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The motion of a root-excited cant11ever beam coated on both sides with a vlbration­

damp1ng viscoelastic material ls investigated. 

~1easurements of relative amplitudes and phase lag between the free arid driven ends of 

the beam ere used to characterize the variation of the viscoelastic material's complex 

Young's modu \us with frequency. Effects of other parameters such as temperature or 

humidity on the complex modulus can be evaluated provided that tests are done in an 

environmental chamber . 

The methOd is readily applicable to beams with coatings of viscoelast\c material of 

equal thickness on both sides and also to any beam manufactured out of a single, self­

supporting material. It is efflclent, fast and accurate. It is a valuable alternative to the 

ASTM E756-83 "Standard Method for Measuring Vibration - Dampi ng Properties of 

t"later 1a\s. " 

r~ey words: v1brat1on, viscoelastic, damping, complex) modulus, 

experimental, measurement. 

INTRODUCTION 

Over- the years .. numerous methods were developed for the purpose of 

evaluating the damp1 ng character 1st 1cs of non-sel f-supporting viscoelastic 

material s. A large share of those methods are used to evaluate extensiona i 

damp1ng properties with the Young's complex modulus approach. This is 
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explained by the fact that simpler analytical developments and 

experimental rigs are requ1red. 

Van Oort [I] and Oberst and Frankenfeld [2,3] f1rst stud1ed t11e 

behaviour of t11in fixed-free beams coated w1th viscoelasttc mater-1als on 

one., or both sities (Van Oort only). The relat1onsh1ps derived by Van Oort, 

because of their assumpt Ions, are not used for the invest 1gat Ion of 

vibration damping materials having a hJgh loss factor. The work by Oberst 

and Frankenfeld was aimed at v1brat1on damping materials having a low 

elast ic modulus E and a high loss factor 1'). The so-called Oberst beam 

met/Jod has since been generally accepted and 1s now standardized by the 

DIN [ 4) and the ASTM (5). 

Schwarz! analyzed, 1n a more rlgourous manner, vlbrauons of beams 

made up of two viscoelastic materials [6]. He concluded tha·t Van Oort and 

Oberst and Frankenfeld theories were s1mplified versions of his own 

approach because, in their assumptions, they had neglected the effects of' 

coup 1 ing between flexural and extensional mot Ions. He a !so pointed out 

that, for an asymmetric beam made of two materials having different loss 

. factors, the neutral f lbre was moving tl1rough the cross-section at a 

frequency twice that of lateral vibrations. 

Ross, Kerwin and Ungar's (7) analysis was developed for a three-layer . 
system and Included extensional and shear type damping treatments for 

plates as wel I as for beams. In the special case of unconstrained damping 

treatment of a beam (zero thickness of third layer), RKU equations s1mpl1fy 

to those reported by Oberst and Frankenfeld. 
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Nashif [8] devel oped a method using the Oberst apparatus [9) with a 

metal supporting beam coated on both sides with equals thicknesses of a 

viscoelastic material. Bending problems at high -or low- temperature 

caused by the large diference between thermal coefficient of expansion of 

viscoelastic materials and metals were eliminated. Surpr·isingly, no 

mention to Schwarzl's (6) neutral fibre movement conclusion was made by 

Nash if to further just 1fy the use of symmetric speci~ens. 

The ASTM has published a "Standard Method for Measuring Vibration­

Damping Propert 1es of Materials" [5] which is based on the equations 

· pr-oposed by Oberst and Frankenfeld, Nashif and Ross, Kerw in and Ungar. 

Unfortunately, these methods contain a number of assumptions that prevent 

tr1em from being generally applicable: 

- The damping effects of the supporting material are neglected; 

- Eigenvalues equations are derived without considering the effects 

of damping (added stiffness, phase lag, etc.); 

- n,e global loss factor is calculated w1th methods tr,at were 

developed for lightly damped, single degree of freedom systems 

(half power bandwidth or logarithmic decrement). 

To eliminate the restrictions of existing methods, an approach based 

on the study of lateral vibrations of root-excited cantilever beams is 

proposed. It is an extension of the work on damping properties of rigid 

polymers by Ostiguy and Evan-Iwanowski (101, Horio and Onogi (11], Bland 

and Lee [ 12] and Stre l1 a [ 13]. 
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THEORETICAL ANAL VS IS 

Trie use of a root-exc1ted beam enables one to use both amplitude and 

. priase lag measurements for the char·acterizat ion of damping. The 

viscoelastic mater1al's elastic modulus and loss factor can be determined 

from experimental measurements, without using any approximations or 

assumptions. This proves valuable particularly for materials having high 

loss factors. Symmetric test sections are used so that the neutral fibre is 

remains in the geometric center of tt)e cross-section and that no thermally 

induced bending occurs. 

V \/ + (d\//dx) dx 

r !...--.;;.._-f-L-At )M•(dM/dM)dM 
\/ 

dx 

)( 

Figure 1: Free body diagram of d1fferent1al element 

A free body diagram of a differential element of length dxof a beam 

is shown in figure 1. By equating the forces In tt~e Y direction to the 

corresponding inertia force and by summing the moments about the 
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element's center of grav1ty, we obtain t he standard equation of motion for 

Euler beams (shear and rotatory 1nert1a effects neglected) 

( 1 ) 

where m is the mass per uni t lengtr1. From the classical theory of pure 

bending of beams, the bending moment is re lated to the lateral motion 

througr, the flexural rigidity term. This equation can be applied to 

v1scoelast1c material s by replac ing the standard elastic Young's modulus E 

tJy the complex m9dulus E*. We then have 

L 

Figure 2: Test beam geometry and t&st 18'{out 
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M = E* 1 a2y1ax2 (2) 

Combining equat 1ons ( 1) and (2) we get 

m a2y1at2 + <E* I) a4y/ax4 = o (3) 

For the beam shown 1n the test section schematic view (figure 2), 

mass, stiffness and inert1a propert1es are 

I 1 = bh13/ 12 

W1th the use of the following parameters 

H = h2/h1 

KH = 6H + I 2H2 + 8H3 

equat1ons (3) to (7) .give 
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12 (p 1 + 2p2H) a2y1at2 + 

h1 2 {E1(l+iri1) + KH E2(l+iri2)} a4y/ax4 = 0 ( 10) 

By separating space and time solut ions and by defi ning the Q 

parameter as 

q4 = 12 Cp, + 2p2H) w2 ( 1 1 ) 

h1 2 ((E1+ KH E2) + l(111E1+ KH112E2)} 

we have 

d4Y / dx4 - q4 Y = 0 ( 12) 

For the beam shown in figure 2, the boundary conditions are 

Y = Yo dY /dx = 0 at X = O· ) 

d2Y /dx2 = 0 d3Y / dx3 = 0 at X = L. ( 13) 

Only the motion at the free end is of Interest. It is found by solving 

equation ( 12) with the above boundary conditions and then putting x=L. 

Divi ding by the motion at the Lirlven end gives the ratio of ampli tude AR 

and the phase lag 8 between the free and driven ends 

AR e-1e = cos 'f + cosh 'f 
1 + cos 'I' cosh 'I' 
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wher·e 

( 15) 

Equation ( 14) can be transformed Into two functions of unknown 

parameters & and p by equating the real and Imaginary parts on both sides 

of the equation. Once s1mpllfled, these two functions are 

AR ( 1 + cos cx. cos p cosh ex. cosh p + sin ex, sin p slnh ex. slnh p} 
- cos 8 ( cos oc. cosh p + cosh oc. cos p ) 
- sin 8 (sin oc. slnh p - slnh oc. sin p J = O < 16) 

and 

AR (cos ex. sin p sinh oc. cosh p - sin ex, cos p cosh oc. slnh p) 
+ cos 8 (sin oc. slnh p - slnh ci sin p} 
- sin 8 (cos oc. cosh p + cosh oc. cos ~} = O ( 17) . 

These non-linear equations are solved numerically by a Newton­

Raphson scheme [ 14]. Reasonably close starting values <a.o, llo) are required. 

For that purpose, we define the following two parameters 

and 

A = b. 1 2 JE.1.:..&i-t2 l 
12 (p1 + 2p2H) 

( 18) 
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. B = h1 2 Jn1.E.1~ 02L2 
12 (I) (p1 + 2p2H) 

Equation ( 12) then becomes 

(A+ hoB) d4Y /dx4 - (1)2 Y = 0 

( 19) 

(20) 

wh1ch 1s 1dentlcal to equation ( 10) ln Strella's paper [ 13]. With the current 

symbols, equations (30)., (31) and (32) of Strei la become 

A =[ ( 16 Wrd2 
~ 16 a02 - F2~ 

B = f...12. ( 1 6 Wr -1.?.l 
a03 ( 1 6 a02 - F2) 

F = - 5,478 + 2 i 7.$02 + 6, l $ AR2 
1.689 AR2 

(21) 

(22) 

(23) 

wher·e -,. Is a resonant frequency, ao Is the eigenvalue of the equivalent 

mode number for a fixed-free beam Cao= 1.875, 4.694, 7.855, etc.) and AR 

is as prev1ously defined. Approx1mate values for E2 and 112 are found with 

equat1ons ( 18) and ( 19). These approx1mat Ions are given by 
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and 

where 

and 

Eo2 = ~ 1 + 2p21:il..A - £ 1 

KH h1 2 KH 

ll02 = ~I + 2p21::i2Jiu....6. - ...n.1£1 

KH' h1 2 Eo2 KH Eo2 

We then obtain from equat Ion ( 15) · 

01-0 = 4✓R cos (•/ 4) 

Po= 4✓R s1n (•/ 4) 

R = 12 (p 1 + 2p2H.2.J&zr_2 .-L 4 __ _ 

h1 2 ✓((E1+ KH Eo2)2 + (ri1E1• KHT'102Eo2)2} 

• = tg- 1 - in 1 E 1 !...KH..no2E.o2l 
(E1• KH Eo2> 

(24) 

(25) 

(26) · 

(27) 

(28) 

These starting values ao and Po are now used to Iterate to the final 

solution for ll. and p with the Newton-Raphson method. The numerical value 

of the complex angle Y = (1X.+Jp) ls now known. Again rearranging equation 

( 15), we obtain 
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(E1+ l<H E2) + i(ri1E1+ KHri2E2) = ~1 + 2p2H)w2 L4 

h 12 (cc. + I p )4 

(29) 

The numerical values of elast1c modulus E2 and loss factor '12 of the 

viscoelastic coating are found by equating the real and imaginary parts on 

both sides of equation (29). After simplifications, we have 

(30) 

and 

(31) 

To evaluate the complex modulus E*2(1m) of a non-self-supporting 

viscoelastic material ., the procedures outl1ned below must be followed. 

1- record the following parameters, w1th appropriate units: L, p1, h1, 

E 1, 1)1, P'2 and h2; 

2- evaluate H and KH with equations (8) and (9); 

3- record ampllfication AR, phase lag 8, resonant frequency 11r and 

mode number so that Strei la's approximate method can be used as a first 

approximation; 

4- evaluate A, B and F as per equations (21 ), (22) and (23) with 

appropriate resonant frequency.,. and eigenvalue a0; 
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5- evaluate Eo2 and ~ 2 w1th equat1ons (24) and (25); 

6- find starting values ao and Po w1th equat1ons (26), (27) and (28); 

7- iterate toward final values a. and p; 
8- evaluate elastic modulus E2 and loss factor Tt2 with equations 

(30) and (31 ). 

CONCLUSIONS AND RECOMMENDATIONS 

When test1ng a non-self-supporting material, the support beam can 

be manufactured out of a viscoelastic mater1al because 1ts own damping 

characteristics were carried throughout the derivation of the equations. 

For self supporting materials that can be shaped as a beam, the equations 

defined in this paper are simplified by ellmlnat1ng all terms containing 2 . 

as a subscript. The equations then become Identical as tt1ose der1ved by .· 

Ostiguy and Evan-Iwanowski [ I OJ. 

An experimental setup similar to those used by Ostiguy and Evan­

Iwanowski (10) or Strella (13] Is recommended. Strella's setup Is 

particularly useful because lt allows quick free length changes to be made. 

The length/thickness ratio should remain greater than 50 so that shear and 

inertia effects can be neglected. Non-contact1ng electro-optical or laser 

instrumentation should be used for amplitude and phase lag measurements. 

Tests should be done 1nslde an environmental chamber to evaluate the 

effects of temperature, hum1dlty, vacuum, etc. Frequency and temperature 

effects can be combined·, w1th the use of a reduced frequency nomogram 
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[ 15, 161, to provide a complete description of damping properties of a 

materia 1 on a single chart. 

The approach proposed ln th1s paper allows one to evaluate quickly 

and precisely the Young's complex modulus of v1scoelastic mater1als. 

Additional work 1s being done to adapt this method for complex shear 

modulus evaluation. The method can be used for any material , without any 

restrlct ion. It 1s fast, accurate and its repeatabll 1ty has been demonstrated 

· [ 1 O]. It brings signif leant Improvements over exist1ng test methods. 

CBB-13 



ao 

A,B 

AR 

b 

E 

Eo 

E* 
F 

G* 

h 

H 

m 

M 

QL 

R 

s 
t 

V 

X 

NOMENCLATURE 
eigenvalues for a clamped-free beam 

parameters defined by equat1ons ( 18) and ( 19) 

amp11tude rat1o of free vs dr1Ven end 

beam w1dth (m) 

elast1c modulus, real part of E* (N/m2) 

approx1mate value of E (N/m2) 

Young's complex modulus (N/m2) 

parameter defined 1n ref ere nee [ 13] 

complex shear modulus (N/m2) 

thickness (m) 

thickness ratio 

un1t 1maglnary number (12 = -1) 

area moment of inertia (m4) 

= 6H + 1 2H2 + 8H3 

free length of beam (m) 

mass per unit length (kg/m) 

bending moment (N.m) . 

complex frequency parameter 

parameter def1ned by equat 1on (27) 

cross-section (m2) 

time (s ) 

shear force (N) 

station along beam (m) 
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y(x, t) transverse displacement of beam (rn) 
Y(x) vibration amplitude (m) 

·Yo vibration ampl1tude at driven end Cm) 

yl vibration amplitude at f ree end Cm) 
Ct., p real and imaginary parts of 'I'. 

01.0, Po approximate values of 01. and~ 

Y') loss factor 

T)O approximate value of ri 

A angular deform at ion {rad) 

e phase lag between free and driven ends (rad) 

p density (kg/m3) 

• angle defined by equation (28) (rad) 

'11 comp lex angle (rad) 

(A) circular frequency of vibration (rad/s) 

Wr resonant frequency (rad/ s) 

1,2 subscript for beam materials 

CBB-15 



REFERENCES 
1. W.P. Van Oort, ''Eine Methode zur Messung der Dynam1sch-
mecr1an1schen E1genschaften kle1ner plast1scher Stoffe," M1crotechn1k; Vol. 

. 71 pp, 246-255, 1953. 
2. H. Oberst und K. Frankenfeld, "Ober die Dampfung der 
Biegeschwingungen dunner Bleche durch fest haftende Bel~ge," Acust1ca, 
Vol. 2, Beiheft 4, pp. AB 181-194, 1952. 
3. H. Oberst, G.W. Becker und K. Frankenfeld, "Uber die D~mpfung der 
Biegeschw1ngungen dunner Bleche durch fest haftende Be lage 11," Acust1ca, 
Vol. 4, pp. 433-444, 1954 
4. DIN, "Biegeschwlngungsversuch. Bestlmmung von Kengrossen schw!n-
gungsgedampfter Mehrsch!chtsysteme," DIN 53 440, Blatt 3, l 971 . 
5. ASTM, "Standard Method for Measuring Vibration-Damping 
Properties of Materials," ASTM E756-83, Annual Book of ASTM Standards, 
Vol. 04.06, 1989. 
6. F. Schwarzl, "Forced Bending and Extensional V1bratlons of a Two-
Layer Compound Linear Vlscoelast1c Beam," Acustlca, Vol. 8, pp. 164-172, 
1958. 
7. D. Ross, E.E. Ungar and E.M. Kerwin, Jr., "Damping of Plate Flexural 
Vlbrat1ons by Means of Viscoelastic Laminate," Structural Damping, ASME, 
New York, pp. 49-88, 1959. 
8. AD. Nashlf, "New Method for Determining Damping Propert1es of 
Viscoelastic Materials," Tne Shock and Vibration Bulletin, Vol. 36, pp. 37-
47, 1967. 
9. Bruel & Kjaer, Complex Modulus Apparatus, Bruel & Kjaer Type 3930: 
Instructions and Applications, Brue I & Kjaer, Lyngby, Denmark, 1968. 
10. G.L. Ostiguy and R.M. Evan-lwanowskl , On Viscoelastlclty and Methods 
of 11easur1ng Dynamic Mechanical Properties or Linear Viscoelastic Solids, 
Technical Report No. EP77- R-13, Syracuse University, 1977. 
l I. r1. Horio and s. Onogl, "Forced V1brat Ion of Reed as a ~1ethod of 
Determin1ng Viscoelasticity, " Journa l of Applied Physics, Vol. 22, pp. 977-
981, 1951 . 
12. D.R. Bland and E.H. Lee, "Calculation of the Complex Modulus of Linear 
Viscoelastic Materials from Vibrat1ng Reed Measurements," .Journal of 
Applied Physics, Vol. 26, pp, 1497-1503, 1955. 
13. 5. Strella, "Vibrating Reed Test for Plastics," ASTM Bulletin, May 
1956, pp. 47-50. 

CBB-16 



14. C.F . Gerald, P.O. Wheatley, Applied Numerical Analysis, third edition, 
Adc!ison-Wesley, Read 1ng Massachuset t s, 1984. 
15. AD. Nashif, D.I.G. Jones and J.P. Henderson, Vibration Damping, Wiley-
lritersc ience, New York , 1985. 
16. D.I .G. Jones, "Viscoelasti c Materials for Damping Appl1cations," AMD-
Vol . 38, Dampln9 Applicatlons for Vibration Control, ASTM, New York, pp. 
27-51, 1980. 

CBB-17 


