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ABSTRACT 

The response of a finite, inhomogeneous, Kelvin viscoelastic solid under arbitrary excita­
tion is determined by modal analysis. Through the reciprocal theorem of viscoelasticity, 
vibration modes of the Kelvin viscoelastic solid satisfy orthogonality conditions and the sys­
tem response under any excitation is represented in a modal series. This formulation tech­
nique is illustrated on an asymmetric, classical, circular plate containing Kelvin inclusions 
excited by a constant transverse force rotating at constant speed. The viscosity of the inclu­
sions suppresses the instability excited at supercritical speed in the elastic plate, but it may or 
may not suppress instability excited at subcritical speed depending on the geometry and loca­
tion of the Kelvin inclusions. 
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1. Introduction 

Viscoelastic components are often introduced to elastic structures to suppress excessive 
vibration and to reduce noise level produced by the structures [1-3]. Instead of adding addi­
tional damping material to elastic structures, which is common in damping design such as 
tuned dampers [ 4, 5] and surface treatments [ 6, 7], viscoelastic components can be introduced 
as inclusions in the structure [8]. In addition, the location and geometry of the viscoelastic 
inclusions can be specified to significantly strain the inclusions during particular vibration 
modes. 

In an earlier study [8] eigenfunctions and Green's function have been determined for a 
three dimensional, finite, elastic solid with Kelvin viscoelastic inclusions through an integral 
equation and a perturbation iteration method. The purposes of this paper are to develop the 
orthogonality of the eigenfunctions of the viscoelastic solid and to present the response of the 
solid to arbitrary excitation. 

Following the viscoelastic reciprocal theorem [9], eigenfunctions of the Kelvin viscoelas­
tic solid satisfy orthogonality conditions in a state space representation. Eigenfunction expan­
sion of the response in a modal series then discretizes an action integral whose stationarity 
governs the response of the viscoelastic solid under arbitrary excitation. Stationarity of the 
action integral and the state space orthogonality conditions give a set of decoupled equations 
governing the generalized coordinates of the modal series. 

This technique is illustrated on an asymmetric, classical, circular plate containing viscoe­
lastic inclusions excited by a constant transverse force rotating at constant speed. The steady 
state response of the plate is obtained through the modal analysis. 

2. Orthogonality 

Consider an inhomogeneous, isotropic, Kelvin viscoelastic solid with Lame distributions 
A(r), µ(r), density distribution p(r), and damping distributions ,.: (r), µ• (r). The solid occupies 
a three dimensional domain t with zero displacements on the boundary o1 and vanishing trac­
tion on boundary Oz. The complex-valued eigenfunction v(r) = [v<1>(r), v<Z>(r), vC3>(r)J7 and 
eigenvalue v satisfy 

d ·" "• • _ 2 (i) dx · [O;j('fl(r),V,11.,µ,11. ,µ )] - V p(r)V (r), i = 1, 2, 3 
J 

with boundary conditions 

v(r) = 0, on 01 

O;j(V(r),v;).,,µ,A• ,µ•)nj = 0, on Oz, i =1,2,3 

where 

o;/u,v;A.,µ,A.• ,µ•) = A.O;jEtt(u)+2µ£;j(u) + v [A• O;jEtt (u)+ 2µ• E;/u)] 

In addition, the divergence theorem [9] gives 

f O;/u,v;A,µ,A• ,µ• )nju'; dzr - f _!L[o;/u,v;A,µ,A• ,µ• )]u'; d 3r 
CJ1 't dxj 
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(4) 

with 

I (u,u';A,µ) = f [AEtt (u)e11 (u')+2µeij (u)e;j (u')] d3r 
'f 

(5) 

where u(r)evt and u'(r)ev' are harmonic displacement fields vanishing on ai, and eijO is 
infinitesimal strain. 

Replace the unprimed and primed u in (4) by 'I'm (r) and 'l'n (r). Since eigenfunctions 
satisfy (1) and (2a,b), (4) implies 

-v~ f p(r)'lfm ·Vn d 3r = f I ('I'm ,'l'n ;~r),µ(r)) d 3r + Vm f I ('I'm ,'l'n ;A• (r),µ* (r)) d 3r 
'f 'f 'f 

(6a) 

and 

-v; f p(r)v11 ''I'm d 3r = f I ('lfn ,'I'm ;A(r),µ(r)) d 3r + v11 f I ('lfn ,'I'm ;A• (r),µ* (r)) d 3r 
'f 'f 'f 

(6b) 

Subtract (6a) from (6b), apply the symmetry of I, and normalize 

(Vm +v11 ) f p(r)'lfm'Vn d3r + f /(Vm,Vn;A• (r),µ* (r))d3r = Omn 
'f 'f 

(7a) 

Multiply (7a) by v11 and add to (6b) 

-v,,.v11 f p(r)Vm ''l'n d3r + /('l'm,"'l'n;A(r),µ(r))d3r = -v11 Omn, (n no sum) (7b) 
'f 

Orthonormality (7a,b) can also be written in a compact form 

<(f)m,(f)n >A= J (f)!A(f),id3r = Omn (8a) 
'f 

where (f)m, A, and B are 

~m = [v;:m l (9a) 

[ 
o p(r) l 

A= p(r) /(·,;A*(r),µ*(r)) (9b) 

[
-p(r) o l 

B = 0 / (· ,;A(r),µ(r)) (9c) 

The first and second entries of / in (9b,c) operate on the premultiplied and postmultiplied 
functions, respectively. 

3. Response Under Arbitrary Excitations 

The response w(r,t) of the solid under arbitrary excitation f(r,t) satisfies stationarity of 
the following action 

12 [ 
oJ = ( OT-oV +OWD +oWF] dt (10) 
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where 

BT = J p(r)w(r,t)Bw(r,t)d3r 
't 

BV = J I (w,fJw;A(r),µ(r)) d3r 
't 

fJW D = - J I (w,fJw;A *(r),µ • (r)) d 3r 
't 

BWF = J f(r,t)·Bw(r,t)d3r 
't 

(1 la) 

(llb) 

(llc) 

(lld) 

are the variations in the kinetic and strain energies plus the virtual work done in the viscoelas­
tic material and by the external load. By (l la-d), (10) can be rewritten as 

6/ = f.: { f, p(r):, [ W6w] ds - [ <'¥,6'1':>A + <'P,6'1'>8 ] + f, F·6'1' d< }dt (12) 

where 

[
w(r,t) ] 

'l'(r,t) = w(r,t) ' (13) 

If the eigenfunctions <I>m(r) in (9a) are complete, then 'l'(r,t) allows a representation as an 
eigenfunction expansion 

m=l 

Substitute (14) into (12) and recall the orthogonality (8a,b) to obtain 
1

2 d [ ] 
00 1

2 [ ] f,J = J J p(r)- wfJw dt dt - L J <411 -V11q11 -Q11)&/11 dt 
't l1 dt 11=1 l1 

where 

The stationarity of J, M =0, and f,q11 (t 1) =f,q11 (ti) =0, n = 1,2, .. . , imply that 

q11 (t)-v 11 q11 (t) = Q11 (t), n =1,2,3, · · · 

with the initial condition 

q11 (0) = <<l>11 (r),'l'(r,0)>A, n =1,2,3, · · · 

The complete response is then 
00 00 f 

V I f V (1--'t) w(r,t) = L q12 (t}\jf11 (r) = L [ <<l>11 (r),'l'(r,0)>Ae ft + e ft Q11 (t)dt]\jl11 (r) 
n=l 11=1 0 

4. Applications to Asymmetric Circular Plates 

(14) 

(15) 

(16) 

(17a) 

(17b) 

(18) 

The steady state response of a stationary, classical, asymmetric, viscoelastic circular plate 
under a rotating force is determined by modal analysis. Classical plate theory requires 

w(r,t) = w(r,t)k , f(r,t) = f (r,t)k 
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where f is the unit vector normal to the middle surface of the plate. The eigenfunctions are 

"''""(r)f and 'l'mn(r)k , m =0, 1, ... , n =0,±1, · · · 

where 'l'mn (r) and "''" ,-11 (r) and their complex conjugates (denoted by the overbar) are four 
orthonormal complex eigenfunctions of the plate with m nodal circles and n nodal diameters. 
Therefore, the plate response is 

2 00 00 

w(r,t) = L L L '\j/~(r)q~>(t) 
a.=l m=On=-oo 

where '\j/~(r) = 'l'mn (r) and '\j/~(r) = 'l'mn (r). 

For a unit concentrated force rotating along a circle r = r O at constant speed n; 

f (r, t) = -1. o(r - r 0) 0(8 - nt) 
ro 

the modal response is 

4;:;>co - v~ q~>(t) = "'~>(ro, nt) 

Because 'l'~(r, 8) is periodic in 8 
00 

'\j/~(r, 8) = L a~>(r ;p) eipa , 
p=---

and the steady state q~>(t) is 

oo a (a>(r ·p) . 
q~>(t) = L mn o, e'Pru 

p=- ipn-v~ 

Resonance occurs when v'"" = ip n and a~>(r 0; p) is nonzero. 

The average strain energy of vibration is 

(19) 

(20) 

(21) 

(22) 

' (23) 

<E3 >=_.!_ff l(w,w;A,µ)dAdt, T= 21t (24) rJo A n 
Substitute (19) and (23) into (24) to obtain 

<Es>=- L f l('l'~>.vt>;)..,µ)dA [ i: a~>(ro;p)af>cro;p) l (25) 
aJ3mnkI A p=- (ipn-v~)(ipn+v1~ 

200 00 20000 

where L = L L L L L L. Similarly, total dissipation per cycle is 
atlmnkl a.=l m=O 11=-- ~l k=O I=-«> 

T 

<Ed>= Io t /(w, w;A: ,µ*)dA dt 

Substitute (19) and (22) into (26) to obtain 

An averaged loss factor < Tl > is [7] 
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a~>(r o; p) al >er o; p) l 

(ip n-v ~>) (ip n + vi>) 

(26) 

(27) 



<Ed> 
<11>=-­

<Es > 
(28) 

As a numerical illustration of the moving load instability, consider an uniform, elastic, 
circular plate with three evenly spaced radial inclusions. Each inclusion spans an angle 0.035 
rad (=2°) and extends from r =0.15b and r =b, where b is the outer radius of the plate. The 
inclusions considered are elastic or viscoelastic. Material properties of the plate and the inclu­
sions, and plate eigenvalues are described in Table 1. Eigenfunctions 'lfmn (r) of the plate are 
calculated by the method of perturbation iteration [8, 10]. 

Figure 1 shows the average strain energy of the asymmetric plate. The thin lines are for 
.elastic, and the thick lines are for viscoelastic inclusions. When the inclusions are elastic, 

n ~mn h · th . . 1 ed f h . . 1 resonances occur at - = --, w ere Wcr 1s e cnnca spe o t e ax1symmetnc p ate 
Wcr n 

without the inclusions and ~mn is a natural frequency of the asymmetric plate in Table 1. 
Increasing modal damping (Table 1) results in greater amplitude reduction in Fig. 1. Figure 2 
shows the strain energy of the plate at subcritical speed. Subcritical speed resonances, which 
do not exist in axisymmetric plates [11], do occur here at rotation speeds 

because [ 10] 

n ~mn 
, j =±1,±2, · · · 

I 3j±n I 
-= 

(ll) . {*o, p=3j±n, j=±l,±2, ··· 
a'"" (ro,P) = 0 , Otherwise 

(29) 

(30) 

The resonance around n = 0.104rocr is caused by 'lfoo(r), and the ones near n = 0.592 rocr and 
n = 0.829 IDcr are caused by the repeated modes 'l'oir) and 'l'o,-4(r). The subcritical speed ins­
tability may or may not be suppressed by damping in the inclusions depending on the modal 
damping ~mn. The resonance by 'l'oo(r) is slightly suppressed because of the minimal modal 
damping in 'l'oo(r) (cf. Table 1). 

5. Conclusions 

1. For an inhomogeneous, isotropic, Kelvin viscoelastic solid, eigenfunctions 'I'm (r) and 
'l'n (r) satisfy orthonormality conditions (8a,b). 

2. A lateral force rotating at constant speed will excite asymmetric plates containing 
elastic or viscoelastic inclusions to subcritical speed resonances that do not exist in axisym­
metric plates. The occurrence of the subcritical resonances depends on the plate asymmetry 
and can be predicted analytically. 

3. The viscosity of the inclusions may or may not suppress the subcritical resonances 
depending on the geometry and location of the inclusions. The suppression of resonances can 
be predicted by the modal damping of each vibration mode. 
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Table 1 - Normalized Eigenvalues of a Circular Plate with Three Inclusions 

Normalized natural frequencies: 

ro'"" = m'"" (axisymmetric plates), ~'"" = lJ'"" (asymmetric plates) 
ID er fficr 

Modal damping ratio: ~IM 

w 
Plate: fixed at inner rim at 0.5b, free at outer rim at b; - 0 = 0.7. t 

Do 

Inclusions extend from r =0.75b tor =b; e=0.035. 

For elastic inclusions: 
P

1
0 D'o W'o 

-=-=-=0.5.t 
Po Do Wo 

w• ' D' W' 
For viscoelastic inclusions: • o Po o o 

Do =0.00489, -. =0.7; - =-=- =0.5.+ 
Do Po Do Wo 

(m,n) Mode 

(0,0) axisym. 

(0,1) 
cos 
sin 

(0,2) 
cos 
sin 

(0,3) 
cos 
sin 

(0,4) 
cos 
sin 

t Converted from Table 1 of [10) 
f Converted from Table 1 of [8] 

No Inclusions 

(1)1M t 

2.1050 

2.1479 
2.1479 

2.3764 
2.3764 

3.0000 
3.0000 

4.1368 
4.1368 

With Three Inclusions 

Elastic t Viscoelastic + 

~IM ~IM ~IM 

2.1121 4.548 lxl0-4 2.1122 

2.1549 4.9882x10-4 2.1549 
2.1549 4.9882x10-4 2.1549 

2.3842 8.1266x10-4 2.3843 
2.3842 8.1266x10-4 2.3843 

3.0212 1.2677x10-3 3.0215 
2.9927 2.8305x10-3 2.9931 

4.1429 4.1766x10-3 4.1443 
4.1429 4.1766xl 0-3 4.1443 
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Fig. 1 A vcrage strain energy of asymmetric plates with three elastic or viscoelastic inclu­
sions excited by a rotating force at supercritical speed 
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Fig. 2 Average strain energy of asymmetric plates excited by a rotating force at subcritical 

speed; (a) plate with elastic inclusions, and (b) plate with viscoelastic inclusions 
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