A STRONG CRITERION FOR TESTING PROPORTIONALLY DAMPED SYSTEMS

Z. Liang, M. Tong, and G. C. Lee
412 Bonner Hall
State University of New York at Buffalo
Amherst, NY 14260
Tel. (716) 636-2771

Abstract

To check whether a structural system is proportionally damped in dynamic analysis, Caughey advanced criterion to examine if the generalized damping and stiffness matrices of the system commute. This criterion depends on the data of generalized damping which are not directly measurable. This is a sever restriction. In this paper, we present an alternative criterion to determine the proportionality of damping which is rigorous and dynamically flexible. In particular, it can be used in both forward and inverse problems.

INTRODUCTION

Modal analysis is a rapidly-growing field, both in theory and in engineering applications. In recent years, the theoretical basis of modal analysis has progressed extensively from the level of one-degree-offreedom systems to the level of multi-degree-of-freedom systems by many individuals including: Frazer (1946), Foss (1956), Lancaster (1966), Clough (1975), Meirovitch (1980), Vold (1982), Ewins (1984), Juang (1985) and Mitchell (1990), et al. etc. In dealing with an MDOF system, the simplest model is one that can be decoupled into a group of SDOF systems. Such an MDOF system has great advantage over other MDOF systems in that it can be easily treated by using various techniques developed for SDOF systems. For some time, it was not obvious on how to identify the decoupleable system until Caughey and O' Kelly published a necessary and sufficient criterion (1965) that states: A system of the form

$$
I_{n} \ddot{X}+C_{1} \dot{X}+K_{1} X=0
$$

possesses a complete decoupling, if and only if the matrix C_{1} and K_{1} commute, i.e.

$$
C_{1} K_{1}=K_{1} C_{1} .
$$

Based on this criterion, the notion of proportional/non-proportional damping was introduced. A system is said to be proportionally damped if and only if the above expression holds.

Caughey and O'Kelly's criterion is a widely accepted approach in modal analysis. However, the criterion depends on the data of generalized damping which are not directly measurable. Such a limitation restricted the further applications of the criterion in many areas of modal analysis such as system identifications, forward and inverse problems. In this paper, we present an alternative criterion which in many aspects is better than the Caughey criterion in a dynamic context.

FUNDAMENTAL VIBRATION SYSTEMS AND THEIR MODES

Consider an n dimensional free vibration system described by the following matrix equation.

$$
\begin{equation*}
M \ddot{X}+C \dot{X}+K X=0 \tag{1}
\end{equation*}
$$

where M, C, K are the mass, damping and stiffness matrices of size $n \times n$ such that M and K are positive definite, and C may be positive semidefinite. X, \dot{X} and \ddot{X} are the displacement, velocity and acceleration vectors. In general, we also require $\left(C^{2}-4 K\right)$ to be negative definite, (see Inman, 1989). Since M is non-singular, it is easy to see that Equation (1) is equivalent to

$$
\begin{equation*}
I_{n} \ddot{X}_{1}+M^{-1 / 2} C M^{-1 / 2} \dot{X}_{1}+M^{-1 / 2} K M^{-1 / 2} X_{1}=0 \tag{2}
\end{equation*}
$$

where $M^{-1 / 2}$ is the square root of the inverse of M, and I_{n} is the identity matrix of size n; and $X_{1}=M^{1 / 2} X$. Let C_{1} and K_{1} denote $M^{-1 / 2} C^{-1 / 2}$ and $M^{-1 / 2} \mathrm{~K} \mathrm{M}^{-1 / 2}$ respectively. Then we can write

$$
\begin{equation*}
I_{n} \ddot{x}_{1}+C_{1} \dot{x}_{1}+K_{1} X_{1}=0 \tag{3}
\end{equation*}
$$

Note that matrices C_{1} and K_{1} have the same definiteness as those of C and K respectively. And, both C_{1} and K_{1} are symmetric.

$$
\begin{align*}
\text { Let } X_{1}= & X_{0} e^{\lambda t}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] e^{\lambda t} \text { and substitute it back in (3). We have } \\
& \left(I_{n} \lambda^{2}+C_{1} \lambda+K_{1}\right) X_{0}=0 \tag{4}
\end{align*}
$$

In the case of proportional damping, it is known that \mathbf{C}_{1} and \mathbf{K}_{1} commute (i.e. $C_{1} K_{1}=K_{1} C_{1}$). So there exists an orthogonal matrix Q such that $Q^{T} Q=I_{n}$, and it diagonalizes C_{1} and K_{1} simultaneously.

It follows that Equation (4) can be further modified to have the form

$$
\begin{equation*}
Q\left(I_{n} \lambda^{2}+\Lambda_{c} \lambda+\Lambda_{k}\right) Q^{T} X_{0}=0 . \tag{5}
\end{equation*}
$$

Let P denote $Q^{T} X_{0}$. Then multiplying Q^{T} to Equation (5) from the left, we get

$$
\begin{equation*}
\left(I_{n} \lambda^{2}+\Lambda_{c} \lambda+\Lambda_{k}\right) P=0 \tag{6}
\end{equation*}
$$

We define this as the characteristic equation of a $\Lambda_{c}-\Lambda_{k}$ system. Since the determinate $\left|I_{n} \lambda^{2}+\Lambda_{c} \lambda+\Lambda_{k}\right|$ equals

$$
\left|\begin{array}{rlll}
\lambda^{2}+c_{11} \lambda+k_{11} & & \\
& \cdot & & \\
& & & \\
& & \lambda^{2}+c_{n n} \lambda+k_{n n}
\end{array}\right|=\prod_{i=1}^{n}\left(\lambda^{2}+c_{11} \lambda+k_{11}\right)
$$

with ($C-{ }^{2} 4 K$) negative definite, we can solve $\left|I_{n} \lambda+{ }^{2} \Lambda_{c} \lambda+\Lambda_{k}\right|=0$ for n pairs of conjugate roots $\lambda_{1}, \bar{\lambda}_{1} ; \lambda_{2}, \bar{\lambda}_{2} ; \ldots \lambda_{n}, \bar{\lambda}_{n}$; where λ_{1} is defined as the $i^{\text {th }}$ system eigenvalue (eigenfrequency). They can be further expressed as

$$
\lambda_{1}=-\xi_{1} \omega_{1}+j \sqrt{1-\xi_{1}^{2}} \omega_{1}
$$

where ξ_{1} and ω_{i} are the $i^{\text {th }}$ damping ratio and undamped natural frequency of the system. In the following, we may omit the subscript 1 of λ_{1}, P_{1} and ω_{i}, etc., for simplicity. Note that in the normal mode case, ω_{1}^{2} are also the eigenvalues of the matrix K_{1}.

Corresponding to each λ_{1} there is a system eigenvector e_{1} (the unit vector at $i^{\text {th }}$ direction in an n dimensional space) which satisfies

$$
\begin{aligned}
& \left(I_{n} \lambda_{i}^{2}+\Lambda_{c} \lambda_{1}+\Lambda_{k}\right) e_{i}=0 \\
& \left(I_{n} \bar{\lambda}_{i}^{2}+\Lambda_{c} \bar{\lambda}_{i}+\Lambda_{k}\right) e_{i}=0 .
\end{aligned}
$$

Write

$$
\Lambda=\left[\begin{array}{lllll}
\lambda_{1} & & & & \\
& \lambda_{2} & & & \\
& & \cdot & \cdot & \\
& & \cdot & \cdot & \\
& & & \lambda_{n}
\end{array}\right] \quad \text { and } \quad P_{I}=\left[\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
& & \cdot & & \\
& & & \cdot & \\
& & & & 1
\end{array}\right]
$$

We call Λ and P_{I} the eigenvalue and mode shape matrices respectively. It is now clear that the system has been completely self-decoupled. (A more rigorous definition of self-decoupled system will be introduced later.)

In the case of non-proportional damping, we know that $C_{1} K_{1} \neq K_{1} C_{1}$. So the above analysis is no longer valid. However, there still exists an orthogonal matrix Q that diagonalizes K_{1}. Applying the matrix Q to Equation (4), we have

$$
\begin{equation*}
\left(I_{n} \lambda^{2}+Q^{T} C_{1} Q \lambda+\Lambda_{k}\right) P=0 \tag{7}
\end{equation*}
$$

Next denote a symmetric matrix by

$$
D=Q^{T} C_{1} Q=\left[\begin{array}{llll}
d_{11} & d_{12} & \cdots & d_{1 n} \\
d_{12} & d_{22} & \cdots & d_{2 n} \\
& & \cdots & \\
d_{1 n} & d_{2 n} & \cdots & d_{n n}
\end{array}\right]
$$

Note that, in equation (7), the diagonal matrix Λ_{k} has the same form as equation (5). Therefore, we have

$$
\begin{equation*}
\left(I_{n} \lambda^{2}+D \lambda+\Lambda_{k}\right) P=0 \tag{8}
\end{equation*}
$$

This equation is called the characteristic equation of the $D-\Lambda_{k}$ system. The $D-\Lambda_{k}$ system has similar eigenproblem as system (1), that is, they both have the same eigenvalues and their eigenvectors are related by the formula

$$
P=Q^{T} X_{0}=Q^{T} M^{-1 / 2} X
$$

where P, X_{0} and X denote the eigenvector matrices of Systems (8), (3) and (1) respectively.

Because of the above mentioned property of the $D-\Lambda_{k}$ system simplifies the eigenproblem, we refer this system as a fundamental vibration system (FVS) or canonical vibration system. Fig 1 shows a 3 degree-of-freedom FVS.

Fig. 1 A 3-DOF FVS

Comparing Fig. 1 with Equation (8), we see that

$$
d_{11}=d_{11}^{\prime}+d_{12}^{\prime}+d_{13}^{\prime}, d_{12}=-d_{12}^{\prime}, d_{13}=-d_{13}^{\prime} \text {, etc. }
$$

It is noted that the previously mentioned proportional damping model is a
special case of the FVS. Following the procedure descried above in dealing with the $\Lambda_{c}-\Lambda_{k}$ system, we can similarly obtain an eigenvalue matrix and a mode shape matrix. However, in order to understand the properties of these two matrices, some new concepts will first be introduced.

Definition: A non-zero system eigenvector P is said to be true-complex or strongly-complex for the corresponding eigenvalue λ if

$$
\left(I_{n} \lambda^{2}+D \lambda+\Lambda_{k}\right) P=0
$$

holds and P can not be expressed as a complex linear combination of the real-valued eigenvectors of Λ_{k}. A system eigenvector P is weakly-complex if it is not true-complex.

It is clear that a proportionally damped system has only weakly-complex system eigenvectors. Hence the system has a real-valued mode shape matrix.

Lemma 1: Given an FVS. If P is a system eigenvector such that $\left(I_{n} \lambda^{2}+D \lambda+\Lambda_{k}\right) P=0$
for some λ, and P is weakly-complex, then the corresponding eigenvalue λ satisfies $\lambda \bar{\lambda}=k_{11}$ for some $i=1, \ldots, n$, (where k_{11} is the $i^{\text {th }}$ diagonal element of Λ_{k}.

Corollary 1: Suppose λ is a system eigenvalue of a given FVS such that $\lambda \bar{\lambda} \neq k_{11}$ for all $1=1,2, \ldots, n$. Then its corresponding eigenvector P is strongly-complex.

Lemma 2: Given an FVS, if P is a system eigenvector, then the following conditions are equivalent.
(1) P is an eigenvector of the damping matrix D.
(2) P is an eigenvector of the stiffness matrix Λ_{k}.
(3) P is weakly-complex.

Lemma 3: Given an FVS. If there is a vector P such that P is an eigenvector of both D and Λ_{k}, then it is also a system eigenvector. Moreover, P is weakly-complex.

A CRITERION FOR DETERMINING PROPORTIONALLY DAMPED SYSTEMS

In this section we present a theorem for determining a proportionally damped systems. Before starting with the theorem itself we need to consider a lemma of Rayleigh quotient.

Lemma 4: For any Hermitian matrix $A \in \mathbb{C}^{n \times n}$, denoting its first (smallest) and last (largest) eigenvalues by a_{1} and a_{n} respectively. Then the Rayleigh quotient equals a_{1} or a_{n}, i.e.
or

$$
\begin{equation*}
\frac{x^{H} A X}{x^{H} x}=a_{1} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\frac{x^{H} A X}{x^{H} x}=a_{n} \tag{10}
\end{equation*}
$$

if and only if its corresponding non-zero vector $X \in \mathbb{C}^{n}$ is the first or last eigenvector of A. Here the superscript f denotes the Hermitian transpose, $\mathbb{C}^{n \times n}$ and \mathbb{C}^{n} stand for the set of all $n \times n$ matrices and vectors, real or complex, respectively, (see Ortega, 1987).

Definition: For an FVS, if the damping matrix D is of the following form, then we say that the system is self-decoupled into two subsystems.

$$
D=\left[\begin{array}{ccc:ccc}
d_{11} & \cdots & d_{1 t} & & & \\
d_{1 t} & \cdots & & & & \\
\hline & & d_{t t} & & \cdots & d_{t+1, n} \\
& 0 & & d_{t+1} & & \\
& & & d_{t+1, n} & \cdots & d_{n n}
\end{array}\right] .
$$

An FVS with diagonal D is self-decoupled into n subsystems. In this case, the system is said to be completely self-decoupled.

Definition: Two FVS $D_{1}-\Lambda_{k 1}$ and $D_{2}-\Lambda_{k 2}$ are said to be equivalent if there exists an orthogonal matrix T such that

$$
\begin{aligned}
& T^{T} D_{1} T=D_{2} \\
& T^{T} \Lambda_{k 1} T=\Lambda_{k 2}
\end{aligned}
$$

ThEOREM 1: For a given FVS, all the system eigenvectors are weaklycomplex, if and only if, there exists an one-one correspondence between the system elgenvalues λ_{i} and the eigenvalues k_{11} of Λ_{k} such that

$$
\lambda_{1} \bar{\lambda}_{1}=k_{1 i} \quad i=1, \ldots, n .
$$

Proof: Sufficiency.
First, we discuss the case where all the eigenvalues of Λ_{k} are distinct. Consider the smallest k_{11}, say k_{11}. Let P_{1} be a system eigenvector whose eigenvalue satisfies $\lambda_{1} \bar{\lambda}_{1}=k_{11}$. By the characteristic equation
we have

$$
P_{1}^{H}\left(I_{n} \lambda^{2}+D \lambda+\Lambda_{k}\right) P_{1}=0
$$

$$
\begin{equation*}
\lambda_{1}^{2}+\frac{P_{1}^{H} D P_{1}}{P_{1}^{H} P_{1}} \lambda_{1}+\frac{P_{1}^{H} \Lambda_{k} P_{1}}{P_{1}^{H} P_{1}}=0 . \tag{11}
\end{equation*}
$$

Since the Rayleigh quotients $\frac{P_{1}^{H} D P_{1}}{P_{1}^{H} P_{1}}$ and $\frac{P_{1}^{H} \Lambda_{k} P_{1}}{P_{1}^{H} P_{1}}$ are real, it
follows that both λ_{1} and its conjugate $\bar{\lambda}_{1}$ are roots of Equation (11). We know that a real quadratic equation has a unique irreducible expression in the real field. Thus $\frac{P_{1}^{H} \Lambda_{k} P_{1}}{P_{1}^{H} P_{1}}=\lambda_{1} \bar{\lambda}_{1}=k_{11}$. By Lemma 4, P_{1} must be the first eigenvector of Λ_{k}. Namely, $P_{1}=p e_{1}$, where p is a scalar. Then from

$$
\left(I_{n} \lambda_{1}^{2}+D \lambda_{1}+\Lambda_{k}\right) p e_{1}=0
$$

we have

$$
\begin{aligned}
\lambda_{1}^{2} p+d_{11} p \lambda_{1}+k_{1} p & =0 \\
0+d_{12} p \lambda_{1}+0 & =0
\end{aligned}
$$

.

$$
0+d_{1 n} p \lambda_{1}+0=0
$$

Equations (12) imply that

$$
d_{1 m}=0, \quad m=2, \ldots, n
$$

Note that D is symmetric. So it must be of the following form

$$
D=\left[\begin{array}{llll}
d_{11} & 0 & \cdots & 0 \\
0 & d_{22} & \cdots & d_{2 n} \\
0 & d_{2 n} & \cdots & d_{n n}
\end{array}\right]
$$

Therefore, the $D-\Lambda_{k}$ system is self-decoupled into two independent subsystems each forms a $D-\Lambda_{k}$ model with lower dimensions.
Now apply the same procedure to the subsystem with $n-1$ dimension we can show that the damping matrix D can be further divided. Hence it must be in the following form

$$
D=\left[\begin{array}{cc:ccc}
d_{11} & 0 & & \\
0 & d_{22} & & 0 & \\
\hdashline & 0 & d_{33} & d_{3 n} \\
& & d_{3 n} & \cdots & d_{n n}
\end{array}\right]
$$

Repeat the same procedure, D will finally be shown to be a diagonal matrix. Thus it is proportional damping, and the system eigenvectors are weakly-complex.

Secondly, we consider the case where Λ_{k} has a repeated eigenvalue $k_{r r}$ with multiplicity r. Without loss of generality, assume $k_{r r}$ is the smallest among all k_{11}, and Λ_{k} is in the form

$$
\Lambda=\left[\begin{array}{llllll}
k_{r r} & & & & \\
& \ddots & & & & \\
& & k_{r r} & & & \\
& & & k_{r 1} & & \\
& & & & \ddots & \\
& & & & & k_{n n}
\end{array}\right]
$$

Choose an orthogonal matrix T such that

$$
T=\left[\begin{array}{cc:c}
t_{11} & \cdots & t_{1 r}
\end{array}\right]
$$

$$
\mathbf{T}^{T} \mathbf{D} \mathbf{T}=\hat{D}=\left[\begin{array}{llllll}
\mathbf{T}^{T} \Lambda_{k} T & =\Lambda_{k}, & \text { and } \\
\hat{d}_{11} & & & \\
& & \hat{d}_{r r} & \hat{d}_{1, r+1} & \cdots & \hat{d}_{1 n} \\
& & \cdots & \hat{d}_{r, r+1} & \cdots & \hat{d}_{r n} \\
\hat{d}_{1, r+1} & \cdots & \hat{d}_{r, r+1} & \hat{d}_{r+1, r+1} & \cdots & \hat{d}_{r+1, n} \\
\hat{d}_{1 n} & \cdots & \hat{d}_{r n} & \hat{d}_{r+1, n} & \cdots & \hat{d}_{n n}
\end{array}\right] .
$$

Now we apply the same procedure described in the previous case to this induced $\hat{D}-\Lambda_{k}$ system until Equation (11) is obtained. According to the assumption there are r system eigenvalues, say $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$, such that $\lambda_{i} \bar{\lambda}_{i}=k_{r r}, i=1,2, \ldots, r$. By Lemma 4 , their corresponding eigenvectors P_{i} are eigenvectors of Λ_{k} with eigenvalue $k_{r r}$. Hence

$$
P_{1}=\beta_{1} e_{1}+\beta_{2} e_{2}+\ldots+\beta_{r} e_{r}, \quad i=1,2, \ldots, r
$$

If in $\hat{D}, \hat{d}_{11}, \ldots, \hat{d}_{r r}$ are distinct. Then we claim P_{i} is of the form

$$
P_{i}=\beta_{i j} e_{j}, \quad 1 \leq j \leq r
$$

Otherwise, if P_{i} is the linear combination of more than one e_{j}, then we find there are at least two eigen-equations, say

$$
\begin{aligned}
& \lambda_{1}^{2}+d_{11} \lambda_{1}+k_{r r}=0 \\
& \lambda_{1}^{2}+d_{22} \lambda_{i}+k_{r r}=0
\end{aligned}
$$

Since $d_{11} \neq d_{22}$, this will contradict the uniqueness of a real coefficient irreducible quadratic expression.

Under this circumstance, we can use the same argument given in (12) and thus see that

$$
\left[\begin{array}{lll}
\hat{d}_{1, r+1} & \cdots & \hat{d}_{1 n} \\
\hat{d}_{r, r+1} & \cdots & \hat{d}_{r n}
\end{array}\right]=\left[\begin{array}{lll}
\hat{d}_{1, r+1} & \ldots & \hat{d}_{1 n} \\
\hat{d}_{r, r+1} & \cdots & \hat{d}_{r n}
\end{array}\right]=0
$$

Therefore, we have

$$
\hat{\mathbf{D}}=\left[\begin{array}{cc:cc}
\hat{\mathrm{d}}_{11} \cdots & & & \\
& & \hat{d}_{r r} & 0 \\
\hline & & \hat{d}_{r+1, r+1} & \cdots \\
\hat{d}_{r+1, n} \\
& & \hat{d}_{r+1, n} & \cdots \\
\hline
\end{array}\right]
$$

Since $\hat{\mathbf{D}}=\mathbf{T}^{\mathbf{T}} \mathbf{D} \mathbf{T}$, by pre- and post-multiplying \mathbf{T} and \mathbf{T}^{T} to $\hat{\mathbf{D}}$, we have

$$
\mathbf{D}=\mathbf{T} \hat{D} \mathbf{T}^{\mathbf{T}}=\left[\begin{array}{c:ccc}
d_{11} & \cdots & d_{1 r} & \\
d_{1 r} & \cdots & d_{r r} & 0 \\
\\
\hline & & d_{r+1, r+1} & \cdots \\
d_{r+1, n} \\
& & d_{r+1, n} & \cdots
\end{array} d_{n n} .\right.
$$

It is clear that D is self-decoupled. Hence we can continue work on the subsystems and eventually show that $\mathrm{D}-\Lambda_{\mathrm{k}}$ is equivalent to a $\mathrm{D}_{1}-\Lambda_{\mathrm{k} 1}$ system where D_{1} is diagonal.

As for the case where there are some repetitions among $d_{11}, d_{22}, \ldots, d_{r r}$, say $d=d_{11}=d_{22}=\ldots=d_{s s}$, we claim that the system has a repeated eigenvalue λ with multiplicity s. Because for each $P_{i}, 1 \leq i \leq s$, the eigen-equation

$$
\lambda_{1}^{2}+\frac{P_{1}^{H} \hat{D} P_{1}}{P_{1}^{H} P_{1}} \lambda_{1}+\frac{P_{1}^{H} \Lambda_{k} P_{1}}{P_{i}^{H} P_{i}}=0
$$

has the same coefficients

$$
\frac{P_{i}^{H} \hat{D} P_{i}}{P_{i}^{H} P_{i}}=d \quad \text { and } \quad \frac{P_{i}^{H} \Lambda_{k} P_{i}}{P_{i}^{H} P_{i}}=k_{r r} \text {. }
$$

Therefore, $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{s}=\lambda$ and the coefficient matrix $\left(\lambda^{2}+\hat{D} \lambda+\Lambda_{k}\right)$ has rank n-s. It follows that we can simply choose $e_{1}, e_{2}, \ldots, e_{s}$ as our $P_{1}, P_{2}, \ldots, P_{s}$. Then following the same argument we can see that D is self-decoupled and eventually reduce $D-\Lambda_{k}$ system to an equivalent $D_{1}-\Lambda_{k 1}$ system with D_{1} diagonal.

We now know that under the given condition a $D-\Lambda_{k}$ system must be equivalent to a $D_{1}-\Lambda_{k 1}$ system where the damping matrix D_{1} is diagonal.

Consequently, $\mathrm{D} \Lambda_{k}=\Lambda_{k} \mathrm{D}$ and the system is proportionally damped. Therefore, all the system eigenvectors are weakly-complex. Thus the sufficiency of the Theorem is proven.

Necessity.

The necessary condition of theorem 1 is implied by Lemma 1.

Corollary 2: Given a System (1), either it has no strongly-complex eigenvector in which case the system is proportionally damped or there are at least two strongly-complex eigenvectors in which case it is non-proportionally damped.

EXTENSION OF THE CRITERION IN DISTRIBUTED MASS SYSTEMS

For linearly distributed mass systems, a similar theorem holds just as for the discrete lumped mass systems. Let U be a variable defined in a bounded domain D and satisfy the equation:

$$
\begin{equation*}
U_{t t}+L_{1} U_{t}+L_{2} U=0 \tag{13}
\end{equation*}
$$

with homogeneous linear boundary conditions specified on the bounding surface Γ. L_{1} and L_{2} are compact self-adjoint spatial operators. Suppose that the boundary conditions for a higher-order operator are derivable from a compatible set of boundary conditions associated with a lower-order operator. We begin our discussion by considering the properties of eigenfunctions.

Definition: An eigenfunction of System (13) is a non-zero function ϕ associated with a scalar λ such that the function is differentiable by both L_{1} and L_{2} and satisfies

$$
\begin{equation*}
\left(\lambda^{2}+\lambda L_{1}+L_{2}\right) \phi=0 \tag{14}
\end{equation*}
$$

and the boundary conditions attached to (13). The scalar λ is called an eigenvalue of System (13).

Definition: An eigenfunction ϕ associated with eigen value λ is said to be true-complex or strongly-complex if it can not be expressed as a linear combination of the real-valued eigenfunctions of λ. If ϕ is not stronglycomplex, then it is called pseudo-complex or weakly-complex.

Lemma 5: For a given System (13), if Φ is an eigenfunction, then the following conditions are equivalent.
(1) Φ is an eigenfunction of the viscous damping operator L_{i}.
(2) Φ is an eigenfunction of the stiffness operator L_{2}.
(3) Φ is weakly-complex.

Proof: (1) is equivalent to (2).
Suppose

$$
\begin{equation*}
\mathrm{L}_{1} \phi=\alpha \phi \tag{15}
\end{equation*}
$$

Substituting Equation (15) into Equation (14), we get

$$
\lambda^{2} \phi+\lambda(\alpha \phi)+\mathrm{L}_{2} \phi=0
$$

So
$L_{2} \phi=-\left(\lambda^{2}+\lambda \alpha\right) \phi$.
Since $-\left(\lambda^{2}+\lambda \alpha\right)$ is a scalar, ϕ is an eigenfunction of L_{2}.
Now, suppose

$$
\begin{equation*}
\mathrm{L}_{2} \phi=\beta \phi . \tag{16}
\end{equation*}
$$

we can similarly prove (1) if (2) holds.
(1) or (2) is equivalent to (3).

Suppose ϕ is complex valued, i.e. $\phi=\psi+j \eta$, where ψ and η are realvalued functions. Then $L_{1} \phi=L_{1} \psi+j L_{1} \eta$. It is easy to see that $L_{1} \psi$ is real and $J_{1} \eta$ is imaginary.

On the other hand, $L_{1} \phi=\alpha \phi=\alpha \psi+j \alpha \eta$. Since L_{1} is self-adjoint, all of its eigenvalues must be real. Therefore, $\alpha \psi$ is real and j $\alpha \eta$ is imaginary. Comparing the above two equations, we conclude

$$
\mathrm{L}_{1} \psi=\alpha \psi, \quad \mathrm{L}_{1} \quad \eta=\alpha \eta
$$

That is, both ψ and η are real-valued eigenfunctions of L_{1}. Since ϕ is a linear combination of ψ and η, ϕ is weakly-complex.

Lemma 6: Given a System (13), if there is a function Φ such that Φ is an eigenfunction of both L_{1} and L_{2}, then it is also a system eigenfunction. Moreover, Φ is weakly-complex.

Proof: Substituting Equations (15) and (16) into (14) and denoting the left hand side by

$$
a=\lambda^{2} \phi+\lambda L_{1} \phi+L_{2} \phi,
$$

we have

$$
a=\left(\lambda^{2}+\alpha \lambda+\beta\right) \phi .
$$

Choosing a λ such that $\left(\lambda^{2}+\alpha \lambda+\beta\right)=0$, then we have the desired
result.

Lemm 7: For any compact and self-adjoint operator L, let its smallest (greatest) eigenvalue be denoted by $\lambda_{1}\left(\lambda_{n}\right)$. If the Rayleigh quotient equals λ_{1}, i.e.

$$
\begin{equation*}
\frac{\langle\Psi, \mathrm{L} \Psi\rangle}{\langle\Psi, \Psi\rangle}=\lambda_{1}\left(\lambda_{\mathrm{n}}\right), \tag{17}
\end{equation*}
$$

where < (.) , (.) > denotes an inner product, then the non-zero function Ψ is an eigenfunction of L associated with $\lambda_{1}\left(\lambda_{n}\right)$, and vice versa.

Proof:
Since operator L is compact and self-adjoint, there is a complete set of eigenfunctions for L, i.e. for any function f in a Hilbert space,

$$
f=\sum_{1=1}^{\infty}\left\langle f, \phi_{1}\right\rangle \phi_{1}
$$

and

$$
\left.L f=\sum_{1=1}^{\infty} L<f, \phi_{1}\right\rangle \phi_{1}=\sum_{i=1}^{\infty}\left\langle f, \phi_{1}\right\rangle \lambda_{1} \phi_{1}
$$

where λ_{1} is associated eigenvalues. Suppose λ_{1} is the smallest eigenvalue. Consider $\langle\Psi, L \Psi\rangle=\lambda_{1}\langle\Psi, \Psi\rangle$. We also have

$$
\Psi=\sum_{i=1}^{\infty}\left\langle\Psi, \phi_{i}\right\rangle \phi_{1}
$$

and

$$
L \Psi=\sum_{1=1}^{\infty}\left\langle\Psi, \phi_{1}\right\rangle \lambda_{1} \phi_{1}
$$

Therefore

$$
\langle\Psi, L \Psi\rangle=\sum_{i=1}^{\infty}\left\langle\Psi, \phi_{1}\right\rangle^{*}\left\langle\Psi, \phi_{1}\right\rangle \lambda_{1}=\lambda_{1} \sum_{i=1}^{\infty}\left\langle\Psi, \phi_{i}\right\rangle^{*}\left\langle\Psi, \phi_{1}\right\rangle
$$

Or

$$
\begin{equation*}
\sum_{1=1}^{\infty}\left\langle\Psi, \phi_{1}\right\rangle^{*}\left\langle\Psi, \phi_{1}\right\rangle\left(\lambda_{1}-\lambda_{1}\right)=0 \tag{18}
\end{equation*}
$$

where * denotes the complex conjugate of functions.
Since λ_{1} is the smallest eigenvalue, $\left(\lambda_{1}-\lambda_{1}\right) \neq 0$ when $i \neq 1$. This fact forces $\left\langle\Psi, \phi_{1}\right\rangle=0$, for all $1 \neq 1$ and $\left\langle\Psi, \phi_{1}\right\rangle \neq 0$ due to non-zero Ψ. Here subscript 1 denotes the eigenfunction being associated to λ_{1}. we therefore conclude $\Psi=\left\langle\Psi, \phi_{1}>\phi_{1}\right.$. This proves that Ψ is an eigenfunction of L associated with the smallest eigenvalue λ_{1}. In a similar fashion, we can show the case for λ_{n}, the greatest eigenvalue.

Theorem 2: For a given System (13), all the system eigenfunctions are weakly-complex, if and only if, for any system eigenvalues λ_{1}, we can find an eigenvalues β_{1} of operator L_{2} such that

$$
\begin{equation*}
\lambda_{1} \lambda_{1}^{*}=\beta_{1} \tag{19}
\end{equation*}
$$

Proof. Necessity.
Consider an eigenfunction ϕ_{1} associated with eigenvalue λ_{i}. Suppose it is weakly-complex. From

$$
\lambda_{1}^{2} \phi_{1}+\lambda_{1} L_{1} \phi_{1}+L_{2} \phi_{1}=0
$$

and using the Equations (15) and (16) with the subscript i, we have

$$
\left(\lambda_{1}^{2}+\lambda_{1} \alpha_{1}+\beta_{1}\right) \phi_{1}=0 .
$$

Since $\phi_{1} \neq 0$, so

$$
\left(\lambda_{1}^{2}+\lambda_{1} \alpha+\beta\right)=0
$$

Note that both α_{1} and β_{1} are real, so Equation (19) holds.

Sufficiency.

We only prove the case that all eigenvalues are distinct. For the case with repeated eigenvalues, the proof is similar but more complicated.
Consider the smallest eigenvalue β_{1} of L_{2}.

$$
\lambda_{1} \lambda_{1}^{*}=\beta_{1}
$$

with the corresponding eigenfunction ϕ_{1} and its associated system eigenvalue λ_{1}, that

$$
\lambda_{1}^{2} \phi_{1}+\lambda_{1} L_{1} \phi_{1}+L_{2} \phi_{1}=0
$$

Taking the inner product of the above equation with ϕ_{1}, we get

$$
\left\langle\phi_{1}, \lambda_{1}^{2} \phi_{1}\right\rangle+\left\langle\phi_{1}, \lambda_{1} L_{1} \phi_{1}\right\rangle+\left\langle\phi_{1}, L_{2} \phi_{1}\right\rangle=0 .
$$

Then

$$
\lambda_{1}^{2}+\lambda_{1}\left\{\frac{\left\langle\phi_{1}, L_{1} \phi_{1}\right\rangle}{\left\langle\phi_{1}, \phi_{1}\right\rangle}\right\}+\left\{\frac{\left\langle\phi_{1}, L_{2} \phi_{1}\right\rangle}{\left\langle\phi_{1}, \phi_{1}\right\rangle}\right\}=0
$$

Note that the terms in above $\{$.$\} are real scalars since \{.\}^{*}=\{$. for both L_{1} and L_{2} are self-adjoint. Therefore,

$$
\left\{\frac{\left\langle\phi_{1}, L_{2} \phi_{1}\right\rangle}{\left\langle\phi_{1}, \phi_{1}\right\rangle}\right\}=\lambda_{1} \lambda_{1}^{*}=\beta_{1} .
$$

β_{1} is the smallest eigenvalue of L_{2}. Thus ϕ_{1} is an eigenfunction of L_{2}. From Lemma 5, we know that ϕ_{1} is weakly-complex. Now we show that ϕ_{1} is an eigenfunction of L_{1}. Since L_{1} is compact, it has a complete set of orthogonal base $\operatorname{Span}_{1=1}^{\infty}\left\{\psi_{i}\right\}$. So ϕ_{1} can be represented in $\operatorname{Span}{ }_{1=1}^{\infty}\left\{\psi_{1}\right\}$. Also L_{1} is closed on $\operatorname{Span}_{1=2}^{\infty}\left\{\psi_{1}\right\}$ and L_{2} is closed on $\operatorname{Span}_{i=2}^{\infty}\left\{\psi_{1}\right\}$. It follows that for any scalar $\lambda, S(\lambda)=\left(\lambda+\lambda L_{1}+L_{2}\right)$ is a closed operator on $\operatorname{Span}_{1=\{ }^{\infty}\left\{\psi_{1}\right\}$ and $\operatorname{Span}\left\{\phi_{1}\right\}$. Consider the second smallest

$$
\lambda_{2} \lambda_{2}^{*}=\beta_{2}
$$

Let ϕ_{2} be the eigenfunction of $S\left(\lambda_{2}\right)$, i.e. $S\left(\lambda_{2}\right) \phi_{2}=0$. Then ϕ_{2} can be express ϕ_{2} as

$$
\phi_{2}=a_{1} \phi_{1}+a_{2} \Psi
$$

where $\left.\Psi \in \operatorname{Span}_{1=\frac{1}{2}}^{\infty} \psi_{1}\right\}$. Let $S\left(\lambda_{2}\right)$ acts on ϕ_{2}.

$$
S\left(\lambda_{2}\right) \phi_{2}=S\left(\lambda_{2}\right)\left(a_{1} \phi_{1}+a_{2} \Psi\right)=a_{1} S\left(\lambda_{2}\right) \phi_{1}+a_{2} S\left(\lambda_{2}\right) \Psi=0
$$

Since ϕ_{1} is orthogonal to Ψ, we have $a_{1} S\left(\lambda_{2}\right) \phi_{1}=0$ and $a_{2} S\left(\lambda_{2}\right) \Psi=0$. But

$$
S\left(\lambda_{2}\right) \phi_{1} \neq 0
$$

because ϕ_{1} is not an elgenfunction associated with λ_{2}. Therefore we have $a_{1}=0$ and

$$
\begin{equation*}
\phi_{2}=a_{2} \Psi . \tag{20}
\end{equation*}
$$

From Equation (20), we know that $\phi_{2} \in \operatorname{Span}_{1=2}^{\infty}\left\{\psi_{i}\right\}$, so we can repeat the same procedure for the case

$$
S\left(\lambda_{2}\right) \phi_{2}=0
$$

and show that ϕ_{2} is weakly-complex as was shown for ϕ_{1}. This eventually gives the proof that all ϕ_{1} are weakly-complex.

ACKNOKLEDGEMENT

Funding for the research reported in this paper has been provided jointly by the State University of New York at Buffalo and the National Science Foundation through the National Center for Earthquake Engineering Research under master contract number ECE86-07591.

REFERENCES

Bellman, R. "Introduction to Matrix Analysis" 2nd ed. New York McGraw-Hill 1970.

Caughey, T.K. and O'Kelly, M.M.J. "Classical Normal Mode in Damped Linear Dynamic Systems" J. of Appl. Mech. ASME Vol 32, pp. 583-588, 1965. Clough, R. W. and Penzien, "Dynamics of Structures," McGraw-Hill, New York, 1975.
Ewins, D.J "Modal Testing, Theory and Practice" Research Studies Press LTD. England (1986).

Foss, K. A. "Co-ordinates Which Uncouple the Equations of Motion of Damped Linear Systems," Technical Report 25-30, MIT, March, 1956.
Frazer, R. A., Duncan, W. J. and Collar, A. R. "Elementary Matrices," Cambridge Univ. Press, London, England, 1946.
Gohberg, L. et al "Matrix Polynomials " (1982) Academic Press. Inman, D. "Vibration with Control, Measurement and Stability", Prentice-Hall, Englewood Cliffs, 1989. Juang, J-N.; Pappa, R.S. " An Eigensystem Realization Algorithm (ERA) for Modal Parameter Identification and Model Reduction" presented at NASA/JPL workshop on identification and control of flexible space structures, J. of Guidance, Control and Dynamics, Vol. 8, No. 5, Sept-Oct. 1985, pp.820-627.
Kirshenboim, J. "Real Vs Complex Normal Mode Shapes" Proc of IMAC-5, London, pp. 1594-1599.
Lancaster, P. "Lambda-Matrices and Vibrating Systems" (1966) Pergamon Press.
Li, K. and Xu, M. "From Damping Type Identification to Mode parameters Identification" Proc. of IMAC-6, 1988, pp. 1265-1270.
Liang, 2. and Lee, G. C. "On Complex Damping of MDOF Systems" Proc. of IMAC-8, 1990, pp. 1048-1055.
Liang, 2. Lee, G. C. and Tong, M. "On a Theory of Complex Damping", Proc. of Damping '91, Feb. 13-15 1991, San Diego, CA., Sponsored by Wright Laboratory, Flight Dynamics Directorate, Wright-Patterson Air Force Base Liang, 2. Lee, G. C. and Tong, M. "On a Linear Property of Lightly Damped System", Proc. of Damping '91, Feb. 13-15 1991, San Diego, CA., Sponsored by Wright Laboratory, Flight Dynamics Directorate, Wright-Patterson Air Force

Base
Meirovitch, L. "Analytical Methods in Vibrations " The MacMillan Comp. 1967.

Mitchell, L. "Complex Modes: A review" Proc. of IMAC-8, 1990, pp. 891-899.

Ortega, J. M. "Matrix Theory" 2nd ed. Plenum Press, 1987.
Tong, M., Liang, Z and Lee, G. C. "Techniques in Design and Using VE Dampers", Proc. of Damping '91, Feb. 13-15 1991, San Diego, CA., Sponsored by Wright Laboratory, Flight Dynamics Directorate, Wright-Patterson Air Force Base

Tong, M., Llang, Z and Lee, G. C. "On an Application of Complex Damping Coefficients", Proc. of Damping '91, Feb. 13-15 1991, San Diego, CA., Sponsored by Wright Laboratory, Flight Dynamics Directorate, WrightPatterson Air Force Base

Vold, H; Rocklin, G. " The Numerical Implementation of a Multi-Input Modal Estimation Method for Mini-Computer," Proc. of IMAC-1, 1982, pp. 542-548.

