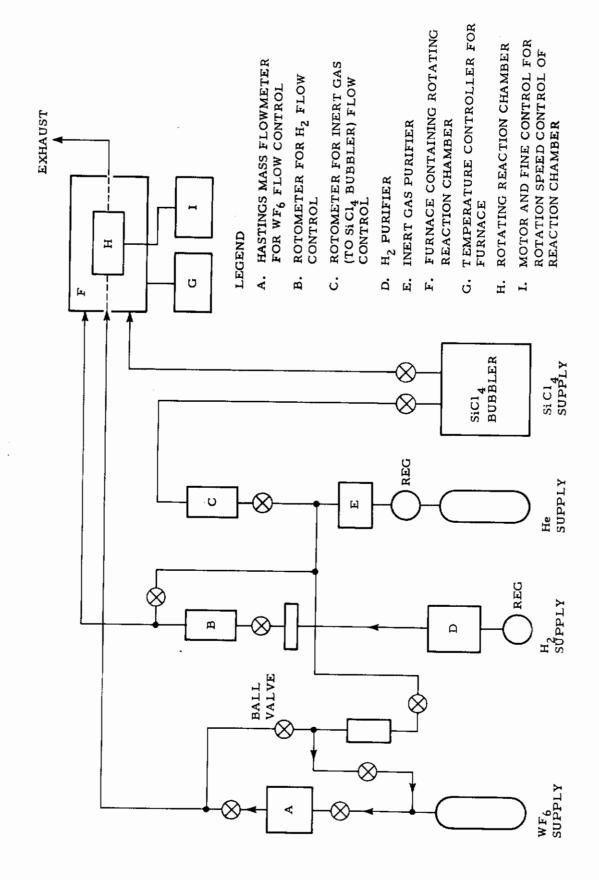
Coating Coating Coating Coxidation Cyclic Oxidation	The state of the s	Cyc	Cyclic Oxidation			
n Cb 752/Round Rod 3-3.5 2400 90 Cb 752/Hex Head 2.5-3 2200 100-no failur Bolt and Nut Cb 752/Hex Head 2.5-3 2400 44-50 Cb 752/Hex Head 2.5-3 2400 0.5 Cb 752/Hex Head 2.5-3 2400 38 Bolt Cb 752/- 3 2000 22 Cb 752/Hex Head - 2200 71 Bolt Cb 752/Hex Head - 2200 71 Cb 752/Hex Head - 2400 32 Cb 752/Hex Head - 2650 2 Cb 752/Hex Head - 2650 32 Cb 752/Hex Head - 2650 71 Cb 752/Hex Head - 2650	Identification	Substrate Alloy/Shape	Coating Thickness (mils)	Oxidation Temperature (°F)	Cyclic Oxidation Life (hrs)	
Cb 752/Hex Head 2.5-3 2200 100-no failure linishing, pgs. 76-81, note table on pg. 79, January, 1968 for Extreme Elevated Temperatures." note figure on pg. 11; September.	This Program	Cb 752/Round Rod	3-3.5	2400	90 43	
eview 1 Cb 752/Hex Head 2.5-3 2400 38 Bolt Cb 752/- 3 2000 22 2650 2 Cb 752/Hex Head - 2200 71 Bolt Bolt		Cb 752/Hex Head Bolt and Nut	2, 5-3,	2200 2400 2600	100-no failure 44-50 0.5	
eview 1		Cb 752/Hex Head Bolt	2.5-3	2400	38	
Cb 752/Hex Head — 2400 71 Bolt	Literature Review	Cb 752/-	ന	2000	22 2	
, Metal Finishing, pgs. 76-81, note table on pg. 79, January, 1968 A. and E.F. Gowen, Jr., Standard Pressed Steel Co. (SPS), "Structural for Extreme Elevated Temperatures." note figure on pg. 111, September.	SPS Report	Cb 752/Hex Head Bolt	·	2200 2400 2600	71 32 9	
	REFERENCES 1. Maisel, L., Metal 2. Roach, T.A. and Fasteners for Ext	Finishing, pgs. 76-8 E.F. Gowen, Jr., Streeme Elevated Tempe	81, note table andard Press ratures," no	on pg. 79, Janua ed Steel Co. (SPS) te figure on pg. 11	ry, 1968 , "Structural 1, September, 1966	

Table XXXVII (Contd)

		Mechanical Properties	Properties		
		Coating		Mechanical Properties	Properties
Identification	Substrate Alloy/Shape	Thickness (mils)	Temperature (°F)	Tensile Strength (psi)	Shear Strength (psi)
This Program	Cb 752/Hex Head	2.5-3	80	84,800*	65, 700*
	Bolt and Nut		009	65,300	41,800
			2000	45,400	29,500
			2400	24,800	21,400
			2600	21,400	ı
SPS Report	Cb 752/Hex Head	İ	80	82,000	62,000
	Bolt and Nut		009	000,09	42,000
			2000	44,000	30,000
			2400	29,000	20,000
			2600	22,000	ł
REFERENCES					

Roach, T.A. and E.F. Gowen, Jr., Standard Pressed Steel Co. (SPS), "Structural Fasteners for Extreme Elevated Temperatures," pgs 169 and 171, September, 1966.

*With post-heat treatment of coated fasteners.



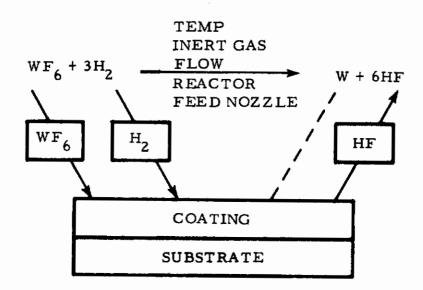
SECTION VII

EQUIPMENT MODIFICATION, DESIGN, CONSTRUCTION AND INSTALLATION FOR TUNGSTEN-TUNGSTEN SILICIDE COATING

Phase III which involved tungsten-tungsten silicide (W-WSi2) coating on tantalum was started with equipment modification, design, construction and installation. The equipment from Phases I and II was modified when applicable. Design, construction and installation of additional materials and equipment was made including procurement of a special flow control system for the reactive tungsten hexafluoride (WF6). The assembled equipment for the fluoride route to the deposition is shown in Figure 52. In the process flow diagram, a Hastings mass flow meter is used for flow control of the reactive tungsten hexaflouride (WF₆). A Fisher-Porter rotameter is utilized for flow control of the hydrogen required in tungsten deposition reaction. The figure further discloses the following equipment required for the tungsten-tungsten silicide (W-WS2) coating: (a) H2 purifier, (b) inert gas bubbler flow control for silicon tetrachloride (SiCl₄) bubbler, (c) inert gas purifier, (d) furnace containing rotating reaction chamber, (e) temperature control unit, (f) rotating reaction chamber and (g) motor — fine control system for rotation speed control of the reaction chamber.

The equipment modified, designed, constructed and installed in this program activity served as a base for the start-up coating experiments (i.e., coating preparation studies) for the fluoride route to tungsten deposition.

Process Flow Diagram for Fluoride Route to Tungsten-Tungsten Silicide Coating Figure 52.



SECTION VIII COATING PREPARATION STUDIES

In coating preparation studies, fluoride and chloride routes were investigated for the tungsten-tungsten silicide coating of tantalum. This was accomplished in a concentrated effort to resolve technical difficulties and problems. Modified equipment from the Cr-Ti-Si coating work was utilized for the chloride route. Similar equipment was designed, constructed and installed as shown in Figure 52 for the fluoride route. In accelerated process variable screening, partial success was achieved for the chloride route based on deposition of silver gray tungsten coating in gas feed nozzle and reactor wall regions: For the fluoride route, improved partial success was demonstrated based on silver gray tungsten coating of tantalum T222 substrates with uniform coating coverage of the round rod small parts.

A. FLUORIDE ROUTE

The fluoride route for the tungsten-tungsten silicide deposition was based on simplified CVD reaction chemistry shown below for the tungsten (W) deposition:

The key process variables influencing the tungsten deposition include reaction temperature, reactant concentrations (tungsten fluoride, hydrogen, inert gas), flow rate of gases, reactor design and gas feed nozzle design for introducing the reaction gases into the reaction chamber.

Initial start-up of coating preparation runs for the fluoride route was made in the equipment modified and assembled as shown in Figure 52. Observations made in the initial runs are recorded in Table XXXVIII. In the first run for tungsten deposition, satisfactory operation of temperature control, rotation speed control and other equipment units was demonstrated. Constant reaction temperature was achieved throughout the deposition run. The coating deposit achieved on the substrate was analyzed by X-ray scan. The X-ray scan indicated that the coating deposit was tungsten on basis of deposit peaks matching tungsten ASTM reference peaks. In subsequent runs, reaction chamber breakage and other technical problems were experienced.

Process conditions, results and observations for the fluoride route are given in Tables XXXIX and XL for the process variable screening. Prior to conducting the tabulated deposition runs, initial experiments were conducted with the reactor and gas feed nozzle designs of previous Table XXXVIII. These experiments disclosed some fluoride etching of the quartz material of construction. For the other ten plus deposition runs shown in these last two tables, the hydrogen gas feed nozzle plugged in the first run. From subsequent runs, a gas feed nozzle design was selected which did not plug after several hours of operation. Reactor problems including reaction chamber cracking was experienced. The next tungsten deposition runs were conducted with a metal cage reactor having improved strength qualities. This reactor was then selected on the basis of several runs without any cracking and breakage of the reaction chamber. In conducting these experiments, some success for tungsten deposition in the fluoride route was achieved and several silver gray coatings were obtained. Additional runs were conducted in a concentrated effort to resolve the technical difficulties and problems.

Table XXXVIII COATING PREPARATION STUDIES: INITIAL RUNS FOR FLUORIDE ROUTE

Run Number	Process Conditions	Observations
CLY3-1-69	 650°C WF₆ flow diluted with He WF₆ = 0.012 ^l/min H₂ ≅ 0.048 ^l/min 	 Coating deposit achieved on substrate, coating submitted for X-ray analysis Hydrogen flow not sufficient, need to increase Fine needle valve needed for better WF flow control
CLY3-2-69	 650-700°C WF₆ flow diluted with He WF₆ = 0.15-0.20 t/min 	 Both tungstem and tungsten-silicide deposition reactions conducted in equipment Some coating deposit obtained on round rod substrates
	• H ₂ = 0.10-0.20 <i>l</i> /min	 Reaction chamber broke during run due to reactor support, large reactor size or substrate binding with gas feed inlet nozzles
CLY3-3-69	 650-750°C WF₆ flow diluted 	Tungsten and tungsten-silicide depo- sition reactions conducted
	with He	Large metal reaction chamber utilized
·	• WF ₆ ~ 0.045 4/min	Several different substrates used
	• H ₂ ~ 0.3-0.6 t/min	Stainless 316 tubing-coating deposit obtained
-		 Quartz tubing - some etching and reduction in size, some deposit and apparent diffusion
		T222 alloy-coating appeared to be bonded
		T121 - come coating, some bonding problem
		Coated hex head bolt — come coating
CLY3-4-69	• 650°C	Some coating deposit on reaction chamber
	WF ₆ flow diluted with He	Insufficient coating inside reaction chamber chamber on substrates
	• WF ₆ ~ 0.015 l/min • H ₂ ~ 0.10 l/min	 Reaction chamber did not break, sug- gesting previous breakage due to sub- strate binding with gas feed inlet nozzles.

PROCESS CONDITIONS AND RESULTS FOR FLUORIDE ROUTE COATING PREPARATION STUDIES: Table XXXIX

Reactor	via Quantity of Substrates	1	N	2	73	2	2	-	23	2	2	7			
Rotation	Speed (rpm)	10-20	11	1.1	10-20	10-20	10-20	10-20	10-20	10-20	10-20	10-20			
Deposition	Time (min)	120P.	15P.	15P.	180	240	180	180	120	120	09	180			
Reaction	Temp. (°C)	959	650	650	059	059	650	920	920	820	400	650			
Total Flow	Measured (*/min)	1.230	2.030	2.030	.967	1.027	1.067	1.067	1.240	1.240	1.040	1,067			
Si H,	Flow (Umin)	_	1	ı	ı	1	١	1	ı	1	050	ı			
s Flow min)	Dilution	-	ı	ı	ı		. 100	. 100	. 100	.100	ļ	. 100			iC1 ₄
Ine"t Gas Flow (He, Umin)	Si Cl ₄ Bubbler	1	090 .	090.	ı	090.	ı	ı	090.	090.	ı	ı		2	WF6 and S
Inert Gas Dilution	of H ₂ (He, ℓ/\min)	1.0	1.0	1.0	. 872	.872	. 872	. 872	. 872	. 872	872	.872		n in Figure 52	In CLY3-17-69, diluant introduced with WF and SiCI
H,	Flow (t. min)	.200	.400	.400	. 077	.077	. 077	. 077	. 190	. 190	. 190	. 077	_{ω1}	ed as show	diluant int
WEA	Flow (4 min)	. 030	. 030	. 030	.018	.018	. 018	.018	.018	.018	. 018	. 018	ONDITION	Equipment utilized as shown in	13-17-69,
	Run Number	CLY3-5-69	CLY3-6-69	CLY3-7-69	CLY3-17-69	CLY3-18-69	CLY3-19-69	CLY3-20-69	CLY3-21-69	CLY3-22-69	CLY3-23-69	CLY3-24-69	OTHER RUN CONDITIONS	udinb∃ •	• In CLY

Table XL COATING PREPARATION STUDIES: OBSERVATIONS FOR FLUORIDE ROUTE

Observation
Silver colored coating inside reaction chamber
• H ₂ feed nozzle plugged
• Introduced H ₂ thru larger feed nozzle
• H ₂ feed nozzle did not plug
 Other feed nozzle with WF₆ and SiCl₄ did plug after short operation period.
• Increased flow with diluent gas thru nozzle feeding WF and SiCl4
Feed nozzle plugged after longer operation period
 Conducted deposition run with hand fabricated new nozzle with separate feed entries for WF₆, SiCl₄ and H₂.
• Feed nozzle did not plug after three hour operation with WF6 and H2
• Substrates experienced weight gain indicating coating deposit
• Conducted deposition run with welded new feed nozzle having separate feed entries for each reactant.
 Feed nozzle did not plug after four operation including one hour operation with SiCl₄.
• Graphite reactor cracked during deposition run.
Conducted deposition run with metal cage reactor having improved strength qualities.
Metal cage reactor did not crack in deposition run.
Silver gray coating deposit achieved in run.
• Conducted second deposition run with metal cage reactor.
 Reactor condition satisfactory without cracking after three hour operation for W deposition.

Table XL (Contd)

Run Number	Observation
CLY3-21-69	 Conducted WSi_x deposition run for two hours with metal cage reactor and feed nozzle having separate entry for each reactant.
	• After two hour operation feed nozzle did not plug including SiCl ₄ entry.
CLY3-22-69	• Conducted WSi _x deposition at higher reaction temperature using SiCl ₄ .
	 Dark powder obtained as reaction product.
CLY3-23-69	• Conducted WSix deposition run using SiH4.
	 After short operation period at 400°C reaction temperature, the SiH₄ feed flow started dropping and continued dropping due to partial plugging.
CLY3-24-69	• Conducted WSix deposition run using SiCl4.
	No pluggage after three hour operation.
	Dark powder obtained as reaction product.

In the additional runs for the fluoride route to tungsten deposition, some substrate damage was experienced in the first several runs which were conducted with the metal cage reactor discussed previously. After conducting the next several runs without substrate damage (using a graphite reactor), the graphite reactor was selected for use in subsequent deposition runs. Several tungsten silicide depositions were conducted in the subsequent runs. A silver gray coating deposit was obtained on the T222 substrate in the experiments. Emission spec analysis for two of the tungsten silicide deposition runs disclosed very little silicon content in the coating (i.e., coating composition: Si = 1-100 ppm, W = 99 + %).

Subsequent runs for the fluoride route were conducted for tungsten deposition with partial success, i.e., some silver gray coatings were deposited on T222 substrates in these runs. A photograph showing the surface and uniform coverage of this silver gray coating is presented in Figure 53.

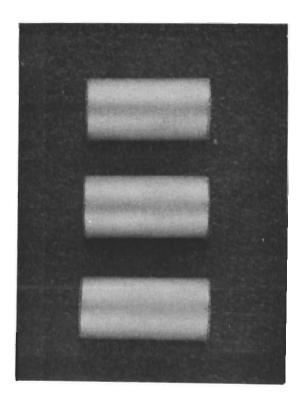
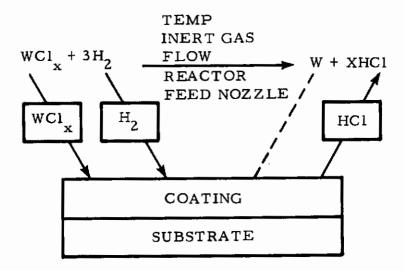



Figure 53. Coating Preparation Studies: Tungsten Coating Deposit on T222 Substrate for Fluoride Route (CLY3-36-69)

B. CHLORIDE ROUTE

The chloride route involved the following simplified CVD reaction chemistry for tungsten (W) deposition:

For initial runs, the tungsten chloride (WCl_x) was generated by passing gas phase chlorine over tungsten chips. The important process variables as shown above for the chloride route are reaction temperature, reactant concentrations (tungsten chloride, hydrogen, inert gas), flow rate, reactor design and gas feed nozzle design.

In initial process variable screening, Table XLI contains process conditions and results for the chloride route. The table discloses that more than eleven deposition runs were conducted. In each run, the tungsten chips experienced a weight loss indicating generation of tungsten chloride feed by passage of chlorine over the chips. With respect to tungsten deposition in the runs, some cursory coatings were obtained in the immediate region of chip holder exhaust for the gas feed nozzle design.

COATING PREPARATION STUDIES: INITIAL PROCESS CONDITIONS AND RESULTS FOR CHLORIDE ROUTE Table XLI

		WCl _x Feed	Pa	H ₂	H ₂ Feed	Inert G	Inert Gas Flows Ar, (t/min)					
Run Number	Approx. Cl ₂ Flow (^L /min)	W Chips Wt. Loss (gm)	Inert Gas Dilution (Ar, 4/min)	H ₂ Feed (*/min)	Inert Gas Dilution (Ar, &/min)	Si Cl4 Bubbler	Dilution	Total Flow Measured (t/min)	Reaction Temp. (°C)	Deposition Rotation Time Speed (min) (rpm)	Rotation Speed (rpm)	Reactor Loading via Quantity of Substrates
CLY3-8-69	1.0	12.481	1	0.9	_	ı	ı	7.0	1050	10	11	2
CLY3-9-69	1.0	47.0042	I	6.0	1	090.	1.0	9.060	1050	09	11	21
CLY3-10-69	7.	43.8058	1	6.0	ı	. 060	2.0	8.260	1050	45	11	7
CLY3-11-69	٦.	Yes	3.0	6.0	0.9	ı	1.0	16. 1	1040	45	11	2
CLY3-12-69	2.0	Yes	3.0	6.0	6.0	ı	1.0	18.0	640	45	11	2
CLY3-13-69	5.0	18. 3820	3.0	6.0	6.0	ı	2.5	22.5	830	45	11	2
CLY3-14-69	5.0	50, 7787	3.0	6.0	6.0	ı	2.5	22. 5	1000	45	11	7
CLY3-15-69	. 040	2.1356	4.5	5.0	0.5	0.5	1	10.540	1010	45	11	2
CLY3-16-69	. 040	0.0448	ı	5.0	0.5	0.5	1	6.040	700	45	11	2
CLY3, 1-17-69	. 035	1.4153	ı	6.0	I	5.0	ŀ	11. 035	800	45	11	2
CLY3, 1-18-69	. 035	1.6970	4.5	6.0	ı	I.	5.0	15, 535	1005	45	11	2
CLY3, 1-19-69	. 040	0.7486	5.0	1.	5.0	5.0	1	15.040	1005	45	11	2

Further process variable screening for the chloride route was completed including specific screening of process variables of reaction temperature, reactant concentrations (including hydrogen, tungsten chloride and inert gas dilution), flow rate and gas feed nozzle design. Detailed specifics including process conditions and results are presented in the appendix. For this cursory screening with tungsten chloride feed generation by passing gas phase chlorine over tungsten chips, silver gray coating deposits were achieved and reproduced in the immediate region of the gas feed nozzle design. But such coating deposits could not be achieved on the substrates because of technical problems. The effort was then switched to the chloride route with tungsten hexachloride (i.e., tungsten chloride feed generation with inert gas passage over the tungsten hexachloride).

Approximately fifteen deposition runs were conducted — process variable screening for the chloride route with tungsten hexachloride. Reaction temperature, reactant concentrations, reactor design and gas feed nozzle design were cursorily screened. In some of the runs, coating deposits were possibly suggested by the substrates experiencing slight weight gains (usually several mg). In those runs with reactor design screening, some silver gray coating was obtained on the reactor walls. Additional specifics — process conditions and observations — are given in the appendix.

Completion of the program activity of coating preparation disclosed partial success with tungsten deposition on T222 substrates via the fluoride route. The concentrated and accelerated work effort further disclosed that the technical problems — associated with the tungsten and tungsten silicide depositions in program activities of coating preparation, oxidation test and mechanical tests — could not be resolved in the short Phase III contract time even with the inclusion of additional resources.

SECTION IX CONCLUSIONS

The following conclusions were made as a result of work completed in this program for continued development of CVD coating refractory processes and practical production equipment for applying these coatings to large quantities of small parts:

- 1. The trideposition reaction with hydrogen reduction of gas phase silicon, titanium and chromium chloride feeds was demonstrated as a CVD chemistry base for depositing chromium-titanium-silicon (Cr-Ti-Si) coating on columbium with the processing equipment.
- 2. Coating rate increases for the trideposition reaction can be achieved with the following important process variables: gas feed geometry; reaction temperature; silicon chloride concentration; flow rate; dual chamber prereduction; titanium tetrachloride concentration; hydrogen concentration and argon dilution level of the hydrogen gas feed.
- 3. Statistical analyses (i.e., T- and F-tests) confirmed the process variable influence for coating rate improvement at a 95% confidence level for coating 1/4-in. dia. round rod substrates of columbium with the developed CVD-barrel coating technology.
- 4. Acceptable coating deposits may be achieved on threaded substrates 1-in. threaded stud refractory fasteners of columbium alloy Cb 752 composition with the processing equipment.
- 5. Other refractory fastener shapes including 1 1/2-in. long hex head bolts of Cb 752 may be CVD coated at high reactor loading of ten substrates per run.

- 6. Application of the technology for coating additional shapes bolts, studs, rods and flat panels - in one run was demonstrated with the potential production equipment at loading of twenty substrates.
- 7. Three refractory fastener shapes hex head bolts, threaded studs and hex nuts of Cb 752 composition may be CVD coated at a loading level of thirty substrates per run (i.e., ten of each shape) with uniform coating coverage.
- 8. From production demonstration batches, specific refractory fasteners 1 1/2-in. long hex head bolts and complimenting 1/4-in. dia. hex nuts may be coated with reproducibility at increased loading of coating thirty to fifty substrates per run. Based on a total of more than twenty demonstration runs, this current coating capability illustrates that the developed technology is within the scope of potential production equipment.
- 9. The uniform coating coverage achieved on refractory fasteners permits attachment of the coated hex bolt to coated hex nut. This suggests that the CVD coated components are amenable for use in this phase of their original application.
- 10. For coating oxidation properties, eighty plus hours of coating protection in 2400°F oxidation environment can be obtained for 1 1/2-in. round rods that are CVD coated in the apparent optimum region at high loading level with the practical equipment.
- 11. Coating of 1 1/2-in. hex head bolt refractory fasteners in apparent optimum region provides several fold coating oxidation property improvement. Results of twenty plus hours protection compared to uncoated fastener failure with severe oxidation after only one-half hour maybe achieved at high loading level (coating twenty to thirty substrates per run).

- 12. From production demonstration batches, CVD coating of specific refractory fasteners hex head bolts and complimenting hex nuts provides twenty plus hours coating protection of the substrate from high temperature oxidation (2400°F). This applies for refractory fasteners coated with the developed technology at the increased current coating capability (i.e., coating thirty to fifty substrates per run) with the potential production equipment.
- 13. For mechanical properties of the production demonstration batches, room temperature tensile and shear strengths are significantly enhanced with post-heat treatment. Mechanical properties in general are favorable in the wide temperature range of 80°F to above 2000°F. For cyclic oxidation, cursory literature screening revealed favorable state-of-art comparison based on this program and two independent literature sources.
- 14. From electron microprobe analysis, the component traces reveal that columbium alloy substrates including refractory fasteners may be CVD coated with the technology to provide a Cr-Ti-Si coating with minimal siliciding of the substrate.
- 15. For tungsten-tungsten silicide (W-WSi₂) coating, a silver gray tungsten (W) coating may be CVD deposited via the fluoride route on tantalum alloy T222 round rod substrates with uniform coverage.
- 16. This program has demonstrated that the developed CVD-barrel coating technology is a reproducible process for Cr-Ti-Si coating of refractory fasteners within scope of potential production equipment.

SECTION X RECOMMENDATIONS

The CVD-barrel coating technology was shown in this program to be a reproducible process for Cr-Ti-Si coating of columbium allow refractory fasteners within the scope of potential production equipment for applying such coatings to large quantities of small parts. To continue the process development for further practical extension, the following additional works is needed:

- 1. Process development of equipment to permit tungsten-tungsten silicide coating of small samples in batches of several samples per run.
- 2. Additional development of tungsten-tungsten silicide coating of tantalum alloy and evaluation of coating properties such as oxidation performance, coating-substrate interaction and reliability.
- 3. Optimization studies for tungsten-tungsten silicide coating of tantalum alloys including coating procedures and process parameters.

SECTION XI

DISTRIBUTION LIST F33615-68-C-1433

DEPARTMENT OF THE AIR FORCE

AFML (MATF, Lt J. Williamson) 5 cys WPAFB, Ohio 45433

AFML (MAA, Mr. J. Teres) WPAFB, Ohio 45433

AFML (MAAE) WPAFB, Ohio 45433

AFML (MAAM, Librarian) WPAFB, Ohio 45433

AFML (MAG) WPAFB, Ohio 45433

AFML (MAMP, Mr. K. Elbaum) WPAFB, Ohio 45433

AFML (MAMP, Mr. N. Geyer) WPAFB, Ohio 45433

AFFDL (FDDS)

Attn: Aerospace Dynamics Branch WPAFB, Ohio 45433

AFFDL (FDTS, Mr. J. F. Nicholson) Attn: Applied Mechanics Branch WPAFB, Ohio 45433

AFFDL (FDMS, Mr. Paul Lane Jr.) WPAFB, Ohio 45433

AFFTC (FTBAT-2) Edwards AFB, CA 93523

AFRPL (RPC) Edwards AFB, CA 93523

SAMSO (SMKIP) Attn: Mr. Joseph W. Krueger Los Angeles, CA 90045 SAMSO (SMT) AF Unit Post Office Los Angeles, CA 90045

DCM Norton AFB, CA 92409

Hq USAF (AFSPDI, Mr. B. Luther) Washington, D.C. 20330

AFSC (SCTSM)
Andrews AFB
Washington, D.C. 20332

Hq USAF (AFRSTC) The Pentagon Washington, D.C. 20013

ASD (ASNPD-30) WPAFB, Ohio 45433

FTD (TDEWP)
WPAFB, Ohio 45433

AFSC STLO (RTSNR)
Code 1032
U. S. Naval Research Laboratory
Washington, D.C. 20390

AIR MATERIAL AREAS (AMA'S)

OOAMA (OCAE) Technical Library Hill AFB, Utah 84401

OCAMA (OCAE) Technical Library Tinker AFB, Oklahoma 73145

ROAMA (ROAEPP-1) PDO 4045A Technical Library Griffiss AFB, NY 13440

AMA's cont.

SMAMA (SMNE) Technical Library McClellan AFB, CA 95652

SAAMA (SANEO) Technical Library Kelly AFB, Texas 78241

WRAMA (WRAE)
Technical Library
Robins AFB, GA 31093

DEPARTMENT OF THE ARMY

Commander
Army Research Office
Arlington Hall Station
Arlington, Virginia 22210

U. S. Army Engr, R&D Labs. Attn: Technical Document Acct. Fort Belvoir, VA 22060

U. S. Army Production Equipment Agency Rock Island Arsenal Attn: Mfg. Technology Div., AMXPE-MT Rock Island, Illinois 61201

Zeus Project Office U. S. Army Material Command Attn: AMCPM-Zee Redstone Arsenal, Alabama 35809

Army Materials Research Agency Attn: Mr. S. V. Arnold Watertown 72, Massachusetts

Frankford Arsenal Metallurgical Research Labs. Attn: cc 1321 Bridge & Tacony Streets Philadelphia, Pennsylvania 19104 Redstone Scientific Information Center Attn: Chief, Documentation Section U. S. Army Missile Command Redstone Arsenal, Alabama 35809

U. S. Army Materials Command Attn: Materials Section, Research Div. Washington, D.C. 20315

Picatinny Arsenal Attn: Mr. D. J. Molella Materials Engineering Section Technical Services Laboratory Dover, New Jersey 07801

DEPARTMENT OF THE NAVY

Chief of Naval Operations Navy Department Washington, D.C. 20350

Chief of Naval Material (Code NSP43) Navy Department Washington, D.C. 20360

Chief of Naval Research (Code ONR-740) Navy Department Washington, D.C. 20360

Commander
Naval Air Systems Command
Headquarters (AIR-604)
Washington, D.C. 20360

Commander
Naval Ship Systems Command (Code 2052)
Headquarters
Washington, D.C. 20360

Commanding Officer
Naval Air Development Center (Aero
Materials Department)
Johnsville
Warminster, Pennsylvania 18974

DEPARTMENT OF THE NAVY cont.

Commanding Officer
Naval Air Development Center
(Aero Structures Department)
Johnsville
Warminster, Pennsylvania 18974

Director Naval Research Laboratory (Code 2020) Washington, D.C. 20360

Commander
Naval Ordnance Laboratory
White Oak Md.
Mail Address
Silver Spring, Maryland 20910

Commander Naval Weapons Laboratory Dahlgren, VA 22448

Commanding Officer and Director Naval Applied Science Laboratory Flushing and Washington Avenues Brooklyn, NY 11251

Naval Plant Representative Applied Physics Laboratory Johns Hopkins University 8621 Georgia Avenue Silver Spring, Maryland 20910

Commander
Naval Air Systems Command
Headquarters (AIR-320)
Washington, D.C. 20360

Commander Naval Air Systems Command Headquarters (AIR-5203) Washington, D.C. 20360

Commander
Naval Air Systems Command
Headquarters (AIR-50534)
Attn: Mr. E. Gleason
Washington, D.C. 20360

Commander Naval Air Systems Command Headquarters (AIR-03E) Washington, D.C. 20360

Naval Material Industrial Resources Office Building 77L Philadelphia Naval Base Philadelphia, PA 19112

Bureau of Naval Weapons Attn: Mr. M. E. Promisel R-15, Rm. 2W98 Washington, D.C. 20360

DEPARTMENT OF DEFENSE

ODDRE, R&E Attn: Mr. J. C. Barrett Room 3D-117, Pentagon Washington, D.C. 20013

Advanced Research Projects Agency Asst. Dir., Materials Sciences Attn: Mr. Charles F. Yost, 3D-155 The Pentagon Washington, D.C. 20013

Defense Metals Information Battelle Memorial Institute Attn: Library 505 King Avenue Columbus, Ohio 43201

Defense Documentation Center 20 cys Cameron Station Alexandria, Virginia 22314

GOVERNMENT AGENCIES

National Aeronautics & Space Adm. Marshall Space Flight Center Attn: Dr. W. R. Lucas, R-P & VE-M Huntsville, Alabama 35812

GOVERNMENT AGENCIES cont.

National Aeronautics & Space Adm. Attn: Code RRM Washington, D.C. 20546

NASA, Lewis Research Center Attn: Chief Librarian 21000 Brookpark Road Cleveland, Ohio 44135

Scientific & Technical Information Facility Attn: Technical Library RQT-16448 P.O. Box 5700 Bethesda, Maryland 20014

National Academy of Sciences National Research Council Materials Advisory Board 2101 Constitution Ave., N.W. Washington, D.C. 20418

Air University
Attn: Technical Library
Maxwell AFB, Alabama 36112

Hq USAF (AFSCAI)
Study Information Group
Asst. Chief of Staff for Study and
Analysis
Washington, D.C. 20330

NASA Attn: Mr. J. J. Gangler 1520 H Street NW Washington, D.C. 20013

NASA Attn: Mr. S. Grisaffe 49-1 NASA Lewis 21000 Brookpark Rd. Cleveland, Ohio 44101

National Bureau of Standards Attn: Dr. Abner Brenner 118 Chemistry Bldg. Washington, D.C. 20025

DEFENSE CONTRACTORS

Aerojet General Corporation Structure Materials Division Dept. 326 Refractory Metals Section P.O. Box 296 Azusa, California 91703

Aerojet General Corporation Structural Materials Division Metallics & Refractory Dept. Azusa, California 91703

Aeronutronics
Research Laboratory
Attn: Dr. W. M. Fassell, Jr.
Chemical Metallurgy & Ceramics
Ford Road
Newport Beach, California 92660

Aerospace Corporation Attn: Dr. L. Ruben San Bernardino, California 92402

Aerospace Corporation Library Technical Documents Group P.O. Box 95085 Los Angeles, California 90052

Allison Division, GMC Attn: Experimental Process Dev. P.O. Box 894 Indianapolis, Indiana 46206

American Machine & Foundry 1025 N. Royal Street Alexandria, Virginia 22313

Atomics International Attn: Mr. A. K. Smalley Canoga Park, California 91303

Battelle Memorial Institute Nonferrous Metallurgy Division Attn: Mr. H. R. Ogden 505 King Avenue Columbus, Ohio 45401

DEFENSE CONTRACTORS cont.

Bell Aerosystems Company Airframe Development Attn: Mr. F. M. Anthony Buffalo, New York 14205

Bell Aerosystems Company
Div. of Bell Aerospace Corp.
Attn: Material & Process Group
Engineering Laboratories
Wheatfield F-11
P.O. Box 1
Buffalo, New York 14205

The Boeing Company Attn: Dr. C. A. Krier Mail Stop 47-75 P.O. Box 3703 Seattle, Washington 98101

The Boeing Company
Manufacturing Development Section
Attn: Mr. G. Michelson
Mail Stop 45-27
Seattle, Washington 98101

The Boeing Company
Wichita Division
Attn: Chief, Materials &
Processes Unit
Wichita, Kansas 67202

Chromalloy Corporation Attn: Mr. R. L. Wachtell West Nyack, New York 10994

Douglas Aircraft Company Mat'ls Research & Process Eng. 3000 Ocean Park Blvd. Santa Monica, California 90406

Douglas Aircraft Company Materials Research Department 2121 Paularina Avenue Newport Beach, California 92660

E. I. duPont de Nemours Inc. & Co. Metal Products Wilmington, Delaware 19898 Electro-Optical Systems Inc. 125 North Vinedo Avenue Pasadena, California 91102

Fairchild Stratos Corp.
Fairchild Missile Division
Attn: Engineering Library
Hagerstown, Maryland 21740

Fansteel Inc. Attn: Mr. C. I. Bradford Vice President and Technical Director 2200 Sheridan Road North Chicago, Illinois 40607

General Dynamics Corporation Attn: Mr. E. W. Federson P.O. Box 2672, Mail Zone 1-140 San Diego, California 92101

General Dynamics Attn: Mr. J. E. Burroughs Structural Sciences P.O. Box 748 Fort Worth, Texas 76101

General Dynamics/Pomona Attn: Manufacturing Div. Engr. 1675 W. 16th Street Pomona, California 91769

General Electric Company Attn: Mgr, Chemical Engineering Flight Propulsion Laboratory Chemical Engineering Bldg. 200 Cincinnati, Ohio 45202

General Electric Company
Flight Propulsion Laboratories
Applied Research Operation
Attn: Mr. M. A. Levinstein
Cincinnati, Ohio 45202

General Technologies Corporation Attn: Mr. J. C. Withers Vice Pres. & Manager Materials Division 708 North West Street Alexandria, Virginia

DEFENSE CONTRACTORS cont.

Grumman Aircraft Engineering Corporation Attn: Mr. M. Friedlander Engineering Library, Plant 5 Bethpage, L.I., New York

Grumman Aircraft Engineering Corporation Manufacturing Engineering, Plant 2 Bethpage, L.I., New York 11714

Lockheed Aircraft Company Attn: Mr. R. A. Perkins Dept. 52-30 Missile & Space Division 3251 Hanover Street Palo Alto, California 94302

Los Alamos Scientific Laboratory Attn: Mrs. Helen F. Redman P.O. Box 1663 Los Alamos, New Mexico 86544

LTV-Vought Aeronautics Division Attn: Technical Library P.O. Box 5907 Dallas, Texas 75222

The Marquardt Corporation Attn: Mr. M. J. Albom, Manager Materials & Processes 16555 Saticoy Street Van Nuys, California 91408

McDonnell Aircraft Corporation Attn: Mr. R. E. Jackson Senior Group Engineer Refractory Metals Space & Missiles Division Dept. 452, Bldg. 106 St. Louis, Missouri 63155

Melpar, Inc.
Materials Laboratory
3000 Arlington Blvd.
Falls Church, Virginia 22042

National Research Corporation
Attn: Director, Metallized Products
Program
70 Memorial Drive
Cambridge, Massachusetts 02138

North American Aviation, Inc. Attn: Technical Library 4300 East Fifth Avenue Columbus, Ohio 45401

North American Aviation, Inc.
Los Angeles Division
Attn: Mr. M. A. Hagen
Principal Engineer
Ceramic Laboratory
International Airport
Los Angeles, California 90052

Northrop/Norvair Attn: Chief, Mfg. Research & Dev. 3961 West Broadway Hawthorne, California 90250

North Star Research Institute Attn: Director of Research, Mat'ls 3100 Thirty Eighth Avenue Minneapolis, Minnesota 55406

Oakridge National Laboratory Metals & Ceramics Division P.O. Box X Oak Ridge, Tenn. 37830

The Pfaudler Company
A Division of Pfaudler Permutit, Inc.
Attn: Mr. B. S. Payne, Jr.
Asst. to the Director of Res.
1000 West Avenue
Rochester, New York 14603

Philco Corporation Research Laboratories Ford Road Newport Beach, California 92660

DEFENSE CONTRACTORS cont.

Pratt & Whitney Aircraft
Attn: Mr. E. F. Bradley, Chief
Materials Engineering
400 Main Street
East Hartford, Conn. 06108

Republic Aviation Corporation Applied Research & Development Attn: Technical Library Farmingdale, L.I., New York 11735

Solar Division Attn: Mr. A. R. Stetson 2200 Pacific Highway San Diego, California 92101

Southwest Research Institute Attn: Dept. 8, Res. Division 8500 Culebra Road San Antonio, Texas 78205

Standard Pressed Steel Company Attn: Mr. Thomas Roach Jenkintown, Pennsylvania 19046

Sylcor Division Sylvania Electric Products Attn: Mr. L. Sama Cantiague Road Hicksville, L.I., New York 11802

Thickol Chemical Corporation Reaction Motors Division Attn: Mgr., Metallurgy & Materials Ford Road Denville, New Jersey 07834

Union Carbide Stellite Company 1020 W. Park Avenue Kokomo, Indiana 46901 Union Carbide Corporation Carbon Products Division Attn: Mr. M. S. Wright Technical Information Service P.O. Box 6116 Cleveland 1, Ohio 44101

Union Carbide Corporation Stellite Division Attn: Mr. B. R. Barrett Kokomo, Indiana 46901

University of Dayton Research Institute Attn: Mr. John Wurst 300 College Park Avenue Dayton, Ohio 45409

Vitro Laboratories Attn: Mr. M. Ortner Chemistry & Arc Research Dept. 200 Pleasant Valley Way West Orange, New Jersey 07050

Westinghouse Electric Corporation Astronuclear Laboratory P.O. Box 10864 Pittsburgh, Pennsylvania 15236

Whittaker Corporation Research & Development/San Diego Attn: Library 3540 Aero Court San Diego, California 92123

APPENDIXES

APPENDIX I

OPTIMIZE PARAMETERS: RESULTS FOR GAS FEED GEOMETRY STUDY AND FIRST STATISTICAL SERIES

			Gas Feed	Geometry	4	¥	4	4	В	В	В	£	Д	m	Ü) (a	Q f	ם ו	a i	Ω	Q	Q	Q	۵	Q	Д	Q	c	1 4	9 6	Ω
			i i	Reaction Chamber	A ('-in. quartz rocking bottle)	A (7-in. quartz rocking bottle)	A (7-in.quartz rocking bottle)	A (7-in. quartz rotating bottle)	B (specialty reaction chamber)	A (specialty reaction chamber)	A (specialty reaction chamber)	A (specialty reaction chamber)	A (specialty reaction chamber)	C (small reaction chamber)	C (small reaction chamber)	C (small reaction chamber)	C (small reaction chamber)	C (small property)	_		_					_	_	C (small reaction chamber)	C (small reaction chamber)		_	C (small reaction chamber)	
			Substrate Identification	4-	• -	Flat panel (2 cm x 1 cm)	Fiat panel (2 cm x 1 cm)	Flat panel (2 cm x 1 cm)	Flat panel (2 cm x l cm)	Flat panel (2 cm x 1 cm)	Flat panel (2 cm x 1 cm)	Flat panel (2 cm x l cm)	Flat panel (2 cm x 1 cm)	Flat panel (2 cm x 1 cm)	Flat panel (2 cm x 1 cm)	Flat panel (2 cm x 1 cm)	Flat panel (2 cm x 1 cm)	Flat panel (2 cm x 1 cm)	Round rod (1 in. x 1/4 in.)	Round rod (1 in. x 1/4 in.)	Round rod (1 in. x 1/4 in.)	Round rod (1 in. x 1/4 in.)	Bound and (1 in 1/4 in)	Round rod (1 in × 1/4 in)	Dound and (1 in. x 1/4 in.)	Acund rod (1 in. x 1/4 in.)	Kound rod (1 in. x 1/4 in.)	Round rod (1 in. x 1/4 in.)					
	•	Weight Gain of Metal Substrate	1 2 3 Avg.	s Yes	Vee Vee			_		16. 5 20. 6 30. 2 22. 4	21. 9 22. 4	40.5 47.5	28.9 25.1	16. 7 12. 8 13. 1 14. 2	26.4 26.8 29.9 27.7	24. 7 32. 2 39. 1 32. 0	22. 1 22. 0 29. 1 24.4	1.4 36.0 42.3 36.5	45.2 47.6 51.7 48.2	77.9 70.3 63.6 70.6	47.8 46.6 46.3 46.9	47.4 44.0 41.5 44.3	1 17 7 70 3 71 1	95. 5 95. 6	22 6 22 5		4 45.8 43.2	43.043.8	73.5 73.9 72.3 73.2	85.0 82.6 82.5 83.3	80.6 80.5 81.4 80.8	56.1 56.1 57.5 56.4	52.7 52.9 51.6 52.4
		Rotation	Speed (rpm)	+			: :	= :	_					=	=	11 2	11 2	11	=	"	=	: 4	11							11	==	11 5	11 5
		Reaction	(°C)	,		1		1 :	≈ 1250	1230	1230	1230	1230	1170	1115-11703	1170	1170	1170	1115	1115	1115	1115	1115	1115	1015	3101	2101	6101	1015	1115	1115	1015	1015
		Deposition	(min)		,	ı		, ,	67	180	120	240	120	120	120	120	120	120	120	120	120	120	120	120	120	021	2 2	2	071	120	120	120	120
	Total		(t/min)	10.5	10.84	11.84	12 34	107.	. 695	14.08	13.99	13.99	13.99	3.863	3.863	7. 725	7. 725	3.863	3.863	7. 725	7. 725	11.59	11.59	7.725	11.59	7 775	7 775	2 :	66.11	11.59	9.66	11.59	7.725
L				Ā	Āŗ	Ar			ξ.	4	Ar.	Ą	Ar	Ā	Ā	Ar	Ar	Ar	Ar	Ar	Ar	Ą	۸r	Ar	¥	4	: ;		¥	Αr	Ar	Ar	۲
low	(uit	Inert	Gas	3.5	3.5	4.5	2	34	6.	ç .	. 65	6	ç .	57.	. 23	. 46	.46	. 23	. 23	. 46	.46	.46	. 46	4.325	.46	4	4		ę.	.46	.46	. 46	4.
Н, Е	(£/min)	H,		1	1	ı	ı	~	2		0.0			05.	1.50	3.0	3.0	1.50	1.50	3.0	3.0	3.0	3.0	3.0	3.0	9		; ;		3.0	3.0	3.0	3.0
	Weight			,	,	ı	ı		1	1	ı	ı	ı	ı	ı	ı	ı	1	ı	ı	,	ı	ı	ı	ı	1	,			1	ı	1	ı
	Weight	Loss of Loss of		ı	ı	ı	ı	1 197		14.370	370.7	16.015	4 5.546	. 50 12	. 6488	. 7312	. 9703	. 5095	. 7521	. 4565	. 2685	1.0504	1.9738	1.0589	2.841	. 6337	3930	1 0377	1. 7304	2. 6272	2,5929	. 8924	. 8680
	(uit	_	Diluent	.50	. 50	. 50	. 50	50	2	2	2	2	2	62.	. 23	.46	. 46	. 23	. 23	.46	.46	. 46	.46	.46	4	46	4	. *		ę.	94.	4.	4.
	Inert Gas Flows (t/min)	TiCI	Bubbler Diluent Bubbler Diluent	6.5	6.5	6.5	6.5	3.25	. 4	, ,	ŭ .		5	1.03	1.63	3.26	3.26	1.63	1.63	3.26	3.26	3.26	3.26	3.26	3.26	3.26	3.26	3 2 4		3.26	3.26	3.26	3.26
	Gas F	_,	Diluent	ı	. 25	. 25	. 25	. 25			67.		2 .	67.	57.	. 50	. 50	. 25	. 25	. 50	. 5225	4.365	4.3875	. 50	4.387	. 50	. 5225	4 366		4.365	5.6	4.3875	. 5225
	Inert	SiC1	ubbler	ı	060.	060.	060.	045	9		260	2	3220	. 0663	. 0225	.045	.045	.0225	.0225	.045	.0225	.045	.0225	.045	.0225	045	0225						0225
		Run	ļ.	CLY-79-68	CLY-80-68	CLY-81-68	CLY-82-68	CLY-83-68	-~				_		_		CLY-91-68	CLY-92-68	CLY-93-68	CLY-94-68	CLY-95-68	CLY-96-68	CLY-97-68	CLY-98-68	CLY-99-68	CLY-100-68 .045	CLY-101-68 .0225	CI Y-102-68 0225		CL1-103-68 . 045	CLY-104-68 .0338	CLY-105-68	CLY-106-68 .0225

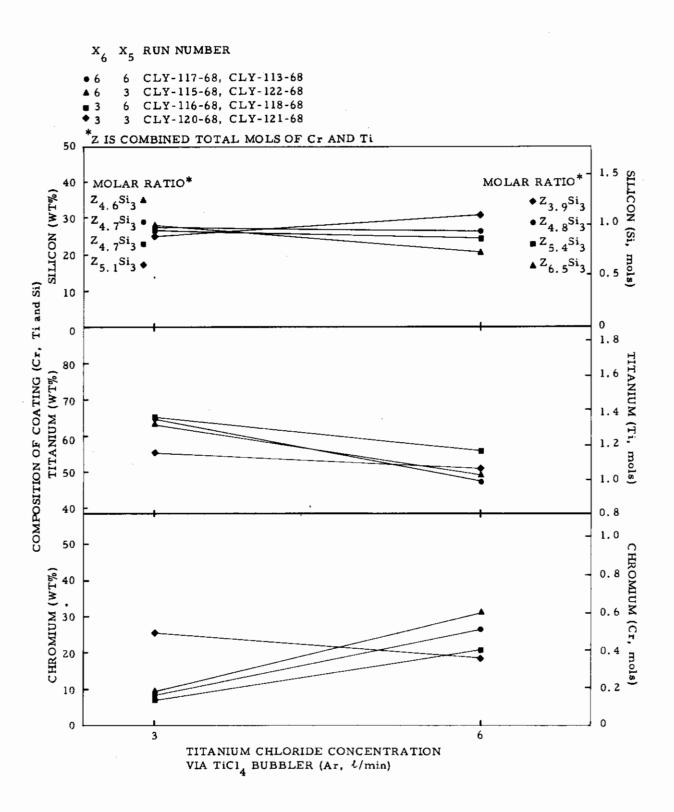
OTHER RUN CONDITIONS AND OBSERVATIONS:

^{1.} In CLY-83-68, with the small specialty reactor, TiCl4 bubbler and feed gas plug problems were experienced.

^{2.} Some trouble experienced with hydrogen regulator in CLY-84-68.

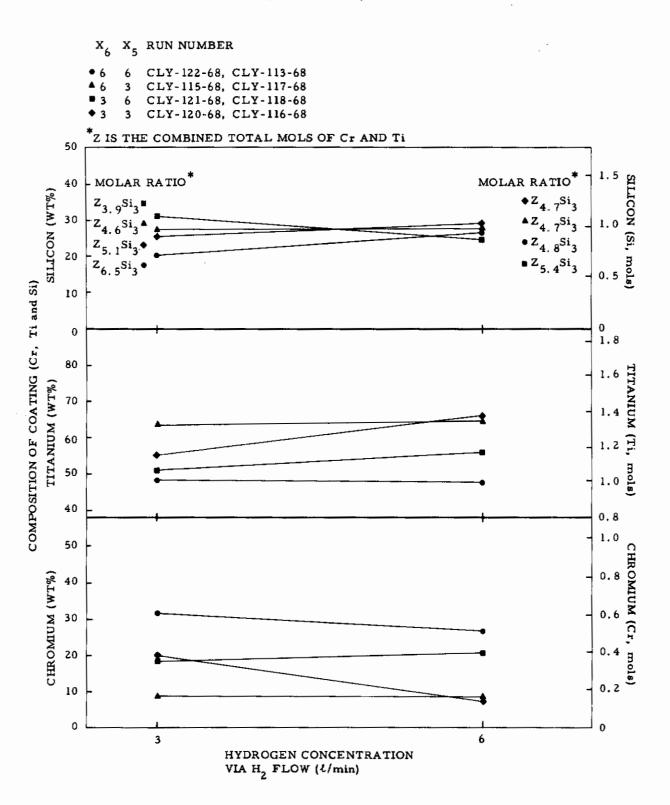
^{3.} High reaction temperature based on identical furnace temperature in preceding run and in subsequent run.

^{4.} Approximate measured weight loss of Cr chips due to experimental difficulties.

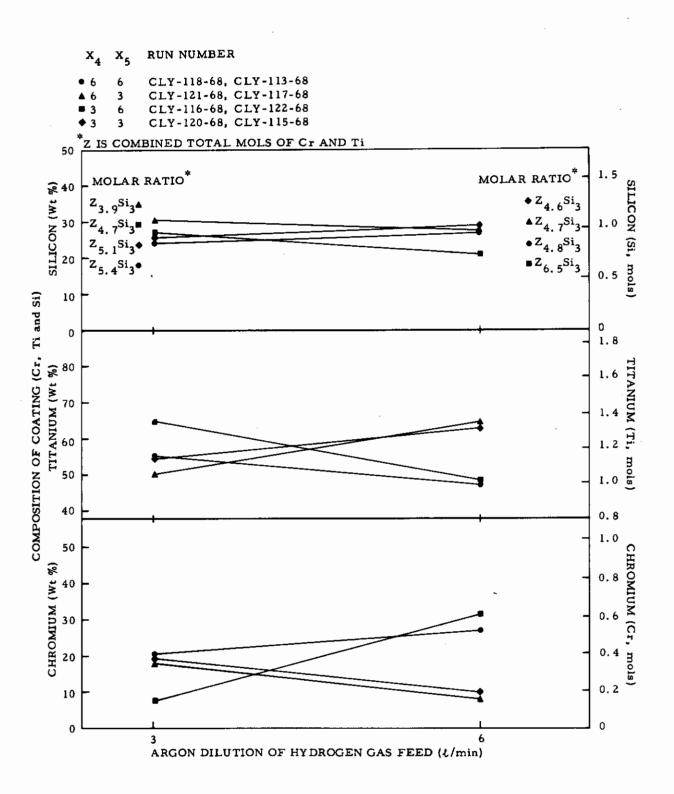

APPENDIX II

OPTIMIZE PARAMETERS: PROCESS CONDITIONS FOR INITIAL DUAL CHAMBER RUNS AND SECOND STATISTICAL SERIES EXPERIMENTS

	Iner	Inert Gas Flows (4/min)	we (t/m	(uir	Weight	Weight	H ₂ Flow ([£] /min)	n)		Total					3 · · · · · · · · · · · · · · · · · · ·		
Run	SiC14	1 .	TiCI		•	Loss of Ti Chips	H ₂	Inert Diluent I	nert	Inert Flow Diluent Inert Measured	Deposition Time	Reaction Temp.	Rotation Speed	-	weignt Cain of Metal Substrate	strate	
Number	Bubbler	Bubbler Diment Bubbler		iluent	-		Stream	Gas	Gas	(4/min)	(min)	(°C)	(rpm)	1	2	3	Avg.
CLY-107-68	. 045	. 50	3. 26	. 46	2. 321	1	3.0	4.325	Ar	11. 59	120	1115	11	97.9	92.6	95.6	95. 5
CLY-108-68	. 045	. 50	3. 26	. 46	1. 3516	2.014	3.0	4. 325	Ar	11. 59	120	1115	11	108.6	114.3	115.9	112.9
CLY-109-68	. 0675	. 75	4.9	69 .	2. 3387	3.0892	4.5	6.5	Ar	17.41	120	1115	11	122. 4	124. 1	120.9	122 5
	. 050	6.95	5.0	. 50	8888	1. 3697	2.0	2.5	Ar	14.0	120	1115	11	63. 1	8.99	65.3	65. 1
	. 050	6.95	3.0	. 50	. 0941	1. 5943	2.0	2.5	Ar	15.0	120	1115	11	85.0	9.62	84.8	83. 1
	090.	4.6	3.0	. 20	9226	2. 1376	3.0	3, 0	Ar	19.0	120	1120	11	143.6	144.7	146. 1	144.8
	090•	‡	0.9	. 50	2. 2027	4. 1638	6.0	6.0	Ar	19.0	120	1120	11	100.1	6.96	102. 3	99. 7
	090.	6.4	6.0	. 20	1.4091	2. 9862	3.0	3.0	Ar	19.0	120	1120	=	94. 7	95. 6	103. 4	6 26
	090•	* *•	3.0	. 50	. 9562	2. 3823	3.0	0.9	Ar	19.0	120	1120	11	6.89	69. 5	68.9	69 1
_	090 .	\$.	3.0	. 20	8908	2. 1923	0.9	3.0	Ar	19.0	120	1120	11	65.2	57.7	6 0. 4	61. 1
	090 .	3.4	3.0	. 50	. 7397	3. 1878	6.0	0.9	Ar	19.0	120	1120	11	75.4	8.92	70.0	74. 1
	090	3.4	6.0	. 50	1. 1649	3. 5597	0.9	3.0	Ar	19.0	120	1120	11	71.6	68.5	63.9	0 '89
	090	3. ‡	0.9	. 20	. 9141	2.8608	3.0	0.9	Ar	19.0	120	1120	==	58.0	65.2	90.09	61. 1
	090	4.	3.0	. 20	. 7646	3. 7923	3.0	3.0	Ar	19.0	120	1120	11	96.0	59. 1	53. 7	56.3
_	090 •	4 .9	6.0	. 20	1. 7982	2. 3728	3.0	3.0	Ar	19.0	120	1120	11	61.4	67.1	63.9	64. 1
_	090.	3.4	0.9	. 20		2. 947	3.0	0.9	Āŗ		120	1120	=	81.3	69.7	73.9	74.9
CLY-123-68	. 060	9.44	3.0	. 50	2. 5487	3. 2112	3.0	3.0	Ar	19.0	120	1120	=	55.3	63. 1	56.7	58. 4
OTHER RUN CONDITIONS:	CONDITE	ONS															
• Substr	Substrate Identification: Round	ification:		rod (1 in	rod (1 in. by 1/4 in.)	in.)											
• Reacti	Reaction Chamber: C(small reaction chamber)	ber: C(mall rea	ction ch	amber)												
• Gas Fe	Gas Feed Geometry: D	netry: D															
• TiCl	bubbler i	filled pri	or to CL	Y-112-6	TiCl, bubbler filled prior to CLY-112-68 and used through CLY-121-68	d through	CLY-12	89-1									
• Same S	Same SiCl, bubbler used in CLY	bler use	d in CLY	-112-68	-112-68 through CLY-122-68	CLY-122-	89										
• Large	TiCI, bu	ıbbler in	stalled p	rior to C	 Large TiCl, bubbler installed prior to CLY-122-68 	89											
1.0.0	פינין איין	hkler ine	to belled	0 04 401	1.V. 122.6	a											
	aici4 bu	eui jargg	rd parren	0 101	range of the business the prior to car - 123-00	0											
*Possible loss of Cr chips in reaction chamber.	of Cr c	hips in r	eaction c	chamber.													



APPENDIX II (CONTD)



APPENDIX II (CONTD)

APPENDIX II (CONTD)

Contrails

APPENDIX III

ANALYSIS: MULTIPLE REGRESSION ANALYSIS TAB RUN-FIRST STATISTICAL SERIES

MULTIPLE REGRESSION ... DEP.

SFLECTION....

VARIABLE MEAN NO. 1 1065. CC00C 2 0.03475 3 9.660C0	STANDARD DEVIATION 53.45224 0.01293 2.06326	CORRELATION X VS Y 0.46819 0.46819 0.68101	REGRESSION COEFFICIENT 0.00110 4.88889 0.04145	STD. FRROR OF REG.COEF. C.OOC37 1.63300 0.00952	COMPUTED T VALUE 2.99380 2.99380 4.35462
4 0.51000	0.12558				
INTERCEPT	-1.22691				
MULTIPLE CORRELATION	0.94983				
SID. FRROR OF ESTIMATE	0.05196				

ANALYSIS OF VARIANCE FOR THE REGRESSION

F VALUE	12,29613
MEAN	0.03320 0.00270
SUM DE SOUARFS	0.09960 0.01080 0.11040
OFGREFS OF FREEDOM	m 4 r
SOURCE OF VARIATION	ALIRIDATE IN REGRESSION DEVIATION FROM REGRESSION TOTAL

Contrails

F VALUE

7.36542

APPENDIX IV

SERIES
STATISTICAL
RUN-SECOND
TAB !
MULTIPLE REGRESSION TAB RUN-SECOND STATISTICAL
ANALYSIS: A

	WIND I DED:	MICHAEL ALL ALL	ARESSION 1AD A	ON-SECOND STR	AMALISMS: MOLINE LE REGRESSION TAD RON-SECOND STATISMOAL SERIES	Ω
VARIABLE	MEAN	STANDARD	CORRELATION	REGRESSION	STD. ERROR	COMPUTED
NO.		DEVIATION	× vs ×	COEFFICIENT	OF REG.COEF.	T VALUE
-	4.50000	1.60357	0.46486	0.03192	0.01344	2.37469
7	4.50000	1.60357	0.39203	0.02692	0.01344	2.00268
.	4.50000	1.60357	0.69061	0:04742	0.01344	3.52794
DEPENDENT			,	•	· · · · · · · · · · · · · · · · · · ·	
4	0.59137	0.11010				•
						1.1
INTERCEPT		0.11325	٠			
	•			,	·	
MULTIPLE CORRELATION	DRRELATION	0.92017				
SID. ERROR	SID. ERROR OF ESTIMATE	0.05702				•

ANALYSIS OF VARIANCE FOR THE REGRESSION

MEAN	0.02395	0.00325											
SUM OF	0.07185	0.01301	0.08485		RESIDUAL	-0.03500	0.03700	0.00725	0,00175	0.08025	-0.04150	-0.04600	-0.00275
DEGREES	Ur rreedum 3	4		IDUALS	ESTIMATE	0.65500	0.43200	0.52775	0.57425	0.75075	0.60850	0.67000	0.51275
DE VARIATION	E 10 REGRESSION	ROM REGRESSION		TABLE OF RESIDUALS	Y VALUE Y	0.61900	0.46900	0.53500	0.57600	0.83100	0.56700	0.62400	0.51000
SOURCE OF	ATTRIBUTABLE	DEVIATION FRO	. TOTAL		CASE NO.		7		4	2	9	7	80

APPENDIX V

ANALYSIS: FACTORIAL ANALYSIS OF VARIANCE TAB RUN-FIRST STATISTICAL SERIES

THREE WAY FACTORIAL ANALYSIS OF VARIANCE - I REPLICATION

	OBSERVATION	0.3700 0.4700 0.3700 0.3900 0.5900 0.5900
	LEVEL OF Variable 3	
LEVELS 2 2 2	LEVEL OF Variable 2	
VARIABLE 1 2 3	INPUT DATA LEVEL OF VARIABLE 1	

ANALYSIS OF VARIANCE TABLE

SCURCE OF VARIATION		DEGREES OF FREEDOM		SUM OF I		MEAN		FVALUE		
1	-	1	!	0.24202347E-01 I	O	0.24202347E-01	ļ 	0.89659061E 0	-	
7	_	7	-	0.24202347E-01 I	Ó	0.24202347E-01	_	0.89659061E 01	_	-
•	-	-	_	0.51200867E-01 I	Ö	0.51200867E-01	-	0-18967667E 0	~	_
12	-	~	-	0.31986237E-02 I	Ó	0.31986237E-02	-	0.11849489E 0	_	_
13	-		-	0.20027161E-03 I	o	0.20027161E-03	-	0.74191809E-01	_	_
23	-	-	—	0.19836426E-03 I	Ö	0.19836426E-03	_	0.73485196E-01	_	-
RESIDUAL	-	~	-	0.72002411E-02 I	o	0.72002411E-02	-			_
TCTAL	-		-	0.11040306E 00 I	ļ		-			

APPENDIX VI

ANALYSIS: FACTORIAL ANALYSIS OF VARIANCE TAB RUN-SECOND STATISTICAL SERIES

				j
			000000000000000000000000000000000000000	
2		FVALUE	0.56389494E 0.4C105581E 0.12446986E 0.92447573E 0.72151339E	
ATI	690 760 100 1100 350 670	pag pag		-
OBSERVATION	0.4690 0.5760 0.5100 0.6190 0.5350 0.6240		2E-01 3E-01 11E-01 4E-02 8E-02 7E-02	
٠.	m	MEAN	0.18335342E-01 0.13040543E-01 0.4C472031E-01 0.30059814E-02 0.2346C388E-02 0.39157867E-02	
	=		00.3	
LEVEL	VARIABLE 1 2 2 2 1 2 1 2 2 2 2 2 2			_
7	>		-01 -01 -02 -02 -02 -02	01
n n	LE 2	OF RES	5342E 0543E 2031E 9814E 0388E 4C33E	4126E-
LEVELS 2 2 2 2 LEVEL	VARIABLE 1 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SUP OF SQUARES	0.1833 0.1364 0.4047 0.3665 0.2346 0.3515 0.3738	0.84854
5		VBLE I		-
BLE DATA	IABLE 1 1 1 1 2 2 2 2	ANCE TABLE EES OF I EDOM I		
VARIABLE 1 2 3 INPUT DA		VARIANCE DEGREES (FREEDOM		-
> =		<u> </u>		-
		S1S (E OF 110N	U.A.L	
		ANALYSIS C SCURCE OF VARIATION	1 2 3 12 13 23 RES I DUAL	TOTAL

APPENDIX VII

DEPOSIT PHASES: CHEMICAL COMPOSITION OF COLUMBIUM ALLOY THREADED SUBSTRATES

Element Identification	Composition
Cb (Columbium)	87.89
W (Tungsten)	9.85
Zr (Zirconium)	2.26
N ₂ (Nitrogen)	trace (. 0076)
H ₂ (Hydrogen)	trace (. 0004)
Total	100.00

Note: The chemical composition of the columbium alloy used to fabricate the threaded substrates was furnished by the fastener supplier (Standard Press Steel; Jenkintown, Penn.).

DEPOSIT PHASES: TABULATED PROCESS CONDITIONS FOR DEPOSIT PHASE RUNS

APPENDIX VIII

			Г	-	_			_	_	_	_	_	_	_		_		_		-	-		_		
	Cr and		s	's	· S	S2	S ₂	. S	S	. S	Š	S	Š	S.	S.	. _{\$}	. S	Š.	Š	SS	Š	S.7	S ₇	57	88
	Gas	Geometry	Δ	Д	Ω	Ω	Q	Ω	Q	Q	Ω	Ω	Ω	Ω	Ω	Q	Ω	Ω	Д	Δ	Q	Q	Ω	Q	Д
			U	o	U	v	υ	U	v	υ	υ	υ	ō	ا ن	٠ ن	U	v	U	υ	υ	o	ū	Ü	Ü	c ₁
	4000	ç	Threaded Substrate	Threaded Substrate	Threaded Substrate	Threaded Substrate	Threaded Substrate	Threaded Substrate	Threaded Substrate	Threaded Substrate	Threaded Substrate	Threaded Substrate	Round Rod Substrate	Round Rod Substrate	Threaded Substrate	Threaded Substrate	Threaded Substrate	Threaded Substrate	Threaded Substrate	Threaded Substrate	Threaded Substrate	Threaded Substrate	Threaded Substrate	Threaded Substrate	Threaded Substrate
	,	Identification	Chamber A	Chamber A	Chamber A	Chamber B	Chamber B	Chamber B	Chamber B	Chamber B	Chamber B	Chamber B	Chamber B	Chamber B	Chamber B	Chamber B	Chamber B	Chamber B							
		Avg.	146.6	164.7	167.4	98.7	182.2	165.3	134.3		321.2	272.3	97.8	217.1	128.8	164.8	185. 7	99.4	166.4	249.1	ı	175.2	204.3	189.9	1
Gain of bstrate	~[148.9	170.1	168. 1	91.4	162.9	177.3	133.6	136.6	332.4	270.7	tes	222.3	tes	tes	166.4	tes	166.4	245.2	1	182.4	206.7	185.7	ı
Weight Gain of Metal Substrate	(mg	7	148.6	161.5	174.3	97.1	176.3	166.2	135.3	136.4	312.0	288.1	10 substrates	209.4 219.6 222.3	substrates	substrates	169.5 166.4	12 substrates		246.2	1	1.0.1	6.002	192.5	ı
- 2		-	142.5	162.5	159.7	108.6	187.3	152. 4	134.1	139.5	319.2	258.1	10	209.4	9	7	163.3	15		256.0	ı	173.1	205.2	191.7	i
	Quantity	Substrates	e e	3	3	3	3	3	8			3	10	3	01	7	3			۳		3		9	5
	Rotation		==	11	=	=	=	==	=			=	=	11		=	11	=	11	=	1	=	=	=	1
	Reaction	(°C)	1100	1100	1100	1100	1100	1100	1100	1100	1100	1100	1080	1100	1100	1100	1100	1100	1100	1100	1	1100	1100	1100	ı
	Deposition I		180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	180	1	180	180	180	ì
Total	Flow	(t/min)	61	19	19	16	19	19	61	19	19	19	19	19	19	19	19	19	19	19	ı	61	19	16	ı
			۸r	Ar	Ar	Āŗ	Ar	Αr	Ar	Ar	Ąŗ	Ąŗ	Ā	۸r	Ā	Ą	Ār	Ą	Ā	Ąŗ	ı	Āŗ	Ar	Ąr	ı
	Inert Inert	Gas	6.0	6.0	0.9	6.0	6.0	6.0	6.0	9.0	6.0	9.0	6.0	0.9	6.0	6.0	6.0	9.0	6.0	9.0	ı	6.0	9.0	9.0	ı
	н,	Stream	6.0	0.9	0.9	6.0	6.0	6.0	0.9	0.9	0.9	0.9	0.9	0.9	6.0	0.9	0.9	0.9	0.9	3.0	ı	3.0	3.0	3.0	ı
Weight	Loss of		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	ı	Yes	Yes	Yes	ı										
Weight	Loss of		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	ı	Yes	Yes	Yes	red										
ĵ.	_		. 50	. 50	. 20	. 50	. 50	. 50	. 50	. 50	. 50	. 50	. 50	. 20	. 50	. 50	. 50	. 50	. 50	. 20	ı	. 50	. 50	. 50	encounte
Inert Gas Flows (L/min)	TiCI	Bubbler	3.0	0.9	0.9	3.0	6.0	6.0	3.0	3.0	6.0	3.0	0.9	6.0	6.0	6.0	6.0	6.0	6.0	3.0	ı	6.0	4.0	2.0	ficulties
Gas Flo	4)iluent	3.46	0.42	0.46	3.45	0.42	0.46	3.46	3.42	0.38	3.38	0.42	0.38	0.45	0.42	0.42	0.42	4	6. 44	broke	3.44	5. 44	4.44	ental difi
Inert	SiCı	Bubbler Diluent Bubbler Diluent	. 040	080	040	080	080	.040	.040	080	. 120	. 120	080.	. 120	080	080	080	080	090.	090.	tor	090.	090.	090.	Experimental difficulties encountered
	e e		Y-124-68	Y-125-68	Y-126-68	Y-127-68	Y-128-68	Y-129-68	Y-130-68	Y-131-68	Y-132-68	Y-133-68	Y-134-68	Y-135-68	Y-136-68	Y-137-68	Y-138-68	Y-139-68	Y-140-68	Y-141-68	Y-142-68	Y-143-68	Y-144-68	Y-145-68	Y-146-68

OTHER RUN CONDITIONS

- Threaded substrate (dimension: 1 in. x 1/4-in. with 1/2 in. of 1/4 20 refractory threads one end, material: Cb 752 alloy)
 - Round Rod Substrate (dimension: 1 in. x 1/4-in., material: Cb)
- Substrate weight gain for CLY-136-68 (average: 128.8, each; 138.7, 137.4, 124.9, 123.2, 132.6, 130.0, 125.6, 131.2, 130.6, and 113.5) ■ Substrate weight gain for CLY-134-68 (average: 97.8, each; 91.8, 98.8, 98.6, 91.7, 85.3, 101.2, 104.0, 99.2, 113.4, and 94.4)
 - Substrate weight gain for CLY-137-68 (average: 164.8; each; 162.6, 163.8, 170.1, 169.6, 160.1, 157.6, and 139.7)

Substrate weight gain for CLY-139-68 (average: 99'4, each; 100.2, 109.4, 104.9, 101.3, 98.8, 96.3, 96.0, 97.0, 96.3, 96.0, 92.5, and 103.5)

APPENDIX IX

COATING OXIDATION SAMPLES: PROCESS CONDITIONS AND RESULTS FOR COATING OXIDATION SAMPLE RUNS

	Iner	,	Inert Gas Flows (2/min)	a	Weight	Weight	Hydrog Gas Fo (t/m	i b (i		195					Coating Deposits					The state of the s
Rub	SICI	17	TiCI		Loss of	Loss of	-	Inert	Inert	Flow	Deposition	Resction	Rotation	Quantity	Weight Gain of		Resction	Gas Feed		
Number	Bubbler	Diluent	Bubbler Diluent Bubbler Diluent	T.,	(mg)	(mg)	Feed	_	Identification	(£/min)	(min)	į	(rpm)	Substrate	Substrate (mg)	Substrate Identification	Chamber	Geometry	Dual Chamber Identification	Chine Charge
CLY-147-68	040	4.46	4.0	95.	Yes	Yes	4.0	0.3		12	081	8	=	ļ						
CLY-148-68	040	4. t ¢	•	8.	Yes	Yes	4.0	4.0	: \$	11	180	900	:=		160.3	In the saded Substrate	2,	α :	Chamber B	Fresh
CLY-149-68	040	\$.6	0.4	3.	X.	Yes	6.0	4.0		21	180	8	:=		76.1	In the state of Substrate	٥,	α,	Chamber B	Used
CLY-150-68	8	\$	9.9	8.	Yes	Yes	•	0.9	; ;	11	180	8 8	: =	2 5	100.0	Inrended Substrate		Α.	Chamber B	Fresh
CLY-151-68	040	2.46	0.9	8.	X	Yes	6.0	0.9		717	180	000	:=			Incaded Substrate	٥,	α .	Chamber B	Fresh
CLY-152-68	080	. 42	•	S.	Yes	Yes	6.0	6.0		17	180	8	:=			Thresded Substrate	٥,	Ω	Chamber B	Used
CLY-153-68	080	6. 42	•	8.	Yes	Yes	4.0	6.0		21	180	900	:=		6.00	And the second Substrate	,۲	Ω :	Chamber B	Fresh
CLY-154-68	080	7	0.9	25.	Yes	Yes	0.9	0.4	: :	-	180	9	: =		97.	I hr eaded Substrate	٠,	_	Chamber B	Used
CLY-155-68	080	6. 42	0.9	8.	Yes	Yes	•	0.4	: :		9	3 5	: =	2	191.	Inreaded Substrate	7,	_	Chamber B	Fresh
CLY-156-68	. 080	5. 42	4 .5	8.	X.	Yes	•	3.5	: *		98	1025	:=		603.0	In the ded Substrate	2,	ο.	Chamber B	Used
CLY-157-68	8	7.40	•	8.	,	Yes	3.0	5.0		12	180	900	:=	: :		Intended Substrate	2,	Ω .	Chamber B	Fresh
CLY-158-68	011	8.39	3.75	95.	,	Yes	2.5	1.25		16.5	180	986	:=	::		Inreaded Substrate	7,	ο :	Chamber B	Used
CLY-159-68	901	7.40	••	95	Yes	Yes	3.0	2.0	: 2	17	252	9	: =	::		Inreaded Substrate		_	Chamber B	Fresh
				1									:	2	146.5	Three ded Substrate	<u>ر</u> د	Δ	Chamber B	Used
OTHER RUN CONDITIONS	NOLLIONS																			
• Threaded	ubstrate (umension.	d Lin.	t 1/4-in. v	rith 1/2 in.	of 1/4 - 2.	0 refract	ory thread	 Threaded substrate (dimension: 1 in. x 1/4-in. with 1/2 in. of 1/4 - 20 refractory threads one end, material: Cb 752 alloy) 	terial: Cb	752 alloy)									

Run	Quantity of		ŭ	ating D	eposit	Coating Deposit: Weight Gain of Substrate (mg)	Gain of	Substra	te (mg)				3,41,41
Number	Substrate	1	2	3	4	2	9	7	8	¢	10	Avg.	Identification
CLY-147-68	9	131.7	132.8	132.8 138.2	115.2	129.3	124.0					128 5	Threaded Substrate
CLY-148-68	9	92.9	93.6	92.4	91.2	91.5	6	1	ļ			200	Three ded Substate
CLY-149-68	10	162.0	163.0		-	166.0	-		_	9 991	164.5	165.5	Threaded Substrate
CLY-150-68	10	111.2	109.6	113.5		111.8	108.0		109.1	100	107.0	100	Threaded Substrate
CLY-151-68	9	114.5	115.2	115.2 106.9		106.6	112.0				· 	: =	Threaded Substrate
CLY-152-68	9	220.5	189.5	189. 5 242. 9 216.8	216.8	223.8	223.8 217.7			1		218.5	Threaded Substrate
CLY-153-68	10	59.8	90.2	80.1	56.2	90.0	90.0 91.2	89.5	91.8	90.7	80.7	82.0	Threaded Substrate
CLY-154-68	10	147.1	138.8	138.8 134.1	145.4	134.4	134.4 136.6				147.9	141.7	Threaded Substrate
CLY-155-68	9	205.0	207.8		210.3	200.4	200. 4 224. 5	_				209.8	Threaded Substrate
CLY-156-68	10	136.6	130.5	130. 5 133. 2	127.3	134.2	134.9	135.7	132.2	135.5	139.3	134.9	Threaded Substrate
CLY-157-68	10	117.0	104.9	104.9 101.7	103.4	108.4	108.4 103.4	107.3	106.6	110.3	106.0	6.901	Threaded Substrate
CLY-158-68	10	93.4	93. 1	93.6	95. 1	93.4	93.4 94.3	94.7	96.7	95.7	4.86	94.3	Threaded Substrate
CLY-159-68	10	137.9	136.8	136.8 134.9 139.0	139.0	143.0	138.4	143. 0 138. 4 139. 9 142. 3 141. 1	142.3	141	140 4	130 4	Threaded Substanto

		-											
Run	Quantity		ű	ating D	eposit	Coating Deposit: Weight Gain of Substrate (mg)	Gain of	Substra	te (mg)				30.0
Number	Substrate	1	2	3	4	5	9	7		6	10	Avg.	Identification
CLY-147-68	9	131.7	132.8	138.2	132.8 138.2 115.2		129.3 124.0 —	ļ		ı		128.5	Threaded Substrai
CLY-148-68	9	92.9	93.6	92.4	91.2	91.5	91.0	1		[-	92. 1	Threaded Substra
CLY-149-68	10	162.0	163.0	168.5		166.0	164.8	165.5	165.9	166.6	164. 5	165.5	Threaded Substra
CLY-150-68	10	111.2	109.6	109. 6 113. 5	112.2	111.8	108.0	106.4	109.1		107.0	109.7	Threaded Substrat
CLY-151-68	9	114.5	115.2	115.2 106.9	111.9	106.6	112.0		-			1111	Threaded Substrat
CLY-152-68	9	220.5	189.5	189. 5 242. 9	216.8	223.8	217.7	-		1		218.5	Threaded Substrat
CLY-153-68	01	59.8	90.2	80.1	56.2	90.0		89.5	91.8	90. 7	80.7	82.0	Threaded Substrat
CLY-154-68	10	147.1	138.8	134. 1	145.4	134.4		142.0			147.9	141.7	Threaded Substrat
CLY-155-68	9	205.0	207.8	207.8 210.7	210.3	200.4	200.4 224.5		1			209.8	Threaded Substrat
CLY-156-68	10	136.6	130.5	130. 5 133. 2 127. 3	127.3	134.2	134.9	135.7	132. 2 135. 5	135.5	139.3	134.9	Threaded Substrat
CLY-157-68	10	117.0	104.9	104.9 101.7 103.4	103.4	108.4	108.4 103.4	107. 3 106. 6 110. 3	106.6	110.3	106.0	106.9	Threaded Substrat
CLY-158-68	01	93.4	93. 1	93.6 95.1	95. 1	93.4	93.4 94.3	94.7	96.7 95.7	95.7	4.86	94.3	Threaded Substrat
CLY-159-68	01	137.9	136.8	134.9	134.9 139.0	143. 0 138. 4 139. 9 142. 3 141. 1	138.4	139.9	142.3	141.1	140.4	139.4	Threaded Substrat
•													

APPENDIX X

ANALYSIS OF TESTS: CURSORY MULTIPLE REGRESSION ANALYSIS FOR 2200°F AND 2400°F COATING OXIDATION RESISTANCE CORRELATIONS

	_	ession icient	Com Abso T Va		T Valu for Co Level	e nfidence
Variable	2200 ⁰ F	2400 ⁰ F	2200 ⁰ F	2400°F	95%	90%
X ₈ -Coating Thickness (mils)	-14.8	11.8	2.46	0. 813	2,36	1. 90
X ₉ -Coating Cr	0.699	-0.324	1.63 x 10 ⁻³	0.31 x 10 ⁻³	2.36	1. 90
Concentration (wt%) X ₁₀ -Coating Ti Concentration (wt%)	2.60	-2. 41	6.06 x 10 ⁻³	2.34 x 10 ⁻³	2.36	1. 90
X ₁₁ -Coating Si Concentration (wt%)	-0.923	-1. 07	2.15×10^{-3}	1.04 x 10 ⁻³	2.36	1. 90
Intercept	-92.39	156.7				
Standard Error of Estimate	4.26	10.3	,			
Multiple Correlation Coefficient	0.899	0.650				

- Y_3 and $Y_4 = aX_8 + bX_a + cX_{10} + dX_{11} + Intercept$
- a, b, c and d = Regression coefficient
- Y₃ and Y₄ = Coating oxidation Resistance at 2200°F and 2400°F vis.

 Average Test Time Before Failure (hr)
- Correlation based on samples at two coating thickness levels from coating oxidation sample runs
- 1-in. Threaded Stud Substrate
- Reaction Chamber C (small reaction chamber)
- Gas Feed Geometry D

APPENDIX XI

ANALYSIS OF TESTS: MULTIPLE REGRESSION TAB RUN-2200°F OXIDATION RESISTANCE CORRELATION FOR COATING BASED ON SAMPLES FROM TWO COATING THICKNESS LEVELS

MULTIPLE REGRESSION....OXID

SELECTION.... 1

VARIABLE NO. 1 2 3 4 DEPENDENT	1.77500 13.71249 55.32495 30.96249 6.15000	STANDARD DEVIATION 0.40089 3.41234 3.20880 2.58398 6.35812	CORRELATION × VS Y 0.08407 -0.21699 0.60449 -0.46411	REGRESSION COEFFICIENT -14.84648 0.69873 2.60067 -0.92272	STD. ERROR OF REG.COEF. 6.03899 428.82715 428.82764 428.82666	COMPUTED T VALUE -2.45844 0.00163 0.00606
INTERCEPT		-92.39082				
MULTIPLE (MULTIPLE CCRRELATION	0.89854				
STD. FRROM	STD. ERROR OF ESTIMATE	4.26264				

ANALYSIS OF VARIANCE FOR THE REGRESSION

SOURCE OF VARIATION	CEGREES	SUM CF	MEAN	F VALUE
	OF FREEDOM	SOUARES	SQUARES	
TTRIPUTABLE TO REGRESSION	7	228,46912	57.11728	3.14347
DEVIATION FROM REGRESSION	6	54.51038	18.17012	
TOTAL	1	282.97949		

APPENDIX XI (CONTD)

	TABLF CF	RESIDUALS	
ON II	Y VALUE	Y FSTIMATE	RESIDUAL
-	11.80000	10.82382	C.97618
۸.	00008.5	9.74762	352
ĸ:	0.0005.0	4.45060	
4	0.50000	-	2.25777
ሊ	17.29999	13,50742	3.79257
Ç	2.00000	3.11244	-1.11244
7	0.50000	-0-54846	1.04846
œ	6.80000	9.82538	-3.02538

F VALUE

0.54896

57.87495

231.49986 316.27783 547.77759

SUM OF SQUARES

CEGREES OF FREEDOM

ATTRIBUTABLE TC REGRESSION DEVIATION FROM REGRESSION

TOTAL

SOURCE OF VARIATION

MEAN SQUARES

ANALYSIS OF VARIANCE FOR THE REGRESSION

APPENDIX XII

ANALYSIS OF TESTS: MULTIPLE REGRESSION TAB RUN-2400°F OXIDATION RESISTANCE CORRELATION FOR COATING BASED ON SAMPLES FROM TWO COATING THICKNESS LEVELS

MULTIPLE REGRESSION

SELECTION....

•						
VARIABLE	NUM	STANDARE	CORRELATION	REGRESSION	STD. ERROR	COMPUTED
ND.		DEVIATION	★ SA ×	COEFFICIENT	OF REG. COEF.	T VALUE
-	1.77500	0.40089	0.13444	11.83229	14.54653	0.81341
2	13,71249	3.41234	0.57958	-0.32405	1032.94482	-0.00031
M	55,32495	3.208E0	-6.37744	-2.41223	1032.94629	-0.00234
4	30.96249	2,58358	-0.29667	-1.06983	1032.94385	-0.00104
DEPENDENT	4					
ir.	05269-9	6.84613				
INTERCEPT		156.65955				
MULTIPLE	MULTIPLE CORRELATION	0.65009				
STO. ERRO	STO. ERROR OF ESTIMATE	10.26771				

APPENDIX XII (CONTD)

	TABLE OF	TABLE OF RESIDUALS	
O	Y VALUE	Y ESTIMATE	RESIDUAL
_	6.50000	10,15958	-3.65558
^	2.00000	0.47940	1.52060
۲,	6.80000	2,20959	4.59040
4	6.80000	8.81717	-2.01717
ις	1.00000	-0.68454	1.68454
9	27.50000	15,27510	12.22490
7	2.00000	9.44312	-7.44312
σc	0.50000	7,39967	-6.89967

CASE

APPENDIX XIII

ANALYSIS OF TESTS: MULTIPLE REGRESSION TAB RUN-2200°F OXIDATION RESISTANCE CORRELATION FOR COATING BASED ON ALL SAMPLES FROM COATING OXIDATION SAMPLE RUNS

MULTIPLE REGRESSION CX2200

SFLECTION....

TIGN REGRESSION STD. ERROR COMPUTED Y COEFFICIENT OF REG.COEF. T VALUE 117 -6.32253 16.86595 -0.37487 140 -5.1844 3074.93872 -0.00169 538 -5.31827 3074.93872 -0.00173 89 -6.09004 3074.93774 -0.00198			•
CORRELATION x vs y -0.14217 0.01440 0.03638 -0.07289	2	9	
STANDARE 0.65937 3.48851 3.37947 2.37581	581.16602	0.15516	35.81267
MFAN 1.87500 13.56666 55.29163 31.14162		MULTIPLE CORRELATION	STO. ERROR CF ESTIMATE
VARIABLE NO. 1 2 3 4 DEPENDENT 5	INTERCEPT	MULTIPLE (STD. ERROF

ANALYSIS OF VARIANCE FOR THE REGRESSION

F VALUE 0.04549	
MEAN SQUARES 58.33780 1282.54785	
SUM OF SQUARES 233.35121 8977.83594 5211.18359	
CFGREES OF FREEDOM 4 7	
SOURCE OF VARIATION ATTRIBUTABLE TO REGRESSION DEVIATION FROM REGRESSION TOTAL	

MULTIPLE REGRESSION..... 0X2200

SFLECTION.... 1

TABLE OF RESTOUALS

RESICUAL	-18.79619	4.49156	-8.87409	83.82442	21.44716	-7,19738	-14.00758	-7.21768	-13.05283	-14.94144	-15.86810	-9.79551
Y FSTIMATE	20.75619	12.60843	20.67469	19,67558	5.05284	16.59738	16.00758	9.21768	13,55283	15.44144	16.36810	16.59550
Y VALUE	2.00000	17.29955	11.80000	103.50600	26.50000	20708*5	2.00000	2.00000	0.5000	0.50600	0.5006	00008*9
CASE NO.	-	^	۴,	4	S	\$	7	œ	σ	10	-	12

APPENDIX XIV

ANALYSIS OF TESTS: MULTIPLE REGRESSION TAB RUN-2400°F OXIDATION RESISTANCE CORRELATION FOR COATING BASED ON ALL SAMPLES FROM COATING OXIDATION SAMPLE RUNS

MULTIPLE REGRESSION....CX2400

SELECTION

VARIABLE NO. 1 2 3 4 DEPENDENT	MEAN 1.67500 13.56666 55.29163 31.14162 11.55000	STANDARD CEVIATION 0.65937 3.48851 3.37947 2.37581	CORRELATION X VS Y 0.22513 0.56348 -0.43612 -0.20703	REGRESSION COEFFICIENT 2.54672 -0.77730 -2.67461 -3.04360	STD. ERROR OF REG.COEF. 7.16075 1305.52173 1305.52173	COMPUTED T VALUE 0.35565 -0.00060 -0.00205
INTERCEPT		259.98633				
MULTIPLE C	MULTIPLE CORRELATION	0.54459				
STD. FRROR	STD. FRROR OF ESTIMATE	15.20453				

ANALYSIS OF VARIANCE FOR THE REGRESSION

SOURCE OF VARIATION	CEGREES	SUM GF	MEAN	ű.
	OF FREEDOM	SQUARFS	SOUARES	
ATTRIBUTABLE TC REGRESSION	4	682.31885	170.57971	0.0
DEVIATION FROM REGRESSION	7	1618,33008	231.19000	
TOTAL	11	2300.64853		

VALUE

73783

APPENDIX XIV (CONTD)

MULTIPLE REGRESSION.....OX2400

SFLECTION 1

TABLE OF RESIDUALS

RESIDUAL 0.10173	-2.81958 -16.05800	29.83344	-4.67639 6.57465	10.21507	-5.00615	-12.44275
Y ESTIMATE 0.39827	3.81958 22.55800	12.16656 9.14354	6.67639	23.78493 8.52128	11.80615	•
Y VALUE 0.50000	1.00000	47.00000 5.00000	27.50000	34.00000	6.80000	0.50000
CASE NO.	~ к	4 rc	9	ec or	2 =	12

Contrails

APPENDIX XV

ANALYSIS OF TESTS: MULTIPLE REGRESSION TAB RUN-CORRELATION FOR 2200°F COATING OXIDATION RESISTANCE AS FUNCTION OF PROCESS VARIABLES, BASED ON ALL SAMPLES FROM COATING OXIDATION SAMPLE RUNS

MULTIPLE REGRESSICA.... FR220C

SFLECTION....

	.				
VARIABLE PEAN	STANFARE	œ	REGRESSION	STO. ERROR	COMPLIED
•ON	CEVIATION	⊁ S> ×	COEFFICIENT	OF REG.COEF.	TVALUE
1 1634.41650	49.13332	-0.03444	-0.23865	0.21622	-1.10372
2 0.07250	0.02558	-0.46542	-140.64786	503.80737	-0.27917
3 18.37500	1.96766	0.44515	3.40005	5.40475	0.62909
4 4.68750	0.98253	C-36C22	3,47523	10.80949	0.32150
5 4.37500	1.29964	0.53652	6.48795	10.07614	0.64389
6 4.06250	1.69525	C.50536	2.57562	8.71785	0.29544
7 8.66667	1.96946	-0*46535	-3.94254	5,32204	-0- 14080
DEPENDENT					
8 15-26666	28.93752				
INTERCEPT	188.68246				
MULTIPLE CCRRELATION	N 0.75917				
STO. FRROR OF ESTIMATE	ATE 31.23470				

ANALYSIS CF VARIANCE FOR THE REGRESSION

SOURCE CF VARIATICA	E EGR E ES	SUM OF	MEAN	F VALUE
	CF FREEDOM	SOUARES	SCUARES	
ATTRIBUTABLE TO REGRESSION	7	5308 • 75781	758.29360	C.17736
DEVIATION FROM REGRESSION	4	3902.42578	975.60645	
161 AL	11	9211.16359		

APPENDIX XV (CONTD)

WLITTPLE FFCRESSION....PR2200

SFLFCTICA.... 1

TAFLE CE RESICUALS

RESICU	-26.9062	1.4525	16.427	35,915	8.9574	-16,4618	-25,4365	-17,9662	-4.8536	7.4419	13.7291	13.7419
Y FSTIMATE	28.50628	15.84744	1.37286	67.58426	17.54254	26.76184	27.43658	15.56622	5.35383	-6.54154	-13.27913	-6.54154
Y VALUE	7.6000c	55552-11	11.80000	163,56366	26.50000	3.4304.2	7.3006	2.00000	0.50000	1,5000	0.50,000	6.46000
CASE NO.	_	~	~	7	5	4	7	α.	5	10	_	12

Contrails

APPENDIX XVI

ANALYSIS OF TESTS: MULTIPLE REGRESSION TAB RUN-CORRELATION FOR 2400°F COATING OXIDATION RESISTANCE AS FUNCTION OF PROCESS VARIABLES, BASED ON ALL SAMPLES FROM COATING OXIDATION SAMPLE RUNS

MULTIPLE REGRESSICH PR24CC

SFLECTION.... 1

VARIABLE MEAN	STANDARD	CERRELATION	0		
NO.	-	X VS Y		OF PECTOR	CCMPUTED
1 1034.41650	45.13332	031	0.06385	025	4 A
2 6.67250	0.02558	1477	1.40F.	31110100	•
3 18.375CC	1.96766	956	1.963	CT - 2C - 25	
4 4-61750	C.98353		11-62645	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	79/17-7
5 4.37500	1.29904	4 2	ט נ	1 65050	0.0444V
6 . 4.06250	55559	0.28127	•	S A	2-14526
7 8-46667	· ·	. 4	• •	#0374•T	066/5*1-
DEPENDENT) ;		70669		-5*43005
8 11_5500C	14-46202				
INTERCEPT	-6.68819				
MULTIPLE CERRELATION	859250				
STD. FRROR CF FSTIMATE	5.11646				

ANALYSIS OF VARIANCE FOR THE REGRESSION

ī	11.9
MEAN	313.70532 26.17816
SUM OF	2155,63726 104,71265 2300,64950
CEGREES CF FREEDOM	7 4 11
SGURCE CF VARIATION	ATTRIBUTABLE TO REGRESSION Deviation from regression Total

VALUE

58347

APPENDIX XVI (CONTD)

ب.
(.)
240
C.
X
<u>∵</u>
:
:
_
]
-
v.
v.
LL:
α.
FGRESS
نقا
α
ii.
1111
Δ.
-
-
_
7 E
Σ

SFLECTION I

TABLE OF RESIDLALS

)5555*2-
Y FSIINAIF 3.55899 C. 14828 4.62660 37.96733 7.58441 2.17960 29.70122 36.04933 6.25674	3.4955
7 VALLE 0.50000 1.00000 47.00000 47.00000 7.00000 27.50000 24.00000 6.80000	0.000
CASF NC. 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	- 2

APPENDIX XVII

CYCLIC OXIDATION OPTIMIZATION: PROCESS CONDITIONS AND RESULTS FOR CYCLIC OXIDATION RUNS

	-	Inert Gas Flows	. Flows			_	H2 Gas Flow	Flow					١		Coating Deposits						_
_		u/1)	nin)	1	Weight	_	(I/min)	nin)		Total					Average						
Bun B	SiCI		TiCI			Loss of	т	Inert Di brent	Thert	7	Deposition Reaction Rotation Time Terms Speed	Temp.	Rotation Speed	Ouantity of	Weight Gain of	Substrate	Chamber		Dual Chamber	Cr and Ti	
	Bubbler Diluent	Diluent	Bubbler Dilbent	Di luent	(mg)	mg)	_	_	tion	(/min)	(mim)	(°C)	(rpm)	Substrates	(mg)	Identification	Identification	Identification	Identification Identification	Chips Charge	_
X-160-68	80.	. 42	6.0	ű.	Yes	۲es	6.0	4.0	٧٠	17.0	240	1000	Ξ	10	178.4	Q	Q	Ω	Chamber B	Fresh	
69-191-X	*	2. 46	6.0	۶.	Yes	, ,	6.0	6.0	٧Ł	21.0	300	1000	Ξ	10	147.2	Ω	Ω	Q	Chamber B	Fresh	
.Y-162-69	. 078	2, 822	8.6	z.	Yes		6.9	3.5	7	21.0	300	0001	Ξ	01	297.3	Ω	Ω	Ω	Chamber B	Fresh	_
Y-163-69	960.	2, 204	12.2	٠.	, , ,	¥.	8.0	2.0	٧	25.0	300	096	Ξ	01	306.8	О	Ω	Ω	Chamber B	Fresh	_
.Y-164-69	. 120	1. 38	15.0	٠.	Yes	, X	10.0	•	¥	28.75	09	006	Ξ	01	81, 39	Δ	Ω	Ω	Chamber B	Fresh	
.Y-165-69	021.	1, 38	17.0	٠,	Yes	, Xee	10.0	•	٧.	80.62	270	006	=	10	330.7	Ω	Δ	Q	Chamber B	Fresh	_
-X-166-69	86.	2. 204	12.2	٠.	Yes	× es	8.0	2.0	¥	25.0	420	096	Ξ	20	132, 7-194, 2-	A-B-D-C	<	Ω	Chamber B	Fresh	
49-161-Y	801.	1.79	14.6	s.	Yes	Yes	9.0	1.0	٧Ł	866.92	480	0 9 9	Ξ	50	119. 0-224. 2	A-B	<	Ω	Chamber B	Fresh	_
Y-168-69	. 084	2.616	9.80	٠.	Yes	Yes	7.0	3.0	۲	23.0	480	066	Ξ	20	226. 2-112. 3	A-B	۷	Ω	Chamber B	Fresh	
.Y-169-69	. 120	1. 38	17.0	٠.	, X	, X	10.0		۲	29.0	480	9	Ξ	20	267,6-118.2	A-B	٠	Ω	Chamber B	Fresh	
-X-170-69	%0.	2, 204	12.2	٠.	Yes	Yes	8.0	2.0	٧	25.0	480	960	Ξ	20	160.9- 73.7	A-B	<	۵	Chamber B	Fresh	
49-171-Y	. 132	. 968	19. 4	٠:	Yes	Yes	11.0	•	ž	32.0	480	870	Ξ	70	193, 2-108, 2	A-B	<	۵	Chamber B	Fresh	
-X-172-69	270.	3, 028	7.4	٠.	,	. X	6.0	4 .0	¥	21.0	480	1020	=	20	358.2-111.0	A-B	۷ .	Д	Chamber B	Fresh	
.Y-173-69	. 072	3, 028	7.4	٠:	Yes	Yes	6.0	÷	ž	21.0	480	1020	Ξ	50	157, 3-134, 2	A-B	<	Ω	Chamber B	Fresh	_
.Y-174-69	.084	2.616	9.80	٠.	Yes	Yes	0.7	3.0	٧	23.0	480	066	Ξ	20	157.6-161.9	A-B	<	Ω	Chamber B	Fresh	
Y-175-69	.084	2.616	9.80	٠.	, X	Xe.	7.0	3.0	٧	23.0	480	066	Ξ	0.	0.689	۵	<	۵	Chamber B	Fresh	
.Y-176-69	180	2,616	9.80	٠:	, X	¥.	7.0	3.0	*	23.0	480	990	=	70	347, 7-88.3	A-B	<	Ω	Chamber B	Fresh	_
.x-177-69	180	2,616	9.80	٠.	, , , , , , , , , , , , , , , , , , ,	Yes	7.0	3.0	4	23.0	480	066	=	30	528.2-118.6- 147.6	D-E-C	۷	О	Chamber B	Fresh	
HER RUN CONDITIONS	ONDITIC	SNO																			
. Substra	te Identi	Substrate Identification																			
₹	1 1/2-1	A. 11/2-in. Round Rod	Rod Rod																		
ei Ü	- i	Flat Panel (app. 1 in 1-in. Threaded Stud	Stud	Flat Panel (app. 1 in. X 1/2 in.) 1-in. Threaded Stud																	
ď	1 1/2-in.	in. Hex	1 1/2-in, Hex Head Bolt																		

APPENDIX XVII (CONTD)

D	Quantity			Coa	ating Dep	osit: We	ight Gair	of Subs	trate (m	g)			Substrate
Run Number	of Substrate	1	2	3	4	5	6	7	8	9	10	Avg.	Identification
CLY-160-68	- 10	146.5	159.6	170.8	182.7	183.6	193.6	194.7	193.0	191,3	167.8	178.4	D
CLY-161-69	10	125.4	152.0	147.7	143.6	143.6	138.0	157.3	163.2	156.1	145.6	147.2	D
CLY-162-69	10	300.5	294.4	297.0	297.8	302.0	294.7	294.1	294.0	295.6	302.6	297.3	D
CLY-163-69	10	314.6	305.0	311.4	302,2	305.5	305.4	296.7	296.7	317.3	313.7	306.8	D
CLY-164-69	10	67.5	66.7	99.3	82.9	63.0	69.1	94.1	79.2	86.1	106.0	81.4	D
CLY-165-69	10	326.5	337.9	331.6	333.6	328,7	327.8	329.8	332.9	329.3	329.0	330.7	D
CLY-166-69	5	84.7	83.4	83.8	83.4	86.0	_	_	_	_	_	84.3	С
CLY-166-69	5	47,3	45.9	46.1	55.0	53.6	_	_		-	_	51.4	В
CLY-166-69	5	128.9	133.9	132.5	136.0	132.1	-	_	_	_	_	132,7	A
CLY-166-69	5	193.7	191.5	197.4	193.1	195.3			_	_		194.2	D
CLY-167-69	10	112,5	120.1	128.5	114.1	128.1	113.4	129.3	68.5	136.4	138.5	118.9	В
CLY-167-69	10	223.7	217.7	223.6	222.9	223.9	221.2	218.5	228.4	227.9	234.3	224.2	A
CLY-168-69	10	261.4	264. 1	259.8	261.8	263.2	269.6	270.9	270.4	273.5	267.0	266.2	A
CLY-168-69	10	104.3	105, 1	112,3	111.7	110.5	110.9	138.7	117.0	87.9	124.8	112.3	В
CLY-169-69	10	259.4	261.5	268.1	268.3	261.3	267.9	268.3	272.3	276.5	278.0	267.7	A
CLY-169-69	10	100.9	104.1	113.0	114.5	118.9	121. D	120.9	128.0	127.1	133.9	118.2	В
CLY-170-69	10	152.9	157.9	155.9	159.7	158.3	165.3	164.5	163.4	165.4	166.1	160.9	A
CLY-170-69	10	67.1	65.8	65.5	71.7	73.7	73.8	79.3	80.2	81.3	78.9	73.7	В
CLY-171-69	10	181.9	184.6	185.5	190.5	183.4	183.7	208,5	204.8	204.0	205.4	193.2	A
CLY-171-69	10	94.4	107.0	101.0	107, 1	98.8	102.7	119.7	111.7	116.5	123.4	108.2	В
CLY-172-69	10	342.5	347.3	351.1	356.3	354.8	351.7	353.0	366.6	357.2	363.4	358.2	A
CLY-172-69	10	101.1	102.4	115.0	103.0	108.9	112.3	107.8	112.4	113.2	128.8	110.9	В
CLY-173-69	10	160.2	146.3	159.4	160.0	160.9	156.0	157.5	175.9	98.3	158.8	151.3	A
CLY-173-69	10	128.5	130.0	127.5	138.8	137.7	133.1	121.2	143.B	132.9	148.2	134.2	В
CLY-174-69	10	144.7	140.8	158.3	147.5	154.9	153.5	161.1	157.4	199.7	158.3	157.6	A
CLY-174-69	10	142.9	151.1	160.9	154.8	169.2	174.2	173.6	166.0	158.4	178.0	161.9	В
CLY-175-69	10	686.2	693.6	702.5	696,7	695.7	684.3	688.4	685.2	711.8	695.8	689.0	D
CLY-176-69	10	336.2	349.1	346.8	344.3	346.9	339.7	358.6	351, 1	352,2	349.8	347.7	A
CLY-176-69	10	78,8	75.6	90.0	81.8	79.2	96.9	99.7	84.2	104.0	93.1	88.4	В
CLY-177-69	10	521.3	521.9	506.7	526.6	542.7	530.8	328.6	528.4	538.8	536.7	528.3	D
CLY-177-69	10	117.4	112.6	119.5	118.0	119.6	118.3	123.7	124, 1	116.3	116.3	118.6	E
CLY-177-69	10	158.7	147.0	145.9	150.9	147.9	144.0	146.7	141.9	149.7	143.7	147.7	С
CLY-178-69	10	224.6	226.4	219.4	221.0	225.0	218.4	222.8	218,5	226.3	228.7	223.1	D
CLY-178-69	10	43.2	42.5	39.9	42.2	40, 1	39.7	40.3	40.3	41.3	41.1	41.0	E
CLY-178-69	10	51.8	52.1	50.9	50.8	52.8	54.8	53.4	54,3	52.4	52.8	52.6	С

APPENDIX XVIII

CYCLIC OXIDATION OXIDATION: PROCESS CONDITIONS AND RESULTS FOR CYCLIC OXIDATION RUNS

		Inert Gas Flows (*/min)	Flore		Weight	Weight	H ₂ G	H ₂ Gas Flows							Coating Deposits Average					
	SiC1	٠,	TiC1	_,•	Loss of Cr Chips	Loss of Ti Chips	H ₂	Inert	Gest	Flow	Deposition Reaction Rotation Time Temp. Speed	Reaction Temp.	Rotation	Quality of	¥ e.g.	Substrate	Reaction	Gas Feed Geometry	Dual Chamber Cr and Ti	Cr and Ti
Number	Bubbler	Bubbler Diluent Bubbler Diluent	Bubbler	Diluent	(mg)	(mg)	Feed	į	Identification	(c/min)	(min)	(°C)	(rpm)	Substrates	(mg)	Identification	Identification	Identification	Identification Identification Identification Chips Charge	Chips Charge
CLY-178-69 .072		3. 028	7.40	۶.	Yes	Yes	0.9	4 .0	٧Ł	12	210	0201	=	90	223. 1-52. 6-41. 1	C-D-E	٧	q	а	Fresh
CLY-179-69 .072	220.	3. 028	7.40	٠.	Y	ĭ,	6.9	•••	¥	17	390	1020	=	20	171, 5-146, 6-59, 4	A-B-F	۷	Ω	æ	Fresh
CLY-180-69 .072		3.028	7.40	'n	¥.	;	0.0	•;	¥	12	940	1020	=	50	310. 6-157. 1-124. 4	A-B-F	<	۵	ø	Fresh
CLY-181-69 .060		3.4	5.0	v.		:	5.0	9.0	¥	61	009	1050	=	02	270. 7-129. 9-102. 7	A-B-F	<	Q	м	Fresh
CLY-182-69 .072	270.	3. 028	7.40	'n.		ž	6.0	•••	¥	17	360	1020	=	9	202. 1	Δ.	۲	۵	ф	Fresh
CLY-183-69 . 072	220.	3. 628	7.40	v.		¥.	9;	°:	¥	17	084	1020	=	01	151.2-458.3	C-D	۷.	۵	m	Fresh
CLY-184-69 .060		*	9.0	ŗ	:	:	ş. e	5.0	¥	61	084	1050	=	50	107. 2-323. 9	G-D	۲	α	Д	Fresh
CLY-185-69	% 0.	2.204	12.2	ď.	:	:,	.	2.0	₹	52	480	9%	=	20	111, 3-302, 8	C-D	۷	Ω	æ	Fresh
OTHER RUN CONDITIONS	CONDITIE	ONS																		
• Subst	trate Ide	Substrate Identification																		
	A. 11/2-in. B. Flat Pane C. 1-in. Thr. D. 11/2-ia. E. Hez Nut F. Spot Weld	A. 11/2-in. Round Rod B. Tata Passi (app. 1 in. x 1/2 in.) C. 1-in. Threaded Stud D. 11/2-is. Hax Head Bolt E. Hax Nut. F. Spot Weld Fat Panel (app. 1-1/2)	od in. x 1/i ud d Bolt nel (app.	7 in.)	11/2-in. Round Rod That Panale (Apr. 1 in. x 1/2 in.) 11/2-in. Threaded Stud 11/2-in. Threaded Stud 11/2-in. Max Head Boit Spot Wald Flat Panal (app. 1-1/2 in. x 1/4-1/2 in.)	2 in.)														

188

APPENDIX XVIII (CONTD)

Run	Quantity		COAT	COATING DEPOSIT:	POSIT:	WEIGHT	T GAIN OF		SUBSTRATE	(mg)			
Number	Substrates	1	2		4	2	9	7	8	6	10	Avg	Substrate Identification
CLY-178-69	10	224.6	226.4	219.4	221.0	225,0	218.4	222.8	218.5	226.3	228.7	223.1	Q
CLY-178-69	10	43.2	42.5	39.9	42.2	40.1	39.7	40.3	40.3	41.3	41,1	41.0	ল
CLY-178-69	10	51,8	52.1	50.9	50.8	52.8	54.8	53.4	54.3	52.4	52.8	52.6	υ
CLY-179-69	10	163. 1	161,5	166.2	165.9	174.7	158.4	183, 1	185.9	187.0	170.6	171.5	∢
CLY-179-69	ĸ	144.4	143.3	138.9	144. 1	162.3	ı	ı	ı	ı	1	146.4	ĹΨ
CLY-179-69	5	20.1	8.09	58.7	77.1	80.5	ı	ı	ı	ı	ı	59.4	щ
CLY-180-69	10	311.8	215.3	305.9	306.4	307.1	313.7	317.9	301.9	308.9	318.3	310.6	₹
CLY-180-69	ហ	156.3	152.1	156.2	154.8	166.5	ı	1	1	ı	1	157.2	Ĺ
CLY-180-69	50	115.9	126.4	136.3	120.4	124.9	1	ı	, 	ı	ı	124.4	Ä
CLY-181-69	10	264.7	259.3	253.6	260.3	258.0	264.9	279.9	282.4	285.6	298.4	270.7	¥
CLY-181-69	5	109.4	126.5	131.9	134.0	138.8	ŀ	ı	ı	ı	ı	129.9	ÍΨ
CLY-181-69	50	103.0	8.96	103.8	106.6	103,4	ı	ŀ	ı	1	1	102.7	æ
CLY-182-69	æ	205.0	200.4	202.6	200.8	201.4	I	ı	+	ı	1	202.1	Q
CLY-183-69	10	150.3	147.8	151.8	150.6	151.9	156.2	149.8	145.6	153.6	154.6	151.2	ပ
CLY-183-69	10	454.9	450.3	451.0	459.2	457.3	464.4	461.7	461.2	461.4	461.0	458.3	Ω
CLY-184-69	10	105.4	104.5	105.3	109.1	107.2	109.7	108.1	107.9	108.2	106.8	107.2	U
CLY-184-69	10	322.5	317.1	322.0	323.3	320.0	331.5	326.3	324.8	321.3	324.5	323.3	Q
CLY-185-69	10	302.8	308.6	308.3	308.8	308.0	306.3	310.6	306.9	311.3	307.0	307.8	Ω
CLY-185-69	10	108.8	112.0	112.2	111.9	111.3	110.6	111.9	111.6	111.8	111.2	111.3	U

APPENDIX XIX

PRODUCTION DEMONSTRATION BATCHES: PROCESS CONDITIONS AND RESULTS

	-	Inest Gae Flows	Floure				H2 Gas Flo	as Flows												
		(t/min)	1 J				Ė	min)		Total					Average					
Run	TiCl	1,4	SiC14	14	Weight Loss of	Weight Loss of	f H ₂	Inert Di luent	Gas	7	Deposition Reaction Time Temp.	Reaction Temp.	Rotation	Quantity	Weight Gain of Substrate	Substrate	Reaction	Gas Feed Geometry	Dual Chamber	Cr and Ti
	Bubbler	Diluent	Bubbler	Diluent	Bubbier Diment Bubbler Diment Cr Chips Ti Chips Feed	Ti Chip	8 Feed	Gas	tion	(1/min)	(min)	(°C)	(rpm)	Substrates	(mg)	dentification	Identification Identification	Identification	uo	Chips Charge
CLY-185-69	12.2	.5	960.	2.204	Yes	Yes	8.0	2.0	ν·	52	480	096	0.11	20	307:8-111.3	D-C	٧	Q	Chamber B	Fresh
CLY-186-69	8.5	-	820.	2. 922	-	•	6.5	3.5	_	22	_	1005	-	01	492.4	Ω.	_	•	-	-
CLY-187-69	-	_	-	-		_	_	_		-	_		_	\$	307.9					
CLY-188-69	_						_							30	9.751				_	
CLY-189-69		_	_	_				_			480	_	_	20	268.8	_,				
CLY-190-69			_	_		_	_			_	009	_		30	421. 5-221. 7	P-Q		_		
CLY-191-69	_										-			29	477. 4-236.9	D-A	_			
CLY-192-69	_	_	_	_	_	_	_	_					_	30	442.2	C				
CLY-193-69	_				_	_				_	• 0			-	285.9	-				
CI V-194-69		_	_			_	_						_		401 6					
	_	_			_	_		_			200		•		61.0					
CLY-195-69	_	_	_	_		_	_				006		11.0	_	502.2			_		
CLY-196-69		_			_	_	_	_	_		480	_	1.2	-	305.2	-		_		_
CLY-197-69			_	_		_	-				480		5.	30	259.8	Д	_			_
CLY-198-69	_	_	_								006		+	20	432.3-75.1	D-E				
CLY-199-69			_		_	_	_			_	-	_		30	368.7	۵	_			
CLY-200-69		_	_		_	_								95	286. 2-59. 4	5				
7 100	_	_	_		_	_		_					_	-		1 1	_			
107-170			_	_				_	_				_	_	280.3-66.5	3-0				_
CLY-202-69	_	_		_	_	_	_	_	_	_	-	_	_	-	463.6-69.7	D-E				_
CLY-203-69		_	_		_			_			900	_		20	X-84.0	ш				_
CLY-204-69	_	_	_	_		_		_			909	_		30	565.9	Ω			_	
CLY-205-69					_		_	_			720	_	_	-	358.0	Ū		_	_	
CLY-206-69	_	_		_	_	_					220			-4	299 5-61 8	4			_	
201 40		_	_	_	_	_	_	_			;	_		: :		1 1	_			
CLY-201-69	_		_					_			240			\$	1	D-E		-		-
CLY-208-69	_	_	_			_		_			720	_		1	1	ı		_	_	
CLY-209-69		_	_		_	_	_	_			-			\$	212.0-45.7	D-E			_	
CLY-210-69	-	-	-	-	_	-	<u> </u>	<u></u>	-	→	-	-	-	45	376. 9-62. 1	D-E	→		_,	-
CLY-211-69	8.5	۶.	.078	2. 922	Yes	Y	6.5	3.5	۸r	22	720	1005	s.	25	493.1-116.4	D-E	<	Q	Chamber B	Fresh
												_								
OTHER RUN CONDITIONS	CON CON	IDITION	សា																	
• 8	 Substrate Identification 	Identific	ation																	
	A. 1 1/2-in. Round Rod	2-in. Re	and Rod	_																
		Panel (approxin	nately 1	in. x 1/	2 in.)														
	C. 1-in. D. 11/2	. Threa. 2-in. He	ded Stud	Bolt	l-in. Threaded Stud 1 1/2-in. Hex Head Bolt															
		Net																		
• 11	run CL)	Y-203-6	9, some	problen	. In run CLY-203-69, some problems experienced with bolts	enced w	ith bolt													
•	Run CL	Y-207-6	9, react	tion char	. In Run CLY-207-69, reaction chamber broke	ķ						,								
•	run CL1	1-208-6	9, new r	reaction	e In run CLY-208-69, new reaction chamber coated	conted														
•	 Batch A is CLY-202-69 	CLY-2	69-20																	
•	tch B is	CLY-2	q) 69-50	olts) and	· Batch B is CLY-205-69 (bolts) and CLY-203-69 (nuts)	3-69 (nu	•													
•	 Batch C is CLY-206-69 	CLY-2	69-90																	
•	tch Die	CLY-2	10-69 wi	ith re-et	ched bolt	nu pue s	ts from	reaction	 Batch D is CLY-210-69 with re-etched bolts and nuts from reaction chamber break run of CLY-207-69 	ak run of (CLY-207-6	_								
•	Batch E is CLY-211-69	CLY-2	11-69																	
												_								
												7								

Contrails

APPENDIX XIX (CONTD)

	Quantity											S	ting De	posit	Weigh	at Gain	Coating Deposit: Weight Gain of Substrate (mg)	strate	(Bus)												
Number	Substrate	-	2		•	2	9	7	80	6	01	-	121	13	15	91	11	81	2	20	2 12	22 23	3 24	52	92	27	7 28	29	30	Avg.	Identification
CLY-186-69	01	478.3	485.0	478.3 485.0 516.7 481.	481.4	488.8	496.2	Fillers			4	<u>'</u>	1	!		1	1	ı	1	1	,	,	1	1				1	-	- 492.4	q
CLY-187-69	9	305.7	309.9	305. 7 309. 9 303. 6 301.	301.7	304.2		313.2 Fillers	1	+	+	+	+	+	+	+			+	+	\dagger	\dagger	+	+	+	1	To 40	9		307.9	۵
CLY-188-69	30	158.3	160.1	158.3 160.1 157.2 158.	158.8	154.6	158.9	Fillers	1	1	+	+	+	+	+	+	1	T	1	+	+	+	+	+	+	+	+	+	Ŧ	157.9	Ω
CLY-189-69	20	263.0	268.3	2.272	263.0 268.3 272.2 271.8 Fillers	Fillers				1	+	+	+	+	+	+				t	<u> </u>	÷	1		<u>'</u>		<u> </u>		<u> </u>	268.8	Q
CLY-190-69	27	424.8	427.3	424.8 427.3 412.0 416.	416.1	430.7	419.3	Fillers	1	1	+	+	+	+	+	+			1	+	•	+	+	+	+	1	١	-		- 421.5	Q
CLY-190-69	•	212.9	212.9 225.3 226.9	226.9	ı	ı	ı	ı	ı	1	<u>'</u>	<u>'</u>	1	1	1	ı	1	1	1	1	<u> </u>	<u>.</u>	-	<u> </u>			1			7.122 -	<
CLY-191-69	92	478.8	475.0	478.8 475.0 474.4 485.	485.9	467.5	482.1	Fillers	<u> </u>		+	+	+	+	+	+			\dagger	+	+	+	+	+	1	_	<u> </u>	- 1	_	477.4	Ω
CLY-191-69	۳	231.9	231.9 244.2 234.7	234.7	1	ı	ı	1	1	1	<u> </u>	<u>'</u>	1	<u> </u>	1	ı	1	ı	1	1	1	<u>'</u>	-	<u> </u>		'			_	- 236.9	<
CLY-192-69	30	438.1	448.1	438.1 448.1 443.4 448.	*	Filler				1	+	+	+	+	+	+	1		+	+	+	+	+	+	+	+	+	+	Ŧ	444.2	Q
CLY-193-69	30	292.4	290.0	292.4 290.0 271.5 290.	290.0	0 Filler				1	+	+	+	+	+	+	1			+	+	+	+	+	+	+	+	+	Ŧ	6 582	Ω
CLY-194-69	30	483.0	478.9	483.0 478.9 481.0 475.	00	481.1	489.6	489.6 Fillers		+	+	+	+	+	+	+	1		1	+	+	+	+	+	+	+	+	+	+	481.5	Ω
CLY-195-69	30	\$05.4	505.0	505.4 505.0 493.9 503	6	498.9		505. 9 Fillers		1	+	+	+	+	+	+		I		1	+	+	+	+	+	+	+	+	Ŧ	505.2	Q
CLY-196-69	30	308.2	307.4	308.2 307.4 300.7 304.	304.8	305. 0 Fillers	Fillers			1	+	+	+	+	+	-			1	1	+	+	+		+	+	+	+	+	305.2	α
CLY-197-69	30	240.8	243.4	240.8 243.4 251.5 258.	258.5	279.7		277. 0 Fillers	1		+	+	+	+	+	+	1	I	+		+	+	+	+	+	+	+	+	Ŧ	8 652	Q
CLY-198-69	30	307.4	335.8	307.4 335.8 330.2 323.	9	Fillers				1	+	+	+	+	+	+	1	I	+	+	+	+	+	+	+	+	+	+	Ŧ	324.2	Ω
CLY-198-69	02	81.7	75.8	81.7 75.8 83.6 72.	72.7	2.99	70.6	Fillers	1	1	+	+	+	+	-	+	1			•	· 1	- <u>-</u> -	1	<u> </u>	_		1		<u>.</u>	- 75.1	ы
CLY-199-69	30	361.3	347.8	361.3 347.8 365.4 389.	389.3	379. 8 Fillers	Fillers			1	+	+	+	+	+	+	1		1	1	+	+	+	+	+	+	+	+	+	368.7	q
CLY-200-69	30	280.2	278.5	280.2 278.5 295.7 286.1	286.1	290.8	290.8 Fillers			1	+	+	+	+	+	+	1	I	1	+	+	\dagger	+	+	+	+	+	Ť	Ŧ	286.2	Q
CLY-200-69	20	0.09	60.0 61.9 56.2	56.2	9.09	58.5	58. 5 Fillers			1	+	+	+	+	+	+	1	I	1	1	1	<u>'</u>	<u> </u>	-	<u> </u>		 			- 59.4	ы
CLY-201-69	30	280.4	283.3	280.4 283.3 270.8 283.5	283.5	283.6 Fillers	Filler			1	+	\dagger	+	+	+	+	1		1	+	+	+	+	+	+	+	+	+	+	280.3	q
CLY-201-69	02	63.9	0.99	8.99	9.69	6.99	66.5 Fillers			1	+	+	+	+	+	+	1	I	1	†	1	<u>.</u>	1	!	<u> </u>	_	 			- 66.5	, ы
CLY-202-69	30	475.9	477.6	475.9 477.6 454.2 427.6	427.6		451.3 455.3	470.6		152.54	62.24	36.446	3.946	8.2465	5474	.4467.	459. 1452. 5462. 2466. 4463. 9468. 2465. 5474. 4467. 8461. 7474. 0442. 6466. 9459.	474.0	445.64	66.94	59.4460.	60.4455.	55. 9458.	8.4 476.3	-	462.3 47	477.3 485.9	_	473.5 46	461.6 463.6	Q
CLY-202-69	20	67.7		68.8 69.7	71.5	71.4	67.2	68.8	66.7	84.9	65.4 63.1 73.1	53.1	3.1	71.6 69.2		72.2 74.9	9 70.6	76.8	86.5	69. 7	i	÷	1	-	<u> </u>	_	<u> </u>		<u>.</u> 1	- 71.4	ы
CLY-203-69	19	85.2	80.2	81.2	85.0	95.5	8.26	86. 1	92.8	84.0	86.1	86.38	87.0 78	78.6 79.1	. 1 89.	. 0 85. 5	5 97.7	97. 7 100. 6 109.	109.7	1	1	<u> </u>	-	<u> </u>	<u> </u>	_	1	<u>'</u>	_	84.0	M
CLY-204-69	30	8 . 192	259.6	267.8 259.6 260.1 267.5	267.5	274. 6 Fillers	Filler			1	+	+	+	+	+	+	1	I		\dagger	1	+	+	+	+	+	+	+	+	265.9	α
CLY-205-69	30	320.9	307.1	320.9 307.1 310.5 319.5	319.5		319.8 342.2	341.8		342. 13	45.53	16.334	3.134	8.	. 5339	7	341. 7342. 1345. 5346. 3343. 1341. 8341. 5339. 7342. 3341. 5349. 0346. 4346. 5346. 340. 4341. 1346. 7 342. 9	349.0	346.43	346.53	46.33	40.4		5. 7 342		344.6	346.4 344.4		359.0 36	361.4 358.0	α
CLY-206.69	52	299.7	288.7	299. 7 288. 7 305. 2 315. 3	315.3	281.7	297.0	303.4	_	289.42	72. 72	91.430	90.4	5.6305	£74	4291.	307. 7289. 4272. 7291. 4300. 4305. 6305. 6305. 4274. 4291. 0291. 6300. 0305. 7300. 6301. 5281. 2300. 7299. 1 294. 4	300.0	305. 7	300.6	01.52	91.2	70. 729	9. 1 294	1.4		 	_	<u>.</u>	- 299.5	٩
CLY-206-69	20	62.1	62.1 65.8	64.0 62.	62.3	4.4	8.09	65.1	62.6	62.4	60.0	63.1	69.69	55. 5 65.	. .	2.5	5.	64.8 67.7	62.9	69.2	1	<u> </u>		-	<u>'</u>	_	<u> </u> -	<u>'</u>	· 1	63.8	ш
CLY-209-69	20	189. 5	213.2	189. 5 213. 2 233. 3 Fille	Filler					1	+	+	+	+	+	+	1	I		†	1	<u> </u>	<u>'</u>	<u> </u>	<u>'</u>	_	<u> </u>	_		- 212.0	Ω
CLY-209-69	52	45.1	47.3	45.1 47.3 46.2	‡ .9	45.5		46. 5 Fillers	1	1	+	+	+	+	+	+	1	I		1	+	+	+	1	-	<u>'</u>	<u> </u>		<u>.</u>	- 45.7	M
CLY-210-69	52	318.3	350.0	318.3 350.0 373.2 366.1	366. 1		378.5	389. 5 378. 5 382. 0	350.0	364. 7	190.53	78. 4 31	7.940	5. 0376	. 2371	0368	350. 0364. 7390. 5378. 4317. 9405. 0376. 2371. 0368. 8372. 2377. 6380. 4376. 5395. 0383. 0415. 4426. 4 414. 6	377.6	380.	376.53	195.03	83.04	15.442	4.4	- 9.4		1 	_		- 376.9	Ω
CLY-210-69	07	62.2	6.09	58.3 51.	51.6	52.9	56.3	59.2		67.8	\$8.4	52.6	7.5 6.	3.0 61	. 65	.0 63.	59.2 67.8 58.4 62.6 57.5 63.0 61.9 62.0 63.0 62.2 60.3 62.2 63.9	60.3	62.2		1	<u>.</u>	1	1	<u> </u>	_	1		<u>.</u> I	- 62.1	ы
CLY-211-69	82	498.8	468.7	498.8 468.7 493.0 497.	497.4	452.3	449.2	442.5		528.3	35.05	10.253	5. 748	1.9465	8494	. 1498.	522. 0528.3 535.0 540. 2 535.7 481.9469.8 494.1 498.0 485.5 443.7 464. 4454.1 455.1 459.9 476.9 470.7 510.3	443.7	464. 4	7. 1	55. 14	59.94	76.947	2.7 510		546.9 54	549.6 601.5		<u>.</u>	- 493.1	۵
CLY-211-69	7 2	6.86	108.5	107.6	98.9 108.5 107.6 107.9		107.3	108.1 107.3 111.3 111.1 111.5 111.7 96.7 107.8 106.0 106.8 109.2 115.5 114.3 116.8 117.6 114.8 116.1 122.6 140.6 111.8	11:11	111.5	13.7	36. 7 13C	77.8 10.	6.0106	. 8 109	.2 115.	5114.3	116.8	117.6	14.8	16.1	22.6	10.611	8:			-		<u> </u>	116.5	ы

Contrails

APPENDIX XX

OXIDATION TESTING: OXIDATION TEST RESULTS FOR FIRST STATISTICAL SERIES SAMPLES

	Oxid	Oxidation Results:		Weight Ga	**Weight Gain of Sample (mg)	ple (mg)		
Run Number*	1 hr	3 hr	4 hr	zy S	6 h r	19 hr	20.7 hr	21.5 hr
CLY-94-68 (6)	1, 4	2.7	6.4	1	1	X	X	X
CLY-95-68 (3)	. 7	1.9	4.9	ı		×	×	×
CLY-96-68	3.2	3.8	8.3	١	1	×	×	×
CLY-97-68	3, 0	4.6	×	×	×	×	×	×
CLY-98-68	2.3	2.3	4.4			×	×	×
89-66-KTO	4,6	×	×	×	×	×	×	×
CLY-100-68 (8)	4,9	×	×	×	×	×	×	×
CLY-101-68 (2)	2.8	×	×	×	×	×	×	×
CLY-102-68 (1)	7.8	×	×	×	×	×	×	×
CLY-103-68 (5)	5.2	12. 1	15.8		1	1	×	×
CLY-104-68	×	×	×	×	×	×	×	×
CLY-105-68 (4)	ر.	•	١	2.0	3, 1	1	†	×
CLY-106-68		×	×	×	×	×	×	×
CLY-107-68	3, 3	i	}	×	×	×	×	×

OTHER RUN CONDITIONS:

Oxidation Temperature: 2500°F

X Denotes visible breakdown, (i. e., visible oxidation of substrate).

* Number in parenthesis corresponds to run number of first statistical series. - Denotes that weight gain of sample not determined at that specific time.

** Sample is round rod substrate (dimensions: 1 in, x 1/4 in., approximate surface area: 5.714 em²).

APPENDIX XXI

OXIDATION TESTING: OXIDATION TEST RESULTS FOR SAMPLES PREPARED IN SECOND STATISTICAL SERIES

	52.8	******	
	 		
	47.3 51.3	2, xxxxxxxxxx	
	_	6.5. 8.5. 8.5. 8.5. 8.5. 8.5. 8.5. 8.5.	
	35.3	1 × × × × 6. 6. × × × × × × × × ×	
	33.6	- x x x x x x x x x x x x x x x x x x x	
	32. 5	. x x x x x x x x x x x x x x x x x x x	
	30	13.5 5 × × × × × × × × × × × × × × × × × ×	
	29	11.6 12.4 X X X X X X X X X X X X X X X X X X X	
	28	12.4 4 × × × × × × × × × × × × × × × × × ×	
	97	12.0 12.0 12.0 12.0	
3)	24.5	1 1 × × 1 × × × × × × × × × × × × × × ×	
(II)	24	11.5 2 X X X X X X X X X X X X X X X X X X X	
MPLE	23	x x x x x x x x x x x x x x x x x x	
OXIDATION TEST RESULTS: WEIGHT GAIN OF SAMPLE ** (mg)	21.5	10. 11.5 7 8 7 8 7	
HT GAI	20.5	x x x x x x x x x x x x x x x x x	
WEIG	20	* * * * * * * * * * * * * *	
LTS:	13.8		
r RESU	12.1	×	
NTES	11		8 0
DATIO	7.5	×	al seri nate
OXI	9	2 4. × × × × × × × × × × × × × × × × × × ×	etific time cond statistical s. in., approximate
	5.5	××××**********	substate) scific time cond stati in., appr
	2	4.c. × 1 1 1 1 1 1 1 1 × 1 × × × ×	of the at spe of sec of sec of sec interior
	4	13. 6 . 9	lation d at thumber umber
	3	+ 1 X 1 2, 1 1 5, 0 X 1 1 1 1 X X	de oxid rmine run nv ions:
	2.5	× 1 1	visib
	2	1 X 3 1 1 X 4 3 4 4 5 5 5 5 5 5 5 5	0°F (i.e., pple no respon
	1.5	. X	kdown of sam of sam is cor substr
	-	2.5 4.0 1.1.1 × × 1.1.1	tions rrature e breal t gain e
	Run Number	CLY-108-68 CLY-109-68 CLY-10-68 CLY-111-68 CLY-112-68 CLY-113-68(4) CLY-115-68 CLY-115-68 CLY-115-68 CLY-115-68 CLY-115-68(1) CLY-115-68(1) CLY-115-68(1) CLY-115-68(1) CLY-115-68(1) CLY-125-68(1) CLY-125-68(1)	Other Run Conditions Oxidation Temperature: 2500°F X Denotes visible breakdown (i.e., visible oxidation of the substate) - Denotes weight gain of sample not determined at that specific time **Number in parenthesis corresponds to run number of second statistical series **Sample is round rod substrate (dimensions: 1 in. x 1/4 in., approximate surface area: 5.714 cm ²). Gagana confires denote the state.

APPENDIX XXII

OXIDATION TESTING: OXIDATION TEST RESULTS AT 2500°F OXIDATION TEMPERATURE FOR SAMPLES PREPARED IN DEPOSIT PHASE RUNS

								OXI	DATI	ON 1	r ES 7	r RE	ULT	S:	WEIG	нт о	GAIN	OF	S A M	PLE	(mg)	•		-					
RUN NUMBER	0.5	1.0	1.1	1.5	2.0	2. 1	2, 2	2.3	2. 5	3.0	3.2	3.3	3. 5	3.6	4.0	4.1	4.3	4.5	4.6	5.0	5. 1	5. 5	5. 6	6.0	6.5	6.6	7. 0	7. 5	7. 6
CLY-124-68 CLY-125-68 CLY-127-68 CLY-127-68 CLY-129-68 CLY-130-68 CLY-131-68 CLY-131-68 CLY-134-68 CLY-134-68 CLY-134-68 CLY-136-68 CLY-136-68 CLY-136-68 CLY-139-68 CLY-141-68 CLY-141-68 CLY-144-68	6.2	19. 2 6. 5 9. 5 9. 5 10. 1 - 9. 5 22. 6 1. 0 3. 9 2. 6 5. 3 2. 7 2. 3 - 1. 7	0.9	- 3 - 1 8.9 - 4.2	30. 4 8. 7 12. 3 16. 0 12. 7 — — — — 4. 0 14. 2 —			X X X X X X X X X X X X X X X X X X X	- 4 - 1 - 1 - 1 - x - x x x	2. 5 9. 8 4. 6. 8 4. 1 — 1 X X X X X 4. 3 — — — — — —			- - - - - x - - x - x x	- 5 - 1	51.6 610.2 14.1 16.1 - - - - - - - - - - - - - - - - - - -		x x - x x	X X X	- 5 - 1 - 1 - 1 - x - x x x	9. 0 0. 4 5. 1 8. 8	5.5 X		- 6 - 1	55. 5 10. 9 17. 5 — — — — — — — — — — — — — — — — — — —	X X X X X X X X X X X X X X X X X X X	18.9 x 17.6 8.0 x x =	70. 8 12. 0 18. 4 X X X X 15. 9	- - - - - - - - - - - - - - - - - - -	21. 7 X X 177. 6 9. 4 X X X — 19. 1
CLY-124-68 CLY-125-68 CLY-125-68 CLY-127-68 CLY-129-68 CLY-129-68 CLY-130-68 CLY-131-68 CLY-133-68 CLY-135-68 CLY-135-68 CLY-136-68 CLY-137-68 CLY-137-68 CLY-139-68 CLY-139-68 CLY-139-68 CLY-139-68 CLY-139-68 CLY-139-68 CLY-139-68 CLY-141-68 CLY-141-68 CLY-143-68 CLY-143-68 CLY-143-68 CLY-143-68 CLY-143-68	8.00 74.13.4 13.4 18.6	x - x x x	24.5 X 36.7 13.0 X X 2 49.3		77. 7 15. 5 19. 8 	=	- - - - - x - - x x	28.6 X 46.6 21.5 X X 	_ x	10.0 80.9 118.4 20.6 	=	- x x	32.4 X 60.6 27.8 X X	- - - - - x		83. 2 20. 4 23. 1 	=	11.6 		11.9	12. CC 85. 1 22. 8 5. 1 22. 8 5. 1 22. 8 7. 2 7. 2 7. 2 7. 2 7. 2 7. 2 7.		40.7 X 101.1 44.1 X X X X X X X X X	, ×		20.	77 — 00 — 30	6	1
CLY-124-68 CLY-125-68 CLY-127-68 CLY-127-68 CLY-129-68 CLY-130-68 CLY-131-68 CLY-131-68 CLY-134-68 CLY-134-68 CLY-135-68 CLY-135-68 CLY-136-68 CLY-146-68	13.55 	89.3 29.6 34.3 21.1 X X X X X		14.5 	91.0 - - - - - - - - - - - - - - - - - - -	-	x - - x	X - - X 23.3 X - X	- - x	17. 1 X - - - - - - - - - - - - -	X - - X 24.1 X - X	x - x x x x x x x x x x x x x x x x x x	21.5 x -29.6 x - x x x x x x x x x x x x x	22.00 x - 30.66 x - x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x	31.1 x - 31.1 x x x x x x x x x x x x x	X 67.5	X 71.2 - - - - - - - - - - - - - - - - - - -	x	x	26.6 x x 32.1 x x x x x x x x x x x x x	x x	x x x x x x x x x x x x x x x x x x x	x x x x x x x x x x x x x x x x x x x					

*Column headings denote time in hours.

OTHER RUN CONDITIONS

- Oxidation temperature: 2500°F
- Sample is threaded substrate (dimensions: 1 in. x 1/4-in. with 1/2 in. of 1/4-20 refractory threads one end)
- denotes that weight gain of sample was not determined at that specific time.
- X denotes visible breakdown (i.e., visible oxidation of the substrate.)

APPENDIX XXIII

OXIDATION TESTING: 2200°F OXIDATION TEST RESULTS FOR SAMPLES PREPARED IN COATING OXIDATION SAMPLE RUNS

									xo	OXIDATION TEST RESULTS: WEIGHT GAIN OF SAMPLE (mg)	ST RESULTS	HEIGHT (SAIN OF SA	MPLE (mg	••						
Run Number	2	٠	4.5	9	6.5	80	8.5	10	10.5	12.5	13	14.5	15	16.5	19.5	21.5	23.5	5.92	29.5	31.5	33.5
CLY-148-68 CLY-149-68 CLY-149-68 CLY-130-68 CLY-130-68 CLY-130-68 CLY-131-68 CLY-131-68 CLY-131-68 CLY-131-68 CLY-131-68	2.4 3.6 3.5 4.1 4.2 2.2 1.6 0.7 F(0.5) F(1.9)	11.4.1	F(3. 1)	5.3 	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	« «	6.1 9.3 2.2 2.2	1%1 111	7. 4 7. 4 7. 9 7. 9 7. 6	7.2 8.2 8.2 5.2 4.5 3.1	1.31 111	- 1 % %% % - 1 % % % %	F(6.9)	°, ∞ °, 0, 4, ∞, 0 °, 0, 4,	8 0 0 0 0 4 4 4 4 5 0	9.2 10.1 7.5 6.3 6.3 F(5.7)	F(9, 5) F(10, 4) 7, 8 6, 5	4. 00 0.	8.8 F(7.3)	œ œ	9.1
CLY-156-68 CLY-159-68 CLY-157-68 CLY-157-68 CLY-157-68 CLY-157-68 CLY-158-68 CLY-158-68	E(. 5) F(. 8) F(-4. 4) F(-4. 4) F(1. 0) F(1. 0) F(-2. 2) . 2 F(-6)	•	5.	10.5	13.5																
Column headings denote time in hours OTHER RIN CONDITIONS: • Conduction temperature: 2200°F • Sample is conted threaded autorizate (for threaded substrate prior • — denotes that weight gain of sample was not determined at that a • F denotes that weight gain of sample was not determined at that a • F denotes which be reached who. i.e., visible outdefiles	denote time MIIONS: temperature: cated thread that weight	2200°F 2200°F ded subst gain of as	rate (for thu kmple was n e., visible e	readed subs	trate prior	r to coating, d	dimensions:	l in. x 1/4	in. with 1/2 i	to coating, dimensions: 1 to. x 1/4 in. with 1/2 in. of 1/4 - 20 refractory threads one end).	O refractory	threads one	end).								
** ******	ADDITION TO LAKE	menatone	1 10. × 1/	1 In. cm.	WIER 1/2 10.	07 - 4/1 10	refractory L	breads one e	nd, material:	of 1/4 - 20 refractory threads one end, material: Cb 752 alloy)	, ,		-								

							OXID	TION TES	T RESULT	OXIDATION TEST RESULTS: WEIGHT GAIN OF SAMPLE (mg)*	GAIN OF	AMPLE (m	• (8)						
Run Number	36.5 38.5 40.5 42.5 44.5 47.5 50.5 52.8 55.5 58.8 60.5 74.5 77.5 79.5 99.5 101.5 103.5	38.5	40.5	42.5	44.5	47.5	50.5	52.5	55.5	58.5	60.5	74.5	77.5	29.62	95.5	98. 5	101.5	103.5	117.5
CLY-149-68	9.6 9.9	6.6		10:3 10.5 10.9 11.5 11.9 12.2 13.2 13.6 16.4 16.8 19.0 19.6 20.7 21.6	10.5	10.9	11.5	11.9	12.2	13.2	13.6	15.6	1 9. 4	16.8	19.0	19.6	20.7	21.6	F(26.7)

APPENDIX XXIV

OXIDATION TESTING: 2400°F OXIDATION TEST RESULTS FOR SAMPLES PREPARED IN COATING OXIDATION SAMPLE RUNS

								OXIDA	OXIDATION TEST RESULTS: WEIGHT GAIN OF SAMPLE (mg)	EST RI	SULT	S: WE	IGHT (AIN O	F SAMP	LE (mg	*.	
Run Number	2	2	7	6	11	13	16	19	21	24	27	62	32	34	37	40	42	56
CLY-148-68	F(3. 3)																	
CLY-149 -68	4.8	F(6.2)																
CLY-149 -68 I	F(4.7)																	
CLY-150 -68	5.1	6.6 7.9	4.9	9.1	10.4	10.4 F(13.3)												
CLY-150 -68 1	F(6.7)																	
CLY-151-68	3.3	4.1 4.9	4.9	0.9	6.8	7.3	7.8	6.6	11.3	12.4 14.6	14.6	16.8	20.5	23.5	27.9	33.1	39.5	ഥ
CLY-152-68	2.2	3.0	3.9	4.8	F(5.2)													
CLY-153 -68**	1.4	F(3.0)																
CLY-153 -68#	6.	F(2.6)																
CLY-154 -68	2.5	4.0 4.	4.5	5.1	5.6	5.8	F(6.0)											
CLY-154 -68	8.2	4.1 4.7	4.7	4.2	5.6	5.6	6.1	9.9	7.4	8.1	9.4	10.9	10.9 14.1	16.5	18.8	21.2	24.6	দ
CLY-155-68	9.9	7.8 8.	8.8	9.3	10.6	11.3	11.8	12.3	12.9	13.5	14.1	14.9 15.9	15.9	16.8	16.8 F(17.5)			
	2	4	7	ř	10.5	13.5	16.5											
CLY-156-69	3.3	4.8	F(7.3)															
CLY-156-69 F(3	F(3.6)																	
CLY-157-69	3.3	4.6	9.2		13.3	27.9	F(40. 1)	. 1)										
CLY-157-69 F(2	F(2.3)																	
CLY-158-69 F(4	F(4.0)																	
CLY-158-69	3.7	5.0	12.4	~	18.1	49.5	F(63.7)	٠.										
CLY-159-69 F(3	F(3.4)																	
CLY-159-69 F(3	F(3.2)																	

Column headings denote time in hours

Additional 2400^OF oxidation results for 2 samples from CLY-1β3-68 are 1 hr. — 1.1 and 1.2 mg, 3 hrs. — 2.6 and 2.6 mg, 4 hrs. — F(5.3) and F(5.4) mg ¥

OTHER RUN CONDITIONS

- Oxidation temperature: 2400°F
- Sample is coated threaded substrate (for threaded substrate prior to coating, dimensions: 1 in, x 1/4 in, with 1/2 in, of 1/4 20 refractory threads one end)
- denotes that weight gain of sample was not determined at that specific time
- F denotes visible breakdown, i. e., visible oxidation of substrate
- Threaded substrate (dimention: 1 in, x 1/4 in, dia, with 1/2 in, of 1/4 20 refractory threads one end, material: Cb 752 alloy)

APPENDIX XXV

OXIDATION TESTING: SUMMARY OXIDATION TEST RESULTS FOR 2200°F AND 2400°F TESTING FOR SAMPLES PREPARED IN COATING OXIDATION SAMPLE RUNS

	2200°F Tes	t Results	2400°F Tes	t Results
Run Number	Relative Oxidation Resistance Ranking	Average Test Time in High Temp. Oxid. Env. Before Failure (hr.)	Relative Oxidation Resistance Ranking	Average Test Time in High Temp. Oxid. Env. Before Failure (hr.)
CLY-148-68(1) CLY-149-68(3) CLY-150-68(5) CLY-151-68(7) CLY-152-68(2) CLY-153-68(4) CLY-154-68(6) CLY-155-68(8)	3 6 5 8 7 4 1	2 17.3 11.8 103.5 26.5 9.8 2	1 2 4 8 5 3 6 7	below 2 1 6.5 42 9 2 27.5 34.0
CLY-156-69 CLY-157-69 CLY-158-69 CLY-159-69		below 2 below 2 below 2 6.8		2 6.8 6.8 below 2

NOTE

Average test time in high temperature oxidation environment before
failure (detected by visible oxidation of substrate with large volumetric
expansion) is based on test time and number of samples tested, i.e.,

time, hr. =
$$\frac{\text{(test time, hr.)}_{1}, + \text{(test time, hr.)}_{2} + -----}{1 + 2 + -------}$$

- Relative oxidation resistance ranking of coating is based on average test time before failure and a sample weight gain due to oxidation (weight gain used only if test time before failure is identical on samples).
 Higher numbers indicate better oxidation resistance (i. e., 8 = best ranking, 1 = poor ranking).
- Numbers in parenthesis refer to run number is statistical plan for initial coating oxidation sample runs.

APPENDIX XXVI

OXIDATION TESTING: ADDITIONAL 2400°F AND 2600°F TEST RESULTS FOR SAMPLES PREPARED IN COATING OXIDATION SAMPLE RUNS

Run Number						ŝ	IDATION	TEST RES	SULTS:	WEIGH	T GAIN C	OXIDATION TEST RESULTS: WEIGHT GAIN OF SAMPLE (mg)	E (mg)*							Location of Failure
2400°F	0	1	3	5	2	6	11	13	14.5	16.5	18.5	20.5	22.5	24.5	26.5	28.5	30.5	32.5	34.5	
CLY-149-68	0	3.1	5.6	5.8	8.9	7.8	6.8	F(10. 5)												Threads
CLY-149-68	0	5.9	5.6	6.2	6.9	9.6	F(8.5)													Threads
CLY-150-68	0	3.2	5.6	7.1	8.7	12.6	18.2	24	31	42.3	52.6	F(66. 7)								Threads
CLY-150-68	0	3.8	F(6.2)																	Threads
CLY-154-68	0	1.9	3.5	3.9	4.3	4.9	5.0	5.7	6.0	6.4	7.7	9.0	14.9	21.2	36.1	45.1	51.1	56.8	F(64.3)	Threads
CLY-154-68	0	1.9	F(3.2)																	Threads
2600°F	0	10	20	30	40	50	09													
CLY-148-68	0	2.3	3.0	1	3.2	4.0	Ħ													Threads
CLY-149-68	0	F(4. 1)																		Threads
CLY-150-68	0	5.0	F(23.9)																	Threads
CLY-151-68	0	F(4.3)																		Threads
CLY-152-68	0	F(2.2)																		Threads
CLY-153-68	0	F(1.5)																		Threads
CLY-154-68	0	F(8.2)													-					Threads
CLY-155-68	0	F(10.4)																		Threads
CLY-156-69	0	F(4.4)																		Threads
CLY-157-69	0	F(5.1)																		Threads
CLY-158-69	0	F(10.9)																		Threads
CLY-159-69	0	F(4.7)																		Threads

Column headings denote time in hours and minutes for respective 2400°F and 2600°F oxidation testing.

OTHER RUN CONDITIONS

- Oxidation temperature: 2400°F and 2600°F
- Sample is coated threaded substrate (for threaded substrate prior to coating, dimensions: 1 in. x 1/4 in. with 1/2 in. of 1/4-20 refractory threads one end, material: Cb 752 alloy)
- denotes that weight gain of sample was not determined at that specific time
 - F denotes visible breakdown, i.e., visible oxidation of substrate

APPENDIX XXVII

METALLOGRAPHY: COATING THICKNESS OF SAMPLES PREPARED IN COATING OXIDATION SAMPLES

Run Number	Average Coating Deposit (mg)	Average Coating Thickness (mils)
CLY-147-68	128.5	1.7
CLY-148-68(1)	92.1	1.0
CLY-149-68(3)	165.5	2.3
CLY-150-68(5)	109.7	1.5
CLY-151-68(7)	111.1	1.3
CLY-152-68(2)	218.5	3.0
CLY-153-68(4)	82.0	1.4
CLY-154-68(6)	141.7	2.2
CLY-155-68(8)	209.8	3.0
CLY-156-69	134.9	2.0
CLY-157-69	106.9	1.5
CLY-158-69	94.3	1.3
CLY-159-69	139.4	2.0

- Average coating thickness determined from mounted cross section at high magnification
- Based on average thickness of coating at base of threaded substrate.
- Numbers in paranthesis refer to run number in statistical plan for initial coating oxidation sample runs.

APPENDIX XXVIII

METALLOGRAPHY: COATING THICKNESS OF SAMPLES PREPARED IN CYCLIC OXIDATION OPTIMIZATION RUNS

	Substrate Identifica-	Coating Deposit (mg)	Mean Coating Thickness (mils)
	tion	_ op = = (g /	Time (mas)
CLY-160-69	D	182.7	2.0
CLY-161-69	D	145.6	. 8
CLY-162-69	D	297.0	2.1
CLY-163-69	D	296.7	2.3
CLY-164-69	D	— ~	-
CLY-165-69	D	331.6	-
CLY-166-69	D	193.1	1.5
CLY-167-69	A/B	218.5/120.1	2.3/2.3
CLY-168-69	A/B	264.1/111.7	2.8/1.5
CLY-169-69	A/B	276.5/118.9	3.0/1.5
CLY-170-69	A/B	166.1/ 67.1	1.3/ .8
CLY-171-69	A/B	208.5/ 94.4	2.0/1.5
CLY-172-69	A/B	351.7/102.3	4.9/1.7
CLY-173-69	A/B	160.0/133.1	1.8/1.9
CLY-174-69	A/B	154.9/178.0	1.5/1.3
CLY-175-69	D	702.5	5.4
CLY-176-69	A/B	346.8/104.0	3.3/ .9
CLY-177-69	D/C	538.8/141.9	
CLY-178-69	D/C	221.0/ 50.8	2,0/ .75

- Average coating thickness determined from mounted cross section at high magnification
- Based on average thickness of coating at base of substrate.
- Substrate identification:
 - A. 1 1/2-in. Round Rod
 - B. Flat Panel (app. 1 in. $\times 1/2$ in.)
 - C. 1 in. Threaded Stud
 - D. 1 1/2-in. Hex Head Bolt
 - E. Hex Nut

APPENDIX XXIX

METALLOGRAPHY: ANALYSIS FOR COATING HARDNESS

Run		s: Knoop s - 50 gram load
Number	Substrate	Coating
CLY-148-68 (1)	237-237	1160-1260
CLY-149-68 (3)	223-223	1120-1195
CLY-150-68 (5)	221-226	1160-1288
CLY-151-68 (7)	221-221	1381-1220
CLY-1 52-68 (2)	227+207	1381-1215
CLY-153-68 (4)	223-235	1260-1160
CLY-154-68 (6)	226-226	1260-1120
CLY-155-68 (8)	213-213	1245-1245
As Rec'd	279-279	

- Hardness determined from mounted cross section of substrate base
- 1-in. Threaded stud substrate
- Numbers in paranthesis refer to run number in statistical plan for initial coating oxidation sample runs.

APPENDIX XXX

METALLOGRAPHY: ANALYSIS FOR COATING THICKNESS

Run Number	Substrate Identification	Coating Deposit (mg)	Mean Coating Thickness
CLY-177-69	D	538.8	4.8
CLY-178-69	D/C	221.0/50.8	2.0/.75
CLY-179-69	A	171.5	1.4
CLY-180-69	A	310.6	2.8
CLY-181-69	A	270.7	2.5
CLY-182-69	D	202. 1	1.6
CLY-183-69	D/C	458.3/151.2	4.1/2.2
CLY-184-69	D/C	323.3/107.2	2.6/1.5
CLY-185-69	D	307.8	2.6

- Average coating thickness determined from mounted cross section at high magnification
- Based on average thickness of coating at base of substrate.
- Substrate identification:
 - A. 1 1/2-in. Round Rod
 - B. Flat Panel (app. 1 in. x 1/2 in.)
 - C. 1-in. Threaded Stud
 - D. 1 1/2-in. Hex Head Bolt
 - E. Hex Nut

APPENDIX XXXI

METALLOGRAPHY: ANALYSIS FOR COATING THICKNESS

Run Number	Substrate Identification	Deposit (mg)	Mean Coating Thickness (mils)
CLY-186-69	D	492.4	4.9
CLY-187-69	D	307.9	3.05
CLY-188-69	D	157.9	1.8
CLY-189-69	D	268.8	2. 5
CLY-194-69	D	481.5	4.85
CLY-195-69	. D	502.2	5.15
CLY-196-69	D	305.2	2.75
CLY-197-69	D	259.8	1.6
CLY-202-69	D	463.16	4.0 (3.75)
CLY-203-69	E	84.0	2.1
CLY-205-69	D	358.0	2.65 (2.9)
CLY-206-69	D	299.5	2.2 (2.45)
CLY-210-69	. Д	376.9	3, 1 (3, 05)
CLY-211-69	D	493.1	4.2 (4.0)

- Average coating thickness determined from mounted cross section at high magnification
- Based on average thickness of coating at base of substrate.
- Substrate identification:
 - A. 1 1/2-in. Round Rod
 - B. Flat Panel (app. 1 in. $\times 1/2$ in.)
 - C. 1-in. Threaded Stud
 - D. 1 1/2-in. Hex Head Bolt
 - E. Hex Nut

APPENDIX XXXII

ELECTRON MICROPROBE: COATING COMPOSITION OF SAMPLES PREPARED IN SECOND STATISTICAL SERIES

Run Number	_	Composition: onent Concent (wt %) Ti	•
CLY-107-68 CLY-108-68 CLY-109-68 CLY-110-68 CLY-111-68 CLY-112-68 CLY-113-68(5) CLY-114-68 CLY-115-68(4) CLY-116-68(8) CLY-117-68(1) CLY-118-68(6) CLY-119-68 CLY-120-68(2) CLY-121-68(3) CLY-122-68 (7) CLY-123-68		47. 7 47. 0 61. 8 66. 6 47. 2 45. 0 63. 5 65. 0 64. 6 55. 2 52. 5 55. 0 50. 9 48. 5 60. 5	27.5 30.4 31.5 30.8 26.1 29.8 27.7 27.2 27.1 24.2 27.7 25.3 30.7 20.1 22.3

- Coating composition in component concentration is based on average coating composition calculated from electron microprobe analysis for each component in coating on round-rod substrate.
- Electron microprobe analysis calculations involve three operations of straight calculation on reference value, correction for component concentration level and normalization.
- Numbers in parenthesis refer to run number in second statistical series.

APPENDIX XXXIII

ELECTRON MICROPROBE: COATING COMPOSITION OF SAMPLES FROM COATING OXIDATION SAMPLE RUNS

Run	•	Composition: conent Concent (wt %)	_	
Number	Cr	Ti	Si	
CLY-148-68(1)	8.7	61.0	30.3	
CLY-149-68(3)	8.7	61.3	30.0	
CLY-150-68(5)	19.3	52.5	28.2	
CLY-151-68(7)	14.5	55.2	30.3	
CLY-152-68(2)	11.5	53.7	34.8	
CLY-153-68(4)	11.9	5 5. 6	32.5	
CLY-154-68(6)	17.5	54.3	28.2	
CLY-155-68(8)	18.4	51.0	30.6	
CLY-156-69	12.2	55.7	32, 1	
CLY-157-69	14.8	51.0	34.2	
CLY-158-69	11.7	54.2	34.1	
CLY-159-69	13.6	58.0	28.4	

- Coating composition in component concentration is based on average coating composition calculated from electron microprobe analysis for each component in coating at base of threaded substrate.
- Electron microprobe analysis calculations involve three operations of straight calculation on reference value, correction for component concentration level and normalization.
- Numbers in parenthesis refer to run number in statistical plan for initial coating oxidation sample runs.

APPENDIX XXXIV

STRAINED EFFECT TEST: 2200°F AND 2400°F CYCLIC OXIDATION TESTS RESULTS FOR SAMPLES AT TWO STRAIN LEVELS

, , , ,, ,, ,, ,,

* Column heading denote time in hours

OTHER RUN CONDITIONS

Oxidation temperature: 2200°F and 2400°F

Strain Level: low-about 5 mils deflection, high-about 10 mils deflection

• Sample is coated 1-1/2-in. hex head bolt prior to coating, dimensions: 1-1/2 in, length x 1/4 in, diameter, 1/2 in, of 1/4 - 20 refractory threads one end, hex head other end, material: Cb 752 alloy)

denotes that weight gain of sample was not determined at that specific time

· F denotes visible breakdown, i.e., visible oxidation of substrate

APPENDIX XXXV

CYCLIC OXIDATION AND STRAIN EFFECT TEST: 2200°F, 2400°F AND 2600°F CYCLIC OXIDATION TEST RESULTS FOR SAMPLES PREPARED IN DUPLICATE BEST COATING RUNS

Remarks										Some oxidation at point where load for applying strain plunger contacted sample
Location of Failures		Threads Threads Threads Threads Threads		Threads Threads Threads	Inreads Threads Threads	Threads Threads Threads		Threads Threads Threads Threads Threads		Threads Threads Threads Threads
							06	F(12)		
							80	10.7		
							0.2	10.5		
			_				99	F(10)		
			10		F(12. 7)		09	8.3		
e (mg)			8		10.2		55	8.7		
f Sampl			_				20	8.5		
t Gain o			9	F(9, 1)	9.0		45	7.9		
ults: Weigh			3		5.1	F(4.6)	35 40	6.9 – 7.8	3.0	F(15.5) F(16.6)
Oxidation Test Results: Weight Gain of Sample (mg)	9	F(7.1)	2	F(15.1) F(8.8) F(21.3)	. 1		30	10.3	2.5	11.8
Oxidati	4	4. č	1.5	7.6	l	F(5.7)	52	9.1	2	9.6
	2	1.5	1	1 9 6	F(4.7) 4.2 F(5.2)	2.1	20	8.3 5.9 F(13.9)	1.5	F(7.4) 8.0 F(7.4) 8.4
	1.5	F(1.7) F(2.0)	. 67	5.3 F(6.2)	3.7	F(5.8)	15	7.9 4.9 —	1	6.6 6.0 5.7 6.5
	1	F(2.4) .6 .9 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	. 33	3.7	1.9 3.5	3.1	10	5.6 F(7.1) 4.1 4.4 8.0	5.	4.6 3.3 3.6 4.0
	0	00000	0	0000		000	5	4.9 5.7 3.1 3.2 3.7	0	0000
Run Number	2200°F*	CLY-160-69 CLY-161-69 CLY-162-69 CLY-163-69 CLY-164-69 CLY-164-69	2400°F*	CLY-160-69 CLY-160-69 CLY-161-69 CLY-161-69 CLY-161-69	CLY-162-69 CLY-163-69 CLY-163-69	CLY-164-69 CLY-165-69 CLY-165-69	2600°F**	CLY-160-69 CLY-161-69 CLY-162-69 CLY-163-69 CLY-164-69 CLY-164-69	2400°F* Strained Samples	CLY-161-69 CLY-162-69 CLY-163-69 CLY-165-69

^{*} Column headings denote time in hours (for $2200^{\circ}F$ and $2400^{\circ}F$ test results) *** Column headings denote time in minutes (for 2600°F test results)

OTHER RUN CONDITIONS:

- Oxidation temperature: 2200°F. 2400°F and 2600°F
 Sample is coated hex head threaded substrate (for hex head bolt prior to coating, dimensions: 1 | 1/2 in. x | 1/4 20 refractory threads one end material: Cb 732 alloy)
 I | 1/2 in. x | 1/4 20 refractory threads one end material: Cb 732 alloy)
 denotes that weight gain of sample was not determined at that specific time.
 F or strained samples, acach sample subjected to several hundred pounds load pressure to bend sample. Approximate deflection of B mil from vertical obtained on each sample.
 Further for strained samples, substrate oxidation on backside of bend (i.e. side opposite point of load plunger contact for applying strain) was not detected for above samples.

APPENDIX XXXVI

CYCLIC OXIDATION: 2400°F CYCLIC OXIDATION TEST RESULTS FOR COATED FLAT PANELS, 1 1/2-IN. ROUND RODS AND 1 1/2-IN. HEX HEAD BOLT SUBSTRATES

Min	THE CHIE		ŏ	IDATIO	N TEST	OXIDATION TEST RESULTS: WEIGHT	TS: W	EIGHT		
KOIN	SUBSILATED CONTRACT			ชี	AIN OF	GAIN OF SAMPLE (mg)*	E (mg)	#		
NOMBER	DENTIFICATION	. 5	1.0	1,5	2.0	2.5	0°E	3.5	4.0	5.0
CLY-166-69	Flat Panel (1/2 in. x 1 in.)	3.9	F(5.2)							
CLY-166-69	Flat Panel (1/2 in. x l in.)	4.2	5.0	6.3	7.0	F(8.0)				
CLY-166-69	Flat Panel (1/2 in. x l in.)	3,5	5, 1	5.6	F(6.4)					
CLY-166-69	Flat Panel (1/2 in. x l in.)	F(4.6)								
CLY-166-69	l-in. Threaded Stud (1/4 in. dia.)	3.1	3,9	4.1	4.6	5.2	1	F(6.4)		
CLY-166-69	1-in. Threaded Stud (1/4 in. dia.)	3.1	3.8	4.2	4.9	F(5.4)				
CLY-166-69	1-in. Threaded Stud (1/4 in. dia.)	2.9	3.9	4,1	4.4		1	F(4.9)		
CLY-166-69	1-in. Threaded Stud (1/4 in. dia.)	3, 2	F(4.1)							
CLY-166-69	1 1/2-in. Round Rod (1/4 in. dia.)	1.9	3.4	3.7	5.4	6.8	l	F(8.6)		
CLY-166-69	1 1/2-in. Round Rod (1/4 in. dia.)	2.8	3.9	4,3	5.0	5.4	1	F(6.2)		
CLY-166-69	1 1/2-in. Round Rod (1/4 in. dia.)	1.4	2.6	F(3.2)		-				
CLY-166-69	1 1/2-in. Round Rod (1/4 in. dia.)	1.8	F(3.2)						•	
CLY-166-69	1 1/2-in. Hex Head Bolt (1/4 in. dia.)	6.4	F(7.5)							
CLY-166-69	1 1/2-in. Hex Head Bolt (1/4 in. dia.)	9.9	7.6	9.0	9.8	10.3		F(11.4)		
CLY-166-69	1 1/2-in. Hex Head Bolt (1/4 in. dia.)	9.9	7.5	7.5	8, 1	1	1	F(8.6)		
CLY-166-69	1 1/2-in. Hex Head Bolt (1/4 in. dia.)	7.5	8.3	F(8.6)						

* Column heading denotes time in hours.

APPENDIX XXXVII

CYCLIC OXIDATION: 2400°F CYCLIC OXIDATION TEST RESULTS FOR COATED FLAT PANEL SUBSTRATES

																					l					١	١	l		
RUN					Ĭ	OXIDATION TEST RESULTS: WEIGHT GAIN OF SAMPLE (mg)*	ON TE	ST RE	SULTS	: WEIGH	T CAD	OF SAN	PLE (*(gu																
NUMBER	• •	1.0	1,5	2.0	2.5	3.0	3.5 4.0	4.0	5.0	0.9	2.0	8.0	9.0	10.0	11.0	12.0	14.0 16	16.0	18.0	20.02	22.0 24.0	0 26.0	0.82 0.	30.0	32.0	35.0	L			
CLY-166-69	3.9	F(5.2)											-				-			_		-	_			_		L		
CLY-166-69	4.2	5,0	6.3	7.0	F(8.0)																									
CLY-166-69	3.5	5.1	5.6	F(6.4)																										
CLY-166-69	F(4.6)																													
CLY-167-69	1.7	2.5	ı	3.3	1	;	i	4.7	4.9	5.5	6.0	8.9	7.1	7.5	8.6 10	10.01	· -		1	<u>.</u>	<u> </u> 	1	33.2	37.3	F(55.5]	2				_
CLY-167-69	1.7	2,4	ı	3, 1	ı	3.8	1	7.	4.7	5.2	5.7	6.1	4.9	6.9	7.7 8	8.7 10	10.5 73.	73.5 85	85.7	ja,	_	_								
CLY-167-69	ı	2.6	1	3.5	1	ı	ı	4.2	1	5.2	1	0.9	ı	1.0	- -	8.1	8.8	0 <u>1</u>	10.3	ii -	n.4	- 13.0	<u>'</u>	14.6	1	F(18.3)	3)			
CLY-167-69	1	3.0	-	3.9	ı	ı	ı	4.9	1	5.9	١	6.9	1	6.2	1	9.2 10,	10.0	- 12	12.1	- F(14.4)	÷.									
	.33	.67	1	7	3	7	5	9	2	8	6	01	=	12	13 1	14 15	5 16	18	Н	19 20	22		24	25	Ŀ	82	30	32	×	£
CLY-168-69	F(1.4)												\vdash	<u> </u>	-		-	-	\vdash	-	\vdash	-	_				L		L	
CLY-168-69	·.	1.9	2.2	ı	1.	1	4.7	ı	6.6	ı	36.8	ı	50.1		53.7	- 58	58.0 F(6.	F(62.3)												
CLY-168-69	1.0	1.3	1.8	2.3	ı	3,3		4.3	1	5,3	ı	6.1	1	F(7.3)																
CLY-168-69	<u>.</u>	1.7	2.0	2.7	ı	3.7		4.8	Ī	5.9	ı	6.9	ı	F(8.3)					-			_								
CLY-169-69	ı	1	ı	3.6	ı	ı		16.0	ı	1	ı	27.2	1	1	- F(3	F(32.9)														
CLY-169-69	ı	ľ	ı	F(3.0)									-																	
CLY-169-69	ı	1	F(2.0)																											
CLY-169-69	ı	ı	2.0	2.7	3.0	1	4.1	1	1	ı	3.5	ı	1	1	8.2	1	11.0	1	1	33.9	- 39	39.7	<u>'</u>	F(69.4)	2		_			
CLY-170-69	1	1	1	3,3	ı	ı	ı	8.5	1	ı	1	F(14.7)																		
CLY-170-69	ı	1	1	3.2	ı	i	ı	9.0	ı	ı	1	F(15. 2)																		
CLY-170-69	ı	1	4.2	5.1	8.8	ı	8,2	1	ı	ī	F(12.0)																			
CLY-170-69	ı	ı	F(15.2)																											
CLY-171-69	ı	1	1	F(4.4)																										
CLY-171-69	ı	1	ı	3.9	ı	1	i	7.8	ı	ı	ı	66.3	1	1	ı	Į4										-				
CLY-171-69	ı	ı	F(2. 3)																											
CLY-171-69	ı	ı	2.1	3.3	F(5. 1)								_		_								_		_					
CLY-172-69	ı	ı	F(2.9)															_				_								
CLY-172-69	ı	ı	2.9	4.2	ı	F(40.0)																-								
CLY-173-69	ı	i	2.8	3.5	ı	3.8	1	1	1	4.9	1	5.9	ı	1	1	7.1	,	*.	ı		10.4	1	12.3	1	-	14.0	15.6	16.7	. 17.8	(6.61).
CLY-173-69	Į	1	3.1	4.0	ı	4.	1	1	ī	6.4	ı	4.7	ı	1		10.1	1	11.6	1	1	15.8	 	18,3	1	1	19.8				
CLY-174-69	ı	ı	8,6	1	ı	l	F (14. 4)																					_		
CLY-174-69	1	ı	9.7	١	1	1	F(17. 1)										-					_	_							

*Column heading denotes time in ho

APPENDIX XXXVIII

CYCLIC OXIDATION: 2400°F CYCLIC OXIDATION TEST RESULTS FOR COATED 1 1/2-IN. ROUND ROD SUBSTRATES

RUN								XIDATI	ON TE	ST RE	SULT	3: WEI	SHT G	AIN OF	OXIDATION TEST RESULTS: WEIGHT GAIN OF SAMPLE (mg)	E (mg)*						
NUMBER	. 5	-	1.5	2	2.5	3	3.5	4	5	9	7	80	6	10	11	12	14	16	18	20	22	24
├		F(4. 1)								-	-	-	-									
	1.9	3.4	3.7	5.4	8.9	ı	F(8.6)															
CLY-166-69	8 . 2	3.9	4.3	2.0	5.4	ı	F(6.2)															
	* .		1(3.6)			,								-								
	1.0	4.	ı	æ (ı	5.6	ı				80	4.	6.6	4.	7.7	9.1	12.5	109.6	122.8	136.1	144.6	157.5
_	-:	1.6	ı	2.2	ı	3.0	ı				5.4	0.9	6.7	7.4	8.4	10.3	ı	ı	ı	i	ı	1
CLY-167-69	1	1.9	ı	2.4	ı	ı	ı	3.0		4.0	1	5.2	ı	0.9	ı	7.3	8.5	i	10.5	1	12.0	ı
CLY-167-69	ı	1.9	ı	2.3	ı	ı	ı	3.0	ı	4.1	ı	6.1	1.	6.0	ı	7.2	8.3	1	10.4	1	12.0	ı
	.33	.67	-	2	3	4	5	9	7	8	6	10	=	12	13	14	15	16	18	20	22	24
CLY-168-69	1.3	2.0	2.9	ı	4.2	ı	5.3		8.9		24.6		9.69	ı	6.19	ı	62.7	62.3	1	64.1	64.5	64.9
CLY-168-69	1.3	2.1	2.5	ı	3.7	ı	5.1		6.5	1	7.8		59.4	1	0.99	1	66.7	67.4	ı	68.2	68.8	69.6
CLY-168-69	1.6	2.2	2.2	3.0	ı	3.8	ı	4.7	ı	6.0	1	7.1	١	8.7	1	10.0	ı	ı	12.5	1	14.3	ł
CLY-168-69	1.2	1.9	2.0	5.9	ı	3.6	ı	4.8	ı	6.2	1	7.4	ı	9.0	ı	10.4	١	ı	13.0	i	14.7	1
CLY-168-69	١	,	ı	ı	ı	ı	ı	١	1	1		ı	ı	1	ı	ı	F(3.6)					
CLY-169-69	ı	ı	ı	ı	1	١	١	1	1	1		ı	1	ī	ı	1	1.7	3.1	ı	1	101.0	1
CLY-169-69	ı	ı	1	0	١	ı	ı	.1	ı	1		1.6	ı	ı	2.5	ı	ı	F(4.6)				
CLY-169-69	ı	ı	1	0	1	١	1	4	ı	ı		6.	1	1	1.3	1	1-	2.4	١	5.1	ı	34.6
CLY-169-69	1	,	ı	1.2	ı	1	ı	14.0	ı	ı		30.6	١	1	ı	33.1	ı	34.9	ı	ı	1	47.1
CLY-169-69	ı	1	ı	1.3	ı	ı	ı	7.5	i	ı		56.5	ı	ı	ı	29.8	1	32.1	١		ı	45.5
CLY-179-69	1	ı	ı	1	ı	1	1j	ı	١	1	,	1	ł	1	'	1	9.2	12.0	ı		F(41.0)	
CLY-170-69	ı	ı	ı	ı	ı	,	ı	ı	1	ı			1	ı	ı	_	F(12.3)					
CLY-170-69	ı	ı	ı	1.2	ı	ı	ı	2.2	ı	1	I		ı	ı	5.9		ı	6.6	ı	14.9	ı	30.0
CLY-170-69	1	ı	ı	1.0	ı	ı	ı	1.9	ı	ı	1		1	1	5.5		ı	9.7	ı	14.4	ı	27.0
CLY-170-69	ı	ı	ı	3.3	ı	ı	ı	7.7	ŀ	ı	1	1	1	14.9	ı	ı	17.0	1	20,3	1	ı	32.1
CLY-170-69	ı	ı	ı	3.2	ı	ı	ı	7.9	ı	ı	1		ı	15.2	1		17.9	ı	22.0	ı	ı	37.8
CLY-171-69	ı	ı	1	1	1	1	1	ı	1	1	ı	_	1	ı	1		F(12.3)					
CLY-171-69	1	ı	1	1.8	1	ı	1	5.3	ı	1	1		1	1	11.0	1	1	12.8	ı	15.1	ı	119.8
CLY-171-69	ı	ı	1	F(2.1)																		
CLY-171-69	ı	ı	ı	3.0	ı	ı	ı	42.1	ı	ı	1	90.4	1	1	ı	108.4	1	Ĺų				
CLY-171-69	ı	ı	ı	2.4	ı	ı	1	6.3		ı	-	52.0	1	1	ı	56.8	ı	9.69	1	1	ı	Щ,
CLY-172-69	1	1	1.2	2.0	4.5	ı	1	ı	1	24.1	1	40.9	1	1	ı	127.8	ı	162.4	ı	211.0	ı	ы
CLY-172-69	1	ŀ	1.4	2.5	4.2	ı	ı	ı	1	44.5	1	71.6	1	1	ı	155.4	ı	179.5		217.8	ı	4
CLY-173-69	1	1	0.9	6.9	7.1	ı	ı	ı	1	6.7	1	8.9	1	,	1	10.5	ı	11.3	ı	13.0	,	14.5
CLY-173-69	ŀ	ı	5.8	6.4	7.4	1	ı	ı		8.3		9.0	i	ı	1	10.0	1	10.9	ı	13.0	1	15.2
CLY-173-69	1	1	1	ı	ı	ı	ı	ı	1	ı	1	ı		ı	1	ı	13.0	1	17.4	19.1	ı	20.3
CLY-173-69	ī	1	1	1	ı	1	١	1	ı	1	ı		,	1	ı	1	10.0	ł	16.0	17.3	ı	19.8
CLY-174-69	ł	ı	8.6	ı	ı	ı	13.2	ı	14.8	1	1	1	16.4		1	1	17.7	ı	18.3	19.3	F(20.0)	
CLY-174-69	-	'	10.7	1	-	1	16.1		17.6	+	1	\dashv	19.1	-	7		F(20.5)					

*Column headings denote time in hours.

APPENDIX XXXVIII (CONTD)

2								×o	IDATIO	N TEST	RESUI	LTS: V	OXIDATION TEST RESULTS: WEIGHT GAIN OF SAMPLE (mg)	GAIN O	F SAM	IPLE (r	ng)*									Г
NUMBER	3,5	3.0	Š	;	200	30	;																			Τ
CLY-167-69	i i	07	20	35	CC	65	74																			
CLY-167-69	ı	6.95	63.5	F(83.9)																						_
CLY-167-69	14.1	١	15.9	ı	19.1	112.8	щ																			
CLY-167-69	13.9	١	16.0	ı	18.7	112.9	ĮΨ																			
	92	28	30	32	34	35	36	39	40	42	44 4	46 49	9 51	53	55	99	59	09	63	64	89	72	75	82 88	Н	94
CLY-168-69	65.3	65.8	'	67.0	ı	-	6.99	1	68.1	9 -	- 4.89	- 69.4	4.	70.4	- 4	711.7	-	73.8	1	75.4	76.9	78.4 7	79.6	85.8 104.0		Щ
CLY-168-69	6.69	70.5	ı	71.5	ı	١	71.4	ı	72.5	-	72.7	- 73.4	4.	73.5	5	74.7	1	74.8	ı	78.0	79.9	81.7 83.2		96.4 252.3		ы
CLY-168-69	17.5	1	20.2	1	ı	23.1	1	26.6	1	30.4	- 57	- 6.75	- F(68.1)	(1												
CLY-168-69	17.5	1	20.3	ı	1	24.5	1	29.7	1	38.2	- 38	38.5	- 46.1	-	97.3	1	113.9	1	F(164, 2)						_	_
CLY-168-69																							_		_	
CLY-169-69	133.6	151.00	ł	F(796.7)								-														,
CLY-169-69																					-					
CLY-169-69	1	40.8	ı	45.1	ı	1	ı	53.9	ı	ı	Ĺų															
CLY-169-69'	ı	ı	ı	109.1	1	ı	14																			
CLY-169-69	ı	1	ı	F(51.7)																						_
CLY-170-69	١	35.4	1	36.5	1	ı	ı	F(39.0)										_			_					
CLY-170-69	1	34.2		F(36.8)								_														_
CLY-170-69	ı	1	F(45.9)																							
CLY-170-69	1	ı	F(89.1)									_														
CLY-171-69																										
CLY-171-69	ı	Ħ							-																	
CLY-171-69																							-			
CLY-171-69																						_			-	
CLY-171-69																										_
CLY-172-69											_															_
CLY-172-69																						_				_
CLY-173-69	1	15.8	17.3	18.3	19.8	1	21.5	23.2	25.5	1 F	F(28.5)															_
CLY-173-69	1	15.3	17.5	18.9	20.4	1	22. 1	23.6	25.1	1	F(27.0)															
CLY-173-69	22.0	ı	22.9	furnace control	control fa	tiled ove	rnight,	failed overnight, overheat burned up furnace temperature heating elements	burned	up furn	ace ten	peratu	ire heati	ing elem	ents											
CLY-173-69	21.9	ı	24.2	furnace control	control fa	tiled ove	rnight,	failed overnight, overheat burned up furnace temperature heating elements	burned	up furn	ace terr	peratu	ire heati	ing elem	ents											
																4					1	1	1	-	-	٦

* Column headings denote time in hours.

APPENDIX XXXIX

CYCLIC OXIDATION: 2400°F CYCLIC OXIDATION TEST RESULTS FOR COATED 1 1/2-IN, ROUND ROD SUBSTRATES

	17	,	ŀ	12,7	10.1	12.3	13, 1	1	ı	ı	ı	ı	ı		•	នុ	I	I	ı	1	I	I	ı	1	ı	1	i	
				-			_							┤	4	ŝ	35.3	31.8	ı	ı	ı	1	1	1	1	ı	ı	
	16	1	-	-		<u> </u>	<u> </u>	<u> </u>	ı			<u> </u>	1	╬		,							35.0	30.4	_			
	15	17.3	14.5	I	I	ı	I	1	I	I	ł	26.0	10.9	+		<u>،</u>			<u> </u>	ļ ———	<u> </u>		35	30		 		
	41	1	ı	1		1	ı	1		15.6	10.7	1	Į			ç	31.1	29.8	ı	ı	١	ı	ı	ı	ı	ı	1	
	_				_		<u>-</u>							┥	2	7	31.4	28.3	18.9	18.9	22.7	21.2	ı	ı	82.9	84.5	ı	4
mg)*	13	<u>'</u>	1	-	<u> </u>		1		<u>ا</u> 9	!			<u> </u>	╬		5	ı	1	-						_		67.7	8.7
les (12	ı	1	ı	ŧ	1	ı	11,5	12.6	1	I	ı	ŀ	-		-											.9	
Samp	11	1	1		1		ı	1	1	ı	1	1	1	\dashv	2.0	63	30.3	26.0	I	I	I	1	t	I	I	I	I	١
jo u														_	76	9,			ı	1	1	1	ı	_	8.69	71.6	ı	-
Gari	10	1	ı	ı	ı	<u>'</u>	-	1	!	f	ı	ŀ	ı	╬		+	27.2	24.0										
eigh	6	1	ı	ı	ı	_1_	1	ı	ı		ı	1	1		25	2	27	24	1	<u>'</u>	<u> </u>	<u> </u>	1		1	١	<u> </u>	
ts: W	80	ı	ı	j	ı	ı	1	ı	i	5,8	6.9	ı	I		24	#7	ı	ı	ı	ł	1	1	ı	I	1	ı	ŀ	1
Resu]	7			1	1	ı	ı	 I	1	1	1	1	ı	T	22	3	1	1	1	ı		1		ı	ı		ı	
Oxidation Test Results: Weight Gain of Samples (mg)*	9	ı	١	ŀ	ı	ı	ı	9.2	9.6	4.6	5.5	ı	ı		,		1	·	•	1	·	1	1	ŀ	1		ı	
ation	2	ı	ı	1	ı	1	ı	ı	ı	1	ı	ŀ	1	_		+				<u> </u>								_
Oxid	4	1	1					8.1	8.7					┥.		١	1	1	<u> </u>			-	 	<u> </u>	 	<u> </u>		
	_				_		 			<u> </u>	1	<u>'</u>	<u> </u>	-	0.0	0.3	I	I	I	I	I	I	18.1	19.6	24.5	16.6	ı	
	3			<u> </u>		ı				_!				+		-	21.4	17.0	!						1	1		_
	2	_			1		1	1	1	1	1	<u> </u>		+	<u> </u>	+	7	Ξ_		- 1								
	-	١	1	1	I	١	ı	1	ı	ı	1	ı	ı		_ <u>~</u>	9	1		t	1	1		15.8	17.2	1	1	1	1
Run	Number	CLY-176-69	CLY-176-69	CLY-176-69	CLY-176-69	CLY-180-69	CLY-180-69	CLY-180-69	CLY-180-69	CLY-181-69	CLY-181-69	CLY-181-69	CLY-181-69				CLY-176-69	CLY-176-69	CLY-176-69	CLY-176-69	CLY-180-69	CLY-180-69	CLY-180-69	CLY-180-69	CLY-181-69	CLY-181-69	CLY-181-69	CLY-181-69

APPENDIX XXXIX (CONTD)

			Ox	idatic	Oxidation Test Results: Weight Gained Samples (mg)*	lesults	:: Weig	ght Gai	ned Sam	pples ((mg)*						-
Run Number	38	39	40	42	44	45	46	48	05	51	55	54	99	58	09	62	
CLY-176-69	ı	38. 7	-	ŀ	ı	42.0	I	ı	-	46.4	47.6	ı	I	63.6	1	ı	Γ
CLY-176-69	ı	46.0	ı	1	1	49.4	J	ł	ŀ	ı	59.6	1	1	66.7	1	ı	
CLY-176-69	ı	I	ı	ı	ı	ı	ı	27.4	ı	ı	ŀ	ı	ı	i	ļ	126. 1	
CLY-176-69	1	ı	1	1	I	ı	ı	52.0	ı	ı	ı	ı	ı	l	1	72.4	
CLY-180-69	I	ı	ı	1	I	ı	ı	63.7	ŀ	ì	ı	82.3	ı	l	ı	I	
CLX-180-69	ı	ı	ı	ı	ı	1	ı	42.0	ı	ı	ı	54.7	·	ı	1	ı	
CLY-180-69	ı	1	ı	ı	I	ı	I	ŀ	44.4	ı	ı	ı	47.9	ı	ı	50.4	
CLY-180-69	1	ı	1	1	ı	ı	ı	ı	63.5	ı	ı	ì	73.7	ı	ı	81.1	
CLY-181-69	F(106.5)	-															
CLY-181-69	93.7	ŀ	ı	ı	103.4	I	I	ı	F(5327)								
CLY-181-69	I	ı	ı	ı	ı	ı	F(283.4							• • •			
CLY-181-69	l	l	ı	ı	ı	ı	F(2838.0)	6									-
	64	99	89	70	7.1	74	76	77	78	79	80	82	83	84	30	98	88
CLY-176-69		ı	ı	ı	78.1	ı	ı	85.8	I	ŀ	1	1	E(1182)				
CLY-176-69	70.4	1	ı	1	F(98.9)												
CLY-176-69	I	I	ı	ı	ı	1	ı	1		F(2130)	<u>-</u>						
CLY-176-69	1	ı	t	ı	1	I	ı	I		F(93.7)	_						
CLY-180-69	1	ı	107.3	ı	ı	ı	1	1	ı	ı	ı	1	1	F(6244)	_		
CLY-180-69	ı	ı	74.6	J	ı	ı	1	J	ı	ı	ı	ŀ	1	F(12003)	3)		
CLY-180-69	1	ŀ	51.9	ı	ı	55.0	ı	ı	ı	ı	55.6	ı	1	1	· M	59.3	ı
CLY-180-69	.1	ı	86.6		ì	92.0	1	J	ı	ı	96.3	l	1	ı	瓦1	瓦107.2)	
CLY-181-69				····													
CLY-181-69												•					
CLY-181-69																	
CLY-181-69																	
4																	

* Column heading denotes time in hours.

APPENDIX XXXIX (CONTD)

Run	Ox	idation	Test E	Results	: Weigł	ıt Gain	ed Sam	Oxidation Test Results: Weight Gained Samples (mg)*
Number	90	92	94	96	98	100	102	104
CLY-176-69								
CLY-176-69				·				
CLY-176-69								
CLY-176-69								
CLY-180-69								
CLY-180-69								
CLY-180-69	l	60.2	ŀ]	62.5	I	1	67.0
CLY-180-69								
CLY-181-69								
CLY-181-69								
CLY-181-69								
CLY-181-69								

*Column heading denotes time in hours.

APPENDIX XL

CYCLIC OXIDATION: 2400°F CYCLIC OXIDATION TEST RESULTS FOR COATED 1 1/2-IN, HEX HEAD BOLT SUBSTRATES

		Т		_																_										\top
	58							F(84, 4)	:																					
	99	F(119.8)						,																			-			
	54	ı						61.2																						
	95	66.8 75.9						ı																						
	45	8.99						38. 1 43.3																						
1	44	ı																10,26,31	7(13.6)	1 (13:1)										
	40	57.9						30.5											ı	ı										
	38	,					F(47.5)	,												1										
	36	,					1	22.3										65.1	63.5											
	34	35.2		-			1	1	F(69.9)									,)	ı	F/52 01	6:								
	32	,			F(33. 9)			47.6										50.3	78.0	;	,									
	30	33.5			1		,	,	1									'	,		,									
	87	30.6				F(69.0)	•	•	•									•	1		•									
*(Bu	26	1			29.7	ı	28.5	37.9	4.09				F(72. 1)					1	ı		ŀ									
ples (r	24	20.4			1	١	ı	ı	ı				ı					ı	1		ı									
n of Sam	22				25.6	51.0	,	,	,									,	,		,					F(61.9)	F(57. 1)			
ight Gair	20	18.9	(52. 6)	(52.8)	21.7	1	20.1	22.3	52.3		F(52.8)		46.2					,	,		,					,	_		(F)	
ts: We	18	16.6	19.8 F	ı	1	,	1	,	1		1		40.9					,	,		,					1	1	1	1	1
dation Test Results: Weight Gain of Samples (mg)*	16	15.0		16.7	19.4	37.5	16.5	17.1	,		36.3		1	F(146.5)	(62.3)	(146.5)	F (62.3)	29.4	29.3	(31.0)	28.2					30.7	34.6	,	ŀ	
tion T	14	13.0	5.9	0.4	5.4	2.3	,	1	20.7		1		,	1	1	1	1	,	,	1	,	,	,			_	,		-	1
Oxida	12	-	10.9	_	<u> </u>	٦	1	•	-	F(59.2)	31.8	F(31. 1)	8.97	,	,	,	,	,	•	'	,	,	,			,	•	,	1	
	10	10.3	9.6	1	1	,	14.0	12.6	,	1	,	Į.	,	ı	,	1	1	,	ı	-	,	,	,			-	ı	-	1	
	8	7.7	8.1	1	1	1	-	=	1	1	1	ı	1	1	1	1	1	ı	1	1	,	1	,			1	ŧ	-	,	1
	9	ı	1	ı	1	1	12.5	11.1	ı	21.6	23.5	5.7	36.3	,	ı	,	1	,	1	1		,	,	F(29.8)	F(18.2)	,	ı	,	1	
	4	7.0	7.4	1	ı	,	10.2	9.5	1	•	1	1	1	1	ŧ	,	1	,	ı	1	,	,	1	1	1	1	,	1	1	1
	2		6, 1	,	1	,	,	í	,	,	ı	,	,	,	1	,	1	,	ı	11.0	12.3	ı	,	,	ı	1	,	8.2	8.7	
	-	4.7	5. 1	,	1	,	1	,	1	1	'	,	'	,	,	ŀ	,	1	1	ı	ī	,	,	1	1	1	1	,	1	
Run	Number	CLY - 175-69 4.7	CLY-175-69 5.	CLY-175-69	CLY-175-69	CLY-177-69	CLY-177-69	CLY-177-69	CLY-177-69	CLY-178-69	CLY-178-69	CLY-178-69	CLY-178-69	CLY-182-69	CLY-182-69	CLY-182-69	CLY-182-69	CLY-183-69	CLY-183-69	CLY-183-69	CLY-183-69	CLY-184-69	CLY-184-69	CLY-184-69	CLY-184-69	CLY-185-69	CLY-185-69	CLY-185-69	CLY-185-69	*

215

CYCLIC OXIDATION: 2600°F CYCLIC OXIDATION TEST RESULTS FOR COATED 1 1/2-IN. ROUND ROD SUBSTRATES APPENDIX XLI

			_				******									_									
	5.5	1	١	122.7	108.2		ı	ı	ı							ı		ŀ	1	25.8	31.2	1	1	ı	ı
	5.25	134.1	123.1	ŀ	1		ı	96.8	107.2	144.0	131.6	90.5	85.6			1		27.9	31.5	1	ı	ı	ı	ı	1
	4.75	,	ı	ı	ı		88.8	ı	ı	ı	ı	ı	ı			135.5		1	ı	20.9	26.0	11.3	10.7	1	1
	4.5	-	ı	105.8	94.5		77.9	0.92	74.2	ı	1	1	1			1		24.3	4.42	ı	ı	1	1	1	ı
	4.25	i	١	ı	1		72.1	,	1	ı	1	,	1			1		1	1	1	ı	1	1	ı	ı
	4.0	115.4	100.4	ı	ı		4.99	ı	1	102.8	90.9	64.6	57.4			126.9	(F)	ı	1	17.5	22.0	11	10.6	18.6	18.9
mg)*	3.75	ı	١	ı	,		59.7	1	1	ı	ı	ı	ı			ı	,	19.6	21.7	ı	ı	ı	ı	ı	,
PLES (3.5	١	ı	81.4	74.7		48.7	62.7	63.9	,	1	ı	ı			ı	ı	1	ı	16.7	21.1	ı	,	ı	ı
OF SAM	3.25	ı	ı	ı	ı		43.2	55.2	9.95	ı	ı	ì	ı			ı	1	ı	١	15.4	19.8	1	ı	١	-
r GAIN	3.0	86.9	76.9)	1		37.9	49.4	48.9	72.9	62.9	6.6	12.3			108.8	84.3	17.1	19.9	15.5	19.6	10.3	9.7	١	-
WEIGH	2.75	ı	ı	ı	ł		32.7	40.5	44.2	ı	1	1	ı			1	,	1	١	14.8	19.0	ı	ı	ı	,
OXIDATION TEST RESULTS: WEIGHT GAIN OF SAMPLES (mg)*	2.5	ı	١	45.4	53.8	F(33.3)	25.6	43.3	42.3	ı	ı	5.7	4.9			89.3	70.3	16.1	19.2	13.6	17.3	10.3	10.7	1	-
FEST R	2.25	ı	,	ı	ı	25.1	25.1	34.5	37.5	ı	,	1	١			ı	ı	14.5	17.5	13.0	16.0	,	ı	ı	1
A TION	2.0	5.0	9.3	,	ı	22.7	22.7	8.22	28.4	4.0	4.3	ı	,			ı	1	13.9	17.1	12.4	14.8	,	ı	3.5	3.3
OXID	1.75	ı	ı	,	,	20.7	20.7	13.7	12.4	1	ı	ı	ı			ı	1	12.6	15.6	12.1	13.7	ı	ı	ı	1
	1.5	ı	1	3.5	3.7	19.7	19.7	10.6	8.1	ı	,	1.9	2.0			58.0	49.7	11.4	15.2	11.3	12.6	9.7	8.9	,	ı
	1.25	ı	1	1	ı	18.0	18.0	9.0	7.0	1	1	ı	ı	,		1	ı	10.4	14.5	10.5	11.5	1	,	ı	1
	1.0	3.0	3.0	,	ŀ	17.3	17.3	7.0	5.6	1.4	1.5	1.7	1.6			6.6	3.5	9.5	13.6	8.4	9.1	9.4	8.7	ı	-
	. 75	ı	ı	ı	1	16.8	16.8	5.8	4.1	ı	ı	ı	ı			ı	ı	9.3	14.3	7.5	6.7	ı	ı	1	ı
	.5	5.6	3.0	2.0	2.4	13.9	13.9	6.3	4.4	1:1	1.2	0.4	0.5	F(3. 1)	F(2.8)	2.0	1.5	8.6	7.7	7.8	7.8	4.8	9.2	ı	-
	.25	2.4	2.4	,	ı	9.3	9.3	2.7	2.4	1.2	1.1	1	ı	2.1	1.9	1	ı	7.7	9.9	5.1	5.0	,	ı	,	-
	Run Number	CLY-167-69	CLY-167-69	CLY-167-69	CLY-167-69	CLY-168-69	CLY-168-69	CLY-168-69	CLY-168-69	CLY-169-69	CLY-169-69	CLY-169-69	CLY-169-69	CLY-171-69	CLY-171-69	CLY-171-69	CLY-171-69	CLY-173-69	CLY-173-69	CLY-173-69	CLY-173-69	CLY-180-69	CLY-180-69	CLY-181-69	CLY-181-69

* Column heading denotes time in hours

APPENDIX XLI (CONTD)

						OXIDA	TION TE	OXIDATION TEST RESULTS: WEIGHT GAIN OF SAMPLES (mg)*	LTS: V	VEIGHT	GAIN OF	SAMP	LES (mg	*.						
Run Number	5.75	6.0	6.25	6.5	6.75		7.0	7.5	7.75	8.5	9.25	9.5	10.0	10.5	11.0	11.5	12.0	13.0	14	15
CLY-167-69	1	134.6	9	1	<u>'</u>	14	148.7	ı	ı	152.6	166.6	١	160.7	1	F(209. 6)					
CLY-167-69	'	135.1	-	1	'		144.8	ı	1	152.3	156.6	1	160.5	١	F(305.0)	_				
CLY-167-69	ı	-	1	137.1	-		-1	142.0	1	146.1	1	151.6	1	155.3	ı	F(205.4)				
CLY-167-69	ı	1		132.7				143.4	ı	F(163.2)										
CLY-168-69	F(111.0)	_																		
CLY-168-69	ı	124.4	1	1	F(164. 3)	. 3)														
CLY-168-69	ı	120.7	- 1	1	141.9		_	F(198. 1)												
CLY-169-69	ı	157.4	4		1	16	165.8	ı	171.0	ı	175.0	i	179.0	١	182.0	'	F(140.4)			
CLY-169-69	١	151.0	0	1	1	164	164.1	ı	170,9	1	174.4	ì	178.3	1	182.0	'	F(170.2)			
CLY-169-69	١	129.7	- 1	ı	-		150.4	ı	ı	1	F(169. 7)	7								
CLY-169-69	١	123.4	4	1	_		146.9	ı	ı	1	175.9	1	'	ı	182.5	,	١	188.9	1	F(283.9)
CLY-171-69	ı	(F)																		
CLY-173-69	ı	35.3	1	1	F(41.6)	(9														
CLY-173-69	ı	42.2	- 2		F(53.2)	5)														
CLY-173-69	١	ا 	32.5	1	-		41.8	ı	42.7	68.5	F(86.6)	(9								
CLY-173-69	1	'	37.2	1	-		F(52.2)	ı												
CLY-180-69	1	14.2	- 2	1	<u>'</u>		17.0	1	1	1	33.4	1	<u>'</u>	١	59.4	1	'	72.0	ı	78.0
CLY-180-69	ı	15.3	.3	1	<u>'</u>		21.2	,	ı	١	47.4	1	1	١	61.5	'	'	8.69	ı	11.11
CLY-181-69	,	59.0	0.	1	1		,	ı	90.6	ı	'	1	98.8	1	1	'	111.5	,	121.2	ı
CLY-181-69	1	54.0	- 0.	_	'		_	_	75.6	'	'	١	92. 1	'	ı	1	103.6	'	112.7	ı
Run Number	16	17	18	19	21	23	25	27 29		31	33 3	35	37	39	41	43				
CLY-180-69	1	82.4	1	94.7	86.1	91.0	92.4	95.8 98	98.9 10	102.4 10	108.7	116.4	120.7	122.9	127.4	F(-)				
CLY-180-69	-	4.77	ı	79.3	80.7	84.0	84.6	86.8 88	88.7 9	91.2	95.6	99.2	103.0	106.8	110.2	F(-)				
CLY-181-69	125.4	1	F(132.4)																	
CLY-181-69	119.0	1	F(184.8)																	

*
Column heading denotes time in hours

APPENDIX XLII

CYCLIC OXIDATION: 1800°F, 2200°F AND 2600°F TEST RESULTS

Run	Substrate		L	L			L		L	L								l	1	ł	ŀ	ŀ	ŀ	ŀ	ŀ	l		l	
Number	Identification	~	٠	٥	*	10	12	16	20	77	28	32	36	40	\$	\$	52	20	09	-	89	72 7	76	80 84	8	8	8	- 5	Source of
	1800°F							_											-	-	\vdash	-	┝	+	╁			3	
CLY-200-69	D, E	1	1	1	F(618)												T			+	t	-	-	+	+		I		
CLY-201-69	D, E	1	1	1	F(1833)				_												_		_						, n
CLY-202-69	D, E	42.2	67.5	1	F(170.3)														_				-	_					, m
CLY-205-69	D, E	4.2	F(79.3)															_		_			_						Nuit Nuit
CLY -206-69	D, E	67.2	F(150.5)															_	_	_	_		_						Mut. Inreads
CLY-210-69	D, E	48.1		F(79.8)					_											-	_		_						Nut.
CLY-211-69	Э'С	13.2	37.7	F(557)																									Nut
	2200°F																	1	+	+	+	+	+	+	-			T	
CLY-200-89	D, E		18.8	-	F(68.3)													1	+	+	+	+	+	+	+			1	
CLY-281-89	з 'с	1	11.0	'	ž	1	17.0	19.5	5 22.0	24.7	27.6	32.0	40.5	50.7	64.2	78.3	8	103.8 5(148.1)	148.11				_	_					I breads
CLY-201-6V	D, E	1	15.1	,	23.4	1	x	42.6		_	_						_			_			_						Not
CLY-205-69	D, E	١	9.7	,	3	,	18.1	20.3		_	25.0	26. 5	28.4	30.0	31.5	32.9	7	36.0	38.0	7	18.7	46.7	- 8 7	6 17	,	70,	;	,	Jnu.
CLY-204-69	D, E	,	8.0	1	13.6	,	22.8	39.3		19.4																	7		
CLY-210-69	D. E	,	8.7	1	19.9	F(67.0)															_	_						_	Nut Therete
CLY-211-69	D, E	1	9.5	,	13.6	1	19.1	22.7	7 26.7	36.9	39.6	45.8	\$	47.1	47.2	51.1	51.6												the state of the s
		0.25	0. 50		0.75	1.0												\dagger	+	+	+	+	+	+	+			†	
	2.009Z																		+	t	+	+	+	+	_			t	
CLY-107-69	q	3															T		+	+	+	+	+	+	+			Ť	Many Chart Thursday
CLY-193-69	a	4																			_			_	_				Head Shack Threads
CLY-194-49	Q	ía,																		_	-	_	_	_				_	Head, Charle, Income
CLY-198-69	Ω	4 .9	F(6.4)							_											_		_						Threads
CLY-136-07	Q	F(11.6)							_	W Arabina													_	_				. ,.	Threads
CLY-202-69	D, E	6.5	_	15.				******						_		-		-		_	,								Slight-Threads
CLY-205-69	D, E	\$1.4	£4	7.											_	_		_			_		_		-			_	Nut. Threads
CLY-206-69	D, E	F(40. 5)																					_					-	Slight-Threads
CLY-210-69	D, E	10.9	F(18. 5)	6															_		_		_						Slight-Threads
CLY-211-69	D, E	15.3	F(33. 5)	2																									Slight-Threads
Column heading denotes time in hours.	t denotes time	in hours.																											
OTHER RUN CONDITIONS	NDITIONS																												
• Substrate	 Substrate Identification 																												
A. 11/2	A. 1 1/2-in. Round Rod	ž																											
B. Flat	B. Flat Panel (app. 1 in. x 1/2 in.)	in. x 1/2	in.)																										
C, 1-in.	C, I-in. Threaded Stud	ņ																											
D. 11/2	D. 1 1/2-in. Hex Head Bolt	1 Bolt																											
E. Hex Nut	E. Hex Nut		3																										
	.03.67, nex m	T IS TLOW	502.170	60																									

APPENDIX XLIII

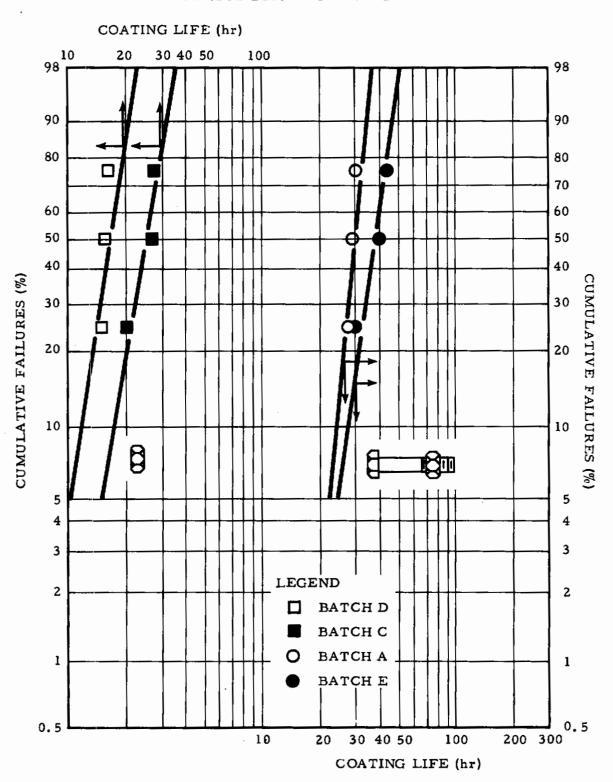
CYCLIC OXIDATION: 2400°F TEST RESULTS

Run	1									Oxidatio	n Test	Results	Weight	Oxidation Test Results: Weight Gain of Samples (mg)*	mples (n	اٍ ۥۣ	t	ł	ŀ	1	\mid	-	1	-	Source of	Γ
ı,	Substrate Identification	•	8	12	1	16	81	02	22	22	92	82	30	32	34	36	38	0	45 44	_	46 48	20	25	26	Failure	
CLY-186-69	D	ı	ı	ı	11.6	ŧ	1	17.6		ı	25.2	ı		F(31.8)											1	
CLY-186-69	D	1	ı	ı	13.2	ı	ı	21.4	ı	,	38.0	1	ı	F(65. 1)		_	_				_			_	1.	
CLY-186-69	Ω	1	ı	ı	1	20.1	ı	1	ı	ı	,	ı		F(32.8)							_					
CLY-187-69	Ω	ı	ı	ı	ı	27.8	'	1	F(53.7)							_					_	_	_			
CLY-187-69	Ω	ı	ı	1	ı	27.9	1	'	F(50.4)				_	_									_		Threads	
CLY-188-69	Ω	1	ı	1	F(49.9)										_		_								Thread	
CLY-188-69	D	ı	ı	ı	F(92.7)								_	_			_				_		_		1	
CLY-189-69	D	ı	1	,	F(30. 1)																				ı	
CLY-189-69	Q	1	,	1	F(23. 1)																_				ı	
CLY-190-69	Q	1	ı	F(109. 1)								_				_	_								!	
CLY-190-69	Q	1		F(171.0)									_		_			_							i -	
CLY-191-69	Q	ı	1	'	21.6	ı	ı	١	F(47.8)												_				Threads	
CLY-191-69	Ω	1	ı	1	22.7	1	ı	١	F(36. 9)					_			_		_		_				Threads	
CLY-192-69	Q	ı	ı	F(64. 3)													_		_						i	
CI.V. 193-69			4												_		_		_		_				Threads	
C1 X 194 69			100		2/30 11												_		_						Thread & Head	ead
104 for X 10		,	10 7174 0	ı	£ (£7. 1)											_	_		_						Threads, Head	ead
10-141-140	2	,	F (10.0)													_				_	_	_			Threads, Head	ead
CLY-194-69	Ω	ı	ı	20.0	1	F(37.9)											_		_		_		_		Threads, Head	ead
CLY-195-69	Ω	ı	30.1	١	F(52. 9)														_						Threads. Head	ead
CLY-196-69	Ω	ı	ı	1	30.5	ı	93.3		=	ı	134.2	1	151.0	í4 I	F(172.0)		_	_	_	_					Threads Heads	Per
	Q	9.7	13.3	18.3	ı	23.3	ı			43.7	1	49.0	ı			F(55.4)			_						Turesqu', tr	
CLY-197-69	Д	ı	ı	1	24.2	ı	36.9	1	47.2	ı	50.3	1	75.7		F(95. 0)				_		_	_			Inreade	
CLY-197-69	Ω	9.7	11.7	7.	ł	19.0	ı	24.4		30.2	ı	40.3	ı	46.7											Threads	•
CLY-199-69	Ω	ı	1	1	1	13.4	1	24. 2	1	19.5	ı	152.8	1	F(178.9)							_				Threads, Head	620
CLY-199-69	Ω	12.4	2.92	21.2	'	30.0	ŧ	162.2		ı	203.5	ı	(227.7)					_	_	-					Threads, Head	9
CLY-200-69	D, E	1	41.6	'	88.9	١	١	F(136. 7																	Threads, Head	ead
CLY-200-69	D, E	ı	F(41.4)																						Threads, Head	ead
CLY-201-69	D, E	1	31.0	53.9	1	81.7	١	103.2		124.4		142.6	ı	163.9	1	206.5	1	6.922	250.3	m.	F(305. 6)	9			אַמּ	
CLY-201-69	D, E	23.5	39.5	61.9	1	4 .06	1	105.8	'	123.6	1	162.1	ı	174.9	1	192.5		212.6	221.7	۲.	F(245.2)	(2.			Nut	:
	D.E	ı	4.04	96.2	ı	117.5	1	119.5	1	1	ı	ı	Ĺ4	_											Inreads, N	Nati
CLY-202-69	D, E	1	♦.09	83.7	1	95.8	1	98.7	1	ı	ı	1	Ĺų													ĭ
CLY-203-69	ы	2.3	3.0	••	1	5.1	١	6.8	'	4.9	1	8.5	ı	9.6		13.2	1	15.4	<u>-</u>	19.3	25.9	6.	35.	8 F(58.	35.8 F(58.6) Threads	
CLY-204-69	D, E	ı	9.02	25.8	ı	45.6	1	9.99	1	76.1	ı	101.5	ı	F(141.5)					_			_			Threads	
CLY-204-69	О	ı	14.4	17.0	ı	18.8	١	22.0	1	27.2	,	35.3	,	53.0	1	58.8		F(10.0)	_			_			Threads	
CLY-205-69	D, E	32.7	36.8	47.2	1	57.6	'	62.7	,	89.7	ı	105.8	ı	1	120.8	140.9		151.7	F(188.3)	3.3)					Threads	
CLY-205-69	Ω	22. 1	28.0	35.5	١	39.8	ı	43.8	1	46.1	ı	4.64	ı	,	52.9	58.8 I	F(70.0)			_			_		Threads	
CLY-206-69	D, E	1	1	ı	95.8	١	112.3		=	ι	137.2	ı	152.8	1	166.4	ı	178.8	61	191.8	20	203.9	F(263. 5)	. 2		Threads	
CLY-209-69	D, E	1	92.5	124.8	1	137.9	1	169.5	'	F(189. 4)			_					_	_	_					Nut	
CLY-210-69	D, E	ı	25.5	40.7	,	F(126. 6)																			Nut	
CLY-210-69	D, E	ı	1	1	1	108.3	1	F(168.1	_								_		_						Nut	
CLY-211-69	D, E	1	ı	ı	39.1	45.6	53.2		1	61.4		F(70. 0)								_					Threads	
CLY-211-69	D, E	1	١	1	1	43.1	1	4.09		66.7	ı	74.1	ı	85.4	,	4 .96	,	109.9	\dashv	\dashv	_		-		Threads	
OTHER RUN CONDITIONS	CONDITIO	SNC																								
Subatr	Substrate Identification	ication																								
¥	1 1/2-in. Round Rod	Round	Rod																							
	Flat Panel (Approximately 1 in. x 1-in. Threaded Stud	(App	roximat. Stud	ely l in.	x 1/2 in.)	_																				
Ö	1 1/2-in. 1	Hex H	ead Bolt																							
3 2	E. Hex Nut - T. C. V 204 - 60 and C. V 206 - 60 have mint in feature C. V 203 - 60		206	9	in to		09-206																			
•	1 - 202 - 1	TO But	-603-17	oy, nex n	at 18 1ro	- 170	203-07																			
Column heading denotes time in hours	ding denote	es tim	e in hou	•																						

APPENDIX XLIV

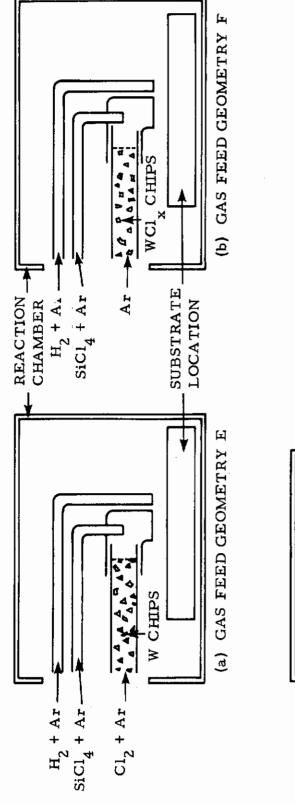
CYCLIC OXIDATION: ADDITIONAL 2400°F TEST RESULTS

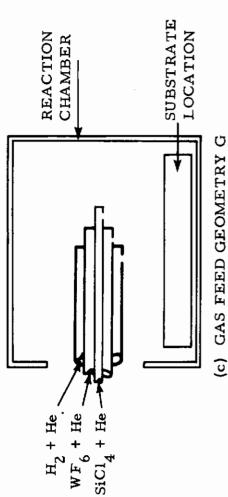
1						o	ridation]	rest Resu	lts: Weig	ht Gain	Oxidation Test Results: Weight Gain of Samples (mg)	s (mg)*					
Run Number	Substrate Identification	7	4	9	8	10	12	16	20	24	28	32	36	40	44	48	52
CLY-202-69	Э, Е	,	15.3	ł	. '	ı	70.5	-	125.2	1	F(153. 7)						
CLY-202-69	D, E	. 1	12.5	ı	ı	1	48.2	ı	81.0	ı	F(126.2)						
CLY-205-69	Ω		ı	1	ı	1	ı	39.3	ı	ı	1	45.9	ı	51.1	ı	59.7	59.7 F(73.6)
CLY-205-69	Q		ı	1	1	ı	ı	40.0	ı	1	1	F(57.3)					
CLY-205-69	Q	ı	ı	ı	ı	ı	ı	11.9	ı	ı	1	48. 1	ı	54.7	ı	8.99	66.8 F(86.6)
CLY-205-69																	
CLY-206-69	ы	ı	8.5	ı	ı	ı	33.4	ı	78.0								
CLY-206-69	ធ	ı	8.7	ı	ı	1	28.1	ı	69.3		•						
CLY-206-69	ធ	,	9.5	1	ı	1	35.8	ı	85.5								
CLY-206-69	ធ	1	10.2	ı	ı	1	27.6	ı	F(30.6)								
CLY-210-69	ഥ	1	ı	1	ı	+	1	10.7									
CLY-210-69	ធ	ı	ı	ı	ı	1	,	F(10.2)									
CLY-210-69	ഥ	1	ı	1	ı	1	ŀ	F(10. 1)							•		
CLY-210-69	ഥ	1	ı	ı	ı	ı	ı	F(51.2)									
CLY-211-69	D, E	1	25.1	1	ı	ı	28.8	ı	30.8	ı	63.6	ı	82.9	1	F(106.6)	-	
CLY-211-69	D, E		24.6	1	ı	ı	37.2	1	37.2	ı	58.4	1	7.66	ı	F(146.4)		
OTHER RUN CONDITIONS	CONDITIONS																
• Substra	Substrate Identification	uo															
A. 1 1 B. Fla C. 1-ii D. 1 1	1 1/2-in. Round Rod Flat Panel (Approximately 1 1-in. Threaded Stud 1 1/2-in. Hex Head Bolt Hex Head	Rod oxima stud		in, x 1/2 in.)	in.)												
• In CLY	 In CLY-204-69 and CLY-205-69, 	TY-2(ex nut is	from C	hex nut is from CLY-203-69	69										
* Column heading denotes time in hours	ing denotes tir	ne in k	nours														
														-			


APPENDIX XLV CYCLIC OXIDATION: 2400°F OXIDATION TEST RESULTS FOR WEIBULL PLOT

Identification	Source of Failure	Cumulative Failure (%)	Test Time To Failure (hr)
Batch A D, E-Hex Head Bolt and Nut	Threads Threads Threads, Nut	25 50 75 100	28 28 30 30
Batch E D, E-Hex Head Bolt and Nut	Threads, Nut Threads Threads Threads Threads Threads	25 50 75 100	28 40 44 44
Batch B D-Hex Head Bolt	Threads Threads Threads Threads Threads	25 50 75 100	32 38 52 52
Batch C E-Hex Nut	Nut Nut Nut	25 50 75	20 28 28
Batch D E-Hex Nut	Nut Nut Nut Nut Nut Nut	100 25 50 75 100	28 16 16 16 32

APPENDIX XLVI


CYCLIC OXIDATION: WEIBULL PLOT OF CUMULATIVE FAILURES VERSUS 2400°F COATING LIFE



APPENDIX XLVII

COATING PREPARATION STUDIES: GAS FEED GEOMETRIES (i.e., FEED NOZZLES) FOR CHLORIDE AND FLUORIDE ROUTES

APPENDIX XLVIII

COATING PREPARATION STUDIES: ADDITIONAL PROCESS CONDITIONS AND RESULTS FOR FLUORIDE ROUTE

	WF6	H ₂	Inert Gas Dilution	Inert Gas Flow (He, L/min)	Gas Flow L/min)	Total Flow	Reaction	Deposition	Rotation	Reactor Loading
	(4/min)	(t/min)	(He, [£] /min)	Bubbler	Dilution	$(^{\ell}/\text{min})$	(°C)	min)	(rpm)	of Substrates
CLY3-24-69	. 180	. 077	.872	ı	. 100	1, 229	059	180	12	1
CLY3-25-69	. 180	.077	. 872	ı	ı	1. 129	650	75	12	2
CLY3-26-69	. 180	.077	.872	!	ı	1, 129	059	180	12	2
CLY3-27-69	. 180	. 077	. 872	1	ı	1. 129	059	180	12	2
CLY3-28-69	. 180	.077	. 872		ı	1. 129	059	240	12	2
CLY3-29-69	. 180	. 077	. 872	ı	1	1. 129	059	240	12	2
CLY3-30-69	. 180	.150	.830	. 100	. 900	2. 160	650	180	12	7
CLY3-31-69	. 180	. 150	. 830	. 100	006.	2, 160	9	240	12	2
CLY3-32-69	. 180	.150	.830	. 100	006.	2, 160	929	240	12	2
CLY3-33-69	. 180	.150	. 830	. 100	. 900	2. 160	059	240	12	2
CLY3-34-69	. 180	. 150	.830	. 100	. 900	2.160	059	240	12	7
CLY3-35-69	. 180	.150	. 830	ı	006	2.060	920	120	7	7
CLY3-36-69	. 180	.150	.830	i	. 010	1.161	650	120	-	ĸ
CLY3-37-69	. 180	.150	.830	ı	.010	1, 161	059	240	-	ဗ
CLY3-38-69	. 180	.150	. 830	1	010.	1.161	920	180	П	7
JN CC	OTHER RUN CONDITIONS									-
	• Fautament utilized as shown	dag ahowi	n in Figure 52							
*****	A TITLE AND	1								

APPENDIX XLIX

COATING PREPARATION STUDIES: ADDITIONAL OBSERVATIONS FOR FLUORIDE ROUTE

Run Number	Observations
CLY3-25-69	 Deposition run conducted for one plus hour with stabilizing supports Rotation speed maintained constants during run
CLY3-26-69	 Conducted deposition run for three hours with stabilizing supports Constant rotation speed again maintained during run Silver gray coating obtained on T222 substrates Some etching (chipping) substrate edges
CL Y3-27-69	Some gray coating deposit obtained on T222 substrates Some etching (chipping) on substrate edges
CL Y3-28-69	 Conducted four hour run with graphite reactor Substrates (T222) experienced weight gain (432.1, 431.8 mg) Above result suggests that metal cage reactor rotation was causing substrate chipping
CLY3-30-69	 Conducted tungsten-tungsten silicide deposition run No pluggage even with SiCl₄ flow for two hours
CLY3-31-69	 Conducted tungsten-tungsten silicide deposition run with two hour run time for each deposition Silver gray coating obtained on substrates Bonding appears to be problem on basis of flake off upon sawing for mounting

APPENDIX XLIX (CONTD)

Run Number	Observations
CLY3-32-69	 Conducted tungsten silicide deposition run with four hour run time Bonding problem still exists - evidenced by flake off of coating upon cutting for mounting
CLY3-33-69	 Conducted tungsten-tungsten silicide deposition run with degreased substrates (degreased immediately before run with MEK and acetane) MEK sample experienced 956.4 mg weight gain Acetane sample experienced 385.8 mg weight gain
CLY3-34-69	Conducted tungsten-tungsten silicide deposition run with three substrates Substrates experienced some coating deposit
CLY3-35-69	Conducted tungsten deposition run Substrates experienced some coating deposit and some etching
CLY-36-69	 Conducted tungsten deposition for two hour run Silver grey coating obtained on T222 substrates Partial bonding problem evidenced by partial flake off upon sawing for mounting
CLY3-37-69	 Conducted deposition run for four hour deposition Silver gray coating deposit obtained on three substrates Reactor broke while unloading system at end of run

APPENDIX XLIX (CONTD)

Run Number	Observations
CLY3-38-69	Conducted deposition run with special metal attachment on graphite reactor
	Several rotation stops during run
	• Quartz substrate completely etched (i. e., disappeared) at end of run
	Reactor rotation attachment broken at end of run

APPENDIX L

COATING PREPARATION STUDIES: ADDITIONAL INITIAL PROCESS CONDITIONS AND RESULTS FOR CHLORIDE ROUTE

		WC1_ Feed	ed	я	H, Feed	Inert Ga	Inert Gas Flows Ar, (4/min)							
Run	Approx.	W Chips Wt. Loss	Inert Gas Dilution	H ₂	Inert Gas Dilution	SiC14		Total Flow Measured	Reaction Temp.	Reaction Deposition Rotation Temp. Time Speed	Rotation Speed	Reactor Loading	Reaction	Gas Feed
ı.	(1/min)	(gm)	(Ar, 1/min)	(1/min)	(Ar, 1/min)	Bubbler Dilution	Dilution	(1/min)	(30,)	(min)	(rpm)	of Substrates Chamber	Chamber	Geometry
CLY3, 1-20-69	080.	4. 1614	4.5	0.2	4.8	1	0.5	10.080	1000	45	5.	2	٧	ы
CLY3, 1-21-69	. 020	2.9687	,	0.4	7.0	ı	5.0	16.020	800	06	۶.	2	4	ы
CLY3. 1-22-69	0.5	3.9708	5.0	4.0	7.0	1	5.0	21.5	800	06	5.	2	4	ഥ
CLY3, 1-23-69	1.5	5.3974	ı	4.0	7.0	1	5.0	22.5	1005	120	٠.	7	۷	ы
CLY3. 1-24-69	1.5	Yes	ı	ı	7.0	ı	5.0	13.5	1005	120	\$	2	4	ы
CLY3, 1-25-69	1.5	Yes	ı	1.0	7.0	ı	5.0	9.5	1005	09	٠.	23	4	ы
CLY3. 1-26-69	1.5	Yes	ı	0.5	7.0	ı	7.0	16.0	1005	09	ĸ.	2	∢	ធ

APPENDIX LI

COATING PREPARATION STUDIES: INITIAL OBSERVATIONS FOR CHLORIDE ROUTE

Run Number	Observations
CLY3.1-20-69	 Conducted deposition run with lower hydrogen concentration Substrates experienced weight loss
CLY3.1-21-69	 Conducted deposition run with longer W chip holder for longer reaction time to generate tungsten chloride Breakage of chip holder and other feed nozzles was not experienced Measured temperature profile (for every 3 inches: 800, 760, 515, 175, and 80°C)
CLY3. 1-22-69	 Conducted deposition run with higher Cl₂ flow over W chips to increase tungsten chloride concentration Substrates experienced very slight weight gain
CLY3.1-23-69	 Conducted run at higher reaction temperature Substrates lost weight possibly due to chloride etching Silver gray coating deposit obtained at end of chip holder nozzle
CLY3.1-24-69	 Conducted deposition run without any hydrogen Silver gray coating not obtained at end of chip holder nozzle Substrates did not experience any weight change (possibly weight loss but too small for accuracy at .0008 and .0004 mg) Suggested hydrogen back up into nozzle

APPENDIX LI (CONTD)

Run Number	Observations
CLY3.1-25-69	Conducted deposition run with modified gas feed geometry shown
	Did not obtain any coating deposit
CLY3. 1-26-69	 Conducted deposition run with intermediate H₂ concentration Did not get any silver gray deposit on substrates
	Switched work effort to work on deposition via chloride route with tungsten hexachloride feed

APPENDIX LII

COATING PREPARATION STUDIES: INITIAL PROCESS CONDITIONS AND RESULTS FOR CHLORIDE WITH TUNGSTEN HEXACHLORIDE FEED

	*	WC1_Feed	Ħ	H, Feed	Inert Gas Flo Ar, (L/min)	Inert Gas Flows Ar, (1/min)							
Run Number	Chips Wt. Loss	(uin	H2 Feed (1/min)	Inert Gas Dilution (Ar, L/min)	SiCl4 Bubbler	Dilution	Total Flow Measured (L/min)	Reaction Temp.	Deposition Time (min)	Rotation Speed (rpm)	Reactor Loading via Quantity of Substrates	Reaction Chamber	Gas Feed Geometry
CLY3. 1-27-69	Yes	6.0	2.0	7.0	ı	1	15.0	800	120	0.5	2	∢	Ĺ
CLY3, 1-28-69	Yes	0.9	2.0	7.0	1	ı	15.0	1000	120	0.5	2	4	Ξų
CLY3, 1-29-69	Yes	0.9	0.5	7.0	ı	0.9	19.5	800	120	0.5	2	Ω	ĹΨ
CLY3.1-30-69	Yes	2.0	2.0	7.0	ı	0.9	17.0	800	120	0.5	73	Ω	Ĺτą
CLY3. 1-31-69	Yes	2.0	2.0	7.0	ı	0.9	17.0	1000	120	0.5	7	¥	Ĺŧą
CLY3. 1-32-69	Yes	2.0	2.0	7.0	ı	0.9	17.0	800	180	0.5	2	∢	ĺΞŧ
CLY3. 1-33-69	Yes	2.0	2.0	7.0	1	0.9	17.0	800	009	0.5	2	4	Ĺ
CLY3. 1-34-69	Yes	2.0	2.0	7.0	۱.	6.0	17.0	800	480	0.5	2	4	Ĺų
CLY3, 1-35-69	Yes	2.0	2.0	7.0	1	0.9	17.0	1000	300	0.5	2	4	ĹΨ
CLY3. 1-36-69	Yes	. 036	1.0	1.0	0.2	1.8	4.036	1000	120	0.5	m	ഥ	ĹΉ
CLY3. 1-37-69	Yes	2.0	2.0	7.0	ı	0.9	17.0	800	180	0.5	٣	Ω	ĹΨ
CLY3, 1-38-69	Yes	2.0	2.0	7.0	1	6.0	17.0	800	240	0.5	4	Ω	Ħ
CLY3. 1-39-69	Yes	4.5	2.0	7.0	i	6.0	19.5	800	180	0.5	4	Ω	দ
CLY3. 1-40-69	Yes	5.5	2.0	7.0	ı	0.9	19.5	1000	180	0.5	4	Ω	শি
CLY3, 1-41-69	Yes	2.0	2.0	7.0	ı	0.9	17.0	200	240	0.5	4	Ω	놴

APPENDIX LIII

COATING PREPARATION STUDIES: INITIAL PROCESS CONDITIONS AND RESULTS FOR CHLORIDE WITH TUNGSTEN HEXACHLORIDE FEED

Run Number	Observations
CLY3.1-27-69	 Conducted deposition run at 800°C with WCl₆ powder Coating deposit obtained on nozzle
CL Y3. 1-28-69	 Conducted coating run at 1000°C with WCl₆ powder Coating deposit obtained on nozzle
CL Y3. 1-29-69	 Conducted deposition run with increased WCl₆ dilution, lower H₂ concentration and small reaction chamber Coating deposit was not achieved on substrate
CLY3.1-30-69	Conducted deposition run with increased hydrogen
	Silver gray coating obtained on small ractor (walls and end)
	This is first time that coating has been obtained from chloride feed
CLY3.1-32-69	Conducted deposition run for three hours with large reaction chamber
	• Substrates experienced small weight gain (3.1 and 2.5 mg)
CLY3.1-33-69	Partially completed four hour deposition run
	Substrates chipping on edges
CLY3.1-34-69	Conducted deposition run with shorter feed nozzle extension
	• Substrates experienced weight gain (12.8 and 11.7 mg). Some substrate chipping on edge on third substrate
	Approximately one-half of chips remained from run

APPENDIX LIII (CONTD)

Run Number	Observations
CLY3.1-35-69	 Conducted deposition run with shorter nozzle extension and higher reaction temperature Substrates experienced weight gain (11-13 mg) No edge etching of substrate
CLY3.1-36-69	 Conducted WSi_x deposition run at 1000°C Substrates - tungsten rod pieces - experienced weight gain. Coating dark in color.
CLY3. 1-37-69	 Conducted deposition run with small reactor Substrates did not coat much Reactor walls coated with silver coating
CLY3.1-38-69	 Conducted deposition run with shorter feed nozzle Reactor walls and end coated with silver deposit Dark deposit obtained on substrates
CLY3.1-39-69	 Conducted deposition run with increased gas flow over chips Coating obtained on reactor walls and substrates on outside, coating dark grey color. On inside, coating silver grey color.
CLY3.1-40-69	 Conducted deposition run at increased reaction temperature Some etching of substrate edges in part of reactor loading other experienced weight gain (19.4 mg) higher than previous run.

APPENDIX LIV

MECHANICAL TESTS — EXTERNAL TEST:
MECHANICAL PROPERTY EVALUATION BY
STANDARD PRESSED STEEL CO. OF COATED REFRACTORY
FASTENERS FROM PRODUCTION DEMONSTRATION BATCHES

APPENDIX LV

MECHANICAL TESTS — EXTERNAL TEST:

MECHANICAL PROPERTY EVALUATION BY

STANDARD PRESSED STEEL CO. OF COATED REFRACTORY

FASTENERS WITH POST-HEAT TREATMENT FROM

PRODUCTION DEMONSTRATION BATCHES

PURPOSE:

To evaluate the mechanical properties of Texas Instruments Cr-Ti-Si coated Cb 752 hexagon head bolts at various temperatures from room to 2600°F.

BACKGROUND:

Texas Instruments Incorporated is currently conducting a program for the Air Force Manufacturing Technology Group on the chemical vapor deposition of protective coatings on refractory alloy fasteners. A portion of this program involved the deposition of a Cr-Ti-Si coating on Cb 752 hex head bolts and nuts purchased from Standard Pressed Steel Co.

The basis for evaluation of mechanical properties was to be a comparison with the results obtained under the SPS Air Force Program "Structural Fasteners For Extreme Elevated Temperatures" on Vitro Cr-Ti-Si coated Cb 752 fasteners.

Purchase order H-03810-4X was issued by Texas Instruments Incorporated to cover the cost of this testing.

PROCEDURE:

Test procedures and fixtures were exactly the same as those utilized under Air Force contract AF33(657)-11684. These are described in the final report of that contract, AFFDL-TR-66-107.

Test Program:

The mechanical tests on Cb 752 columbium alloy, Cr-Ti-Si coated fasteners consisted of the following:

- 1. Ultimate tensile strength at room temperature, 600°F, 2000°F, 2400°F, and 2600°F. Eight tests were made at each temperature, two pieces per lot, for a total of 40 tests.
- 2. Shear strength at room temperature, 600°F, 2000°F, and 2400°F. Eight tests each were performed at the room temperature and 600°F temperature levels. For the 2000°F and 2400°F temperatures, four tests were performed at each of these levels.

PROCEDURE:

Test Program: (continued)

- 3. Relaxation at 2000°F and 2400°F. Three pieces were tested at each temperature.
- 4. Reusability Evaluation of nut removal of parts tensile tested at 2000°F and 2400°F.

RESULTS:

Tables of results for test run are:

TABLE I - Ultimate Tensile Strength

- " II Shear Strength
- " III Relaxation
- " IV Reusability

Cr-Ti-Si COATED 1/4-20 COLUMBIUM (Cb 752) HEX HEAD BOLTS ULTIMATE TENSILE STRENGTH OF TEXAS INSTRUMENTS TABLE I

						;
Batch D	psi (Av.)	48, 100	99,800	36,900	22,700	19, 400
Bat	Pounds	1640 1420	1855 1955	1200 1150	763	595 637
Batch A	psi (Av.)	32, 200	65, 300	45, 400	24, 800	21, 400
Bato	Pounds	1050	2065 2090	1390 1500	760 826	049 069
Batch E	psi (Av.)	48, 700	63,900	44, 600	23,600	20,000
Bat	Pounds	1670 1430	1960	1430	760 746	635 640
h B	psi (Av.)	49, 500	64, 300	42, 500	26, 600	20, 000
Batch B	Founds	1800 1350	2015 2080	1390 1320	835 860	635 638
	न स्टब्स् म्य	\$0	999	2000	2400	2600

(All tensile stresses based on Tensile Stress Area of 0, 03182 square inches)

TABLE II DOUBLE SHEAR STRENGTH OF TEXAS INSTRUMENTS Cr-Ti-Si COATED 1/4-20 COLUMBIUM (Cb 752) HEX HEAD BOLTS

		15	Sole Z'S	621	FA.	7		 ·
Batch D	psi (Av.)		5		40,800		29, 700	19,800
Ba	Pounds		5320		4275		3080	2050
Batch A	psi (Av.)		23, 400		41,800		29, 500	21,400
Bat	Pounds		2540 2310		4375		3 065	2220
Batch E	psi (Av.)		28,900		41,300		30, 100	21,300
Bat	Pounds		3400 2600		4320 4240		3125	2205
Batch B	psi (Av.)		41,900	_	41,200		32, 100	20,500
Bai	Pounds		3250 5450		4275 4275		3335	 2125
(Koom Temp.		80		009	- 1	2000	2400

TABLE III

RELAXATION TEST DATA ON TEXAS INSTRUMENT Cr-Ti-Si COATED 1/4-20 COLUMBIUM (Cb752) HEX HEAD BOLTS PRELOADED TO 15,000 psi AND EXPOSED TO ELEVATED TEMPERATURES AS SHOWN FOR TWO HOURS.

Batch Type	Temperature °F	Length After Soak (Seated)	Length After Soak (Unseated)	Change In Length	Residual Load, psi
A B D E	2000 2000 2000 2000	1.6755 Broke 1.6650 1.6764	1.6752 Loading 1.6648 1.6761	0.0003 0.0002 0.0003	3750 2500 3750
A B D E	2400 2400 2400 2400 2400	Broke 1.6855 1.6638 1.6809	Loading 1.6854 1.6637 1.6808	0.0001 0.0001 0.0001	1250 1250 1250

TABLE IV

TEXAS INSTRUMENT Cr-Ti-Si COATED 1/4-20 COLUMBIUM (Cb 752) BOLTS NUT REMOVAL OF PARTS TENSILE TESTED AT 2000°F AND 2400°F

Batch	Difficulty of 1	Coating		
Type	Starting	Turning	Damage	
	Test Tempe	rature - 2000°F		
A A	Very high breakaway high breakaway	hard (wrench required) easy (finger loose)	slight Nil	
B B	high breakaway Very high breakaway	easy (finger loose) easy (finger loose)	Nil Severe	
D D	high breakaway Very high breakaway	easy (finger loose) hard (wrench required)	slight slight	
E E	high breakaway finger loose	easy (finger loose) easy (finger loose)	Nil Nil	
	Test Tempe	rature - 2400°F		
A A		vement vement		
B B	, ,	hard (wrench required) vement	severe	
D D		vement vement		
E E		vement vement		

Table I

ROOM TEMPERATURE ULTIMATE TENSILE STRENGTH

OF 1/4-20 COLUMBIUM (Cb 752) HEX HEAD BOLTS

(RANDOM PRODUCTION DEMONSTRATION BATCHES WITH

POST-HEAT TREATMENT)

Spec. No.	Pounds	psi	Type of <u>Failure</u>				
Uncoated	Uncoated Bolt						
1	3380	106, 200	Threads				
Cr-Ti-Si	Coated Bolts						
2	2400	75,400	Head				
3	2800	88,000	Threads				
4	<u>2900</u>	91,000	Threads				
Avg.	2700	84,800					

Table II

ROOM TEMPERATURE SHEAR STRENGTH OF
1/4-20 COLUMBIUM (Cb 752) HEX HEAD BOLTS
(RANDOM PRODUCTION DEMONSTRATION BATCHES WITH
POST-HEAT TREATMENT)

Spec. No.	Pounds	psi
Cr-Ti-Si C	oated Bolts	
5	6400	65, 300
6	6 4 50	65,800
7	<u>6460</u>	<u>65, 900</u>
Avg.	6437	65,700

Contrails

Security Classification			
DOCUMENT CONT			
(Security classification of title, body of abstract and indexing a	nnotation must be e		
Texas Instruments Incorporated			curity classification ssified
13500 North Central Expressway		2b. GROUP	
Dallas, Texas 75222			
3. REPORT TITLE			
Chemical Vapor Deposition (CVD) Barrel	Coating for	Refractor	y Fasteners
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Final Technical Report for Period 1 April	1968 throug	gh 1 Octob	er 1969
5. AUTHOR(S) (First name, middle initial, last name)			
Gene F. Wakefield			
Carl L. Yaws			
6. REPORT DATE	78. TOTAL NO. OF	PAGES	76. NO. OF REFS
December 1969	241		3
SA. CONTRACT OF GRANT NO.	SA. ORIGINATOR'S	REPORT NUME	SER(5)
F33615-68-C-1433	04-69-09		
b. PROJECT NO.			
474-8			
с.	9b. OTHER REPOR	T NO(S) (Any of	her numbers that may be assigned
d,	AFML-T	R-69-316	
transmittal to foreign government is subj transmittal to foreign governments of forei approval of the Manufacturing Technology I (MATE), Wright-Patterson AFB, Ohio 454	gn nationals Division, Ai:	mav be n	nade only with prior
11. SUPPLEMENTARY NOTES	Air Forc		ls Laboratory
	Air Forc	e Sys te ms	Command
	1	•	Air Force Base, Ohio

technology in this program for applying CVD coatings to large quantities of small parts (i.e., refractory fasteners for aerospace structures). In Phase I, the practical equipment was designed, constructed, installed and tested in start-up. In these initial runs, trideposition reaction of hydrogen reduction of gas phase silicon, titanium and chromium chlorides was demonstrated as a CVD chemistry base for depositing chromium-titanium-silicon (Cr-Ti-Si) coating on small parts. In Phase II, optimization, production and evaluation studies were conducted with the designed equipment. Coatings improvements including apparent optimum region and key process parameter effects were achieved with statistical runs and analyses (i.e., T- and Ftests at 95% confidence level). Process development was scaled-up to large quantities by uniform coating many small parts: (a) 1/4-in. dia. round rods, 3 per run; (b) 1in, threaded studs, 6-10 per run; (c) 1 1/2-in, hex head bolts, 10 per run; (d) mixed shapes-bolts, studs, rods and flat panels, 20 per run; (e) refractory fasteners-bolts studs and nuts, 30 per run; and (f) production demonstration-refractory fastener bolts and nuts, 30-50 per run. More than twenty demonstration runs at the increased capability (i.e., coating 30-50 substrates per run) were conducted with reproducibility to illustrate that the CVD-barrel coating technology is within potential manufacturing production scope. Important coating properties (i.e., oxidation resistance for substrate protection, Cr-Ti-Si concentrations, mechanical strengths, etc.) were evaluated. For 2400°F oxidation environment, more than eighty and twenty hours of protection was achieved for round rod and refractory fastener small parts from production demonstration batches. Uncoated parts experienced severe failure in less than one-half hour. Cursory literature screening revealed favorable state-of-art comparison based on this program and two independent literature sources. In Phase III, fluoride and chloride route were investigated for tungsten-tungsten silicide (W-

Potential manufacturing-production equipment was developed via CVD-barrel coating

DD FORM .. 1473

was demonstrated with uniform coverage of round rod small parts.

WSi2) coating of tantalum. For the fluoride route, tungsten coating of tantalum T222

UNCLASSIFIED

	Security Classification						
14.	KEY WORDS		K A	LINK B		LINK C	
		ROLE	WT	ROLE	WT	ROLE	WΤ
						İ	
			,				
					•		
						,	
						j ,	
					ĺ		
İ				ļ	i		
					!		
		ļ					
			1		•		
				l			
				ļ	ì		
Ī							
					1		
		į '	l	İ	i		
						!	
					ĺ		
		}					
		-				1	
•							
						1	
		}					
						•	
				ļ			
ł							
				L			

UNCLASSIFIED