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ABSTRACT 

The interrelationships between viscoelastic, Newtonian viscous and 
structural damping are analyzed in terms of Fourier transforms and 
complex moduli in the frequency domain and are also interpreted in terms 
of behavioral responses associated with real material compliances or 
moduli in the real time plane. It is shown that the correspondence 
between viscous and elastic structural damping is spurious, severely 
limited to only harmonic motion and that it does not extend to more 
complicated viscoelastic materials beyond Newtonian viscous flow 
dissipation. The dissipation energy generated by viscoelastic and 
structural damping is also examined. The effects of structural damping on 
elastic and viscoelastic bending-torsion flutter are evaluated with the help 
of numerical examples. The material considered is aluminum, but the 
analysis is general and can be applied to any viscoelastic material. It is 
shown that the presence of increased structural damping does not 
necessarily have a stabilizing effect by decreasing the viscoelastic or elastic 
flutter speed nor are the viscoelastic flutter speeds necessarily lower than 
the corresponding elastic ones. 

INTRODUCTION 

In flutter and vibration analysis, it is standard practice to augment 
elastic effects by the introduction of structural damping coefficients g [ 1-
4], where the latter are essentially measures of losses due to material 
hysteresis and/or friction in structural joints. In both instances, the 
fundamental dissipation phenomenon is "dry" solid friction and as such, 
the associated force and displacement constitutive relations are explicitly 
independent of frequency and of displacement velocities, accelerations or 
their higher time derivatives. Analytically, the algebraic Hooke's law is 
maintained, but the actual, real elastic moduli are replaced by complex 
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values, i.e., E = E0 (I + ig1), where E0 is Young's modulus in the absence of 
structural damping. A similar expression is used for the elastic shear 
modulus, G = 0 0 (1 + ig2) and for the elastic bulk modulus, K = K0 (1 + ig3). 

The three g's displayed here may or may not be equal depending upon the 
particular damping encountered in a given structure. 

Viscoelastic materials, on the other hand, obey differential and/or 
integral stresses-strain laws, which relate stresses, strains and their time 
derivatives of various orders [5]. The viscoelastic dissipation process is 
primarily an involved, highly frequency sensitive, material dependent 
viscous phenomenon with one or more coefficients of viscosity [5] and, as 
will be shown, totally unrelated to the structural damping mechanism. 
Historically, and in this paper as well, the term viscous damping refers to 
Newtonian flow, where the stresses are proportional to . the strain velocities 
through at most only one coefficient of viscosity for shape changes and no 
more than one other for volume changes. While the structural damping 
phenomenon is well understood and experimental values for these 
damping coefficients are readily available [1-4], its interpretation vis-a-vis 
viscous damping appears confused [6, 7]. Fung [3], on the other hand, has 
correctly based his correspondence between viscous and structural 
damping on harmonic motion, but has restricted his analysis to only 
motion at the system's natural frequency. Under these conditions he 
shows that the structural damping coefficient is frequency independent. 
More recently, Dahl [8] has modeled solid friction damping in mechanical 
oscillators by using both linear and nonlinear formulations. His models are 
of interest, since they simulate decay behavioral patterns which 
approximate (a) Coulomb friction at high amplitudes and low frequencies, 
(b) viscous damping at mid amplitudes and mid frequencies and, finally, 
(c) structural damping at small amplitudes and high frequencies. However, 
these approximate similarities do not imply any relations between 
fundamental behavioral responses of solid and viscous damping 
phenomena. Saravanos and Chamis [9] present a hysteric damping 
analysis for composite laminates and include an extensive bibliography on 
damping. 

Since viscoelasticity includes among other mechanisms both elasticity 
and viscous damping, i.e., velocity dependent Newtonian viscous 
dissipation, it can readily serve as a vehicle for the comparison of viscous 
and structural damping. In this paper, general linear viscoelastic stress
strain relations (including structural and viscous damping) are used to 
interpret the various damping processes by a critical examination of 
complex moduli in the frequency domain and of compliances in the real 
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time plane. Such an approach makes it possible to treat generalized many 
degree of freedom systems and is not limited to the single mass, spring 
and damper combinations of References [6] and [7]. 

ANALYSIS 

Flutter and Complex Moduli 

The governing elastic equilibrium equations for flexible lifting 
surfaces, fuselages, etc. subjected to aerodynamic and inertial forces with 
generalized displacements qm (x,t), m=l, 2,--M, can be expressed in the 
generalized form 

M N N 

L [L, D~nk an qm (x, t)/axn = L Lmnk{V, 4m, cim, <iml] = Fk (1) 
m=o n=o n=l 

k = 1,2, ... M; x = {x1, x2, x3} 

where Lmnk are differential operators describing inertia and unsteady 
aerodynamic contributions, V is the flight speed, Fk are generalized forces 

and the D~nk are elastic stiffness terms depending primarily on material 
properties (i.e., Young's and shear moduli E0 and G0 ), on structural 
geometry and on mass distributions. The elastic-viscoelastic analogy (5, 
10, 11] consists of the application of Fourier transforms (F.T.) to Eqs. (1) 
and of the subsequent substitution of complex viscoelastic moduli 
= = 
E and G for the elastic moduli E0 and G0 , or essentially replacing 'the real 

and frequency independent elastic stiffnesses D~nk by complex viscoelastic 

stiffness functions D mnk(co). This, then leads to governing viscoelastic 
relations in the F. T. plane 

M N' N" 

L [L, D mnk(x, co)anqm (x, co)/axn = L L mnk{V,4m, co}]= F k (x, co) (2) 
m=O n=O n=l 

It can be readily shown [5] that for simple harmonic motion the F. T. 
variable co is the oscillatory frequency and that in the case of flutter [ 10, 
11] it becomes the flutter frequency, while V plays the role of the flutter 
speed. The latter two are, of course, pairs of eigenvalues at which a given 
flight structure can experience harmonic motion. The velocity V can 
readily be replaced by the flutter Mach number Mf. 
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Viscoelastic responses may also be characterized on an energy axis 
involving all potential energy at one end and all dissipation at the other 
which is shown schematically in Fig. 1. Elasticity and viscous damping 
represent the two degenerate viscoelastic extremes at opposite ends of the 
energy scale, i.e., elasticity is 100% potential energy and zero damping, 
while Newtonian viscous flow is all dissipation and no potential energy 
storage. 

<j> = 100% 
DE=0% 

Elastic 

.,__ Viscoelastic 

cf>= 0% 
DE=100% 

Newtonian 
Viscous Flow 

<I> = potential energy 
DE = dissipation energy 

Fig. 1. Energy Representation of Material Properties 

In general, linear viscoelastic material behavior (including elasticity 
and viscous damping), i.e. the stress-strain relations, can also be expressed 
by relations between generalized displacements qm and forces Fm. For 
isotropic materials they are given by [5] 

Pm {Fm} = Qm {qm} (3) 

and where Pm and Qm are either differential or integral time operators. In 
particular, for each m these reduce to 

(4) 

for elastic structural damping and to 

for combined viscous and elastic structural damping. (When g = 0 in Eq. 
(5), then only viscous damping takes place coupled with an elastic 
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response.) 
anisotropic 
simplicity. 
section. 

Similar, but more involved, expressions may also be written for 
materials [13], but will not be introduced here for the sake of 

They are, however, treated briefly at the end of the next 

The application of Fourier transforms to Eqs. (3), leads to [5, 10, 11] 

(6) 

where the Em are frequency dependent viscoelastic complex moduli. Note 
that Eqs. (6) are symbolically equivalent to the F.T. of Eqs. ( 4) and that the 
F.T. of the elastic Eqs. (4) gives a complex modulus Em= EmoCl + igm) for 
. structural damping, which is frequency insensitive. Since these complex 
moduli are expressible as Em= EmR(x, co)+ iEmiCx, co), it follows that the 

-
viscoelastic stiffnesses are also complex, i.e., D mnix, co) = D mnkR (x, w) + 
iDmnkI(X, co), where the EmR, Em1, DmnkR, and Dmnkl are all distinct real 
frequency functions. Such an omega dependence is due to the intrinsic 
nature of the time differential or integral viscoelastic stress-strain laws of 
Eqs. (3). It can be readily seen from Eqs. (5), that in the general 
viscoelastic case, the complex moduli with structural damping are 

= ' 
E m(x, co)= (1 + igm)EmR(x, co)+ iEm1(x, co)= EmR(x, co)+ iEm1(x, co) (7) 

Furthermore, elastic structural damping is also included in Eqs. (2), 
by virtue of the complex moduli defined by Eqs. (4), except that then the 
D m n k R and Dm n k I are frequency independent. In any event, the 
expressions on the right hand sides of Eqs. (2) (i.e., the generalized forces) 
are unaffected by the nature of the elastic or viscoelastic materials. 
Therefore, the fundamental difference is that in the elastic case with or 
without structural damping, D~nk are frequency independent, while for 

-
viscoelastic materials the stiffness parameters D mnk are always frequency 
functions. For nonhomogeneous viscoelastic materials with structural 
damping, one needs only to replace the elastic stiffnesses in Eqs. (2) with 

Dmnk(x,co)=DmnkR(X, co)+ iD'mnk1(x, co) in the F. T. plane, where 
' 

Dmnkl = gmDmnkR + Dmnkl. Again note, that for elastic structural damping, the 
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stiffness parameters in Eqs. (2) have a form identical to frequency 
independent viscoelastic ones. Table I illustrates the complex moduli 
representations in the four combinatorial cases considered. 

TABLE I. 

Complex Moduli E =ER+ iEi and Compliances JE (t) 

Material Real Part Ima~inary Part Compliance ]E__ffi 

Elastic Eo 0 
Elastic with 

structural damping Eo gEo 6(t)JE0 /(l + ig) 
Viscous damping 

with structural damping Eo gEo + cro exp[-{1 + g)th]/c 

Viscoelastic with 
structural damping ER(ro) gER(ro) + E1(ro) Eq. (14) 

The structural damping terms igq may be thought of as out of phase 
components of the displacements q, and, as such, bear some resemblance 
to velocity effects, i.e., viscous damping. However, examination of the F. T. 
of the viscous damping term ccj_, in Eqs. (5), clearly shows that it is equal to 

irocq for a time independent viscosity coefficient c. Consequently, as long 
as structural damping coefficients g are frequency independent, they 
cannot phenomenologically relate to viscous damping, unless one 
postulates a c inversely proportional to ro - not the ordinary coefficient of 

viscosity, to be sure. Also note that the F. T. of Eq. (5) for g = 0 is E = 

Eo(l +icro* /,../M*E0 ), where ro* = ro/roN and the natural frequency ~ = E0/M*, 
with M* the system mass. Therefore, the complex modulus for viscous 
damping is frequency dependent, and only at the natural frequency can a 
frequency independent correspondence be established between structural 

and viscous damping when g = c,../M*E0 • This relation between the complex 
moduli applies to any motion, and such a correspondence between g and c 
is not limited to harmonic motion as has been discussed earlier by Fung [3] . 
At all other frequencies, of course, the frequency dependent relationship g 

= cro* /,../M*E0 is valid for any elastic structural or viscous damping complex 
modulus, but is not physically realistic. 

However, while such a proposition satisfies the consistency of 
expressions in the ro F. T. plane, Eqs. (4) and (5) demonstrate that even an 
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inversely frequency dependent viscosity coefficient c or a constant one at 
the natural frequencies cannot restore correspondence in the time plane 
between the elastic and viscous damping cases for general displacement 
functions q(x,t) encountered in creep, relaxation and other non-oscillatory 
motions. As a matter of fact, even in relatively simple motion where q is 
proportional to a single exponential function exp(irot), the correspondence 
between viscous and - structural damping is lost in those non mechanical 
vibration problems, such as for instance flutter, which have highly 
nonlinear sensitivities to frequency eigenvalues. For convenience and 
completeness, one usually represents viscoelastic stress and strain 
behavior in terms of mechanical models, such as, for instance, the 
generalized Kelvin model (GKM) [5] shown in Fig. 2. Consequently, it 
follows from Eq. (5) and from an examination of the GKM that viscoelastic 
damping represents a much more complicated phenomenon than either 
elastic or viscous structural damping, since the complex compliances 
= -- - - = = = = = 
J E = 1/E , J = 1/G , J v = 1/K , etc. with E = 3G /{1 + G /K ) are of the form 

- N 
J = Jof(l + ig) + 1/iroTIN+l + L 1/{ Gn[l + i{rotn + g)]} (8) 

n=l 

-
with similar relations for the other J's and where the relaxation times 

tn = Tln/Gn·• Tin and Gn are all material property, temperature sensitive 
parameters [5] (Fig. 2), Viscoelastic compliances in the absence of 
structural damping are given by Eq. (8) with g = 0. Similarly, the 
expressions (8) also include viscous damping as a degenerate case of the 
form N = 0, J0 = 0 and with all Gn = 00• The elastic case can be obtained 

from TIN+ 1 = Gn = oo. 

These two distinct phenomena, i.e., structural and viscoelastic 
(including viscous) damping, may be interpreted in yet another fashion by 
exam1mng their complex representations. For each generalized 
displacement qm, the corresponding elastic modulus with structural 
damping can be represented by E0 {1 + ig) = Reexp(i.1e) and the expressions 

Re= Eo✓ 1 + g2 and .1e = tan- 1 (g) are both frequency independent. (For the 
sake of simplicity of representation, the subscripts m are not included 
here.) Complex viscoelastic moduli may be written in a similar fashion as 
seen in Eq. (7) with 
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-
E (co) = Rve exp(i~ve) (9) 

where 

2 2 1/2 
Rve(co) = ~(co) { 1 + g + 2g E"(co) + [E"(co)] } ( 10) 

and 

-1 
~ve(co) = tan [g + E"(co)] ( 11) 

are both frequency dependent with E*(co) = Ei(co)/ER(co). These values are 
shown in Table II for 2024 aluminum [10, 11]. The Rvemin and Rvemax 

' 
values correspond to co = 0 and 00 (i.e. t = 00 and 0) respectively and the E1 IER 
peak in the neighborhood of 15 Hz, which is of the order of magnitude of 
the flutter frequencies for the examples considered in Reference [11]. The 
Re vectors for the elastic structural damping at the temperatures of Table 

II are equal to Rv em ax and the angles ~e are equal to ~vemin at all 
temperatures . 

TABLE II. 

Viscoelastic Damping Properties of 
2024 Aluminum [11] 

' 
Tempe- . Strucutral CE1/ER) R vea, .. R 

Vt\nin 
~ vea, .. ~ ve,,, in 

rature Damping psi X 10-7 psi X 10-7 degrees degrees 
op Coefficient 

80 0 .00283 1.070 1.060 . 162 0 
80 .05 .0528 1.071 1.061 3.02 2.86 
200 0 .00585 1.038 1.020 .335 0 
200 .05 .0559 1.039 1.021 3.20 2.86 
340 0 .0144 .990 .966 .826 0 
340 .05 .0644 .991 .967 3.69 2 .86 
450 0 .0258 .954 .900 1.48 0 
450 .05 .0758 .955 .901 4.33 2.86 

Since the flutter Eqs. (2) are highly nonlinear functions of co, an 
analytical comparison of viscoelastic and structural damping is not feasible. 
However, a reexamination of the bending-torsion supersonic flutter 
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problem for a Timoshenko beam previously analyzed in Reference [ 11] 
based on the addition of structural damping effects as exemplified by Eqs. 
(7), leads to the results displayed in Table III. 

TABLE III. 

Some Flutter Results for 
a 2024 AL Wing 

Elastic Viscoelastic 

g cor Mr cor Mr 
0 20.0001 1.3037 26 .8586 1.5167 

.005 19.9737 1.3056 26.8070 1.5081 

.01 19.9465 1.3074 26 .7550 1.4994 

.05 19.7150 1.3239 29 .0102 1.9887 

These results are typical for metal wings in supersonic flow and fully 
account for the material property dependence on temperature as the 
flutter Mach number changes. It is to be noted that as the structural 
damping g increases the viscoelastic flutter Mach number Mr may increase 
(destabilizing) or decrease (stabilizing). For an elastic aluminum wing with 
the same mass distribution, geometry and aerodynamics , the 
corresponding flutter Mach numbers are smaller than the viscoelastic ones 
and an increase in structural damping for the elastic wing is destabilizing. 
Even though the viscoelastic action for 2024 aluminum at elevated 
temperatures is far from being as pronounced as it is in high polymers and 
composites, the viscoelastic flutter Mach numbers are significantly 
different from the corresponding elastic ones. (Table III) This is due to the 
highly nonlinear dependence on the flutter frequency COf and the attendant 
phase relations which shift in a complicated fashion. In References 10 and 
11 it has been previously noted that viscoelastic flutter Mach numbers 
may be -higher or lower than corresponding elastic ones for wings of 
identical geometry, mass distributions and aerodynamic properties. 
Dugunji [12] has noted similar behavior due to structural damping in 
elastic panel flutter. 

Dissipation Energy 

A comparison of the dissipation energies generated by viscoelastic , 
viscous and structural damping processes is next in order. They can be 
considered together by referring to the mechanical models of Fig. 2. For an 
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Viscoelastic 
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Fig. 2. The Generalized Kelvin Model 
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isotropic, linear viscoelastic material the stress-strain relations for change 
in shape and in volume are, respectively [5] 

2 Ek1(X, 1) = f J(x, I - t') Ski (x, t') dt' (12) 

E(x, t) = f 1v (x, I - t')o-(x, t') dt' (13) 

where Skt and Ekt are the stress and strain deviators, E and CJ the mean 
strains and stresses and where the compliances are 

N+l N 
J(t) = L Jn(t) = o(t) Jo/(1 + ig) + 1/T\N+l + L exp[-(1 + g)t/tnl/T\n ( 14) 

n=l n=l 

and with a similar expression for the volumetric compliance Jv, both of 
which are obtained by the F.T. inversion of Eq. (8). Note that Eq. (14) 
defines the general viscoelastic compliances in the presence of structural 
damping. These compliances may also be written in the manner of Eq. (7), 
I.e. 

2 
= = ' t 2 ' 
J (ro) = 1/G (ro) = JR(ro) - i1£ro) = [GR (ro) - iG£ro)]/[GR (ro) + G1 (ro)] ( 15) 

As can be seen from Eqs. (5) and (8), the introduction of structural 

damping effects into viscoelasticity results in changes of G0 [1 + i(rot0 +g)] in 
the denominators of the sums of Eq. (5) and in first term multiplication by 
1/(1 +ig). Effectively, upon F. T. inversion, this serves to shift the time to 
t+gt in the exponential terms of Eq. (14). 

The dissipation energy per unit volume at any point x = (x1, x2 , x3) 
and at any time t > 0 is 

r N+l r M+l 
DE(x, t) = Jo ~

1 

s<k~) (x, t') ~~) (x, t') dt' + Jo ::
1 

o-(m)(x, t') i:(m\x, t') dt' 

(16) 

ICB-11 



where superscripts (n) and (m) denote quantities associated with each 
dashpot n or m in the Fig. 2 model. The stress-strain relations for each 
dashpot are given by [5] 

(n) . (n) 
ski = 2Tln Ekl ( 17) 

and 

2 1{~> (x, t) = f ]0 (x, t-t') Ski (x, t') dt' (18) 

where Ski is the total stress deviator in the GKM model and is the sum of 

S~~) of any dashpot and the stress deviator of its corresponding elastic 
paired spring. Equations similar to (17) and (18) can also be written for 
volumetric changes. 

Differentiation of Eqs. (18) and substitution into ( 17) gives 

st{ (x, t) = 11n [ f aJ n (x, t - t')/at' Ski (x, t') dt' + J0 (x, 0) Ski (x, t)} ( 19) 

with a similar expression for o<m). Finally, the introduction of Eqs. (17), 
(18) and (19) into (16) results in 

DE(x, t) = lt {! _L [lt' aJn(X, ~· - ~) Sit! (x, ~) d~ 
o n=l 2rln o at 

t' 
+ Jn (x, 0) Ski (x, t')] [1 aJn (x, t' - ~) Sit! (x,~) d~ 

o at· (20) 

J ( 0)~ ( ')]} d' {l _L_[ vm x,t-<:i o(x,~)d~ lt M+1 Jt' aJ < • ~) 
+ n x, l x, t t + o m=l Tlvm o at' 

+ Jvm (x, 0) CJ (x, t') ]} dt' 
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The total dissipative energy DET(t) is the volume integral 

DEr(t) = !v DE(x, t) dx1 dx2 dxa (21) 

where V is the total volume of the body. It is readily seen that Eqs. (20) 
and (21) depend both on material properties (J n, Jv m) and the loading 

process (Ski, cr, i.e. the stresses crk1 =Ski+ ok1cr). Consequently, Eq. (21) is 
an extremely useful expression for comparing the dissipation properties of 
various materials at one or more processes. 

In the viscous no structural damping case, Eqs. (12) through (20) 
simplify to only one term in each of the J's, i.e., 

J = exp[-(1 + g)thJ/11 (22) 

1 and with a similar v subscripted expression for Jv and where t = 11/G O and tv 
= 11 v/K 0 with, of course, the usual coefficient of viscosity c equal to the 
more general 11. For elastic structural damping alone, only the first term of 
Eq. (14) remains and due to the nature of the Dirac delta functions the 
stress-strain relations (12) and (13) reduce to the usual algebraic elastic 
ones. The results are summarized in Table I. 

For anisotropic materials, similar but more complicated flutter and 
dissipation energy expressions can readily be derived. However, they may 
require as many as 21 complex moduli or compliances (instead of the two 
isotropic ones used in the foregoing development) to fully describe 
anisotropic material behavior [ 13]. The anisotropic relations between 
stress O'k} and strains Ekl now become in the F. T. plane 

3 3 

Okt(X, ro) = L, L, B klmn (ro); mn (x, ro) (23) 
m=l n=l 

where B klmn are complex moduli. For the sake of economy of length, the 
anisotropic flutter and dissipation energy analysis and results are not 
included in this paper, however, the previous isotropic analysis can easily 
be extended to anisotropic materials by rewriting Eq. (3) as [11] 
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6 

Pm {Fm}= L Qmif CLniJ (24) 
1=1 

- - - -- - - -
and subsequently redefining each E , D , etc, as E , D 1n the 

m mnk ml mnkl 
relations following Eqs. (3) with 1 ranging from 1 to 6. This serves to 

= = 
expand the discussion from each isotropic Em to six anisotropic E ml, but 

does not change any of the fundamental principles and interactions 
considered above. 

Extensive damping properties of real materials may be found rn 
References 14 and 15. 

CONCLUSIONS 

It is shown that for any general motion there is no relation between 
elastic structural damping and Newtonian viscous damping except at the 
natural frequencies of the system. The viscoelastic complex moduli are 
rederived to include structural damping. 

The results indicate that in the presence of structural damping the 
real part is unaffected but the imaginary part includes effects due to the 
structural damping coefficient and the usual real and imaginary parts of 
the complex modulus. The illustrative examples for supersonic flutter of 
an aluminum wing indicate that an increase in the structural damping 
coefficient may increase or decrease the viscoelastic flutter speeds and the 
elastic flutter speeds are not necessarily higher than the corresponding 
viscoelastic ones. In other words neither structural nor viscoelastic 
damping necessarily produce stabilizing effects. · 

REFERENCES 

1. Bisplinghoff, R. L., Ashley, H. and Halfman, R. L., Aeroelasticity, 
Addison-Wesley, N.Y., 1955. 

2. Bisplinghof, R. L. and Ashley, H., Principles of Aeroelasticity, John 
Wiley and Sons, N.Y., 1962, p. 381. 

3. Fung, Y. C., An Introduction to the Theory of Aeroelasticity, John 
Wiley and Sons, N.Y., 1955, pp. 477-479. 

ICB-14 



4. Scanlon, R. H., and Rosenbaum, R., Introduction to the Study of 
Aircraft Vibration and Flutter, Macmillan, N.Y., 1951, pp. 85-88, 196, 
209-210, 341. 

5. Hilton, H. H., "An Introduction to Viscoelastic Analysis," Engineering 
Design for Plastics, Reinhold Publ. Corp., N.Y., 1964, pp. 199-276. 

6. Soroka, W. W., "Note on the Relation Between Viscous and Structural 
Damping Coefficients," Journal of the Aeronautical Sciences, Vol. 16, 
July 1949, pp. 409-410, 448. 

7. Pinster, W., "Structural Damping," Journal of the Aeronautical 
Sciences, Vol. 16, Nov. 1949, p. 699. 

8. Dahl, P. R., "Solid Friction Damping of Mechanical Vibrations," Al AA 
Journal, Vol. 14, Dec. 1976, pp. 1675-1682. 

9 . Saravanos, D. A. and Chamis, C. C., "Mechanics of Damping for Fiber 
Composite Laminates Including Hygrothermal Effects," A/AA Journal, 
Vol. 28, 1990, pp. 1813-1819. 

10. Hilton, H. H., "Pitching Instability of Rigid Lifting Surfaces on 
Viscoelastic Supports in Subsonic and Supersonic Potential Flow," 
Proc. of Third Midwestern Conj. on Solid Mechanics, 1957, pp. 1-19. 

11. Vail, C. F. and Hilton, H. H., "Bending-Torsion Flutter of Linear 
Viscoelastic Wings in Two Dimensional Flow," University of Illinois 
Technical Report AAE 76-1, 1976. Submitted for publication to 
A/AA Journal. 

12. Dugunji, J ., "Theoretical Considerations of Panel Flutter at High 
Supersonic Mach Numbers," A/AA Journal, Vol. 4, 1966, pp. 1257-
1266. 

13. Hilton, H. H., and Dong, S. B., "An Analysis for Anisotropic, 
N onhomogeneous, Linear Viscoelasticity Including Thermal Stresses," 
Development in Mechanics, Pergamon Press, N.Y., 1964, pp. 58-73 . 

1 4 Lazan, B. J., Damping of Materials and Members in Structural 
Mechanics, Pergamon Press, N.Y., 1968. 

15. Nashif, A. D., Jones, D. I. G. and Henderson, J. P., Vibration Damping, 
John Wiley & Sons, N.Y., 1985. 

ICB-15 


