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THE LINEAR ELASTIC DYNAMIC ANALYSIS OF SHELLS
OF REVOLUTION BY THE MATRIX DISPLACEMENT METHOD

Stanley Klein*
Richard J, Sylvester*
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S3an Bernardino Operations
San Bernardino, California

The paper describes the matrix displacement finite element approach
to the linear elastic dynamic analysis of shells of revolution under
axisymmetric and asymmetric loads. The shellisidealized as a series
of conical frusta, joined at nodal circles, The derivation of the mags and
stiffness matrices for a shell structure is outlined, A method for solu-
tion of the equations of motion is described for this particular type of
problem, with special emphasis on the computational aspects of the
solution. An especially appropriate finite difference technique is used
along with a method for efficiently utilizing the digital computer
memory (o store and solve a large system of linear simultaneous
equations. The solution for a shallow spherical cap under time varying
axisymmetric pressure load indicates the scope, speed, and accuracy
of the solution method.

SYMBOLS
Agq, B Integrals defined in the Appendix
Als, 8) Matrix of coefficients introduced in Equation 4
A, B, Square matrices introduced in Equation 18
B Matrix of coefficients introduced in Equation 6
Ci Damping matrix for a structure
Ex Matrix relating stresses to strains, introduced in Equation 7
F(t Column vector of forces as functions of time
G Square matrix defined in Equation 18
K Stiffness matrix for a structure
L Matrix defined in Equation 7
Lt Lower triangular matrix factor of 8, in Equation 20
M Mass matrix for a structure |
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SYMBOLS (Cont'd)
Stress couples of a shell

Stress resultants of a shell

Square matrices in recurrence relation, Equations 18, and 17

Matrix defined in Equation 11

Meridional shear stress resultants of a shell

Generalized forces; Fourier cosine and sine coefficients
Kinetic energy of element for assumed displacement field
Applied load per unit length at node p

Strain energy of element for assumed displacement field
Matrix of coefficients introduced in Equation 10
Mechanical work

Arbitrary displacement vector introduced in Equation 4
Column vector of applied generalized forces and reactions

Shell thickness

Superscript denoting harmonic number

Subscript denoting generalized coordinate number
Stiffness matrix for an element

Meridional length of the conical element

Mass matrix for an element

Subscript denoting time interval

Subscript denoting node number

Generalized displacements; Fouricr cosine and sine coefficients

Column vectors of generalized displacements, velocities and accelerations
for harmonic number i

Radial coordinate

Meridional coordinate

Time
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SYMBOLS (Cont'd)

U, v, w Axial, circumferential, radial displacement

7.V W Meridional, circumferential, normal velocity

z Axial coordinate

a(t) Unknown coefficients as functions of time, Equation 4

éji Unknown coefficients for harmonic number i in Equation 8

I Rotation of meridian and generalized acceleration parameter

g Circumferential angle, coordinate

Pa Mass density (mass per unit area) of shell element

b Angle between meridian and axis (semi-apex angle of cone)

[\” Coordinate transformation matrix (introduced in Equation 6)
INTRODUCTION

For an arbitrary shell of revolution, the responseto dynamic loadings can be determined by
representing the deformation of the shell structure by a finite number of generalized displace-
ments and solving the corresponding equations of motion, viz.,

Moo e dm+r alm=Fn (h

The square symmetric matrices, Mi and Ki , are the mass and stiffness matrices of the
structure, The column vector, F! (t), represents the applied generalized forces and reactions,
The column vectors q' (1), 4/ (1), and ' (t) are the generalized displacements, velocities, and

accelerations. The square matrix, €', is a damping matrix and although the theoretical
development that follows includes provisions for this matrix, the actual numerical solutions

presented are for undamped structures,

A finite element idealization of the structure with completely arbitrary element size is used,
The continuous system is represented by a finite number of degrees of freedom in a physically
meaningful way with the matrix displacement method usedto calculate an approximation to the
stiffness matrix, K!, directly. Consistent with the approximations involved in using the matrix
displacement method, an approximation to the mass matrix, M, is generated.

Embodied in the mass and stiffness representation of the shell structure, a shell analysis,
which permits arbitrary meridional shapes, thickness and material property variation in the
meridional direction, varying meridional mass distribution, and stiffening of arbitrary por-
tions of the shell, is presented. Axisymmetric and asymmetric distributed and line loading
conditions can be represented in the vector, Fi (ty, and various boundary conditions may he
used in the solution of Equation 1. In its present form, the analysis is limited to homogeneous
isotropic single layer (or equivalent multilayer) shells under the assumptions of thin shell
theory,

The analysis presented is comprised of two parts: (1) the finite element shell analysis

consisting of the derivationof M! and K' witha discussion of their accuracy and limitations; and
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(%) the mathematicai solulion of Eguation 1 wiih a bvief discussion of the features of a digital
cemputer program writico for this solation,

In view of the publication of a number of ducwments detailing the iheoretical background of
the finite element shell analysis (References 1, 2, and 3} and the asscciated computer codes
(References 4 and 5), which owput ' and X' for ase in Bguation 1, only a brief description of
this analysis is given for continuity of presentation, he many solutions for the siatic analysis
of shells (References 3 and 6) give a good indicstion of the accuracy of X!, waile the accuracy
of M! will be discussed here, Au elaboraie discuszion of the development of ihe {inite element
technique, the problen: arens, acope, lmitations, andassociated conpkier codes has also been
given (Reference 6},

Thus, a large portion of this work is devoted to the mathematios Lavolved in the dynamic
solution, with speeciai atiention {o the compuiaiional assects af the solubion.

Idcalization of the Structure and Loading

The complete shell is idealized into a series of conicul frusia jeining nodal eircles whaich lie
in the shell surface (Figure 1), A right-handed systews of eylindrical coordinates is used in the
analysis, viz., axiol distanee #, circumfercential angie 8 and radlal distance r. The behavior of
the shell is characterized by a zet of geveraiized lisplacements of 2 nodal circle at station z.
These generalized displacements, gi% [ ave the Fou rer coefficients of u, v, %, and 8 expanded
in a Fourier series in 9, where i, v, nnd W are ihe axial, circumferentiaf, and radial displace-
ments of a point ofthe circle, and 8 is the rotadon ot the point ina plane coataining the axis of
the shell and the meridian inthe shell sprface which passes tnrougl the poind, The superseript
ion qQ'is called the harmoric number.,

The corresponding generalized forces may be visualized ag representing line loads applied
at the nodes und written as

i m m ,
(1] TG = @ Y b e 13 T oml
o fp o= 5 Qp + 2 (Dp cos 10 4 ,,"3: “y, sin e {2)

1= Rt

i el , . i —j . .
where Qp ard Qp are the gencralized forces correﬁpundm% to gp and q;, respectively, rp is the
radius of the pth nodsl ecircie and T, is an appled load per unit length in a representative
direction,

The displacements u, v, and w are positive in the positive directions of z, @, and r and B is
positive if it corresponds to u poeitive value of dw /oy along the meridian, The force per unit
length, T,, is positive if it does positive work when digplaced through a positive value of qg.

It may be observed that the generalized forces have been delined so that the total work done
by the forces in an incremental displacement (du, dv, dw, dp) is,

; . i '_,.} (3)

i

dw = 3 {uf’ dqjo
i

where the subscript j denotes the generalized coordinate number,

The generalized displacemenis may he regavded as the independent variables in terms of
which the analysis is carried cut, if there are n nodes and the highest harmonic number used
is m, the system may be said 1o have 4a(2m13 degrees of freedor:,

*The time dependence of the generalized displacements, generalized forces, and related
quantities will be understood from this point on.
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Figure 1. Diagrams to Illustrate the Idealization of a Shell of
Revolution for Analysis
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The elastic behavior of the shell element (i.e., the conical frustum) is sufficiently described
if the linear relationship between the generalized forces and the generalized displacements of
the two adjacent nodal circles can be written. This relationship defines the element stiffness
matrix,[k], which is an (N x N} square matrix, where N = 16m+8 characterizing a 2 node
system with m being the highest harmonic. The shell equations for the conical element un-
couple in harmonics (Reference 1) so thatk may be partitioned into (8 x 8) squares, ki,
representing the various harmonics with sll off~diagonal partitions null,

Assuming the element stiffness matrix is known, a structural stiffness matrix, K, may be
obtained by superposing the element stiffnesses,k . This is done according to the equilibrium
equation in each direction at each node, which equates the applied force to the sum of the
forces acting on the elements bounded by the node (Reference 1, Section 3.3). Furthermore,
since k uncouples in harmonics, so does K, resulting in a 4n x 4n symmetric matrix, Kl , for
each harmonic,

In a2 similar manner, the structural mass matrix for each harmonie, Mf, is obtained by
superposition of the element mass matrices, m', (Reference 1),

THE ELEMENT STIFFNESS AND MASS MATRICES

It is obvious from the above discussion that the key step in the analysis is the derivation
of k' and m!, The use of the matrix displacement method to derive an approximation to the
element (in this case a conical frustum) stiffness matrix is a well known procedure (Ref-
erence 1). In general, it consists of first assuming a displacement field for the element, such
as

d'(s,8,1) = A (s.8) a' (1 (4)

Then after substituting the strain-displacement relations, written in terms of a'(t), and the
stress-strain relations into the strain energy, U', ofa linear elastic element deforming in the
assumed manner, a simple comparison with the gereral matrix equation for U', i.e,,

i | i i i
= — §q & q (5
u > )
leads to the desired result, For the conical element this is

K ey )T b e T (6)

where Y is a coordinate transformation matrix relating shell coordinates to system co=~
ordinates, B is evaluated by substituting the nodal values of s in Equation 4, and L' 18 defined
as
i i 7 i
=I(W)E*Wd£\ (7)
8x8 A

The w! matrix relates the strains to the displacement parameters, a'(t), and E* is a matrix of
coefficients in the stress-strain relations, Further details including the explicit form of the
above matrices are available (Reference 6),

An approximation to the element mass matrix, a symmetric matrix of coefficients relating

the generalized forces and generalized accelerations of the bounding nodes, may be obtained by
using the exact same displacement function glven in Equation 4, As such it is consistent with
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the element stiffness matrix (Reference 7). Rememberingthat the displacements are functions
of time, the assumed displacement field may be differentiated with respect to time to give a
velocity field and may be written explicitly for the conical element as follows:

u' o= (d; +d, s)cos if

~i .1 . . \

v = la, + 4, s)sin ig (8)
- N i o s .

w'=(a.|' f-a'zs+a'3 sz+a;s]c0519

~l .
Displacement components U,V , W correspond to shell coordinates (see Figure 1).

The kinetic energy of translation for an element deforming in this manner is

LAY j[(??-H#HZ+(¢f]dA (9)
A

where p, is the mass per unit surface area (mass density) and is constant for each element,
By writing

2 T
[[@® + @+ Gf]rag= 7@ v a' . (10)
°
substituting this result into Equation 9 and defining
P = f . V ds {1)
the expression for the kinetic energy becomeos
T‘=—1%L(dﬁr9 a' (2)

The relationship of the coefficients a' to the generalized velocities Q' 1s.
a8 = ¢ B & (13)
where B and W have the same meaning as in Equation 6,

Solving for &' in terms of ¢!, substituting the resuit into Equation 12, and comparing with the
general matrix equation for the kinetic energy of a linear elastic element, i.e,,
i

ey mog (14)

|-

it is seen that

T (15)

. T -
m' = R, vy (Y p B' ¥
.

The expression A, o')r 8’ is the mass matrix, ';ii, referred to shell coordinates. The
A ]

integrals required in P are also requiredin L', whichaids the computation, Unlike L' however,
P is independent of i for i 21, and its form for i = 0 is obtaine simply by multiplying each

coefficient in P by 2.
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Accordingly, the mass matrix is calculated only once; this value serves for ail harmonics,
The V and P matrices are listed in the Appendix,

MATHEMATICAL ANALYSIS OF THE EQUATIONS OF MOTION

The element stiffness and mass matrices {Equetions 6 and 15), their use in constructing the
mass and stiffness matrices of a structure, M and K, and the solution of shells under static
loads have been programmed in FORTRAN for an IBM 7094 (References 4, 5). In addition,
these computer codes, called SABOR I (axisymmetric response) and SABOR 1II (asymmetric
response) output M and K on tape for use in the sclution of Equation 1.

Considering that to obtain an accurate sclution for a complex shell siructure under sharply
varying loads may require 100 elements, and remembering there are four generalized dis-
placements (degrees of freedom) at each node, the system of linear second order differential
equations represented in Equation 1 will consist of 400 or so simultaneous equations in 400
unknowns. With this in mind, for immediate applicat:on any solution proposed must be specifi-
cally oriented for use with the digital computers presently available,

The classical limitations of high speed digital computers are three in number: (1) computa-
tional accuracy, (2) length of computational time (economy of the solution), and {3} memory
size or storage capacity. Even with the present generation of computers, these limitations
remain imposing for the system of equations under discussion,

In brief, and within the framework of the FORTRAN IV programming language, these three
limitations are met asfollows: (1) double precision arithmetic i3 mandatory in order to retain
computational accuracy, (2) a method of numerical integration with a high degree of stability
must be used in order that the time necessary for the integration and the corresponding
computer expense be reduced, and (3) in order to incorporate a large system of equations
within the memory of a computer, it is important to take advantage of the unique characteristics
of the problem formulation and store only the necessary information. The details of how the
latter two principles are implemented are given below.

FINITE DIFFERENCE SOLUTION

The governing criterion for a method of numerical integration of a large system of differen-
tial equations is numerical stability. For this stability property, most methods of integration
of the second order differential equations of motion require an interval of integration which is
a fraction of the shortest natural peried of vibration of the structure. For large systems of
equations the shortest natural period may be exiremely small, resulting in many hours of
computational time, using a digital computer for the integration.

A notable exception to this stability rule is the method of computation presented by Chan,
Cox, and Benfield (Reference 8). For the generalized acceleration parameter, 8 = 1/4, any
interval of integration is stable, and as a result, this finite difference scheme was chosen, A
discussion of the B parameter and its effect on the stability of the numerical integration is
given in the above reference.

The recurrence relation resulting from the finite difference formaulation of Equation 1 is:

2
Nag , =Pa -Ra +-2(  +20+¢ ) (16)

n+l n-l 4 n+1

where
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N:=M+%C+—7K

hz
P=2(M .- — K)

4
. h hz
R=M—'“§C+'—EK.

N,P,R,M,C and K are square matrices (the latter three given in Equation 1), q is a
column matrix, f is a column matrix denoting applied generalized forces and reactions (same
as F in Equation 1), and n denotes the time interval under consideration,

The given information for a dynamic problem :is usually in the form of an initial displace-
ment vector,q. , an initial velocity vector,du. and a time history of the force distribution
starting with an initial force vector, f,. Since the recurrence relation in Equation 16 gives the
displacement vector at any time step interms of the displacement vectors of two previous time
steps, a special starting equation must be used, It is:

2

h

Na, =8Sq, + hMa, + - (f + 1} (17)

1 0

where
2

S = M+5C- 2K

The complete derivation of Equations 16 and 17 has been givea in the Appendix of the Chan,
Cox and Benfield paper (Reference 8),

TRIDIAGONAL FORM

The recurrence relation and starting procedure given in Equations 16 and 17 contain square
coefficient matrices of a special form, namely, matrices which may be partitioned into
smaller square matrices such that the particular matrix is tridiagonal in terms of its matrix
elements, For example,

A, B, 0 o0 o0 |
, A, B, O O
6 = |o ., A, B, 0 (18)
0 o B3 “4 BA
(0 o o B A,

where A; and B; are square matrices andN,P,R, and S have the same form as G. The
symmeiry property of the matrices has been considered. All that need be stored in the com-~
puter memory to represent such a matrix is a two-dimensional array, A (1, J), and a three-
dimensional array, B (1, J, K). Any operations involving the 6 matrix are then performed with

soghisticated subscript arithmetic, The array called A (L, J) utilizes the first subscript to indi-
cate which of the A submatrices is involved, and the second subscript to designate which

element of that submatrix is involved. Only the upper triangular part of A (I, J) is stored as a
vector because of the symmetry property. The array called B (I, J, K) utilizes the first sub-
script to indicate which of the B submatrices is involved and the second and third subscripts
to designate the row and column of the particular element required from that submatrix.
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In a recurrence relation, such as Equation 16, it is possible to invert the first coefficient
matrix, N, and premuitiply the entire relation by this inverse, thus solving for 9, In
general, however, N™' will be fully populated. Thus, inorderto keep everything in memory, it
is necessary to either reduce the order of the system of equations drastically, or to go ‘‘on
and off” magnetic tape or auxiliary storage. The above alternatives are deemed unsatisfactory
gince the first limits the utility of the method and the second is very time consuming and
expensive,

The approach adopted, in place of inverting N and storing its inverse, is to solve, at each
step of the numerical integration, a linear system of algebraic equations (Equation 16),
represented in general by

6da,4 = b, (19}
where b, represents a column vector (e.g., the right hand side of Equation 16),

The form of @ (Equation 18} is particularly suitable for factoring into the product of a lower
and upper triangular mairix, one being the transpose of the other. This factoring procedure
preserves the zero elements in the original 8 matrix and thus introduces no additional storage
requirement other than that required for G. In addition, performing the factorization once at
the beginning of the computation, produces the setof factors which are used repeatedly during
the subsequent solutions of the linear system of equations (Equation 19), The factoring of 6
and the solution of Equation 19 outlined below is very similar to Cholesky’s method (Ref-
erence 9), and as such has the speed, efficiency, and accuracy required for the solution of a
large system of linear algebraic equations (e.g., Equation 16),

For this solution, Equation 19 is rewritten in frctored form as
L L' oq,, =B, (20)

where L is the lower triangular factor of G and Y is the transpose of L. L is stored in
memory in the same form suggested for 6, whereas U is not siored at all, Defining

T
Loap = x40 {21
Equation 20 takes the form

Lx . =b, {22)

This may be solved very rapidly from top to botitom, for X, 4+ by systematic algebraic sub~
stitutions, full advantage being taken of the lower triangular form of L. With the vector S

known, Equation 21 is solved for 4,4+ taking advantage of the upper trianguiar form of U
and solving from bottom to top.

DYNAMIC ANALYSIS PROGRAM

A computer code, called DRASTIC* (Dynamic Response Analysis of Shells under Time-
dependent and Impulse Conditions), has been written in FORTRAN IV using double precision
arithmetic. This code solves the linear system of algebraic equations, Equations 16 and 17, at
each integration step for a given set of force vectors called from tape, These force vectors
are calculated at the beginning of the computation from the given applied force distribution and
stored on tape for subsequent use,

*The authors wish to thank Mr. G. Urmston of the Computation and Mathematics Center,
Aerospace Corporation, for his efforts on this program,
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The program accepts as inpui the structural mass and stiffness matrices output by the
SABOR codes for the free-free structure, and converts them to the form of the G matrix
Equation 18. Displacement boundary restraints are handled within DRASTIC. In its present
form DRASTIC analyzes only undamped structures and no provisions are made for the Cc!
matrix. Thus, only 2 matrices, N and P, need be constructed from M and K (as N=Rand
P=28) for use in Equations 16 and 17. M and K are replaced by N and P in storage, and
then N is replaced by its lower triangular factor.

For a given integration interval the programn provides a solution at each time step as out-
lined above, and then outputs displacement, velocity, and acceleration vectors at designated
equal time intervals, Supplementary calculations, utilizing a stress matrix from the SABOR
programs and the above displacement vector output, give a solution for the dynamic stress
resultants and stress couples at the same time intervals.

The DRASTIC code has been written in such a way as to efficiently utilize most of the
available core storage of the IBM 7094. Approximacely 100 finite elements are permitted for
each individual harmonic solution. In the next section the speed and accuracy of the calculations
will be demonstrated.

RESULTS OF CALCULATIONS

As an example of the type of shell problem that may be solved with the DRASTIC code, con~
sider a shallow spherical cap with a clamped support at one edge. A solution is given for an
axisymmetric pressure loading which is uniformly distributed in the meridional direction and
varies as a Heaviside step function intime. The sign convention for the shell stress resultants
{Figure 2), and the geometry, material properties, and applied force (Figure 3) are presented.

Five curve plots (Figure 4) graphically illustrate the output, These plots. are better under-
stood in terms of the step function loading, which is an initial impulse at t=0 followed by a
constant pressure independent of time. Without damping the transient solution of a shell under
this loading will oscillate about the steady-state solution, the latter being the same as the
response to a static pressure load. This is seen to be the case with the transient solution
having a period approximately equal to 1.6 msec.

Plots of the axial displacement at the center of the spherical cap (Figure 4a) and at a point
between the center and the fixed end (Figure 4b) are presented first, The static response at
these points, obtained from SABOR I output for 14-, 27-, and 42-element solutions, is pre-
sented on these graphs as horizontal lines. Negligible difference is seen between the three
static results when using the scale required for the dynamic response plots, The same
negligible difference 1s seen between the dynamic results for the three different structural
models, with these dynamic solutions converging in the same way as the static solutions,

Presented next is a plot of the meridional tension at the fixed end (Figure 4¢). The results
are similar in nature to the axial displacement curves, and are carried out in a like manner
to a final time of three msec. As with the displacement curves the solutions for 14, 27, and
42 elements are plotted as a single curve.

The last set of curves (Figure 4d) give the moments, meridional and circumferential, at the
fixed end. The remarks made for the three previous curves apply to the moment plots, which
exhibit the same type of periodicity and oscillation about the static response, The lack of

‘“‘smoothness’ in the moment curves is the result of high frequency response in the radial
displacement and rotation curves at the fixed end (not shown here), these displacements being

important in the computation of the fixed edge moments. Also presented on this graph is the
result for the meridional moment, My, obtained by an eigenvalue-normal mode solution in a
paper by L. R. Koval and P, G, Bhuta (Reference 10). Considering that only transverse inertia
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Figure 2. Stress Resultants in Shell Coerdinates

APPLIED FORCE
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-3
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Figure 3. Geometry, Properties, and Appiied Force Spherical Cap
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was taken into account in the solution, only 20 modes were used, and that damping was taken
at 5 percent of critical for each mode, this solution compares very well with the results from
DRASTIC. Whereas the DRASTIC solution oscillates about the static response, the Koval and
Bhuta transient solution is almost complstely damped out to the static value by the end of
three msec.

It 1s interesting to point out that the 42-e!2ment DRASTIC solution of this spherical cap
problem consisted of 8300 integration steps, the storage of mass and stiffness matrices of
rank 129, the solution of 129 simultaneous linear algebraic equations at each integration step,
and the output of 150 displacement, velocity, acceleration, and strees (5 values) vectors. The
entire procedure was accomplished in 5.6 minutes on the IBM 7034,

Altnough v numerical results are presented for a shell of revolution under asymmetric
Toading, it is postulated that DRASTIC will give as accurafe 2 sel of vesgults for this type of
problers as far axisymmetric cesponse, The reasons are as follows: the accuracy of tpe
stiffness muiriy, K', has been well checked out (References o aud 6); the mass matrix, M,
has the rame coefficients for ali harmonics; and the sclution of the equations of motion
{Equation 1) is performed one harmonic at a time, as accurately for the i'™™ harmonic (i#0) as
for the reroth hurmonic,

DISCUSSION

The finite clement - matrix displacement approach to the dynamic analysis of shelis of
revolution has heen presented with the intention of providing a detailed examination into the
development of the meihod. This is necessary background infoermation for use of the technique
and associated computer code in its present form. Such use permits sclution of a wide variety
of complex shell structure problems, not only for axisymmetric deformation but for asym-
metric response. Focusing on the latter, the dynamic response of axisymmetric shells with
arbitrary meridional shape, arbitrary displacement restraints, and varying material properties
and thickness in the meridional direction, under arbitrary asymmetric force distributions is
presented. Although a shell analysis of this complexity is in itself a powerful tool for the
structural engineer, the method has importance for future applications. With the analysis
divided into the representation of the mass and stiffness of the structure and mathematical
solution of the equations of motion, it is seen that extensions to more complex structural
problems required only modification of the stiffness apd mass matrix. The dynamic solution
presentcd above will be just as valid, For example, anisotropic multilaver shells may be
analyzed with the same facility as isotropic single layer shells are now handled.
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APPENDIX

LIST OF MATRICES

In this appendix are listed two matrioes referred to in the text of the paper.

¥V Matrix (see Equation 10),

e —

T r8 rsg rs3 0 0 0 0

T8 rsz rea rs4 ¢ 0 0 0
rs2 r33 r34 r35 0 0 1) 0
1‘83 r'l r55 rss §] 0 ¢ 0

0 0 0 0 r rs 0 0

2
0 0 0 0 ra rs 0 0
0 0 0 ] 0 ¢ o rs
2

0 0 0 ] 0 0 re m |
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P Matrix (see Equation 11).

The nonzero elements of the P matrix are:

Pyy = Pgg = Ppp = Ay 4

Pig = Py = Pgg = Per = Pog = Pop = Ay 4
Pog = Pig = Pgy = Pgg = Pgg =44 9
Pig = Py = Pyg = Pgy = Ay 4

Pgg = Py = Pyp = Ay 4

Pay = Pua = 44 5
P = M6
where
£
R L
0
ADDENDUM

E. P. Popov* and H. Y, Chow**
University of California
Berkeley, California

The paper by S. Klein and R, J. Sylvester presents important information for practical
analysis of shells of revolution. The chosen approach based on the matrix displacement method
of analysis is well founded (References, 1, 2). Likewise, finite elements in the form of conical
frusta joined at nodal circles have been found to be effective in the solution of static problems.
The extension of the procedure to dynamic problems to the level of rapidly solving actual
problems is a significant accomplishment. The writers have also extended some of their
earlier work (References, 3, 4) to include axisymmetrical response of shells of revolution to
dynamic loads. An outline of the developed solution***, which in several respects differs from
the one by S. Klein and R, J. Sylvester followed by two examples is given herein. The data
for one of the examples are taken from the preceding paper. Excellent agreement between
the two solutions is found which serves to corroborate the results found independently. In the
other example a circular plate with a ring load is analysed using the exact element stiffress
matrix and the element mass matrix based on exact static edge-loading displacements. The
same results are found with two as well as with 20 finite elements, For complex systems this
fact may be of importance.

* Professor of Civil Engineering
** Graduate Student
*¥*®*¥ A more complete report by the writers to NASA is in preparation.
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EQUATIONS OF MOTION

Any shell of revolution can be approximated with a sufficient degree of accuracy for
practical purposes by a finite number of elements consisting of plate, conical, or cylindrical
rings. All of such elements are joined at nodal circles. The matrix formulation of the general
dynamic response of such a substitute structure can be stated as follows:

MGgit)+Kqit)= £(t) ()

where the column matrices f (t) and q(t) are, respectively, the generalized forces and general-
ized displacements of the structure., The mass matrix M and the structural stiffness matrix
K are symmetrical and furthermore K is a positive definite. Therefore, Equation 1 can be
uncoupled (Reference 5) and solved using the normal mode superposition technique.

A direct numerical integration method was used in this investigation to sclve the uncoupled
second order differential equations. For each mode a different interval of time for each integral
is used. This procedure retains the necessary accuracy for the higher frequency modes and
avoids the unnecessary, time consuming computations for the lower frequencies.

The mass matrix M and the stiffness matrix K for a whole structure are determined from

the assemblage of basic solutions for the elements. Since this procedure is well known, only
the formulation used to establish element stiffness and mass matrices is discussed here.

THE ELEMENT STIFFNESS AND MASS MATRICES

The homogeneous solution for a basic finite element can be expressed in matrix form as
follows:

X{s,t)

it

d. (s,t) Vis,t}

it
o)

ij {s) Aj {t) (2)
Wis,t)
and
) M ls.t)

S (s, ,t)

13
(1]

Ngls, t)
Qg (s,1)

and
i=1,2,3 and j=1,2....., 6

where d, (s, t) are displacement-variables which are comprised of rotational X (s, t), meridional
V(s, t), and normal W(s, t) displacements; 8 (s, t)} are force-variables which consist of
meridional moments Ms(s, t), meridional stress-resultants Ns(s, t), and shearing stress-
resultants Qs(s. t).

Xy (s) and Y); (8) are two (3 x 6) matrices which are obtained from the general sclutions of a
static edge-loading problem for a basicelement, A; (t) is a column matrix which can be deter-
mined from the nodal displacements at each end of the shell segment.
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Closed form solutions of Equation 1 were developed (References 3 and 4 and authors report
to NASA in preparation) for circular annular rings, conical frusta, and cylindrical segments. In
this formulation, if such elements represent portions of the actual structure, no limitation on
the size of elements needs to be placed. Only the total number of elements may become a
probiem,

Using closed form solutions of Equation 1, the element stiffness matrices k were developed
and programmed for the above type of elemen:s. The basic relation for determining k can be
deduced by considering strain energy U of an element, and can be shown to he

x=TTe¢c8'T (4)

where T is a coordinate transformation matrix relating shell element coordinates to the system
coordinates, and matrices ¢ and B are matrices Y and X, respectively, upon substitution into
them of the two boundary values of 8. Since this relationship in but a slightly different form was
previously reported (References 3 and 4), no further comments will be made here.

To determine the mass matrix m for an element, the fundametal displacement-variable
vector d;, Equation 2, must be re-cast in terms of its six generalized system (global)
coordinates, i.e.,

-1

herei=1,2, 3andj k,m, =1, 2, 3,...8,
and P.lm (t) represents six nodal displacements of an element in system coordinates.

The general expressionfor the kinetic energy T(t) (References 6 and7) of a shell element can
ke written as

b 2 g2 -2 L2
T(\‘)—2 '£ [m P X (s, t)4+mVis,t)+ mwW (s.ﬂ] 2m ris) ds (&)

where m is mass per unit of surface area, and p is the radius of gyration of the section of a
shell segment.

Upon substituting the displacement variables involved in Equation 5 into Equation 6, one
obtains

T =g (g T8 ) [ 2w E(s) ris) asB' T q(n (7)
S

By comparing this complex matrix expression with the usual one for kinetic energy, defini-
tion of the mass matrix m is obtained:

T )
m=T (87"') [ 2mEls)rls)as B7'T (8)
S

This element mass matrix m was determined and programmed for annular rings using an exact
displacement field, For conical frusta the mass matrix m for an element was developed on the
basis of an assumed polynomial function to represent the displacement field, For the above
reason, the range of applicability of the developed program as it relates to the size of elements
is different for the two cases,
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EXAMPLES AND CONCLUSIONS

As the first example consider an elastic circuiar plate clamped along the edge subjected to
a ring load as shown in Figure A-1. The ring load P is applied as a step function in time. To
determine the dynamic response of this plate by the developed method, only two elements*
need to be used, since both the m and k matrices are programmed using the exact displace-
ment field. Alternatively, an arbitrary number of clements may be used and 20 elements were
selected to obtain a solution for comparative purposes, The results of the two solutions are
plotted in Figures A-4a and A-4b. Differences between the two solutions are negligible. The
solution based on the use of 20 elements actually is a little less accurate due to the unavoidable
accumulation of numerical errors,

The second example is for the dynemic response of a shallow spherical cap shown in Figure
A-2, The data are from the Klein and Sylvester example. The results of an output for a
14-element solution are shown in Figures A-5s, A-5b and A-5c, These results are seen to be
in excellent agreement with the Klein and Sylvester solution and this provides a good check on
the two independently developed programs.

The developed program of course alsc can be successfuily applied to deep shells as well as
to shell-like enclosures. For example, the dynamic response of the sphere shown in Figure A-3
was readily found using a solution based on 50 elements. (Results not reported here),

The dynamic response of linear elastic shells of revolution of arbitrary meridian shape and
thickness variation can be determinedusing the finite element approach., The ACCUTACYy appears
to be excellent, and once a program is developed a solution is achieved ve ry rapidly.
Occasionally, solutions based on exact displacement fields for element mass and stiffness
matrices may prove advantageous,
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CLOSJRE

Stanley Klein*
Aerospace Corporation
San Bernardino, California

The author wishes to thank E, P, Pogov and H. Y, Chow for their contribution in the form of
an addendum to the paper presented herein. Just as using a stiffness matrix derived

from an exact solution of a conical frustum under edge loads provided a measure of the
excellent accuracy obtained using the matrix displacement method, E. P. Popov and his
colleagues have now provided a firm foundation and independent check of the direct numerical
integration of the coupled 2nd order shell equations presented in this paper.

It must be pointed out that the use of the standard normal mode superposition technique used
by E, P. Popov and H. Y. Chow was considered by the author and his colleagues, In fact, a
computer program, FAMOUS (Reference 1}, was written to obtain the natural modes and
frequencies for a shell structure represented by 100-160 degrees of freedom (40-50 finite
elements). Results obtained with this code indicated that it would be difficult to obtain many of
the higher frequencies with a good degree of accuracy. Since high frequency response is of
interest in these problems coupled with the fact that the present SABOR and DRASTIC codes
handle much larger problems than discussed here (i. e., 125-200 finite elements or 500-800
degrees of freedom), it became necessary to abandon the normal mode approach.

It must also be considered that using the normal mode approach even for relatively small
problems (less than 100 D.O.F.), it becomes necessary to obtain a set of natural frequencies,
make a decision as to which ones are important, solve the uncoupled 2nd order differential
equations for each frequency after finding an appropriate time step for each solution, and
then finally superpose the individual results. This can mean a large amount of computation and
engineering time. The direct solution of the coupled 2nd order equations yields a further
advantage in that it provides a good stepping stone towards solving the dynamic nonlinear shell
response problem using a stepwise linear incremental approach.

An item of future importance that requires mentioning is the very interesting observation
made by E. P. Popov, H. Y. Chow and the author that increasing the number of finite elements
does not increase the accuracy of the results in the dynamic case as it does in the static case.
This is only a preliminary observation but its effect on future work in this area requires that
it be carefully investigated.

Since the writing of the preceding paper, some very interesting observations have been made
which bear heavily on the calculation of stress resultants, both statically and dynamically. It
has been found that the use of local element stiffness matrices to calculate stresses at the
edges of each element produces large errors in membrane regions of shells. Methods to
eliminate these errors, such as correcting for the effect of the approximate distribution of
surface loads applied as line loads at the nodes, or calculating stresses directly from the

* Member of the Technical Staff
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stress-displacement relations using either a differentiation of the assumed displacements or a
finite difference representation of the derivatives, have been checked out. A detailed com-
parison of these methods will be published shortly (Reference 2), These technigues have
reduced the problem of residual moments, under much discussion, to negligible proportions,
and with the introduction of curved finite elements, the residual moments will be virtually
nonexistent,

In closing, the author wishes to express his gratitude to the chairman and all concerned with
the conference for providing an excellent forum for discussing the progress being made in this
special area of structural mechanics.
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